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Digitization of Perioperative Surgical Flowsheets 

 

Abstract 

Perioperative mortality rate (POMR) is a metric widely used to describe the quality of 

treatment in hospitals. Perioperative data, or data collected during surgery, can be used to 

calculate POMR and determine factors that lead to adverse surgical outcomes. Access to such 

data is essential for decreasing POMR and improving medical treatment. In low- and middle-

income countries (LMICs), perioperative data is often manually recorded on paper flowsheets. 

While these flowsheets capture essential information, their non-digital format leads to difficulty 

in analysis of perioperative data, as aggregating data and observing trends is a time-consuming 

and tedious task. The goal of this project is to design a system to digitize the information 

contained in surgical flowsheets that have been in use for six years at the University Teaching 

Hospital of Kigali in Rwanda. To accomplish this goal, the research team has done the 

following: 1) Designed a wooden scanning structure, SARA (Scanning Apparatus for Remote 

Access), to capture flowsheet images in a standard format, 2) Developed a web application to 

upload images and securely transfer them to UVA for processing, 3) Developed image 

processing programs to digitize medication, blood pressure, heart rate and logistical data, and 4) 

Created a PostgreSQL database system to store the digitized flowsheet data. Additional testing 

and validation of this system is needed to evaluate the accuracy of each processing technique in 

the fully integrated system.  

Introduction 

Hospitals in Rwanda use handwritten flowsheets to collect patient data before, during, 

and after surgery. These flowsheets store essential information; however, their non-digital format 

makes data analysis difficult. Perioperative mortality rate (POMR), calculated from data stored 

in these hospital flowsheets, is a metric used to evaluate quality of surgical care [7]. Due to the 

handwritten format of the flowsheets, hospitals cannot easily calculate POMR or other useful 

metrics. Hospitals without digital records are at a disadvantage because they cannot easily 

aggregate surgical data and observe trends. Thus, a method to digitize handwritten hospital 

records will allow these hospitals to calculate POMR and other relevant metrics, which in turn, 

will lead to improvements in surgical outcomes.  

The system designed by this research team will aid the digitization of perioperative data 

in low- and middle-income countries (LMICs), allowing hospitals to store data in a cohesive 

format and analyze surgical data more easily. This paper details the design of the system used to 

digitize information within the intraoperative flowsheets used in the University Teaching 

Hospital in Kigali, Rwanda. Hospitals in other LMICs can also adjust and apply the methods set 

forth in this paper to digitize their own hospital records. This paper details the digitization 
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process in seven distinct parts: the scanning apparatus, the web application, image cropping, 

checkbox detection, graph reading, text interpretation, and the integration of these individual 

systems. We then report and discuss the results of the system. 

Prior Work 

To adopt an electronic medical record (EMR) system, many hospitals around the world 

are actively converting from a paper-based work environment to paperless electronic records 

[11]. However, this is not completely possible in LMICs, where financial constraints compel 

hospitals to continue recording patient data on paper. This makes data difficult to access and 

aggregate for research purposes. POMR is a common metric used to assess the performance of a 

hospital and can also be reported to agencies such as the World Health Organization to receive 

funding for better hospital facilities. POMR and related metrics are most effectively calculated 

when data has been digitized, so that the data can then be analyzed and visualized. 

Researchers at Vanderbilt University explored an avenue for digitizing patient data 

without disrupting doctor workflow by introducing an electronic data collection system in a 

tertiary hospital in Kenya. The researchers created an offline electronic data collection system, 

using the Research Electronic Data Capture (REDCap) tool as a template, to allow staff to collect 

data at the point-of-care. This development allowed doctors and nurses to shift from manual data 

collection to electronic collection. POMR was then calculated from collected data and reported 

for each type of surgery conducted by the hospital [2]. While their approach was effective at the 

tertiary hospital in Kenya, low- and middle- income countries often have varying levels of 

resources, making it difficult to implement the same technology across countries.  

While image scanners and devices have existed for at least 60 years [19], LMICs lack the 

support needed for technologies like these to function. In a personal conversation with Dr. 

Durieux, an anesthesiologist at UVA who works with the University Hospital in Kigali, noted the 

lack of resources and/or education when handling scanner technologies, making it difficult to use 

a technology-heavy solution [3][12]. Therefore, hospitals in these areas continue to use paper 

copies of flowsheets to keep track of perioperative data.  

A 2017 study conducted in hospitals in Ghana revealed criteria for determining how 

ready hospitals were to digitize medical records. The criteria were derived from interviewing 

healthcare workers at Mampong-Ashanti Municipal Hospital. The workers were primarily 

concerned about: internet connectivity, inadequate power supply, lack of 

information/communication technology, lack of knowledge required to use technology, financial 

issues and resistance to new technology [22]. The same concerns were voiced by doctors at 

University Teaching Hospital in Kigali, Rwanda, informing the decision to design a digitization 

system capable of operating with existing technology in Rwanda without requiring substantial 

employee training and internet connectivity. 
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Since the 1980s, work has been done to teach computers to recognize handwriting. The 

technology really reached viability after 2009 when deep learning neural networks were 

developed that could utilize high computer processing power and large sets of examples to learn 

what human handwriting looked like [4]. Many effective open source handwriting recognition 

software such as Tesseract exist [24]. Researchers at the Rajiv Gandhi Institute of Technology 

were able to use Tesseract to recognize handwritten characters in images with up to 98% 

accuracy [14]. 

Overall, data digitization methods have been researched for a wide range of purposes. 

Techniques for recognizing handwriting, scanning sheets, and reading graphs are not easily 

applicable to this case because of the unique constraints LMICs have. Our work builds on these 

basic techniques, but focuses on how these constraints can be overcome by building an adaptable 

system. By testing the effectiveness of these techniques, the team has concluded to build upon 

methods to fit the needs as relayed in sections (A) through (F) in the next portion. 

System Design 

Most medical equipment in the University Teaching Hospital of Kigali in Rwanda lacks 

standardization between different operating rooms. The hospital also lacks the infrastructure and 

access to sufficient technical support to maintain an electronic data collection system. 

Additionally, the hospital has years of past handwritten data records that require digitization 

along with the new flowsheets that are created daily [12]. Considering these factors, the research 

team designed a system that digitizes handwritten flowsheets while accounting for the 

capabilities of the hospital. 

The overall system works in three distinct phases: 1) uploading patient flowsheets in 

Rwanda and sending them to the University of Virginia, 2) processing flowsheet images at the 

University of Virginia, and 3) sending data back to Rwanda. These phases are detailed in Figure 

1. In the first phase, the user operates SARA to scan handwritten flowsheets with a mobile 

device and then uploads the image to a web application, which sends the image to a UVA email 

address. Phase two integrates various image processing techniques. First, new flowsheet images 

are extracted from the UVA email inbox, along with a unique patient identifier and the email 

timestamp. Once an image is extracted, the program segments the flowsheet image into 

individual data pieces, which are then processed according to the type of information 

contained—either handwritten text, a graph, or a checkbox. The algorithm extracts data from the 

image and populates a backend PostgreSQL database with the data, using the patient ID and 

email timestamp as identifiers. The PostgreSQL database is hosted on a server at the University 

of Virginia. The system is currently in the final stages of integration. While the image processing 

techniques have been evaluated individually, future testing will determine how accurately they 

digitize the flowsheet as a whole. 
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Fig. 1. Process flow diagram 

A. Scanning Apparatus for Remote Access (SARA) 

The need for a robust scanning apparatus was made clear following discussions with Dr. 

Durieux. Relying on electronic devices, even commercial scanners, is not feasible in Rwanda due 

to the lack of resources available to support technology heavy solutions. Therefore, the scanning 

apparatus must be easily maintained and assembled, while still producing scanned flowsheets 

that are as consistent as possible [12]. The Scanning Apparatus for Remote Access (SARA) 

shown in Figure 2, allows the user to scan flowsheets using a mobile device that rests on top of 

SARA. 

SARA is built using plywood (easily assembled and maintained) and the design ensures 

consistent lighting and allows for focal height adjustments. Five (A-E) of the seven pieces that 

constitute SARA are finger-locked, while the sixth piece F is hinged. Piece C has a hole to 

accommodate a consistent light source (e.g., lightbulb) while the top (D) has a hole in the center 

for mobile device camera placement. On the inside of the box, a few screws exist for the 

placement of a tray (G) for the flowsheet to sit on. These screws, not shown in Figure 2, are 

placed inside the box for focal height adjustment depending on the mobile device that is being 

used. Reference lines, located on the tray that sits inside the box, require the flowsheet to be 

placed in the same area each time a user scans an image. Finally, a hinged frame (H) holds the 

sheet flat in place via a magnet. To use SARA, the user would first place the mobile device on 

top so that the camera of the mobile device an focus on the flowsheet in the apparatus. They 

would then lift the hinged frame (H), place a flowsheet onto the tray (G) in the reference lines 

drawn, and lower the hinged frame (H) until placed onto the tray (G). The user would then close 

SARA using piece F, switch on the light source (not shown Figure 2), and adjust the mobile 
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device resting on top (D) for a clear image of the flowsheet. The application Tiny Scanner is 

used to capture the scan and detect the edges of the paper [18]. The user will then need to ensure 

the paper has been captured to the edges of the flowsheet, and adjust accordingly as shown in 

Figure 3. Once this has been done, the scanned flowsheet can be saved to the device with a 

specific naming convention, and will be uploaded to the web application for image processing to 

begin. 

 

Fig. 2. 3D image of SARA and parts labeled 

B. Web Application 

Transferring scans taken on the mobile device requires a secure, dedicated medium. A web 

application provides a customizable platform for future design iteration, and supports proper 

image encryption procedures and a simplified user experience. Built using the Flask framework 

in Python on an HTML base, the app is accessed from the user’s device in Rwanda. To support 

data anonymization, users input patient medical record numbers (MRNs) into a provided app-

independent Microsoft Excel sheet saved locally to generate randomized identification numbers 

(RIN). Patient RINs enable data to be routed through the appropriate following technical 

processes without compromising the rights of the patient. The user logs on to the app using 

system-approved identification and has the ability to upload an image file from their local device 

or transmit further commentary on a specific patient. Both actions require entering the 

corresponding RIN before information can be sent. All data is encrypted using an AES cipher, 

then sent via email to a designated UVA address. Transmitted emails include patient RIN, 

inputted data (file or commentary) from the user, and timestamp. Discussed further in Section G, 

received emails at UVA are automatically extracted on timed intervals from the inbox for 

processing 
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C. Image Cropping 

The flowsheet contains various types of information, including handwritten text fields, 

graphs, and checkboxes. In order to digitize the flowsheet data, it is necessary to determine 

where individual data pieces are located on the flowsheet so that each data piece can be 

processed separately using the appropriate method for that type of data.  

To process individual pieces of data, the image cropping algorithm segments the original 

flowsheet into separate images. The program first determines which side of the flowsheet 

(Intraoperative Record vs. Anesthesia Record) is being processed via a simple black pixel ratio 

check of the top left corner of the flowsheet. The program then aligns the patient image to a 

standard image of either the blank Intraoperative Record or Anesthesia Record flowsheet. It 

determines feature points in the two images and matches features in one image to features in the 

other [23]. Then, the program aligns the patient image to the standard image based on the 

strongest matching features detected. Next, the program uses Hough Lines to detect the outside 

border of the chart area on the flowsheets [1]. The Fig. 2. 3D image of SARA and parts labeled 

program uses these edges as reference lines and determines the pixel locations of the different 

flowsheet sections, denoted by the colored lines in Figure 3. The program locates the specific 

data pieces within these sections by their location on the standard flowsheets relative to these 

reference lines. The patient flowsheet image is then cropped into individual images at the pixel 

values of each data piece so that the appropriate image processing technique can process each 

image separately. 

 

Fig. 3. Intraoperative Record Flowsheet Sections 

D. Checkbox Detection 

On the Intraoperative Record, checkboxes are used to indicate procedure details, monitoring 

details and patient position during the surgery. The checkbox detection algorithm isolates the 

checkbox from its associated text using template matching with a set of 6 different templates 
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[10]. In some cases, checkboxes were detected in samples even if the box was partially cropped. 

Checkboxes were also incorrectly detected in the text associated with the box. In order to 

eliminate these errors, the thresholds for matching templates to samples were adjusted to reject 

samples with partial checkboxes and to accommodate for samples where the full checkbox could 

not successfully be isolated. If a checkbox cannot be effectively isolated from the provided 

image even with adaptive thresholding, the checkbox is flagged for further review.  

Successfully isolated checkboxes are converted into a matrix of pixels, where each element is 

a grayscale value between 0 and 255. If 34% of the pixels are above a blackness threshold of 

115, the box is deemed as checked. The blackness threshold and associated proportion of pixels 

above the threshold were chosen using a grid search method. 

E. Graph Reading 

The graph on the intraoperative side of the flowsheet consists of symbols that represent 

measurements of heart rate, diastolic blood pressure, and systolic blood pressure taken at five-

minute intervals. Handwritings can vary from person to person. The large variation in how 

different individuals draw the same symbol limits the effectiveness of image processing 

techniques such as template matching or shape recognition. Template matching is sensitive to 

rotation and scale changes [16], while it is difficult for shape recognition techniques to deal with 

overlapping objects [18]. Template matching is not an ideal approach because it is difficult to 

manually select templates that represent or generalize the infinite ways a symbol can be hand-

drawn by different people. In the past few years, deep Convolutional Neural Networks (CNNs) 

have outperformed the state-of-the-art in many visual recognition tasks [15]. Graph reading is 

accomplished with a U-Net model architecture which is a CNN adaptation that was originally 

designed for biomedical image segmentation [17]. The U-Net model is trained with truth data to 

detect the location of each symbol on the graph. The truth data was obtained by manually 

annotating the symbol locations in a set of example graph images. In Figure 4, the top image 

shows the scanned patient graph which includes the symbols that were originally recorded by 

hand. The bottom image shows the predicted masks of the three symbols.  

The predicted masks are post-processed into numerical time series data since the locations of 

symbols in the image are directly related to the values on the graph. The heart rate symbols are 

very small, so the location is obtained by finding the centroid of all interconnected objects in the 

heart rate mask. The centroid locations are then aligned with the 5-minute time series interval. 

The blood pressure symbols are larger objects, so values are obtained by iterating through the 

image at each time step. The collected measurements for heart rate and blood pressures are 

converted to the proper scale from the graph and then stored in the database. 
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Fig. 4. Original Handwritten Graph and an Overlay of the Predicted Masks 

F. Text Interpretation 

Within the Intraoperative Record, a set of intravenously administered drugs and medications 

are listed in handwritten text providing information regarding the specific medication 

administered, the dosage of the medication, and the corresponding time series data regarding the 

surgery being conducted. Despite the accuracy that others have observed from using open-source 

software to recognize handwriting, we could not observe the same results due to the varied 

standardization of the flowsheet images and the characteristically rushed handwriting of doctors 

within them. Therefore, we built out an ensemble convolutional network from 3 different 

convolutional neural networks. When identifying and classifying the medications names, 

segmented images from the flowsheet containing the handwritten text are read into a set of three 

convolutional neural network (CNN) architectures (VGG-19 [8], ResNet50 [9], and SimpleHTR 

[5]), which jointly form an ensemble convolutional network that accounts for various edge cases 

within the handwritten text, thus increasing the threshold of accurately identified medications. 

This Keras enabled ensemble addresses the variability within each handwriting style and 

precise location of each administered drug within the flowsheet in an attempt to minimize the 

rejection set of medications that cannot be identified [21]. As a subset of medication and drug 

classification, dosages for each medication were identified employing a digitization method 

modeled after the MNIST digit classification also utilizing a constructed convolutional neural 

network [6]. Time series markings were then identified on the corresponding graphical portion of 

the flowsheet using CNN model architecture. The outlined methodology shows the ability to 

digitize and provide information regarding specific drugs and fluids administered intravenously 

during surgeries 

G. Integration 

Each image processing function is integrated into the cropping program. When the original 

flowsheet is segmented into separate images, the appropriate image processing function is called 

on its respective section of the flowsheet and returns the information contained within it. The 

diagram in Figure 5 demonstrates how the whole system works together.  
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First, the program extracts a flowsheet from a folder containing all of the unprocessed 

flowsheets. Then, each flowsheet is segmented into individual data pieces. Depending on the 

information contained, each data piece is processed through the checkbox detection program, the 

graph reading algorithm, or the text interpretation program. Each of these programs extracts data 

from the data piece, and uploads this data to the appropriate table in the database. Additional 

testing and validation are needed before this system can be implemented in Rwanda. 

 

Fig. 5. Integration Diagram 

Results and Discussion 

Text identification processes utilized 276 images of handwritten text of medication 

names and yielded a testing accuracy of 90.21%. The ensemble convolutional network rejected 

41 images, 14.9% of the sample, due to varied unreadability and low thresholds of accuracy in 

classification. Most rejections within the set were due to variance in the handwriting style of the 

medication images. The ensemble, which utilized the VGG-19 architecture, ResNet50 

architecture, and flagged reviews within the SimpleHTR CNN, decreased the number of tested 

cases classified in the rejection set that were previously rejected by the individual CNN models 

during evaluation.  

Given a testing set of 838 samples, the checkbox detection algorithm yielded an accuracy 

of 82.2%, while rejecting 9.9% of samples due to unreadability. 17.8% of checkbox samples 

were incorrectly classified. Among the incorrectly classified checkboxes, false negatives 

occurred when the proportion of pixels above the blackness threshold was under 34% for 

checked boxes. Similarly, false positives occurred when the proportion of pixels above the 

blackness threshold was over 34% for unchecked boxes. This problem was addressed by flagging 

the checkboxes with thresholds of 34% ± 5% for review in the database, allowing doctors to 

manually review such boxes. Similarly, checkboxes in the rejection set were also flagged for 
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review by doctors, who can manually verify if the boxes are checked. Ultimately, the accuracy 

yielded by the checkbox detection program indicates that it is able to classify a large majority of 

readable checkboxes properly. While the output still requires oversight from doctors, the 

algorithm is functional in a research environment. Future work can explore implementing a 

neural network to classify checked and unchecked checkboxes at a higher accuracy.  

The image segmentation model was trained with 23 images, a validation set of 4 images, 

and a test set of 2 images. Graph reading was then evaluated with 31 images. A miss is recorded 

when one of the following two criteria is met: 1) there is no symbol on the original scanned 

image, but the algorithm predicted that there is a symbol at the specific time; 2) there is a symbol 

on the original scanned image, but the algorithm did not predict that there is a symbol at the 

specific time. Using the symbols detected, the performance of the algorithm is evaluated with the 

mean squared error (MSE). MSE measures the average of the squares of errors, where errors are 

the difference between the actual measurement on the graph and the measurement predicted by 

the algorithm. A smaller MSE indicates that the algorithm has better performance. The U-Net 

model graph reading results are summarized in Table 1, with the results from a template 

matching technique [20] in parentheses. The U-Net approach has a lower missing rate for all 

three symbols compared to the template matching technique. For the points that were not missed, 

the accuracy of the U-Net approach is much higher than that of template matching for heart rate, 

and comparable for diastolic blood pressure and systolic blood pressure, as evidenced by the 

MSE values in Table 1. Deep learning performs better than image processing, because it utilizes 

over one million parameters to generalize the features of each symbol. A human can only 

provide a limited number of template alternatives for template matching. Additional training data 

and further improvements to the time series postprocessing can decrease the missing rate and 

MSE for all symbols. Precision of the measurements are limited by the equipment in the hospital 

and the manual recordings of doctors. Thus, the results given by the graph reading algorithm are 

sufficient for preliminary digitization of heart rate and blood pressure measurements. 

 

Table 1. Summarized results from graph reading algorithm as compared with a template-matching algorithm indicated in 

parenthesis 

Conclusions and Future Work 

In this study, we were able to achieve our objective of digitizing perioperative flowsheets 

from University Teaching Hospital in Kigali, Rwanda. We used SARA to capture images of 

flowsheets without light obstruction and uploaded the images to a web application to be 
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encrypted and delivered to UVA. The processing software at UVA identified and cropped the 

various parts of the flowsheet, as needed for the individual image processing functions. The 

medication detection algorithm recognized administered medications at a 90.21% accuracy, 

while the checkbox detection program recognized checked and unchecked boxes with an 

accuracy of 82.2%.  

Similarly, the graph reading algorithm recognized the symbols with a MSE of 3.28, 

24.41, and 18.48 for heart rate, systolic blood pressure, and diastolic blood pressure respectively. 

The output of the various functions was written directly to a PostgreSQL database for future 

research use. The results of our study indicate that the system can be fully utilized for research 

purposes. Additional testing should be done before implementation in Rwanda to further validate 

the accuracy of the digitization. This system will then allow doctors in Rwanda to maintain their 

current workflow by providing a simple method for scanning and uploading flowsheets to be 

processed. Future work can explore implementing this system in other hospitals in LMICs that 

use different flowsheets than the University Teaching Hospital of Kigali. We would like to 

explore building a more robust scanning system with durable material rather than plywood. By 

modifying the web application to be a mobile application, these processes can also be deployed 

locally in Rwanda. The applications and programs used in these processes could be improved to 

increase the accuracy and efficiency of phase two of the system design. 
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