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Abstract

Conventional active coolers including water heat pumps and air conditioning have mov-

ing components that can cause mechanical failure and fatigue over time. They cannot be

down-scaled to micron sizes and cannot be integrated into on-chip small-scale designs.

Thermomagnetic and thermoelectric cooling systems emerged as an alternative to conven-

tional active cooling systems. Thermomagnetic cooling systems are based on the Nernst-

Ettingshausen effect that was observed in Bismuth for the first time. In the presence of an

electric current and a perpendicular magnetic field, electrons and holes are pushed to oppos-

ite sides due to the Lorentz force. The migration of charge carriers develops a temperature

gradient across the material, perpendicular to both electric current and magnetic field. Hence,

heat can be pumped across the sample, this is the basis of Ettingshausen coolers. Similarly,

applying a magnetic field perpendicular to a temperature gradient generates a transverse

voltage difference, the so-called Nernst Voltage.

The primary objective of this dissertation is to develop a code to calculate the response of

a system to the simultaneous presence of a magnetic field and a temperature gradient using

first-principles density functional theory. First, I obtained the Nernst coefficient within con-

stant relaxation time approximation to establish an insight into the Nernst effect and how it is

related to the details of the band-structure. The aforementioned method is, however, unable

to reconstruct the experimentally measured values as the Nernst coefficient is sensitive to

the details of the relaxation times and in particular, it is proportional to the carrier mobility.

Therefore, I implement the charge carrier relaxation time due to various scattering mech-

anisms including electron-phonon and electron-ionized impurity scattering in our theory.

Experimental data of germanium, silicon, indium antimonide, and bismuth in a wide range

of temperatures and doping concentrations were successfully reproduced. Furthermore, with

the help of analytical models, I obtained a simplified model for the Nernst coefficient in or-

der to find the material descriptors to predict the Nernst coefficient which turned out to be

effective mass.

Lastly, I propose an approach to evaluate anomalous Nernst transport within the density func-

tional theory framework. The semi-classical Boltzmann transport was modified by adding

the effect of Berry curvature. Once the formalism was completed, the approach was imple-
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mented on the basis set of maximally localized Wannier functions and applied to Fe3Sn to

replicate the experimental data.
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CHAPTER I

Introduction

1.1 Background

Waste heat is an inevitable by-product of power generation systems and electric circuits.

According to the laws of thermodynamics, the maximum output power in any heat engine

is limited and a fraction of heat is released to the surrounding ambient. Especially, waste

heat flow becomes more significant in high-temperature industrial processes. Thermoelectric

(TE) and thermomagnetic (TM) generators have emerged as promising ways to convert waste

heat into electricity via the Seebeck and Nernst effects, respectively. In 1821, one year

after Oersted’s famous experiment, Thomas Johann Seebeck discovered the diffusive voltage

response of electrons to an applied temperature gradient, a phenomenon that is named after

him. The Seebeck effect is the basis of heat to electricity in thermoelectric power generators

and temperature sensing in thermocouples. In 1886, Nernst and Ettingshausen discovered

that applying a temperature gradient ∇T orthogonal to a magnetic field H in bismuth leads

to a transverse electric field perpendicular to both H and ∇T [1] (Fig. 1.1).

This discovery opened a new path to convert wasted heat to electrical power and is the basis

of thermomagnetic power generators. In addition, any heat engine can be operated in reverse

mode and as a refrigerator. Hence, both thermoelectrics and thermomagnetics also have

potential applications in cooling systems. Unlike conventional refrigerators, TE and TM re-

frigerators are CFC(Chlorofluorocarbons)-free and, consequently, environmentally friendly.

The remarkable advantage of TE and TM generators is the direct energy conversion without

any intermediate cycles. Additionally, there are no moving parts due to a lack of mechanical

involvement which can lead to a longer life-span and a lower maintenance cost.

One of the first niches of TE generators was the aerospace section where safety and life-

span are of great importance. TE generators based on spontaneous radioactive decay have
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Figure 1.1: Schematic comparison of the Seebeck effect versus Nernst effects. An n-type
Seebeck module in which the temperature gradient and the electric field are in the same
direction(a). In a Nernst module electrons and holes move in opposite directions by the
external magnetic field (H) (b).

been used to provide electricity for spacecrafts [2]. Energy Harvesting from the human body

is desirable as an uninterrupted and consistent source of energy for wearable devices. The

routine activities of a 150 lb [3] adult may develop over 100 Watts of power, through walking,

breathing, and blood circulation. Recently, flexible TE generators have caught attention and

various categories of structures such as bulk materials [4], thin films [5], fibers [6], organic

compounds [7], and printable TE inks [8] have been studied. Flexible TE generators could

be planted on the human body, however, plasticity is crucial for flexible TE generators to

tolerate the deformation regarding the unusual geometries of the human body. Inspired by

the self-healing feature of the human skin, self-healing electronic materials were expected

to be efficient wearable thermoelectrics. Ren et.al. [9] fabricated a flexible TE generator by

assembling modular thermoelectric chips, dynamic covalent polyimine, and flowable liquid-

metal electrical wiring in a mechanical architecture design of soft motherboard-rigid plugin

modules. They recorded an open-circuit voltage of 1 V/cm2 at a temperature difference of

95 0C.

Years after Nernst-Ettingshausen’s discovery, Smith started significant experiments on the

thermomagnetic effect in metals. He reported the Nernst signal in nickel, cobalt [10], several

rare metals, and alloys such as bismuth-tin, antimony, lead, and cadmium [11]. Furthermore,

He managed to enhance the Nernst coefficient of nickel tenfold by alloying with copper and

iron. [12].



3

Semiconductors were the next candidates. The Nernst coefficient of germanium at room

temperature was measured to be as high as 350 µV/KT . [13] Indium antimonide is another

semiconductor that showed relatively large values of the Nernst coefficient (∼100 µV/KT )

at 300 0K [14, 15].

On the theory side, several models have been developed for the thermomagnetic effect and

in particular the Nernst effect. Moreau [16] stated that the Nernst coefficient is linearly pro-

portional to the Thompson coefficient, the Hall coefficient, and the electrical conductivity.

His relation was inspired by experimental observation and physical approximations and was

shown to work for several samples. [16–19] Sommerfeld and Frank made the first attempt

to model thermomagnetic effects using the electron theory of metals. [20] They obtained

a distribution function in the presence of a magnetic field by solving the Boltzmann trans-

port equation (BTE) and used linear response theory to obtain an equation for the Nernst

coefficient. Sondheimer developed an equation for the Nernst coefficient in metals with

the assumption of two partially filled spherical bands of s and d orbitals that are overlap-

ping [21]. Callen [22] used the Onsager’s reciprocity relations and expressed the thermomag-

netic and galvanometric responses, and considered them as steady-state reversible thermo-

dynamic processes. Putley [23] applied the Lorentz-Sommerfeld theory [24–26] to extract

thermomagnetic and galvanomagnetic coefficients and obtained a close agreement between

the theory and experiments for lead selenide and lead telluride. Price generated a phenomen-

ological model for the Nernst coefficient in a two-band semiconductor using Boltzmann

statistics [27]. In 1965, Delves [28] studied the symmetry of thermomagnetic properties of

semiconductors and semimetals within the relaxation time approximation (RTA) and multi-

valley band structure. In the late 90’s, Nakamura et.al. consistently studied the thermo-

magnetic effect in semiconductors for both parabolic [29] and non-parabolic [30] dispersion

and compared the theory with experiments. They used a Maxwell-Boltzmann-like distribu-

tion function to analytically solve the BTE in the presence of a magnetic field. Table. 1.1

summarizes major equations of the Nernst coefficient developed in the past along with the

physical quantities that determine the Nernst coefficient.

More recently, Liu et.al. [31] proposed that a magnetic field acts on the time evolution of

wave vectors and accordingly alters the dc electrical conductivity. By using Wannier inter-

polation, the BTE under a magnetic field was numerically solved and electrical conductivity,



4

Table 1.1: Equations that have been proposed for the Nernst coefficient with quantities de-
termining the Nearest coefficient. Parameters are described in the references [16, 20–23, 27,
28]

Author Nernst coefficient Quantities
Moreau TRHσ

∂S
∂T

Mobility and Thomson coefficient

Sommerfeld K1K′
4-K2K′

3

µ2K2
1+K2

2
Mobility and Fermi level

Sondheimer K2T
Hϵ

(Qs+Qd)(Vs+Vd)-(Ps-Pd)(Ws-Wd)
V

Effective mass and Fermi level

Callen L11L14−L12L13

eHT (L2
11+L2

13)
Seebeck coefficient and electrical conductivity

Putley -3πkBq
16

(n2µ3
e+p2µ3

h)-npµeµhµ(7+2E′)

σ2 Mobility, DOS, and electrical conductivity

Price k
ec
[β12σ1σ2

σ2 +β1σ1

σ
+β2σ2

σ
] Mobility and electrical conductivity

Delves σyxMxx−σxxMyx

Hzσxxσyy
DOS, In-plane and cross-plane electrical conductivity

Hall conductivity, and Hall coefficient were obtained for the case of MgB2.

Recently, density functional theory (DFT) has emerged as a powerful method to calculate

the electronic properties of materials [32]. Various codes were developed to compute the

band-dependent quantities such as thermoelectric properties based on Fourier expansion of

bands [33, 34] or maximally-localized Wannier function basis [35]. There are however very

few first-principles studies of thermomagnetic and galvanometric effects up to now.

Macheda and Bonini [36] made the first attempt to model magnetoresistance using first-

principles calculations to solve the linearized BTE through an iterative conjugate gradient

algorithm. Band energies, band velocities, and electron-phonon scattering rates were com-

puted via first-principles methods. Zhang et.al [37] probed the magnetoresistance of copper,

bismuth, and WP2 by combining the Fermi surfaces from first-principles and the BTE using

the approach described in Ref. [31]. Lastly, Desai et.al. [38] replaced the force on electrons

due to the presence of a magnetic field by qν × H , where ν and H are band velocity and

magnetic field, respectively. Very recently, quantities that rely on energy dispersion, e.g.

mobility and electrical resistivity, were calculated through first-principles DFT implemented

in the Perturbo code [39].
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The solution of BTE under a temperature gradient and an electric field yields thermoelectric

transport coefficients such as the Seebeck coefficient, electrical conductivity, and electronic

thermal conductivity. Recently, Several codes have been developed to compute thermoelec-

tric transport coefficients using first-principles density functional theory, though, the sci-

ence and engineering community lacks a similar code to calculate thermomagnetic transport

coefficients. In this work, I solve the Boltzmann Transport Equation (BTE) under open

voltage conditions and in the presence of simultaneously applied magnetic field and temper-

ature gradient and obtain the thermomagnetic transport coefficients, namely the Nernst, Hall,

and Ettingshausen coefficients. The calculations are implemented in the framework of DFT

and with maximally-localized Wannier functions basis, [40] within the Jones-Zener expan-

sion [41]. In order to accomplish an insight into the Nernst effect, first I analyzed BTE within

the constant relaxation time approximation. In Contrast to the Seebeck coefficient which is

not sensitive to the details of the relaxation times, the Nernst coefficient is proportional to

the carrier mobility and hence is greatly affected by the relaxation times. Therefore, In or-

der to reproduce and predict experimental data, I advanced beyond constant relaxation time

approximation by the inclusion of the electron-phonon and the electron-impurity relaxation

times.

1.2 Objectives and scopes

The overarching objective of this work is to develop an approach to evaluate the Nernst coef-

ficient using first-principles density functional theory within relaxation time approximation.

Our approach overcomes the limitations of phenomenological methods that work only for

specific materials and are not transferable. Unlike the empirical models, Our theory does not

require fitting parameters and is based on the maximally localized Wannier functions. Band-

dependent quantities such as velocity and effective mass tensor along with scattering rates

due to various mechanisms are computed in Fourier space. The aforementioned quantities

are coupled to derive the total distribution function followed by thermomagnetic coefficient

calculation. Matrix analysis and arithmetic operations are carried out by accurate algebra

libraries (LAPACK and BLAS) for numerical methods. Not only does our approach enable

scientists and engineers to predict the thermomagnetic properties of materials, but it also

provides a fundamental insight into the Nernst effect for technological applications.
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Chapters of this dissertation are intended to be fairly self-supporting, such that readers in-

terested in a specific aspect of thermomagnetic can start reading directly that chapter with

no major dependence on the other chapters. For those interested, though, a reasonably thor-

ough theory and background are provided. The next chapters of this study are presented as

follows:

i. Thermoelectric

ii. Nernst Coefficient within CRTA

iii. Nernst Coefficient beyond CRTA

iv. Charge carrier relaxation time for doped semiconductors

v. Anomalous Nernst effect

vi. Conclusion and future works
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CHAPTER II

Thermoelectric Materials

The Thermoelectric (TE) effect is the conversion of a temperature gradient into a potential

difference. Thermal energy is one of the excessively available energy forms which is inevit-

ably wasted in numerous sectors specifically electronics such as computers, electric circuits,

and power transfer. A Thermoelectric module is capable of converting that heat loss to elec-

tric energy. In order to increase the output power, a thermoelectric generator is often made

of many p-n pair thermocouples connected thermally in parallel and electrically in series

(Fig 2.1 ). Assume A and B legs in Fig. 2.1 are n-type and p-type, respectively, the voltage

at the external terminal connected to the p-type leg is shown by V1 and voltage at the outside

terminal connected to the n-type leg is V2. An electrical load with the resistance of RL is

connected in series with the TE device which is composed of n TE couples. The equivalent

resistance of the TE device couples is the summation of all resistors as they are connected

in series R=n[Rp+Rn]. Similarly, the equivalent thermal conductance (K) of the device is

K=n[Kp+Kn] as they are thermally connected in parallel.

In practical, there is always a contact resistance (Ra) in the device which should be taken

into account. For the sake of simplicity, I estimate the electrical resistivity of n and p legs

are equal, hence, the equivalent internal resistance is R=2nRp+Ra and the voltage difference

in the terminal and input electrical current become:

VTE = V2 − V1 = n[IR− S ·∆T ] = n.I.R− VS

I =
VS

n.R +RL

=
n.S∆T

n.R +RL

(2.1)

In which S is the Seebeck coefficient and S=SA-SB. The electric output power delivered by

TE device to the load becomes P=n.(S.I.∆-R.I2)and the output power absorbed by the load

is P=-VTE .I=n.[R.I2-S.I.∆T]. The maximum electric output power happens when the output
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Figure 2.1: A schematic configuration of a thermoelectric generator containing thermo-
couples (TC) along with the temperature gradient (a). The equivalent electrical circuit of
a thermoelectric generator with electrical resistors in series (b).

power is optimized with respect to the electric current.

Pmax =
n.(S.∆T )2

4R

Imax =
S.∆T

2R

(2.2)

The electrical output power becomes maximum if R=RL. The heat flow absorbed at the hot

junction of the TE device is assessed by Q̇ = n.[S.TH .I − R.I2

2
+K.∆T ]

The electrical efficiency of a TE generator is defined as the ration of the electric output power

(P) to the heat input (Q̇) absorbed at the hot side.

η =
P

Q̇
=

n.RL.∆T.S2

K(n.R +RL)2 + n.(RL.TH + n.R.T ).S2
(2.3)

Where T is the average temperature between hot and cold sides. Figure of merit for a TE

device is defined as zT = σS2T
κ

, where σ and κ are electrical conductivity and thermal

conductivity, respectively. TE efficiency (Eq. 2.3) could be simplified further.

η =
∆T

TH

√
1 + zT − 1√

1 + zT + Tc/TH

(2.4)
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2.1 Technological applications

Thermoelectric modules are of great interest in various applications such as electricity gen-

eration from waste heat [42–44], solid-state refrigeration [45, 46], active cooling [47, 48],

small scale heat scavenging [49–51], spacecrafts [52, 53], health monitoring and tracking

systems [54], and self-powered wireless platforms [55]. Thermoelectric modules’ power

generation efficiency and refrigeration coefficient of performance are assessed by the quality

of the materials used as p and n legs.

Depending on desired power and dimensions, thermoelectric generations are categorized into

bulk and micro thermoelectric generators. Bulk thermoelectric generators are widely used in

industries and have dimensions as large as millimeters and develop large output power of as

much as a few hundred watts. Micro thermoelectric generators operate with small values of

the wasted heat and deliver output power in the order of milliwatts. I briefly introduce some

thermoelectric applications in the next paragraphs.

Body heat is a form of waste heat that can be exploited to supply wearable and implanted

medical devices for health monitoring and tracking systems as well as athletic wearable

devices [54, 56]. Such wireless sensors monitor health and safety conditions. The rejected

Heat from the human body is the driving force for these wearable devices. The applica-

tion of wearable thermoelectric generators is not limited to patients, they are also employed

in normal daily routines for calorie burning and sleep tracking. The average temperature

difference between the human body and the atmosphere is around 13 0C which would be

sufficient for wearable devices that need no more than 5 mW power to work [57]. More

importantly, wearable thermoelectric generators excel the traditional implantable medical

sensors in maintenance as they do not require batteries [58].

Wireless Sensor Networks have caught excessive attention recently. Wireless communica-

tion is used in the area of smart and advanced sensors network. Thermoelectric generat-

ors emerged as a complimentary part for wireless sensor networks in several ways such as

Building Energy Management [59], electronic industry [60], and commercial and residen-

tial smart-buildings [61] where waste heat from water boilers, pipes, and air conditioners

is ample. Moreover, thermoelectric-based self-powered wireless sensor networks have been

recently exploited in aeronautical wireless sensors to control flight safety and security [62].
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Due to dimensional restrictions of wireless sensor nodes, the thermocouple for this applica-

tion needs to be minute and needs small temperature detection (heat source no more than 300
0K). Ideally, wireless sensor networks ought to be 10 to 100 mW of power consumption and

10 to 50 µW at sleep mode [58].Bi2Te3 was found to work efficiently for powering wireless

sensor network nodes for building energy management [60].

Aerospace is another field that demands advances in thermoelectrics. Thermoelectric gen-

erators and radioisotope thermoelectric generators are commonly utilized in space crafts,

satellites, and space probes. Radioisotope thermoelectric generators are heated through the

enthalpy of the natural decay reaction of radioactive materials. Isotopes that are chosen as

fuels must own certain physical and chemical features such as low radiation emission, spe-

cific half-life with the mission duration, stability at elevated temperatures, and high-power

density. By far, only five radioactive isotopes have met the requirement posted by the Depart-

ment Of Energy (DOE) and the US space missions: Plutonium-238 (Pu-238), Polonium-210

(Po-210), Strontium-90 (Sr-90), Cerium-144 (Ce-144), and Promethium-147 (Pm-147) [63].

Later on, NASA launched the first modulator general purpose heat source radioisotope ther-

moelectric generator on Galileo spacecraft [64]. Each modulator was fueled by Plutonium-

238 and released 285 Watt energy at the beginning of the mission. The most recent version

of the radioisotope thermoelectric generator for space missions is multi-mission radioisotope

thermoelectric generator that is made of PbTe [65].

2.2 Boltzmann transport equation

The motion of an electron wave packet is often illustrated by wave vector (k) and location

(r).

ṙ =
∂εn,k
ℏ∂k

k̇ =
q

ℏ
E

(2.5)

Boltzmann transport equation (BTE) details the behavior of a system that is thermodynamic-

ally not in the equilibrium state due to a driving force. Examples of driving forces that push

a system out of equilibrium are gradients of temperature, chemical potential, and electric

charge. BTE under a temperature difference and an electric field is commonly used to de-
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scribe the Seebeck effect in solid-state devices. The probability of a carrier with wave vector

k, being at position r at time t is assessed by the distribution function f which contains an

equilibrium part (f 0
k ) and a non-equilibrium counterpart (fk). A crude approximation is BTE

within constant relaxation time approximation (CRTA) that is regularly considered to find

the distribution function and, consequently, evaluate the transport properties of materials.

(k̇ · ∇k + ṙ · ∇r)fk =
f 0
k − fk
τ

(2.6)

Replacing the equations of motion 2.5 in BTE 2.6 results in an equation for the distribution

function.

qE · ∇kfk +
∂εn,k
∂k

· ∇kfk =
f 0
k − fk
τ

(2.7)

∂ε(n,k)
∂k

is ℏν where ν is the band velocity. On the other hand, derivatives with respect to k

can be turned into derivatives with respect to energy, and the deviation of the distribution

function from the equilibrium is shown by f 1
k = fk − f 0

k .

ν ·
[
qE + T∇(

εn,k − µ

T
)
]∂f 0

k

∂ε
= −f 1

k

τ
(2.8)

The electrical conductivity (σ), the Seebeck coefficient (S), and the electronic part of thermal

conductivity (κe) tensors at a given temperature, T, can be obtained from:

σij

q2
=
∫
(−∂f(ε, µ, T )

∂ε
) Ξij(ε) dε (2.9)

(σ · S)ijT
q

=
∫

(−∂f(ε, µ, T )

∂ε
)(ε− µ)Ξij(ε)dε (2.10)

KijT=
∫

(−∂f(ε, µ, T )

∂ε
)(ε− µ)2Ξij(ε)dε (2.11)

in which q is the electron charge, µ is the chemical potential, and Ξ(ε) is the transport

distribution function (differential conductivity) which is defined as:

Ξij(ε)=
1

V Nk

∑
n,k

νi(n, k)νj(n, k)τδ(ε− εn,k) (2.12)

where V is the unit cell volume and νi(n, k) is the ith Cartesian component of the velocity of

the nth band at wave vector k with Nk k-points. The electronic part of the thermal conductiv-
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ity is given by κel = K − σS2T . Finally, τ is electron relaxation time. Although a constant

relaxation time might be a reasonable assumption for the evaluation of the Seebeck coeffi-

cient, for an accurate evaluation of the intrinsic electrical and electronic thermal conductivity,

one needs to quantitatively calculate electron-phonon and ionized impurity scattering rates as

a function of energy. Multiple post-processing codes have been developed to obtain thermo-

electric coefficients within CRTA, namely, BoltzWann [35] and BoltzTraP [33]. BoltzWann

code performs integration with a maximally-localized Wannier functions basis set, whilst,

BoltzTraP is based on a smoothed Fourier interpolation of electronic structure.

2.3 BTE analytical solution

Occupation probability of a state with energy ε is given by the equilibrium Fermi- Dirac

distribution function at a chemical potential (µ).

f 0(ε) =
1

1 + exp
(
ε−µ
kBT

) (2.13)

Having the distribution function along with the density of states (g(ε)), the electron (ne) and

hole concentrations(ph) at a given chemical potential can be attained.

ne =

∫ ∞

εc

f(µ, ε, T )g(ε)dε

ph =

∫ εv

−∞

[
1− f(µ, ε, T )

]
g(ε)dε

(2.14)

Where εv and εc are the top of the valence band and the bottom of the conduction band,

respectively. Boltzmann transport equation 2.8 within relaxation time approximation can be

analytically solved. For the sake of simplicity, I reduce the BTE in 1-D, along the x-axis.

ν ·
[∂µ
∂x

+ (
ε− µ

T
)
∂T

∂x

]∂f 0
k

∂ε
= −f 1

k

τ
(2.15)

Electric (J) and heat (Q) currents are defined as below:

J =

∫
qνf(ε)g(ε)dε

Q =

∫
qν(ε− µ)f(ε)g(ε)dε

(2.16)
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From the BTE(Eq. 2.15) the electric current is expressed as a function of velocity.

J =

∫
qν2

xτg(ε)[
∂µ

∂x
+ (

ε− µ

T
)
∂T

∂x

]∂f 0
k

∂ε
dε (2.17)

For a parabolic dispersion g(ε) = m
√
2mε

4π2ℏ3 and ν2
x = 2ε

3m
, so that the current equation 2.17 is

simplified.

J =
2q
√
2m

3π2ℏ3

∫
ε3/2τ

[∂µ
∂x

+ (
ε− µ

T
)
∂T

∂x

]∂f 0
k

∂ε
dε (2.18)

Electrical conductivity (σ) is the ratio of the electric current to the electric field in the absence

of the temperature gradient. Seebeck coefficient is determined by the ratio of the electric field

to the temperature gradient in an open circuit condition (J=0).

σ =
J

∂µ/q∂x
=

2q2
√
2m

3π2ℏ3

∫
ε3/2τ

∂f 0
k

∂ε
dε

S =
E

∂T/∂x

(2.19)

I also introduce the Fermi-Dirac integral in order to summarize the mathematical equations.

Fn(z) =

∫ ∞

0

znf 0(z)dz (2.20)

2.3.1 Metals and degenerate semiconductors

In case of metals and degenerate semiconductors, Fermi-Dirac integral turns into the famil-

iar Γ integral. Also, Sommerfeld expansion [20, 25] holds true for metals and heavily doped

semiconductors. So that the Fermi-Dirac integral is reduced to Fn(z) = zn+1

n+1
. After do-

ing some algebra electrical conductivity for metals and degenerate semiconductors will be

earned.

σ(µ) =
2τq2

√
2m

3π2ℏ3
µ3/2 (2.21)
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From Eq. 2.18 and 2.21 and the Sommerfeld expansion the electric current equation can be

written as a function of electrical conductivity.

J = −1

q

∂µ

∂x
σ − 1

qT

∂T

∂x

π2

3
(kBT )

22q
2
√
2m

3π2ℏ3
∂(ε3/2τ)

∂ε

∣∣∣
ε=µ

(2.22)

The Seebeck coefficient is defined in an open-circuit condition and to clarify the above equa-

tion, I introduce a new parameter as σ(ε) = 2q2τ
√
2mε3/2

3π2ℏ3 .

S = −π2

3q
k2
BT

∂ln(σ(ε))

∂ε

∣∣∣
ε=µ

(2.23)

The above equation is known as the Mott formula. Importantly, for metals and heavily

doped semiconductors the Seebeck coefficient grows versus temperature. Relaxation time

is often approximated as a power function of energy (τ = τ0ε
r) that leads to a well-defined

formulation for the Seebeck coefficient in metals and heavily doped semiconductors.

S =
π2k2

BT

3q

r + 3/2

µ
(2.24)

Having the physical constants replaced in Eq. 2.24 the Seebeck coefficient of metals and

heavily doped semiconductors would be no more than a few tens of µV/K and it is inversely

proportional to chemical potential.

2.3.2 Non-degenerate semiconductors

For a non-degenerate semiconductor the Fermi-Dirac distribution function is estimated as

exp
(
µ−ε
kBT

)
and thus the Fermi-Dirac integral turns into Fn(z) = exp(z)Γ(n + 1), where

Γ(z) =
∫∞
0

uz−1exp(−u)du. With the same assumptions of a parabolic dispersion and

a power function for relaxation time, in an analogous way, the electrical conductivity and

Seebeck coefficient for a non-degenerate semiconductor are derived.

σ(µ) =
q2τ0(r + 3/2)

3π2m

(2mkBT

ℏ2
)3/2

Γ(r + 3/2) exp
( µ

kBT

)
S =

kB
q

( µ

kBT
− r − 5/2

) (2.25)
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In contradiction with metals, the Seebeck coefficient for a non-degenerate semiconductor is

linearly proportional to chemical potential and even for a chemical potential as low as 0.1 eV

the Seebeck coefficient can reach nearly 100µV/K. This is a single band model and as an

example for a two band system, both bands (valence and conduction) contribute from each

band.

σv(µ) =
q2τ0(r + 3/2)

3π2mv

(2mvkBT

ℏ2
)3/2

Γ(r + 3/2) exp
(εv − ε

kBT

)
Sv =

kB
q

(εv − ε

kBT
− r − 5/2

)
σc(µ) =

q2τ0(r + 3/2)

3π2mc

(2mckBT

ℏ2
)3/2

Γ(r + 3/2) exp
(ε− εc
kBT

)
Sc = −kB

q

(ε− εc
kBT

− r − 5/2
) (2.26)

The total electrical conductivity is σ = σv + σc while the total Seebeck coefficient is the

average Seebeck coefficient weighted by electrical conductivity S = σvSv+σcSc

σv+σc
.

2.4 Semimetals

The search for efficient TE materials with a large figure of merit [66] has been going on

for two centuries. Metals were the first class of materials studied for thermoelectric ap-

plications. While they have large electrical conductivity, they usually have small Seebeck

coefficient values and large thermal conductivity values, making them nonideal candidates

for traditional thermoelectric applications. Semiconductors usually own Seebeck coefficient

values that are orders of magnitude larger than metals. The large Seebeck coefficient is the

result of the presence of the band gap which breaks the symmetry between electrons and

holes. There are two major competing factors in the optimization of the figure of merit in

semiconductors. First, when the Fermi level is inside the band gap, the Seebeck coefficient is

large. As the Fermi level moves into the valence or conduction bands, the difference between

the density of states (DOS) of hot electrons (above the Fermi level) and cold electrons (below

the Fermi level) becomes small, and so does the Seebeck coefficient. On the contrary, the

electrical conductivity increases since there are more available electronic states. As a res-

ult, one needs to adjust the position of the Fermi level to optimize the thermoelectric power

factor, PF = σS2. Second, as the Fermi level moves inside the band, similar to the electrical
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conductivity, the electronic part of the thermal conductivity also increases. It is therefore dif-

ficult to design a material with a very large figure of merit although no theoretical upper limit

has been found for zT .

Semimetals are a class of materials with properties in between semiconductors and metals.

They usually have a very small overlap of bands and therefore while they do not have an

energy gap, their intrinsic carrier density can vary in a large range, between 1015 − 1020

cm−3, depending on the band overlap and the size of the carrier pockets. For example, the

intrinsic concentrations at liquid helium temperature 4.2 K are about 5.0 × 1015 cm−3 for

HgTe [67], 3.6 × 1016 cm−3 for HgSe [68], 2.7 × 1017 cm−3 for Bi [69], 3.7 × 1019 cm−3

for Sb [69], and 2.0× 1020 cm−3 for As [69]. These values are much smaller than in metals,

which are typically around 1023cm−3, and are comparable with and in some cases smal-

ler than in heavily-doped semiconductors used for thermoelectric applications, 1018 − 1020

cm−3. However, semimetals generally have much larger carrier mobility values compared

to metals and heavily doped semiconductors. For example, electron mobilities at 4.2 K are

6.0 × 105 cm2V −1s−1 in HgTe [67], 1.2 × 105 cm2V −1s−1 in HgSe [70, 71] and 11 × 107

cm2V −1s−1 in Bi [69] and at room temperature are 3.5 × 104 cm2V −1s−1 in HgTe [72],

2.0 × 104 cm2V −1s−1 in HgSe [73, 74] and 1.2 × 104 cm2V −1s−1 in Bi [75]. As a result,

the electrical conductivity of semimetals is comparable to those of heavily-doped semicon-

ductors. Note that the carrier mobility is much lower in heavily-doped semiconductors due

to ionized impurity doping and in metals due to electron-electron and electron-phonon in-

teractions. The thermal conductivity values in semimetals could be also small, especially if

they consist of heavy elements. For example, the thermal conductivity at room temperature

is about 1.7 Wm−1K−1 in HgSe [76], 1.9-2.9 Wm−1K−1 in HgTe [76, 77], 6.0 Wm−1K−1

in the trigonal direction in pure bismuth [78–80] and could be as low as 1.6 Wm−1K−1 in

Bi-Sb alloys [79, 81].

Semimetallic and zero gap materials show many interesting properties. They have attrac-

ted interest as topologically nontrivial materials [82]. Many of them have strong spin-orbit

coupling and comprise of heavy elements. As a result, they possess a low thermal conduct-

ivity. Inversion of bands happens in many of the zero-gap alloys such as BixSb1−x [83] and

HgxCd1−xTe [84], leading to interesting transport properties. While many of these materials

have been studied in other fields, there has not been a systematic study of their thermoelectric
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properties due to their lack of band gap.

If one is to avoid doping and only choose to work with intrinsic materials, semimetals would

be the best potential candidate for having a large thermoelectric power factor [85]. Further-

more, the presence of heavy elements would lower the lattice thermal conductivity, and as

a consequence paves the way to achieve greater efficiency. In other words, semimetals are

the most efficient choice to achieve high efficiency without doping [86]. This motivates

our hypothesis that zero or small band gap materials have the potential of being good ther-

moelectrics with high power factor PF and zT. We were then encouraged to investigate TE

properties of several chemically stable semimetals at room temperature (table 2.1).

In this section, the thermoelectric response of several semimetallic elements, i.e. their See-

beck coefficient values, are studied using first-principles calculations with proper corrections

for the energy levels. We restrict ourselves to room temperature where the diffusive part of

the Seebeck coefficient is known to be dominant. The rationale to focus only on the Seebeck

coefficient is the following: As was discussed, the carrier mobility is expected to be large in

semimetals. If semimetals consist of heavy elements, then their thermal conductivity is also

expected to be low. The biggest concern with semimetals is therefore the Seebeck coefficient

and thus the process of searching for good semimetals for thermoelectric applications should

start with the scan for the Seebeck coefficient. From a computational point of view, among

the three transport properties determining the figure of merit, the Seebeck coefficient is the

least sensitive one to the scattering rates. Therefore, the only property that could be reliably

calculated under constant relaxation time approximation and still be of value is the Seebeck

coefficient. We should acknowledge that even Seebeck coefficient values can be modified

when energy dependent relaxation times are introduced [77, 87–89]. Including energy de-

pendent relaxation times would be a very difficult task when scanning many materials. Here,

as the first step towards finding promising semimetallic candidates, we limit ourselves to the

constant relaxation time approximation.

In this work, semimetals are divided into three categories based on the band forms (See

Fig .2.2). The first group possesses a distinct feature in the band structure: the lowest con-

duction band has a deep minimum at the center of the Brillouin zone (BZ) where it overlaps

with the highest valence bands. When the two bands are symmetric (shown by black curves),
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Material Crystal Group# Natoms Eg (eV) Eg (eV) m∗
h/m

∗
e m∗

h/m
∗
e

PBE HSE/mBJ PBE HSE/mBJ

HgTe cubic 216 2 -0.019 -0.009 3.71 16.29
HgSe cubic 216 2 -0.018 -0.009 10.34 17.63
HgS cubic 216 2 0.038 0.305 19.63 25.45
TlP cubic 216 2 -0.018 0.000 2.52 18.18
TlAs cubic 216 2 -0.019 -0.009 3.28 1.58

Li2AgSb cubic 216 2 -0.009 0.676 0.02 0.08
Na2AgSb cubic 216 2 -0.009 0.000 34.59 51.50
Rb2AgSb cubic 216 2 -0.020 -0.008 2.51 56.84
α-Sn cubic 227 2 -0.031 -0.030 0.171 0.30

Bi trigonal 166 2 -0.122 -0.061 1.711 5.87
Sb trigonal 166 2 -0.09 -0.039 7.22 1.28

TaAs tetragonal 109 4 0.062 -0.003 13.92 3.73
TaP tetragonal 109 4 -0.15 -0.092 1.81 0.13
NbP tetragonal 109 4 -0.152 0.061 0.07 0.25

Mg2Pb cubic 225 3 -0.793 -0.427 0.12 0.11
PtSb2 cubic 205 12 -0.110 -0.083 0.69 0.48
TiS2 trigonal 164 3 -0.226 0.396 0.13 0.24
TiSe2 trigonal 164 3 -0.623 -0.346 N/A N/A

Table 2.1: Summary of 18 materials studied in this work including their crystal structure,
space group number, number of atoms per unit cell, band gap in PBE and HSE calculations
as well as the ratio of hole effective mass to electron effective mass.

the intrinsic chemical potential is expected to be at the midpoint between the two band ex-

trema, and the intrinsic Seebeck coefficient is expected to be very small. However, it is

possible to have a band structure similar to the red curve in Fig 2.2a, where the low degener-

acy of the conduction band in the vicinity of the Γ point results in a small density-of-states

(DOS), the magnitude of which is essentially defined by the electron’s effective mass (i.e.

the curvature of the band). On the other hand, valence bands have heavier effective masses

and higher degeneracy with contributions from elsewhere in the BZ. As a result, the DOS is

asymmetric around the chemical potential. This is known to be beneficial for the material’s

electronic properties in general and, in particular, leads to a high Seebeck coefficient. A

typical example of such material is HgTe which has been studied in our recent publication

both theoretically and experimentally [77]. Other (predominantly cubic) materials are HgSe

and HgS, TlAs and TlP [90], α-Sn as well as inverse Heusler materials (Li2AgSb, Na2AgSb,

Rb2AgSb) [90, 91]. The band structures of these materials along with their DOS are shown

in the Supplementary Material. Here, as the representative of this class of materials, we show

the band structure and the DOS of HgTe as shown in Fig. 2.2a. Black curves are used to show

PBE results for the band structure and the DOS of all materials reported in this work. Red
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Figure 2.2: Energy dispersion (red:symmetric, black:asymmetric) of three categories of se-
mimetals:(a) direct semimetal with parabolic bands, (b) indirect semimetal with parabolic
bands, (c) Dirac or Weyl semimetal with linear dispersion. The Fermi level is denoted by the
dashed line.

curves show the HSE results.

Among the materials studied within the first class, the hybrid functional calculations (red

curves) reveal that HgS and Li2AgSb are in fact semiconductors with band gaps of 0.33 eV

and 0.67 eV respectively. In almost all cases, we note that the effective masses of the con-

duction band significantly decrease in HSE compared with PBE calculations. A possible

explanation for this effect has been given in Ref. [92] where the small effective masses were

attributed to the strong level repulsion between the s-like conduction band and p-like valence

band at Γ. This repulsion is inversely proportional to the square of the difference between

these two levels [92] which reduces from −0.93 eV for PBE to -0.27 eV for HSE06 in case

of HgTe [77, 84] The second group (Fig. 2.2b) includes other semimetallic materials without

any distinct feature in their band structure but possessing a low density of states at the Fermi

level. The top of the valence band and the bottom of the conduction band are at different k

points as shown schematically in Fig. 2.2b. Electron and hole pockets coexist. This class in-

cludes, for instance, Mg2Pb, cubic pyrite structures (PtSb2 and PtBi2) [93–95], TiS2, TiSe2,

TaP, NbP, and α−Zn3Sb2. [96] We note TiS2 gap opens up when HSE functional is used

and therefore this material is a semiconductor with a band gap of 0.4 eV. Despite its large

Seebeck coefficient which is expected for a material with a band gap, the intrinsic carrier

concentration is low and therefore it does not fall in the class of materials we are interested

in this work. On the other hand, TiSe2 remains semimetallic under HSE, with overlapping

conduction (L and M points) and valence bands (Γ point). Its Seebeck coefficient is however

found to be small due to the small asymmetry in the bands. In another work where properties

of the monolayer TiSe2 were studied[97], we found that the band gap can be opened under
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tensile strain, leading to a metal-insulator transition and corresponding non-linear effects. As

for Mg2Pb, the overlap of bands is relatively large and the ratio of the DOS effective mass

of the conduction band to that of the valence band is close to one. (see Fig. 2.3b) Therefore

this material exhibits a small intrinsic Seebeck coefficient value of about -10µV/K.

The third class of materials includes relativistic (Dirac and Weyl) semimetals with linear

bands close to the Fermi level. These are schematically shown in Fig. 2.2c. The examples in-

clude Bi, Sb, Na3Bi and TaAs-family and inverse Heusler materials Na2AgSb and Rb2AgSb.

Thermoelectric properties of the latter family as well as some other topologically non-trivial

semimetals have been recently investigated in Ref. [82]. The band structure of Bi as the

representative of this class of materials is shown in Fig. 2.3c. Most samples in this group

demonstrate rather small Seebeck coefficient values. This is expected because there is an

inherent symmetry in the band structure at the Dirac point.

We performed density functional theory calculations using Vienna ab initio simulation pack-

age (VASP) [98, 99]. Pseudopotentials based on the projector augmented wave method with

the generalized gradient approximation by Perdew, Burke, and Ernzehof (GGA-PBE) [100]

and hybrid Heyd-ScuseriaErnzehof (HSE06) [101] exchange-correlation (XC) functionals

were employed to compute the electronic structure. Since Spin-orbit coupling plays a sig-

nificant role in calculations, we include it in all calculations. Transport calculations are

performed within the constant relaxation time approximation (CRTA) as implemented in

Boltz-Wann [35] and BoltzTraP [33, 34] packages to achieve the diffusive part of the See-

beck coefficient. Several of the samples that we have studied in this work have Seebeck

coefficient values larger than 100µV/K as shown in Fig 2.4. We expect the Seebeck coef-

ficient to be large only when there is a band gap or when there is an asymmetry between

electron and hole effective masses. To show this we start by using the equation for bipolar

Seebeck coefficient under constant relaxation time approximation [102].

S= − kB
2q

[
σe − σh

σe + σh

(βEg + 5) + β(εc + εv − 2µ)

]
(2.27)

where kB is the Boltzmann constant, q is the elementary charge, β = (kBT )
−1, σe and σh

are electron and hole conductivities. The band gap Eg is defined similarly to semiconductors

as a difference between the bottom of the conduction band εc and the top of the valence
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Figure 2.3: The band structures (left panels) and density of states (right panels) of HgTe,
Mg2Pb, and Bi represent the three types of semi-metals described above. Black curves -
PBE, red curves - HSE06.

band εv and µ is the chemical potential. The band gap Eg is positive for semiconductors

and negative for semimetals where there is band overlap. Its values for different materials

studied in this work are listed in Table 2.1. For symmetric bands (me = mh) the first

term in Eq. 2.27 is zero and the Seebeck coefficient grows linearly with the distance of the

chemical potential from the middle of the gap. When the gap is small compared to kBT ,

the Seebeck coefficient strongly depends on the band asymmetry characterized by me−mh

me+mh

or more generally on σe−σh

σe+σh
. Assuming non-degenerate statistics, constant relaxation time

approximation, and intrinsic conditions (n = p), one can simplify Eq. 2.27 to

Sint= − kB
2q

[
γ − 1

γ + 1
(βEg + 5)− 3

2
ln(γ)

]
(2.28)

where γ is defined as the effective mass ratio of holes to electrons (listed in Table 2.1). Note

that the condition n = p automatically places the chemical potential at its intrinsic level, and

we do not need to specify it. Equation 2.28 clearly shows that there are two parameters

to which the intrinsic Seebeck is sensitive: one is the band gap and the other is the mass

ratio. To demonstrate this, we extract an effective mass from the density of states estimated

from the slope of the density of states of the electrons (conduction band) and the holes

(valence band) with respect to the square root of energy. The absolute value of the intrinsic

Seebeck coefficient of different materials with respect to their effective mass ratio (effective

mass of the holes to that of the electrons) and band gap energy is plotted in Fig. 2.4. We

see an increasing trend in the Seebeck coefficient values with respect to the mass ratio for

semimetals where the band gap is zero or close to zero. In Fig. 2.5 our computational results

are compared to reported experimental values of α-Sn, α-HgS, HgSe, HgTe, TiS2, TaAs and
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Figure 2.4: Left panels: Absolute value of intrinsic Seebeck coefficient calculated using PBE
(black) and HSE (red). Right panels: Absolute value of intrinsic Seebeck coefficient (color
bar) as a function of band gap Eg (x-axis) and effective mass ratio γ (y-axis).

PtSb2.As shown in Fig. 2.5, and considering there are no fitting parameters, the agreement

between theory and experiment is satisfactory.
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Figure 2.5: Computational Seebeck coefficient values calculated in this work using HSE
band structures versus experimental Seebeck coefficient values from literature [103–111].
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CHAPTER III

Nernst coefficient within CRTA

In response to external fields, at a point k in the reciprocal space, the distribution function

fk deviates from the equilibrium distribution function f 0
k as fk=f 0

k + f 1
k . The force acting

on a moving particle due to a magnetic field (H) is described by Lorentz force qν ×H , and

accordingly, the BTE within constant relaxation time approximation (CRTA) needs to be

modified as follows [112]:

q

ℏ
ν ×H · ∇kf

1
k + ν · [qE + T∇(

εn,k − µ

T
)]
∂f 0

k

∂ε
= − f 1

k

τ
(3.1)

Where q is the electron charge, ℏ is the Planck constant, T is the temperature, E is the electric

field, εn,k is the energy of the k wave vector with the band index of n and µ is the chemical

potential. Eq. 8.1 can be abbreviated by introducing a generalized force, F , and a band

operator, Ω defined as follows:

F= −∇µ− (εn,k − µ)

T
∇T

Ω=
q

ℏ
ν ×H · ∇k=

q

ℏ
νjHkϵijk(

∂

∂ki
)

(3.2)

Replacing 8.2 in 8.1 leads to an equation for f 1
k :

f 1
k=(1 + τΩ)−1τν · F (−∂f 0

k

∂ε
) (3.3)

When τΩ is small, that is at small magnetic fields, the term (1 + τΩ)−1 can be expanded

according to the Jones-Zener expansion [41]:

(1 + τΩ)−1=1− τΩ + (τΩ)2 − . . . (3.4)



25

For the Nernst effect, the first two terms (1-τΩ) are required to obtain a response linear in

H , and higher order terms are neglected, thus, the transport distribution function (Eq. 3.3)

can be rewritten as:

f 1
k= − Fi

∂f 0
k

∂ε
τ [1− τΩ]νj (3.5)

Following Smith’s notations [112, 113], I define transport coefficients((ij)H) and physical

constants (G) as comprehensive tensors.

(ij)H=


σij(H)

Bij(H)

ρij(H)

Kij(H)



G=


q2

q
T
(ε− µ)

q(ε− µ)

(ε−µ)2

T



(3.6)

Similar to thermoelectric effects [114], I shall define a transport distribution function (ΞH)

for thermomagnetic effect which relates the (ij)H and G tensors as below:

(ij)H=
∫

GΞH
ij (ε)

(
−∂f(ε, µ, T )

∂ε

)
dε

ΞH
ij (ε)=

1

V Nk

∑
n,k

νi,nkτnk[νj,nk − Ω τnk νj,nk] δ(ε− εn,k)
(3.7)

In the absence of a magnetic field, the second term vanishes and ΞH
ij (ε) reduces to the familiar

transport distribution function of thermoelectric effect (Ξij(ε)). Therefore, the total transport

distribution function (ΞH
ij (ε)) can be written as the sum of the transport distribution function

in the absence of a magnetic field (Ξij) and the deviation of the transport distribution func-

tion due to a magnetic field (Ξijk). Note that this last term contains a factor of H . Finally, the

isothermal Nernst coefficient is defined as the ratio of the generated voltage along the y-axis

to the temperature gradient along the x-axis under an open circuit condition (Jx = Jy = 0).

Table. 3.1 shows the definition of each thermomagnetic response function along with their

corresponding boundary conditions. Figure 3.1 shows the workflow of our code where en-
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Table 3.1: Isothermal Nernst (NT ), isothermal Hall (HT ), and Ettinghausen (η) coefficients
in adiabatic (A) and isothermal (T) conditions. α,ρ,κ, and π are the Seebeck coefficient,
electrical resistivity, thermal conductivity, and Peltier coefficient, respectively.

Coefficient Measure Boundary Conditions Equation
N εy

∂xT
J=0, ∂yT=0 αyx(H)

HT
εy
Jx

J=Jx,∇T=0 ρyx(H)

η ∂yT

Jx
J=Jx, Qy=0 ∂xT=0 πyx(H)

κyy(H)

Table 3.2: Converged k-point meshes of wannierization and transport distribution function
calculations for GaAs, Si, and ZnSe.

Material Wannierization mesh TDF mesh

GaAs 8× 8× 8 70× 70× 70
Si 16× 16× 16 50× 50× 50

ZnSe 8× 8× 8 60× 60× 60

ergy bands are obtained via DFT as implemented in QUANTUM ESPRESSO package [115]

followed by a finer band interpolation via maximally localized Wannier functions (MLWF),

as implemented in the WANNIER90 package [40]. I compute the band velocity(ν) and ef-

fective mass tensor(m) at each k-point and proceed to calculate of the transport distribution

function in the presence of a magnetic field. Table 3.2 shows the wannierization mesh and

k-point mesh for each case at which the transport distribution function (TDF) happened to

converge. Lastly, I implement the calculation of Nernst, Hall, and Ettingshausen coefficients

based on the computed Ξ.

3.1 Analytical solutions

In what follows I develop analytical solutions for several simple band structures for the

purpose of comparison and validation of the DFT results. The details of some of these

solutions and their interpretation are discussed in our recent work [116].
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Figure 3.1: Workflow of our code to compute the Nenst(N), Hall (RH), and Ettingshausen(η)
coefficients using DFT results.
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3.1.1 Single spherical band

Regardless of the energy-band type, I assume a magnetic field is externally applied only

along the c-crystal axis. I begin with the simplest case which is an isotropic single-band

for which the energy dispersion is described as ε(k)=ℏ2k2
2m∗ . It can be proven that due to

band symmetry, Ξij(ε) is a diagonal matrix with equal components. Ξijk(ε) contains the Ω

operator which operates on velocity vectors νj .For a parabolic dispersion ∂νj
∂ki

= δijℏ
m∗ , on the

other hand, with the assumption of the magnetic field, applied only along the c-crystal axis,

It is shown in the appendix( VIII) that Ξijk(ε) has only two non-zero components as bellow:

[
ΞH
ij

]
= [Ξij] + [Ξijk]

=


Ξxx 0 0

0 Ξxx 0

0 0 Ξxx

+


0 Ξxyz 0

−Ξxyz 0 0

0 0 0

 (3.8)

The calculation of the distribution function Ξ for parabolic dispersion is explained in the

appendix( VIII). The result is:

Ξxx=
2τq2ε

√
2mε

3ℏ3π2V

Ξxyz=
2q3Hzτ

2ε
√
2ε

3ℏ3π2
√
m

(3.9)

Similar to the transport distribution function, response functions with two indices correspond

to zero magnetic fields, and when an external magnetic field is applied response functions are

shown with three indices. Each transport coefficient is calculated according to Eq. 8.4. As

an example, for the isothermal Nernst coefficient(NT (H)) B and σ coefficients are needed.

αij(H)=
[
σij(H)]−1[Bij(H)

]
N(H)= − αyx(H)= − σxxσxyzBxx − σ2

xxBxyz

σxx(σ2
xx + σ2

xyz)

N(H)= − σxyzBxx − σxxBxyz

σ2
xx + σ2

yxz

(3.10)

In the appendix I show that σxyzBxx=σxxBxyz. Therefore, for a single spherical band, the

Nernst coefficient is zero.
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3.1.2 Multi isotropic parabolic bands

Transport distribution functions for a multi-spherical-band dispersion are similar to the case

of a single isotropic band, however, each transport coefficient needs to be summed over all

bands (n) e.g. σijk=
∑

n σ
n
ijk. It can be mathematically proven for bands with non-equal

effective mass values the Nernst coefficient will be non-zero.

3.1.3 Multi ellipsoidal bands

An anisotropic parabolic dispersion, known as ellipsoidal dispersion, looks like a parabolic

dispersion but effective masses differ along each axis: ε(kx, ky, kz)=ℏ2
2
( k2x
mx

+
k2y
my

+ k2z
mz

). I

utilize a scaling change of variable to transform the above dispersion to the simpler isotropic

form. 
kx

ky

kz

=


√

mx

m′ 0 0

0
√

my

m′ 0

0 0
√

mz

m′



k′
x

k′
y

k′
z

 (3.11)

The dispersion relation now becomes: ε(k′
x, k

′
y, k

′
z)= ℏ2

2m′ (k
′2
x +k′2

y +k′2
z ). Earlier studies [114,

117] have proven for an arbitrary energy dispersion, transport distribution function may be

described as Ξii(ε)= τq2

3
ν2
iig(ε), where g(ε) is the electronic density of states. Ξij is still a di-

agonal matrix, though, having dissimilar effective mass values results in non-equal diagonal

components in transport distribution function Ξii= τq2

3
2E
mi

√
2mxmymzε

π2ℏ3 . Similarly, Ξijk keeps

the previous form with only two non-zero components but with different effective masses as

Ξyxz=− qτHz

my

2Eτq2

3mx

√
2mxmymzε

π2ℏ3 and Ξxyz= qτHz

mx

2ετq2

3my

√
2mxmymzε

π2ℏ3 . Subsequently, the isothermal

Nernst coefficient is obtained as:

N(H)= − σxxByxz − σyxzBxx

σxxσyy − σxyzσyxz

(3.12)

3.1.4 Multi non-parabolic bands

As a more complicated case, I study a multi-non-parabolic band dispersion whose energy

relation is ε(1 + λε)=ℏ2
2
( k2x
mx

+
k2y
my

+ k2z
mz

). where λ is independent of energy. Likewise, the

transport distribution function of such dispersion is calculated and followed by the isothermal
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Table 3.3: Group velocity and density of states for parabolic, ellipsoidal, and non-parabolic
bands. These quantities are employed to estimate the transport distribution function.

Band Dispersion Velocity DOS

Parabolic ℏ
−→
k
m

m
√
2mε

π2ℏ3

Ellipsoidal ℏ
−→
ki
mi

√
2mxmymzε

π2ℏ3

Non-parabolic
√

2miε(1+λε)

(2λε+1)mi

(1+2ελ)
√

mxmymzε(1+λε)

π2ℏ3
√
2

Nernst coefficient evaluation.

Ξii=
τq2

3

ε(1 + λε)

mi(1 + 2λε)

√
2mxmymzε(1 + λε)

π2ℏ3

Ξyxz= −
τ2q3Hz

3

ε(1 + λε)

mxmy(1 + 2λε)2

√
2mxmymzε(1 + λε)

π2ℏ3

(3.13)

To sum up, band-dependent quantities for each energy-wave vector dispersion relation are

summarized in Table 3.3. All derivations are explained in detail in the appendix(VIII).

3.2 Results and discussion

In order to validate our code, I have chosen materials with dispersions that are to a good

approximation parabolic, ellipsoidal and non-parabolic, so that DFT results can be com-

pared with the analytical calculations obtained in section 3.1. Keeping parameters such as

relaxation time, temperature, and band gap the same as in DFT, I evaluate TM transport

coefficients (table. 3.4) for NaCl, GaAs, Si, and ZnSe. These materials were chosen as

examples of single-spherical, multi-spherical, ellipsoidal, and non-parabolic bands, respect-

ively. The electronic structure of each was calculated using the QUANTUM ESPRESSO

package [115] followed by wannierization process [40] to successfully reproduce finer band

structures through maximally-localized Wannier functions(Fig. 3.2). All calculations were

carried out at room temperature and with a constant relaxation time of 10 fs and were

checked to converge with respect to the interpolation mesh and the k-points mesh used for

summation in the first Brillouin zone. Our contribution has been implemented in BoltzWann

module [35] of the Wannier90 package. It is noteworthy to add that I have not modified

any DFT code, instead, I have extended the Boltzwann capabilities to include thermomag-

netic response functions. In other words, as long as the user provides the wannierized band
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Table 3.4: Theoretical effective mass and non-parabolicity factor values derived from the
wannierized band structures in this work.

Material Dispersion mc mvh mvl mvs

NaCl single-Isotropic 0.54 - - -
GaAs Multi-Isotropic 0.067 0.14 0.497 0.075

Si Ellipsoidal 0.73, 0.207 0.54 0.1407 0.29
ZnSe Non-parabolic 0.13 1.29 0.67 0.497

λ=0.36

structure our code could be applied to calculate thermomagnetic coefficients.

I began with the assessment of the isothermal Nernst coefficient which measures the trans-

verse voltage in response to a longitudinal temperature gradient. The Lorentz force pushes

electrons and holes to opposite sides. Therefore, the Nernst coefficient shows the maximum

value in the middle of the gap where electron and hole concentrations are equal. Fig 3.3

compares the calculated isothermal Nernst coefficient to the analytical models achieved in

section 3.1. Both analytical model and numerical solutions confirm that the greatest values of

the isothermal Nernst coefficient is obtained for the Fermi level in the gap, and Nernst values

reduce to zero as the Fermi energy moves toward band edges. The Hall effect is the trans-

verse voltage response to an applied longitudinal current in the presence of a perpendicular

magnetic field. The Hall coefficient or the transverse electrical resistivity is the voltage gradi-

ent developed per unit electric current and magnetic field. In practice, the Hall coefficient is

utilized to measure the magnetic field and charge carrier density. Fig. 3.4 indicates the iso-

thermal Hall coefficient of ZnSe computed by our code is reasonably close to the analytical

results and, more importantly, follows the same trend. Lastly, the Ettingshausen effect is the

production of a temperature gradient perpendicular to the plane of electric current and mag-

netic field [118]. For the first time, it was observed in Bismuth by Ettingshausen [119] and

the effect was then named after him. Ettingshausen coefficient measures the developed tem-

perature gradient per unit electric current, thus, it is expected to be inversely proportional to

the electronic thermal conductivity. One may conclude that metals generally possess small

values of the Ettingshausen coefficient which is confirmed by experiments [119]. On the

other hand, since it is the response to a unit current, it is expected to reach a peak in the

gap where carrier density decreases, as shown in Fig. 3.5. Some discrepancies may be noted



32

Figure 3.2: The DFT band structure (red lines) versus wannierized band structure (blue
dots) of GaAs (a), Si(b), and ZnSe (c) as spherical, ellipsoidal, and non-parabolic bands,
respectively.
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Figure 3.3: The theoretical isothermal Nernst coefficients with a constant τ of 10 fs from
DFT calculations (red) and analytical models (blue) versus the chemical potential for GaAs
(a), Si(b), and ZnSe (c). Zero chemical potential is fixed right in the middle of the gap.
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Figure 3.4: Isothermal Hall coefficients of GaAs (a), Si(b), and ZnSe (c) in SI unit (m3/C)
with a constant τ of 10 fs. DFT results (red) lie along the analytical models (blue).

between the analytical and numerical results. This may be due to the fact that over the energy

window of integration, the isotropic and/or parabolic assumptions do not exactly hold for the

considered materials. I have however made sure of the convergence of the transport distribu-

tion functions with respect to the number of integration k-points in the first Brillouin zone.

It should also be noted that our calculations were done with a constant relaxation time, but

if an energy-dependent τ model is available, it can readily be included in the code. So our

results for the thermomagnetic properties should not be taken as accurate, even for GaAs, Si,

NaCl, and ZnSe since their relaxation time was unknown.

3.3 Relaxation time value

So far I have assumed the constant relaxation time approximation for which any arbitrary

value of relaxation time could be chosen. Within CRTA the Seebeck coefficient is entirely

independent of the constant relaxation time value. Since the transport distribution function of

the Nernst effect maintains a quadratic formula of the relaxation time even within CRTA the

Nernst coefficient largely depends on the constant value of the relaxation time and strikingly
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Figure 3.5: Ettingshausen coefficients (η) of GaAs (a), Si(b), and ZnSe (c), with a constant τ
of 10 fs, estimated through analytical solutions (blue) confirm the validity of the DFT-aided
solution (red).
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Figure 3.6: The Nernst coefficient of a two-spherical band model for various constant relax-
ation time values in the units of fs.

grows. Fig 3.6 portrays the Nernst coefficient for an imaginary material with two spherical

bands and a band gap of 0.5 eV. One may conclude that the CRTA seems not efficiently

predict the Nernst coefficient and the relaxation time needs to be taken into account.

3.4 Conclusion

In this chapter, I demonstrated a method to evaluate the Nernst, Hall, and Ettingshausen

coefficients using first-principles Density Functional theory calculations. To validate the

method, four types of band dispersion were considered and for each case, the thermomag-

netic response functions were analytically and numerically obtained. Our first-principles

DFT results were validated by comparing them with the analytical results. Our approach

may be applied to all categories of materials. This method paves the road to assess the

Nernst coefficient of materials and, subsequently, the thermomagnetic power factor which

shows the efficiency of material for thermomagnetic energy conversion applications.
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CHAPTER IV

Nernst Coefficient Beyond CRTA

4.1 Introduction

In the previous chapter III I presented a solution for the Nernst coefficient within constant

relaxation time approximation, though, it is nearly impossible to reproduce the experimental

data of the Nernst coefficient with a constant relaxation time since the Nernst signal depends

on energy-dependent τ 2. It was shown that even within CRTA the Nernst signals drastically

change versus the constant value of the relaxation time. That being the case, the constant

relaxation time needs to be replaced by a robust and realistic relaxation time which largely

relies on the scattering mechanisms.

Studies on the Nernst effect continued by examining semiconductors, namely, Germanium [120,

121] and InSb [122]. Germanium was the first semiconductor that showed a remarkable

Nernst signal at room temperature. As of today, germanium still holds the record of the

largest Nernst coefficient at room temperature. Indium antimonide also emerged as a poten-

tial candidate for the Nernst-based applications at room temperature owing to its noticeable

Nernst coefficient, nearly 100 µV/KT , where T signifies Tesla. Advances in superconduct-

ing magnets facilitated the induction of strong magnetic fields. As a consequence, the Nernst

effect was proposed for extended applications such as cryogenic cooling [123], thermal ra-

diator detection [124], and thermopile systems [125].

Along with the measurements, efforts were made to model the Nernst coefficient. The earli-

est model was proposed by Moreau that describes the Nernst coefficient as a product of

the electrical conductivity (σ), Hall coefficient (RH), and Thompson coefficient dS/dT as

N = dS
dT
RHT/ρ. Moreau’s equation was derived by making multiple thermodynamics and

physical assumptions but was successful in explaining the Nernst coefficient measured in

several metals. For the first time, Delves [28] analytically solved the Boltzmann transport
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equation (BTE) in the presence of a magnetic field for spherical bands within relaxation time

approximation. With the help of the Onsager relations and heat/electric current equations

he derived the Nernst, Ettingshausen, and Hall coefficients and replicated the experimental

results of HgSe. Later, the Nernst coefficient was estimated using the Mott’s formula [126]

for Ni80Fe20 and Ni thin films and produced the trend of the experimental data [127]. Apart

from the fact that the Mott formula is applicable only to metals, it was found to fall far

from the experimental Nernst coefficient values of BaFe2As2 and CaFe2As2 [128]. More

recently, Heremans et.al. [129] applied a semi-empirical method to support their Nernst

measurement. They performed a tight-binding model of a Weyl semimetal by taking a trigo-

nometric Hamiltonian and obtained results relatively close to the experiments in the case of

NbP.

The empirical or semi-empirical models are not very accurate to be compared to experi-

mental results unless fitting parameters are used, although can explain the trends. Besides,

the effect of the electronic structure-dependent quantities such as group velocity and effect-

ive mass are oversimplified in such approaches. In our previous study [130] I presented

an approach to calculate the Nernst coefficient using first-principles density functional the-

ory within the constant relaxation time approximation. Unlike the Seebeck coefficient, the

Nernst coefficient is proportional to the carrier mobility and hence is extremely sensitive to

the details of the relaxation time. The constant relaxation time approximation is therefore

insufficient to accurately predict the Nernst coefficient. Herein, I demonstrate a new ap-

proach to computing the Nernst coefficient including electron-phonon and ionized impurity

scattering rates with the basis sets of maximally-localized Wannier functions. Our method

combines the scattering rates with the Boltzmann transport equation in the presence of a

magnetic field and calculates the Nernst coefficient. The Nernst coefficients of germanium,

silicon, and InSb are attained at a reasonable computational cost and our theoretical results

are in fairly close agreement with the experiments.
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4.2 Theoretical formalism

In the previous chapter III, I showed that the Boltzmann transport equation in the presence

of an external magnetic field is modified as below:

f 1
k= − Fi

∂f 0
k

∂ε
[1− τΩ]τνj (4.1)

Where F is the driving force containing the gradients of chemical potential and temperatures

Ω is a band operator which maintains the Lorentz force caused by the external magnetic field.

Ω=
q

ℏ
ν ×H · ∇k=

q

ℏ
νjHkϵijk(

∂

∂ki
) (4.2)

Response functions due to the magnetic field are summarized in (ij) tensor, while, the phys-

ical constants are represented in G.

(ij)H=
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σij(H)
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(4.3)

Accordingly, the physical constants (G) and transport coefficients((ij)H) are related by the

transport distribution function (ΞH) in the presence of a magnetic field.

[
N(H)

]
=

[
σ(H)

]−1[
B(H)

]
(4.4)

And the Nernst coefficient is identified as NT = Nyx(H).In Eq. 4.2, the Ω operates on both

relaxation time (τ ) and band velocity (ν) in which the derivative can be taken part by part.
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Ω(τν)=
q

ℏ
ν ×H · ∇k=
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ℏ
νjHkϵijk
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Relaxation time is implemented for each band at a given k-point(τ(n, k)), though, it could be

easily transformed into energy space by τ(ε) =
∑

n,k τ(n, k)δ(ε − εn,k)/
∑

n,k δ(ε − εn,k).

Such that energy-dependent relaxation time will be placed in Eq. 4.5.
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∂ki
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) (4.6)

ν×H is perpendicular to ν and hence its dot product by ν is zero, therefore, νjHkϵijkν
∂τ(ε)
∂ε

ℏνi =

0, and the derivative of relaxation time in Eq. 4.6 is omitted. The transport distribution func-

tion may be stated with the energy-dependent relaxation time.

ΞH
ij (ε)=

1

V Nk

∑
n,k

νi,nkτ(ε)[νj,nk − Ω τ(ε) νj,nk] δ(ε− εn,k) (4.7)

The workflow of our approach is displayed in Fig. 4.1. I start with the electronic structure

obtained from DFT codes. The maximally localized wannier functions [40] (MLWF) are

required to represent a fine interpolation of electron energy dispersion followed by the de-

rivation of band velocity and effective mass tensors. Several post-processing packages were

developed to compute the scattering rates [131–134], among those I choose the AMSET

code [134] in which not only electron-phonon collisions are taken into account, but it also

evaluates ionized impurity scattering. Charge carrier relaxation times are achieved by AM-

SET code [134] and transformed into energy space. Relaxation times are then coupled with

band-dependent quantities to compute the transport distribution function. Input parameters

of all steps (DFT, wannierization, and AMSET) for each material are provided in the ap-

pendix. Now that the formalism has been clarified (for more details reference [116] can be

consulted), I will proceed to give the details of the first-principles calculations, display and

discuss the results in comparison with experimental results.
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Figure 4.1: The workflow used in this work to calculate the Nernst coefficient. Wannier func-
tions, group velocity, and effective mass tensor (blue boxes) come from the Wannier90 pack-
age. Scattering rates (P) and relaxation times are taken from AMSET code (green boxes). I
couple the output of the two codes to obtain the total transport distribution function (Ξ).

4.3 First-principles calculations

Vienna ab initio simulation package (VASP) was employed to conduct the first-principles

density functional theory calculations based on plane wave self-consistent field (PWscf)

and projector-augmented waves pseudopotential [135] method as treated in the generalized

gradient approximation [136]. Monkhorst–Pack scheme was used to sample the Brillouin

zone. DFT input parameters of this article are summarized in table 4.1. It is noteworthy to

add that the PBE exchange-correlation functional yielded a zero gap and nearly linear dis-

persion around the Gamma point in the conduction bands for Ge and InSb. That is to say,

the electronic structures were calculated using the mBJ exchange-correlation type.

The electronic structures were then wannierized in order to have a finer band interpola-

tion via maximally localized Wannier functions (MLWF), as implemented in the Wannier90

package [40] (table 4.2 ). Due to the calculation of the effective mass tensor, the Nernst ef-

fect transport distribution function (Ξ) is expected to converge at finer k-mesh values rather

than the Seebeck effect. All the integrals discussed in Section 4.2 were performed in the
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reciprocal space on fine MLWFs. The physical properties of each material for scattering

rates were taken from the experiments and the total scattering rate is summed over all the

mechanisms according to Matthiessen’s rule [137]. A wide range of values has been reported

for some physical properties e.g. deformation potential, whether in experiments or theory,

and It has to be made clear that I selected the deformation potentials that bear the best fit

to the experiments(see table 4.3). Table4.3 shows the physical parameters used to calculate

the mobility of each material. Lastly, after convergence was assured, the isothermal Nernst

coefficient was computed and compared to the experiments.

Table 4.1: Parameters used in DFT calculations.

Material cutoff energy (eV) k-mesh Lattice constant (Å)

Ge 500 12×12× 12 5.657
Si 550 12×12× 12 5.429

InSb 500 12×12× 12 6.479

Table 4.2: Parameters used for wannierization.

Material # of wannierized bands wannierization k-mesh Ξ k-mesh convergence tolerance

Ge 8 6×6× 6 300 10−8

Si 8 12×12× 12 200 10−8

InSb 8 6×6× 6 300 10−8

4.4 Results and discussion

The band structure for each material was plotted along high symmetry k-points (Fig 4.2- 4.4).

I continued the procedure with the mBJ electronic structures and the conduction bands were

shifted to reproduce the experimental band gap for calculation of the transport distribution

function and relaxation time. The experimental mobility was replicated for each sample in a

range of temperatures as well as doping concentration(Fig 4.5- 4.7 ).
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Figure 4.2: Band structure of Germanium with PBE (a) and mBJ (b) XC-functional.Ge is a
direct band gap semiconductor.

Figure 4.3: Band structure of InSb with PBE (a) and mBJ (b) XC-functional. Top of valence
band and bottom of conduction band happen at G-point.

Figure 4.4: Band structure of Silicon which is an indirect band gap semiconductor calculated
using PBE (a) and mBJ (b) functionals. Top of valence band is the G point while the con-
duction band minimum is along the GX direction.



44

Figure 4.5: Hole mobility for Germanium at room temperate versus doping concentration (a)
and versus temperature for a constant carrier concentration of 4.9× 1018Cm−3. Red circles
and blue dashed lines indicate experimental [145] and theoretical data, respectively.

Figure 4.6: Hole mobility of InSb versus carrier concentration at 290 K (a). Hole mobility
of InSb versus temperature for hole concentration of 1.8 · 1014Cm-3 [146, 147].

Figure 4.7: Hole mobility of Si at 300 K versus hole concentration (a). Hole mobility of Si
for hole concentration of 2 · 1017Cm-3 versus temperature [148, 149].
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Table 4.3: Physical properties of materials including shifted band gap, deformation potential,
phonon frequency, bulk modulus, dielectric constant, and piezoelectric constant taken from
literature[138–144] .

Material Eexp
g (eV ) EmBJ

g (eV ) Dv
A(eV) Dc

A(eV) νop(THz) C(GPa) ϵr dpz(C/m
2)

Ge 0.66 1.47 0.85 0.95 8.94 75 16.2 0.0
Si 1.12 1.91 0.9 1.5 15.2 202 11.68 0.0

InSb 0.16 0.73 1.9 2.0 6.04 46.6 16.8 0.07

4.4.1 Germanium

Germanium in its single crystal form is one of the first semiconductors in which the Nernst

signal was reported and in fact, it holds the record for the largest Nernst coefficient around

room temperature. Therefore, I chose to test our method on Ge. Electrical properties includ-

ing mobility, electrical resistivity, Seebeck coefficient, and indeed Nernst coefficient largely

depend on the scattering rates, thus, the scattering rates and the mobility need to be valid-

ated. Fig. 4.5.a depicts the hole mobility of single crystal Germanium versus doping con-

centration at room temperature. Fig. 4.5.b shows the same quantity versus temperature for

a hole concentration of 4.9 × 1018cm−3. As temperature increases, the population of phon-

ons increases leading to an increase in the electron-phonon scattering rates and a decrease

in electron mobility. The acoustic deformation potential scattering and the ionized impurity

scatterings are the dominant scattering mechanism in this material and the combination of

the two can reproduce the experimental data closely. This fact was also previously reported

in the literature [150]. Our theoretical results for Ge are found to be within less than 5%

of the experiments. A wide range of values has been reported for the deformation potential,

whether in experiments or theory. Therefore, here I selected the deformation potentials that

best fit the experiments.

The Nernst coefficient of single crystal Ge was measured to be as large as 350 µV/KT

around room temperature [120]. Yamaguchi [121] also observed extremely large values

of the Nernst coefficient for Ge, but they failed to replicate their measurements by a para-

bolic band model. In this work, I calculate the Nernst coefficient of Ge in a wide range of
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temperatures using density functional theory.

After the successful replication of Ge mobility (Fig 4.5), I proceeded with the same physical

parameters used to establish the scattering rates. It was then followed by substituting the

resulted scattering rates into the transport distribution function (Eq. 4.7) and, finally, eval-

uation of the Nernst coefficient (Eq. 4.4). Fig. 4.8 shows our theory can accurately predict

the experimental Nernst coefficient for Ge in a wide range of temperatures and for various

doping concentrations. For a slightly doped sample (ρ = 30Ω.cm) the Nernst coefficient

continuously decreases versus temperature, though, it decreases less rapidly at high temper-

atures. The corresponding chemical potential of the electrical resistivity of ρ = 30Ω.Cm

is 240 meV below the intrinsic Fermi level. Since for these specific samples it was not re-

ported how resistance changes with temperature experimentally, I performed our modeling

under constant chemical potential conditions. The dominant carriers are holes. However,

the concentration of both electrons and holes increases with the rise in temperature as shown

in Fig. 4.9a. The carrier mobility as shown in Fig. 4.9b drops as temperature increases.

Various models (see Moreau’s equation for example) have shown that the Nernst coefficient

is proportional to carrier mobility. In this case, I also observe that the Nernst coefficient

follows the carrier mobility trend and decreases with temperature.

Comparing the two samples, the sample with larger mobility also exhibits a larger Nernst

coefficient. The trend of the Nernst coefficient with respect to temperature is different in

the case of the low-resistance sample. Here, as shown in Fig. 4.8, the Nernst coefficient

reaches a maximum value at around 410 K both in theory and experiments. To explain

this maximum in the Nernst coefficient, I have plotted the Seebeck coefficient of the two

samples in Fig. 4.9C. In the case of the low-resistance sample, there is a large drop in the

Seebeck coefficient vs. temperature at around 400 K which can be in turn attributed to the

increase in the population of minority carriers. The Nernst coefficient is proportional to the

slope of the Seebeck coefficient with respect to temperature (represented by the Thomson

coefficient) within Moreau’s relation. In this case, the maximum of the Nernst coefficient

happens where the Thomson coefficient is the maximum. I emphasize that Moreau’s relation

can only qualitatively explain the results and it is not in quantitative agreement with our first-

principles model. An alternative explanation is to correlate this maximum to the Seebeck

coefficient of the minority carriers. It has been shown that the Nernst coefficient within
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Figure 4.8: Nernst coefficient of Germanium versus temperature. Solid circles are the exper-
imental data from literature [120] and our theoretical predictions are shown by lines in the
corresponding color for each case. Samples possess different electrical resistivity (ρ) and are
under magnetic fields (H) of 0.21 T and 0.9 T.

constant relaxation time approximation and within parabolic bands, comes only from the

cross-term correlating between the valence and conduction bands and is proportional to the

Seebeck coefficient of the minority carriers. (See Eq 45 of Ref. [116]). The 400 K is where

the minority carriers start to contribute and have a finite and large Seebeck coefficient.

Our findings are normalized to the magnetic field in the units of ( µV
KT

) and the Nernst signals

appeared to be larger in the smaller magnetic field of 0.21 T compared to 0.9 T whether in

experiments or theory (Fig. 4.8). The total distribution function of the Nernst effect is a two-

term equation(Eq. 4.7) whose first term is greater and independent of the magnetic field. In

an oversimplified model, N = α + βH where α ≫ β. It can be mathematically proved that

N/H would be larger for smaller magnetic fields. Fig. 4.8 unveils that the Nernst coefficient

reaches a maximum value at around 410 0K both in theory and experiments. Furthermore,

Fig 4.9 (a) exhibits that the hole mobility of the lighter doped sample is larger, such that

greater Nernst coefficient values are observed for that sample. Although, as temperature goes

up the discrepancy between mobilities dwindles which leads to comparable Nernst signals

for both samples. Electron and hole concentrations surge at higher temperatures (Fig 4.9(b)).
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Figure 4.9: (a) Hole and electron concentrations of Germanium with the electrical resistivity
of 4.5 Ω.cm (red) and 30 Ω.cm (green) versus temperature. Carrier mobility (b) and Seebeck
coefficient (c) for the same samples versus temperature.
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Figure 4.10: Nernst coefficient of p-type Silicon at elevated temperatures under a magnetic
field of 0.9 Tesla. Our theory (blue dashed line) is in agreement with the experimental data
(red circles) [151].

4.4.2 Silicon

Inspired by large Nernst signals of germanium, silicon was thought to show large Nernst

signals due to similarities with germanium. Mette continued his work on the Nernst effect

and chose silicon, however, the Nernst coefficient in silicon is significantly smaller [151]. It

originates from a larger band gap of silicon (1.12 eV versus 0.66 eV in Ge). The band gap in

silicon is so wide that the charge carriers would be negligible far from the band edges, hence,

the Nernst signal will vanish deep in the gap. Instead, peak values are expected to appear

in the band edges due to maximum relaxation time, however, effective mass values of Si are

not small, then even at the band edges, minor peaks are anticipated. It is worth saying that in

order to achieve the electrical resistivity of 0.22Ω.cm in p-type silicon it needs to be doped

as much as 3× 1018cm−3 that has to take place inside the valence band.

4.4.3 InSb

Indium antimonide is a narrow gap semiconductor widely used in semiconductor applica-

tions e.g. transistors, magnetic field sensors, and infrared cameras [152–154]. InSb was

among the earliest semiconductors that showed relatively large Nernst signals at room tem-

perature. El-saden et.al [155] reported the Nernst effect in InSb for the first time in the

temperature range from 260 to 340 0K and applying magnetic fields from 0.4 to 1.2 T. They

used a measurement method similar to what Lindberg [156] employed for Hall measurement.
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Figure 4.11: Nernst coefficient of p-doped Indium antimonide in a range of temperature
and a 4 Tesla magnetic field. Red circles are the measurements from Ref [122] and values
obtained by our approach are shown by the blue dashed line.

The length of the sample had to be kept at least three times larger than its width in order to

avoid the shorting effect of the end electrodes. Decades later, Nakamura [157] carried out

thorough measurements of thermoelectric as well as thermomagnetic properties on bridged

shape InSb samples and recorded Nernst coefficient values as big as 80 µV/KT , however,

his phenomenological models deviate from the experiments. I performed DFT-based calcu-

lations of the Nernst coefficient and found fairly close values to the experiments for a p-type

InSb whose electrical conductivity is 2.2×104S/m under a magnetic field of 4 T.

Although the hole mobility of InSb is larger than Ge, the chemical potential which yields the

electrical conductivity of 2.2×104S/m is in the vicinity of the valence band edge. For a large

Nernst signal in semiconductors, minimum coexistence of electrons and holes is needed. The

chemical potential that bears the minimum coexistence of the opposite charges occurs at the

intrinsic Fermi level. Considering the fact that the product of electron concentration and

hole concentration is constant in equilibrium, as the chemical potential moves toward either

bands, the total concentration of electrons and holes grows and the Nernst signals shrink

due to higher carrier concentration. Moreover, InSb is a narrow gap semiconductor (0.16

eV) such that at even room temperature the intrinsic electron and hole concentrations are

substantial, thereby, a lower Nernst coefficient in comparison with Ge is expected.

Having the density of states from DFT and the Fermi-Dirac distribution function I can calcu-

late the electron and hole carrier concentration at a given temperature and a chemical poten-
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tial. At the intrinsic Fermi level electron concentration equals hole concentration. Table 4.4

summarizes the hole concentration for InSb, Ge, and Si samples studied in this work.

Table 4.4: Hole concentration at 300 0 K for p-type InSb, Ge, and Si samples studied in this
work.

Material Hole concentration (cm−3) ρ(Ω.cm)

InSb 1.16×1017 4.5×10−5

Ge 1.2×1015 30.00
Ge 2.8×1015 4.5
Si 8×1016 0.22

4.4.4 Bismuth

Bismuth is a well-known semimetal for unique quantum features including giant oscillatory

magnetostriction, magnetoresistance, Shubnikov–de Hass effect, and de Hass–van Alphen

effect [158]. The effect of applied magnetic field on the transport properties of bismuth has

caught attention for the last decades. The electrical resistivity of bismuth may be improved

106 times larger upon applying a magnetic field. The semi-classical transport theory is unable

to explain the quasilinear magneto-resistance in bismuth and it was unveiled by quantum

mechanics [159].

The mean-free path of bismuth at 300 K was found to be 2 µm [160], which is a hundred

times greater than that of copper. Due to low carrier concentration, the quantum limit in

bismuth may be reached by a magnetic field of 9 T along the c-axis. In that limit, electrons

will be moved to the lowest Landau level, and the Fermi wavelength will turn larger than

the magnetic length (the radius of the lowest-energy quantized isolated electron orbit in

a magnetic field), as a result, massive quantum oscillations of the Nernst coefficient was

observed [158].

Specifically, the Nernst effect was discovered in Bismuth. The bismuth crystal structure is

rhombohedral that is transformed from the high symmetry cubic structure by a distortion

along the diagonal, thus, a small portion of the Brillouin zone is occupied by the Fermi
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Figure 4.12: Electrical resistivity of polycrystalline bismuth below room temperature. Our
theoretical results (blue dashed line) slightly deviate from the experiments [163].

surface. Relatively low carrier concentration accompanied by small effective masses makes

bismuth ideal for the Nernst-Ettingshausen cooling systems. The largest Nernst coefficient

has been observed in a bismuth single crystal at the temperature of 4 K about 1 mV/KT [161].

Carrier mobility in bismuth was reported to be in the order of 104 cm2/Vs whether for the

bulk system or in nanowires [162]. Notably, even polycrystalline bismuth shows consider-

able Nernst signals at room temperature. Hasegawa et.al. measured the electrical resistivity

and Nernst coefficient of the polycrystalline bismuth. Similar to the single crystal, the elec-

trical resistivity of the polycrystalline samples was fairly small (in the order of µΩm) and

the Nernst coefficient was about 20 µV/KT in the presence of a magnetic field of 0.2 T.

I reproduced the electrical resistivity of the polycrystalline bismuth in temperatures between

200 K and 300 K (see Fig). In addition to acoustic phonon deformation potential, the grain

boundary scattering rate was estimated as 1
τGB

= ν
d

where d is the grain size which was repor-

ted to be several microns. Consequently, the grain boundary scattering rate was far smaller

compared to the electron-phonon scattering rate, and more specifically, the acoustic phonon

deformation potential was found to be the dominant mechanism which is consistent with the

previous studies [162, 163]. It needs to be emphasized that since bismuth is a semimetal I

considered a pure polycrystalline bismuth in which acoustic phonon deformation potential

and grain boundary scatterings were taken into account. The band gap of bismuth is zero and

a single value of D=3.6 eV, obtained from DFT calculations, was used in the calculations.

I then continued to the calculation of the Nernst coefficient. Fig 4.13 shows that our DFT



53

Figure 4.13: Nernst coefficient of polycrystalline bismuth below room temperature and under
a magnetic field of 0.2 T. Our theory (blue dashed line) predicts the experiments [163] (red
circles).

results agree with the experimental data in a wide range of temperatures. The Nernst coef-

ficient of bismuth at room temperature is strikingly smaller than the cryogenic conditions.

Furthermore, as the temperature decreases the Nernst coefficient magnitude increases due to

growth in mobility.

4.5 Computational aspects

A significant endeavor was allocated to code optimization in terms of parallelization and

memory usage. External libraries that I used are open-source codes, namely, Linear Algebra

PACKage (LAPACK) and Basic Linear Algebra Subprograms (BLAS). By Switching from

GFortran compiler to ifort compiler, I managed to speed up the code as much as 330%,

while the numerical results change no more than 8%. Therefore, I strongly suggest the user

to compile the code with Intel Fortran Compiler (ifort) which surpasses Gfortran weather for

the Seebeck, scattering rates, and the Nernst calculations. (Fig. 4.14 ).

Computation of the Nernst coefficient within RTA is carried out by a post-processing code

which requires a hierarchical procedure shown in Fig 4.1. Fig. 4.15 exhibits the computation

time for each procedure in the case of Ge. Evaluation of the transport distribution function

takes longer as ∂ν
∂k

is assessed at a sufficiently dense grid (300 × 300 × 300 in this case). It

should be noted that the transport distribution function of the Nernst effect happens to con-

verge at denser grids compared to the Seebeck coefficient. Coupling the TDF and relaxation
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Figure 4.14: Dramatic improvement of the CPU time by ifort compiler.

times, which results in the Nernst coefficient, is carried out on one single node that might

take a considerable amount of time depending on scattering mechanisms, temperature, and

doping concentration. It is notable that for each temperature and doping concentration the

relaxation time has to be appraised. As an example, Fig. 4.15 was plotted for 18 temperature

points, 3 doping concentrations, 3 scattering mechanisms, and 2 magnetic fields.

4.6 Material descriptors for the Nernst coefficient

Materials discovery and high-throughput calculations are ubiquitous in the realm of compu-

tational materials science. Direct calculations of the Nernst effect could be computationally

heavy as time-consuming tensor operations are required. Herein, a semi-empirical approach

based on analytical models is presented to expedite the evaluation of the Nernst coefficient.

Within relaxation time approximation, I adopt a model to simulate charge transport in the

presence of an external magnetic field followed by finding the parameters that optimize the

Nernst coefficient.

4.6.1 Model

I consider a two-spherical band model for which the transport distribution function was de-

rived in chapter III. For parabolic bands, scattering rate equations can be simplified and
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Figure 4.15: CPU time of sequential procedures for Ge: band structure calculation, Wan-
nierization, transport distribution function, relaxation time, and the Nernst coefficient calcu-
lation. DFT, WAN, and TDF parts were carried out in a parallel run on 4 nodes.

formulated as a function of energy [164]. Within this frame, I scrutinize the effects of band

structure and scattering parameters on the Nernst coefficient. In order to simplify the scat-

tering rates, an intrinsic single-atom system was assumed in which the dominant scattering

mechanism is acoustic deformation potential (as in the case of Ge) and the temperature was

kept at 300 0K.

4.6.2 Band gap

The band gap is an intrinsic feature of materials and even for semiconductors it vastly varies

from narrow-gap semiconductors (0.17 eV in InSb) to wide-gap semiconductors (3.54 eV in

ZnS). Carrier concentration in the gap comes from the tail of the Fermi-Dirac distribution

function and inversely changes versus the band gap, e.g. higher electron/hole concentration

in the gap for a smaller band gap. In the case of a wide band gap semiconductor, Chemical

potentials towards the middle of the gap fall far from the tail of the Fermi-Dirac distribution

function, as a result, there might be no electrons/holes at a range of chemical potentials.

For the Nernst effect, the coexistence of electrons and holes in the gap is desired, thus, the

band gap needs to be relatively narrow. For very small band gaps, However, the electron/hole

concentration would be fairly larger which would lead to a considerable electrical conduct-
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Figure 4.16: Nernst coefficient versus chemical potential for various band gap values (a).
electron concentration (dashed lines) and hole concentration (black solid line) (b). Colors
correspond to (a).
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ivity. As the electrical conductivity grows the Nernst signal measurement setup will be more

likely to become short-circuit and the Nernst signals will vanish. Therefore, there has to be

an optimum value of the band gap for larger Nernst signals.

Fig 4.16 exhibits the Nernst signal changes with respect to the band gap values ranging from

0.1 eV to 1.0 eV for a two-spherical band system with an equal electron-hole effective mass

of 0.5m0. Similar to the Seebeck coefficient, the Nernst coefficient grows as the band gap

increases, though, for the band gap values larger than 0.7 eV the Nernst signal in the gap

vanishes. The reason lies in the coexistence of holes and electrons in the gap. As the band

gap goes beyond 0.7 eV electrons and holes no longer coexist and the Nernst effect will be

terminated(Fig 4.16).

4.6.3 Effective mass

Effective mass was found as a significant element in charge transport phenomena. Not only

does the mobility principally rely on effective mass, but electron and hole concentrations

are determined by effective mass, thence, effective mass in the Nernst effect plays a crucial

role. The band gap was kept at 0.7 eV, which was found to be the optimum value, and the

effective mass of both bands was concurrently changed from 0.1 m0 to m0. Fig 4.18(a) re-

veals smaller effective mass values cause outstandingly larger Nernst coefficient in the gap

which is attributed to higher mobility. Fig 4.18(b) discloses the electron and hole concentra-

tion continuously diminish as the effective mass is reduced. It is noteworthy to emphasize

that since the band gap was held unchanged the minimum electron and hole concentrations

remain at the same chemical potential but continuously reduce as for a spherical band dens-

ity of states which is proportional to m
√
m. Basically, there are no optimized values and

basically smaller effective mass values are preferred for large Nernst signals.

Moreover, at the band edges where the relaxation time is maximum, the Nernst coefficient

happens to increase. As the effective mass is reduced the mobility will rise which triggers

the Nernst coefficient to grow ( 4.18 (c)). More eminently, a light effective mass can com-

pensate for the effect of the band gap. Fig exhibits that the Nernst signals of a narrow band

gap semiconductor (Eg=0.10 eV) with the effective mass of 0.1 m0 for each band could be

multiple times higher rather than the case of Eg=0.7 but mv=mc=0.5m0, whether in the gap
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Figure 4.17: Nernst coefficient surges versus the inverse of effective mass (a). intrinsic
electron concentration (dashed lines) and hole concentration (solid lines) dwindle at smaller
effective masses(b). Larger Nernst signals for lighter mass values at the conduction band
edge (c). Colors are corresponding to (a).
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Figure 4.18: Effective mass dominates the band gap to yield a large Nernst coefficient.

or around the band edges. This behavior was earlier observed in the experiments, namely in

topological Dirac semimetals such as TaP [165], TaAs [165], NbP [166], and NbAs [167]

significantly large Nernst coefficient values were recorded. It can then be concluded that the

effective mass is the right descriptor for the Nernst coefficient.

4.7 Technological applications

The study of thermomagnetic applications was begun in the 50s on Ge [120] and Bi [168],

but it did not last long because of the induction of a strong magnetic field that would result in

a significant amount of energy loss. Advances in superconducting magnets ease the induction

of strong magnetic fields. As a result, possible applications of the Nernst effect have caught

attention in the last decade.

4.7.1 Cryogenic cooling

Lowering temperature below 100 0K is widely used for quantum computing, superconduct-

ors, and cold hardening. According to the National Institute of Standards and Technology

(NIST) cryogenic cooling is defined as lowering temperature as much as 93 0K or lower.

Such low temperatures are often reached by liquid nitrogen with a boiling temperature of 77
0K. Maintaining a system at the cryogenic condition requires the continuous monitoring of

heat flux. A Nernst- Ettingshausen cooler would provide better control of temperature rather

than balancing the heat flux with a reservoir and liquid nitrogen.
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Nernst-Ettingshausen coolers are based on Thermomagnetic phenomena. In the presence of

an electric current, a fraction of electrons are pushed toward the bottom of the sample (-y-

direction). The absence of electrons would release their energy as an exothermic reaction and

raise the temperature of its vicinity, known as crystal heating. At the same time, the resulting

electron-hole pairs at the opposite side (+y-direction) absorb energy from the lattice that will

cool the top of the sample, ergo, a temperature gradient will be generated along the sample.

Bogason and Heremans made a Nernst-Ettingshausen cooler of Bismuth single crystal and

observed a temperature difference of 5 0K by applying an electric current of 3 A [123].

4.7.2 Nernst- based thermopile systems

A Thermopile is composed of multiple thermocouples connected in series or, less frequently,

in parallel. Thermopiles have been utilized to convert thermal energy into electrical energy

based on the thermoelectric effect. It was recently proposed to design thermopiles working

on the principles of the Nernst effect [169, 170]. Nernst- based thermopiles manifest advant-

ages over their Seebeck-based counterparts such as more flexibility in structures and lower

cost. Interestingly, the conversion efficiency of a Nernst-based thermopile can be improved

with the assistance of the device architecture. Mizuguchi and Nakatsuji [125] posited that

a Nernst-based thermopile system consisting of ferromagnetic wires is the most efficient

design. In their device, ferromagnetic FePt and nonmagnetic Cr wires were connected in

series and the Nernst voltage was observed to improve for a larger number of wires and it

may reach over 0.8 mV for 120 FePt wires under a magnetic field of 2 T and a temperature

gradient of 3.3 K/mm (Fig 4.19).

4.7.3 Radiation detector

Thermopiles are commonly utilized in thermal radiation detection. Despite its lower per-

formance compared to photoconductors, it efficiently runs over a wide range of wavelengths

and it does not need to be refrigerated. Though, long response times are the main issue

of thermopiles as thermal radiation detectors. Radiation detectors based on the Nernst ef-

fect emerged as favorable substitutes for thermopiles as they own strikingly shorter response

times. Since in a Nernst module the voltage is perpendicular to the temperature gradient the

thermal path length can become impressively small. For a radiation detector, in addition to
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Figure 4.19: A thermopile based on the Nernst effect made of Fe/pt and Cr wires (a). The
Nernst voltage in the thermopile is linearly proportional to number of wires (b).

the efficiency of thermal energy conversion to electrical energy, response time is of great

importance.

Assuming the device’s width along the magnetic field is measured to be ”d” while its length

along the Nernst voltage is ”l” with a thickness of ”t” we could record the developed voltage

as a function of the thermal radiation intensity (I) as V=NHlI/κ, where κ is the thermal

conductivity. For a reasonably thick sample, the response time (τr) is estimated by τr =

αCt2/κ in which C is the heat capacity and α is a constant. Substituting the thickness and

the product of width by a length with the surface area, the ratio of the developed voltage to

the thermal radiation intensity is assembled.

V

I
= (

τr
α
)1/4

√
AR

NH

κ3/4C1/4
√
ρ

(4.8)

In which NH
κ3/4C1/4√ρ

is identified as the merit factor for a thermomagnetic detector material.

Bismuth alloys, InSb-NiSb, and Cd3As2-NiAs materials were found to work efficiently for

thermomagnetic radiation detector applications [124].

4.8 Conclusion

In this chapter, I proposed an efficient approach to compute the Nernst coefficient based on

the first-principles density functional theory within relaxation time approximation. Unlike

the constant relaxation time approximation, in this chapter, I account for the charge carrier
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relaxation time caused by various mechanisms. Despite the phenomenological models, our

approach does not perform any fitting and it is based on MLWFs. In order to authenticate

the method, our findings were compared to experimental data of Ge, InSb, Bi, and Si. The

effects of experimental conditions such as temperature, doping concentration, and strength of

the magnetic field were investigated and a remarkable accuracy was observed in a moderate

computational cost. This approach is valid within the validity of the DFT and the validity

of the AMSET code used for relaxation times calculations and it accelerates the materials

discovery and prediction of promising candidates for thermomagnetic applications.
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CHAPTER V

Charge carrier relaxation time for doped semiconductors

5.1 Introduction

Electronic materials are ubiquitous in science and industry such as transistors [171, 172],

photonic materials [173, 174],batteries [175–177], thermoelectric [178–180],quantum simu-

lators [181, 182], photovoltaic [183], and sensors [184, 185] for detection of biological and

chemical species [186, 187]. Electronic devices are based on charge transfer which strongly

depends on the possible scattering mechanisms. In other words, for all applications of elec-

tronic materials charge transfer is the key to choosing a promising candidate that meets the

required conditions.

The Boltzmann transport equation (BTE) describes the charge transfer in solids [188] and

is often solved within the relaxation time approximation (RTA) which assumes the collision

term is inversely proportional to the carrier relaxation time. The most commonly used way

to deal with the carrier relaxation time is to assume a constant value for the relaxation time,

known as the constant relaxation time approximation (CRTA). CRTA makes the computa-

tions less heavy, though, in some cases it produced unrealistic data [189, 190]. The efforts to

go beyond CRTA have been going on for decades starting from the empirical models [114,

164, 191–193] to the parabolic and non-parabolic band models that worked for some mater-

ials like SiGe [194], MoS2 [195] , BaGaGe [196], and half-heusler compounds [197]. Such

models are not universal and are likely to inaccurately predict the experiments [132].

In recent years, attempts have been made to find scattering rates from the first-principles

density functional theory. Noffsinger et.al. [131] proposed a way to compute electron-

phonon coupling through maximally-localized Wannier functions and density-functional per-

turbation theory. They calculated electron-phonon interaction self-energies, electron-phonon

spectral functions, and electron-phonon coupling strengths. Their method is very accurate
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but requires very dense sampling of the Brillouin zone and might be computationally heavy.

Samsonidze and Kozinsky [198] simplified the electron-phonon coupling matrix calculation

by integrating over energy instead of integration over momentum-space. It dramatically de-

creased the computational cost but appeared to deviate for semiconductors with strongly an-

isotropic effective masses. Similarly, Graziosi [132] approximated the momentum-dependent

relaxation time with state velocities and successfully evaluated the thermoelectric power

factor of five Co-based half-Heusler alloys. Ganose et.al. [134] began from the isotropic

equations and then extended them to cover anisotropic bands including ionized impurity,

piezoelectric scattering, and electron-phonon coupling interactions. Their code was tested

on a group of materials and the results were in relative agreement with the experimental

measurements of mobility and the Seebeck coefficient. Although their code significantly

lowered the computer operation time, eigenvalues and group velocities required to calculate

scattering rate and transport distribution function were governed by Fourier interpolation

of the band structures which were found to be less accurate compared to the maximally-

localized Wannier functions. More recently, the PERTURBO code [199] was developed to

assess charge transport and carrier dynamics based on Wannier interpolation. It yields re-

markably accurate results, though, density functional perturbation theory calculations are

needed which might take considerably longer.

As a side project, I demonstrate a new approach to compute the isotropic scattering rates for

doped semiconductors with the assumption of elastic collisions for electron-phonon due to

various mechanisms as well as ionized impurity interactions with the basis sets of maximally-

localized Wannier functions. Our method does not need DFPT calculations and relies on

some physical properties of materials that can be taken directly from the experimental data

and all the scattering rates are treated as a function of k⃗. Electrical resistivity and mobility

values for different materials were computed at a reasonable computational cost and our the-

oretical results emerged fairly close to the experiments.

5.2 Results

In an electronic device, charge carriers are likely to collide with phonons, impurities, and

even other carriers. Such collisions are often assessed by the probability of transition from
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an initial state with the wave vector of k in the state n to the final state with the wave vector

of k′ in the state n′ per unit time known as the scattering rates. The perturbation Hamiltonian

H ′ illustrates the scattering rate by the Fermi golden rule as below:

P (k, k′) =
2π

ℏ

∣∣∣< n′, k′|H ′|n, k >
∣∣∣2δ(ε(n′, k′)− ε(n, k)−∆ε) (5.1)

Where ∆ε shows the change in energy and is expressed by ℏω in the case of phonon scatter-

ing. The term < n′, k′|H ′|n, k > is referred as the Matrix element, M(k, k′), and is specified

by the scattering mechanism. Using plane wave approximation, One may approximate the

matrix element as 1
V

∫
e−ik′.rH ′eik.rd3r, which is known as the Born approximation.

5.2.1 Electron–Phonon scattering rates – deformation potential

According to the deformation-potential theory, the perturbation of electrons or holes by the

lattice vibrations originates from the lattice deformation. The perturbation Hamiltonian is a

function of the change of the displacement field of atoms, y(r) with respect to the positions

and the deformation potential tensor(D).

H ′ =
∑
i,j

Dij
∂yi
∂rj

(5.2)

The displacement of an atom from its equilibrium position in terms of the wave vector q =

±k ∓ k′ +G is expressed by:

y(r) =
∑
q,l

pq,l

√
ℏ

2V ρω(q)

(
a−ql + a+ql

)
eiqr (5.3)

In which l is the phonon mode, p is polarization, ρ is mass density and ω is angular frequency.

Phonons may be created (a+ql) or annihilated (a−ql). Eq. 5.3 gives the perturbation Hamiltonian

for the deformation potential.

H ′ =
∑
i,j

Dij

∑
q,l

[pq,l]iq

√
ℏ

2V ρω(q)

(
a−ql + a+ql

)
eiqr (5.4)
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The summations in Eq. 5.4 are the Fourier transform of
∑

i,j Dij

∑
q,l[pl]iq

√
ℏ

2V ρω(q)
aq,l.

Besides, number of phonons(N ) in the state n is acquired by the quantum operators.

Nql =
∣∣< n′|a−q,l|n >

∣∣2
Nql + 1 =

∣∣< n′|a+q,l|n >
∣∣2 (5.5)

Collecting the above equations in the scattering rate equation 5.1 I can formulate the prob-

ability of transition from an initial state to a final state.

P (k, k′) =
π

V ρω(q)

 Nql

Nql + 1

 ∣∣∣∣∣∑
ij

Dijq[pq,l]

∣∣∣∣∣
2

δ(ε(n′, k′)− ε(n, k)− ℏω) (5.6)

5.2.1.1 Acoustic phonons

Acoustic phonon population in equilibrium is assessed by the equipartition theorem as N= 1

exp( ℏqνs
kBT

)−1
.

Acoustic phonon energy (ℏqνs) is significantly smaller than thermal energy (kBT ), thus

acoustic phonon population can be approximated by Taylor’s expansion.

Nq =
1

exp( ℏqνs
kBT

)− 1
≈ 1

1 + ℏqνs
kBT

+ 1
2
( ℏqνs
kBT

)2 − 1
≈ kBT

ℏqνs
− 1

2
(5.7)

The ratio of velocity (ν) to the angular frequency ω is wave vector as q = ν/ω. Further-

more, acoustic phonon energy (ℏω) is negligible compared to elctron energy ε(n, k), thus

δ(ε(n′, k′)− ε(n, k)− ℏω) ≈ δ(ε(n, k′)− ε(n, k)). As a consequence, Eq.5.6 can be further

simplified.

P ac(k, k′)=
πD2

Aq

ρ V νs

[
kBT

ℏqνs
∓ 1

2

]
δ (ε(n′, k′)− ε(n, k)) (5.8)

Deformation potential scattering by acoustic phonons is an elastic scattering in which fi-

nal states caused by emission or absorption are not distinguishable, therefore, the sum of

emission and absorption should be considered.

P ac(k, k′) =
2πD2

AkBT

ℏρV ν2
s

δ(ε(n′, k′)− ε(n, k)) (5.9)

Total scattering probability per time is obtained by integration over all final states (k′) in

Brillouin zone volume. Herein, I integrate over all states with the assumption of isotropic
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collisions.

1

τac(k, k′)
=

V

(2π)3

∫ 2π

0

dϕ

∫ 1

−1

d cos θ

∫ ∞

0

2πD2
AkBT

ℏρV ν2
s

δ(ε(n′, k′)− ε(n, k))k′2dk′

=
V (2π)(2)

(2π)3
2πD2

AkBT

ℏρV ν2
s

∫
δ(ε(n′, k′)− ε(n, k))k′2dk′

=
D2

AkBT

πℏν2
sρ

∫
δ(ε(n′, k′)− ε(n, k))k′2dk′

(5.10)

Where τ is the charge carrier relaxation time. Elastic constant C relates sound velocity νs

and density ρ as ν2
sρ = C.In order to solve the last integral with δ function, I need to focus

on the definition of density of states g(ε).

g(ε) =
2

(2π)3

∫
dV

∫ ∞

0

k2dk δ[ε(k′)− ε(k)]

g(ε) =
2

(2π)3
4π

∫ ∞

0

k2dk δ[ε(k′)− ε(k)]

π2g(ε) =

∫ ∞

0

k2dk δ[ε(k′)− ε(k)]

(5.11)

Therefore, total scattering by acoustic phonons 5.10 may be written as a function of energy.

1

τac(ε)
=

D2
AkBTπ

2

πℏC
g(ε) =

D2
AkBTπ

ℏC
g(ε) (5.12)

5.2.1.2 Optical phonons

The energy of optical phonons is comparable to the thermal energy and the Eq. 5.7 is not

applied to optical phonons. Furthermore, emission and absorption are distinguishable for

optical phonons. Integration of Eq. 5.6 over all states yields the charge carrier relaxation

time due to optical phonon deformation potential.

1

τop(k)
=

V

(2π)3

∫ 2π

0

dϕ

∫ 1

−1

d cos θ

∫ ∞

0

πD2
op

ρV ωop

 Nop

Nop + 1

 δ[ε(n′, k′)− ε(n, k)± ℏωop]k
2′dk′

=
4πD2

op

8π2ρωop

∫  Nop

Nop + 1

 δ[ε(n′, k′)− ε(n, k)± ℏωop]k
2′dk′

(5.13)
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Assuming optical phonon density is independent of wave vector and density of states 5.11,

it will be simplified to:

1

τ op(ε)
=

πD2
op

2ρωop

 Nop

Nop + 1

 g(ε± ℏωop) (5.14)

In which g(ε ∓ ℏωop) is shifted density of states by ℏωop. This equation looks identical to

Jacoboni’s [164] and Lundstrom’s [114].

5.2.2 Electron–phonon scattering rates – electrostatic interaction

In semiconductors with more than one type of atoms vibrating dipoles are associated with

optical phonons. Moreover, lack of inversion symmetry causes acoustic phonons to be asso-

ciated with the strain field, and as a consequence, a polarization field will be generated. These

phenomena are long-range interactions of electrons with phonons that are named piezoelec-

tric scattering and polar scattering for acoustic phonons and optical phonons, respectively.

5.2.2.1 Acoustic phonons – piezoelectric scattering

According to the Ridely [200], analogous to the deformation potential scattering, for the

piezoelectric effect polarization filed is expressed in terms of strain and the piezoelectric

stress constant (dpz).

Pα(r) =
∑
βγ

dpzαβγ

∂yβ(r)

∂rγ
(5.15)

After doing the similar procedures Eq. 5.2-Eq. 5.4 for the piezoelectric scattering with the

help of Fourier transformation and polarization theory, the matrix element for piezoelectric

scattering is achieved [201].

M(k, k′) =

(
edpz
ϵrϵ0

)2
kBT

V C

(
q

q2 + q20

)2

(5.16)

Where ϵr and ϵ0 are the low-frequency dielectric constant and vacuum permittivity, respect-

ively. q0 is the inverse of Debye length, also known as screening length, and is attained by

1/q0 =
√

ϵ0
e2
(∂n
∂µ
)−1. dpz is the average value of piezoelectric stress constants in the units

C/m2 over all directions to generate a spherically symmetric average. Using the aforemen-

tioned matrix element and Eq. 5.1 the charge carrier relaxation time due to piezoelectric
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interaction will be earned.

1

τpz(k)
=

2πV

ℏ(2π)3

∫ 2π

0

dϕ

∫ ∞

0

k2′dk′δ(ε(n′, k′)− ε(n, k))

∫ 1

−1

(
edpz
ϵrϵ0

)2
kBT

V C
q2d cos θ

(q2 + q20)
2

=
2π

ℏ
2πV

(2π)3
π2g(ε)

∫ 1

−1

(
edpz
ϵrϵ0

)2
kBT

V C
q2d cos θ

(q2 + q20)
2

(5.17)

q relates the initial and final states as q2 = |k−k′|2 = 2k2(1−cos θ) = 4k2 sin2(θ/2), where

θ is the deflection angle.Changing the variable 1 − cos θ = u in 5.17 I will face a familiar

integral.

1

τ(k)
=

(
edpz
ϵrϵ0

)2
πkBTg(ε)

2ℏC

∫ 0

−2

−2k2udu

(q20 + 2k2u)2

=

(
edpz
ϵrϵ0

)2
πkBTg(ε)k

2

2ℏC

∫ 2

0

udu

(q20 + 2k2u)2

=

(
edpz
ϵrϵ0

)2
πkBTg(ε)k

2

2ℏC
1

4k4

[
ln

4k2 + q20
q20

− 4k2

4k2 + q20

]
=

(
edpz
ϵrϵ0

)2
πkBTg(ε)

ℏC
1

8k2

[
ln

4k2 + q20
q20

− 4k2

4k2 + q20

]
(5.18)

5.2.2.2 Optical phonons – polar scattering

The polarization due to interactions between optical phonons and ionic charges of atoms is

given by P (r) = e∗y(r)/V , where e∗ is the effective charge on atoms and is determined by

e∗
2
= ϵ0Mω2

opV(1/ϵ∞r − 1/ϵr)[202, 203]. Note that V is the total volume which equals the

number of units multiplied by the unit cell volume. Similar to optical phonon deformation

potential, for the polar scattering by optical phonons the energy difference between the final

and initial states is ℏωop. Derivation of the matrix element is thoroughly explained in the

references [114, 164, 193] and I directly use their results.

M(k, k′) =

(
Nop +

1

2
∓ 1

2

)
ℏe2ωop

2ϵ0V

(
1

ϵ∞r
− 1

ϵr

)(
q

q2 + q20

)2

(5.19)
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Likewise 5.17, the above summation can be turned into three integrals.

1

τpo(k)
=

2πV

ℏ(2π)3

∫ 2π

0

dϕ

∫ ∞

0

k2′dk′δ
[
ε(n′, k′)− ε(n, k)± ℏωop

]
(
Nop +

1

2
∓ 1

2

)
ℏe2ωop

2ϵ0V

(
1

ϵ∞r
− 1

ϵr

)∫ 1

−1

(
q

q2 + q20

)2

(1− cos θ)d cos θ

=
πe2ωop

4ϵ0
g(ε± ℏωop)

(
Nop +

1

2
∓ 1

2

)(
1

ϵ∞r
− 1

ϵr

)∫ 1

−1

(
q

q2 + q20

)2

(1− cos θ)d cos θ

(5.20)

In the above q = 2k′sin(θ/2). Analogous to 5.18, the above integral is solved and the

optical phonon polar interaction relaxation time is derived.

1

τpo(k)
=

πe2ωop

4ϵ0
g(ε± ℏωop)

(
Nop +

1

2
∓ 1

2

)(
1

ϵ∞r
− 1

ϵr

)
1

k2

[
q20
2k2

ln
q20

4k2 + q20
+

q40
4k2

(
1

q20
− 1

4k2 + q20
) + 1

] (5.21)

The top sign signifies absorption while the bottom sign indicates emission and only applies

when ε(n, k) > ℏω.

5.2.3 Ionized impurity scattering

Ionized impurity scattering is attributed to a screened Coulomb potential which is estim-

ated by an exponential form of screening potential (V(r)) based on the Brooks and Herring

approach [204].

V(r) =
ze(−e)

4πϵ
exp(−q0r) (5.22)

Where z is the number of charge units of the impurity. Following the definition of matrix

element and Fourier transformation, the matrix element is earned as below:

M ii(k, k′) =
niz

2e4

V ϵ2
1

(q2 + q20)
2

(5.23)

In which ni is the ionized impurity concentration and ϵ = ϵ0 · ϵr. Following the Eq 5.1 the

charge carrier relaxation time will be governed.

1

τ ii(k, k′)
=

2π

ℏ
niz

2e4

V ϵ2
1

(q2 + q20)
2
δ[ε(n′, k′)− ε(n, k)] (5.24)

An ionized impurity deflects charge carriers by an angle such that a fraction of the incident

wave vector will be retained. Thus, only a part of transitions occurs and the total scattering
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needs to be modified by a factor of 1 − cos θ. Note that in the ionized impurity scattering

there is no energy difference between the initial and the final states. q relates the initial and

final states as q2 = |k − k′|2 = 2k2(1 − cos θ) = 4k2 sin2(θ/2), where θ is the deflection

angle. Switching to the polar coordinates, the total relaxation time is obtained by:

1

τ ii(k, k′)
=

V

(2π)3

∫ 2π

0

dϕ

∫ ∞

0

k′2dk′
∫ 1

−1

P (k, k′)(1− cos θ)d cos θ

=
V

(2π)3

∫ 2π

0

dϕ

∫ ∞

0

k′2dk′
∫ 1

−1

2π

ℏ
niz

2e4

V ϵ2
δ[ε(n′, k′)− ε(n, k)]

(q2 + q20)
2

(1− cos θ)d cos θ

=
V

(2π)3

∫ 2π

0

dϕ

∫ ∞

0

k′2dk′
∫ 1

−1

2π

ℏ
niz

2e4

V ϵ2
δ[ε(n′, k′)− ε(n, k)]

(2k2(1− cos θ) + q20)
2
(1− cos θ)d cos θ

(5.25)

Let’s first solve the innermost integral by changing the variables 1− cos θ = u and d cos θ =

−du.

1

τ ii(k, k′)
=

Ω

(2π)3

∫ 2π

0

dϕ

∫ ∞

0

k′2dk′2πniz
2e4δ[ε(n′, k′)− ε(n, k)]

ℏΩϵ2

∫ 0

2

−u du

(2k2u+ q20)
2

=
1

(2π)2ℏ

∫ 2π

0

dϕ

∫ ∞

0

k′2dk′niz
2e4δ[ε(n′, k′)− ε(n, k)]

ϵ2
1

4k4

[
ln(

2k2u+ q20
q20

) +
q20

4k2(2k2u+ q20)

]2
0

=
1

(2π)2ℏ

∫ 2π

0

dϕ

∫ ∞

0

k′2dk′niz
2e4δ[ε(n′, k′)− ε(n, k)]

ϵ2
1

4k4

[
ln(

4k2 + q20
q20

)− 4k2

4k2 + q20

]
=

2π

(2π)2ℏ
niz

2e4

4k4ϵ2

[
ln(

4k2 + q20
q20

)− 4k2

4k2 + q20

] ∫ ∞

0

k′2dk′δ[ε(n′, k′)− ε(n, k)]

(5.26)

The most recent integral has appeared before in 5.11. Such that, the ionized impurity scat-

tering is articulated.

1

τ(k)
=

πniz
2e4

8ℏk4ϵ2

[
ln(

4k2 + q20
q20

)− 4k2

4k2 + q20

]
g(ε) (5.27)

5.3 Methods

Electronic structures were achieved using DFT as implemented in QUANTUM ESPRESSO

package [115] and then the band structures were wannierized in order to have a finer band

interpolation via maximally localized Wannier functions (MLWF), as implemented in the

Wannier90 package [40]. All the integrals discussed in Section 5.2 were performed in the



72

Figure 5.1: The MLWF-based scattering rates (w) versus AMSET and ElecTra codes of n-
type (a) and p-type (b,c) GaAs with doping of 1015cm−3 for acoustic phonon deformation
potential (a), piezoelectric (b), and ionized impurity (c) mechanisms.

reciprocal space on the fine MLWFs. The physical properties of each material were taken

from the experiments and the total scattering rate is summed over all the mechanisms ac-

cording to Matthiessen’s rule [137]. Lastly, after convergence was assured, carrier mobility

was calculated and compared to the experimentally measured values from the literature.

5.4 Discussion

5.4.1 Available codes

AMSET [134] and ElecTra [132, 133] are two available open-source post-processing codes

to compute the charge carrier relaxation times based on first-principles DFT results. The

details of these codes can be found in the references. I chose GaAS as a benchmark and

assessed our results with the aforementioned codes. Input parameters such as deformation

potential and elastic constants were kept the same and the doping concentration was as high

as 1015cm−3 for both n-type and p-type samples. Agreements in magnitude and trend for

each mechanism signify that our approach is valid.
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Figure 5.2: (a)The experimental data of hole mobility (blue points) versus our theoretical val-
ues (red points) for p-type GaAs in a wide range of doping concentrations. (b) hole mobility
of each mechanism solely. The smallest mobility determines the dominant mechanism. ac,
pz,op,ii, and po stand for acoustic phonon deformation potential, piezoelectric interaction,
optical phonon deformation potential, ionized impurity, and polar optical phonon, respect-
ively. The total scattering rate is abbreviated as Tot.

5.4.2 Experimental data

In addition to the analytical models and already available codes, I reproduced the experi-

mental data of drift mobility and electrical resistivity of several materials in the following

section.

5.4.2.1 GaAs

GaAs is a commonly used semiconductor in electronics and its electronic structure derivative

properties were well studied. The effect of dopant concentration is shown in Fig 5.2. Our

theoretical findings are reasonably close to the experiments [205–209] and the hole mobility

decreases as the dopant concentration increases which is expected in semiconductors. Fur-

thermore, the hole mobility caused by each scattering mechanism is plotted in Fig 5.2 from

which the dominant scattering mechanism is determined. The smallest mobility prevails

over the total mobility and in the case of GaAs, for the lower doping concentrations, smaller

than nh = 1018cm−3, the polar optical phonon mechanism dominates that is consistent with

the literature [210–212], while for the higher concentrations the ionized impurity scattering

controls charge transport as it was reported in the previous works [213–215]. Moreover, the

matrix elements of scattering mechanisms depend on temperature, and at different temper-

atures, the scattering mechanism will change. Such changes for each scattering mechanism

rely on the matrix element formulation,e.g. the acoustic phonon deformation potential scat-
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Figure 5.3: (a)The measured electron mobility [217–219] (blue points) versus our theory (red
points) for n-type GaAs with a donor concentration of ND = 1017cm−3. (b) drift mobility
of each mechanism. Similarly, the smallest drift mobility controls total mobility. Colors
correspond to Fig. 5.2

tering rate is linearly proportional to the inverse of temperature. Fig 5.3 exhibits a close

reproduction of the electron mobility of n-doped GaAs from room temperature to 700 K.

The scattering rates due to each mechanism vary versus temperature, although, for temper-

atures from 300 K to 700 K, polar optical phonon remains the dominant mechanism which

has no conflicts with the previous articles [216].

5.4.2.2 GaN

Our approach was tested on Wurtzite GaN as a non-cubic structure. Highly doped samples,

ranging from 1017cm−3 to over 1020cm−3, were investigated to ensure that our approach

detects the role of ionized impurity scattering. In addition to the reproduction of the exper-

imental data, this range of doping ionized impurity scattering appeared to control electron

mobility which is consistent with the earlier studies [220]. Besides, the ionized impurity

scattering remains the dominant mechanism even at higher temperatures (see 5.5).

5.4.2.3 InP

Deformation potential scattering mechanisms turn critical in some semiconductors. I choose

to examine the scattering rates of InP as deformation potential scattering was found to be

the dominant mechanism [224]. Indium phosphide is a frequently used semiconductor in

transistors for which charge carrier is of great importance. The acoustic phonon deformation

potential of InP was reported as large as 21 eV [224, 225]. Such a large value of acoustic
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Figure 5.4: (a)Electron mobility of n-type Wurtzite GaN: experiments [220, 221] (blue
points) and theory (red points) for highly doped samples. (b) contribution of each mechanism
to electron mobility.

Figure 5.5: (a)Electron mobility for n-type GaN taken from the experiments [222, 223]
(blue points) along with our theoretical findings (red points) doping concentrations is ND =
5× 1017. (b) ionized impurity scattering is the far most dominant mechanism.
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Figure 5.6: (a)Electron mobility of n-type InP: experiments [220, 221] (blue points) and
theory (red points) for highly doped samples. (b) contribution of each mechanism to electron
mobility.

deformation potential makes the acoustic deformation potential mechanism critically con-

tribute to electron mobility. Our method was applied to InP and the theoretical predictions

emerged to be fairly close to the experiments for a broad range of doping concentrations. On

the other hand, the results show that the acoustic phonon deformation potential scattering

controls electron mobility in InP 5.6.

5.4.2.4 SiC

Silicon carbide (SiC) has been a replacement for silicon in electronics because of its wide

band gap, great thermal conductivity, and large breakdown voltage. Interestingly, SiC has

several allotropes, namely cubic phase (3C) and hexagonal structures (4H,6H). 4H-SiC was

observed to possess a greater mobility [226]. Apart from the fact that the unit cell is relatively

larger than the commonly used semiconductor such as Si, Ge, and GaAs and I needed to test

my code on a bigger unit cell containing more atoms. Subsequently, the electronic structure

comprises more bands and features more complexity compared to Si or GaAs.

The theoretical electron mobility of n-doped samples is in agreement with the experiments

and decreases versus doping concentrations. Acoustic phonon deformation potential exhibits

high scattering rates and plays a key role in total mobility. This behavior is not strange

and was seen in SiC before [227, 228]. Fig 5.9 portrays electron/hole mobility values

obtained by our approach for several semiconductors variously doped at the temperature of

300 K. The dotted line indicates the deviation between theory and experiments. Our theory

effectively reproduces experimental data (µEXP ) for doped semiconductors whether they are
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Figure 5.7: 4H Silicon Carbide crystal structure. The cubic unit cell contains 8 atoms along
with the electronic structure. Red dash lines and blue dots display DFT and wannierized
band structures, respectively.

Figure 5.8: (a)Electron mobility for n-type 4H-SiC taken from the experiments [222, 223]
(blue points) along with our theoretical findings (red points) (b) Acoustic phonon deforma-
tion potential exhibits the lowest mobility [228]
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Figure 5.9: Theoretical Electron/hole mobility (y-axis) for some materials in a broad range
of doping concentration (color bar) at room temperature. The corresponding experimental
values are shown on the horizontal axis.

narrow band gap, e.g. InP, or large band gap, e.g. GaN, semiconductors. However, due to

assumptions made in our formalism, our theoretical results are not in agreement with the

experiments for intrinsic samples.

5.5 conclusion

In this chapter, I proposed an efficient approach to assess the charge carrier relaxation time

in solids due to various mechanisms with the assumption of isotropic and elastic collisions

using first-principles Density Functional theory calculations. In order to validate the method,

not only our results were compared to the other codes, but some experimental data on elec-

trical resistivity and mobility were reproduced. A remarkable accuracy was observed in a

moderate computational cost. This approach was found to yield reasonable predictions of

mobility for doped semiconductors, although, the assumptions are not accurate for intrinsic

samples with a low concentration of dopants. This method promotes the materials discovery

and prediction of electronic materials in a wide range of applications.
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CHAPTER VI

Anomalous Nernst Effect

6.1 Introduction

Thermoelectric (TE) modules are two-terminal devices and are analyzed through the See-

beck effect. In a TE module, the temperature difference between two ends gives rise to an

electric field in the same direction as the temperature gradient. Such configuration might

be an obstacle for some applications due to the necessity of a heat reservoir and as a result,

low thermal conductivity but high electrical conductivity are simultaneously required [229].

Multi-terminal modules emerged as a solution by separating the heat reservoir and the elec-

tric circuit [230], specifically, the Nernst modules have recently caught attention. In a Nernst

device, in addition to a temperature gradient, a magnetic field needs to be present and the

developed voltage is perpendicular to the plane of the temperature gradient and magnetic

field. Due to the lack of need for oppositely charged samples, Nernst modules are simpler to

integrate compared to TE devices [229].

In the previous sections III, IV I introduced the ordinary Nernst effect which requires ap-

plying an external magnetic field. Materials that possess non-zero Berry curvature have the

advantage of a fictitious magnetic field and upon applying a temperature gradient a Nernst

voltage will be generated. This phenomenon is recognized as the anomalous Nernst effect

(ANE) and the developed voltage is named anomalous Nernst coefficient (ANC). Further-

more, ANC was observed to grow rapidly in low magnetic fields while the changes of the

ordinary Nernst coefficient are negligible in small magnetic fields [231], therefore ANE can

potentially be superior to yield a large Nernst power factor in low magnetic fields.

ANC is not directly proportional to the magnetic momentum of the material, in fact, it is

derived from Berry curvature [Ωn(k)] of the system which is defined as the Berry phase (Φ)

per unit area [232]. In a sense, ANC is the summation of Berry curvature values around the



80

Fermi level [233], consequently, materials with large Berry curvatures could be promising

candidates for Nernst applications. ANC was reported to considerably grow in topological

materials by tailoring the Berry curvature [234] such as external perturbations to split band

degeneracy [235] and centrosymmetry breaking through strain [236]. Besides, the crossing

of non-degenerate flat bands will generate nontrivial topological states and the ANE will

increase [237]. In a similar physics, significantly large values of ANC were measured for

Fe3Ga(Al) [238] and Co2MnGa [239] due to the Lifshitz transition which is an abrupt

change in the topology of a Fermi surface.

Iron-based ferromagnetic compounds have emerged as promising candidates for ANE ap-

plications due to their topological states and magnetic moments [240]. Among those, the

binary structures based on the kagome lattice have got great attention due to itinerant elec-

trons caused by the interference of hopping ways in the vicinity of the kagome bracket.

More interestingly, a kagome lattice can concurrently contain topologically protected bands

and flat bands [241]. Fe3Sn with a hexagonal crystal structure was observed not only to be

a bilayer kagome magnet but also to form a nodal plane. The kagome lattice is formed by Fe

atoms and Sn atoms sit at the center of it and the second layer is rotated by π/3. Experiments

showed that AHC and ANC of Fe3Sn are significant at room temperature and may be tuned

up as big as 3µV/K.

Herein, I reproduced the experimental data of ANC for Fe3Sn in a wide range of temper-

atures using first-principles density functional calculations with the basis sets of maximally-

localized Wannier functions. Our approach does not assume any specific types of band

dispersion and does not require any fitting parameters. After replication of the electrical

resistivity and the Seebeck coefficient, the anomalous Nernst coefficient was computed at a

reasonable computational cost and our theoretical results emerged fairly close to the experi-

ments.

6.2 Theory

6.2.1 Equation of motion

Electrons are often described as wave packets constructed from the Bloch waves Ψnk(r) =

eik.run,k(r). Semi-classical equations of motion for materials with nonzero magnetization
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require a correction of weighting to the wave packet [242].

Wkc,rc(r, t) =
∑
k

ak(kc, t)Ψnk(r) (6.1)

The wave packet is centered at rc so that rc =
〈
Wkc,rc|r|Wkc,rc

〉
, and zero order in the

magnetic field only, it demanded that ak(kc, t) = |ak(kc, t)|ei(k−kc).An(kc)−ik.rc , in which

An(k) is the Berry connection An(k) = i
〈
unk|∇k|unk

〉
[232, 242].

An(k) = i

∫
u∗
n,k(r)∇kun,k(r)d

3r (6.2)

More importantly, the curl of the Berry connection is called Berry curvature [232].

ΩB
n (k) = ∇k × An(k) = i

∫
∇ku

∗
n,k(r)×∇kun,k(r)d

3r (6.3)

Berry curvature is the quantity that rectifies the equation of motion. Berry curvature and

the corresponding anomalous velocity are associated with the nth-band properties of the

periodic part of the wave function. One may annotate the Berry curvature as a second-rank

anti-symmetric tensor:

ΩB
n,l = ϵijlΩ

B
n,ij(k)

ΩB
n,ij(k) = −2 Im

〈∂un,k

∂ki
|∂un,k

∂kj

〉 (6.4)

The total Berry curvature at a given wave-vector is accomplished by the summation of Berry

curvature over all bands weighted by the occupation of each state.

ΩB
ij(k) =

∑
fn(k)Ω

B
n,ij(k) (6.5)

Anomalous Hall effect may be observed in the crystal structure with broken time-reversal

symmetry and non-zero Berry curvature. Under these conditions, the equation of motion for

an electron wave packet is reformulated.

ṙ =
∂ε(n, k)

ℏ∂k
+ k̇ × ΩB

k (6.6)
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Additionally, the presence of magnetic and electric fields affects the motion of electrons.

k̇ =
q

ℏ
E +

qṙ

ℏ
×H (6.7)

Solving the above equations gives us ṙ and k̇.

ṙ =
(
1 + (H · ΩB

k )q/ℏ
)−1(

νk + q/ℏ(E × ΩB
k + νk · ΩB

k H)
)

k̇ =
q

ℏ

(
1 + (H · ΩB

k )q/ℏ
)−1(

E +
νk
ℏ

×H +
q

ℏ
(E ·H)ΩB

k

) (6.8)

For the sake of simplicity I show 1 + (H · ΩB
k )q/ℏ by D(H, k). Having changes of location

and wave vector I could solve the semi-classical Boltzmann equations within relaxation time

approximation.

(k̇ · ∇k + ṙ · ∇r)fk =
f 0
k − fk
τ

(6.9)

The deviation of the distribution function from the equilibrium is shown as f 1
k=fk − f 0

k .

After replacing the equations for k̇ and ṙ ( 6.8) in BTE ( 6.9) an equation for the distribution

function is formed.

q

ℏ

(
E +

ν

ℏ
×H +

q

ℏ
(E ·H)ΩB

k

)
· ∇kf

1
k +

(
ν + q/ℏ(E × ΩB

k + ν · ΩB
k H)

)
· ∇rf

1
k= −

Df1
k

τ
q

ℏ

(
E +

ν

ℏ
×H

)
· ∇kf

1
k +

q2

ℏ2
(
(E ·H)ΩB

k

)
· ∇kf

1
k + ν · ∇rf

1
k +

(
q/ℏ(E × ΩB

k + ν · ΩB
k H)

)
· ∇rf

1
k= −

Df1
k

τ
(6.10)

The gradient with respect to the wave vector in Eq. 6.10 could be turned into gradients with

respect to energy and temperature.

q

ℏ2
ν×H·∇kf

l
k+

q

ℏ
ν·E∂f 0

∂ε
+ν·T∇(

ε− µ

T
)
∂f 0

∂ε
+
q2

ℏ2
(E·H)ΩB

k ∇kf
0
k+

q

ℏ
(E×Ωk

B+ν·Ωk
BH)∇rf

1
k=−Df 1

k

τ
(6.11)

The first three terms in Eq. 6.11 describe the ordinary Nernst effect and are explained in

Ref [130]. The last two terms illustrate the anomalous transport and accordingly, anomalous

Hall conductivity (σa) and anomalous Nernst conductivity (αa) will be defined.

σa
ij =

q2

ℏ

∫
ΩB

ij(k)fkd
3k

αa
ij =

kBq

ℏ

∫
ΩB

ij(k)Skd
3k

(6.12)
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Where Sk = −fk ln fk − (1− fk) ln(1− fk) known as the entropy density. With the help of

the Fermi-Dirac distribution function and integration by parts, a simpler form for anomalous

Nernst conductivity can be extracted.

αa
ij(µ) = −1

q

∫ (
−∂f

∂ε

)ε− µ

T
σa
ij(ε)dε (6.13)

The above equations (Eq. 6.10-6.12) pronounce that the Berry curvature ΩB is the key in

anomalous transport. It was discussed that the Berry curvature is an antisymmetric tensor

with zero diagonal components, so will be the anomalous Hall and Nernst conductivities.

The total response functions is the summation of ordinary(o) and anomalous (a) parts,e.g.

[σt] = [σo] + [σa].

Similar to the ordinary Nernst effect (Eq. 8.4), response functions are achieved and the total

Nernst coefficient matrix is N = [σt]−1[αt]. Calculation of Berry curvature is implemented

in Wannier90 package and I developed a post-process code to establish the anomalous re-

sponse functions (σa and αa). The ordinary Nernst coefficient was thoroughly discussed in

the previous chapter IV, however, the matrix elements of scattering mechanisms are different

in metals and semimetals.

6.2.2 Scattering mechanisms in metals

In a metal, an electron is likely to collide with phonons, impurities, or other electrons. Zi-

man [188] expressed that at elevated temperatures quantization of lattice vibrations becomes

irrelevant and the scattering will be proportional to the fluctuation amplitude of the ions, thus,

the electrical resistivity will linearly grow with temperature (ρL ∝ T ). On the contrary, at

temperatures lower than the Debye temperature, the lattice vibration modes have to be coun-

ted. Due to momentum conservation and the small changes in wave vector over all phonons,

the scattering angle will be minute. Ziman proposed that at such temperatures the electrical

resistivity changes intensely with temperature (ρL ∝ T 5), although, he found the electrical

resistivity due to impurities in metal is independent of temperature. In the next sections, I

assume the pure metallic Fe3Sn and formulated the electron-electron and electron-phonon

scattering.
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6.2.2.1 Electron-electron scattering

The interaction between electrons in metals could be relatively considerable, therefore, one

may infer that electrons collide with each other numerously, but because of Pauli’s exclusion

principle, the probability of electron-electron (e-e) collision is suppressed as low. According

to the Born approximation, e-e scattering rate from the initial states of k1 and k2 to the final

states of k′
1 and k′

2 is stated by:

P (k1, k2, k
′
1, k

′
2) =

2π

ℏ

∣∣∣< n′, k′|H ′|n, k >
∣∣∣2δ[ε(n′

1, k
′
1) + ε(n′

2, k
′
2)− ε(n1, k1)− ε(n2, k2)

]
(6.14)

Based on the Fermi liquid theory [243], Suzuki [244] proved that the e-e scattering is linearly

related to the Fermi energy.
1

τe−e

=
(kBT )

2

ℏεF
F(0) (6.15)

Where F is an integral of the Fermi-Dirac distribution function of two states.

F(t) =
∫ ∞

0

∫ ∞

0

1

1 + eu+v−t

1

1 + e−u

1

1 + e−v
dudv (6.16)

If 0 < t < 1 F has a finite value, and specifically F(0) = π2

24
.

6.2.2.2 Electron-phonon scattering

Kabanov [245] began with a non-thermal relaxation of the electron distribution function and

formulated electron-phonon (e-ph) relaxation by the collision integral.

∂f

∂t
= 2π

∫ ∫
Q(ω, ε, ε′)

[
δ(ε− ε′ − ℏω)

[
(fε′ − fε)Nω − fε(1− fε′)

]
+

δ(ε− ε′ + ℏω)
[
(fε′ − fε)Nω + f ′

ε(1− fε′)
]]
dωdε′

(6.17)

Where Q(ω, ε, ε′) is the e-ph spectral function.

Q(ω, ε, ε′) =
1

ℏg(ε)
∑
k,q

M2(q)δ(εk−q − ε′)δ(εk − ε)δ(ωq − ω) (6.18)
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After doing some algebra, the e-ph relaxation time in metals is obtained as follows:

1

τe−ph(ε)
=

2πkBT

ℏ

∫ ωmax

0

α2F
(
ω
)[ 1

sinh (ω/2) cosh (ω/2)
+

sinh2 (ε/2) tanh (ω/2)

cosh (ω+ε
2
) cosh (ω−ε

2
)

]
dω

(6.19)

In which ωmax is the maximum phonon frequency and α2F is the Eliashberg function that

is frequently used in the theory of superconductivity [246, 247]. The calculation of the Eli-

ashberg function is implemented in Quantum Espresso by averaging the electron-phonon

coupling strength (λ) associated with a phonon mode of ν and wave vector of q in the Bril-

louin zone.

α2F (ω) =
1

2

∑
ν

∫
BZ

dq

V
ωqνλqνδ(ω − ωqν) (6.20)

6.3 DFT calculations

Fe3Sn crystallizes in the hexagonal structure (Fig 6.1). I start with the experimental lattice

constants (a=5.460 and c=4.330 A0) and relax the atomic position to reach the lowest energy.

Fe3Sn is reported to be a magnetic compound with an atomic magnetic moment of 2.47 µB.

Local density approximation turned out to predict the magnetic moment incorrectly (3.9

µB), thus, I employed Hubbard U method [248] to correct the DFT results. Its real-space

second quantization formalism is perfectly suited to describe electron localization on atomic

orbitals. The simplest form is a one-band system whose Hubbard Hamiltonian is expressed

as below:

HHub = t
∑

<α,β>,λ

(
c+α,λc

−
β,λ + c+β,λc

−
α,λ

)
+ U

∑
α

nα,↑nα,↓ (6.21)

In which < α, β > designates the nearest-neighbor atomic sites, c−α,λ, c+α,λ, and nα,λ indicate

electronic annihilation, creation, and number operators for electrons of spin λ and on-site

α. Lastly, t is the hopping amplitude which is determined by the localization level [249]. In

case of the strong localization, the Coulomb repulsion between electrons on the same atom

is estimated by a term ”U” that is linked to the product of the occupation numbers of atomic.

In DFT packages, this method is known as LDA(GGA)+U and is a convincing approach to

enhance the accuracy of DFT electronic structure results. The method has been successful

to capture the electronic localization in d and f orbitals [250, 251]. Within LDA+U the total
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Figure 6.1: Hexagonal unit cell of Fe3Sn with 6 Fe atoms and 2 Sn atoms.

energy of a structure is corrected as below:

ELDA+U = ELDA + EHub − Ed (6.22)

Where Ed removes the double counting the overlap between DFT and Hubbard energy.

LDA+U method is implemented in Quantum Espresso with the linear-response method of

Cococcioni and de Gironcoli [251]. In order to procure a fine interpolation of the band

structure, the electronic structure was wannierized and calculation of Berry curvature and ef-

fective mass tensor were carried out on the MLWF basis sets using Wannier90 package [40,

130]. It is worth mentioning that the convergence of Berry curvature and the effective mass

tensors occurred at nonidentical interpolation grids. Electron-phonon coupling constant and

Eliashberg function is implemented in Quantum Espresso package [115]. Having Eliashberg

function and energy dispersion I could evaluate the relaxation time. Lastly, O sum the ordin-

ary and anomalous counterparts of the transport distribution function within relaxation time

approximation and accomplish the anomalous Nernst coefficient.

6.4 Results

Our simulation needs to be initially authenticate by verifying the magnetic moment. With

a U value of 2.4, I obtained the atomic magnetic moment of 2.56 µB. Additionally, at the

low temperatures, where the magnon contribution becomes negligible, the specific heat is

attributed to the contributions of electrons and lattice vibrations and it is clarified as C =

γT + βT 3. γ coefficient can be earned from the number of states by γ = π2

3
kBg(ε). Fig 6.2
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Figure 6.2: Total density of states of bulk Fe3Sn for both spins (a). Projected density of states
for s,p,and d orbitals of Fe spin-down and Sn (b).

Figure 6.3: LDA+U band structure of bulk Fe3Sn (a). Merged Fermi surface of three spin
down bands crossing the Fermi level (b).

(a) shows the density of states of bulk Fe3Sn including spin-up and spin-down states. The

measurements of specific heat gives γ=17.1 mJ/mol K2 [252] while the LDA+U results bear

a γ=12.46 mJ/mol K2. It points out the effective mass of electrons is improved 26 % due to

the correlation effect. All DFT calculations were continued with the U value of 2.4. Fig 6.2

(a) shows the majority of states near the Fermi level are directed spin-up, more importantly,

the d-orbitals of iron have the main contribution to those states which generates a magnetic

moment. I then proceeded with the band structure calculation of Fe3Sn (Fig. 6.3(a)). It is

found to be a metallic system which is consistent with the previous studies [253]. Fig 6.3(b)

displays the Fermi surface of spin-down states near the Fermi level which marks the metallic

nature of Fe3Sn. Since the electron-phonon coupling constant ensues from summation over

both electrons and phonons wave vectors, electron eigenvalues and phonon dispersion are
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Figure 6.4: The Eliashberg function (α2F ) of bulk Fe3Sn versus phonon angular frequency.

required to attain the electron-phonon coupling constant. Having electron-phonon coupling

constant I could move on to the Eliashberg function (Fig 6.4) and finally assess the electron-

phonon relaxation time through Eq. 6.17. The total relaxation time of Fe3Sn was found to be

in the order of 10−15s which is reasonably close to the relaxation time reported for iron [254].

The resulted relaxation times were then coupled with the transport distribution function to

probe the transport properties namely electrical resistivity and the Seebeck coefficient.

Chen et.al. [255] measured the electrical resistivity and Seebeck coefficient of polycrystal-

line Fe3Sn. Because of an exceptional number of charge carriers in metals, outstandingly

low electrical resistivity is a prominent feature of metals. Withal, electrical resistivity in

metals increases versus temperature due to more collisions. Fig 6.5(a) exhibits the electrical

resistivity of Fe3Sn whose order of magnitude is impressively small (µΩcm) and grows with

temperature. Electrical resistivity is more sensitive to carrier scattering than the Seebeck

coefficient and since in a polycrystalline sample there are extra scattering mechanisms such

as grain boundary and defects, the theoretical electrical resistivity is almost twice smaller

than the experiments. The theoretical Seebeck coefficient, though, turned out to be favour-

ably matching the experiments which is rooted in the weaker dependence of the Seebeck

coefficient to relaxation time. Unlike semiconductors, in metals the Seebeck coefficient in-

creases versus temperature and because of excessively high charge carrier concentration the

Seebeck coefficient is smaller ( 6.5(b)).

Anomalous Nernst and Hall effects are ascribed to the non-zero Berry curvature in mo-

mentum space. Anomalous Hall effect renders the integral of the Berry curvature over all the
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Figure 6.5: The average electrical resistivity (a) and Seebeck coefficient (b) of bulk Fe3Sn.
Red circles are the experiments [252] and dashed line is our theory.

Figure 6.6: The total Berry curvature of bulk Fe3Sn at the Fermi level in the units of 0A2.

occupied bands (Eq. 6.12). Anomalous Nernst conductivity specifies changes of the anom-

alous Hall conductivity with respect to energy at the Fermi energy. It was found that band

crossing enlarges Berry curvature [252]. If the spin orbit coupling is negligible, band degen-

eracy occurs when two bands with the same spin cross each other. Fig 6.6 shows the total

Berry curvature of Fe3Sn at the Fermi level along the high symmetry points. There is a clear

band crossing at the Fermi level along K to G (Fig. 6.3) that triggers the Berry curvature to

surge (Fig. 6.6). This behaviour was earlier reported in Iron-based compounds [256, 257].

Having the Berry curvature in reciprocal space I could attain ANC and AHC by Eq. 6.12, 6.13.

On the other hand, with the relaxation time obtained for Fe3Sn the ordinary Nernst trans-

port was achieved. The the ordinary and anomalous parts were then summed according
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Figure 6.7: The anomalous Nernst coefficient of bulk Fe3Sn. Red circles are the meas-
urements for a polycrystalline sample [252] and dashed line is our theory carried out for a
perfect single crystal.

to Eq. 6.11 to govern the anomalous Nernst coefficient. Our theoretical results appeared

to agree with the measurements. Also, the anomalous Nernst coefficient increases as the

temperature raises which is justified by Mott relations that expresses the anomalous Nernst

coefficient in metals is linearly proportional to temperature [242]. The discrepancies between

theory and experiments come from additional scattering mechanisms in the polycrystalline

sample.

6.5 Conclusion

Fe3Sn holds the second largest anomalous Nernst coefficient at room temperature by far.

Such a conspicuous anomalous Nernst coefficient at room temperature is attributed to the

non-zero Berry curvature improved because of band crossing at the Fermi level. An elevated

Curie temperature (760 0K) enables this compound to function for the anomalous Nernst

devices in a wide range of temperature. Iron and tin are non-toxic elements that are co-

pious and economical. I have the LDA results corrected by employing Hubbard method.

Furthermore, the electron-phonon and electron-electron scattering rates were analyzed to

reproduce the experimental electrical resistivity and the Seebeck coefficient. Finally, the an-

omalous Nernst coefficient was calculated and compared to the experimental measurements.

I adamantly declare that our approach is with the DFT framework, hence, our approach is

not applicable to strongly correlated systems.
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CHAPTER VII

Conclusions and future works

In this dissertation, continuing the work of Markov et al., I studied semimetals as an effective

choice for thermoelectric modules. Not only is the intrinsic carrier concentration strikingly

high in semimetals, but the Seebeck coefficient could also be significantly large in the case

of the band asymmetry, e.g. heavy holes and light electrons.

Moreover, I developed an approach to calculate the thermomagnetic properties of materials

using first-principles density functional theory calculations. In order to establish a thorough

understanding of the Nernst effect I began with the constant relaxation time approximation

and had our results compared to the analytical models. I then proceeded to go beyond the

constant relaxation time approximation by computing the scattering rates. Our approach

was then authenticated by comparing to the experimental data reported in the literature. Our

code can pave the way for discovery of the promising candidate for the Nernst effect-based

applications such as cryogenic cooling, radiation detector, and thermopiles.

Furthermore, I found that the mobility (effective mass) plays a key role to accomplish a high

Nernst coefficient as it was observed in the topological Dirac semimetals. This is consistent

with previously established theories. Therefore, materials with light effective mass values

are good candidates to achieve a high thermomagnetic power factor.

Lastly, I studied bulk Fe3Sn which holds the second largest anomalous Nernst coefficient at

room temperature. The electron localization and on-site repulsion effects were tackled by the

Hubbard method. Electron-phonon and electron-electron scattering rates in the Fe3Sn metal-

lic system were evaluated and the theoretical electrical resistivity and the Seebeck coefficient

were in agreement with the experiments. Finally, I successfully reproduced the experimental

data of the anomalous Nernst coefficient of Fe3Sn in a range of temperature within the DFT

framework.
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For the future works, it is suggested to find the materials that poses a relatively small band

gap and light effective mass values, e.g. topological Dirac semimetals, and apply the code to

predict the possible applications for the Nernst effect-based devices.
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CHAPTER VIII

Appendices

8.1 Analytical solution within CRTA

8.1.1 single isotropic parabolic band

For an isotropic parabolic band, energy-wave vector (k) relation is:

ε(k)=
ℏ2k2

2m∗ (8.1)

In such bands velocity and effective mass are identified as:

ν(
−→
k )=ℏ−1∇−→

k
εn(

−→
k )=

ℏ
−→
k

m∗

∂2εn(
−→
k )

∂
−→
k 2

=
∂ν(

−→
k )

∂
−→
k

=
ℏ
m∗

(8.2)

Transformation to spherical coordinates makes integration easier. Additionally, velocities

and derivative of velocities for an isotropic spherical energy dispersion are expressed as

below:

νx=
√

2ε

m
sin(θ)cos(φ)

νy=
√

2ε

m
sin(θ)sin(φ)

νz=
√

2ε

m
cos(θ)

∂νi(k)

∂ki
=
ℏ
m
δij

(8.3)

Where δmj is the Kronecker delta function. Moreover, The volume element dV = dSn

|∇kεn|
in

which dSn=2mε
ℏ2 sin(θ)dθdφ and K are the surface element of the nth band and wave vector,
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respectively. Such that, Transport distribution function for an isotropic spherical dispersion

may be analytically governed by:

Ξij(ε)=
q2τ(ε)

4π3

∫
νiνjds(ε)

|∇kε|
(8.4)

I analyze (8.4) for two cases, whether in-plane (i=j) or cross-plane (i ̸= j). Keep in mind

for an isotropic spherical band dispersion Ξij=Ξji and Ξxx=Ξyy=Ξzz

Ξii=
q2τ

4π3

∫
νiνids

|∇kε|

=
q2τ

4π3

∫
2ε

m
sin2(θ)cos2(φ)

1

ℏ
√
2ε/m

2mε

ℏ2
sinθdθdφ

=
q2τ

4π3

∫ 2π

0

∫ π

0

4ε2m
√
m

ℏ3m
√
2ε

sin3(θ)cos2(φ)dθdφ

=
q2τε

√
mε

π3ℏ3
√
2

4π

3
=
2τq2ε

√
2mε

3ℏ3π2

(8.5)

It is observed that the in-plane transport distribution function is proportional to ε
√
ε , there-

fore, in-plane transport coefficients are non-zero. In contrast, cross-plane transport coeffi-

cients are zero.

Ξij=
q2τ

4π3

∫
νiνjds

|∇kε|

=
∫ 2π

0

∫ π

0

√
2ε

m
sin(θ)cos(φ)

√
2ε

m
sin(θ)sin(φ)

√
m

2εℏ2
2mε

ℏ2
sin(θ)dθdφ

=
∫ 2π

0

∫ π

0

2mε
√
2εsin3(θ)cos(φ)sin(φ)

ℏ3
√
m

dθdφ

=
mε

√
2ε

ℏ3
√
m

∫ 2π

0

∫ π

0

sin3(θ)sin(2φ)dθdφ

=
4mε

√
2ε

3ℏ3
√
m

∫ 2π

0

sin(2φ)dφ

= − 2mε
√
2ε

3ℏ3
√
m

[cos(2φ)]2π0 =0

(8.6)

Adiabatic Nernst effect is governed by applying boundary conditions to electric and heat cur-

rent density equations. For adiabatic Nernst effect, electric current density vector is assumed
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to be zero in all directions and there would be no heat current in y and z directions either:

Ei=φij(H)Jj + αij(H)∂jT

Qi=πij(H)Jj − κij(H)∂jT
(8.7)

Inserting conditions of zero electric current (Jy=0) and no temperature gradient in the y-

direction (∂yT ) into Eq.(8.7), the isothermal Nernst coefficient (NT ) is obtained by:

Ey=αyx(H)∂xT

NT=
Ey

Hz∂xT
=
−αyx(H)

Hz

(8.8)

The second order transport function (Ξijk) is a 3×3×3 tensor corresponding to the directions

of electric filed (electric potential filed), temperature gradient, and magnetic filed. Herein, I

assume the magnetic field is applied only along c-crystal axis (
−→
B=(0, 0, Bz)) and regarding

the fact that ∂νi
∂kj

= ℏ
m
δij then with the help of linear algebra it is cleared out xyz and yxz are

the only non-zero components of second order transport function along z-axis. Additionally,

mind that for an isotropic band ∂νx
∂kx

=∂νy
∂ky

and νx=νy=νz, therefore Ξxyz= − Ξyxz. Similar to

(8.5) and (8.6), herein, I analyze xyz component of the second order transport function.

Ξxyz=
q

ℏ
−q2

4π3

∫
−νxτ

2Hzνx
∂νy
∂ky

dSn

|∇kεn|

=
q3τ 2

4π3ℏ

∫
2ε

m
Hz

2mε

ℏ2
ℏ
m

√
m

ℏ
√
2ε

sin2(θ)cos2(φ)sin(θ)dθdφ

=
q3Hzτ

2

4π3ℏ

∫ 2π

0

∫ π

0

2ε
√
2ε

ℏ2
√
m

sin3(θ)cos2(φ)dθdφ

=
q3Hzτ

2

4π3ℏ

∫ 2π

0

2ε
√
2ε

ℏ2
√
m

4

3
cos2(φ)dφ

=
q3Hzτ

2

4π3ℏ
4ε
√
2ε

3ℏ2
√
m

∫ 2π

0

(cos(2φ) + 1)dφ

=
q3Hzτ

2

4π3ℏ
4ε
√
2ε

3ℏ2
√
m

[
cos(2φ)

2
+ φ

]2π
0

=
q3Hzτ

2

4π3ℏ
4ε
√
2ε

3ℏ2
√
m
2π=

2q3Hzτ
2ε
√
2ε

3ℏ3π2
√
m

(8.9)

At this point, I are able to compute transport coefficients for an isotropic spherical dispersion.

In the first step, I need to define the full tensor of transport distribution function under a
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magnetic field.

[Ξij(H)]= [Ξij] + [Ξijk]

=


Ξxx 0 0

0 Ξxx 0

0 0 Ξxx

+


0 Ξxyz 0

−Ξxyz 0 0

0 0 0

 (8.10)

Accordingly, transport coefficients including Bij(H) and σij(H) will be defined. αij(H)

depends on both first and second order transport coefficients as follows:

αij(H)=
[
σij(H)]−1[Bij(H)

]

αij(H)=



σxx 0 0

0 σxx 0

0 0 σxx

+


0 σxyz 0

−σxyz 0 0

0 0 0




−1

Bxx 0 0

0 Bxx 0

0 0 Bxx

+


0 Bxyz 0

−Bxyz 0 0

0 0 0




αij(H)=


σxx σxyz 0

−σxyz σxx 0

0 0 σxx


−1 

Bxx Bxyz 0

−Bxyz Bxx 0

0 0 Bxx



αij(H)=
1

σxx(σ2
xx + σ2

xyz)


σ2
xx −σxxσxyz 0

σxxσxyz σ2
xx 0

0 0 σ2
xx + σ2

xyz




Bxx Bxyz 0

−Bxyz Bxx 0

0 0 Bxx


(8.11)

The isothermal Nernst coefficient is defined as NT (H).

NT (H)= − αyx(H)= − σxxσxyzBxx − σ2
xxBxyz

σxx(σ2
xx + σ2

xyz)
= − σxyzBxx − σxxBxyz

σ2
xx + σ2

yxz

(8.12)

For a single isotropic spherical single band, σxyzBxx=σxx
qHτ
m

Bxx=σxxBxyz which causes

a zero Nernst coefficient. For a multi-band system though, the Nernst coefficient largely

depends on effective mass of each band and it is not necessarily zero. It is noteworthy to add

that the transport distribution functions (8.10) are linearly summed over bands, so are the

transport coefficients.
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8.1.2 Ellipsoidal Bands

In contrast to spherical bands, ellipsoidal bands have various effective masses along each

crystal axis. Band energies relate to wave vectors as:

ε(kx, ky, kz)=
ℏ2

2
(
k2
x

mx

+
k2
y

my

+
k2
z

mz

) (8.13)

Using the transformation mentioned in the main manuscript, Eq. 8.13 turns to ε(k′
x, k

′
y, k

′
z)= ℏ2

2m′ (k
′2
x +

k′2
y + k′2

z ). In the first step, I drive the density of state for such energy dispersion.

dk=dkxdkydkz=(
√

mx

m′ dk
′
x +

√
my

m′ dk
′
y +

√
mz

m′ dk
′
z)

=
√

mxmymz

m′3 dk′
xdk

′
ydk

′
z=
√

mxmymz

m′3 4πk′2dk′

N(k)dk=
2× 4πk′2

(2π
l
)3

√
mxmymz

m′3 dk′

=
k′2l3

π2

√
mxmymz

m′3 dk′

g(ε)=
N(k) dk

V dε
=
k′2

π2

√
mxmymz

m′3
dk

dε
=
k′2

π2

√
mxmymz

m′3

√
2m′

2ℏ
√
ε

=
2m′ε

π2ℏ2

√
mxmymz

m′3

√
2m′

2ℏ
√
ε

=
√

2mxmymzε

π2ℏ3

(8.14)

Transformation from ellipsoidal coordinates to spherical coordinates, accompanied with the

definition of band velocity and effective mass, analogous to Eq. 8.3, lead to the transport

distribution functions similar to the calculations in the main manuscript. The isothermal
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Nernst coefficient is obtained as follows:

αij(H)=
[
σij(H)]−1[Bij(H)

]

αij(H)=



σxx 0 0

0 σyy 0

0 0 σzz

+


0 σxyz 0

σyxz 0 0

0 0 0




−1

Bxx 0 0

0 Byy 0

0 0 Bzz

+


0 Bxyz 0

Byxz 0 0

0 0 0




αij(H)=


σxx σxyz 0

σyxz σyy 0

0 0 σzz


−1 

Bxx Bxyz 0

Byxz Byy 0

0 0 Bzz



αij(H)=
1

σzz(σxxσyy − σxyzσyxz)


σyyσzz −σzzσxyz 0

−σzzσyxz σxxσzz 0

0 0 σxxσyy − σxyzσyxz



Bxx Bxyz 0

Byxz Byy 0

0 0 Bzz


NT (H)= − αyx(H)= − −σzzσyxzBxx + σxxσzzByxz

σzz(σxxσyy − σxyzσyxz)
= − σxxByxz − σyxzBxx

σxxσyy − σxyzσyxz

(8.15)

8.1.3 Non-parabolic bands

The dispersion of non-parabolic bands can be approximated as ε(1 + λε) = ℏ2k2
2m

. Similar

to Eq. 8.14, the density of states is obtained as g(ε)=
√

mxmymzε(1+λε)

π2ℏ3
√
2

(1 + 2Eλ). Eq. 8.2 is

used for group velocity.

νi=
1

ℏ
∂ε

∂ki
=

ℏ2ki
(2λε+ 1)mi

=
ℏ2

(2λε+ 1)mi

√
2miε(1 + λε)

ℏ
=
√

2miε(1 + λε)

(2λε+ 1)mi

(8.16)

I continue to compute transport distribution function for such dispersion.

Ξii(ε)=
τq2

3
ν2
iig(ε)=

τq2

3

2E(1 + λε)

mi(1 + 2λε)2
g(ε)

=
τq2

3

ε(1 + λε)

mi(1 + 2λε)

√
2mxmymzε(1 + λε)

π2ℏ3

(8.17)

For the 2nd Order transport distribution function Ξijk I need to compute νiτ 2( qτℏ ν×H)·∇kνj .

Assume H is along z-axis. Similar to spherical dispersion, integration of νiνj over the whole
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Brillouin zone yields zero.

[Ξ]ijk=


0 − τ2q3Hz

3V
ε(1+λε)

mxmy(1+2λε)2

√
2mxmymzε(1+λε)

π2ℏ3 0

τ2q3Hz

3V
ε(1+λε)

mxmy(1+2λε)2

√
2mxmymzε(1+λε)

π2ℏ3 0 0

0 0 0


(8.18)

8.2 Spherical bands

I imagine a two parabolic band model with a non-zero band gap. The two parts of the

transport distribution function were derived in our previous work [130]:

Ξxx =
2τ(ε)q2ε

√
2mε

3ℏ3π2

Ξxyz =
2q3Hzτ(ε)

2ε
√
2ε

3ℏ3π2
√
m

(8.19)

The response functions required for the Nernst coefficient are σ and B.

σxx =

∫
Ξxx(ε)

(
−∂f(ε, µ, T )

∂ε

)
dε

Bxx =
1

qT

∫
Ξxx(ε)

(
−∂f(ε, µ, T )

∂ε

)
(ε− µ)dε

σxyz =

∫
Ξxyz(ε)

(
−∂f(ε, µ, T )

∂ε

)
dε

Bxyz =
1

qT

∫
Ξxyz(ε)

(
−∂f(ε, µ, T )

∂ε

)
(ε− µ)dε

(8.20)

For a non-degenerate semiconductor the relaxation time (τ ) is stated as a power function of

energy τ(ε) = τ0ε
r, which is a reasonable estimation [114]. Besides, Fermi-Dirac (F) and

Γ integrals can simplify the integrals in Eq. 8.20.

Fn(z) =

∫ ∞

0

znf 0(z)dz

Γ(z) =

∫ ∞

0

tz−1 exp−tdt

(8.21)

It can be proved that Γ(z + 1) = zΓ(z) and Γ(1/2) =
√
π. For a non-degenerate semicon-

ductor the Fermi-Dirac distribution function is estimated as exp
(
µ−ε
kBT

)
and thus the Fermi-

Dirac integral turns into Fn(z) = exp(z)Γ(n + 1). With the help of the above equations,
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integrals in the form of Eq. 8.20 can be replaced by:

∫ ∞

0

εu
(
−∂f(ε, µ, T )

∂ε

)
dε = u

∫ ∞

0

εu−1f(ε, µ, T )dε = u(kBT )
u exp(

µ

kBT
)Γ(u) (8.22)

Mind that the Eq. 8.22 has to be assessed for the valence band and conduction band, separ-

ately, and then summed. So that the integrals in Eq. 8.20 are unraveled.

σxx = A
[
λcexp

(µ− εc
kBT

)
+ λvexp

(εv − µ

kBT

)]
Bxx =

A
qT

[[
(r + 5/2)kBT + εc − µ

]
λcexp

(µ− εc
kBT

)
+
[
(r + 5/2)kBT − εv + µ

]
λvexp

(εv − µ

kBT

)]
σxyz = Q

[ λc

mc

exp
(µ− εc
kBT

)
+

λv

mv

exp
(εv − µ

kBT

)]
Bxyz =

Q
qT

[[
(2r + 5/2)kBT + εc − µ

] λc

mc

exp
(µ− εc
kBT

)
+
[
(2r + 5/2)kBT − εv + µ

] λv

mv

exp
(εv − µ

kBT

)]

(8.23)

Where λi =
2q2

√
2mi

3ℏ3π2 , A = (r+3/2)(kBT )
r+3/2Γ(r+3/2), and Q = qH(2r+3/2)(kBT )

2r+3/2Γ(2r+

3/2). On the other hand, electron (n) and hole (p) concentrations for a non-degenerate

semiconductor are estimated as n = mckBT
√
2mckBT

π2ℏ3 exp(µ−εc
kBT

)
√
π
2

= Ncexp(
µ−εc
kBT

) and p =

mvkBT
√
2mvkBT

π2ℏ3 exp( εv−µ
kBT

)
√
π
2

= Nvexp(
εv−µ
kBT

). So that the equations in 8.23 can be summar-

ized in terms of carrier concentrations.

σxx = A
[
Mcn+Mvp

]
Bxx =

A
qT

[
[(r + 5/2)kBT + εc − µ]Mcn+ [(r + 5/2)kBT + µ− εv]Mvp

]
σxyz = Q

[Mc

mc

n+
Mv

mv

p
]

Bxyz =
Q
qT

[
[(2r + 5/2)kBT + εc − µ]

Mcn

mc

+ [(2r + 5/2)kBT + µ− εv]
Mvp

mv

]
(8.24)

Where Mi =
4q2

3mikBT
√
kBTπ

. For the sake of the simplicity, I assume acoustic phonon deform-

ation is the dominant scattering mechanism, which was reported for Ge, and r=-1/2. The

above response functions are inserted in the definition of the Nernst coefficient (Eq. 8.13)
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and the Nernst coefficient for a two spherical band system is accomplished.

kB
√
kBTπ

2

[nMc(2MvpkBT − 4pMvµ− kBTnMc)

2mc

− pMv(nMckbT − pMvkBT − 4pMvµ)

2mv

+nMcpMv(
εv + εc
mc

− εc + εv
mv

)
]/[

(kBT [nMc + pMv])
2 + (

q
√
kBTπ

2
[
nMc

mc

] +
pMv

mv

)2
]

(8.25)

8.3 Code’s flags

8.3.1 The Nernst calculation within CRTA

In this section I introduce the flags used for the calculation of the Nernst coefficient within

CRTA. The code is written in fortran language

logical :: nerwann

Determines whether to compute the isothermal Hall conductivity, isothermal Nernst coeffi-

cient , and Ettingshausen coefficient.

The default value is false.

integer :: ner kmesh(:)

It specifies the interpolation k mesh used to calculate the total transport distribution function.

real(kind=dp) :: ner kmesh spacing

Overrides the kmesh_spacing global variable (see the Wannier90 documentation).

character(len=4) :: ner 2d dir

It is the direction along which the system is non-periodic in 2D systems.

The default value is no.

real(kind=dp) :: ner relax time

The value of the constant relaxation time in fs to be used in the total transport distribution

function.

The default value is 10 fs.
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real(kind=dp) :: ner mu min

Minimum value of the chemical potential µ for which thermomagnetic properties are calcu-

lated.

The units are eV. No default value.

real(kind=dp) :: ner mu max

Maximum value of the chemical potential µ for which thermomagnetic properties are calcu-

lated.

The units are eV. No default value.

real(kind=dp) :: ner mu step

Energy step for the grid of chemical potentials from ner mu min to ner mu max in eV.

No default value.

real(kind=dp) :: ner temp min

Minimum value of temperature for which thermomagnetic properties are calculated.

The units are K and there is no default value.

real(kind=dp) :: ner temp max

Maximum value of temperature for which thermomagnetic properties are calculated.

The units are K and there is no default value.

real(kind=dp) :: ner temp step

Energy step for the grid of temperatures from ner temp min to ner temp max.

The units are K and there is no default value.

real(kind=dp) :: ner tdf energy step

Energy step for the grid of energies in the total transport distribution function.

The units are eV and the default value is 0.001 eV.

character(len=120) :: ner tdf smr type

The type of smearing function to be used for the total transport distribution function. The
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default value is the one given via the smr type input flag (if defined).

real(kind=dp) :: ner tdf smr fixed en width

Energy width for the smearing function in eV unit. For the total transport distribution func-

tion, a standard (non-adaptive) smearing scheme is used.

The default value is 0 eV. Note that if the width is smaller than twice the energy step

ner tdf energy step, the total transport distribution function will be unsmeared.

logical :: ner bandshift

Shift all conduction bands by the value of ner bandshift energyshift. Such a shift

is applied after interpolation and the index of the first band to shift is required.

The default value is false.

integer :: ner bandshift firstband

Index of the first conduction band to shift.

It means that this band and all the above bands all bands will be shifted by

ner bandshift energyshift.

The units are eV and it has to be specified if ner bandshift is true.

real(kind=dp) :: ner bandshift energyshift

Energy shift of the conduction bands in the unit of eV. It has to be provided if ner bandshift

is true.

real(kind=dp) :: bext(3)

The external magnetic field vector in units of Tesla for the calculation of thermomagnetic

properties. The default value is (0.0,0.0,0.0)

8.3.2 The Nernst calculation within RTA

In this section I introduce the input parameters in our code to compute the Nernst coefficient

within RTA. The code is written in python language and mind that there are no default values
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for the input parameters and all the flags have to be specified.

real :: smrT

The smearing temperature in the units of K.

real :: Evwan

The top of the valence band of the wannierized band structure in the units of eV.

character :: prefix

prefix of the DFT calculation. It has to be consistent in all steps: DFT, wannierization, and

scattering rates.

real :: Eg

The experimental band gap in the units of eV.

real :: Ev

The top of the valence band from the nscf calculation for the scattering rate calculation in

the units of eV.

real :: muban

The chemical potential span in both bands in the units of eV.

real :: mustep

The chemical potential step size in the units of eV.

real :: Bext

The external magnetic field along z-axis in the units of T.

integer :: amesh

The mesh grid printed in the output of scattering rate calculation.

real :: eps0

The tolerance value for the derivative of the Fermi–Dirac distribution function.
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16G. Moreau, ‘Sur les phénomènes thermomagnétiques’, J. Phys. Theor. Appl. 9, 497–506

(1900).

17M. S. Akhanda, S. E. Rezaei, K. Esfarjani, S. Krylyuk, A. V. Davydov and M. Zebarjadi,

‘Thermomagnetic properties of bi 2 te 3 single crystal in the temperature range from 55 k

to 380 k’, Physical Review Materials 5, 015403 (2021).

18R. Mansfield and W. Williams, ‘The electrical properties of bismuth telluride’, Proceed-

ings of the Physical Society (1958-1967) 72, 733 (1958).

19I. Heft, ‘Beziehungen zwischen den koeffizienten der galvano-und thermomagnetischen

transversaleffekte in ferromagneten’,

20A. Sommerfeld and N. H. Frank, ‘The statistical theory of thermoelectric, galvano-and

thermomagnetic phenomena in metals’, Reviews of Modern Physics 3, 1 (1931).

21E. Sondheimer, ‘The theory of the galvanomagnetic and thermomagnetic effects in metals’,

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sci-

ences 193, 484–512 (1948).



107

22H. B. Callen, ‘The application of onsager’s reciprocal relations to thermoelectric, thermo-

magnetic, and galvanomagnetic effects’, Physical Review 73, 1349 (1948).

23E. Putley, ‘Thermoelectric and galvanomagnetic effects in lead selenide and telluride’,

Proceedings of the Physical Society. Section B 68, 35 (1955).

24F. Seitz and R. Johnson, ‘Modern theory of solids. i’, Journal of Applied Physics 8, 84–97

(1937).

25A. Sommerfeld, ‘Zur elektronentheorie der metalle auf grund der fermischen statistik’,

Zeitschrift für Physik 47, 1–32 (1928).

26H. A. Lorentz, The theory of electrons and its applications to the phenomena of light and

radiant heat, volume 29 (GE Stechert & Company, 1916).

27P. Price, ‘Theory of transport effects in semiconductors: the nernst coefficient, and its

relation to thermoelectric power’, Physical Review 102, 1245 (1956).

28R. Delves, ‘Thermomagnetic effects in semiconductors and semimetals’, Reports on Pro-

gress in Physics 28, 249 (1965).

29H. Nakamura, K. Ikeda and S. Yamaguchi, ‘Physical model of nernst element’, inSeventeenth

international conference on thermoelectrics. proceedings ict98 (cat. no. 98th8365) (IEEE,

1998), pages 97–100.

30H. Okumura, Y. Hasegawa, H. Nakamura and S. Yamaguchi, ‘A computational model of

thermoelectric and thermomagnetic semiconductors’, inEighteenth international confer-

ence on thermoelectrics. proceedings, ict’99 (cat. no. 99th8407) (IEEE, 1999), pages 209–212.

31Y. Liu, H.-J. Zhang and Y. Yao, ‘Ab initio investigation of magnetic transport properties

by wannier interpolation’, Physical Review B 79, 245123 (2009).

32K. Ohno, K. Esfarjani and Y. Kawazoe, Computational materials science: from ab initio

to monte carlo methods (Springer, 2018).

33G. K. Madsen and D. J. Singh, ‘Boltztrap. a code for calculating band-structure dependent

quantities’, Computer Physics Communications 175, 67–71 (2006).

34G. K. Madsen, J. Carrete and M. J. Verstraete, ‘Boltztrap2, a program for interpolating

band structures and calculating semi-classical transport coefficients’, Computer Physics

Communications 231, 140–145 (2018).



108

35G. Pizzi, D. Volja, B. Kozinsky, M. Fornari and N. Marzari, ‘Boltzwann: a code for

the evaluation of thermoelectric and electronic transport properties with a maximally-

localized wannier functions basis’, Computer Physics Communications 185, 422–429

(2014).

36F. Macheda and N. Bonini, ‘Magnetotransport phenomena in p-doped diamond from first

principles’, Physical Review B 98, 201201 (2018).

37S. Zhang, Q. Wu, Y. Liu and O. V. Yazyev, ‘Magnetoresistance from fermi surface topo-

logy’, Physical Review B 99, 035142 (2019).

38D. C. Desai, B. Zviazhynski, J.-J. Zhou and M. Bernardi, ‘Magnetotransport in semi-

conductors and two-dimensional materials from first principles’, Physical Review B 103,

L161103 (2021).

39J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong and M. Bernardi, ‘Perturbo: a software

package for ab initio electron–phonon interactions, charge transport and ultrafast dynam-

ics’, Computer Physics Communications 264, 107970 (2021).

40A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari, ‘Wannier90:

a tool for obtaining maximally-localised wannier functions’, Computer physics commu-

nications 178, 685–699 (2008).

41H. Jones and C. Zener, ‘The theory of the change in resistance in a magnetic field’, Pro-

ceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical

and Physical Character 145, 268–277 (1934).

42L. Bell, ‘Cooling, heating, generating power, and recovering waste heat with thermoelec-

tric systems’, Science 321, 1457–1461 (2008).

43H. Goldsmid, Thermoelectric refrigeration (Springer, 2013).

44A. F. Ioffe, L. Stil’bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch and G. Vineyard,

‘Semiconductor thermoelements and thermoelectric cooling’, Physics Today 12, 42–42

(1959).

45M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen, ‘Perspectives

on thermoelectrics: from fundamentals to device applications’, Energy Environ. Sci. 5,

5147–5162 (2012).



109

46G. Mahan, ‘Good thermoelectrics’, Solid state physics (New York. 1955) 51, 81–157

(1997).

47M. Zebarjadi, ‘Electronic cooling using thermoelectric devices’, Applied Physics Letters

106, 203506 (2015).

48M. Adams, M. Verosky, M. Zebarjadi and J. Heremans, ‘Active peltier coolers based on

correlated and magnon-drag metals’, Physical Review Applied 11, 054008 (2019).

49M. Zebarjadi, ‘Solid-state thermionic power generators: an analytical analysis in the non-

linear regime’, Phys. Rev. Applied 8, 014008 (2017).

50M. G. Rosul, D. Lee, D. H. Olson, N. Liu, X. Wang, P. E. Hopkins, K. Lee and M.

Zebarjadi, ‘Thermionic transport across gold-graphene-W iSe2 van der waals heterostruc-

tures’, Science advances 5, eaax7827 (2019).

51G. Mahan and J. O. Sofo, ‘The best thermoelectric’, Proceedings of the National Academy

of Sciences 93, 7436–7439 (1996).

52D. Rowe, ‘Applications of nuclear-powered thermoelectric generators in space’, Applied

Energy 40, 241–271 (1991).

53Z. Yuan, X. Tang, Z. Xu, J. Li, W. Chen, K. Liu, Y. Liu and Z. Zhang, ‘Screen-printed ra-

dial structure micro radioisotope thermoelectric generator’, Applied Energy 225, 746–754

(2018).

54M. Thielen, L. Sigrist, M. Magno, C. Hierold and L. Benini, ‘Human body heat for power-

ing wearable devices: from thermal energy to application’, Energy conversion and man-

agement 131, 44–54 (2017).

55M. Guan, K. Wang, D. Xu and W.-H. Liao, ‘Design and experimental investigation of a

low-voltage thermoelectric energy harvesting system for wireless sensor nodes’, Energy

Conversion and Management 138, 30–37 (2017).

56T. Torfs, V. Leonov, C. Van Hoof and B. Gyselinckx, ‘Body-heat powered autonomous

pulse oximeter’, inSensors, 2006 ieee (IEEE, 2006), pages 427–430.

57G. Pistoia, ‘Chapter 6-batteries for medical and special applications’, Batteries for Port-

able Devices. Elsevier Science BV, 147–162 (2005).



110

58N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi and M. Ismail, ‘A com-

prehensive review of thermoelectric generators: technologies and common applications’,

Energy Reports 6, 264–287 (2020).

59B. Iezzi, K. Ankireddy, J. Twiddy, M. D. Losego and J. S. Jur, ‘Printed, metallic thermo-

electric generators integrated with pipe insulation for powering wireless sensors’, Applied

energy 208, 758–765 (2017).

60W. Wang, V. Cionca, N. Wang, M. Hayes, B. O’Flynn and C. O’Mathuna, ‘Thermoelec-

tric energy harvesting for building energy management wireless sensor networks’, Inter-

national journal of distributed sensor networks 9, 232438 (2013).

61M. Al Musleh, E. Topriska, L. Jack and D. Jenkins, ‘Thermoelectric generator experi-

mental performance testing for wireless sensor network application in smart buildings’,

inMatec web of conferences volume 120 (EDP Sciences, 2017), page 08003.
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