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ABSTRACT 

 The National Bridge Inventory (NBI) was created in 1972, and stores all the information 

collected from these inspections.  It is the largest collection of bridge data in the world and 

contains detailed information on more than 600,000 United States highway bridges and large 

culverts.  Pontis is a bridge management system and product of the American Association of 

State Highway and Transportation Officials (AASHTO).  Pontis has the capability of storing and 

analyzing bridge inspection and inventory data, recommending optimal preservation policies, 

predicting needs and performance measures for bridges, and developing projects to include in an 

agency’s capital plan. 

Previously, there has been little analysis performed on the VDOT Pontis and NBI from 

the perspective of data mining; therefore, the objectives of this study are to consolidate and 

compile multiple bridge data sets, and to discover previously unknown patterns and trends in the 

data using data mining and classification methods.  The scope of the study includes the 

application of six classification methods on bridge inspection data to determine when certain 

bridge types will become structurally deficient.  Bridge attributes studied include age, average 

daily traffic (ADT), truck percentage, district, element condition state, and presence of smart flag 

elements, and the significance of each is discussed. 

Overall, classification methods produced strong results as classifiers of structural 

deficiency of bridges.  The comparison of each classification method using the Orange data 

mining software is conducted and descriptions and performance of bridges in Virginia have been 

investigated and are presented in the following sections. 
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INTRODUCTION 

This introduction is divided into three sections.  The first section, Project Development, 

describes how this study came about, the databases utilized throughout this study, and how the 

advisory groups were formed as a result of various internal forces in the Virginia Department of 

Transportation (VDOT).  The second section, Motivation, presents the incentive behind 

investigating statistical classification methods to provide an improved forecasting capability for 

bridge management systems.  The final section, Scope and Summary, outlines the mining 

process and its results. 

Project Development 

 As a result of political and public demands for improved bridge management and 

inspection practices, the National Bridge Inventory (NBI) and Pontis databases were created in 

1972 and 1991, respectively.  The use of these databases has allowed the Federal Highway 

Administration (FHWA) to manage the National Bridge Program and provided them the ability 

to prioritize and allocate funds based on bridge condition.  This project performs data mining 

utilizing various classification methods on these databases to discover trends in bridge 

performance across the state of Virginia. 

 The NBI utilizes general condition ratings (GCR) to describe the condition of 5 major 

bridge components: superstructures, substructures, decks, channels, and culverts.  Inspectors are 

required to give an average rating that provides an overall indication of the general condition of 

the entire component based on the National Bridge Inspection Standards (NBIS).  The Pontis 

database breaks down these components further into elements such as steel open girder – painted 

(element 107) and reinforced concrete pier wall (element 210); a full list of the elements is 
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available in Appendix A.  Pontis stores condition states for each quantity (each, square feet, 

linear feet) of the elements that comprise a bridge. 

 Knowledge Discovery in Databases (KDD) is an idea developed by John Tukey where he 

states, “exploratory data analysis can never be the whole story, but nothing else can serve as the 

foundation—as the first step” (Tukey, 1977).  The methods of KDD, specifically exploratory 

data mining, and classification methods are predicated on the fact that the user does not 

necessarily know what the data will tell him/her when beginning the analysis.  Therefore, this 

project reduced the raw Pontis database and NBI database into useable tables to investigate 

existing trends in bridge performance. 

A Bridge Information Systems Laboratory was created to perform research utilizing 

exploratory data analysis on legacy bridge data in Virginia.  This research includes the research 

performed and completed by Jamie Johnston, a former Master’s student at the University of 

Virginia.  The VDOT Technical Advisory Group (TAG) which helps direct the research 

undertaken by the laboratory include Mr. Adam Matteo, Mr. Jeffrey Milton, Mr. Rex Pearce, Dr. 

Michael Brown, and Mr. Prasad Nallapaneni.  Mr. Todd Springer joined the group in 2014 when 

he replaced Mr. Nallapaneni. 

Motivation 

 This special study was undertaken by the Virginia Center for Transportation Innovation 

and Research in Charlottesville, Virginia at the request of the VDOT.  The lack of a strong bridge 

maintenance management system in the state of Virginia has been the driving force for this study, 

and these models were desired and developed to provide statistical support for a planned 

proposal of a new Interstate bridge maintenance initiative.  The objectives of this special study 



3 
 

were to provide technically sound and statistically valid models to determine the best method for 

structural integrity classification of Virginia’s Interstate bridges. 

With previous development of Markov chain and logarithmic regression models to 

predict deterioration, VDOT’s need for further investigation of bridges’ structural integrity was 

improved.  Specifically, VDOT desired the ability to predict when bridges would likely become 

structurally deficient.  A structurally deficient bridge has a deck, superstructure, or substructure 

GCR of 4 or less.  Classification methods, a set of data mining techniques, were utilized in this 

study to determine the best method for forecasting when a bridge will become structurally 

deficient.  They were chosen in order to provide the Department, or anyone, with a statistically 

significant and easy to understand means of predicting structural deficiency.  A number of 

different classification methods were applied and produced results on bridge data sets derived 

from the VDOT Pontis and NBI databases. 

Scope and Summary 

This project focused on the application of various classification methods and on bridge 

data in the state of Virginia.  The project began with a review of exploratory data mining 

literature and its application (if any) with bridge inspection data, followed by an evaluation and 

assessment of previously performed deterioration modeling.  Next, the selection and application 

was conducted of classifications methods that were suitable for the requests made by VDOT.  

Finally, the performance of the different classification methods were evaluated using multiple 

performance metrics and ultimately one method was chosen as the best classification method to 

predict bridge structural deficiency. 
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BACKGROUND 

Summary of NBI and NBIS 

The NBIS were created in the early 1970s in response to the 1967 failure of the Silver 

Bridge between West Virginia and Ohio that resulted in the deaths of 46 people (National 

Transportation Safety Board, 1970).  Since, the FHWA has used bridge inspections to determine 

states’ eligibility for federal funding for bridge programs.  The NBI was created in 1972, and 

stores all the information collected from these inspections (Small, Philbin, Fraher, & Romack, 

1999).  In, 1985, the FHWA initiated a two-phase program to evaluate the utility of various 

management approaches.  Phase one assessed existing state bridge management system (BMS) 

practices and called for an overall synthesis of fundamental elements of a national BMS.  Phase 

two created a computer tool, eventually named Pontis, which each state could implement to 

manage its own bridge inventory (AASHTO, Pontis User Manual, Pontis Technical Manual, 

2005). 

Summary of Pontis 

The Pontis is a bridge management system that incorporates a relational database and is a 

product of the American Association of State Highway and Transportation Officials (AASHTO).  

Although it has recently been superseded with a newer system, the AASHTO Bridge Manager 

software, the data utilized for this study was collected using the Pontis system.  Pontis has the 

capability of storing and analyzing bridge inspection and inventory data, recommending optimal 

preservation policies, predicting needs and, reporting or tracking performance measures for 

bridges, and aids in developing projects to include in an agency’s capital plan (AASHTO, Pontis 

User Manual, Pontis Technical Manual, 2005); it has been adopted for use by 39 

states/territories, 7 other U.S. agencies, and 7 international systems.  Pontis is maintained 



5 
 

through AASHTO’s joint software development program, which allows agencies to both 

implement and maintain their inventories more cheaply while maintaining an industry standard 

of best practice that standardizes bridge management on a national level (Robert, Marshall, 

Shepard, & Aldayuz, 2003). 

The Pontis database for Virginia was created in 1991 in response to the Intermodal 

Surface Transportation Efficiency Act (ISTEA) which required each state DOT to implement a 

more functional and detailed bridge management system.  It is maintained as a transactional 

relational database in an Oracle® application that includes records of all bridges across the state 

since 1995.  The NBI inspection program contains ratings of bridges based on bridge 

components such as deck, superstructure, substructure, channel, and culvert.  Under the NBIS, 

inspectors are required to give an average rating that provides an overall indication of the general 

condition of the entire component based on NBIS guidelines (Pontis User Manual, 2005). 

Because the NBI GCR were determined to be too subjective, Pontis was developed as a 

more quantitative BMS that looks at structures at the element level.  Elements are well-defined 

subdivisions of bridge components such as girders, joints, and railings, each of which is broken 

down further by material type.  Funding may be more effectively used on maintenance if 

managers know which specific elements contribute most to deterioration of a bridge. 

The NBI database stores condition information on five structural components of a bridge: 

deck, superstructure, substructure, channel, and culvert.  Inspectors assign a condition rating to 

each of these components on a scale from 9 (perfect) to 1 (severe deterioration).  Inspectors 

using Pontis assign each defined element a condition state on a scale from 1 (perfect) to 3, 4, or 5 

(severe deterioration), depending on the element.  Bridge inspectors give and overall average 
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condition rating to bridge components using the NBIS and NBI database.  However, those using 

the Pontis break down the condition assessment into the units each element is assigned.   

In Pontis, elements are assigned quantitative units. For example, girders are quantified 

intervals of linear footage, while elements such as bearings are assigned “each”, thereby 

quantifying the total number of bearings on a given bridge.  Using more specific inspection 

records and guidelines enables the user to truly understand how much of certain elements are in 

or approaching a deteriorated condition state.  Pontis also contains “smart flag” elements.  These 

track certain types of deterioration that are specific to certain elements and are not listed in the 

structural element condition state definitions.  This study investigated the effects of certain smart 

flags, such as impact damage and steel fatigue, because they have a serious impact on bridge 

condition and do not necessarily exhibit a logical pattern of deterioration. 

Pontis Element Details and Inspection Guidelines 

The Virginia Pontis Element Data Collection Manual defines 111 elements and their 

associated condition states and definitions for bridges in the state of Virginia.  The Commonly 

Recognized (CoRe) elements make up 100 of these elements and have identical definitions 

between agencies in order to facilitate more uniform data collection and analysis on the national 

level.  The other eleven elements were uniquely defined by VDOT based on particular guidelines 

defined in the Pontis that allow states to add additional elements to track their condition.  

Additionally, there are nineteen smart flags recorded in Virginia, eight of which are CoRe while 

the remaining eleven are uniquely defined by the Virginia DOT.  The full list of the 111 elements 

and nineteen smart flags is presented in Appendix A. 

  The Pontis Element Data Collection Manual defines the condition state guidelines for 

the Pontis element-level inspection reporting (VDOT, 2007).  Additional guidelines for 
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responsibility of inspection of state and federal bridges are presented in The National Bridge 

Inspection Standards (FHWA, 1994).  The specific procedures for inspection and reporting are 

outlined in the AASHTO Maintenance Manual for Roadways and Bridges (AASHTO, 2007), the 

AASHTO Manual for Bridge Evaluation (AASHTO, 2011), the Recording and Coding Guide 

(FHWA, 1995), and the Bridge Inspector’s Reference Manual (Ryan, Hartle, Mann, & Danovich, 

2006).  These documents were used as references in this study for their detailed explanation of 

the different bridge members and their definitions of the associated condition ratings for the 

superstructure, substructure, and deck. 

Data Mining in Bridge Management Systems 

 Data mining is the analysis of large observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and useful to 

the data owner.  The application of data mining has become more important with the growth of 

huge databases as a result of progress in digital data acquisition and storage technology (Hand, 

Mannila, & Smyth, 2001).  The Pontis database and National Bridge Inventory are two of the 

largest collections of bridge data and there has been very little analysis performed on each from 

the perspective of data mining. 

 Transition probabilities and deterioration modeling have been used before to find trends 

in both of these bridge databases.  Samer Madanat refers to Markovian transition probabilities as 

the expected-value method of condition ratings observed over time.  This method contains three 

important steps: structures are classified into groups containing the same attributes; a 

deterioration model with condition rating, as the dependent variable, and age, as the independent 

variable, is estimated; and, a transition probability is estimated (Madanat, Mishalani, & Wan 

Ibrahim, 1995). 
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 A few years later, Markovian models were used in the state of California to employ a 

network optimization model for preservation.  Cost/benefit models were produced to maintain a 

program that is optimized with budget constraints that generates project alternatives by 

combining preservation and improvement needs on each bridge (Thompson, Small, Johnson, & 

Marshall, 1998).  Another study, conducted by Richard Shepard and Michael Johnson (an author 

to the previous study) in California, takes element-level inspection data from Pontis to determine 

a bridge’s overall economic worth.  Then, a single number assessment is determined and The 

Health Index was created.  This index is used to ascertain the structural quality of a bridge and 

have the ability to make objective comparisons to other bridges (Shepard & Johnson, 2001). 

Traditional statistical methods cannot be easily applied to databases with the magnitude 

of Pontis and NBI and practical hypotheses and significant results may not be derived from these 

methods.  Data mining using classification methods has not been at the forefront of bridge 

management research, and most bridge analyses rely on the development of deterioration curves.  

For example, a study in the state of Illinois (Bolukbasi, Mohammadi, & Arditi, 2004) uses two 

means to construct deterioration curves of state and interstate bridges.  The first applies an 

adjustment in condition ratings based on the notion that unless there is evidence of improvement 

work, the condition rating cannot be larger than previous ratings, and the second is based on the 

duration between consecutive inspections. 

Few studies have been conducted like the ones above, yet further knowledge of the future 

condition state of our bridges is highly desired.  Therefore, the objectives of this study are to 

consolidate and compile multiple bridge data sets, and to discover previously unknown patterns 

and trends in the data using data mining and classification methods. 

 



9 
 

Deterioration Modeling 

Earlier work in Virginia focused on deterioration modelling and is documented in the 

Exploratory Investigation of Legacy Bridge Databases in Virginia (Johnston, 2013).  Initially, 

two different approaches were taken to develop deterioration models.  The first approach used 

the Pontis element level data and fit Markov Chain models to predict deterioration.  The second 

approach used NBI data and fit logarithmic regression models to predict deterioration for these 

same bridges.  The available data was reviewed and records with inconsistent quantities, too few 

bridges and unexplained condition improvement were excluded from the study.  The bridges 

with the most prevalent superstructure and deck elements were investigated with ages ranging 

from 65 years to brand new. 

Markov Chain Models 

For the Markov Chain model, the proportion of bridges in each of the defined condition 

states for each element was determined for each age bin.  This data was used to fit a Markov 

Chain deterioration model for each of the six elements identified.  It is assumed that the 

proportion within each condition state will change as the element deteriorates.  This change in 

proportion is considered as a change in the probability that the condition state will take on one of 

the defined values.  This transition was modeled with a Markov Chain, where the probability of 

the condition state remaining unchanged and the probability of the condition state becoming 

lower (worsening) is assumed to remain constant for each transition (assumed to occur annually).  

Using this simple model, the condition state transition probabilities, which resulted in the 

minimum squared error between a simulation and the observed data, were determined with an 

Excel worksheet. 



10 
 

Virginia DOT’s Technical Advisory Group (TAG) reviewed the Markov model results, 

and established thresholds which were considered suitable for defining when a particular element 

has reached the end of its service life.  Different percentages for each of the different condition 

states were defined based upon the TAG’s judgment and the condition state definitions.  The 

thresholds and the number of years it would take for a particular element to reach a threshold 

value, based upon the Markov Chain models are presented in Table 1. 

 

Table 1: Estimated Service Lives of Selected Elements 

The TAG decided that a particular element would need to be replaced if 50 percent of the 

total quantity of an element was worse than condition state 1, or if 25 percent was in condition 

state 2 or worse, or if 10 percent was in condition state 3 or worse, or if 5 percent was in 

condition state 4 or worse, or if 1 percent was in condition state 5. 

While, considered useful by the TAG, the Markov Chain models did not immediately 

provide an estimate of structural deficiency.  They also did not provide any indication of 

uncertainty and modeling error. Another set of models were developed, based upon regression to 

provide further assistance to the TAG. 
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Regression Models 

The second modeling methodology utilized was to fit a regression model to the NBI 

general condition ratings for superstructure and deck for the sample bridges.  Along with 

VDOT’s desire to be able to estimate the time it would take for a bridge to become structurally 

deficient, there was a desire to obtain error bounds estimates as well. 

For each group of bridges in the sample, using the same age bins as previously, the 

minimum, maximum and first, second and third quartiles of the NBI general condition rating 

(GCR) for superstructure or deck were determined as appropriate.  There were many age bins 

where the number of bridges was below 5, and, consequently, the quartile estimates were not 

reliable.  The age bins with a sufficient number of bridges were retained and a weighted linear 

least squares regression model was used to fit the median GCR to the log-transformed age.  A 

similar procedure was used to define the curves for the first and third quartile estimates. 

Based upon the regression models, an estimate of the time it would take for the GCR to 

become 4 can be estimated.  These estimates are presented in Table 2 below. 

 

Table 2: Years to Become Structurally Deficient 

Modeling Findings 

Several models were developed which provided the Virginia Department of 

Transportation forecasting capabilities.  These assisted them in developing a new bridge 

maintenance initiative for Interstate bridges in Virginia.  Overall, reasonable deterioration 



12 
 

models were developed for the most significant elements present in the Interstate Highway 

Bridge population in Virginia. 

However, by request of VDOT’s TAG, further examination was desired for the following 

reasons.  The age of the bridges studied was limited to sixty five years or less.  Therefore, any 

extrapolation beyond this limit must be regarded with skepticism.  Also, the data had many 

instances of missing values.  This reflects bridge engineering practice and policies over the sixty 

five years examined and the resulting models should be used with this knowledge. 

Furthermore, in the process, it was found that there is a significant difference between the 

forecasts developed using element level data from the VDOT Pontis database and models 

developed using general condition ratings from the NBI database.  Therefore, the relationship 

between the element condition state data and general condition ratings for each of the six 

elements was examined more closely across the state of Virginia. 

 

METHODS 

This section is divided into three sub-sections.  The first sub-section, Data Collection, 

describes how each of the six bridge element data sets were compiled and organized.  The 

second sub-section, Classification Methods, provides an explanation of each of the six 

classification methods used to investigate the bridge data.  The final sub-section, Orange 

Software, describes the Orange data mining software system utilized in this research and its 

capabilities and how each classification method is implemented within the program. 

The purpose of this study was to use the VDOT Pontis database and NBI database to 

investigate classification methods and forecast when a bridge will become structurally deficient.  

As defined by FHWA, a structurally deficient bridge is one with a bridge deck, superstructure, or 
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substructure reaching a rating of 4 or less.  This does not imply that the bridge is unsafe or may 

collapse; simply that it must be monitored, inspected, and maintained, and that it may be 

restricted to weight limits, closed to traffic, and/or require significant rehabilitation.  The scope 

of the modelling was limited to bridges in Virginia on the Interstate system. 

Bridge data sets were compiled for six different elements.  These data sets were 

comprised of attributes including age, the district it is located in, average daily traffic (ADT), 

truck percentage, a condition state profile (defined below for each element), and applicable smart 

flags that may be present.  A current classification of each bridge’s general condition rating 

(GCR) from the NBI was also included in the data sets to be compared with predicted 

classification values.  The superstructure GCRs were compared for the substructure elements, 

while the deck GCRs were compared for the deck elements. 

Data Collection 

Bridge data sets were compiled based on element type, and the same six elements were 

investigated for this study as previously done for the deterioration modelling. 

Bridge Type Element # 

Painted Steel Girders 107 

Prestressed Concrete Girders 109 

Bare concrete decks with uncoated rebar 12 

Concrete deck with thin overlay 18 

Concrete deck with rigid overlay 22 

Bare concrete deck with coated bars 26 

Table 3: Bridge Types 

All Interstate bridges containing painted steel girders, element 107, (and each additional 

element) were sorted by bridge key, a unique identification number assigned to each bridge, and 

inspection date.  The inspection records contain element condition states (1-5 rating) reported by 

inspectors over the years.  In most cases, inspections on each bridge were performed every two 
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years; however, some bridges had more frequent inspections while some inspections were 

greater than five years apart.  The scope of this study focused on the two most recent inspections 

for each bridge.  The data collection process for each element is provided below and presents the 

element condition state descriptions as defined by the VDOT Pontis Manual. 

Element 107 

As defined in VDOT’s Element Level Coding Guide, painted steel superstructures 

include two girder systems as well as rolled beams on multiple spans.  The data set was compiled 

of bridges in which the structure carried only Interstate routes; it consisted of a total of 546 

bridges.  In order to facilitate classification, “condition state profiles” were created.  A letter 

grade was assigned based on the certain percentages in each condition state.  An “A” was given 

to inspections containing the entire quantity in condition state 1, a “B” to those having partial 

quantities in condition state 2, a “C” to those having partial quantities in condition state 3, and a 

“D” to those having any quantity in condition state 4 or worse. 

 

Element 107 condition state descriptions: 

1 There is no evidence of active corrosion and the coating system is sound and 

functioning as intended. 

For coated cables, the protective coating is sound and functioning as intended, 

For coated cables, the strand and anchor sockets show no signs of distress. 

2 There is little or no active corrosion. 

Surface or freckled rust has formed or is forming. 

The coating system may be chalking, peeling, curling or showing other early 

evidence of coating system distress but there is no exposure of metal. 

For coated cables, the strand and anchor sockets show no signs of distress. 

3 Surface or freckled rust is prevalent. 

There may be exposed metal but there is no measurable section loss caused by 

active corrosion. 

For coated cables, protective system is no longer effective. 

For coated cables, the strand and anchor sockets show no signs of distress. 

4 Corrosion is present. 

Section loss due to active corrosion does not warrant structural analysis. 

For coated cables, the cable banding, if any, may show some loosening or 

slippage. 

For coated cables, the cable anchor devices may be loosening. 

Also code Element 363 (Section Loss). 
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5 Corrosion is advanced. 

Section loss due to active corrosion is sufficient to warrant structural analysis. 

For coated cables, the cable strands or wires may be broken or severely abraded. 

For coated cables, the anchors may show signs of slippage. 

Also code Element 363 (Section Loss). 

 

This type of structure warranted the investigation of certain smart flag elements.  

Therefore, steel fatigue, traffic impact damage, and section loss were also taken into account.  

Letter grades were assigned for smart flag elements which contain quantities in entire condition 

states.  An “A” was given in the presence of no smart flags, a “B” to those in condition state 1, a 

“C” to those in condition state 2, and a “D” to those in condition state 3.  The attributes 

investigated for element 107 are listed in Table 4. 

 

Steel Fatigue (smart flag 356) condition state descriptions: 

N No presence of fatigue damage. 

1 Fatigue damage to the bridge has been repaired or arrested. 

The bridge may still be fatigue prone. 

2 Fatigue damage exists which is not arrested. 

3 Fatigue damage exists which is sufficient to warrant structural analysis. 

 

Traffic Impact Damage (smart flag 362) condition state descriptions: 

N No presence of impact damage. 

1 Impact damage has occurred and has been repaired. 

Prestressing system is covered by patch concrete. 

Steel has been straightened or repaired. 

2 Impact damage has occurred. 

Prestressing system is exposed, but is not impaired. 

Steel condition does not threaten the ability of the bridge to function as intended. 

3 Impact damage has occurred and strength of the member is impaired. 

Impact damage is sufficient to warrant structural analysis. 

 

Section Loss (smart flag 363) condition state descriptions: 

N No presence of section loss. 

1 Section loss has been repaired or cleaned and coated over. 

2 Section loss exists and has not been repaired or coated over. Structural analysis 

is not yet warranted. 

3 Section loss exists which is sufficient to warrant structural analysis or an analysis 

has determined that the ability of the bridge to function as intended has not been 

affected. 

4 Section loss has affected the load carrying capacity or the ability of the bridge to 

function as intended. 
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Painted Steel Girder Attributes 

Age 

District 

Average Daily Traffic (ADT) 

Truck Percentage 

Condition State Profile 

Steel Fatigue – SF 356 

Traffic Impact Damage – SF 362 

Section Loss – SF 363 
Table 4: Painted Steel Girder Attributes 

Element 109 

 

The prestressed concrete girder data set was expanded from Interstate bridges to all state 

maintained bridges in Virginia because there were too few structurally deficient bridges in the 

Interstate sample.  This increased the sample size to allow for stronger model development; it 

consisted of a total of 473 bridges.  Similar to element 107, the inspection quantities were in 

multiple condition states, and “condition state profiles” were also created based on the same 

criteria.  These profiles also ranged from A-D. 

 

Element 109 condition state descriptions: 

1 Little or no deterioration. 

There may be discoloration, efflorescence, and/or superficial cracking but without 

effect on strength and/or affecting the ability of the element to function as 

intended. 

2 Minor deterioration. 

Hairline cracks & spalls may be present and there may be exposed reinforcing 

with no evidence of corrosion. 

There is no exposure of the prestressed system. 

3 Moderate deterioration. 

Some delaminations and/or spalls may be present. 

There may be minor exposure but no deterioration of the prestressed system. 

Corrosion of non-prestressed reinforcement may be present but loss of section is 

incidental and does not warrant structural analysis. 

4 Advanced deterioration. 

Delaminations, spalls and corrosion of non-prestressed reinforcement are 

prevalent. 

There may also be exposure and deterioration of the prestressed system 

(manifested by loss of bond, broken strands or wire, failed anchorages, etc.). 

There is sufficient concern to warrant structural analysis. 

 

The prestressed concrete structure only warranted the investigation of one smart flag: 

traffic impact damage.  The same criteria and smart flag mapping were used as with element 107.  

The attributes investigated for element 109 are listed in Table 5. 
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Prestressed Concrete Girder Attributes 

Age 

District 

Average Daily Traffic (ADT) 

Truck Percentage 

Condition State Profile 

Traffic Impact Damage – SF 362 
Table 5: Prestressed Concrete Girder Attributes 

Elements 12, 18, 22, and 26 

 

All decks in this study were reinforced concrete decks.  Similar to element 109, the scope 

of each of the deck data sets was expanded to all state maintained bridges in Virginia.  The data 

sets of elements 12, 18, 22, and 26 consisted of 1,338, 787, 403, and 1,575 bridges, respectively.  

The inspection records of the deck elements are coded as “each;” therefore, condition state 

profiles weren’t necessary, and condition states were directly mapped.  For example, condition 

state 1 received an “A”, condition state 2 received a “B”, and so forth. 

 

Concrete Deck condition state descriptions: 

1 This element exhibits no patched areas and/or deficiencies such as spalling, 

delamination, etc. 

2 Patched areas, spalling/delamination and/or potholes exist. Their combined area is 

10% or less of the total deck area. 

3 Patched areas, spalling/delamination and/or potholes exist. Their combined area is 

more than 10% but 25% or less of the total deck area. 

4 Patched areas, spalling/delamination and/or potholes exist. Their combined area is 

more than 25% but less than 50% of the total deck area. 

5 Patched areas, spalling/delamination and/or potholes exist. Their combined area is 

50% or more of the total deck area. 

 

The reinforced concrete decks warranted the investigation of two smart flag elements.  

Therefore, deck cracking and soffit of concrete decks/slabs were taken into account.  The same 

smart flag mapping was performed for the deck element as above, and the attributes investigated 

for these elements are listed in Table 6. 

 

Deck Cracking (smart flag 358) condition state descriptions: 

N No presence of deck cracking 

1 The surface of the deck is cracked, but the cracks are either filled/sealed or 

insignificant in size and density (cracks less than 1/16 inch in width and spaced 

greater than 10 feet apart). 

2 Unsealed cracks exist which are of moderate size OR density (cracks greater than 

or equal to 1/16 inch and less than 3/16 inch in width OR where cracks are spaced 

5 feet to 10 feet apart). 
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3 Unsealed cracks exist in the deck that are of moderate size AND density (cracks 

greater than or equal to 1/16 inch and less than 3/16 inch in width AND where 

cracks are spaced 5 feet to 10 feet apart). 

4 Unsealed cracks exist in the deck that are of severe size AND/OR density (cracks 

greater than 3/16 inch in width AND/OR are spaced less than 5 feet apart). 

 

Soffit of Concrete Decks/Slabs (smart flag 359) condition state descriptions: 

N No presence of concrete soffit 

1 There are few symptoms of distress and any cracking or efflorescence is less than 

2% of the total underside area. 

2 Cracking and/or efflorescence is light any the combined distressed area is 2% to 

10% of the soffit. 

3 Moderate efflorescence and/or cracking (cracks greater than or equal to 1/16 inch 

and less than 3/16 inch in width OR where cracks are spaced 5 feet to 10 feet 

apart) and the combined distressed area is greater than 10% but 25% or less of the 

soffit. 

4 Light to moderate rust staining and/or delamination/spalling and heavy cracking 

(cracks greater than or equal to 1/16 inch and less than 3/16 inch in width AND 

where cracks are spaced 5 feet to 10 feet apart) and/or efflorescence and the 

combined distressed area is more than 25% but less than 50% of the soffit. 

5 Heavy to severe rust staining and/or delamination/spalling and severe cracking 

(cracks greater than 3/16 inch in width AND/OR are spaced less than 5 feet apart) 

and/or efflorescence and the combined distressed area is 50% or more of the 

soffit. 

 

Deck Element Attributes 

Age 

District 

Average Daily Traffic (ADT) 

Truck Percentage 

Condition State Profile 

Deck Cracking – SF 358 

Soffit of Concrete Decks/Slabs – SF 359 
Table 6: Deck Element Attributes 

Classification Methods 

Multiple classification methods were investigated and utilized in this study to determine 

the best method for forecasting when a bridge will become structurally deficient.  Each bridge 

data set was used as an input for six different classification methods: naïve Bayes, k-nearest 

neighbor, support vector machine, logistic regression, classification tree, and the CN2 rule 
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learner.  The classification methods developed and produced “classifiers” based on the attributes 

for each bridge.  These attributes were used to determine a prediction of “structurally deficient” 

or “not structurally deficient” for each bridge.  Comparisons of these predictions were made to 

those of the current classifications. 

Each classification method produces a classification model, “classifier”, providing a 

prediction of structural deficiency.  In pattern recognition and statistical classification, a 

classifier is a distinct algorithm or precise function that maps input data into a category (Jain, 

Duin, & Mao, 2000). 

Naïve Bayes 

A naïve Bayes classifier is a probabilistic classifier based on the application of Bayesian 

statistics and the assumption of independent features.  This means that the classifier assumes that 

each individual feature is unrelated to the others.  Naïve Bayes has been used for pattern 

recognition and information retrieval for almost forty years (Lewis, 1998).  Although 

independence is commonly a poor assumption, the naïve Bayes classifier has advantages that 

allow it to compete well against more sophisticated classifiers.  Its ability to undertake a high 

dimensionality of inputs and handle an arbitrary number of independent variables regardless of 

type (e.g., categorical or continuous) are two of its major advantages (Rish, 2001). 

The basic theory of naïve Bayes classifier is presented.  First, consider how to design a 

learning (or training) algorithm based on Bayes rule in which an unknown target function f: X  

Y, equivalently P(Y|X), or the probability of Y given a known X is approximated.  In order to 

reduce the complexity of the Bayesian classifiers, the assumption of conditional independence is 

used which dramatically reduces the number of parameters.  For example, given random 
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variables X, Y and Z, variable X is conditionally independent of Y given Z, if and only if the 

probability distribution governing X is independent of the value of Y given Z; that is: 

 

(∀ 𝒊, 𝒋, 𝒌)𝑷(𝑿 = 𝒙i|𝒀 = 𝒚j, 𝒁 = 𝒛k) = 𝑷(𝑿 = 𝒙i|𝒁 = 𝒛k) 

Eq. 1 

To describe conditionality further, consider the current weather: Rain, Thunder, and 

Lightning.  The presence of Thunder, in this example, is independent of Rain given the presence 

of Lightning.  We know that Lightning causes Thunder, and once we know whether or not there 

is currently Lightning, no additional information about Thunder is provided by the value of Rain.  

Certainly there is a clear dependence of Thunder on Rain in general; however, there is no 

conditional dependence after the value of Lightning is known (Mitchell, 2010). 

The Bayes rule, defined as P(Y|X), contains the attributes X1…Xn that are all independent 

of one another.  This assumption drastically simplifies the representation of P(Y|X) and makes 

the problem of estimating it from the training algorithm easier.  Consider the simple case where 

X = {X1, X2, X3}.  In this case: 

P(Y|X1…X3) = P(Y) P(X1…X3|Y) 

= P(Y) P(X1|Y) P(X2…X3|Y, X1) 

= P(Y) P(X1|Y) P(X2|Y, X1) P(X3|Y, X1, X2) 

Eq. 2 

Since Bayes rule assumes conditional independence, assume each attribute Xi is 

conditionally independent to the next Xj for j ≠ i given the category Y.  Therefore the joint model 

may be expressed as: 
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P(X1…X3|Y)  = P(Y, X1,…, X3) 

= P(Y) P(X1|Y) P(X2|Y) P(X3|Y) 

Eq. 3 

This series of equations may be expressed more generally as: 

)|()()|(
1

1 YXPYPYXXP
n

i

in 


  

Eq. 4 

K-Nearest Neighbor 

The k-nearest neighbor (kNN) rule is a non-parametric technique, that is it does not 

assume that the model has a fixed size and that it can change with the complexity of the data, 

used in statistical estimation and pattern recognition by an algorithm that stores all available 

cases and classifies new cases based on similarity measures or distance functions (Weinberger, 

Blitzer, & Saul, 2005).  Unlike other common classifiers, the kNN rule does not build a classifier 

in advance; each new sample finds the k neighbors nearest it from training space based on the 

attributes and a distance metric (Khan, Ding, & Perrizo, 2002). 

Before determining the proper distance metric, the first step in k-nearest neighbor 

classification is choosing an appropriate k value.  The nature and size of the data ultimately 

determines the optimal value for k.  Using a k value that is too large may include data points that 

are not as similar; however, using a small k value may exclude some significant data points.  

After trial and error testing, a k value of 5 was chosen for this study as it produced the strongest 

results and is the most appropriate for the sample size while maintaining significant results. 

Next, the appropriate distance metric is chosen.  The performance of k-nearest neighbor 

classification is highly dependent on the distance metric chosen to identify nearest neighbors.  

Distance metrics for kNN classification are tailored to specific problems and change when the 
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desired resultant class changes.  For example, the optimal distance metric used to investigate 

gender identification is most likely not the same distance metric used to study face recognition.  

There are four main distance metrics: 

Euclidean:    𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1  

Hamming:     𝑑(𝑥, 𝑦) = ∑ (𝑥𝑖 ≠ 𝑥𝑗)𝑛
𝑖=1  

Manhattan:    𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1  

Maximal:    𝑑(𝑥, 𝑦) = max (|𝑥𝑖 − 𝑦𝑖|) 

The Hamming distance is not suitable for continuous data and utilizes the number of 

attributes in which two examples differ.  The Manhattan distance calculates the sum of absolute 

differences for all attributes while Maximal distance calculates the maximal difference between 

attributes.  The Euclidean distance metric is used in the most simple kNN classifications and was 

selected for this study because of its simplicity under the assumption of an absence of prior 

knowledge about the data sets. 

Support Vector Machines 

Support vector machines (SVMs) classify data into two classes by finding the best 

decision plane (or hyperplane) that separates all data points between a set of objects having 

different class memberships.  SVM is known to be especially efficient in handling large 

classification problems due to its ability to manage very large feature spaces (Widodo & Yang, 

2007). 

The best plane for SVMs is the one with the largest margin, or maximum width of 

margins away from the hyperplane, between the two classes (MathWorks, Inc., 2014).  Figure 1 

depicts a schematic example of a linear hyperplane between two classes: positive and negative 
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data points.  The support vectors are those data points closest to the hyperplane that lie directly 

on the margin boundary. 

 

Figure 1: Separating Hyperplane (MathWorks, Inc., 2014) 

Most cases, however, do not yield a perfectly linear relationship.  Therefore, a set of 

mathematical functions, known as kernels, are used on input space objects to rearrange and map 

them into a feature space (StatSoft Inc., 2014).  The mapping transformation is performed to 

utilize a linear separating hyperplane rather than a more complex curved hyperplane relationship.  

Figure 2 shows how mapping is used to transform input space to feature space.  The test object 

(white circle) is classified correctly based on the proper mapping of the training objects (red and 

green circles). 

 

Figure 2: Input Space vs. Feature Space (StatSoft Inc., 2014) 
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The four basic kernel functions are: 

Linear:     𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖𝑥𝑗  

Polynomial:     𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖𝑥𝑗 + 𝑐)𝑑 

Radial Basis Function (RBF):  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒(−𝛾|𝑥𝑖𝑥𝑗|
2

), 𝛾 > 0 

Sigmoid:    𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝛾𝑥𝑖𝑥𝑗 + 𝑐) 

where, γ, c, and d are kernel parameters. 

The radial basis function was the chosen kernel for this study.  It, unlike linear 

relationship kernels, handles cases in which the relationship between attribute and class is 

nonlinear (Hsu, Chang, & Lin, 2003), much like the nature of bridge inspection data.  

Additionally, the decision to utilize the RBF kernel was reached because the number of 

parameters influences the complexity of model selection; RBF uses fewer parameters than the 

polynomial and sigmoid parameters.  The gamma, γ, parameter used in RBF is recommended to 

be 1/k, where k is the number of attributes used for each data set. 

Logistic Regression 

Logistic regression is another classification method and statistical model that utilizes a 

series of predictor variables that influence the probability of an outcome.  The difference 

between it and ordinary linear regression is that logistic regression contains a value predictor that 

is binary and dichotomous.  Therefore, in order for a logistic regression to be applied, 

modifications to the equation are made to express the outputs in terms of probability: 

log (
𝑝

1 − 𝑝
) = 𝛽𝑜 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖 

Eq. 5 
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where p is the probability of the outcome of interest, βi coefficients are associated with each 

variable and calculated to minimize error, and Xi are the values of the potential predictor 

variables, such as age of the bridge, its location, etc. (Tu, 1996).  Figure 3 below depicts the 

difference between  linear regression and logistic regression. 

 

 

Figure 3: Linear regression vs Logistic regression (Sayad, 2012) 

The assumption is that the predictor variables, Xi, are related linearly to the odds of 

log (
𝑝

1−𝑝
) for the outcome of interest (Ottenbacher, Linn, Smith, Illig, Mancuso, & Granger, 

2004), and that there exists a hyperplane, or decision boundary, of all points Xi that separates 

successful events from failed events (Dreiseitl & Ohno-Machado, 2002). 

Logistic regression may also be expressed as an odds function that an event E occurs: 

 

𝑂𝑑𝑑𝑠(𝐸) =
𝑝(𝐸)

𝑝(𝐸′)
=

𝑝(𝐸)

1 − 𝑝(𝐸)
 

Eq. 6 
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Here, the odds function can be transformed by taking the natural log of both sides to 

yield: 

𝑙𝑛
𝑝(𝐸)

1 − 𝑝(𝐸)
= 𝑙𝑛𝑝(𝐸) − ln(1 − 𝑝(𝐸)) = 𝑒𝛽𝑜+𝛽1𝑋1+⋯+𝛽𝑖𝑋𝑖 

Eq. 7 

Now, the event E is a dependent variable that takes on the values of 0 or 1 (Zaiontz, 

2014).  In this study, when the 𝑂𝑑𝑑𝑠(𝐸) > 0.5; the bridge will be classified as structurally 

deficient; otherwise, the bridge is classified as not structurally deficient. 

Classification Trees 

Classification trees (or regression trees) are rules that are developed for predicting the 

class of an object from the values of its predictor variables.  They are a machine-learning 

classification method in which prediction models are obtained by recursively partitioning a 

learning sample of the data in which the predictor values and label classes are already known for 

each case.  These partitions are signified by a node in the “tree” (Loh, 2011, Loh & Shih, 1997).  

Figure 4 displays an example of a partitioned data set where the variables get assigned to the left 

node at each intermediate node when the specified condition is satisfied. 

 

Figure 4: An example of a data set with three classes labeled 1, 2, and 3 (Loh, 2011) 
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Gini index, a way of selecting attribute criterion, was chosen for this study as it is a way 

of measuring inequality (Loh, 2011, Langel & Tillé, 2013).  It is appropriate for our data divided 

into two classes as it generalizes a binomial variance.  The empirical Gini index, defined in 

Equation 8, considers a variable Xj in the special case of binary response Y.  The relative class 

frequency, N2j/Nj, is the maximum likelihood estimator based on the number of observations 

indicated by the index j (Strobl, Boulesteix, & Augustin, 2007). 

𝐺𝑗 = 2
𝑁2𝑗

𝑁𝑗
(1 −

𝑁2𝑗

𝑁𝑗
) 

Eq. 8 

The data are then subjected to pre-pruning to keep results simple and easy to 

comprehend, and a minimum number of instances is set that each “leaf” must contain.  The data 

are then post-pruned in two ways.  First, the leaves are recursively merged with the same 

majority class.  This reduces overfitting by generating the whole set of classification rules and 

then removing a number of rules and terms.  This will prevent trees from becoming too large and 

difficult to grasp (Bramer, 2002).  Secondly, the data is post-pruned using an m-estimate statistic.  

This estimate takes into account prior unconditional probabilities of classes and contains a 

tunable parameter m, which allows for adaptation based on noise level of the data (Dzeroski, 

Cestnik, & Petrovski, 1993).  The default m-estimate of 2 was used for this study. 

CN2 

The CN2 rule learner and induction algorithm was developed in the 1980s based on 

previous classification processes; namely, the Iterative Dichotomiser 3 (ID3) and Algorithm 

quasioptimal (AQ) algorithms.  The ID3 algorithm is applied to a set of data and generates a 

decision tree for classifying the data based on attribute selection by information gain (Umano, 
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Okamoto, Hatono, Tamura, Kawachi, Umedzu, & Kinoshita, 1994).  The AQ algorithm is a rule 

induction technique that produces a complete and consistent description of classes (Michalski, 

Mozetic, Hong, & Lavrač, 1986). 

These older algorithms are far more basic and assume no noise in the data.  The CN2 

technique uses an if-then rule that was designed to modify and combine each of these algorithms 

to handle real-world domains by relaxing certain constraints that the induced description must 

classify the training data perfectly (Clark & Niblett, 1989). 

The nature of the ID3 algorithm allows for relative easy modification, while the AQ 

algorithm is more difficult to modify due to its dependence on specific training examples during 

search.  The goals of the CN2 algorithm are to increase the space of rules searched, ensure 

accurate classification with simple rules, and utilize an efficient and simple to understand rule 

generation (Clark & Niblett, 1989). 

The CN2 algorithm utilizes three possible evaluation functions for implementation: the 

Laplace function, used in the original CN2 algorithm; the m-estimate of probability, used in 

more recent versions of the CN2 algorithm; and the weighted relative accuracy (WRACC) 

function, used in the CN2-SD algorithm. 

The CN2-SD (subgroup discovery) is a modified version of CN2 that improves its 

evaluation measures and covering algorithm.  The search methods and classification of instances 

were both adapted to reduce the number of induced rules and increase both rule coverage and 

rule significance.  Therefore, due to its utilization with CN2-SD, the WRACC function was 

chosen for this study: 

𝑊𝑅𝐴𝐶𝐶(𝐶𝑙𝑎𝑠𝑠 ← 𝐶𝑜𝑛𝑑) = 𝑝(𝐶𝑜𝑛𝑑) ∗ (𝑝(𝐶𝑙𝑎𝑠𝑠|𝐶𝑜𝑛𝑑) − 𝑝(𝐶𝑙𝑎𝑠𝑠)) 

Eq. 9 
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where Class is the class value and Cond are feature attributes and their values (Lavrač, Kavsek, 

Flach, & Todorovski, 2004). 

Next, pre-pruning rules are defined.  Likelihood ratio statistics (LRS) parameters are used 

at a 5% significance rating, while 10% weighted covering of the data was implemented. 

Orange Data Mining Software 

The six classification methods used in this study are implemented in a data mining and 

machine learning software called Orange.  This comprehensive, component-based framework 

helps experienced researchers and beginners to perform data processing, modelling, and 

evaluation in many facets.  Orange’s capabilities include: 

 Data management and preprocessing, like sampling, filtering, scaling, 

discretization, and construction of new attributes 

 Induction of classification methods and regression models 

 Descriptive methods like association rules and clustering 

 Scoring of prediction models, including different hold-out schemes and range of 

scoring methods and visualization approaches. 

Orange utilizes a visual programming paradigm and the graphical user’s interface (GUI) 

is composed of multiple widgets that communicate through channels.  Connected widgets, called 

a schema, can be written in a Python script or designed through a visual programming interface 

called Orange Canvas (Demšar, Zupan, Leban, & Curk, 2004).  For this study, the Canvas reads 

in the bridge element data sets as inputs, performed various machine learning classifications, and 

produced evaluations on the data. 
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RESULTS 

 Six different classifications using six different methods were conducted for each of the 

elements; steel open girder – coated (element 107), prestressed concrete open girder (109), bare 

concrete deck with uncoated reinforcement (12), concrete deck with then overlay (18), concrete 

deck with rigid overlay (22), and bare concrete deck with coated reinforcement (26).  For each of 

the bridge data sets, six classification methods were applied; naïve Bayes, k-nearest neighbor, 

support vector machines, logistic regression, classification trees, and the CN2 rule learner.  The 

classification methods developed and produced results based on the attributes for each bridge.  

These attributes determined a prediction of “structurally deficient” or “not structurally deficient” 

for each bridge.  Figure 5 displays the interface for each of the data sets. 

 

Figure 5: Orange Canvas for Bridge Element Data 
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The Orange software contains many performance measures that report how well each 

classification method performed.  These include: 

 Classification accuracy – the proportion of correctly classified examples 

 Sensitivity – (also called true positive rate, hit rate, and recall) the number of 

detected positive examples among all positive examples, e.g. the number of 

structurally deficient bridges correctly classified as structurally deficient 

 Specificity – the proportion of detected negative examples among all negative 

examples, e.g., the proportion of not structurally deficient bridges correctly 

recognized as not structurally deficient 

 Area under the ROC – the area under the receiver-operating characteristic curve 

 Information score – the average amount of information per classified instance 

 F-measure – a weighted harmonic mean of precision and recall, calculated as 

2*precision*recall/(precision+recall) 

 Precision – the number of positive examples among all examples classified as 

positive, e.g. the number of structurally deficient bridges among all diagnosed as 

structurally deficient 

 Recall – same as sensitivity, except that it is the proportion of relevant documents 

which are retrieved 

 Brier score – the measure of accuracy of probability assessments, which measures 

the average deviation between predicted probabilities of events and actual events 

Figure 6 displays all nine performance measures for steel open girders – coated (element 

107).  The receiver operating curve (ROC) illustrates the performance of a binary classifier 

system as its discrimination threshold is varied (Swets, 2014).  Receiver operating curve points 
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are produced by a maximum likelihood estimation and two parameters, the difference of means 

and the ratio of variances, are obtained.  A number of indices can be calculated from these 

parameters; among which the area under the fitted smooth curve is the most popular (Hanely & 

McNeil, 1982).  The curve is plotted of the false positive rate (x-axis) against the true positive 

rate (y-axis), known as recall for machine learning purposes.  The higher, and closer to 1, the 

area under the ROC curve is, the better that classification method is at predicting structural 

deficiency of bridges.  Area under the ROC curve was chosen as the most useful performance 

measure for this study.  First, it is easily conveyed and understood, and, secondly, Orange has the 

ability to produce ROC plots for each classification method (Figures 7-12). 

 

Figure 6: Performance Measures for Painted Steel Girders 

As displayed in the figure above, the support vector machines classification method 

produces the highest area under the ROC curve for element 107.  Subsequent analysis of each of 

the bridge elements was conducted, and the area under the ROC curve was the only performance 

measure used to evaluate performance. 

Figures 7-12 display the ROC curves for each of the six elements studied.  Within each of 

the figures, each of the six classification method curves is shown and results are compared.  

Table 7 following the curves summarizes the results of each element. 
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Figure 7: Receiver Operating Characteristic Curve for Painted Steel Girders 

 

Figure 8: Receiver Operating Characteristic Curve for Prestressed Concrete Girders 
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Figure 9: Receiver Operating Characteristic Curve for Bare Concrete Deck (Uncoated Rebar) 

 

Figure 10: Receiver Operating Characteristic Curve for Concrete Deck (Thin Overlay) 
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Figure 11: Receiver Operating Characteristic Curve for Concrete Deck (Rigid Overlay) 

 

Figure 12: Receiver Operating Characteristic Curve for Bare Concrete Deck (Coated Rebar) 
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Table 7: Area Under the Receiver Operating Characteristic Curve Results Summary 

Table 7 summarizes the results for each element and the area under the ROC curve for 

each classification method.  The top performing classification methods, based on an overall 

average, were logistic regression, support vector machines, k-nearest neighbor, and the CN2 rule 

learner, respectively.  Each of the methods was the top performing classifier in at least one of the 

elements, and the range between their averages was a slight three-hundredths.  Classification 

trees and naïve Bayes produced consistently worse results and were not considered as an 

appropriate classifiers for structural deficiency. 

Significant Attributes 

 Understanding which attributes of bridges influences structural deficiency the most is 

very important.  The area under the ROC curve was investigated for the addition of each 

attribute.  First, age was the only attribute selected and classification was conducted on each 

element data set.  Then the additional elements were added one by one to determine the influence 

they had on accurate classification.  The order in which the attributes for each element were 

selected was age ADT  truck percentage  district  condition state profile  smart flags.  

Figure 13 displays the attribute influence on painted steel girders, Figure 14 displays the attribute 
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influence on prestressed concrete girls, and Figure 15 displays the attribute influence on the deck 

elements. 

 

Figure 13: Attribute Influence on Painted Steel Girders 

 

Figure 14: Attribute Influence on Prestressed Concrete Girders 
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Figure 15: Attribute Influence on Deck Elements 

 Overall, the addition of individual attributes increases the classification performance in 

all elements with one exception: truck percentage in bare concrete decks with uncoated rebar 

(element 12).  As expected, age and ADT were the two biggest influencers on classification 

performance.  The condition state profiles seemed to have stronger influences on some elements 

than others. 

Selecting a Classification Method 

When determining which classification method was best to recommend as the most 

useful classifier of structural deficiency, two criteria were taken into account.  First, the classifier 

must consistently produce strong classifying results, and second, these results must be easily 

understood by the user. 

Classification trees and naïve Bayes were first eliminated as possible recommendations 

due to their poor results.  Next, k-nearest neighbor and support vector machines were eliminated 

due to their more complex classifiers and black-box nature.  For instance, support vector 
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machines used a radial basis kernel function to transform, in this case, 6-8 dimensions 

(depending on the element).  This produced 6-8 dimensional hyperplane equations that are 

completely abstract and of no significance to the user.  Finally, the decision between logistic 

regression and CN2 rule learner came down to simplicity and ability to understand for the user. 

The logistic regression classifier creates best-fit β coefficients to produce a classifier.  

Although still abstract to the user, Orange has the capability to produce nomographs of logistic 

regression classifier results.  A nomograph consists of three (or more) parallel graduated lines of 

known values on any two (or more) scales that determines a straight index line that passes 

through the solution value of the third (or fourth, fifth, etc.) (Encyclopedia Britannica, 2014).  

Painted steel girders (107) contained 8 attributes, making it harder to understand the significance 

of the straight index line and the prediction it produces.  Figure 16 displays the results of element 

107’s nomograph, and the nomographs for each other element are displayed in Appendix B. 

Ultimately, it was determined that the CN2 rule learner would be the most useful for 

users by providing them with easy to understand “if…then” rules and results.  Using the adapted 

version, the CN2-SD, improves the original algorithm’s evaluation measures and covering.  

Additionally, the number of induced rules was reduced and both rule coverage and rule 

significance were increased.  Orange has the capability of printing the rules produced by the 

algorithm for each of the elements studied.  Figures 17-22 display these rules in a clean and clear 

manner for the user. 
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Figure 16: Nomograph of Painted Steel Girders 
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Figure 17: CN2 Rules for Painted Steel Girders 

 

Figure 18: CN2 Rules for Prestressed Concrete Girders 
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Figure 19: CN2 Rules for Bare Concrete Deck (Uncoated Rebar) 

 

Figure 20: CN2 Rules for Concrete Deck (Thin Overlay) 
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Figure 21: CN2 Rules for Concrete Deck (Rigid Overlay) 

 

Figure 22: CN2 Rules for Bare Concrete Deck (Coated Rebar) 

 

CONCLUSIONS 

Findings 

 The following is a summarization of the findings of this research: 

 Classification methods can be used to develop a model to determine whether 

or not a bridge is structurally deficient based upon vector attributes. 
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 The performance of classification methods was fairly strong overall as there 

was not a huge difference in area under the ROC curve results. 

 Logistic regression, support vector machines, and the CN2 rule learner were 

the top three performing classifiers.  Of the three, the CN2 rule learner is the 

recommended classification method due to its transparent nature and easy to 

understand rules. 

 The investigation of smart flags as an attribute, especially in painted steel 

girders (element 107), strengthened the classification analysis. 

Conclusion 

 This study investigated the benefits of data mining and the utilization of classification 

methods to improve the ability to forecast when certain bridge types will become structurally 

deficient.  The results of this study provide valuable insight to state agencies, as well as the 

public, on the condition and safety risks of bridges listed in the VDOT Pontis and National 

Bridge Inventory across the state of Virginia.  Knowledge discovery was used in this analysis 

and all available resources were implemented in order achieve the objectives of this study.  The 

findings of this study are significant and will be useful to VDOT engineers, bridge owners, 

bridge inspectors, and consulting engineers involved in the design and maintenance process. 

The bridge elements studied were chosen specifically because of their abundance in 

Interstate and state owned bridges.  The specific metrics chosen were age, location, ADT, and 

previously inspected condition states.  These were investigated because of their direct correlation 

to the deterioration of bridges and their significance to asset value and user cost. 

This study has produced significant results and has successfully utilized the VDOT Pontis 

and National Bridge Inventory in data mining, a seldom researched manner.  The methods in 
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which these results were produced can be modified by bridge type and the addition of bridge 

attributes can be implemented. 

Recommendations 

  The top performing classification methods were logistic regression, support vector 

machines, k-nearest neighbors, and CN2 rule learner, respectively.  Because these methods 

performed so closely together, it is recommended that the CN2 rule learner is implemented when 

predicted bridge structural deficiency is desired.  The reason for this is that it is one of the top 

performers in classification while maintaining an easy to understand method.  Support vector 

machines and logistic regression, especially, are not as preferred due to their more complex 

nature.  Results are calculated in what is much-like a black box and user’s comprehension is not 

guaranteed.  They can be difficult to understand and results produced may not make sense to the 

user.  The CN2 rule learner produces clean and clear results using “if…then” statements, and is 

therefore the recommended classification method for users. 

The Pontis analysis methods in this report on Virginia bridge data can be modified and 

implemented in other states already using the Pontis bridge management system.  Depending on 

individual state’s specific areas of maintenance interest, more attributes, such as bridge length or 

environmental conditions, could be investigated to determine their effects on classification.  

Additionally, classification could be extended to non-state owned bridges as well. 

In order to facilitate statewide collaboration and cross-over amongst districts, it would be 

beneficial to implement a uniform database for storing information on maintenance actions 

across the state of Virginia.  This way inspection records would be consistent across the state and 

electronic resources could be more readily utilized in bridge maintenance analyses.  

Additionally, if a more comprehensive criterion for bridge inspection existed, the discrepancy 
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between inspector opinions would greatly be reduced.  This would ensure inspection records to 

be more consistent, disparity between quantities would cease, and missing records could be 

reduced, and hopefully eliminated. 

With time, more inspections take place and more data is collected.  Following this report, 

it is suggested that methods are developed and incorporated to manage and analyze this data as it 

continues to pour in.  Efficient means to handle inspection records, tables, and graphs is 

imperative to minimize man power and implement more sophisticated statistical software 

packages. 
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APPENDIX A – ELEMENT CODES AND DESCRIPTIONS 

Derived from the Pontis Element Data Collection Manual (VDOT, 2007) 
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Code Element Description (V denotes Virginia element) 

012  Concrete Deck – Bare – with Uncoated Reinforcement  

013  Concrete Deck – with AC Overlay – without Membrane 

014  Concrete Deck – with AC Overlay – with Membrane 

018  Concrete Deck – Thin Overlay (less than 1”) – no AC Overlay  

022  Concrete Deck – Rigid Overlay (greater than 1”) – no AC Overlay  

026  Concrete Deck – Bare – with Coated Reinforcement 

027  Concrete Deck – with Cathodic Protection  

028  Steel Deck – Open Grid 

029  Steel Deck – Concrete Filled Grid  

030  Metal Deck – Corrugated/Orthotropic, Etc 

031  Timber Deck 

032  Timber Deck – with asphaltic concrete (AC) Overlay  

038  Concrete Slab – Bare – with Uncoated Reinforcement  

039  Concrete Slab – with AC Overlay – without Membrane 

040  Concrete Slab – with AC Overlay – with Membrane 

044  Concrete Slab – Thin Overlay (less than 1”) – no AC Overlay  

048  Concrete Slab – Rigid Overlay (greater than 1”) – no AC Overlay  

052  Concrete Slab – Bare – with Coated Reinforcement 

053  Concrete Slab – with Cathodic Protection  

054  Timber Slab 

055  Timber Slab – with asphaltic concrete (AC) Overlay  

092  V Reinforced Concrete Sidewalk  

094  V Timber Sidewalk 

098  V Steel Sidewalk, Open Grid – Coated 

101  Steel Closed Web/Box Girder – Uncoated 

102  Steel Closed Web/Box Girder – Coated 

104  P/S Concrete Voided and Unvoided Closed Web/Box Girder  

105  Reinforced Concrete Voided and Unvoided Closed Web/Box Girder 

106  Steel Open Girder – Uncoated 

107  Steel Open Girder – Coated  

108  V Steel Open Girder with Timber Deck – Coated and Uncoated 

109  P/S Concrete Open Girder 

110  Reinforced Concrete Open Girder  

111  Timber Open Girder  

112  Steel Stringer – Uncoated 

113  Steel Stringer – Coated  

115  P/S Concrete Stringer  

116  Reinforced Concrete Stringer  

117  Timber Stringer  

120  Steel Bottom Chord of Through Truss – Uncoated 

121  Steel Bottom Chord of Through Truss – Coated 

125  Steel Through Truss excluding bottom chord – Uncoated 
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126  Steel Through Truss excluding bottom chord – Coated 

130  Steel Deck Truss – Uncoated 

131  Steel Deck Truss – Coated 

135  Timber Truss or Arch  

140  Steel Arch – Uncoated 

141  Steel Arch – Coated 

143  P/S Concrete Arch  

144  Reinforced Concrete Arch 

145  Other Material Arch 

146  Steel Cable – Uncoated (not embedded in concrete) 

147  Steel Cable (not embedded in concrete) – Coated 

151  Steel Floor Beam – Uncoated 

152  Steel Floor Beam – Coated 

154  P/S Concrete Floor Beam  

155  Reinforced Concrete Floor Beam  

156  Timber Floor Beam  

160  Steel Pin and/or Pin & Hanger Assembly - Uncoated 

161  Steel Pin and/or Pin & Hanger Assembly - Coated 

201  Steel Column or Pile Extension - Uncoated 

202  Steel Column or Pile Extension - Coated 

204  P/S Concrete Column or Pile Extension  

205  Reinforced Concrete Column or Pile Extension 

206  Timber Column or Pile Extension  

210  Reinforced Concrete Pier Wall 

211  Other Material Pier Wall 

215  Reinforced Concrete Abutment 

216  Timber Abutment  

217  Other Material Abutment 

220  Reinforced Concrete Submerged Pile Cap/Footing 

225  Steel Submerged Pile  

226  P/S Concrete Submerged Pile  

227  Reinforced Concrete Submerged Pile  

228  Timber Submerged Pile  

230  Steel Pier Cap – Uncoated 

231  Steel Pier Cap – Coated 

233  P/S Concrete Pier Cap 

234  Reinforced Concrete Pier Cap  

235  Timber Pier Cap 

240  Metal Culvert 

241  Concrete Culvert  

242  Timber Culvert  

243  Other Culvert 

285  V Slope – Protected 
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286  V Slope – Unprotected 

295  V Reinforced Concrete Wingwalls  

296  V Timber Wingwalls  

297  V Other Material Wingwalls  

298  Smart Flag – Culvert Endwall/Headwall  

298  V Smart Flag – Culvert Endwall/Headwall  

299  V Smart Flag – Culvert Wingwall   

300  Strip Seal Expansion Joint  

301  Pourable Joint Seal 

302  Compression Joint Seal  

303  Assembly Joint/Seal 

304  Open Expansion Joint 

310  Elastomeric Bearing 

311  Moveable Bearing (Roller, sliding, etc.) 

312  Enclosed/Concealed Bearing or Bearing System  

313  Fixed Bearing 

314  Pot Bearing  

315  Disk Bearing 

320  Prestressed Concrete Approach Slab 

321  Reinforced Concrete Approach Slab  

330  Metal Bridge Railing - Uncoated  

331  Reinforced Concrete Bridge Railing 

332  Timber Bridge Railing  

334  Metal Bridge Railing – Coated  

356  Smart Flag – Steel Fatigue   

357  Smart Flag – Pack Rust  

358  Smart Flag – Deck Cracking  

359  Smart Flag – Soffit of Concrete 

360  Smart Flag – Settlement  

361  Smart Flag – Scour 

362  Smart Flag – Traffic Impact Damage 

363  Smart Flag – Section Loss 

444  V Mechanically Stabilized Earth – Abutment 

701  V Smart Flag – Utilities 

702  V Smart Flag – Drains  

703  V Smart Flag – Lighting 

704  V Smart Flag – Roadway Over Culverts 

706  V Smart Flag – Soffit of Overhang of Concrete 

707  V Smart Flag – Soffit of Concrete 

708  V Smart Flag – Debris in Channel 

709  V Smart Flag – Replacement  

710  V Smart Flag – Deck Replacement 

738  Concrete Slab – Covered with Fill  
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APPENDIX B – NOMOGRAPHS OF LOGISTIC REGRESSION RESULTS 

Derived from the Orange Data Mining Software 
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Figure B - 1: Nomograph of Prestressed Concrete Girders 
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Figure B - 2: Nomograph of Bare Concrete Deck (Uncoated Rebar) 
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Figure B - 3: Nomograph of Concrete Deck (Thin Overlay) 
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Figure B - 4: Nomograph of Concrete Deck (Rigid Overlay) 
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Figure B - 5: Nomograph of Bare Concrete Deck (Coated Rebar) 


