
Dynamic Application Security Testing - Fuzzing: Brute-Force API Vulnerability Scanning

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Justin Gou

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Rosanne Vrugtman PhD, Department of Computer Science
Daniel G. Graham PhD, Department of Computer Science.

Technical Report

Abstract

Robinhood Markets, Inc. exposes a large number of API endpoints to the public that are

not regularly scanned for potential web vulnerabilities. Large amounts of API endpoints creates a

large attack surface for malicious attackers to target. Without regular vulnerability scanning on

these publicly accessible endpoints, any vulnerability could pose a large risk on the Robinhood

infrastructure.

To address this problem, a solution was proposed to use fuzzing, a method of brute-force

dynamic analysis, to automatically test all API endpoints. DAST is implemented as a web API

and designed so that developers can easily add custom tests and endpoints to be automatically

and regularly scanned.

DAST was enhanced with various web vulnerability scanning capabilities, including

scanning for HTTP smuggling, server-side request forgery, authentication bypass, etc.

Developers can easily add endpoints and custom scans as needed. The project was not ready for

production deployment at the end of term due to difficulties with deployment and complications

with load testing, as brute forcing will cause an unnecessary amount of noise. With deployment,

DAST will be integrated with Robinhood’s internal communication system to report findings.

With this research, the DAST system is now able to perform automated testing for

common web vulnerabilities across hundreds of API endpoints, significantly reducing risk and

potential for an external breach.

1. Introduction

“A chain is only as strong as its weakest link”. This idiom is true in many situations, where

if the weakest part of a system falls, the entire system will crumble. The same can be said about

any given computer system in the sense of cybersecurity; if any part of the system is vulnerable to

an attack, the entire system is vulnerable, regardless of how strong the rest of the system is. In this

situation, the Robinhood app, a mobile application designed to allow everyday people to

participate in financial investments in stocks, options, cryptocurrency, etc., is run with web API

endpoints, all of which are public accessible and not regularly tested for vulnerabilities.

Any publicly accessible domains become easy targets for attackers, as it requires no extra

effort to access the system. To counteract this, regular testing should be performed on these

endpoints to scan for common web vulnerabilities. At Robinhood, I implemented such testing

features through extension of an internal Dynamic Application Security Testing (DAST) system.

Through this research, developers could add specified endpoints to the system and the system

would automatically scan for vulnerabilities, which would then be reported back to proper entities

via internal messaging system.

2. Background

Any webpage is vulnerable to a variety of web application vulnerabilities. The Open Web

Application Security Project (OWASP) keeps an annually updated list called the OWASP Top

Ten, which highlights the top ten most common web vulnerabilities of any given year [1]. Some

of these include SQL injection, server-side request forgery (SSRF), broken authentication, etc. To

highlight the importance of protecting systems against these attacks, in 2019, Capital One was

victim to a SSRF attack, causing a breach of more than 100 million customers’ personal data [2].

This could have easily been prevented if the vulnerability were caught internally before the attacker

was able to it.

A Dynamic Application Security Testing (DAST) system is a common black-box

technique for information security teams to test code through execution as a form of dynamic

analysis. The DAST system at Robinhood was implemented as a Django web API and was

designed with the idea that general software developers could add endpoints to the system to be

automatically scanned on a regular basis.

Web application APIs must be defined in a way that can be processed by the DAST system.

To do so, APIs can be essentially serialized using the OpenAPI schema format, sometimes known

as Swagger specifications. These schemas are in the form of JavaScript Object Notation (JSON)

and provide information such as the endpoint, the HTTP method, the request parameters, etc.

These schemas can easily define hundreds of API endpoints to be processed and scanned by DAST.

To perform dynamic analysis, one common technique is known as fuzzing, which is the

idea to essentially brute-force attempt inputs until the system fails to handle the input. In a typical

example, a tool like American Fuzzy Lop (AFL) is used to automatically run a program thousands,

if not millions, of times to attempt to achieve unexpected behavior. Very minimal research has

been done on fuzzing web APIs, however, the same idea follows, where various inputs will be

passed into the data or query sections of an HTTP request to attempt to cause unexpected behavior.

3. Related Works

Various DAST systems are commercially available, including software by Acunetix,

Fortify WebInspect, Tenable.io, etc. [3]. In all cases, these external technologies have a price

associated with them, which Robinhood was not looking to allocate money for. While some of

these scanners provide features that match the specifications of my research, such as Fortify

WebInspect’s ability to process OpenAPI schemas, the reason for avoiding these commercial

scanners is simply due to the cost and lack of customizability for the infrastructure of Robinhood.

With an internally developed system, security engineers have full control over how

endpoints are tested. The system is not significantly difficult to implement, thus, the choice to

develop an internal system was clear.

One common open-source web fuzzing tool is called Fuzz Faster U Fool (FFUF), which is

supported by Offensive Security, a renowned cybersecurity organization [4]. I personally

researched this tool as an option to perform web API fuzzing, but eventually decided against using

it due to the difficulty of integrating such a tool with the architecture of DAST. It would also be

difficult to adapt the tool to generalized API endpoints, as it was designed to fuzz specific

endpoints with known information about the endpoint, which is not fully defined through OpenAPI

specifications.

4. Project Design

DAST had already been in development when my research began. The original state of the

system had only included features for synthetic monitoring, which is a technique to simulate API

calls to ensure the APIs are returning the expected results. While this is useful to ensuring proper

functionality of the APIs, this feature does not scan for vulnerabilities and does not perform

automated tests across large amounts of endpoints, as it is expected that developers manually create

the test cases.

4.1 System Architecture

DAST is implemented as a Django web API, where visiting different URLs will perform

scans. In the backend, the registry consists of Endpoint and Synthetic objects. Synthetic objects

contain information needed to make a synthetic API call, including a validation condition.

Endpoint objects store endpoint information, such as the URL, HTTP method, query/body

parameters, etc.

The app is built using Bazel, which is an open-source automated build and test tool

developed by Google [5]. DAST is built as a Python binary with dependencies drawn from the

monorepo workspace. For my project, I had to create new build targets to support the software I

would use for the API fuzzing.

4.2 Adding Fuzzing

The original infrastructure of DAST did not easily support API fuzzing, as I needed some

way to ingest OpenAPI schemas and automatically run synthetics on those endpoints. To do this,

I needed some external software. I explored a variety of different fuzzers, include BooFuzz,

APIFuzzer, ChopChop [6, 7, 8]. After thorough analysis of these tools, the tools were either not

suited for the architecture of the DAST system, showed little community support, or simply did

not provide the features for proper fuzzing of API endpoints.

After further exploration and discussion with other security engineers, I decided to use a

tool called Nuclei, an open-source template-based vulnerability scanner maintained by Project

Discovery [9]. This tool is deployed as a Go binary, which is suitable for the DAST architecture,

as Bazel supports the use of Go binaries. The template-based nature of the tool allows for

incredible flexibility in determine how and what scans would be run on which endpoints. It

supports multiple forms of validation, including HTTP status code, HTTP body regex matching,

and content length checks, that can be easily used to check for various web vulnerabilities.

The templates take the form of a YAML file and are run using a command-line interface.

To integrate this with the DAST architecture, which is in Python, the templates were created with

the YAML PyPi package written into tempfiles to avoid unnecessary clutter. The YAML files

were then run by Nuclei using a subprocess call in Python. This was a difficult decision to make

because there was no easy way to run the command-line interface that wouldn’t introduce

vulnerabilities. Using a subprocess call may introduce vulnerabilities, as if an attacker were able

to modify the command to be run, they could achieve arbitrary code execution, which would be a

significant breach in the system. Fortunately, after further analysis, because the tool was an internal

tool that would not be accessible by external attackers, the Application Security team concluded

that using subprocess would be safe for a minimum viable product (MVP).

With a way to run Nuclei through Python, I next needed to add a way to automatically fuzz

ingested endpoints through the DAST system. The first step to this was to ingest the OpenAPI

schemas, which defined the endpoints of a given API. To do this, I essentially needed a way to

parse the JSON file, which I could easily do with the JSON PyPi package. Unfortunately, it was

not going to be this simple due to the nature of the OpenAPI schemas. I was able to extract most

of the information I needed to define the endpoints using the JSON PyPi package, however, some

endpoints had complex body parameters that were defined in additional fields in a recursive

manner. I needed access to these parameters in order to properly simulate API calls, as some

endpoints have required parameters. In order to resolve these recursive parameters, I used an open-

source Python package called Prance, which had a ResolvingParser object that did exactly what I

needed [10].

With properly resolved parameters, I was able to populate the DAST registry with the

Endpoint objects necessary to perform scanning. Next, I needed a way for the DAST API to

automatically perform scans on all the endpoints created. To do this, I had to re-architecture parts

of the DAST, specifically, the Synthetic registrant class. The idea was to have the API generate a

set of Synthetic objects when a scan was invoked. The original Synthetic class did not support

automatically generated Synthetics, as the scans were implemented by searching for the explicit

definition of the scan code to run, which in the case of generated Synthetics, did not exist. To do

this, I used a Polymorphic model, where Synthetics could be GeneratedSynthetics, which hold an

endpoint and a SyntheticGenerator, which was simply a function that generated and invoked the

YAML Nuclei templates. With this reorganization, I was able to add a new endpoint to the DAST

API, called “/fuzz”, which would automatically run all fuzzing tests on the specified endpoint.

Upon deployment, the DAST endpoint can be invoked by automated scans to regularly perform

fuzzing on all generated Endpoint objects.

4.3 Nuclei Templating

The idea of a template is rather simple: users can create templates to trigger HTTP requests

in a certain pattern and perform validation on the returned results to determine if the request

performed as expected. The implementation of such template becomes more complicated than

expected, as Nuclei runs off very specific formatting and refuses to run templates if any slight

formatting is incorrect. To list a few, I had to modify the way YAML PyPi package handled

blocked strings (multi-line strings), outputted quotes, and indentation size. This was incredibly

tedious to deal with because if Nuclei noticed the formatting was incorrect, it simply would not

run the template with no error message as to why.

The general structure of the template is as follows: general information, HTTP requests

(raw or parameterized), matchers.

The general information included information such as the author, severity of the

vulnerability, the template name, etc. This information was populated with general information to

fulfill the template requirement.

The HTTP requests for the fuzzing templates I created were all created as raw HTTP

requests. This means I constructed the HTTP request with the proper parameters, including HTTP

method, URL path, authentication token, body/query parameters, etc., depending on the

vulnerability I was testing for. I had originally attempted to use the built-in parameterized HTTP

requests, where I could specify the information using YAML fields instead of putting in the raw

HTTP request string, however, this was significantly restricting on the types of requests I could

make and did not work for many of the vulnerabilities I was testing for, so I figured it was easier

to simply created the raw HTTP requests.

After specifying the requests, the last structure of the templates was simply the matchers.

Nuclei defines a variety of different types of matchers to determine if the HTTP request made

returned the expected result. In most cases, the matchers I used were simply matching for the

HTTP status code, making sure the request was made properly and successfully returned, or failed

to return, information. Sometimes determining the matchers was difficult, as it was difficult to

have the matcher work as intended for all generalized endpoints. There were situations where I

had the matcher working for some of the endpoints but not others simply because some of the

requests made returned different results. I got around this issue by making the matchers as

generalized as possible to satisfy any miscellaneous cases.

Using this structure, I was able to write Python code to generate proper Nuclei templates

in YAML format to perform vulnerability scans on the API endpoints.

4.4 Web Vulnerabilities

For my research, I implemented six different website application vulnerability scans on

top of a simple health check: authentication verification, basic authentication bypass, HTTP

method brute-force, HTTP CL-TE smuggling, server-side request forgery, and X-Forwarded-For

authentication bypass.

The health check was the first scan I implemented. This health check simply verified that

the endpoint was active and accurate to the OpenAPI definition. This will ensure that the OpenAPI

JSON files are properly maintained with the latest information, as outdated information could

cause problems since the OpenAPI JSON files are used elsewhere to define the endpoints. This

check was implemented by simply checking that a request made to the URL path did not return an

invalid HTTP status code, namely 500, 503, etc.

The next vulnerability I checked for was an authentication verification scan. Robinhood is

a large financial technology company and all the endpoints must be secured with authentication in

to avoid information leaks, as all information stored is incredibly critical to customers and would

cause significant financial troubles if leaked. Because of this, it is beneficial to verify that all API

endpoints must be accessed with a valid JSON Web Token (JWT), also known as an authentication

token. This token was passed into DAST with an AWS encrypted secret and propagated into the

HTTP request under the Bearer HTTP request field. This token must be fully encrypted until use

due to the sensitivity of the token, as access to this token could cause an Account Takeover (ATO).

When the request is made with the proper authentication token, a valid HTTP response code is

expected, i.e. 2xx. This is enough information to define a Nuclei template to check that a valid

authentication returns a valid HTTP response.

Another form of authentication, besides using a JWT, is using Basic authentication.

Unfortunately, basic authentication includes a weak encryption technique, which if the request

were intercepted, could easily be decoded and used to cause an ATO. This check is easy to perform,

as allowing basic authentication requires a special signature in the HTTP response that can be

checked using HTTP body text matchers.

In the essence of fuzzing, another scan I performed was verifying that the only valid HTTP

method for any given URL is the one specified in the OpenAPI JSON file, i.e. if an endpoint is

said to accept GET requests, it does not accept POST requests. The reason for such a check is

because if any other HTTP methods are open, it could be exploitable in unpredictable ways, as

there is no information as to why the method is accepted. To implement this fuzzing, I had to use

a payload, which is the idea of substituting in values from a provided wordlist. I provided a list of

all possible HTTP methods and ensured that the only method that returned a valid HTTP response

code was the one specified in the OpenAPI definition.

One common web vulnerability is known as HTTP smuggling, or sometimes known as

HTTP desync. This occurs when the backend server handling the request disagrees with the

requests made by the frontend. One way this could happen is if the user specified Content-Length

and Transfer-Encoding fields in the raw HTTP request. In this type of HTTP smuggling, the

frontend server uses the Content-Length header to determine the boundaries of the HTTP request,

while the backend server uses the Transfer-Encoding header [11]. If these do not align, it will

cause a desync between the servers, and sometimes will trigger an unexpected request. If an

attacker is able to cause the backend server to make additional requests, they could easily obtain

information they do not have access to, compromising the integrity of the system. This scan was

easy to implement with Nuclei, as I was able to specify multiple raw HTTP requests, each with a

Content-Length and Transfer-Encoding header that would cause a desync if the server was

vulnerable to such an attack. I could determine if the attack was successful in determining if the

HTTP response was from the additional HTTP request that should not have been made.

Another vulnerability scan I implemented was a server-side request forgery attack. This

occurs when the attacker causes the server to return information that should not be directly

accessible to the attacker (forging a server-side request, hence the name). In particular, I

implemented the same SSRF attack that was used in the Capital One breach in 2019, where AWS

provided an insecure way of obtaining metadata for provided EC2 instances, known as IMDS. The

metadata could be obtained by simply making a request to an unprotected URL, 169.254.169.254.

Such metadata could then be used to obtain reverse shells and remote access to the servers. This

was rather simple to implement, as I simply needed to make a few requests to try to cause the

endpoint to visit the metadata-obtaining URL, such as passing it in as a query parameter or in the

body. In the response, I simply looked for an authentication token, as that is what the metadata is

expected to return.

Finally, I looked for another way to bypass authentication using the X-Forwarded-For

HTTP header. This header works because it specifies where the HTTP request originated from. In

some cases, specifying the origin of the request as the server itself will bypass authentication, since

the server believes it was a safe request made by itself. This was easy to implement with Nuclei,

as I could specify the X-Forwarded-For header in the raw HTTP request as 127.0.0.1, which simply

means the server itself (the localhost).

5. Results

From this experience, I extended Robinhood Markets’ in-house DAST system to include

an automated fuzzing feature for API endpoints to regularly scan for potential web vulnerabilities.

The system will enable developers to perform automated scans on their APIs to ensure the security

of the applications. DAST is currently maintained by the application security team at Robinhood,

whom I worked closely with to develop this research.

The DAST project at Robinhood is still under development, but is planned to be deployed

in the near future for software developers to use. With my contributions, regular vulnerability

scanning of publicly accessible API endpoints will be automated, drastically reducing the risk of

a successful cyberattack.

6. Conclusion

Through this project, I was able to add an automatic fuzzing feature to Robinhood’s internal

DAST system, which would ingest OpenAPI schemas and run scans on those endpoints. The

scanning searches for authentication verification and bypass techniques, HTTP smuggling

vulnerabilities, SSRF attack potential, etc. The scanning was implemented with a template-based

vulnerability scanner, Nuclei, and integrated with the Django/Bazel framework DAST was

originally built off. In the future, when DAST is deployed, software engineers can simply add the

OpenAPI schema to DAST and DAST will automatically, regularly run scans on those endpoints,

reporting any results to the engineers.

7. Future Work

When I left Robinhood, DAST was not ready for deployment, as it was having build issues

in production. The application security team will continue developing DAST and put my work into

production.

Further work in API fuzzing could include searching for a wider variety of vulnerabilities.

As an intern, I was unfamiliar with the vulnerabilities and it was difficult to find a way to test for

them, hence restricting my ability to provide a large range of test cases. For example, some other

vulnerabilities to look for include command/SQL injection, broken object level authorization,

cross-site request forgery, etc.

8. Evaluation

My program at UVA has prepared me well for this project. In CS 3240, Advanced

Software Development, I learned to use the Python web framework, Django, which I worked

directly with at Robinhood. It was incredibly important to understand how the Model-View-

Controller (MVC) architecture worked, as it allowed me to easily make changes to the models to

adapt to my updated generated synthetics. CS 3240 also prepared me in using Git/Github, the

distributed version control system used at Robinhood.

As my role at Robinhood was cybersecurity focused, CS 3701, Introduction to

Cybersecurity, also prepared me for this. I was able to gain enough knowledge to understand

how some of the vulnerabilities worked, such as SSRF. While it was nowhere near

comprehensive, I was much more prepared to work in such a field through the knowledge from

CS 3701.

References

[1] OWASP Contributors. 2021. Owasp Top Ten. (September 2021). Retrieved October 27, 2021

from https://owasp.org/www-project-top-ten/

[2] Rob Wright. 2019. Capital one hack highlights SSRF concerns for AWS. (August 2019).

Retrieved October 27, 2021 from

https://searchsecurity.techtarget.com/news/252467901/Capital-One-hack-highlights-SSRF-

concerns-for-AWS

[3] David Balaban. 2021. Top DAST tools 2021: Dynamic Application Security Testing. (October

2021). Retrieved October 27, 2021 from https://www.serverwatch.com/reviews/dast-dynamic-

application-security-testing/

[4] FFUF. 2021. Fast web fuzzer written in go. (May 2021). Retrieved October 27, 2021 from

https://github.com/ffuf/ffuf

[5] Google. 2021.(2021). Retrieved October 27, 2021 from https://bazel.build/

[6] Joshua Pereyda. 2021. Boofuzz: A fork and successor of the Sulley Fuzzing Framework.

(September 2021). Retrieved October 27, 2021 from https://github.com/jtpereyda/boofuzz

[7] Peter Kiss. 2021. APIFuzzer: Fuzz test your application using your openapi or swagger API

definition without coding. (October 2021). Retrieved October 27, 2021 from

https://github.com/KissPeter/APIFuzzer/

[8] Michelin. 2021. Chopchop: Chopchop is a CLI to help developers scanning endpoints and

identifying exposition of sensitive services/files/folders. (January 2021). Retrieved October 27,

2021 from https://github.com/michelin/ChopChop

[9] Project Discovery. 2021. nuclei: Fast and customizable vulnerability scanner based on simple

YAML based DSL. (October 2021). Retrieved October 27, 2021 from

https://github.com/projectdiscovery/nuclei

[10] Ronny Pfannschmidt. 2021. Prance: Resolving Swagger/openapi 2.0 and 3.0 parser.

(September 2021). Retrieved October 27, 2021 from

https://github.com/RonnyPfannschmidt/prance

[11] Port Swigger. 2021. What is HTTP request smuggling? (2021). Retrieved October 27, 2021

from https://portswigger.net/web-security/request-smuggling

