
Fluid limits and the batched processor sharing model

Katelynn Diane Kochalski
Buffalo, New York

Master of Science, University of Virginia, 2013
Bachelor of Arts, Canisius College, 2011

A Dissertation presented to the Graduate Faculty
of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Mathematics

University of Virginia
May, 2017



i

Abstract

We consider a sequence of single-server queueing models operating under a ser-

vice policy that incorporates batches into processor sharing. As a processor sharing

model is serving all jobs present simultaneously, the rate that it serves each job at

is dependent on the number of jobs present in the system. For this reason, keep-

ing track of the residual service times of each job is essential in a processor sharing

model in order to be informed of significant impending changes in queue length, and

therefore processing rate. We require a tool that will not only allow the recovery of

characteristics such as the queue length process but also encodes the residual service

time of each job. Each model is described by a measure-valued process that evolves

according to a family of dynamic equations. This measure-valued process is defined

by placing a unit mass at the residual service time for each job in the system, thereby

encapsulating the characteristic that analyzing a processor sharing system requires.

Under mild conditions and a law-of-large-numbers scaling, we prove that the se-

quence of measure-valued processes converges in distribution to an essentially de-

terministic limit process. This result heralds back to the consequence of the Law

of Large Numbers, where letting n tend to infinity in a sum of n random variables

scaled by 1/n, we obtain a constant. Thus we can approximate the complicated sum

by a simple number. In our setting, we show that the limit process obeys periodic

dynamics that are easy to describe as a function of the initial condition.
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Chapter 1

Introduction

Queueing theory is the study of waiting lines and networks of such lines. The basic

queueing model consists of the following: a server that processes jobs from a buffer;

a sequence of jobs, each with an associated service time, which indicates the amount

of work that needs to be done to that particular job, or the amount of attention a job

requires from the system; an arrival process that describes when each job arrives to

the buffer; a service policy, which is the rule that dictates how the server will process

the jobs present. Typical quantities one wishes to study for such a model are the

queue length, which is the number of jobs in the system, the workload, or sojourn

times.

The first paper in queueing theory is attributed to A. K. Erlang in 1909. Erlang

worked for the Copenhagen Telephone Exchange and was to determine the number of

switchboards necessary to handle all incoming calls in a timely fashion. The Copen-

hagen Telephone Exchange realized that while one switchboard was insufficient, each

additional switchboard increased overhead cost. From their perspective, it was im-
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portant to handle calls in an efficient manner while reducing overhead costs. Erlang

studied a model under which each incoming call took a fixed, deterministic amount

of time, and calls came into the Copenhagen Telephone Exchange at random times.

While the arrival times were random, for simplicity’s sake, he placed heavy restric-

tions on the characteristics that describe the time between each call. He published

his findings from this analysis in 1917.

In 1930 F. Pollaczek built on Erlang’s model, removing the restrictions that Erlang

had placed on the length of each call. Pollaczek, maintaining the restrictive behavior

of time between calls, now allowed each call to take some random length of time.

This advancement made the model much more realistic. Pollaczek’s paper focused

on providing details about queue length and the amount of time a job can expect

to spend in the system, both waiting to be processed and actually receiving service.

A. Khinchin reproduced Pollaczek’s work a few years later, taking an approach that

incorporated probability theory.

Beginning in 1940 queueing theory became incorporated as a branch of probabil-

ity theory. In 1953 G. Kendall emerged as a pioneer in the field, studying systems

where the restrictions Erlang, Pollczek, and Khinchin had placed on time between

jobs arriving were removed. Kendall instead placed heavy restrictions on the service

times of each job.
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Queueing theory has continued to develop over the last sixty-five years. It is viewed

these days as an area intersecting mathematics, operations research, and industrial

engineering. Over the years, queueing models have become more complicated, allow-

ing for example for multiple jobs to be serviced simultaneously, jobs that abandon

the system early if service is taking too long, interconnected networks of queues, or

randomly assigned priorities to jobs, allowing them to jump ahead in the line.

1.1 Fluid limits and batched processor sharing

We consider a single server queue operating under a service policy that is a variant of

processor sharing. In typical processor sharing, every job in the system is worked on

simultaneously with the system devoting an equal share of attention to each. Each

job remains in the system until it has received the necessary amount of attention.

One aspect of processor sharing that has been criticized is that it can take a long

time for large jobs to receive full service and exit the system if there are many small

jobs present that will slow the system down. Queues using a service policy such as

first in first out (FIFO) don’t encounter this problem. One way to mitigate such

slowdown is to incorporate the notion of a gate into processor sharing which has the

effect of creating batches of jobs that are sequenced in a FIFO manner. We require

that when the system turns on it begins working on the jobs present using the typical
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processor sharing approach. These jobs are referred to as the initial batch. If a new

job enters while the initial batch is being processed the system does not slow down

to begin working on this job too. Instead the system completely ignores any jobs

that arrive after it has started processing a set of jobs. Once every job in the initial

batch has departed, the system will turn to pick up all jobs that have arrived while

the initial batch was being processed. These jobs form the next batch. Again the

system treats those jobs using processor sharing and while the system is processing

those jobs it will ignore all incoming jobs. The system repeats this cycle indefinitely.

The way the batches are formed is sometimes referred to as using a gated service

policy. Gated service policies have been studied in many different settings. In some

cases a gated service policy will specify that each batch can only be of some maximal

size. In our setting we allow that size to be arbitary so that all jobs present when

a batch ends can be processed with the next batch. In [11], [1], and [10] a gated

processor sharing system allowing m customers per batch (where m ≤ ∞) is consid-

ered. In [11] they study the distribution of queue length, mean time in system, and

distribution of busy periods for a system where jobs arrive according to a Poisson

process with exponential service times. In [1] the sojourn time and response time dis-

tributions are studied for a system where jobs arrive according to a Poisson process

and have arbitrary service time distributions. In [10] a system with bulk Poisson ar-

rivals and arbitrary service time distribution is considered. In particular, they study
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the wait time, queue length, and batch size distribution for this setting. More re-

cently, gated service policies have been studied in polling models. A polling model is

a system of queues with one server. The server rotates cyclically through the queues

providing service as the policy dictates at each queue. The system we consider could

be viewed as an idealization of a gated polling model. In [3] the queue length and

workload distribution is considered for a system with a Poisson arrival process. In [7]

they derive the first and second moments of the number of customers at each queue

and the expected customer wait time where jobs arrive according to a Poisson process.

A different service policy that combines FIFO and processor sharing protocols is

head-of-the-line proportional processor sharing. Under this service discipline, there

are jobs of different classes. The server uses processor sharing to simultaneously serve

one job from each class. Within each class, the jobs are served FIFO. The diffusion

limits for this model under heavy traffic were studied by Bramson [4] and Williams

[12].

Another method that has been studied in an attempt to compensate for system

slowdown is referred to as limited processor sharing. In limited processor sharing the

system uses processor sharing to serve maximally k jobs. If there are less than k jobs

in service, an incoming job will be served immediately upon entering. If there are k

jobs in service any incoming job waits to begin service. Once a job leaves, the job
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that has been waiting the longest begins service. The fluid limit was derived in by

Dai, Zhang, and Zwart in [5] for a system with jobs arriving according to a general

distribution with a general service time distribution.

We record the jobs in the system via a measure-valued process that places a unit

mass at the remaining service time for each job present. This measure-valued process,

{µ(t) : t ≥ 0}, was used by Grishechkin [8] and by Gromoll, Puha, and Williams [9]

in their analysis of the fluid limit for a processor sharing queue. This measure-valued

approach is particularly well-suited to analyzing queues that are operating under a

service policy that is similar to processor sharing in nature because in those situations

knowing the remaining service time for each job is crucial for understanding how the

system is functioning. In this paper, we study a sequence of queues operating un-

der our previously defined service policy. We are primarily concerned with deriving

the fluid limit approximation of the measure-valued processes we obtain from the

sequence of queues. As with the law of large numbers the fluid limit will provide a

simple approximation for the dynamics of our system.

When analyzing our system we will split the measure valued process µ(t) into two

parts: µ1(t) and µ2(t). We define µ1(t) as the process that keeps track of the jobs

currently being processed. That is, µ1(t) places a unit mass at the residual service

time for each job in the batch currently being processed. We define µ2(t) to keep
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track of the jobs that are forming the next batch. That is to say, µ2(t) places a unit

mass at the remaining service time for each job that enters the system while a batch

is being processed. Notice that the residual service times that µ2(t) are tracking will

remain unchanged because those jobs are being ignored by the system. This approach

is necessary because of the batched nature of the service policy.

We consider a critical model where the limiting interarrival rate is denoted by α

and the limiting service time distribution is given by ν. Here we assume ν is a Borel

probability measure on R+ with a finite first moment. We further assume ν(0) = 0.

Both the interarrival times and the service time of jobs arriving are given by i.i.d.

sequences and by definition a critical model has the property that

α−1 = E[ν].

When considering this sequence of queues, each queue in the sequence has an

associated measure-valued process µr(·). The specific object we study is the fluid

scaled process 1
r
µr(r·). The limiting measure-valued process as r → ∞ will be an

element of the Skorohod space D(MF ), whereMF is the space of finite, nonnegative

Borel measures on R+ with the weak topology. Notationally, for any function g and

measure ζ ∈MF , we define

〈g, ζ〉 =

∫
g(x)ζ(dx).
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Let

C = {g ∈ C1
b (R+) : g(0) = g′(0) = 0}

where C1
b (R+) is the set of continuous, once differentiable functions on R+ whose

infinity norm and that of their first derivatives are bounded.

The fluid limit solution we obtain is a continuous function µ̄ : [0,∞) → MF .

As with the pre-limit process, we split µ̄(t) into two pieces: µ̄1(t) and µ̄2(t). As

before, µ̄1(t) describes the behavior of the jobs in the system that are currently

being processed and µ̄2(t) describes the jobs in the system that are waiting to receive

attention. The description for µ̄1(t) that we obtain is

〈g, µ̄1(t)〉 = 〈g, µ̄(0)〉1{bt/〈χ,µ̄(0)〉c=0}

+ α〈χ, µ̄(0)〉〈g, ν〉1{bt/〈χ,µ̄(0)〉c6=0} −
∫ t

bt/〈χ,µ̄(0)〉c〈χ,µ̄(0)〉

〈g′, µ̄1(s)〉
〈1, µ̄1(s)〉

ds.

Here we use χ to denote the identity function (that is, χ(x) = x). Notice we need the

indicator function on the first two terms because the system will behave differently

depending on whether it is processing the initial batch or any subsequent batch. The

description for µ̄2(t) is given by

〈g, µ̄2(t)〉 = α

(
t−
⌊

t

〈χ, µ̄(0)〉

⌋
〈χ, µ̄(0)〉

)
〈g, ν〉.
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The main result of this paper is that under mild assumptions the fluid scaled

measure-valued processes 1
r
µr1(·) and 1

r
µr2(·) converge to limits satisfying the equa-

tions above and that the solutions to those equations are unique. We will refer to the

solutions as the fluid limit for the batched processor sharing queue.

1.2 Notation

Throughout the paper we adhere to the convention that
∑b

i=a si = 0 if b < a. We

will also use the following notation:

δ+
x =


δx, x > 0,

0, x = 0,

where δx is the standard Dirac measure. We let Z+ = {0, 1, 2, ...}. We use ⇒ for

convergence in distribution and
w→ to indicate weak convergence of measures. We

use χ to denote the identity function, that is to say for all x, χ(x) = x. Given two

random variables, we write X ∼ Y if X and Y have the same distribution.

Before we define our model rigorously we review some pertinent concepts in anal-

ysis and probability theory.
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Chapter 2

Background

2.1 Methods of convergence

There are several notions of convergence that we will be concerned with understanding

and manipulating. Determining convergence of a sequence of measures will be of

primary interest. We will use the Prohorov metric as defined in [6] to determine

distance between probability measures defined on the same space.

Definition 2.1.1. The distance between two elements P,Q ∈ MF as given by the

Prohorov metric is

d(P,Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + ε for all closed F ⊂ R+}

where

F ε = {y ∈ R+ : inf
x∈F

r(y, x) < ε}.

One notion of convergence that we will use repeatedly is weak convergence of
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measures.

Definition 2.1.2. Let {µn} be a sequence of finite measures and µ be a finite measure

defined on (S,S). Then µn converges weakly to µ, written µn
w→ µ, if

lim
n→∞

µn(A) = µ(A)

for any measurable A with µ(Ā\A) = 0.

When proving that a sequence of measures converges weakly to another measure,

the Portmanteau Theorem is often very powerful. Let Cb(S) denote the set of real-

valued, continuous, bounded functions on S.

Theorem 2.1.3. Let {µn} be a sequence of finite measures and µ be a finite measure

defined on (S,S). The following conditions are equivalent:

1. lim
n→∞

d(µn, µ) = 0,

2. µn
w→ µ,

3. lim
n→∞
〈f, µn〉 = 〈f, µ〉 for all f ∈ Cb(S),

4. lim sup
n→∞

µn(F ) ≤ µ(F ) for all closed F in S,

5. lim inf
n→∞

µn(G) ≥ µ(G) for all open G in S, and

6. lim
n→∞

µn(A) = µ(A) for A ∈ S with µ(Ā\A) = 0.
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Given a sequence of measures, we can develop other criteria for determining when

a subsequence may converge weakly to some measure by using Prohorov’s Theorem.

We require the following definitions:

Definition 2.1.4. A probability measure P is tight if for every ε > 0 there exists

some compact K with P (K) > 1− ε.

If P is defined on a separable, complete space then P is tight. We can extend the

notion of tightness to a collection of probability measures.

Definition 2.1.5. A collection of probability measures Π is tight if for every ε > 0

there exists some compact K such that for all P ∈ Π, P (K) > 1− ε.

Definition 2.1.6. A collection of probability measures Π is relatively compact if

every sequence of elements from Π contains a weakly convergent subsequence.

Prohorov’s Theorem links the notion of tightness and relative compactness.

Theorem 2.1.7. Let Π be a collection of probability measures on (S,S) where S is

separable and complete. Then Π is relatively compact if and only if it is tight.

This theorem will prove important as we can more easily show that a collection

of measures is tight and then we may work along a weakly convergent subsequence.

Since each random variable has an associated distribution, which is a measure, we

can extend the notion of weak convergence to random elements.
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Definition 2.1.8. Let {Xn} be a sequence of random elements with associated dis-

tributions given by {Pn}. Let X be a random element with associated distribution P .

Then Xn converges in distribution to X, written Xn ⇒ X, if Pn
w→ P .

It is interesting to note here that while each Xn and X must take values in the

same space for Pn
w→ P to have meaning, we do not require that the sample space

that each Xn and X are defined on be the same. We can now restate the Portmanteau

Theorem through the lens of convergence in distribution, as is done in Billingsley [2]

and Ethier and Kurtz [6].

Theorem 2.1.9. Let {Xn} be a sequence of random elements of S, and let X be a

random element of S. The following conditions are equivalent:

1. Xn ⇒ X,

2. lim
n→∞

E[f(Xn)] = E[f(X)] for all f ∈ Cb(S),

3. lim sup
n

P (Xn ∈ F ) ≤ P (X ∈ F ) for all closed F ,

4. lim inf
n

P (Xn ∈ G) ≥ P (X ∈ G) for all open G, and

5. lim
n→∞

P (Xn ∈ A) = P (X ∈ A) for all sets A such that P (X ∈ Ā\A) = 0.

In addition to convergence in distribution, we have the notion of convergence in

probability.

Definition 2.1.10. Let {Xn} be a sequence of random elements mapping to the metric

space (S, d), and let X be a random element mapping to (S, d). If for every ε > 0
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lim
n→∞

P (d(Xn, X) ≥ ε) = 0

we say Xn converges in probability to X and we write Xn
P→ X.

Convergence in probability implies convergence in distribution. When X is con-

stant, the two notions are equivalent provided the sequence of random elements and

X are defined on the same space. If we have a sequence of random elements converg-

ing in distribution and a second sequence converging in distribution to a constant, we

can obtain joint convergence using the theorem below.

Theorem 2.1.11. If Xn ⇒ X and Yn ⇒ a then

(Xn, Yn)⇒ (X, a).

Another type of convergence is almost sure convergence. We first need to define

an almost sure event.

Definition 2.1.12. We say an event A is almost sure if P (A) = 1.

Definition 2.1.13. Let {Xn} be a sequence of random elements, and let X be a

random element with Xn, X : Ω → S. Then Xn converges almost surely to X,

written Xn
a.s.→ X, if

P
(

lim
n→∞

Xn = X
)

= 1.
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Notice that almost sure convergence will imply both convergence in probability

and distribution. However the requirement that each Xn and X have the same sample

space and state space is sometimes too restrictive. In these situations, we can use the

Skorohod Representation Theorem to move between convergence in distribution and

almost sure convergence.

Theorem 2.1.14. Let {Xn} be a sequence of random elements and let X be a random

element whose state space is separable. If Xn ⇒ X then there is some sequence of

random elements {X̃n}, and a random element X̃ defined on a common probability

space (Ω,F , P ) with

X̃n ∼ Xn for each n,

X̃ ∼ X and,

X̃n
a.s.→ X̃.

Often times we wish to study how a sequence of random elements interacts but

even the simplest operations can result in a complicated distribution function. Con-

sider for example the distribution function for the sum of a sequence of random

elements. While it is easy to see why we might want to study this example, to under-

stand this distribution function requires computing a messy convolution of measures.

The Law of Large Numbers is an incredible theorem which allows us to better under-

stand this sum and use a simple number to approximate it. To state the theorem we

need to define independent random variables.
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Definition 2.1.15. Two random variables X, and Y are independent, written X ⊥

Y if their joint law LX,Y is equivalent to LX × LY .

We then say two random variables are independent, and identically distributed

(i.i.d.) if they are independent and have the same distribution.

Theorem 2.1.16. Let {Xn} be an i.i.d. sequence of random elements with expected

value µ. Then

lim
n→∞

1

n

∞∑
i=1

Xi = µ a.s.

2.2 Stochastic processes

We often want to consider a system of random variables that evolve over time. To do

this we make the following definition.

Definition 2.2.1. Let (Ω,F , P ) be a probability space. Let S be some measurable

space and let A be some collection such that for each α ∈ A, X(α) : Ω → S is a

random variable. The collection {X(α) : α ∈ A} is a stochastic process.

In order to allow our stochastic processes to develop over time, we takeA = [0,∞).

We consider a sample path of a stochastic process by fixing some ω ∈ Ω and studying

X(·, ω) : R+ → S.
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We often suppress the ω-notation and simply refer to the sample path by X(·). Under

certain conditions the stochastic process will be a member of càdlàg space. That is

to say, X(·) will be right continuous with left limits (RCLL). In general we will let

DE(R+) = {X(·) : R+ → E RCLL}.

We will commonly be concerned with the situation where E =MF . HereMF refers

to the set of finite, non-negative Borel measures on R+. We use the Skorohod J1-

topology on DE(R+). In the J1-topology we define a metric that allows two elements

to be close if applying a slight time change (or horizontal shift) will allow the outputs

to be close together. Formally, given a sequence of elements {xn} in DE(R+) and

x ∈ DE(R+), we say xn converges to x if and only if there exists continuous functions

{λn} such that λn converges to e uniformly on compacts, where e(t) = t and xn(λn)

converges to x uniformly on compacts. Alternatively, for any T > 0, x(·), y(·) ∈

DR+(R+) we define the Skorohod distance restricted to [0, T ] by

rT (x, y) = inf{ε > 0 : ‖λ(t)− t‖T ≤ ε, ‖x(t)− y(λ(t))‖T ≤ ε}

where λ(·) is a continuous, strictly increasing function and ‖ · ‖T denotes the infinity

norm on [0, T ]. We also have a notion of relative compactness for stochastic processes.

Within the definition for a relative compact family of stochastic processes we need

the notion of the modulus of continuity. Intuitively, the modulus of continuity is a

measure of how close a function is to being uniformly continuous.
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Definition 2.2.2. For x ∈ DE([0,∞)), δ > 0, and T > 0, define the modulus of

continuity to be

w
′
(x, δ, T ) = inf

{ti}
max
i

sup
s,t∈[ti−1,ti)

d(x(s), x(t))

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn−1 < tn = T

with min
1≤i≤n

ti − ti−1 > δ.

Definition 2.2.3. Let {Xα} be a family of stochastic processes whose sample paths

lie in DE([0,∞)) for a separable space E. Then {Xα} is relatively compact if the

associated family of probability distributions {Pα} is.

Note that {Pα} will be relatively compact in P(DE([0,∞))) if it has compact

closure. Alternatively, we can determine if a family of stochastic processes is relatively

compact by employing the following theorem stated in [6]:

Theorem 2.2.4. Let (E, d) be a separable metric space and let {Xα} be a family

of stochastic processes taking sample paths in DE([0,∞)). Then {Xα} is relatively

compact if and only if:

1. For every η > 0 and rational t ≥ 0, there exists a compact set Γη,t ⊂ E with

inf
α
P (Xα(t) ∈ Γη,t) ≥ 1− η, and

2. for every η > 0 and T > 0, there exists some δ > 0 such that
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sup
α
P (w

′
(Xα, δ, T ) ≥ η) ≤ η.

Notice to show the first condition above, it is more than sufficient to show that

for every η > 0 and T > 0 there is a compact Γη,T ⊂ E with

inf
α
P (Xα(t) ∈ Γη,T for all 0 ≤ t ≤ T ) ≥ 1− η.

Additionally, notice that the second condition above is automatically satisfied if each

stochastic process in the family is monotone in t.
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Chapter 3

Model and main Result

3.1 Model definition

Let {ui} be independent, identically distributed inter-arrival times. Define Uj =∑j
i=1 ui and E(t) to be the number of jobs that have arrived to the system by time

t. That is to say,

E(t) = max

{
j :

j∑
i=1

ui ≤ t

}
.

Let {vi} be independent, identically distributed service times where these service

times are distributed like ν, a Borel probability measure on R+ with ν({0}) = 0.

Define Vj =
∑j

i=1 vi. Let Z0 be a non-negative integer valued random variable. Let

{ṽj} be a sequence of positive random variables, and assume E
[∑Z0

j=1 ṽj

]
<∞. The

random variable Z0 represents the initial queue length and {ṽj : j = 1, 2, ...Z0} are

the initial service times. Define the initial workload W0 and initial batch size B0 by
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W0 = B0 =

Z0∑
j=1

ṽj.

The initial condition can be encoded using the measure µ1(0) =
∑Z0

j=1 δṽj where

W0 = 〈χ, µ1(0)〉.

Let I(t) be the amount of time the system has spent idle on [0, t], that is

I(t) = sup{(W0 + V (E(s))− s)−, 0 ≤ s ≤ t}, t ≥ 0.

Define the workload process

W (t) = W0 +

E(t)∑
i=1

vi − t+ I(t). (3.1.1)

Next, define the batch start times and sizes. Let β0 = 0 and for positive k ∈ Z define

βk and Bk in an alternating, inductive fashion where

βk = (βk−1 +Bk−1)1{W (βk−1+Bk−1)6=0}

+ inf{s ≥ βk−1 +Bk−1 : W (s) > 0}1{W (βk−1+Bk−1)=0},

and



22

Bk =

E(βk)∑
j=E(βk−1)+1

vj.

Then for any positive integer k, βk gives the start time for the kth batch and Bk gives

the workload of the kth batch. Notice for any s,

W (s)−W (s−) = B0 +

E(s)∑
i=1

vi − s+ I(s)−B0 − lim
t↑s

E(t)∑
i=1

vi + s− I(s)

= lim
t↑s

E(s)∑
i=E(t)+1

vi

Which due to our convention for sums equals the amount of work arriving at s. We

also want to keep track of the number of jobs in the system, or queue length. Define

the index of the most recently started batch

`(t) = max{j : βj ≤ t}.

Denote the residual service time a t of initial job j by R̃j(t) and of job j by Rj(t).

This is the remaining amount of processing time at time t required to fulfill the job’s

service requirement. The state descriptor at time t is given by two measures µ1(t),

representing the batch of jobs currently in service, and µ2(t), representing the jobs

currently waiting to begin service. These are defined in terms of one another and an

additional process S(t), called the cumulative service per job process. Specifically,

the above processes are defined by the equations
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µ1(t) =

Z0∑
j=1

δ+

R̃j(t)
+

E(β`(t))∑
j=1

δ+
Rj(t)

(3.1.2)

µ2(t) =

E(t)∑
j=E(β`(t))+1

δ+
Rj(t)

(3.1.3)

Rj(t) = vj −
[
S(t)− S(β`(Uj−)+1)

]+
(3.1.4)

R̃j(t) = ṽj − S(t) (3.1.5)

S(t) =

∫ t

0

φ (〈1, µ1(s)〉) ds, (3.1.6)

where φ(x) = 1/x, x > 0, φ(0) = 0. In particular, given the primitive processes E(·)

and V·, and the initial condition Z0 and {ṽj}, equations (3.1.2)-(3.1.6) determine the

state descriptor (µ1(·), µ2(·)), the service process S(·), and the residual service times

{R̃j(·)}, {Rj(·)}. Since the above describes a discrete event system, this fact is not

difficult although somewhat tedious to show. Define

St,s = S(s)− S(t) =

∫ s

t

φ (〈1, µ1(u)〉) du.

Then

µ(t) = µ1(t) + µ2(t)
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describes the evolution of the system.

Observe that for all t ≥ 0, we have the valuation

β`(t) = sup{s ≤ t : µ1(s−) < µ1(s)} (3.1.7)

Using induction, we will now give a more versatile expression for βk.

Lemma 3.1.1. For k ∈ Z+,

βk =
k−1∑
i=0

Bi + I(βk). (3.1.8)

Proof First notice that I(0) = 0 = I(B0) since

I(B0) = sup{(B0 +

E(s)∑
i=1

vi − s)− : 0 ≤ s ≤ B0}

and for any 0 ≤ s ≤ B0

(B0 +

E(s)∑
i=1

vi − s)− ≤ (B0 − s)− = 0.

Therefore, if W (B0) 6= 0, β1 = B0 and

W (β1) = B0 +

E(β1)∑
i=1

vi − β1 + I(β1)

= B0 +B1 −B0 + 0 = B1.

Solving equation (3.1.1) for t = β1 we have
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β1 = B0 +

E(β1)∑
i=1

vi −W (β1) + I(β1) = B0 + I(β1).

If W (B0) = 0, then B1 = W (β1). To see this we rewrite (3.1.1) to obtain

B0 = B0 +

E(B0)∑
i=1

vi + I(B0)

which implies
∑E(B0)

i=1 vi = 0. Suppose there is some t with B0 < t < β1 with∑E(t)
E(B0)+1 vi > 0. Then there is some s, B0 < s < t with limu↑s

∑E(s)
E(u)+1 vi > 0 but

this implies

W (s)−W (s−) = W (s) > 0

contradicting the infimum definition of β1. Thus we conclude that

E(s)∑
1

vi = 0

for any 0 ≤ s < β1 and

W (β1) = W (β1)−W (β1−) = lim
s↑β1

E(β1)∑
E(s)+1

vi =

E(β1)∑
1

vi = B1.

We can now rewrite (3.1.1) to give

β1 = B0 +

E(β1)∑
i=1

vi −W (β1) + I(β1) = B0 + I(β1).
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Suppose we know βk =
∑k−1

i=0 Bi + I(βk) and suppose W (βk + Bk) 6= 0. Then by

definition,

βk+1 = βk +Bk.

Notice for βk < s ≤ βk+1 we have

s ≤ βk +Bk =
k−1∑
i=0

Bi + I(βk) +Bk =
k∑
i=0

Bi + I(βk)

= B0 +

E(βk)∑
i=1

vi + I(βk)

≤ B0 +

E(s)∑
i=1

vi + I(βk).

Rearranging terms this yields

s−B0 −
E(s)∑
i=1

vi ≤ I(βk)

which implies

(B0 +

E(s)∑
i=1

vi − s)− ≤ I(βk).

It follows from this and the definition of I(·) that I(βk+1) = I(βk) and we can write
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W (βk+1) = B0 +

E(βk+1)∑
i=1

vi − βk+1 + I(βk+1)

= B0 +
k+1∑
i=1

Bi − βk −Bk + I(βk)

=
k+1∑
i=0

Bi −

(
k−1∑
i=0

Bi + I(βk)

)
−Bk + I(βk) = Bk+1.

It follows from (3.1.1) that

βk+1 = B0 +

E(βk+1)∑
i=1

vi −W (βk+1) + I(βk+1) =
k∑
i=0

Bi + I(βk+1).

If W (βk + Bk) = 0 then Bk+1 = W (βk+1). To see this we rewrite the workload

equation to obtain

βk +Bk = B0 +

E(βk+Bk)∑
i=1

vi + I(βk +Bk).

This yields

k−1∑
i=0

Bi + I(βk) +Bk =
k∑
i=0

Bi +

E(βk+Bk)∑
i=E(βk)+1

vi + I(βk),

which implies
∑E(βk+Bk)

i=E(βk)+1 vi = 0. Suppose there is some t with βk+Bk < t < βk+1 with∑E(t)
E(βk+Bk)+1 vi > 0. Then there is some s, βk +Bk < s < t with limu↑s

∑E(s)
E(u)+1 vi > 0

but this implies

W (s)−W (s−) = W (s) > 0
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contradicting the infimum definition of βk+1. Thus we conclude that

E(s)∑
E(βk+Bk)+1

vi = 0

for any βk +Bk ≤ s < βk+1 and

W (βk+1) = W (βk+1)−W (βk+1−) = lim
s↑βk+1

E(βk+1)∑
E(s)+1

vi =

E(βk+1)∑
E(βk)+1

vi = Bk+1.

Now by (3.1.1),

βk+1 = B0 +

E(βk+1)∑
i=1

vi −W (βk+1) + I(βk+1)

=
k+1∑
i=0

Bi −Bk+1 + I(βk+1)

=
k∑
i=0

Bi + I(βk+1),

as desired. �

3.2 Fluid model

We now define the object that will appear as the limit in our fluid limit theorem.

Definition 3.2.1. Given α, ν, and ξ where ξ ∈ MF has no atoms, we say that

(µ1, µ2) are fluid model solutions for (α, ν) and initial condition ξ if µ1(0) = ξ and

for all g ∈ C we have
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〈g, µ1(t)〉 = 〈g, ξ〉1{⌊ t
w0

⌋
=0
} + αw0〈g, ν〉1{⌊ t

w0

⌋
6=0
} −

∫ t

⌊
t
w0

⌋
w0

〈g′, µ1(s)〉
〈1, µ1(s)〉

ds, (3.2.1)

and

〈g, µ2(t)〉 = α

(
t−
⌊
t

w0

⌋
w0

)
〈g, ν〉 (3.2.2)

for all t ≥ 0, where w0 = 〈χ, ξ〉. We refer to µ1(·) as the shifting solution and µ2(·)

as the growing solution.

3.3 Sequence of models and main result

Consider a sequence of models indexed by r. For each model in the sequence we can

define corresponding processes as in (3.1.2)-(3.1.6). We study this sequence under

fluid or law of large numbers scaling using the following definition:

Definition 3.3.1. Consider a sequence of queues indexed by r and the corresponding

process µr(·). The resulting fluid scaled process is defined by µ̄r(·) = 1
r
µr(r·).

In this sequence of queues we assume the following asymptotic properties

1.
(
µ̄r(0), 1

r
Br

0

)
⇒ (θ0,W0)

2. E[ur1] = αr → α

3. νr
w→ ν,
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4. 〈χ, νr〉 → 〈χ, ν〉,

5. E[ν] = 1
α

,

6. E[ur1;ur1 > r]→ 0.

Theorem 3.3.2. Consider a sequence of models as defined in Section 3.1 and sup-

pose there are α > 0, a non-atomic probability measure ν on R+, and a random

measure θ0 such that θ0 6= 0 almost surely and such that the asymptotic assumptions

in Definition 3.3.1 hold. Then as r → ∞ the sequence of fluid scaled state descrip-

tors {(µ̄r1(·), µ̄r2(·))} converges in distribution on D×D to a limit (θ1(·), θ2(·)) that is

almost surely a fluid model solution for α, ν, θ0.
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Chapter 4

Uniqueness of fluid model solutions

Theorem 4.0.1. If (µ1, µ2) is a fluid model solution for (α, ν) and initial condition

ξ then (µ1, µ2) is unique. Moreover, it is periodic in that µ1(t) = µ1(t + kw0) for all

t ≥ w0 and k ∈ Z+, and µ2(t) = µ2(t+ kw0) for all t ≥ 0 and k ∈ Z+.

We build off of the uniqueness arguments developed in [9]. We begin with the

following technical lemmas.

Lemma 4.0.2. Let µ1 : [kw0, (k + 1)w0) → MF be continuous. For each f ∈

C1
b([kw0, (k + 1)w0)× R+),

t→ 〈f(t, ·), µ1(t)〉

is a continuous function of t ∈ [kw0, (k + 1)w0).

Proof Fix t ∈ [kw0, (k+)w0), let tn → t. Then µ1(tn)
w→ µ1(t) and f(tn, ·) →

f(t, ·) pointwise. So for any k and w
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|〈f(tn, ·), µ1(tn)〉 − 〈f(t, ·), µ1(t)〉|

≤ |〈f(tn, ·), µ1(tn)〉 − 〈f(tk, ·), µ1(tn)〉|

+ |〈f(tk, ·), µ1(tn)〉 − 〈f(tk, ·), µ1(t)〉|

+ |〈f(tk, ·), µ1(t)〉 − 〈f(t, ·), µ1(t)〉|. (4.0.1)

The first right-hand term is bounded above for any M <∞ by

‖f(tn, ·)− f(tk, ·)‖M sup
n
〈1, µ1(tn)〉+ 2‖f‖∞ sup

n
〈1(M,∞), µ1(tn)〉.

Since {µ1(tn)} is tight, we can make this arbitrarily small by first choosing M

large enough, and then n, k large enough, since f(tn, ·), f(tk, ·) converge uniformly on

[0,M ]. Finally the latter two terms in (4.0.1) can be made small by first choosing k

sufficiently large and applying bounded convergence, and then choosing n sufficiently

large. �

Lemma 4.0.3. Suppose µ1 is a solution to (3.2.1)

then for all k ∈ Z+, t ∈ [kw0, (k + 1)w0), and f ∈ C1
b([kw0, (k + 1)w0) × R+) such

that f(·, 0) ≡ 0 and fx(·, 0) ≡ 0, µ1(·) satisfies

〈f(t, ·), µ1(t)〉 = 〈f(0, ·), ξ〉 1{k=0} + αw0 〈f(kw0, ·), ν〉 1{k 6=0}

+

∫ t

⌊
t
w0

⌋
w0

〈fs(s, ·), µ1(s)〉ds−
∫ t

⌊
t
w0

⌋
w0

〈fx(s, ·), µ1(s)〉
〈1, µ1(s)〉

ds.

(4.0.2)
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Proof Fix k ∈ Z+, t ∈ [kw0, (k+ 1)w0), and f ∈ C1
b([kw0, (k+ 1)w0)×R+) with

f(·, 0) ≡ 0 and fx(·, 0) ≡ 0. Take h small enough so that t + h ∈ [kw0, (k + 1)w0).

Then we have

〈f(t+ h, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t)〉

= 〈f(t+ h, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t+ h)〉

+ 〈f(t, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t)〉.

Since

f(t+ h, ·)− f(t, ·) =

∫ t+h

t

fs(s, ·)ds,

we obtain

〈f(t+ h, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t+ h)〉

= 〈f(t+ h, ·)− f(t, ·), µ1(t+ h)〉

=

〈∫ t+h

t

fs(s, ·)ds, µ1(t+ h)

〉
.

(4.0.3)

Performing a substitution with s = t+ hv we obtain

〈∫ t+h

t

fs(s, ·)ds, µ1(t+ h)

〉
=

〈∫ 1

0

fs(t+ hv, ·)hdv, µ1(t+ h)

〉
. (4.0.4)
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Since f ∈ C1
b([kw0, (k+ 1)w0)×R+) there exists some M such that ‖fs(·, ·)‖∞ ≤M .

Therefore, since µ1(t+ h) ∈MF we have

〈∫ t+h

t

fs(s, ·)ds, µ1(t+ h)

〉
≤
〈∫ t+h

t

Mds, µ1(t+ h)

〉
≤ 〈hM, µ1(t+ h)〉 <∞.

Therefore, we can interchange the integrals to write

〈∫ 1

0

fs(t+ hv, ·)hdv, µ1(t+ h)

〉
= h

∫ 1

0

〈fs(t+ hv, ·), µ1(t+ h)〉dv. (4.0.5)

For every v ∈ [0, 1] we define f v : [kw0, (k + 1)w0)× R+)→ R by

f v(u, t) = fs(t+ (u− t)v, x).

By definition, taking u = t+h we have f v(t+h, ·) = fs(t+hv, ·). So for any v ∈ [0, 1]

we have

lim
h→0
〈fs(t+ hv, ·), µ1(t+ h)〉 = lim

h→0
〈f v(t+ h, ·), µ1(t+ h)〉. (4.0.6)

Notice that f v ∈ Cb([kw0, (k + 1)w0) × R+), and so by Lemma 4.0.2, it follows that

the map defined by u 7→ 〈f v(u, ·), µ1(u)〉 is continuous for any u ∈ [kw0, (k + 1)w0).

Therefore, we can pass the limit inside in the equation above to obtain

lim
h→0
〈f v(t+ h, ·), µ1(t+ h)〉 = 〈f v(t, ·), µ1(t)〉 = 〈fs(t, ·), µ1(t)〉. (4.0.7)
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Combining this with (4.0.3)-(4.0.5) we have

lim
h→0

〈f(t+ h, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t+ h)〉
h

= lim
h→0

h
∫ 1

0
〈fs(t+ hv, ·), µ1(t+ h)〉dv

h

= lim
h→0

∫ 1

0

〈fs(t+ hv, ·), µ1(t+ h)〉dv.

Notice that since fs(·, ·) ∈ Cb([kw0, (k+1)w0),×R+) and µ1(·) ∈MF , by the bounded

convergence theorem, (4.0.6), and (4.0.7) we have

lim
h→0

∫ 1

0

〈fs(t+ hv, ·), µ1(t+ h)〉dv

=

∫ 1

0

lim
h→0
〈fs(t+ hv, ·), µ1(t+ h)〉dv

=

∫ 1

0

〈fs(t, ·), µ1(t)〉dv

= 〈fs(t, ·), µ1(t)〉.

Next, to consider 〈f(t, ·), µ1(t + h)〉 − 〈f(t, ·), µ1(t)〉 we use the assumption that

on [kw0, (k + 1)w0), µ1(·) is a solution to

〈g, µ1(t)〉 = 〈g, ξ〉1{k=0} + αw0〈g, ν〉1{k 6=0} −
∫ t

⌊
t
w0

⌋
w0

〈g′, µ1(s)〉
〈1, µ1(s)

ds.

Define g(·) = f(t, ·) and note that g ∈ C. Since t+h ∈ [kw0, (k+1)w0) it follows that
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〈f(t, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t)〉

= 〈f(t+ h, ·), ξ〉1{k=0} + αw0〈f(t+ h, ·), ν〉1{k 6=0}

−
∫ t+h

⌊
t+h
w0

⌋
w0

〈fx(t, ·), µ1(s)〉
〈1, µ1(s)〉

ds−(
〈f(t, ·), ξ〉1{k=0} + αw0〈f(t, ·), ν〉1{k 6=0} −

∫ t

⌊
t
w0

⌋
w0

〈fx(t, ·), µ1(s)〉
〈1, µ1(s)〉

ds

)
.

But since t+ h ∈ [kw0, (k + 1)w0) we have
⌊
t+h
w0

⌋
=
⌊

t
w0

⌋
. Therefore,

−
∫ t+h

⌊
t+h
w0

⌋
w0

〈fx(t, ·), µ1(s)〉
〈1, µ1(s)〉

ds+

∫ t

⌊
t
w0

⌋
w0

〈fx(t, ·), µ1(s)〉
〈1, µ1(s)〉

ds

= −
∫ t+h

t

〈fx(t, ·), µ1(s)〉
〈1, µ1(s)〉

ds.

By the continuity of µ1(·) on [kw0, (k + 1)w0) and the fact that on [kw0, (k + 1)w0),

〈1, µ1(·)〉 > 0 we know that the function given by

s 7→ 〈fx(s, ·), µ1(s)〉
〈1, µ1(s)〉

is continuous for s ∈ [kw0, (k + 1)w0). Consider

lim
h→0

1

h

∫ t+h

t

〈fx(s, ·), µ1(s)〉
〈1, µ1(s)〉

ds.

By the continuity of the integrand and the mean value theorem for integrals we have

lim
h→0

1

h

∫ t+h

t

〈fx(s, ·), µ1(s)〉
〈1, µ1(s)〉

ds =
〈fx(t, ·), µ1(t)〉
〈1, µ1(t)〉

.
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Combining the results above we have for t ∈ [kw0, (k + 1)w0),

d

dt
〈f(t, ·), µ1(t)〉 = lim

h→0

1

h
〈f(t+ h, ·), µ1(t+ h)〉 − 〈f(t, ·), µ1(t)〉

= 〈fs(t, ·), µ1(t)〉 − 〈fx(t, ·), µ1(t)〉
〈1, µ1(t)〉

.

By Lemma 4.0.2, we know that each term on the right hand side of this expression

is continuous on [kw0, (k + 1)w0) since f , fs, and fx, and 1
〈1,µ1(·)〉 are continuous on

[kw0, (k + 1)w0). The desired result follows by integrating both side from kw0 to t

and noting that

〈f ((kw0) , ·) , µ1 (kw0)〉

= 〈f ((kw0) , ·) , ξ〉 1{k=0} + αw0〈f(kw0, ·), ν〉1{k 6=0}.

�

Lemma 4.0.4. Suppose that (µ1(·), µ2(·)) is a fluid model solution for α, ν, ξ. Then

for all w ∈ [0,∞], k ∈ Z+, and t ∈ [kw0, (k + 1)w0), we have

〈1(0,w), µ1(t)〉 = 〈1(0,w)(· − S(t)), ξ〉1{⌊ t
w0

⌋
=0
}

+αw0〈1(0,w)(· − S(t) + S(kw0), ν〉1{⌊ t
w0

⌋
6=0
}.

(4.0.8)
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Proof Fix w ∈ [0,∞], k ∈ Z+, and t ∈ [kw0, (k + 1)w0). Notice that if t = kw0

(4.0.8) is satisfied by considering a sequence of {gn} ⊂ C that increase up to 1(0,w),

applying the dominated convergence theorem, and appealing to (3.2.1). Now suppose

t ∈ (kw0, (k + 1)w0), and let g ∈ C1
b(R) such that g ≡ 0 on (−∞, 0]. Define

f(s, x) =


g(x− S(t) + S(s)), (s, x) ∈ [kw0, t]× R+,

0, (s, x) ∈ (t, (k + 1)w0)× R+.

Since S(·) is differentiable on [kw0, (k + 1)w0) we know f ∈ C1
b([kw0, t] × R+) and

since S ′(·) = 1/Z(·), on [kw0, t],

fs(s, x) =
g′(x− S(t) + S(s))

Z(s)
, and

fx(s, x) = g′(x− S(t) + S(s)).

Let 0 < ε < t− kw0 be given. Define

hε(s) =


1, s ∈ [kw0, t− ε],

0, s ∈ [t− ε/2, (k + 1)w0).

Take f ε : [kw0, (k+1)w0)×R+ → R to be the map taking (s, x) 7→ f(s, x)hε(s). Then

f ε ∈ C1
b([kw0, (k+1)w0)×R+) and f ε(·, 0) ≡ 0 and f εx(·, 0) ≡ 0. Then f |[kw0,t−ε] ≡ f ε

and by Lemma 4.0.3 applied to f ε, for any kw0 ≤ s ≤ t− ε,

〈f(s, ·), µ1(s)〉 = 〈f(kw0, ·), ξ〉1{k=0} + αw0〈f(kw0, ·), ν〉1{k 6=0}

+

∫ s

kw0

〈fu(u, ·), µ1(u)〉du−
∫ s

kw0

〈fx(u, ·), µ1(u)〉
〈1, µ1(u)〉

du.
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But, by definition we know fu(u, x) = g′(x−S(t)+S(u))
Z(u)

and fx(u, x) = g′(x−S(t)+S(u)).

Therefore, the above equality gives

〈f(s, ·), µ1(s)〉

= 〈g(· − S(t), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0), ν〉1{k 6=0}

+

∫ s

kw0

〈
g′(· − S(t) + S(u))

Z(u)
, µ1(u)

〉
du

−
∫ s

kw0

〈g′(· − S(t) + S(u)), µ1(u)〉
〈1, µ1(u)〉

du

= 〈g(· − S(t), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0)), ν〉1{k 6=0}

+

∫ s

kw0

〈g′(· − S(t) + S(u)), µ1(u)〉
Z(u)

du

−
∫ s

kw0

〈g′(· − S(t) + S(u)), µ1(u)〉
Z(u)

du

= 〈g(· − S(t), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0), ν〉1{k 6=0}.

Since 0 < ε < t− kw0 was arbitrary, it follows that for any s ∈ [kw0, t), we have

〈f(s, ·), µ1(s)〉 = 〈g(· − S(t), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0), ν〉1{k 6=0}.

Now letting s→ t above, as a consequence of Lemma 4.0.2 we obtain

〈f(t, ·), µ1(t)〉 = 〈g(· − S(t), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0), ν〉1{k 6=0}.

But f(t, ·) = g(·), so in fact we have
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〈g, µ1(t)〉 = 〈g(· − S(t), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0), ν〉1{k 6=0}.

We obtain (4.0.8) from this by applying the monotone convergence theorem to a se-

quence {gn} ⊂ C1
b(R) which increases pointwise to 1(0,w). �

Proof of Theorem 4.0.1 Uniqueness of the growing solution µ2(·) is immediate

because C is a separating class on the subspace ofMF that does not charge the origin,

so any solution to (3.2.2) for all g ∈ C is uniquely determined by α, ν, ξ. For the

shifting solution, define

Hξ(x) =

∫ x

0

〈1(y,∞), ξ〉dy, and

Hν(x) =

∫ x

0

〈1(y,∞), ν〉dy.

Recall we have defined

S(t) =

∫ t

0

1

〈1, µ1(s)〉
ds =

∫ t

0

1

Z(s)
ds.

So we have S ′(t) = 1
Z(t)

. Next define for each k ∈ Z+

Sk : [kw0, (k + 1)w0)→ R : t 7→ S(t)− S(kw0).

Notice that Sk is increasing on its domain and S ′|[kw0,(k+1)w0)(·) = S ′k(·). Let
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Tk : [Sk(kw0), Sk(k + 1)w0)→ R

be the inverse of Sk and take w = ∞ in (4.0.8). Then by Lemma 4.0.4, for all

t ∈ [kw0, (k + 1)w0)

Z(t) = 〈1(0,∞), µ1(t)〉

= 〈1(0,∞)(· − S(t)), ξ〉1{k=0} + αw0〈1(0,∞)(· − S(t) + S(kw0)), ν〉1{k 6=0}

= 〈1(S(t),∞), ξ〉1{k=0} + αw0〈1(0,∞)(· − S(t) + S(kw0)), ν〉1{k 6=0}

= H ′ξ(S(t))1{k=0} + αw0H
′
ν(S(t)− S(kw0))1{k 6=0}.

Let u = S(t)− S(kw0). Then

Z(Tk(u)) = Z(t) = H ′ξ(u)1{k=0} + αw0H
′
ν(u)1{k 6=0}.

In addition, we know

T ′k(u) =
1

S ′k(Tk(u))
=

1

S ′(Tk(u))
=

1

S ′(t)
= Z(t).

Therefore, we have T ′k(u) = H ′ξ(u)1{k=0} + αw0H
′
ν(u)1{k 6=0} and
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Tk(u) =

∫
T ′k(u)du

=

∫
H ′ξ(u)1{k=0} + αw0H

′
ν(u)1{k 6=0}du

= Hξ(u)1{k=0} + αw0Hν(u)1{k 6=0}.

So each Tk is uniquely determined by ξ, α, and ν. This implies Sk is also uniquely

determined by ξ, α, and ν. Since this holds for all k, we have S(t) − S (kw0) is

uniquely determined by ξ, α, and ν. It follows that

〈g, µ1(t)〉 = 〈g(· − S(t)), ξ〉1{k=0} + αw0〈g(· − S(t) + S(kw0)), ν〉1{k 6=0}

is uniquely determined by ξ, α, and ν. So if µ1(·) satisfies (3.2.1), it is uniquely

determined by ξ, α, and ν. �
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Chapter 5

Some general convergence
considerations

Lemma 5.0.1. If Xr ⇒ X where Xr, X > 0 then for any M > 0,

Xr1{Xr<M} ⇒ X1{X<M}.

Proof Let b > a > 0. We consider two cases. First suppose b < M . Then

{Xr1{Xr<M} ∈ (a, b)} = {Xr ∈ (a, b)}, and

{X1{X<M} ∈ (a, b)} = {X ∈ (a, b)}.

Since Xr ⇒ X, by the Portmanteau Theorem we have

lim inf
r→∞

P (Xr ∈ (a, b)) ≥ P (X ∈ (a, b)).

So we have
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lim inf
r→∞

P (Xr1{Xr<M} ∈ (a, b)) = lim inf
r→∞

P (Xr ∈ (a, b))

≥ P (X ∈ (a, b)) = P (X1{X<M} ∈ (a, b)).

If b ≥M we have

{Xr1{Xr<M} ∈ (a, b)} = {Xr ∈ (a,M)}, and

{X1{X<M} ∈ (a, b)} = {X ∈ (a,M)}.

Since Xr ⇒ X, by the Portmanteau Theorem we have

lim inf
r→∞

P (Xr ∈ (a, b)) ≥ P (X ∈ (a, b)).

So we have

lim inf
r→∞

P (Xr1{Xr<M} ∈ (a, b)) = lim inf
r→∞

P (Xr ∈ (a,M))

≥ P (X ∈ (a,M)) = P (X1{X<M} ∈ (a, b)).

Since open intervals form a generating set, by Portmanteau Theorem we know

Xr1{Xr<M} ⇒ X1{X<M}.

�
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Lemma 5.0.2. Let Xr be a sequence of random variables such that for any η > 0

there exists some Ωr with P (Ωr) ≥ 1− η. Suppose further Xr1Ωr ⇒ 0. Then

Xr ⇒ 0.

Proof Let ε > 0, f ∈ Cb(R+) be given. Take η < ε
4‖f‖∞ . Let Ωr

η be such that

P (Ωr) ≥ 1− η and Xr1Ωr ⇒ 0. Then

|E[f(Xr)]− E[f(0)]| =
∣∣E[f(Xr)1Ωr ] + E[f(Xr)1(Ωr)c ]− E[f(0)]

∣∣
=
∣∣E[f(Xr1Ωr)]− E[f(0)1(Ωr)c ] + E[f(Xr)1(Ωr)c ]− E[f(0)]

∣∣
≤ |E[f(Xr1Ωr)]− E[f(0)]|+

∣∣E[f(0)1(Ωr)c ]
∣∣+
∣∣E[f(Xr)1(Ωr)c ]

∣∣
≤ |E[f(Xr1Ωr)]− E[f(0)]|+ 2η‖f‖∞.

Taking r large enough so |E[f(Xr1Ωr)]− E[f(0)]| < ε/2. It follows that

|E[f(Xr)]− E[f(0)]| < ε.

Since ε > 0 was arbitrary, we have the desired convergence. �

Throughout this paper we will use the following lemma repeatedly.

Lemma 5.0.3. Let {Xn}, {Yn}, {Zn} be a sequence of random elements and X, Y, Z

be random elements where {Xn} ⊂ SX , X ∈ SX , {Yn} ⊂ SY , Y ∈ SY , {Zn} ⊂ SZ , Z ∈

SZ for some topological spaces SX , SY , SZ. Then
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((Xn, Yn), Zn)⇒ ((X, Y ), Z)

if and only if

(Xn, Yn, Zn)⇒ (X, Y, Z).

Proof First assume ((Xn, Yn), Zn)⇒ ((X, Y ), Z). Define

g : (SX × SY )× SZ → SX × SY × SZ

by g((X, Y), Z)=(X, Y, Z). Then g is continuous with respect to the product topology

which implies

(Xn, Yn, Zn) = g(((Xn, Yn), Zn))⇒ g(((X, Y ), Z)) = (X, Y, Z).

Since g is invertible the same argument applied with g−1 proves the opposite direction.

�

Lemma 5.0.4. Let X, Y, V be random elements and let f : W → Z be a measurable

function where W,Z are any topological spaces. If

(X, f(X)) ∼ (Y, V )

then V = f(Y ) almost surely.
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Proof Suppose not. Then there exists some measurable set A, A ⊂ G(f)c, and

P ((Y, V ) ∈ A) > 0. Since (X, f(X)) ∼ (Y, V ),

P ((Y, V ) ∈ A) = P ((X, f(X)) ∈ A) > 0,

a contradiction since P ((X, f(X)) ∈ G(f)) = 1.

�

Lemma 5.0.5. If X(·) ∼ X̃(·) and f is measurable then

(X(·), f(X(·))) ∼ (X̃(·), f(X̃(·))).

Proof Let µ(·)(µ̃(·)) be the distribution of (X(·), f(X(·))) (respectively, (X̃(·), f(X̃(·)))).

We aim to show that µ(·) = µ̃(·). We know the marginal distributions of (X(·), f(X(·)))

and (X̃(·), f(X̃(·))) agree. Let R = A×B be any rectangle in DR+ ×DR+ . It suffices

to show µ(·)(A×B) = µ̃(·)(A×B). Notice that

{ω : (X(·)(ω), f(X(·)(ω))) ∈ A×B} = {ω : X(·)(ω) ∈ A ∩ f−1(B)}

so
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µ(·)(A×B) =P ((X(·), f(X(·))) ∈ A×B)

=P (X(·) ∈ A ∩ f−1(B))

=P (X̃(·) ∈ A ∩ f−1(B))

=P ((X̃(·), f(X̃(·))) ∈ A×B) = µ̃(·)(A×B).

So µ(·) = µ̃(·) implying (X(·), f(X(·))) ∼ (X̃(·), f(X̃(·))). �

Given any measurable f define the continuity set of f to be

Cf = {x : f(xn)→ f(x) whenever xn → x}.

Lemma 5.0.6. Suppose Xr(·)⇒ X(·) and let f be a measurable, real valued function

such that P (X ∈ Cf ) = 1. Then

(Xr(·), f(Xr(·)))⇒ (X(·), f(X(·))).

Proof By the continuous mapping theorem we know f(Xr(·))⇒ f(X(·)). This

implies that (Xr(·), f(Xr(·))) is tight and so for some subsequence

(Xrk(·), f(Xrk(·)))⇒ (U(·), V (·))

where U(·) ∼ X(·), V (·) ∼ f(X(·)). For convenience sake, we drop subsequence
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notation in all that follows. By the Skorohod representation theorem, there is some

(Y r(·),W r(·)) ∼ (Xr(·), f(Xr(·))), (Y (·),W (·)) ∼ (U(·), V (·)) with

(Y r(·),W r(·))→ (Y (·),W (·)) almost surely.

By Lemma 5.0.4 we know W r(·) = f(Y r(·)) almost surely. In fact, we have

(Y r(·), f(Y r(·)))→ (Y (·),W (·)) almost surely.

This implies Y r(·)→ Y (·) and f(Y r(·))→ W (·), almost surely. Since

P (Y (·) ∈ Cf ) = P (X(·) ∈ Cf ) = 1,

it follows that f(Y r(·))→ f(Y (·)) almost surely. We can then conclude

(Y r(·), f(Y r(·)))→ (Y (·), f(Y (·))).

This implies (Y (·), f(Y (·))) ∼ (U(·), V (·)). By Lemma 5.0.4 we know

(U(·), V (·)) ∼ (U(·), f(U(·))).

Therefore we have

(Xr(·), f(X(·))r)⇒ (U(·), f(U(·))).

Since Xr(·)⇒ X(·) and U(·) ∼ X(·) it follows by Lemma 5.0.5 that
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(Xr(·), f(Xr(·)))⇒ (X(·), f(X(·))).

Since any convergent subsequence must behave in this manner, we conclude the entire

sequence converges jointly, as desired.�
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Chapter 6

Joint convergence of batch lengths
and start times

As in [9] our asymptotic assumptions imply that

Īr(·) =
1

r
Ir(r·)⇒ 0,

Ēr(·)⇒ α(·), and

Xr
g (·) =

1

r

rĒr(·)∑
i=1

g(vri )⇒ α(·)〈g, ν〉

for any fixed ν-a.s. continuous Borel measurable g : R+ → R that is both νr- and

ν-integrable (here α(t) = αt); see Lemma A.2 in [9]. In particular, if we define

Id(t) = t,

Xr
χ(·) =

1

r

rĒr(·)∑
i=1

vri ⇒ Id(·).

Let η > 0 and take M > 0 such that
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P (W0 < M) ≥ 1− η. (6.0.1)

Proposition 6.0.1. Suppose
(
µ̄r(0), 1

r
Br

0

)
⇒ (θ0,W0). For any fixed n ∈ N we have

the following joint convergence

(
µ̄r(0),

1

r
Br

0,
1

r
βr1 ,

1

r
Br

1,
1

r
βr2 ,

1

r
Br

2, · · · ,
1

r
βrn,

1

r
Br
n

)
⇒ (θ0,W0, 1W0,W0, 2W0,W0, · · · , nW0,W0).

It is well known that if ρr ↑ 1 then W̄ r(·) ⇒ W̄ (·) where W̄ (·) ≡ W (0). Since

W (0) ∼ W0 > 0 almost surely by assumption, it follows that for any η,M > 0 there

exists some ε > 0 such that

lim inf
r→∞

P

(
inf

t∈[0,M ]
W̄ r(t) > ε

)
≥ 1− η. (6.0.2)

Proof of Proposition 6.0.1 Notice that

1

r
βr1 =

1

r
Br

01{W̄ r( 1
r
Br0) 6=0} +

1

r
inf{s ≥ Br

0 : W̄ r(s) > 0}1{W̄ r( 1
r
Br0)=0}.

Let η > 0 be given. Since 1
r
Br

0 ⇒ W0 there exists some M0 > 0 such that if

Cr
0 =

{
1

r
Br

0 ≤M0

}
then
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lim inf
r→∞

P (Cr
0) ≥ 1− η.

By (6.0.2) we know there exists an ε > 0 such that if

Ar0 =

{
inf

t∈[0,2M0]
W̄ r(t) > ε

}
then

lim inf
r→∞

P (Ar0) ≥ 1− η.

It follows that on Ar0 ∩ Cr
0 , 1

r
βr1 = 1

r
Br

0 ≤M0 and for large enough r we have

P (Ar0 ∩ Cr
0) ≥ 1− 2η.

It follows from the fact that Īr(·)⇒ 0 that

Īr
(

1

r
βr1

)
1Ar0∩Cr0 ⇒ 0.

Since η > 0 was arbitrary, by Lemma 5.0.2

Īr
(

1

r
βr1

)
⇒ 0.

Since the first two components converge jointly by assumption and the remaining

components have deterministic limits, it follows that
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Y r
0 (·) =

(
µ̄r(0),

1

r
Br

0, X
r
g (·), Ēr(·), Īr(·), Xr

χ(·), Īr
(

1

r
βr1

))
⇒ (θ0,W0, α(·)〈g, ν〉, α(·), 0, Id(·), 0) = Y0(·).

So 1
r
βr1 = f1(Y r

0 (·)) where f1 :M× R×DR+(R+)4 × R→ R is defined by

f1((ν, x1, y1(·), y2(·), y3(·), y4(·), x2)) = x1 + x2.

This function is continuous. It follows by Lemma 5.0.6 that since f1(Y0(·)) = W0, we

have

(
Y r

0 (·), 1

r
βr1

)
⇒ (Y0(·),W0).

Recall

1

r
Br

1 =
1

r

rĒr
(
βr1
r

)∑
i=1

vri = Xr
χ

(
βr1
r

)
.

Define f2 : (M× R×DR+(R+)4 × R)× R→ R by

f2(((ν, x1, y1(·), y2(·), y3(·), y4(·), x2), x3)) = y4(x3).

Then 1
r
Br

1 = f2

((
Y r

0 ,
1
r
βr1
))

. Since f2 is continuous at points such that y4(·) is contin-

uous, and since Xr
χ(·) ⇒ Id(·),we have P ((Y0, 1W0) ∈ Cf2) = 1. So by Lemma 5.0.6

and Lemma 5.0.3, since f2((Y0(·),W0)) = W0,
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Y r
1 (·) =

(
Y r

0 (·), 1

r
βr1 ,

1

r
Br

1

)
⇒ (Y0(·),W0,W0) = Y1(·).

We now proceed by induction. Suppose that

Y r
n (·) =

(
Y r

1 (·), Īr
(

1

r
βr2

)
,
1

r
βr2 ,

1

r
Br

2, · · · , Īr
(

1

r
βrn

)
,
1

r
βrn,

1

r
Br
n

)
⇒ (Y1(·), 0, 2W0,W0, · · · , 0, nW0,W0) = Yn(·).

We aim to show

Y r
n+1(·) =

(
Y r

1 (·), Īr
(

1

r
βr2

)
,
1

r
βr2 ,

1

r
Br

2, · · · , Īr
(

1

r
βrn

)
,

1

r
βrn,

1

r
Br
n, Ī

r

(
1

r
βrn+1

)
,
1

r
βrn+1,

1

r
Br
n+1

)
⇒ (Y1(·), 0, 2W0,W0, · · · , 0, nW0,W0, 0, (n+ 1)W0,W0) = Yn+1(·).

Notice that

1

r
βrn+1 = (

βrn
r

+
Br
n

r
)1{W̄ r

(
βrn
r

+
Brn
r

)
6=0}+

1

r
inf{s ≥ βrn+Br

n : W̄ r(s) > 0}1{W̄ r(
βrn
r

+
Brn
r

)=0}.

Let η > 0 be given. Since 1
r
βrn ⇒ nW0 and 1

r
Br
n ⇒ W0 we know there exists some

Mn > 0 so that if Cr
n =

{
1
r
βrn + 1

r
Br
n ≤Mn

}
then

lim inf
r→∞

P (Cr
n) ≥ 1− η.

By (6.0.2) we know there exists an ε such that if
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Arn =

{
inf

t∈[0,2Mn]
W̄ r(t) > ε

}
then

lim inf
r→∞

P (Arn) ≥ 1− η.

It follows that on Arn ∩Cr
n, 1

r
βrn+1 = 1

r
βrn + 1

r
Br
n ≤Mn and for large enough r we have

P (Arn ∩ Cr
n) ≥ 1− 2η.

It follows from the fact that Īr(·)⇒ 0 that

Īr
(

1

r
βrn+1

)
1Arn∩Crn ⇒ 0.

Since η > 0 was arbitrary, by Lemma 5.0.2

Īr
(

1

r
βrn+1

)
⇒ 0.

Since the previous limit is deterministic, we have

(
Y r
n (·), Īr

(
1

r
βrn+1

))
⇒ (Yn(·), 0).

Since
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1

r
βrn+1 =

1

r
βrn +

1

r
Br
n + Īr

(
1

r
βrn+1

)
− Īr

(
1

r
βrn

)
= f2n−1

((
Y r
n (·), Īr

(
1

r
βrn+1

)))
,

where

f2n−1 :M× R×DR+(R+)4 × R× R× R× · · · × R→ R

is defined by

f2n−1((ν, x1, y1(·), y2(·), y3(·), y4(·), x2, x3, · · · , x3n−3, x3n−2, x3n−1))

= x3n−3 + x3n−2 + (x3n−1 − x3n−4).

Notice f2n−1 is continuous and since f2n−1 ((Yn, 0)) = (n+ 1)W0, it follows by Lemma

5.0.6 that

((
Y r
n (·), Īr

(
1

r
βrn+1

))
,
1

r
βrn+1

)
⇒ ((Yn(·), 0), (n+ 1)W0).

Notice also

1

r
Br
n+1 = Xr

χ

(
βrn+1

r

)
−

n∑
i=1

1

r
Br
i = f2n

((
Y r
n (·), Īr

(
1

r
βrn+1

)
,
1

r
βrn+1

))

where
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f2n :M× R×DR+(R+)4 × R× R× R× · · · × R→ R

is defined by

f2n((ν, x1, y1(·), y2(·), y3(·), y4(·), x2, x3, · · · , x3n−3, x3n−2, x3n−1, x3n))

= y4(x3n)−
n−1∑
i=1

x3i+1.

Since Xr
χ(·)⇒ Id(·), a continuous function and

f2n(((Yn(·), 0, (n+ 1)W0)) = W0

it follows by the continuity of f2n at points such that y4(·) is continuous and Lemmas

5.0.6 and 5.0.3 that

(
Y r
n (·), Īr

(
1

r
βrn+1

)
,
1

r
βrn+1,

1

r
Br
n+1

)
⇒ (Yn(·), 0, (n+ 1)W0,W0).

Ignoring extraneous terms, the desired convergence follows. �

Lemma 6.0.2. If

(θ′0,W
′
0, V1, V2, V3, V4, · · · , V2n−1, V2n)

∼ (θ0,W0, 1W0,W0, 2W0,W0, · · · , nW0,W0)
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then almost surely

(θ′0,W
′
0, V1, V2, V3, V4, · · · , V2n−1, V2n)

= (θ′0,W
′
0, 1W

′
0,W

′
0, 2W

′
0,W

′
0, · · · , nW ′

0,W
′
0).

Proof Let U0 = (θ0,W0). Notice that

((θ0,W0), 1W0,W0, 2W0,W0, · · ·nW0,W0) = (U0, f(U0))

where f :M× R → R2n : (x, y) 7→ (1y, y, 2y, y, · · · , ny, y). So the statement follows

immediately from Lemma 5.0.4. �
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Chapter 7

Tightness of the state descriptors

Recall `(t) = max{j : βj ≤ t}. Notice that for t = βrm/r,

µ̄r(t) = µ̄r1(t) (7.0.1)

since

`r(rt) = `r(βrm) = max{j : βrj ≤ βrm} = m,

and so

µ̄r2(t) =
1

r

Er(βrm)∑
j=Er(βrm)+1

δ+
Rj(t)

= 0.

Before we show that {µ̄r1(·)} and {µ̄r2(·)} are individually tight we prove the following

technical result.

Theorem 7.0.1. Given T, η, ε > 0, there exist δ,M, κ > 0 (without loss of generality

we take ε, κ < 1), and a sequence of events {Ωr} such that P (Ωr) ≥ 1− η and on Ωr

the following hold (provided r sufficiently large):
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1. `r(rT ) ≤
⌈
T
δ

⌉
2. supx∈R+

µ̄r1
(
βi
r

)
([x, x+ κ]) < ε

2
for any 0 ≤ i ≤

⌊
T
δ

⌋
3. ‖〈χ, µ̄r(t)〉 − 〈χ, µ̄r(0)‖T < ε

4. 〈χ, µ̄r(0)〉 ∨ 〈1, µ̄r(0)〉 < M

5. Ēr(t+ h)− Ēr(t) ≤ 2αh for all t, t+ h ∈ [0, T ]

6. Ēr(T ) ≤ 2αT

Lemma 7.0.2. Let T, η > 0 be given. There exists δ > 0 and R such that for r > R

there is Ωr
1 where P (Ωr

1) ≥ 1− η and on Ωr
1

`r(rT ) ≤
⌈
T

δ

⌉
.

Proof Take δ such that P (W0 > δ) ≥ 1 − η and denote Wδ = {W0 > δ}. By

Proposition 6.0.1 we know for any n

1

r
βrn ⇒ nW0.

In particular, take n =
⌈
T
δ

⌉
. On Wδ

⌈
T

δ

⌉
W0 >

T

δ
δ = T.

By the Portmanteau Theorem it follows that
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lim inf
r→∞

P

(
1

r
βrdTδ e > T

)
≥ P

(⌈
T

δ

⌉
W0 > T

)
≥ 1− η.

By definition of `r(rT ) it follows that

lim inf
r→∞

P

(
`r(rT ) ≤

⌈
T

δ

⌉)
≥ 1− η.

�

Lemma 7.0.3. Given T, δ > 0, for any 1 ≤ i ≤
⌈
T
δ

⌉
, µ̄r

(
βri
r

)
⇒ φ where for any

g ∈ Cb(R+)

〈g, φ〉 = αW0〈g, ν〉.

Proof Let g ∈ Cb(R+). We know from Proposition 6.0.1 that for any i we have

Zr
i (·) =

(
Xr
g (·), 1

r
βri−1,

1

r
βri

)
⇒ (α(·)〈g, ν〉, (i− 1)W0, iW0) = Zi(·).

Notice that

〈
g, µ̄r

(
1

r
βri

)〉
=

rĒr
(
βri
r

)∑
rĒr

(
βr
i−1
r

)
+1

g(vri ) = Xr
g

(
βri
r

)
−Xr

g

(
βri−1

r

)
.

So

〈
g, µ̄r

(
1

r
βri

)〉
= f

((
Xr
g (·), 1

r
βri−1,

1

r
βri

))
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where f : DR+(R)× R× R→ R is defined by

f((y(·), x1, x2)) = y(x2)− y(x1).

and is continuous at points (y(·), x1, x2) such that y(·) is continuous.

Therefore P (Zi(·) ∈ Cf ) = 1 and by the continuous mapping theorem, since f(Z(·)) =

αW0〈g, ν〉, it follows that

〈
g, µ̄r

(
1

r
βri

)〉
⇒ αW0〈g, ν〉.

Since this description holds for any g ∈ Cb(R+) we have for every i,

µ̄r
(

1

r
βri

)
⇒ φ.

�

Lemma 7.0.4. Let η, ε > 0 be given. Then there exists some κ̃ > 0 such that

P

(
sup
x∈R+

〈1[x,x+κ̃], θ0〉 < ε

)
≥ 1− η.

Proof This follows directly from the assumption that θ0 has no atoms. �

Lemma 7.0.5. Let ε, κ > 0 be given. Then

A = {θ ∈MF : sup
x∈R+

〈1[x,x+κ], θ〉 < ε}

is open.



64

Proof Consider a sequence {ζn} ⊂ MF such that ζn
w→ ζ ∈ A. Then

a = sup
x∈R+

〈1[x,x+κ], ζ〉 < ε (7.0.2)

Suppose that

lim sup
n→∞

sup
x∈R+

〈1[x,x+κ], ζn〉 ≥ ε. (7.0.3)

Then on a subsequence {k} ⊂ {n}, supx∈R+
〈1[x,x+κ], ζk〉 > b for b ∈ (a, ε) and all k.

So for each k, there exists xk such that 〈1[xk,xk+κ], ζk〉 > b. Since M < ∞ can be

chosen so that 〈1[M,∞), ζ〉 ≤ b/2 and so

lim sup
k→∞

〈1[M,∞), ζk〉 ≤ b/2

by the Portmanteau Theorem, all but finitely many xk must be bounded by M . So on

a further subsequence {j} ⊂ {k} xj → x. For each δ > 0, all but finitely many [xj, xj+

κ] are subsets of the interval Iδ = [x−δ, x+κ+δ], which implies lim infj→∞ ζj(I
δ) ≥ b.

By the Portmanteau Theorem since Iδ is closed, ζ(Iδ) ≥ lim infj→∞ ζj(I
δ) ≥ b. But

this implies ζ([x, x + κ]) = limδ→0 ζ(Iδ) ≥ b > a contradicting (7.0.2). We conclude

that (7.0.3) is false and thus

lim sup
n→∞

sup
x∈R+

〈1[x,x+κ], ζn〉 < ε

which implies that ζn ∈ A for sufficiently large n and A is open. �
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Lemma 7.0.6. Let T, δ, η, ε > 0 be given. Then there exists some κ > 0 and R such

that if r > R

P

(
sup
x∈R+

µ̄r1

(
βri
r

)
([x, x+ κ]) < ε

)
≥ 1− η

for any 0 ≤ i ≤
⌈
T
δ

⌉
.

Proof Recall µ̄r1

(
βri
r

)
= µ̄r

(
βri
r

)
. By Lemma 7.0.4 we know there exists some κ̃

such that

P ( sup
x∈R+

〈1[x,x+κ̃], θ0〉 < ε) ≥ 1− η.

Define

Ã = {ζ ∈MF : sup
x∈R+

〈1[x,x+κ̃], ζ〉 < ε}.

Then Ã is open by Lemma 7.0.5. Since µ̄r(0)⇒ θ0

lim inf
r→∞

P (µ̄r(0) ∈ A) ≥ P (θ0 ∈ A) ≥ 1− η.

We also know by Lemma 7.0.3 that for i ∈ Z≥1, µ̄
r
(
βri
r

)
⇒ φ where φ is non-atomic.

It follows that there exists some κ′ such that

P ( sup
x∈R+

〈1[x,x+κ′], φ〉 < ε) ≥ 1− η.

Define
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A′ = {ζ ∈MF : sup
x∈R+

〈1[x,x+κ′], ζ〉 < ε}.

Then A′ is open by Lemma 7.0.5. It follows that for each i,

lim inf
r→∞

P

(
µ̄r
(
βri
r

)
∈ A′

)
≥ P (φ ∈ A′) ≥ 1− η.

So for each i, there exists some Ri such that for r > Ri

µ̄r
(
βri
r

)
∈ A′.

Take κ = κ̃ ∧ κ′ and define R = max0≤i≤dTδ e . Then the desired result holds. �

Lemma 7.0.7. {〈χ, µ̄r1(·)+ µ̄r2(·)〉} converges in distribution to a process that is equal

to W0 a.s. for all time.

Proof Recall µ̄r(·) = µ̄r1(·) + µ̄r2(·) and using the definitions (3.1.2)-(3.1.6)

〈χ, µ̄r(·)〉 is the workload process W̄ r(·) defined in (3.1.1) which is the same process

for any single server queue operating under a work conserving service protocol. The

statement is thus the well-known result of our asymptotic assumptions in Definition

3.3.1. �

Lemma 7.0.8. Let T, ε, η > 0 be given. Then there exists some R such that if r > R

P

(
sup
t∈[0,T ]

|〈χ, µ̄r(t)〉 − 〈χ, µ̄r(0)〉| < ε

)
≥ 1− η.
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Proof This follows immediately since 〈χ, µ̄r(·)〉 converges in distribution to its

initial value. �

Lemma 7.0.9. Let η > 0 be given. Then there exists some M such that

lim inf
r→∞

P (〈1, µ̄r(0)〉 ∨ 〈χ, µ̄r(0)〉 < M) ≥ 1− η.

Proof This follows since (µ̄r(0), 〈χ, µ̄r(0)〉)⇒ (θ0, 〈χ, θ0〉) where E[〈1, θ0〉] <∞,

E[〈χ, θ0〉] <∞. �

Lemma 7.0.10. Let T > 0 and g ∈ Cb(R+) and let 0 < h ≤ T . Then

lim
r→∞

P

 sup
t∈[0,T−h]

1

r

rĒr(t+h)∑
i=rĒr(t)+1

g(vri ) ≤ 2αh〈g, ν〉

 = 1.

Proof Since g ∈ Cb(R+) we know 〈g, νr〉 → 〈g, ν〉. From the appendix of [9] we

have

Xr
g (·) =

1

r

rĒr(t)∑
i=1

g(vri )⇒ α(·)〈g, ν〉.

The statement follows. �

Corollary 7.0.11. Let T, η > 0 be given. Then for h ∈ [0, T ] there exists some R

such that if r > R

P

(
sup

t∈[0,T−h]

Ēr(t+ h)− Ēr(t) ≤ 2αh

)
≥ 1− η.
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In particular using h = T ,

P (Ēr(T ) ≤ 2αT ) ≥ 1− η.

Proof This follows immediately by applying Lemma 7.0.10 with g ≡ 1. �

Proof of Theorem 7.0.1 We make the following definitions:

1. Ωr
1 =

{
`r(rT ) ≤

⌈
T
δ

⌉}
2. Ωr

2 =
{

supx∈R+
〈1[x,x+κ], θ0〉 < ε

2

}
3. Ωr

3 =
{

supx∈R+
µ̄r
(
βri
r

)
([x, x+ κ]) < ε

2
, 0 ≤ i ≤

⌈
T
δ

⌉}
4. Ωr

4 =
{

supt∈[0,T ] |〈χ, µ̄r(t)〉 − 〈χ, µ̄r(0)〉| < ε
}

5. Ωr
5 = {〈1, µ̄r(0)〉 ∨ 〈χ, µ̄r(0)〉 < M}

6. Ωr
6 =

{
supt∈[0,T−h] Ē

r(t+ h)− Ēr(t) ≤ 2αh
}

7. Ωr
7 = {Ēr(T ) ≤ 2αT}

Let Ωr = ∩7
i=1Ωr

i . By the proceeding lemmas given T, η, ε > 0, we may pick δ, κ,M,

and R, in that order, such that if r > R we have

lim inf
r→∞

P (Ωr) ≥ 1− η.

�
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Equipped with the above result, we now show that {µ̄1(·)} and {µ̄r2(·)} are individually

tight. Recall that

d[µ, ν] = inf{ε > 0 : µ(B) ≤ ν(Bε) + ε, ν(B) ≤ µ(Bε) + ε for all closed B ⊂ R+}.

To show tightness, it is sufficient to verify the following two conditions

1. For every η > 0 and T > 0 there is a compact set Γη,T ⊂MF such that

lim inf
r→∞

P (µ̄r1(t) ∈ Γη,T for 0 ≤ t ≤ T ) ≥ 1− η.

2. For every η > 0 and T > 0 there exists some γ > 0 such that

lim sup
r→∞

P (w′(µ̄r1(t), γ, T ) ≥ η) ≤ η

where

w′(µ̄r1, γ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

d[µ̄r1(s), µ̄r1(t)]

and {ti} are partitions of [0, T ] with ti − ti−1 > γ, 0 = t0, and tn = T .

Theorem 7.0.12. The sequence {µ̄r1(·)} is tight in D = D([0,∞),MF ).

Proof We begin by verifying property 2 above. Fix ε, η, T and let δ, κ,M and

Ωr be given by Theorem 7.0.1. For each r consider a partition {tri} of [0, T ] such that
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βrj
r

= tri for some i, 0 ≤ j ≤ `(rT ). We also require that ti − ti−1 <
κε2

2
for all i. We

can set γ = mini |ti−ti−1|
2

. Let B ⊂ R+ be closed. Given any t < s ∈ [ti−1, ti)

µ̄r1(t)(B) ≤ µ̄r1(t)([0, κ]) + µ̄r1(t)(B ∩ (κ,∞))

≤ µ̄r1

(
β`(rt)
r

)
([S̄rβr

`r(rt)
/r,t, S̄

r
βr
`r(rt)

/r,t + κ]) + µ̄r1(t)(B ∩ (κ,∞))

≤ sup
x∈R+

〈
1[x,x+κ], µ̄

r
1

(
βr`r(rt)
r

)〉
+ µ̄r1(t)(B ∩ (κ,∞))

≤ ε

2
+ µ̄r1(t)(B ∩ (κ,∞)),

where we have used (3.1.2)-(3.1.6).

Let I = {u ∈ [t, s] : 〈1, µ̄r1(u)〉 < ε/2}. Suppose I = ∅. Then 〈1, µ̄r1(u)〉 ≥ ε/2 on

[t, s]. So

S̄rt,s =

∫ s

t

1

〈1, µ̄r1(u)〉
du ≤ (s− t)

ε/2
≤ 2(ti − ti−1)

ε
<
κε2

ε
= κε < κ ∧ ε.

If x ∈ B ∩ (κ,∞) then x− S̄rt,s ∈ Bε, so

µ̄r1(t)(B ∩ (κ,∞)) ≤ µ̄r1(t)(Bε + S̄rt,s) = µ̄r1(s)(Bε).

In this case, we have

µ̄r1(t)(B) ≤ ε+ µ̄r1(s)(Bε).
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If on the other hand I 6= ∅, let τ = inf I. So 〈1, µ̄r1(τ)〉 ≤ ε/2 by right continuity. If

τ = t, then

µ̄r1(t)(B) ≤ 〈1, µ̄r1(t)〉 ≤ ε

2
.

If τ > t then 〈1, µ̄r1(u)〉 ≥ ε/2 for all u ∈ [t, τ). So

S̄rt,τ =

∫ τ

t

1

〈1, µ̄r1(u)〉
du <

τ − t
ε/2

≤ 2(ti − ti−1)

ε
<
κε2

ε
= κε < ε ∧ κ.

Since

µ̄r1(t)(B ∩ (κ,∞)) ≤ µ̄r1(t)(B ∩ (S̄rt,τ ,∞))

≤ µ̄r1(t)((S̄rt,τ ,∞))

= µ̄r1(τ)(R+)

= 〈1, µ̄r(τ)〉 ≤ ε

2
.

In this case we have

µ̄r1(t)(B) ≤ ε

2
+
ε

2
≤ ε+ µ̄r1(s)(Bε).

So in each case we have the desired inequality and it remains to show the symmetric

inequality. Again let I = {u ∈ [t, s] : 〈1, µ̄r1(u)〉 < ε/2}. Suppose I = ∅. Then on [t, s]

we have 〈1, µ̄r1(u)〉 ≥ ε/2. Exactly as before, we find S̄rt,s < κ∧ε < ε. Let x ∈ B+ S̄rt,s,

then there exists some y ∈ B such that x = y + S̄rt,s < y + ε, so x ∈ Bε. So if I = ∅
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µ̄r1(s)(B) = µ̄r1(t)(B + S̄rt,s) ≤ µ̄r1(t)(Bε) + ε.

Now suppose I 6= ∅. Again, as before, let τ = inf I. Then

µ̄r1(s)(B) = µ̄r1(τ)(B + S̄rτ,s) ≤ µ̄r1(τ)(R+) = 〈1, µ̄r1(τ)〉 ≤ ε

2
.

Therefore if I 6= ∅

µ̄r1(s)(B) ≤ ε

2
≤ µ̄r1(t)(Bε) + ε.

By definition it follows that d[µ̄r1(s), µ̄r1(t)] ≤ ε on Ωr. Therefore w′(µ̄r1, δ, T ) ≤ ε on

Ωr. Since P (Ωr) ≥ 1− η, condition 2 is satisfied.

To show tightness of {µ̄r1(·)} it remains to show the compact containment condition.

Define

M ′ = (M + 2αT ) ∨ (M + ε)

and let

C = {ζ ∈MF : (〈1, ζ〉 ∨ 〈χ, ζ〉 ≤M ′}.

Notice that on Ωr, µ̄r1(·) ∈ C for 0 ≤ t ≤ T because
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〈1, µ̄r1(t)〉 ≤ 〈1, µ̄r1(0)〉+ Ēr(T )

≤M + 2αT

and

〈χ, µ̄r1(t)〉 ≤ 〈χ, µ̄r1(0)〉+ ε

≤M + ε.

Notice that C is pre-compact since

M ′ ≥ 〈χ, ζ〉

= 〈χ1[0,K), ζ〉+ 〈χ1[K,∞), ζ〉

≥ 〈χ1[K,∞), ζ〉

≥ K〈1[K,∞), ζ〉.

This implies that

〈1[K,∞), ζ〉 ≤
M ′

K
→ 0

as K tends to infinity. Therefore we have

sup
ζ∈C
〈1[K,∞), ζ〉 → 0
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and supζ∈C ζ(R+) ≤M ′ <∞. Therefore

lim inf
r→∞

P (µ̄r1(·) ∈ C) ≥ 1− η

and {µ̄r1(·)} is tight. �

Theorem 7.0.13. The sequence {µ̄r2(·)} is tight in D = D([0,∞),MF ).

Proof Again it suffices to verify conditions 1 and 2 as stated in Theorem 7.0.12.

We begin by verifying that 2 holds. Take Ωr as previously defined. For each r consider

a partition {tri} such that
βrj
r

= tri for some i, 0 ≤ j ≤ `(rT ) and ti − ti−1 <
ε

2α
for all

i. We can take γ = mini |ti−ti−1|
2

. Let B ⊂ R+ be closed. Given t < s ∈ [ti−1, ti) we

immediately have

µ̄r2(t)(B) ≤ µ̄r2(s)(B) ≤ µ̄r2(s)(Bε) + ε.

We now consider the symmetric inequality.
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µ̄r2(s)(B) ≤ µ̄r2(t)(B) + µ̄r2(s)(R+)− µ̄r2(t)(R+)

= µ̄r2(t)(B) + Ēr(s)− Ēr(t)

≤ µ̄r2(t)(B) + 2α(s− t)

≤ µ̄r2(t)(B) + 2α(ti − ti−1)

≤ µ̄r2(t)(B) + 2α
ε

2α

≤ µ̄r2(t)(B) + ε

≤ µ̄r2(t)(Bε) + ε.

Therefore we have d[µ̄r2(s), µ̄r2(t)] ≤ ε on Ωr and it follows that w′(µ̄r2, γ, T ) ≤ ε on Ωr.

Since P (Ωr) ≥ 1− η, condition 2 is satisfied. To show tightness of {µ̄r2(·)} it remains

to show the compact containment. Take

M ′ = 2αT ∨ (M + ε)

and define

C = {ζ ∈MF : 〈1, ζ〉 ∨ 〈χ, ζ〉 ≤M ′}.

Notice that on Ωr, µ̄r2(·) ∈ C for 0 ≤ t ≤ T because

〈1, µ̄r2(t)〉 ≤ Ēr(T ) ≤ 2αT, and
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〈χ, µ̄r2(t)〉 ≤ 〈χ, µ̄r(t)〉 ≤ 〈χ, µ̄r(0)〉+ ε < M + ε.

By the same argument presented in Theorem 7.0.12, C is relatively compact. There-

fore

lim inf P (µ̄r2(·) ∈ C) ≥ 1− η

and {µ̄r2(·)} is tight. �

Corollary 7.0.14. The sequence {(µ̄r1(·), µ̄r2(·))} is jointly tight on D × D equipped

with the product topology.
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Chapter 8

Dynamic equation for 〈g, µ̄r1(t)〉 and
〈g, µ̄r2(t)〉

Let

C̃ = {g ∈ C : supp(g′) ⊂ K for some compact setK}.

Lemma 8.0.1. Let g ∈ C and t ≥ 0 be fixed. If

mr = sup

{
〈1, µ̄r1(s)〉−1 :

1

r
βr`r(rt) ≤ s ≤ t

}
<∞,

then

〈g, µ̄r1(t)〉 = 〈g, µ̄r1(0)〉1{`r(rt)=0}

+

(
Xr
g

(
1

r
βr`r(rt)

)
−Xr

g

(
1

r
βr`r(rt)−1

))
1{`r(rt)>0} −

∫ t

β`r(rt)/r

〈g′, µ̄r1(s)〉
〈1, µ̄r1(s)〉

ds,

(8.0.1)

and

〈g, µ̄r2(t)〉 = Xr
g (t)−Xr

g

(
1

r
βr`r(rt)

)
. (8.0.2)
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Proof We first consider g ∈ C̃. For any n = 1, 2, ... and j = 0, 1, ..., n− 1 define

trj =
β`r(rt)
r

+
j
(
t−

βr
`r(rt)

r

)
n

, and tj,r = trj+1.

Then we have

〈g, µ̄r1(t)〉 −
〈
g, µ̄r1

(
β`r(rt)
r

)〉
=

n−1∑
j=0

(
〈g, µ̄r1(tj,r)〉 − 〈g, µ̄r1(trj)〉

)
=

n−1∑
j=0

(
〈g(· − S̄rtrj ,tj,r), µ̄

r
1(trj)〉 − 〈g, µ̄r1(trj)〉

)
=

n−1∑
j=0

〈g(· − S̄rtrj ,tj,r)− g, µ̄
r
1(trj)〉. (8.0.3)

For each j = 0, 1, ..., n− 1 and each x ∈ R+

g(x− S̄rtrj ,tj,r)− g(x) = g′(wx,rj )hrj

where hrj = −S̄rtjr ,tj,r and wx,rj ∈ R is in the interval [x− S̄rtrj ,tj,r , x]. Note that

max
j<n
|hrj | = max

j<n
|S̄rtrj ,tj,r | ≤

t

n
‖〈1, µ̄r(·)〉−1‖[ 1

r
βr
`r(rt)

,t
] =

t

n
mr.

In our application in Chapter 9, we can ensure mr <∞ by taking r large enough be-

cause the system is asymptotically critical and so idleness converges to zero. For each

j ∈ {0, 1, ..., n− 1}, let zrj = sups∈[trj ,t
j,r]〈1, µ̄r1(s)〉−1 and define h̃rj = −zrj

(
t−

βr
`r(rt)
r

n

)
.

Then
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n−1∑
j=0

|hrj − h̃rj | =
n−1∑
j=0

∣∣∣∣∣zrj
(
t−

βr
`r(rt)

r

n

)
− S̄rtrj ,tj,r

∣∣∣∣∣
=

n−1∑
j=0

(
zrj

(
t−

βr
`r(rt)

r

n

)
− S̄rtrj ,tj,r

)

=
n−1∑
j=0

(
zrj

(
t−

βr
`r(rt)

r

n

))
− S̄rβr

`r(rt)
r

,t
.

For each n = 1, 2, ... and s ∈
[

1
r
βr`r(rt), t

)
let knr (s) =

∑n−1
j=0 z

r
j1[trj ,t

r,j)(s) and define

kn(t) = 0. Then

∣∣∣∣∣
n−1∑
j=0

〈g(· − S̄rtrj ,tj,r)− g(·), µ̄r1(trj)〉 −
n−1∑
j=0

〈g′(·)h̃rj , µ̄r1(trj)〉

∣∣∣∣∣
≤

n−1∑
j=0

sup
x∈R+

|g(x− S̄rtrj ,tj,r)− g(x)− g′(x)h̃rj |〈1, µ̄r1(trj)〉

=
n−1∑
j=0

sup
x∈R+

|g′(wx,rj )hrj − g′(x)h̃rj |〈1, µ̄r1(trj)〉

≤‖〈1, µ̄r1(·)〉‖[ 1
r
βr
`r(rt)

,t
] n−1∑
j=0

sup
x∈R+

(
|g′(wx,rj )− g′(x)|

)
|hrj |+ |g′(x)||hrj − h̃rj |

≤M r

(
nψg

(
tmr

n

)
tmr

n
+ ‖g′‖∞

n−1∑
j=0

(
zrj

(
t−

βr
`r(rt)

r

n

))
− S̄rβr

`r(rt)
r

,t

)

where M r = ‖〈1, µ̄r1(·)‖[ 1
r
βr
`r(rt)

,t
] and ψg is a continuous nondecreasing function with

ψg(0) = 0 and

sup
x∈R+

‖g′(x+ h)− g′(x)‖ ≤ ψg(|h|)

which exists since g′ ∈ C̃ is uniformly continuous. Notice that
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n−1∑
j=0

(
zrj

(
t−

βr
`r(rt)

r

n

))
=

∫ t

βr
`r(rt)/r

kn(s)ds, and

S̄rβr
`r(rt)
r

,t
=

∫ t

βr
`r(rt)/r

〈1, µ̄r1(s)〉−1ds.

So we have

M r

(
nψg

(
tmr

n

)
tmr

n
+ ‖g′‖∞

n−1∑
j=0

(
zrj

(
t−

βr
`r(rt)

r

n

))
− S̄rβr

`r(rt)
r

,t

)

=M r

(
ψg

(
tmr

n

)
tmr + ‖g′‖∞

(∫ t

βr
`r(rt)/r

kn(s)ds−
∫ t

βr
`r(rt)/r

〈1, µ̄r1(s)〉−1ds

))
.

Notice that

lim
n→∞

M r

(
ψg

(
tmr

n

)
tmr + ‖g′‖∞

(∫ t

βr
`r(rt)/r

kn(s)ds−
∫ t

βr
`r(rt)/r

〈1, µ̄r1(s)〉−1ds

))
= 0.

It follows that

lim
n→∞

n−1∑
j=0

〈g(· − S̄rtrj ,tj,r)− g(·), µ̄r1(trj)〉 = lim
n→∞

n−1∑
j=0

〈g′(·)h̃rj , µ̄r1(trj)〉.

Since
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lim
n→∞

n−1∑
j=0

〈g′(·)h̃rj , µ̄r1(trj)〉

= lim
n→∞

−
n−1∑
j=0

〈g′, µ̄r1(trj)〉zrj

(
t−

βr
`r(rt)

r

n

)

=−
∫ t

βr
`r(rt)/r

〈g′, µ̄r1(s)〉
〈1, µ̄r1(s)〉

ds,

we have

〈g, µ̄r1(t)〉 =

〈
g, µ̄r1

(
βr`r(rt)
r

)〉
−
∫ t

βr
`r(rt)/r

〈g′, µ̄r1(s)〉
〈1, µ̄r1(s)〉

ds.

Since a new batch has started at βr`r(rt), if `r(rt) > 0, the jobs present at this time are

any jobs that arrived after the start of the `r(rt)−1st batch, which began at βr`r(rt)−1.

In this case, we may write the following expression

〈
g, µ̄r1

(
β`r(rt)
r

)〉
=

1

r

rĒr( 1
r
βr
`r(rt))∑

i=rĒr
(

1
r
βr
`r(rt)−1

)
+1

g(vri )

= Xr
g

(
1

r
βr`r(rt)

)
−Xr

g

(
1

r
βr`r(rt)−1

)
.

Therefore, we have

〈g, µ̄r1(t)〉 = 〈g, µ̄r1(0)〉1{`r(rt)=0}+(
Xr
g

(
1

r
βr`r(rt)

)
−Xr

g

(
1

r
βr`r(rt)−1

))
1{`r(rt)>0} −

∫ t

β`r(rt)/r

〈g′, µ̄r1(s)〉
〈1, µ̄r1(s)〉

ds.
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The extension from g ∈ C̃ to g ∈ C follows in the same way as in the proof of

Property (3) on p. 855 in [9].

For µ̄r2(·), note that since

µ2(t) =

E(t)∑
i=E(β`(t))+1

δvi ,

for any g ∈ C, we can express

〈g, µ̄r2(t)〉 =

rĒr(t)∑
i=rĒr

(
1
r
βr
`r(rt)

)
+1

g(vri ) = Xr
g (t)−Xr

g

(
1

r
βr`r(rt)

)
.

for all t ≥ 0. �
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Chapter 9

Convergence to fluid limit solutions

In this chapter we complete the proof of our limit theorem. Since {(µ̄r1(·), µ̄r2(·))} is

tight, it has a subsequence converging to some limit (θ1(·), θ2(·)), which we now show

is almost surely a fluid model solution for α, ν, θ0. By Theorem 4.0.1, the limit is

thus unique and Theorem 3.3.2 is proved. To ease notation we index the subsequence

by r. Let T, η > 0 be given and let g ∈ C. We will show that (θ1(·), θ2(·)) satisfies

Definition 3.2.1 for all t ∈ [0, T ] with probability at least 1 − η. To that end, take

n =
⌈
T
δ

⌉
where P (W0 > δ) ≥ 1− η. Then by Proposition 6.0.1,

{(
µ̄r(0), Xr

g (·), 1

r
Br

0,
1

r
βr1 ,

1

r
Br

1,
1

r
βr2 ,

1

r
Br

2, · · · ,
1

r
βrn,

1

r
Br
n, µ̄

r
1(·), µ̄r2(·)

)}
are jointly tight. So by passing to a further subsequence if necessary,

V r
n (·) =

(
µ̄r(0), Xr

g (·), 1

r
Br

0,
1

r
βr1 ,

1

r
Br

1,
1

r
βr2 ,

1

r
Br

2,

· · · , 1

r
βrn,

1

r
Br
n, µ̄

r
1(·), µ̄r2(·)

)
⇒ (θ0, α(·)〈g, ν〉,W0, 1W0,W0, 2W0,W0, · · · , nW0,W0, θ2(·), θ2(·)) = Vn(·).
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By the Skorohod representation theorem there exist

Ṽ r
n (·) =

(
˜̄µr(0), X̃r

g (·), 1

r
B̃r

0,
1

r
β̃r1 ,

1

r
B̃r

1,
1

r
β̃r2 ,

1

r
B̃r

2, · · · ,
1

r
β̃rn,

1

r
B̃r
n, ˜̄µr1(·), ˜̄µr2(·)

)
such that Ṽ r

n (·) ∼ V r
n (·) and

Ṽ (·) = (θ̃(0), α(·)〈g, ν〉, W̃0, 1W̃0, W̃0, 2W̃0, W̃0, · · · , nW̃0, W̃0, θ̃1(·), θ̃2(·))

such that Ṽ (·) ∼ V (·), defined on a common probability space such that almost

surely,

(
˜̄µr(0), X̃r

g (·), 1

r
B̃r

0,
1

r
β̃r1 ,

1

r
B̃r

1,
1

r
β̃r2 ,

1

r
B̃r

2, · · · ,
1

r
β̃rn,

1

r
B̃r
n, ˜̄µr1(·), ˜̄µr2(·)

)
→ (θ̃0, α(·)〈g, ν〉, W̃0, 1W̃0, W̃0, 2W̃0, W̃0, · · · , nW̃0, W̃0, θ̃1(·), θ̃2(·)).

Note that Ṽ (·) has the specified form in terms of a common random variable W̃0 by

Lemma 6.0.2. Let Ω denote the event where the above convergence holds.

Define ˜̀r(rt) = max{j : β̃rj ≤ rt}. By Theorem 7.0.1, P
(
`r(rt) ≤

⌈
T
δ

⌉)
≥ 1 − η

for all r. This implies that on this event, for all t ∈ [0, T ]

1

r
βr`r(rt) = max

{
1

r
βrj :

1

r
βrj ≤ t, j = 1, · · · , n

}
= sup{s ≤ t : µ̄r1(s−) < µ̄r1(s)}
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and so 1
r
βr`r(rt) is a function of V r

n (·) such that (8.0.1) and (8.0.2) hold. Consequently

there is an event W̃δ with P (W̃δ) ≥ 1− η on which for all t ∈ [0, T ]

1

r
β̃r˜̀r(rt) = max

j=1,··· ,n

{
1

r
β̃rj :

1

r
β̃rj ≤ t

}
= sup{s ≤ t : ˜̄µr1(s−) < ˜̄µr1(s)}

is the same function of Ṽ r
n (·) and (8.0.1) and (8.0.2) hold for ˜̄µr1(·). That is

〈g, ˜̄µr2(t)〉 = X̃r
g (t)− X̃r

g

(
β̃r˜̀r(rt)
r

)
, (9.0.1)

and

〈g, ˜̄µr1(t)〉 = 〈g, ˜̄µr1(0)〉1{˜̀r(rt)=0}+(
X̃r
g

(
1

r
β̃r˜̀r(rt)

)
− X̃r

g

(
1

r
β̃r˜̀r(rt)−1

))
1{˜̀r(rt)>0} −

∫ t

β̃˜̀r(rt)/r

〈g′, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

ds.

It suffices to show that (θ̃1(·), θ̃2(·)) satisfy (3.2.1) and (3.2.2) on Ω ∩ W̃δ for all

t ∈ [0, T ].

Theorem 9.0.1. On Ω ∩ W̃δ for all t ∈ [0, T ]

〈g, θ̃1(t)〉 = 〈g, θ̃0〉1{bt/W̃0c=0} + αW̃0〈g, ν〉1{bt/W̃0c>0} −
∫ t

bt/W̃0cW̃0

〈g′, θ̃1(s)〉
〈1, θ̃1(s)〉

ds (9.0.2)

and

〈g, θ̃2(t)〉 = α

(
t−
⌊
t

W̃0

⌋
W̃0

)
〈g, ν〉. (9.0.3)
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Proof Fix some ω ∈ Ω∩ W̃δ. Since ˜̄µr1(·)→ θ̃1(·) in J1, there exist λr(·)→ Id(·)

uniformly on compact sets such that ˜̄µr1(λr(·)) → θ̃1(·) uniformly on compact sets.

We first restrict to times that are not integer multiples of W̃0. For each r, and

t ∈ [0, T ]\W̃0Z,

〈g, ˜̄µr1(λr(t))〉 = 〈g, ˜̄µr1(0)〉1{˜̀r(rλr(t))=0}+(
X̃r
g

(
1

r
β̃r˜̀r(rλr(t))

)
− X̃r

g

(
1

r
β̃r˜̀r(rλr(t))−1

))
1{˜̀r(rλr(t))>0} −

∫ λr(t)

β̃˜̀r(rλr(t))/r

〈g′, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

ds.

Take the limit of both sides as r →∞. The left hand side becomes

lim
r→∞
〈g, ˜̄µr1(λr(t))〉 = 〈g, θ̃1(t)〉,

and the right hand side converges to

〈g, θ̃0〉1{bt/W̃0c=0} +

(
α

⌊
t

W̃0

⌋
W̃0〈g, ν〉 − α

(⌊
t

W̃0

⌋
− 1

)
W̃0〈g, ν〉

)
1{bt/W̃0c>0}

− lim
r→∞

∫
〈g′, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

1{ β̃`r(rλr(t))
r

≤s≤λr(t)
}ds.

To see this, note that λr(t)→ t, so for sufficiently large r, since t ∈ W̃0Z,

1

r
β̃r˜̀r(rλr(t)) = max

{
1

r
β̃rj :

1

r
β̃rj ≤ λr(t)

}
= max

{
1

r
β̃rj :

1

r
β̃rj ≤ t

}
→ max{jW̃0 : jW̃0 ≤ t} =

⌊
t

W̃0

⌋
W̃0.

Notice
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∣∣∣∣∣〈g′, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

1{ β̃r`r(rλr(t))
r

≤s≤λr(t)
}
∣∣∣∣∣ ≤ ‖g′‖∞

∣∣∣∣〈1, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

1{0≤s≤T}

∣∣∣∣ ∈ L1(R).

By the dominated convergence theorem we have

lim
r→∞

∫
〈g′, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

1{ β̃r`r(rλr(t))
r

≤s≤λr(t)
}ds

=

∫
lim
r→∞

〈g′, ˜̄µr1(s)〉
〈1, ˜̄µr1(s)〉

1{ β̃r`r(rλr(t))
r

≤s≤λr(t)
}ds

=

∫ t

bt/W̃0cW̃0

〈g′, θ̃1(s)〉
〈1, θ̃1(s)〉

ds.

It follows that

〈g, θ̃1(t)〉 = 〈g, θ̃0〉1{bt/W̃0c=0} + αW̃0〈g, ν〉1{bt/W̃0c>0} −
∫ t

bt/W̃0cW̃0

〈g′, θ̃1(s)〉
〈1, θ̃1(s)〉

ds.

It remains to show (3.2.2) for the growing measure. Since ˜̄µr2(·) → θ̃2(·) in J1,

there exists λr(·) → Id(·) uniformly on compact sets such that ˜̄µr2(λr(·)) → θ̃2(·)

uniformly on compact sets. For t ∈ [0, T ]\W̃0Z, and using (9.0.1) at the time λr(t),

we see that

lim
r→∞
〈g, ˜̄µr2(λr(t))〉 = 〈g, θ̃2(t)〉,
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and for the right hand side,

lim
r→∞

(
X̃r
g (λr(t))− X̃r

g

(
β̃r˜̀r(rλr(t))

r

))
= αt〈g, ν〉 − α

⌊
t

W̃0

⌋
W̃0〈g, ν〉,

using the same reasoning as above to conclude that 1
r
β̃r˜̀r(rλr(t)) →

⌊
t
W̃0

⌋
W̃0.

Therefore we have

〈g, θ̃2(t)〉 = αt〈g, ν〉 − α
⌊
t

W̃0

⌋
W̃0〈g, ν〉.

It remains to extend the result to all t ∈ [0, T ]. But this follows immediately from

the fact that θ̃1(·) and θ̃2(·) are elements of D and thus are right-continuous. Indeed

if t = jW̃0 then taking tn ↓ t in (9.0.2) and (9.0.3) completes the proof. �
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