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1 Introduction

1.1 Relevance

There is no doubt that the integration of autonomy in modern technologies is a rampant

trend among most sectors of the world’s industries today. Autonomous systems have been

implemented in manufacturing to ease the burden of menial and potentially dangerous tasks, in

the commercial world to disrupt human-to-human interactions in light of a global pandemic, and

most relevantly to this topic, in the automotive industry to free our ever-busy hands and minds

while commuting in cars. Surely autonomy is prevalent in a plethora of other fields, but it is in

these sectors where ethical dilemmas sprout from underneath every effort at its implementation

into technology. As human oversight is disconnected from the functions of these technologies,

there arises concern in how they will behave in situations which commonly require the

complicated nature of human intuition and decision-making. In general, the dilemma our society

faces as autonomy spreads throughout the world is how it will be safely integrated into

organizations and human daily life. There are many ways to navigate the process of fostering

public trust in autonomous systems, but the particular one of interest in this context is simulated

studies. Specifically, virtually simulating autonomous automobiles and how they interact with

their environment. Simulation software such as this can allow self-driving vehicle manufacturers

to gain insight on how the algorithms their autonomous systems utilize hold up in potential

real-world scenarios. While manufacturers can alternatively just test their technology in the

real-world, this often incurs undesirable risks and consequences, such as harm to vehicle

operators, pedestrians, and other third parties. An autonomous driving simulator would give

these companies a platform in which they can safely test and develop their systems. Additionally,

simulators can also serve to familiarize consumers with operating autonomous vehicles. As



self-driving vehicles become more prevalent throughout the world, it’s important that the

common user feels comfortable riding in an autonomous car. Experiencing it first in a simulated

environment would be an effective way to ease consumers into familiarity with this technology.

With these concerns in mind, we aim to develop an autonomous driving simulator as a valuable

resource for self-driving vehicle production and familiarization.

1.2 Review of Past Work

Pre-existing research into the development of autonomous driving simulators shows that

similar approaches to our problem have been attempted, but none fully address the goals we seek

to accomplish. Nonetheless, these serve as valuable examples by which we can guide our own

research and development. Each of the referenced studies can be classified into one of two

approaches: a primary focus on the user experience and immersivity or a primary focus on

external factors and functions, such as simulated traffic or pedestrians. With respect to the first

kind of approach, a 2015 study conducted by Baltodano, et. al. documented the development of

the Real Roads Autonomous Driving Simulator (RRADS). Their research aimed to gather the

overall public attitudes and expectations of how an autonomous vehicle is intended to feel. The

data was then used to inform the ongoing development of their simulator, and specifically to

maximize the immersivity of their design. Other studies that have sought to address immersivity

and user experience include Koo et. al. (2014), which was concerned with user understanding of

safety features; Bellem et. al. (2016), which sought to assess whether or not moving-base driving

simulators induce a comfortable and realistic sense of motion; and Häuslschmid et. al. (2017),

where it was found that indicator displays showing the autonomous algorithm actively

processing external data fostered greater user trust. The findings of these studies serve to inform



our own development, as we can gauge what consumers seek in a simulated autonomous

experience.

Several other studies align more with the second approach we’ve established, where

there’s a greater focus on external functions in the simulated environment. In 2017, You et. al.

published a paper that detailed their research into generating realistic virtual environments for

autonomous driving simulators. They developed a system which took non-realistic virtual image

input and processed it into realistic scene structures. Similar studies include Chao et. al. (2020),

which documented research into reconstructing detailed traffic flows using real-time traffic data

with traffic simulation models; and Pérez-Gil et. al. (2022), where the use of deep learning

algorithms was proposed as a means to create more effective simulated autonomous algorithms.

Based on our preliminary research and the input of our customers’ needs and

specifications, we’ve established these primary objectives:

- Construct an immersive, realistic user environment. The cockpit should resemble

the actual interior of a car to the greatest extent possible.

- Develop the simulator to be fully operable in a manual functioning mode. This

will allow the user to swap between autonomous and manual mode, which is a

vital function of actual autonomous vehicles.

- Generate a realistic virtual environment. The user should be able to drive

reasonable distances and interact with other moving entities in a realistic city-like

landscape.

- Create a bounded, encompassing display.



- Mitigate latency between user input and haptic/visual response to be negligibly

perceptible.

These objectives are intended to guide our development toward our end goal and satisfy our

customers’ expectations.

In order to accomplish our objectives, we’ve broken down our process into three main

stages:

1) Design and research

a) Customer input

b) Concept generation and selection

c) Research into previous studies

d) CAD of necessary components

e) Gathering background on software and other tools

f) Ordering parts and components

2) Development

a) Installation and familiarization with necessary software

b) Acquiring and installing components for chassis and frame

c) Constructing bounded display

d) Generating code for vital functions in simulation software

3) Testing

a) Benchmark testing of software CPU/GPU usage

b) Latency testing for input and response

c) Long-term assessment of structural integrity



d) Assessment of user immersivity and general experience

e) Sensor data analysis

2 Essential Knowledge

There are three past teams from Virginia Tech who have worked on developing an

autonomous driving simulator prior to our team. In 2018, Virginia Tech’s capstone team was

focused on developing their driver’s space, an enclosure to surround the MOOG platform, and a

display system. For their driver’s space, the team chose to utilize a gaming seat as their driver’s

seat and to incorporate an actual dashboard into their design along with their steering wheel. For

their enclosure, the team chose to construct a frame out of aluminum bars and then use

polycarbonate boards connected with aluminum sheets to create walls around the platform. For

their projection system, the group chose to utilize one curved monitor and one projector placed at

the back of the enclosure. The team chose to use a similar software setup to the original 2017

team, who utilized OpenDS as their software for rendering graphics simulation, ROS as their

merging platform between OpenDS and Gazebo, and Gazebo as their robust physics simulation.

In 2019, Virginia Tech’s capstone team decided to focus on creating an HD mapping

software for their simulator, improving the driver space, and enhancing the software algorithm’s

efficiency. The team chose to utilize the same interior, enclosure, and projection system as the

2018 team. The primary issues the team faced regarding the driver space were unnecessary

vibrations created by the projector and a lack of ability to adjust the position of the driver seat.

The team also chose to utilize the same software setup as the 2018 team, however they found that

their graphics were consistently lagging and that maintaining the multi-platform communication



was difficult. The 2019 team recommended for future improvements to the system, to utilize a

software system called DSpace in order to reduce system lag and improve graphic rendering.

Both the 2018 and 2019 teams chose to utilize OpenDS and Gazebo due to the built in

physics engine within OpenDS and the ROS compatibility included within Gazebo. However

both softwares’ graphics are outdated and our team experienced issues finding source code to

enhance the software’s environments. The projector system utilized by both teams were more

immersive than the original monitor system utilized by the 2017 team. However, by attaching the

projector to the outside of the enclosure, the teams experienced issues with the projector causing

vibrations that could be felt within the driver space.

Our team’s goal is to develop a fully operating autonomous driving simulator that at a

minimum, matches the capabilities of commercially available simulators. We are going to focus

on achieving this goal by making our simulator more immersive than the previous efforts made

by past teams. Our immersiveness is going to be developed via the usage of a newer software

system entitled CARLA, the utilization of a realistic vehicle interior, and the creation of a CAVE

projection system.

3 Design Process

3.1 Customer Needs and Target Specifications

The customers have all expressed that they want their experience within the driving

simulator to be more immersive through various enhancements. Based on the five specific needs

that they outlined, we created five target specifications. First and foremost, the customers have

expressed that they want less delay in the steering and pedal responses. In order to accomplish

this, we developed the target specification to mitigate the latency between the steering input and



the visual response to ten milliseconds. Next, the customers said they wanted to feel like they

were in a real car. In order to accomplish this, we developed the target specification of creating

the driver space using the interior of an actual car. The customers also said they wanted the

graphics to be more steady as the simulator moved. In order to make our display system more

stable, we created the target specification of fixing our projector system to the ceiling rather than

the simulator’s enclosure. This would ensure the projection was not affected by the simulator’s

movements. The customers also stated that they wanted a spacious driving environment that still

included all necessary driving features. We decided that the target specification of creating a

driver space using the interior of an actual car would guarantee us the necessary space and set up

to accomplish this objective. Lastly the customers expressed that they wanted the driving space

to revolve around autonomous designs. They want the driving space to have an aesthetic appeal

and functionality that models current autonomous vehicle trends. In order to achieve this

objective, our team developed the target specification of integrating a visual aid like an ipad into

the interior of the car.

3.2 Concept generation



With these target specifications in mind, our team was able to develop three solutions

using the functional decomposition illustrated above. We broke down our system into various

sub-functions and identified which functions had various potential solutions. The sub-functions

we identified with various potential solutions were our graphics display, our visual environment

software, and our gear shift inputs. In all of the solutions we identified a wheel as our steering

input, actuators for platform movement, ROS as our communication protocol, Gazebo as our

software to actuate movement, a 240V outlet as our power source, and a button to initiate an

emergency stop. In solution one, we would utilize automatic gear shifts, DSpace for our

environment software, and monitors for our display system. In solution 2, we would utilize a

manual gear shifter, virtual reality for our display system, and DSpace for our environment

software. In solution three, we would utilize an automatic gear shifter, a projector for our display

system, and openDS for our environment software. A chart of all three solutions and their

sub-functions and their various subfunctions is illustrated below.

Sub-Functions Solution 1 Solution 2 Solution 3

Steering Input Wheel Wheel Wheel

Gear shift Inputs Automatic Stick Manual Stick and
Clutch

Automatic Stick

Output software
display

Monitors VR Projectors

Platform movement Actuators Actuators Actuators

Communication
Protocol

ROS ROS ROS

Software to
visualize
environment

OpenDS Dspace OpenDS



Software to actuate
motion

Gazebo Gazebo Gazebo

Power Source 240 V Outlet 240 V Outet 240 V Outlet

Emergency Stop Button Button Button

Programming
Language

Python/ Java Python/ Java Python/ Java

3.3 Concept selection

We ended up selecting solution three due to its score on the Screening and Scoring and its

ability to meet all target specifications and customer needs. Solution three had potential as well,

however we ended up deciding that the use of projectors rather than monitors would more

effectively achieve the customer’s desire to feel like they were in a real car. Furthermore, with

the usage of projectors our team realized we could develop a CAVE projection system, which

would allow for the simulator to have 270 degrees of display and really enhance the

immersiveness of the experience.

However, as the project progressed, we altered from our original concept and decided to

try out an updated environment software called CARLA. CARLA was more effectively able to

fulfill the customer need for a low latency between steering input and visual response.

Furthermore, through CARLA, the latency between user inputs and the motion platforms’

response could be lowered to a maximum delay of three ms.

4 Final Design



The final design of the system is categorized into three sectors: mechanical,

mechatronics, and software.  Each category overlaps and interfaces with each other category.

The arrows in the diagram above show the simple relationships between each component and the

following subsequent sections will elaborate on the interfacing systems.

Beginning with the mechanical portion of

the project, the final design utilizes a cockpit

enclosure of a 2009 Subaru Forester mounted to a

MOOG motion base platform seen in the figure on

the right. The Subaru Forester was selected due to

its simple dashboard display which provided us the

space necessary to install our own steering wheel,



pedals, and gear shifter while still adhering to the space constraints we were given.

The mechatronic components of our design include the user controls and display devices.

This area of our design essentially involves interfacing the hardware with our simulation

software. The cockpit is centered within our CAVE projection system, which incorporates three

short-throw projectors to create an immersive view of the simulated environment as seen in the

diagram on the right. The projectors have been arranged and installed to achieve a range of view

of about 200 degrees. The user controls consist of a Logitech steering wheel, set of foot pedals,

and stick shifter. These controls are installed in the positions where the original components were

stripped from the vehicle and can be seen in the figures below. The steering wheel consists of

several buttons which allow the operator to adjust certain parameters of the virtual environment,

such as the point of view, autonomous/manual driving mode, and other essential functions. All of

the user controls are connected directly to the computer running CARLA and control movement

within the simulation software.

The final design of the software portion starts with the python scripts running through the

CARLA software. There are various scripts including synchronous driving, multiple manual



drivers, steering capabilities with the keyboard or steering wheel, generating traffic and

pedestrians, etc. Each driving script incorporates various CARLA API’s to function along with

sending commands to the MOOG in order to send it to certain locations. There are also many

different driving features ranging from large changes such as an autonomous driving feature to

smaller details such as being able to use the headlights. This allows for the system to showcase

an advanced system while also not forgetting the little details that make the entire experience

more realistic and immersive. For the steering wheel, because Ubuntu are incompatible with

Logitech wheels, many drivers were either created or found in order to make them function

seamlessly in the system by providing options such as autocenter, force feedback, spring friction,

gain, etc.

5 Mathematical/Numerical Analysis

Mechanical:

The main goal of mechanical numerical analysis was to assure the safety of the chassis.

Because the frame of a car was mounted onto a moving platform, two modes of failure could

potentially occur that must be mathematically predicted. Firstly, static failure could occur due to

plastic deformation of any of the parts associated with bolting. The kinds of static failure that are

possible are compressive failure resulting from the bolts stress concentrations on the platforms or

shear failure of the bolts. To analyze the designed system two different single shear stress

equations can be used. Double shear stress will not be used because no bolt passes through the

MOOG, wood, and car chassis. Rather, bolts either pass through the MOOG and wood, or wood

and car.



𝝉 = 𝐹
𝐴 = 𝐹

π𝑟2

Half inch bolts are used as the geometric criteria of the equation. A force can be

determined assuming 400 pounds for two people and 600 pounds for the chassis of the car. At a

five degree tilt angle, the applied force is 87 lbs. With five bolts from the chassis to the wood,

and a minimum shear strength of a ½ inch bolt being 11,000 lbs a safety factor of 632 is

achieved.

Knowing that there are more bolts from the wood to the MOOG and because of Newton's

Second Law, the same force is applied in this scenario. However, it is distributed across more

bolts thus failure would occur between the chassis and the wood and not the MOOG and the

wood. Next, static failure could occur due to stress concentrations in the wood because it is the

weakest link in the scenario. Again, the applied force of 1000 lbs and a number of bolts is five,

dand the documentation of the plywood’s minimum compressive strength is 4500 psi. This

results in a safety factor of 51. The real potential mode of failure will be fatigue failure from

motion, cycles and vibrations.

Based on a solidworks static analysis using an applied force of 87 lbs at a five degree

angle of tilt, the bolt was well within the minimum shear stress which was in agreement with the



above analysis of the bolted system.  Using that static analysis, a fatigue study was run with the

same force value using fully reversed loading.  The results of the analysis showed there was no

damage to the bolt and that the stress placed on the bolt was below the applicable values on the

SN-curve.  This is understandable as the system is running at a low degree of tilt so the applied

force being distributed among the bolts is minimal.  This is further supported by the safety factor

calculated above for the shear force.

Software:

MOOG only takes in binary information so in order to communicate with it, we have to

send in hexadecimal information from the python scripts. First, a 5 percent range of tilt is

calculated based on the total range of motion the MOOG can perform. Once finding out the

decimal number amount equivalent to 5 percent of tilt, we can convert it into hexadecimal

numbers through an online converter. This process is repeated for each actuator in order to find

the entire command to send and the commands are written as the following:

cmd = xff/x82/x1F/x3F/xFF/x3F/xFF/x3F/xFF/x3F/xFF/x3F/xFF/x3F/xFF/x29/x00

Determines what the MOOG does. 82 means new position, B4 engages, etc
Checksum: All hexadecimals needs to add up to this
Individual actuators. Actuator A. 1st hexadecimal is low byte, 2nd is high byte



6 Experimental Validation

Parametric study and experimentation was conducted to test many different parameters.

Firstly, with safety of the simulator being of utmost importance, safety experiments were run.

Aggressive python scripts that move quickly and go to angles much more extreme than will be

used in simulation were run. By doing this, the experiments confirmed that the chassis of the

vehicle was properly mounted to the MOOG. No shifting or any signs of failure occurred at any

bolt locations. The MOOG platform does move slightly, but does not shift significantly or

dangerously. By testing the MOOG to its extremes with the chassis on it and people in the car,

experimentation determined safety during simulation.

Other parameters that were experimentally tested include immersivity. By sitting in the

car and visually testing all points of view and angles the screens are all fully enclosed and

immerse the driver. This parametric experimental testing identified areas for improvement. The

frame rate of the display ranged from eight frames per second to fifteen. The human eye being

able to see up to 60 fps, a newer and stronger graphics card is recommended to maximize

immersivity. Also, minor adjustments to display angles could remove display gaps.

Other parametric experimentation included user input testing and autonomous driving.

User inputs respond appropriately during experimentation with a latency of 3ms. User inputs are

interpreted and sent to the MOOG in an appropriate manner in accordance with a vehicle motion

model, however the MOOG outputs in a jerky manner leaving room for algorithm improvement

in that area. Also, CARLA’s default autonomous vehicle algorithm was tested and situationally

self-driven effectively. Being open source, another area for improvement would be in making a

new self-driving algorithm or even partnering with and testing another company’s proprietary

software.



Additionally, the upgrade of the new simulated environment software has allowed for the

addition and improvement of autonomous driving capabilities.  The new software CARLA has

additional sensors that were not readily available nor user friendly on softwares utilized by past

groups.  A button on the steering wheel was allotted to switch between the six sensors available

on CARLA. The first and default sensor is RGB, which uses a range of red, green, and blue

colors to display a realistic image of the environment. The next sensor is depth, in which the

system acquires multi-point distances to get a better understanding of the 3D environment.

Following the depth sensor, CARLA provides several other depth sensors, including a gray scale

and a logarithmic gray scale. The three depth sensors can be interchanged, depending if the user

wants to work with a sensor that uses relative values of dark and light that would greatly simplify

the computer algorithm. After the three depth sensors, the fifth sensor is semantic segmentation.

This sensor groups parts of the image together based on similarity to visualize the environment.

The final sensor is Lidar. Lidar is the most key sensor as it effectively allows autonomous

features to work through shooting lasers and measuring the return time. By doing so, the system

is able to see the environment around it and understand the placement of objects in the

environment while also being fully able to at night. We experimentally tested a suite of sensors

provided with CARLA to visually verify the change of display. Limited data was collected from

running these different sensor versions, so future groups could work to improve sensors to be

empirical as well as visual.  These sensors emphasize different components of distance and

position mapping to be utilized using autonomous algorithms.  This is important for future teams

as the current self-driving feature on CARLA requires optimization to be effectively functional.

As mentioned before, these sensors will allow companies to use the existing system we have

created to test and improve their own proprietary autonomous algorithms.



7        Operations Manual

In order to operate the system with the MOOG motion platform, first connect the MOOG

USB and keyboard from the computer located in the bottom of the MOOG system to the

computer located outside of the CAVE system. Turn on the both switches on the MOOG

computer located on opposing sides of the computer. One appears as a plastic toggle switch and

the other appears as a small metal lever toggle switch. Plug in the green plug to the wall outlet

and the MOOG computer power plug to the power strip. This starts up the MOOG system and

the monitor on the right side should appear with all the actuators location and the sound of the

computer should sound like a fan turning on. If both the monitor is not on and the sound of a fan

is not present, not all the plugs and switches have been engaged. If you want to test with the

keyboard go to part 1). If you want to test with CARLA or with other python scripts go to part

2).

Make sure all projectors are turned on for the CAVE system and also check that displays are in

the correct order if you plan to showcase the CAVE design. This can be done in settings in the

displays section.

*Note: Any sudo command’s password is ‘password’

*Note: CARLA does not need the MOOG to run and if you don’t want the MOOG on, leave it
off but still complete each step excluding the step 1 in part 2.

Part 1) MOOG Keyboard controls

If wanting to test individual actuators, click ‘q’ and type in ‘6D2MAINT’ and once the

screen turns back to the actuators, click ‘e’ and then hold the ‘+’ or ‘-’ to lift or drop the MOOG

respectively. In order to lift the MOOG with desired actuators, click either ‘1’, ‘2’, ‘3’, ‘4’, ‘5’,



and/or ‘6’ to lock certain actuators then use the previous ‘+’ and ‘-’ buttons to move the MOOG.

Other commands in the mode are listed within the MOOG manual binder.

Part 2) CARLA Setup/MOOG

In order to set up the MOOG

1) click ‘q’ and type in ‘170-122’ on the MOOG connected keyboard/monitor.
a) This prepares the MOOG to take in serial commands from python scripts on the

other computer.

Turn on the other computer outside the CAVE system and login to drivesim user. The password

is ‘password’.

2) In the directory /home, type in these commands in order
a) sudo su
b) cd /
c) cd dev
d) chown <username> ttyUSB0

i) <username> is ‘drivesim’ for our computer
ii) Leave this terminal tab open and open a separate tab

Open up the terminal and type in the following command to turn on CARLA in any directory.

3) sudo docker run --privileged --gpus all --net=host -e DISPLAY=$DISPLAY
carlasim/carla:0.9.13 /bin/bash ./CarlaUE4.sh

a) If you run into this error: sh: 1: xdg-user-dir: not found
i) Red herring error. Don't worry about this

b) If you do not want the screen open, add the following to the end of the command
‘-RenderOffScreen’ so it should look like sudo docker run --privileged --gpus all
--net=host -e DISPLAY=$DISPLAY carlasim/carla:0.9.13 /bin/bash
./CarlaUE4.sh -RenderOffScreen’

c) If you want to load it in low quality mode, add the following to the end of the
command ‘-quality-level=Low’

d) Do not close this terminal and open new terminal tabs for other setup and scripts

Part 3) Steering Wheel Setup

With either steering wheel, plug in all corresponding plugs. The gear shifter, pedals,

power source, and USB to the computer. Go to the section for the steering wheel you decide to

use.



*Note: The connection between the Logitech G920 and the integrated gear shifter is not
compatible so a new steering wheel may be needed. The gear shifter works with the old Logitech
G27 wheel but the wheel has issues with clicking random buttons at random intervals. We
recommend using the Logitech G920 as it still has all functionality, but it loses some of the
immersiveness.

Logitech G920
Currently the driving scripts are made for the Logitech G920. In order to set up the

steering wheel to work with the scripts, go into the downloads/usb_modeswitch directory and

type in the following command

4) sudo usb_modeswitch -c /etc/usb_modeswitch.d/046d:c261
a) This should say the switch was successful and you can check by typing in the

following command ‘jstest-gtk’ to see if there is a Logitech G920 joystick.
b) If you want to change button configuration on the steering wheel later, ‘jstest-gtk’

helps you keep track of the button layout.

In order to get force feedback for the Logitech G920 type in the following command which

should open an application

5) oversteer
a) More documentation can be found at https://github.com/berarma/oversteer
b) At the top, go to the tab for the wheel and slide the autocenter force feedback

slider at the bottom to desired feedback. Our group set it around 30. Check if the
steering wheel is no longer slack.

Logitech G27
This was the previous steering wheel which was the Logitech G27. The modeswitch is

unnecessary for this wheel. Can check and configure the steering wheel buttons with the

command ‘jstest-gtk’ to map buttons on the gear shifter.

In order to fix the force feedback issue, refer to step 5 in the Logitech G920 section. If

that does not work, there is a workaround. In the directory Documents/PythonAPI/new-lg4ff,

type in the command ‘sudo make load’ and in the directory

/sys/bus/hid/drivers/logitech/0003:046D:C29B.0005, open the autocenter file and change it to



approximately 40000. More documentation can be found at

https://github.com/berarma/new-lg4ff.

*Note: Depending on the pedals you use, you may need to change the wheel.ini file in the
Documents/PythonAPI/examples directory to fix the brake and accelerate buttons.

Part 4) Python Scripts

There are multiple scripts within the Documents/PythonAPI/examples directory that run

with CARLA. For the main one, if you want to drive with the keyboard, type in the following

command in the Documents/PythonAPI/examples directory

6) python manual_driving.py
a) This allows you to run the system with just the keyboard. Clicking ‘h’ will drop

down some settings that CARLA has including but not limited to, autonomous
driving, sensor data, radar visualization, switching sensors, car views, etc.

b) In order to see sensor and car data, you must render with the screen in step 3 in
part 2 as that is where the data is shown.

In order to run the system and drive with the steering wheel, type in the following command in

the Documents/PythonAPI/examples directory

7) python demo.py
a) If the MOOG will not work with the script, try ‘python

manual_driving_newsteering.py’ instead.
b) If you want to see CAVE view, type in the command ‘python demo_cave.py’

i) This will open a resizable window and you need to stretch the pygame
window across the 3 projectors to make the CAVE immersion.

ii) This script is very slow with the current hardware so we recommend using
it only when showing off the CAVE functionality or once a better GPU is
purchased.

c) The buttons have been labeled on the wheel with different icons but functionality
can also be found in the code.

d) This has most of the functionality of the manual_driving.py script but allows
driving with the wheel.

If you want to generate traffic for when you are driving, type in the following command in the

Documents/PythonAPI/examples directory

8) python generate_traffic.py



a) Sometimes the traffic may be frozen so you may need to close the scripts and
rerun them.

i) Soft fix:
(1) Restart CARLA
(2) run ./synchronous.py
(3) run ./generate_traffic.py
(4) run ./manual_control.py
(5) close synchronous and generate_traffic
(6) rerun ./generate_traffic.py

Part 5) Code and documentation

The CARLA scripts utilize CARLA’s driving simulator’s APIs in order to function. Much

of there documentation can be found at the following link

9) https://carla.readthedocs.io/en/latest/python_api/
a) This documentation also covers various sections for troubleshooting the software

and working with it.

For MOOG movement, we sent commands directly to the platform using hexadecimals.

This is found in the IMUSensor section of the code and can be improved upon to smooth out the

movements of the simulator. In order to understand what each byte does in the hexadecimal

command, the MOOG manual binder explains it. For our commands, each one works a separate

actuator but in the future, a degree of freedom mode will help it be more exact.

Also, to improve communication, a ROS bridge and ROS can be connected to the

CARLA software. Documentation and steps for this can be found on the CARLA website

10) https://carla.readthedocs.io/projects/ros-bridge/en/latest/

Part 6) Disassembling

To turn off the system, turn off both switches and unplug all MOOG outlet connections.

Turn off the computer and make sure the projectors are off before leaving. If you completely shut

down the computer versus putting it to sleep, each step will need to be redone.

Troubleshooting



● If it says ‘# USB permission denied’ when running a script, it means the MOOG serial
commands have not been connected and to fix this, redo step 2 in part 2.

● If you load up the script and it says missing joystick 0, it means the steering wheel has
not been configured correctly in part 3. Redo step 4 and 5 in part 3.

● If running with the MOOG and when running the driving scripts, the MOOG platform
moves up then has a communications error, try resetting the MOOG.

○ Repeat step 1 in part 1, then run the script again.
○ If it still doesn’t work after multiple attempts, try the other scripts in subsections

of steps 7 of part 4.

● If the python scripts within the directory Documents/PythonAPI/examples are not
working because there is no connection, check if CARLA is opened.

○ You can do this by typing in the command ‘docker container ls’ and checking if
there is a CARLA application opened. If there is, restart it by removing it and
reopening it using ‘docker rm -f <ContainerID>’ and then step 3 in part 2.

Miscellaneous
● If you want to see the other CARLA files within the docker container, type in ‘docker

exec -t -i <ContainerID> /bin/bash’

● There is also an old version of CARLA downloaded if you chose to use that instead
○ sudo docker run   -e SDL_VIDEODRIVER=x11   -e DISPLAY=$DISPLAY  -v

/tmp/.X11-unix:/tmp/.X11-unix   -p 2000-2002:2000-2002   -it   --gpus all
carlasim/carla:0.9.10 ./CarlaUE4.sh -opengl

● There is a gazebo environment if you chose to use that driving simulator instead in the
directory ‘desktop/environment’.

8        Conclusions and Future Work

Our team has made significant progress towards reaching our goal of developing an

autonomous driving simulator over the course of the past two semesters. We were able to create a

fully enclosed and immersive driver space, incorporate a new virtual environment software in

order to decrease the latency between the graphics and our steering inputs, and develop a CAVE

projection system with a 270 degree range of projection. We have had to make significant

changes to our design over this year, resulting in our progress being slower than predicted.



However, we were able to expedite our progress this semester and in turn remain on schedule

and accomplish our established goals.

Future work for the mechanical side of the project includes mostly aesthetic appeal and

safety improvements. The projection onto the right wall could be improved by constructing a

wall similar to the wall utilized for the left screen. The right wall has a number of pipes running

across it and the projector for the right wall is slightly blocked by overhead ducts and in turn can

not fully project onto the wall. Building a taller wall that’s closer to the projector could improve

this. Furthermore, the placement of the MOOG platform could also be adjusted in order to ensure

it’s positioned on a more stable surface. Right now, we have it positioned on top of metal grates

due to the lack of space we have in our lab. These metal grates cause the Moog to shake during

operation, create loud noises, and lack a proper place to be bolted. Future work to be

accomplished regarding software includes enabling a ROS-bridge with ROS in order to send

CARLA sensor information to the MOOG platform. Once we are able to send information to the

MOOG, the platform should move in all 360 degrees corresponding to the physics of the virtual

car.

Future work for the software team includes moving towards a more autonomous oriented

design, in which CARLA’s lidar capabilities are taken advantage of to create a product with

features that are not available in today’s driving simulators. While CARLA’s Autopilot system

works to some extent, future teams will have to troubleshoot its script as it is not totally reliable

and will often drift off the road with frequent collisions. The lidar sensor can be further used to

create autonomous features, such as autonomous emergency braking (AEB) and blind spot

monitoring (BSM). These features will modernize the driving simulator as they are a key part

and often staple of the modern vehicles that are released today
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