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Introduction 

 Neonates, on account of developing in the semi-allogeneic, sterile environment of the 

womb, are at considerable risk of infection upon birth, when they are exposed to the 

microorganism-rich world (1). About 40% of the 3 million neonatal deaths worldwide are caused 

by infections, and while neonatal vaccines have proven useful for older babies and children, they 

are least effective in the first month of life (2-4). Antibodies transferred from the pregnant person 

to the fetus via the placenta during pregnancy provides the neonate with passive immunity to 

pathogens for about 6 months ex utero (5), and this process has been leveraged to administer 

vaccinations to the pregnant person (6-7). However, little is known regarding the mechanisms of 

transplacental antibody transfer, the dynamic regulation of it throughout placental development, 

and the effects of the pregnant person’s health factors.  

The placenta cannot be studied longitudinally in humans because it is invasive and could 

cause harm to the fetus and the pregnant person, so researchers are confined to one static time 

point (when the placenta is expelled from the body). It is also unideal to study via animal models 

because it is not conserved across species. This does not allow for a comprehensive look into the 

development. Thus, computational methods are being employed to uncover the dynamics of 

placental development. Recently, a quantitative mechanistic model has been designed to find out 

what the determinants of transplacental antibody transfer are, and how the process may be used 

to inform patient-specific pregnancy treatment and immunization approaches (8). 

There is evidence that prenatal vaccines are less effective than they could be in 

transferring antibodies optimally to all populations. For example, the pertussis vaccine’s 

effectiveness against hospitalization was only 73% in preterms as opposed to 95% in full-terms 

(9). For another, several studies found that the Hib and TDap vaccines in early pregnancy 



 

 

resulted in insufficient antibodies in term neonates to protect against infection (10-11). 

Accordingly, a model that predicts a personalized approach to pregnancy vaccinations is greatly 

beneficial by promoting neonatal immunity. 

A major limitation of the current quantitative mechanistic model, however, is that it does 

not consider spatial heterogeneity over time, which is crucial in this biological context: the 

placenta is changing in shape and constitution throughout gestation (12). To fill in this gap of 

knowledge, we are using a different modeling platform that can simulate structural changes. 

Agent-based models (ABMs) consist of a system of autonomous, decision-making individuals 

called agents which assess their situations, make decisions, and execute behaviors in response to 

interactions with each other and the environment based on a set of given rules (13). In this 

biological model, agents are individual cells, the environment consists of chemical concentration 

gradients, and the agent behaviors are governed by rules derived from literature (13-14).  

This first version of the ABM is of fetal angiogenesis at the placental interface. 

Eventually, we will be able to more accurately develop patient-specific pregnancy treatment and 

vaccination plans that maximize neonatal immunity (Fig 1). Correspondingly, the STS topic will 

delve into the health disparities faced in obstetrics and gynecology by people of marginalized 

races and genders, and how we may work to resolve them. 



 

 

Technical Topic 

During pregnancy, the placenta develops in the uterus alongside the fetus to provide it 

with oxygen, nutrients, and immunity. Proper development of the placenta is crucial to fetal 

health, specifically because antibodies transferred to the fetus confer early life immune 

protection. However, little is known about the mechanisms of antibody transfer through the 

placenta and how it is dynamically regulated throughout gestation, or how it is affected by the 

pregnant person’s health (i.e., chronic stress, diabetes, etc) (15). Computational models can be 

used to uncover the dynamic regulation of transplacental antibody transfer to optimize 

therapeutic strategies administered to the pregnant person to boost neonatal immunity, 

specifically here the timing of prenatal vaccinations. We will use ABMs to fill in this gap. To 

reiterate, ABMs use a set of autonomous, decision-making individuals called agents that interact, 

act, and react to each other and the environment, governed by a set of rules. This model will 

uncover how the changes in placental shape and constitution over time affect transplacental 

antibody transfer to provide a more accurate model for predicting patient-specific approaches to 

pregnancy treatments and vaccines. 

The Dolatshahi lab has developed an ordinary differential equation (ODE) model of 

antibody transfer between the syncytiotrophoblast layer and the endothelial layer of the placenta 

(Fig 1). However, this modeling framework does not consider the stromal compartment between 

these cellular compartments, regarding it as a constant in antibody transfer, and additionally 

ignores the placenta’s dynamic spatial heterogeneity over time. Thus, I will be designing an 

ABM to model placental development through endothelial cell, cytotrophoblast, and 

syncytiotrophoblast interactions. Then, the model will be parameterized with 

immunohistochemical images of patient placenta samples. 



 

 

 

To present the cellular interactions of endothelial cells, cytotrophoblasts, and 

syncytiotrophoblasts in the ABM, we have split the research into three main focuses. First, we 

will determine the process of endothelial cells undergoing angiogenesis. Second, we will 

investigate cytotrophoblasts, and their derivative syncytiotrophoblasts; how each interacts with 

signals from endothelial cells; and how the ratio of cytotrophoblast to syncytiotrophoblasts 

changes throughout gestation. We will accomplish both of these through literature review and 

scRNA sequencing data analysis. Finally, we will synthesize our findings to inform the ABM 

rules for angiogenesis, cytotrophoblast proliferation and differentiation, and antibody transfer 

through these layers. 

 Model parameterization and validation is crucial to ensure that it reflects real 

physiological observations. Thus, we will use a bulk RNA seq data set to determine if the model 

is able to predict the dynamic relationship between angiogenic activity and cytotrophoblast 

proliferation and differentiation. Secondly, we will conduct immunohistochemical analysis of 

endothelial cells in sample placenta to see if a greater degree of angiogenesis corresponds with 

increased transplacental antibody transfer. 

This ABM fills a gap in the current knowledge of this understudied field by providing 

insight into a compartment of the placenta typically assumed as complacent and unchanging 

during antibody transfer, and by introducing a type of computational modeling as yet 

unimplemented for this particular system. In the future, medical professionals can use this 

complete dynamic model to predict the optimal time of vaccination for a patient based on their 

specific medical history to ensure maximum neonatal immunity. 

 

 



 

 

STS Topic 

Racial disparities in healthcare are vast and perpetuated by a history of systemic 

misrepresentation of, and a society that devalues, non-white people. Particularly in the fields of 

obstetrics and gynecology, there is a severe lack of research in general, and the existing research 

is almost exclusively for white women. Decades-long information about racial-ethnic disparities 

in reproductive healthcare suggests that the problem consists of systemic social and structural 

inequities rather than individual-level risk (16). They can be described in three main categories: 

socioeconomic, political, and environmental differences that have physiological effects; access to 

healthcare; and quality of healthcare received (17). There is an additional layer of difficulty for 

gender diverse individuals who were assigned female at birth, but this could be its own thesis. 

The scope of this paper will be limited to cis women and the disparities marginalized racial 

groups face in obstetric and gynecological healthcare in the United States.  

Black and Hispanic people in the United States historically have had unequal 

opportunities for educational and economic advancement, which in turn affects their 

socioeconomic status. This defines where and how they live, especially considering redlining, a 

structurally racist US housing practice that forces people of color into specific neighborhoods 

that circles back around to people having unequal access to education, healthcare centers, and 

wealth. The incidence of unintended pregnancies is more than 20% higher in Black women than 

it is in white women (59.9%-71.8% versus 31.1%-41.7%) (18, 19). The rate of teen pregnancy, 

while declining overall in the last few decades, is higher for Black girls (20). The issues are 

highly correlated to a lack of comprehensive sex education in schools, access to healthcare 

providers and information about contraceptive methods, and family planning services in 

predominantly Black and/or Hispanic communities (17). The infant mortality rate per 1,000 live 



 

 

births amongst non-Hispanic Black people was 10.6 in 2019 while that of non-Hispanic white 

people was less than half that at 4.5 (21). The rate of preterm births was also higher in Black 

women than white women at 14.39% and 9.26% respectively (22). This is often tied to a 

disparity in access to and quality of care which will be discussed later, but recent studies have 

shown that systemic racism causes perturbations in physiological systems, which informs 

epigenetic changes in people (23). There is research to suggest that chronic stress from living 

conditions and the like, experienced in higher incidence by Black and Hispanic women than 

white women, can have negative consequences on their neonate’s immunity (24), especially 

because the chance of preterm labor is increased.  

  



 

 

Conclusion 

 Obstetrics and gynecological research are making leaps from a biomedical perspective. 

Computational modeling is an excellent tool being used to study various biological contexts that 

are difficult to study in vitro or in vivo and implementing it for natal processes is uncovering 

mechanisms that were previously unreachable. The agent-based model, in its more advanced 

stages and in communication with the ODE model, will be able to predict the optimal treatment 

and vaccination plan for each specific patient. It will account for maternal health-factors and 

their effects on maternal-fetal antibody transfer to help bridge some of the physiological 

disparities faced by racial-ethnic minority women and their babies. 
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