
Secret Sharing for Cloud Data Protection

A Technical Report
presented to the faculty of the

School of Engineering and Applied Science
University of Virginia

by

Uttam Rao

May 7, 2021

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Uttam Rao

Technical advisor: Yuan Tian, Department of Computer Science

Secret Sharing for Cloud Data Protection
Uttam Rao

University of Virginia
ur6yr@virginia.edu

Abstract

In 1979, Adi Shamir and George Blakley independently
introduced innovative secret sharing algorithms which
provide an effective method to secure private data in a
distributed way. For decades, since secret sharing was
introduced, it has been understood and studied by
academics, but considered impractical for most large scale
data security purposes due to its efficiency issues. Shamir’s
algorithm is used widely for a plethora of applications but,
until recently, had lacked the scalability infrastructure for a
large scale cloud data protection application to be feasible
and cost effective. Secret sharing can be done in addition to
current forms of symmetric and asymmetric encryption to
provide more security guarantees than traditional data
protection methods, which are still susceptible to
re-encryption attacks and quantum attacks. Continued
evolution of secret sharing schemes, advancements in
distributed computing, and reduced costs for storage have
prompted new interest in this area. Some companies, such
as SplitByte Inc., have developed secret sharing based
frameworks for data protection on the cloud and even have
commercial pilots. This report examines the evolution of
secret sharing schemes in academic research and
investigates the security features of some proposed secret
sharing based frameworks for cloud security applications.

1 Introduction
Cloud computing is currently one of the hottest areas.
Companies of all sizes are taking advantage of the
convenience, resource availability, and cost efficiency that
the cloud offers. However, data security is of big concern
for both companies and consumers using the cloud. For
consumers, entrusting their data to companies may expose
themselves to leaks of private data. Between 2017 and
2020, over 8 billion records were breached; many held
sensitive data such as medical records or bank information
(Puranik, 2019). For corporations, a successful cyberattack
may cause millions of dollars in damage, but the impact
extends far past the financial effects. Businesses that collect
and store consumer data incur an average of $8.19 million
in direct costs per breach, and suffer difficult-to-measure
reputational damage [27, 28].

Especially at the data storage level, both traditional
distributed architectures and modern cloud frameworks
have many security issues. These issues are generally
associated with data confidentiality, data integrity, and data
availability (CIA). In particular, insider threats,
re-encryption attacks such as ransomware, and quantum
attacks pose security risks. For example, many of the most
high profile breaches in the past year have been due to
malicious ransomware attacks. In the Cognizant breach of
2020, an attacker blocked access to internal data, causing
revenue to drop by 50 to 70 million dollars [29]. Because
cloud environments depend on virtualization, a malicious
user in a virtual environment may be able to access
neighboring virtual machines or data located on the same
hardware. In cloud environments, users are usually given
superuser access for managing their VMs. A malicious
superuser can cause a lot of havoc.

Traditional data security approaches such as data
encryption, data anonymization, data redundancy, data
separation, and differential privacy can generally address
most data security concerns on the cloud, but none of them
all at the same time [2]. The following background section
details the security concerns with various cloud computing
models and the current best in class methods used to protect
data in the cloud. In addition to keeping their data secure,
many companies want to also access it efficiently. These
accesses may sometimes be through complicated analytical
searches such as online analysis processing [2]. In the
cloud’s “pay as you go” pricing model, there is a tradeoff
between data security, access efficiency, and cost.

Secret sharing, which was introduced independently by
both Adi Shamir and George Blakley in 1979, is
particularly useful in the context of cloud data protection.
Threshold secret sharing schemes split sensitive data (the
secret) into individually meaningless shares which are then
distributed to n participants. In some schemes, participants
can individually perform computations on shares, but the
results are meaningless until a threshold number (t ≤ n) of
shares is available to reconstruct a global result. Secret
sharing has been used for a multitude of applications for a
long time but until recently was not of much interest for a
data protection application due to space inefficiency. Over
time, the continued research and development of various
secret sharing schemes, such as short secret sharing and

U. Rao

verifiable secret sharing, have made it more efficient.
Traditional secret sharing assumed that the participants
holding each share to be honest. Verifiable secret sharing,
however, ensures that even if a participant is malicious a
well defined secret can be reconstructed. Verifiable secret
sharing schemes can enforce CIA all at the same time. This
report examines the evolution of secret sharing schemes,
investigates the use of secret sharing schemes within
frameworks for cloud security applications, and evaluates
their security features.

2 Background
2.1 Cloud computing models

Cloud computing is a form of effective resource sharing
which offers businesses and users computer system
resources on demand with high availability and scalability.
Cloud service models are typically grouped into IaaS
(infrastructure as a service), PaaS (platform as a service),
and SaaS (software as a service). IaaS refers to services
which abstract low-level physical computing resources with
virtualization. IaaS cloud providers can provide these
resources on demand from large stores of equipment in data
centers. Providers of PaaS offer development environments
to application developers. This includes a database, web
server, and a code execution environment. SaaS providers
offer complete application software to consumers which
can be accessed through thin or thick clients.

The main cloud deployment models are private cloud,
public cloud, and hybrid cloud. Private cloud refers to a
cloud infrastructure operated for a single organization. It
could be managed either internally or by a third party.
Public cloud services are delivered on the public internet
and may be shared by multiple customers. Architecturally,
there is little difference between public and private cloud
services, but there are many more security concerns for
public cloud because resources are shared by many
customers. Hybrid clouds refer to any combination of
private and public clouds.

The wide variety and complexity of cloud service and
deployment models provide a large attack surface and
many security concerns. System breaches may result from
design vulnerabilities such as improper identity credential
and access management, insecure interfaces and APIs,
account hijacking such as through phishing attacks, or even
simple programming bugs. System breaches are especially
harmful when they lead to a data breach since sensitive
information may be leaked. The risk of data breaches are
not unique to cloud computing, but the nature of the cloud
creates a greater risk for them to occur. The private cloud is

also potentially subject to any of these vulnerabilities, but
the public cloud is particularly vulnerable since it is on the
open web where malicious actors may be listening to
traffic.

2.2 Current cloud security approaches

There are many effective techniques to protect a system and
prevent a security breach. These include individual
approaches to address the security issues in the previous
section such as careful access management, creating secure
APIs, educating employees to prevent accidental credential
leakage, catching bugs in code, etc.. In the case that a
system breach does allow a malicious individual to access
data (data breach), there are also various methods to react
and minimize the damage. However, if a system is
breached, there is no way to guarantee that data is
protected.

The current best in class data protection methods are
various forms of encryption. Encryption uses mathematical
algorithms to convert data to an unusable form that can
hide it from malicious or unauthorized actors. For example,
data at rest may be protected by symmetric encryption such
as AES. Data in transit may be protected by hybrid
encryption or public-key cryptosystems such as RSA
(asymmetric cryptography). Although these classical
cryptography techniques have long provided good solutions
for protecting data there are still a few concerns. Firstly,
both classical symmetric and asymmetric encryption are
based on the idea of a “hard problem.” Although in many
cases these hard problems are indeed too difficult to crack,
they are not provably impossible. They are not, for
example, quantum proof. Secondly, the security provided
by encryption is dependent on the quality of secrets
management and keys being kept secret.

The current best in class methods for cloud secrets
management is exemplified by HashiCorp’s Vault and other
similar methods. The idea is basically to centralize the
secrets of a company or team in one specified server. This
server applies strict identity based authorization and access
controls. A user can authenticate themself with their
identity, which is then mapped to the policies controlling
what the user is authorized to do. The server then uses
encryption when writing to a disk or communicating with
users so that data is protected at rest and in motion. While
this model does have very strong security guarantees, there
is an inherent drawback: the central server is a single point
of failure. If this server itself is successfully compromised,
all security is lost. An insider with access to the unsealed
server has access to all the secrets. If the server goes down,
availability is lost.

Secret Sharing for Cloud Data Protection

Secret sharing inspired new schemes which aimed to
replace this centralized system with a decentralization that
can mimic something like HashiCorp’s Vault for secrets
management. Some implementations of systems like these
can be seen in the cryptocurrency space, but the results
have been mixed. Additionally, using secret sharing to split
up just a key does not solve the single point of failure issue
since the data could still be susceptible to ransomware or
quantum attacks.

Advancements in the distributed technologies (such as the
byzantine consensus) and verifiable secret sharing,
however, have inspired new schemes to protect data not just
by improving secrets management, but instead by splitting
the data itself. These secret sharing schemes theoretically
can enforce CIA all at the same time and prevent a single
point of failure.

3 Related Work

Researchers have written several reports surveying the
cloud data security space in peer reviewed journals or at
conferences. These range from surveys about
authentication and data CIA to key management, intrusion
detection, and performance [1]. Researchers have also
surveyed security methods on traditional distribution
frameworks systems before cloud computing exploded in
popularity. For example, a survey from the International
Conference on Security and Management in 2012 identifies
major security issues regarding data protection on
distributed storage systems and classifies the various
security methods at the time [3]. Some surveys also
investigate data encryption and auditing on the cloud [4].

Surveys on secret sharing schemes have also been
published, such as Amos Beimel’s survey at the
International Conference on Coding and Cryptology in
2011 where he investigates the limits of global data volume
and share size [5]. However, surveys examining secret
sharing for the purpose of cloud security are very few. The
most recent and comprehensive survey in this area was
published at the International Conference on Very Large
Databases (VLDB) in 2017 by Varunya Attasena, Jerome
Dermont, and Nouria Harbi [2]. Building off of work such
as Beimel’s, these authors aimed to wholly survey secret
sharing schemes in the context of cloud data security, data
access, and costs. Attasena, Dermont, and Harbi survey
over 50 secret sharing schemes. They classify these
schemes into eleven distinct groups to compare their
security propositions and storage and computing costs.
Lastly, they describe sample applications of secret sharing
schemes on the cloud. Inevitably, there is some overlap
between Attasena’s survey and this report, such as in

describing basic principles of secret sharing schemes and
their properties. However, the focus of this survey is to
analyze specific proposed frameworks using secret sharing
schemes on the cloud (in industry and academia), including
some created after the publishing of Attasena’s survey in
VLDB.

4 Secret Sharing Schemes

4.1 Classical schemes

There are over a dozen types of secret sharing schemes and
hundreds of variations within each type. Almost all of these
schemes are based on the original secret sharing schemes
published by Shamir and Blakley in 1979 and the
Asmuth-Bloom scheme in 1983 [6, 7, 8]. The goal of these
schemes is to divide a secret into shares of𝑆 𝑛 (𝑠

𝑖
,... 𝑠

𝑛
)

data such that knowing any shares (where) allows𝑡 𝑡 ≤ 𝑛
to be reconstructed. Knowledge of less than shares (the𝑆 𝑡

threshold) makes it theoretically impossible to reconstruct
the secret. Shamir’s secret sharing secures data using a
random polynomial as shown in the below equations.

(1)𝑓(𝑖) =
𝑢=0

𝑡−1

∑ 𝑘
𝑢
× 𝑖𝑢

(2)𝑠
𝑖
= 𝑓(𝑖)

The polynomial is created over a finite set (Galois field)
with coefficient as the secret and as𝑘

0
𝑘
𝑢
= 1,..., 𝑡 − 1

random numbers. Using this each share is created and𝑠
𝑖

distributed to a participant (). With the threshold number𝑃
𝑖

of shares, the original polynomial can be reconstructed with
Lagrange interpolation over a finite set. This scheme
enforces data availability even if participants are𝑛 − 𝑡
compromised or fail. In simpler terms, the secret is stored
as a special point on a polynomial. Each participant is
given a single point on this unknown polynomial. The
polynomial curve can only be reconstructed when the
threshold number of points are known. For example, there
are an infinite number of parabolas that can pass through
two points, but only one that passes through three. Since
Shamir’s scheme is based on polynomial interpolation, it is
considered to be information theoretically secure. Unlike
forms of encryption described in previous sections it is not
based on a “hard problem,” but on a provably impossible
one.

Blakely’s secret sharing achieves the same effect as
Shamir’s scheme, but associates each participant’s share
with a hyperplane (in a space with dimensions) over a𝑡
finite field instead of a point on a polynomial. The secret is
the point of intersections of the hyperplanes, which can be

U. Rao

solved using the hyperplane’s system of equations. The
Asmuth-Bloom scheme achieves the same effect by
creating coprime integers and using the Chinese Remainder
Theorem to recover the secret [8, 9].

None of the above schemes are very space efficient,
especially Blakley’s scheme. For a scheme to be
unconditionally secure, the amount of storage required is
the size of the secret times the number of shares. For small
secrets this space inefficiency is tolerable, but poses huge
cost issues for larger data. For example, if the size of the
secret to be split up into 10 shares is 1 GB, the amount of
space required is 10 GB. Another drawback of these
classical schemes is that there is no verification of
correctness of the shares brought together during the
reconstruction process. If a participant holding shares is
malicious they can cause security issues by submitting fake
shares. The following two sections detail secret sharing
schemes which address the drawbacks of space inefficiency
and lack of verification.

4.2 Schemes for improved efficiency

Many variants of classical secret sharing schemes have
been proposed for increasing efficiency, but these come at
the cost of unconditional security. Some methods have tried
to add symmetric encryption to secret sharing to account
for this loss of security. For example, a method proposed by
Krawczyk known as Secret Sharing Made Short integrates
Rabin’s Information Dispersal Algorithm (IDA) with
Shamir’s secret sharing scheme [10, 11]. Instead of the

(where is number or shares and is the size of the𝑛 * 𝑠 𝑛 𝑠
secret) storage space that classical schemes require, IDA
allows for storing the same information with space.𝑛 * 𝑠/𝑡
Krawczyk’s method first encrypts the data using symmetric
encryption, then splits the data into pieces using IDA𝑛
with a threshold, and then also creates shares of the
encryption key which are distributed to the participants
(since key lengths are small the additional space this
requires is minimal). The storage savings from Krawczyk’s
scheme still come at the cost of security. The scheme no
longer has information theoretic secrecy. However,
Krawczyk’s scheme is computationally secure, which has
many practical purposes. Other similar schemes and
theoretical lower bounds on share size can be found in [12].

Multi secret sharing schemes also aim to improve space
efficiency over classical schemes. Some are constructed
similar to Shamir’s, but instead of just one point on the
polynomial storing secrets, many points can host secrets.
[13] and [14] share data with the help of keys. In these
schemes, keys are used to create shares for an amount𝑛 𝑠 𝑚
secrets (and must be less than). Shares and keys are𝑚 𝑛 𝑠

distributed to participants. To reconstruct the secret all the
shares and a threshold number of keys is needed. [15]
achieves a similar result without using keys. Some multi
secret sharing schemes are able to achieve an overall data
storage similar to the size of the secret itself. Just like short
secret sharing schemes, multi secret sharing also sacrifices
security guarantees for the sake of efficiency.

Some recent secret sharing schemes claim to have the
efficiency of short secret sharing schemes while
maintaining the information theoretic security of Shamir’s
secret sharing. These schemes are not yet peer reviewed.
Section 5.3 of this paper investigates one such scheme
created by a company called SplitByte Inc.

4.3 Verifiable secret sharing

Both classical secret sharing schemes and their variants
discussed in the previous section still assume that all
participants are honest and provide valid information.
Verifiable secret sharing schemes solve this issue and add
fault tolerance by verifying the correctness of data or keys
in the reconstruction step [16, 17, 18, 19, 20, 21]. Verifiable
secret sharing schemes ensure data integrity in addition to
data confidentiality and data availability. There are a
multitude of verifiable secret sharing schemes, all of which
use some sort of homomorphic encryption combined with
secret sharing. For example, [21] uses inner signatures
created with a homomorphic function to verify honesty and
outer signatures created by a hash function to very
correctness when a secret is reconstructed. Outer signatures
are used before reconstruction to verify share correctness.
If at least one share is incorrect then the secret will not
match with its inner signature after reconstruction. Since
most verifiable secret sharing schemes support
homomorphism, most also allow for data analysis on
shares. [21] allows exact matches on shares, because the
same key is used to share all secrets.

There are many other types of secret sharing schemes for
specific purposes such as social secret sharing, proactive
secret sharing, weighted secret sharing, and many more.
They are detailed thoroughly in [2].

5 Secret Sharing on the Cloud
5.1 Multiple Nodes on a Single CSP

There are a plethora of different secret sharing based cloud
frameworks. Some add secret sharing to classical data
distribution frameworks in the cloud which distribute data
over nodes (the shareholders) at a single location on a
single cloud service provider (CSP). Adding secret sharing

Secret Sharing for Cloud Data Protection

to classical distribution frameworks (surveyed in [22])
allows for improving data availability in addition to
confidentiality. For example, Takahashi [23] proposes a
variant of secret sharing made short designed to be suitable
for the cloud. In his framework, both the dealing and
reconstruction processes happen on a single master server
and are distributed to nodes at one CSP. This master server
could also be a node on the cloud, but it is better if the
master server is at the user’s side to hide all private
information and keys from malicious attackers looking for
shares. This type of framework still has glaring security
weaknesses. For example, since all the shares are stored at
the same CSP, there is still a single point of failure. If the
CSP is hacked, all the shares can be collected and data can
be reconstructed.

5.2 One Node Each on Multiple CSPs

Frameworks such as the one proposed in [21] address the
above security issues by distributing secrets over multiple
CSPs, where each CSP is a participant getting a share of the
secret. It’s much more unlikely that the threshold number of
CSPs are all compromised at the same time, which provides
better data availability. Using multiple CSPs, however, may
cause data integrity issues. For example, if one CSP is
compromised, it may provide an invalid share during the
reconstruction process. [21] addresses this issue by using a
verifiable secret sharing scheme. This also allows for data
analysis on shares in a secure way without reconstruction.
Frameworks, such as [21] are generally more costly since
the user must deal with multiple CSPs, which may have
different costs for storage. Another drawback is the access
time of this type of framework is bounded by the slowest
CSP.

Some frameworks combine the previous two types of
frameworks to distribute secrets over multiple nodes at
multiple CSPs. The schemes in these frameworks are
typically some form of verifiable multi secret sharing or
social secret sharing such as [24]. All three of the
frameworks can be implemented on top of any existing
security measures. All of the schemes and frameworks
discussed so far have been from peer reviewed academic
journals or conferences. With the exception of Shamir’s
original scheme, all of them sacrifice information theoretic
security for the sake of efficiency. Some implementations
in industry, however, claim to maintain efficiency while
being information theoretically secure.

5.3 SplitByte’s Decentralized Secret Sharing Framework

SplitByte’s founder, Dr. Arvind Srinivasan, claims to have
created an algorithm that provides true verifiable short
secret sharing with the space efficiency of IDA and the
information theoretic security of Shamir’s original scheme.
It uses a Repeatable Random Sequence Generator (RRSG).
RRSG is a random sequence of bytes which can be
reproduced using an initial state or key. In SplitByte’s
scheme, an RRSG byte stream is mixed with input message
data which is used to provide random polynomial
evaluation points for the shares to be created. Additionally,
unlike Shamir’s original scheme which requires a fixed
field, the polynomials in SplitByte’s scheme can be created
over an isomorphic field. This algorithm is detailed in
Srinivasan’s paper [25] and SplitByte’s patent [26]. It is
important to note that this scheme is still under peer
review and is not yet published in any academic journals or
at conferences.

SplitByte’s SplitStore framework distributes secret data
over multiple nodes at multiple CSPs. Application related
data and split specifications are created and stored on a
distributed middleware system and all splits are stored on
nodes across many CSPs. A notable difference between
SplitByte and the frameworks discussed in 5.2 is that the
splits are not created on a main server. Only split
specifications (metadata) are created on the middleware
and the actual splits happen at the data source. SplitByte
also has a delegated access authentication scheme built in
to its framework where users are only given credentials to
the middleware. It uses a very similar authentication
scheme to OAUTH PKCE (RFC 7636) and also binds an
anonymous token to each user which is then recorded on
each node. Although SplitByte uses a verifiable secret
sharing scheme, it does not use homomorphism. It can
perform any search or read only operations on shares, but it
cannot update them in place (other schemes like [21] can).
For new data to be inserted, all the data has to be
reconstructed and then re-split. SplitByte’s SplitStore
product is designed for data lakes, data warehouses, or
other large stores of data at rest, not for databases that may
be updated frequently such as with transactions. SplitByte
also claims to have a separate product, a NoSQL database
system which natively embeds the SplitByte API to store
transactional data, but information on this is not publicly
available.

5.4 Challenges on the Cloud

There are several unique challenges posed by secret sharing
schemes on the cloud that are not present with secret
sharing in other contexts. Firstly, secret sharing schemes
designed for the cloud must be able to deal with large
amounts of data, potentially even big data volumes. Secret
sharing schemes that share data all at once, such as [14],

U. Rao

cannot handle these large volumes. Schemes such as [21],
which shares individual secrets, and SplitByte’s algorithm,
which shares data blocks, allow for parallelizing the
sharing process (potentially even in main memory), which
makes sharing large data volumes efficiently possible.
Secret sharing schemes on the cloud also have to be
relatively space efficient. As mentioned earlier, classical
schemes require space to securely store a secret. This𝑛 * 𝑠
may be acceptable for small pieces of data (e.g. keys) but
for large amounts of data on the cloud and data streams,
short secret sharing schemes or multi secret sharing
schemes are necessary. In data warehouses and databases,
aggregation, exact match, and update operations are
commonly used. Secret sharing schemes need to not only
support these operations, but also with a speed comparable
to traditional systems. Some schemes, such as SplitByte’s
SplitStore, do not support update operations efficiently.
Others, such as [21], do support in-place updates and
optimize storage and query response time.

There are also challenges that are not specific to secret
sharing schemes, but need to be considered in a secret
sharing based cloud framework. These include issues such
as bandwidth throttling by CSPs, different tiers of storage
(archival, high speed retrieval, etc.), and authentication
management. For example, in multiple CSP frameworks
(section 5.2), dealing with different authentication methods
across CSPs and accounting for different retrieval speeds
from certain locations makes the frameworks complex.
Because of these issues, even frameworks built on highly
secure sharing schemes may be insecure due to bad
architectural design and decisions. Users and companies
should carefully consider the limitations of secret sharing
schemes before implementing them in cloud frameworks.

6 Conclusion

When verifiable secret sharing is used as the cryptographic
primitive powering data protection, there are many
additional security guarantees over just encryption. With
the threshold properties of secret sharing schemes, a user
does not need to assume a single server is uncorrupted.
Instead, this assumption is replaced with a more durable
assumption that no more than the threshold number of
nodes/servers are compromised at the same time.
Availability guarantees also increase because fault tolerant
reconstruction works even if some nodes are compromised.
Shamir’s secret sharing is also a cryptographic upgrade
from classical heuristic cryptographic security and a single
secret key securing encryption to information theoretic
security with a threshold structure where no single piece of
data can compromise the scheme. Of course secret sharing

can be layered on top of existing forms of encryption too.
They do not have to be mutually exclusive.

The main drawback of using true secret sharing schemes is
space inefficiency. In order to be more space efficient, most
schemes discussed in this paper compromise some level of
security. The schemes are still computationally secure, but
are not unconditionally secure. However, even with these
more efficient schemes the cost of data storage is still
significantly higher than with traditional security methods.
For most companies, this cost increase may be offset by
avoiding fines from violating data privacy or safe harbor
laws or even reputation damage from sending notifications
to users. For example, if a company stores its data in one
central location and incurs a security breach on that system,
there is no way to immediately prove that its data was not
compromised even if the data was encrypted. Even
classical distribution frameworks [22] face the same issue
since each location where data is distributed still holds
meaningful information. In contrast, a company can use a
secret sharing based multiple CSP model (e.g. [21] or
SplitByte) and split their data across, for example, five
geographical locations with the threshold number at three.
In this case, even if a malicious attacker is able hack a CSP
and compromise a location, the data there is meaningless. If
the attacker is not able to compromise three separate CSPs
at the same time, then the company is able to provably
prevent a data breach. Additionally, this scheme provides
protection from ransomware such as re-encryption attacks
since an attacker holding one or two nodes hostage is not a
threat to the availability, confidentiality, or integrity of the
data.

All the secret sharing schemes discussed in this paper
mainly address the security of data at rest to provide an
alternative to symmetric encryption, but many of them can
also be applied to data in motion. For example, take the
case of two users sending emails back and forth. An email
can be split on the sender’s device and sent over different
channels to be reassembled on the receiver’s device. Since
the shares are sent over different channels, even if a
snooper is able to compromise a channel and grab a share,
they will not be able to reconstruct the email. Secret
sharing schemes also provide a solution to secure data in
use. Secret sharing schemes such as [21] can be the
foundation for Multi Party Computation (MPC).
Participants can concurrently process or compute on shares,
without ever revealing the secret during computation.

For decades, since secret sharing was introduced, it has
been understood and studied by academics, but considered
impractical for most data protection purposes due to its
efficiency issues. Continued evolution of secret sharing

Secret Sharing for Cloud Data Protection

schemes, advancements in distributed computing, and
reduced costs for storage have prompted companies to
explore this space. Industry implementations of secret
sharing based frameworks on the cloud are still very few,
but some companies, such as SplitByte, even have
commercial pilots. Given the current proliferation of data at
the petabyte scale, cloud data security is now more
important than ever. Secret sharing based data protection
may prove to be a solution.

References

[1] Derbeko, P., Dolev, S., Gudes, E., Sharma, S.:
Security and Privacy Aspects in Mapreduce on
Clouds: A survey. Computer Science Review 20,
1–28 (2016).

[2] Attasena, V., Harbi, N., Darmont, J.: Secret
Sharing for Cloud Data Security. The International
Journal on Very Large Databases, Springer-Verlag,
2017, 26 (5), pp.657-681. Ffhal01529610f. (2017).

[3] Xu, Z., Martin, K., Kotnik, C.: A Survey of
Security Services and Techniques in Distributed
Storage Systems. In: 2011 International
Conference on Security and Management (SAM
2011), Las Vegas, USA, pp. 3–9. (2011).

[4] Wei, D.S., Murugesan, S., Kuo, S.Y., Naik, K.,
Krizanc, D.: Enhancing Data Integrity and Privacy
in the Cloud: An Agenda. IEEE Computer 46(11),
87–90. (2013).

[5] Beimel, A.: Secret-Sharing Schemes: A Survey.
In: 3rd International Conference on Coding and
Cryptology (IWCC 2011), Qingdao, China, pp.
11–46. (2011).

[6] Shamir, A.: How to Share a Secret.
Communications of the ACM 22(11), 612–613.
(1979).

[7] Blakley, G.R.: Safeguarding Cryptographic Keys.
In: National Computer Conference (AFIPS 1979),
Monval, USA, pp. 313–317. (1979).

[8] Asmuth, C., Bloom, J.: A modular approach to
key safeguarding. IEEE Transactions on
Information Theory 29(2), 208–210. (1983).

[9] Ding, C., Pei, D., Salomaa, A.: Chinese
Remainder Theorem: Applications in Computing,
Coding, Cryptography. World Scientific
Publishing, Singapore. (1996).

[10] Krawczyk H., “Secret Sharing Made Short.” In:
Stinson D.R. (eds) Advances in Cryptology —
CRYPTO’ 93. CRYPTO 1993. Lecture Notes in
Computer Science, vol 773. Springer, Berlin,
Heidelberg. (1994).

[11] Rabin M. O.: Efficient Dispersal of Information
for Security, Load Balancing and Fault Tolerance
JACM, Vol. 36 No. 2 pp. 335-348. (1989).

[12] Beguin P., A.Cresti.: General Short Computational
Secret Sharing Schemes, Advances in Cryptology
- EUROCRYPT ’95, LNCS 921, pp. 194-208.
(1995).

[13] Waseda, A., Soshi, M.: Consideration for Multi
Threshold Multi-secret Sharing Schemes. In: 2012
International Symposium on Information Theory
and its Applications (ISITA 2012), Honolulu,
USA, pp. 265–269. (2012).

[14] Yang, C.C., Chang, T.Y., Hwang, M.S.: A (t,n)
Multi Secret Sharing Scheme. Applied
Mathematics and Computation 151(2), 483–490.
(2004).

[15] Liu, Y.X., Harn, L., Yang, C.N., Zhang, Y.Q.:
Efficient (n, t, n) secret sharing schemes. Journal
of Systems and Software 85(6), 1325–1332.
(2012).

[16] Chor B., Goldwasser S., Micali, S., Awerbuch, B.:
Verifiable secret sharing and achieving
simultaneity in the presence of faults, 26th Annual
Symposium on Foundations of Computer Science
(sfcs 1985), 1985, pp. 383-395, doi:
10.1109/SFCS.1985.64.

[17] Zhao, D., Peng, H., Wang, C., Yang, Y.: A secret
sharing scheme with a short share realizing the
(t,n) threshold and the adversary structure.
Computers and Mathematics with Applications
64(4), 611615 (2012)

[18] Feldman, P.:A practical scheme for non-interactive
verifiable secret sharing, 28th Annual Symposium
on Foundations of Computer Science (sfcs 1987),
1987, pp. 427-438, doi: 10.1109/SFCS.1987.4.

[19] Shi, R., Zhong, H., Huang, L.: A (t, n)-threshold
verified multi-secret sharing scheme based on
ECDLP. In: International Conference on
InterSoftware Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed (ACIS
2007), pp. 9–13 (2007)

[20] Attasena, V., Harbi, N., Darmont, J.: fVSS: A New
Secure and Cost-Efficient Scheme for Cloud Data
Warehouses. In: ACM 17th International
Conference on Data Warehouses and OLAP
(DOLAP 2014), Shanghai, China, pp. 81–90.
ACM (2014)

[21] Attasena, V., Harbi, N., Darmont, J.: A Novel
MultiSecret Sharing Approach for Secure Data
Warehousing and On-Line Analysis Processing in
the Cloud. International Journal of Data
Warehousing and Mining 11(2), 21–42 (2015)

[22] Padmanabhan, P., Gruenwald, L., Vallur, A.,
Atiquzzaman, M.: A survey of data replication

U. Rao

techniques for mobile ad hoc network databases.
The VLDB Journal 17(5), 1143–1164 (2008)

[23] Takahashi, S., Iwamura, K.: Secret Sharing
Scheme Suitable for Cloud Computing. In:
International conference on Advanced Information
Networking and Applications (AINA 2013),
Barcelona, Spain, pp. 530–537 (2013)

[24] Zheng, T., Wu, H., Lin, H.W., Pan, J.: Application
of belief learning model based socio-rational
secret sharing scheme on cloud storage. In: 6th
International Conference on Genetic and
Evolutionary Computing (ICGEC 2012),
Kitakyushu, Japan, pp. 15–18 (2012)

[25] Chan, C., Srinivasan, A.: Short Secret Sharing
Using Repeatable Random Sequence Generators.
(2018). Retrieved from
https://arxiv.org/ftp/arxiv/papers/2101/2101.09317
.pdf

[26] SplitByte Inc., 2021. Systems and Methods for
Managing Data Based on Secret Sharing. (Apr.
2021). US Patent No. 10985911 B2. Filed Nov.
13th, 2018, Issued Apr. 20th, 2021.

[27] Puranik, M.: Council Post: What Is the Cost of a
Data Breach? In: Forbes. Retrieved from
https://www.forbes.com/sites/forbestechcouncil/20
19/12/02/what-is-the-cost-of-a-data-breach/?sh=39
250a8a29e7. (2019).

[28] Columbus, L.: 2020 Roundup of Cybersecurity
Forecasts & Market Estimates. In: Forbes.
Retrieved from
https://www.forbes.com/sites/louiscolumbus/2020/
04/05/2020-roundup-of-cybersecurity-forecasts-an
d-market-estimates/?sh=279f4448381d. (2020).

[29] Cimpanu, C.: Cognizant expects to lose between
$50m and $70m following ransomware attack.
Retrieved from
https://www.zdnet.com/article/cognizant-expects-t
o-lose-between-50m-and-70m-following-ransomw
are-attack/. (2020).

