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Abstract

Generative models have revolutionized image synthesis and editing tasks, achieving
unparalleled success in semantic and stylistic transformations. While they have come
a long way, their ability to learn and apply precise geometric transformations remains
limited by explicit conditioning methods and dependence on substantially labeled data.
This limitation restricts their ability to adapt to real-world applications requiring
spatial accuracy. This thesis presents a novel approach that enables generative models
to implicitly learn and apply geometric transformations, particularly rotation, through
latent space manipulation.

An integrated system is proposed that combines text-guided generation with
geometric reasoning, equipping generative models with the ability to learn geometric
features and integrate geometric reasoning into the learning pipeline. By combining
latent space learning with text-based guidance and diffusion-based denoising, the
proposed framework achieves precise and interpretable geometric transformations,
specifically focusing on rotations as a proof of concept.

The proposed model aims to learn a latent representation that captures the
geometric difference between the source and target images. The transformation
parameter (rotation angle) is learned directly from the latent space. The latent space,
combined with the source image and text embeddings, is refined using a diffusion
model, which allows the generative models to implicitly learn and apply geometric
transformations. The diffusion model enhances the coherence of the transformed
outputs while maintaining consistency with the geometric constraints provided via
text prompts.

Experimental results demonstrate that the proposed framework can effectively
capture and learn rotation transformations. The proposed model outperforms the
baseline methods (FastEdit, SDEdit, and InstructPix2Pix) by achieving an FID
score of 4.85, IS of 3.53, and SSIM of 0.88, and shows alignment with ground
truth transformations. The modularity of the architecture suggests its potential for
generalizing transformations beyond rotations and paves the way for more robust
generative modeling techniques. It opens avenues for applications in medical imaging,
robotics, and augmented reality, where precise and efficient image manipulation is
critical.
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1 Introduction

1.1 Image Generation Models

Equipped with the ability to generate new data samples from a given dataset, genera-
tive models are a cornerstone of artificial intelligence. They operate by learning the
underlying probability distribution of the dataset to produce outputs that are statis-
tically similar to the original dataset. Such models have been remarkably successful
in the domain of image generation, allowing for applications such as image generation
and style transfer [1] and [2]. Some prominent types of generative models include:

• Generative Adversarial Networks (GANs): GANs [3] consist of a generator and
a discriminator that engage together in a zero-sum game. The generator’s goal
is to produce images that are indistinguishable from the real images, while
the discriminator evaluates them against the actual data to determine if they
are real or fake. This setup allows GANs to produce realistic and high-quality
images.

• Variational Autoencoders (VAEs): VAEs [4] use a probabilistic approach to
encode input data into a latent space and decode it back to reconstruct the
data. They impose a probabilistic distribution (usually Gaussian) on the la-
tent variables which helps in generating new data and learning smooth latent
representations.

• Diffusion Models: A much more recent development, diffusion models [5] start
with a distribution of random noise and gradually learn to reverse this noise to
obtain meaningful data samples. Iterative denoising is conducted, guided by a
model trained to predict the noise that had been added in each step backward
and allow the model to generate detailed images.

1.2 Text-Guided Image Transformation

Text-guided image transformations lie at an innovative intersection of computer vision
and natural language processing. Text-guided image-to-image models [6] [7] are used
in generative tasks when users want to modify images while keeping certain elements
intact, based on textual inputs. These models transform the input image to a new
image based on a text prompt, thus combining both the structure of the input image
and the semantic guidance of the text as shown in figure 1.
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Figure 1: Text-Guided Image Transformation on an image of the Rotunda with IP2P
using the prompt "transform into a winter theme"

Here is a high-level overview of the transformation process:

1. The text input is interpreted using natural language processing techniques. This
involves understanding the semantics of the text, identifying key descriptors,
and mapping these descriptors to visual attributes.

2. The next step depends on the model’s architecture. An image is either generated
from scratch (as in the case of DALL·E [8]) or the existing image is modified (as
in the case of CLIP-guided diffusion models). Visual elements of the image are
adjusted by the model - this can range from altering colors or adding objects
to the image.

In the context of this work, the CLIP model [9] developed by OpenAI has been
utilized. CLIP is a model trained on a vast amount of image and text data to learn
visual concepts from natural language descriptions. Its ability to understand and
correlate textual and visual information makes it a foundational tool for text-guided
image transformations. It is effective at guiding diffusion models to ensure that the
transformations align with the textual descriptions provided by the user.

1.3 Success of Current Generative Diffusion Models in
Image Editing

Generative models, such as DALL-E 2 [10], Stable Diffusion [11], and InstructPix2Pix
[12], have demonstrated remarkable success in generating and editing images. They
are capable of generating visually realistic and coherent images by iteratively refining
noisy data into meaningful outputs, guided by text prompts. They can handle a
variety of tasks, including style transfer and inpainting which allows text-based
control of semantic edits like color changes, object addition or removal, or stylistic
transformations.

However, despite their success, current diffusion models fall short when it comes
to geometric transformations [13] [14].
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1.4 Importance of Geometric Transformations

Rotations, scaling, and translations are fundamental operations in image editing [15]
[16]. They are used for tasks like aligning objects in an image, correcting distortions
in real-world images or scans, and creating visually consistent scenes in augmented or
virtual environments. Geometric transformations are also widely used for augment-
ing datasets in computer vision to improve model generalization for classification,
detection, and segmentation tasks.

On a much more domain-level analysis – they are critical in the field of medical
imaging to align medical scans to ensure accurate diagnosis. Camera feeds in au-
tonomous vehicles often require real-time geometric adjustments to align objects and
detect obstacles. In the domain of AR (Augmented Reality) or VR (Virtual Reality) –
immersive environments rely on accurate geometric transformations [17] to position
and align virtual objects [18].

Thus, understanding geometric transformations allows users to make precise
adjustments through intuitive interfaces, such as text prompts like “rotate by X
degrees” or “scale by a factor of 1.5”. This is necessary for accessibility so that even
non-expert users can interact with generative models seamlessly.

1.5 Challenges in Geometric Transformations with Cur-
rent Generative Models

From basic preprocessing tasks such as cropping and resizing to advanced operations
like 3D modeling – geometric transformations are an important application of com-
puter vision. In the context of generative models, these transformations involve the
modification of spatial image attributes like rotation, scaling, and translation, to
generate varied perspectives of the same object or scene.

Generative models have been a revolution for machines to understand and generate
multimedia content. They excel in semantic and stylistic transformations. However,
integrating geometric transformations into generative models presents a series of
challenges [13]. As shown in Figure 2, they often struggle with handling such transfor-
mations since their focus is on pixel-level data rather than higher-level abstractions
like shape and spatial arrangement.
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Figure 2: Attempted Text-Guided Rotation Transformation on a brain MRI image
using IP2P using the prompt "rotate by 30 degrees."

Geometric transformations are complex since they alter the spatial layout of
an image. Generative models, particularly those based on diffusion or transformer
architecture are primarily trained to capture the content and style of data distributions
instead of explicit spatial properties. This means that while they are good at tasks
like modifying the appearance of objects (adding texture, changing image style, or
adding objects), they lack the inherent mechanisms needed to handle geometric
transformations that involve spatial manipulation instead of content modification.
This is because they rely on learned correlations rather than intrinsic spatial reasoning.

Existing diffusion models primarily operate on pixel-level noise or high-level latent
features but do not explicitly model geometric relationships in the latent space. They
tend to entangle semantic and geometric edits. For example, a text prompt like
"rotate the chair" may unintentionally modify the appearance of the chair rather than
purely adjusting its orientation. Geometric transformations must preserve the overall
structure and consistency of the image. This means that a rotated object should
remain visually coherent and correctly positioned within the scene. Most models
cannot generalize well to unseen or complex geometric transformations which limits
their applicability.

1.6 Proposed Solution

Instead of directly manipulating pixels, this work focuses on learning the geomet-
ric differences, particularly for rotation, between the source and target images by
leveraging latent space representations to allow generative models to implicitly learn
transformations. The focus on learning the latent space representation of geometry
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allows the geometric differences between the source and target images to be captured
effectively. By doing so, the model learns to encode and represent transformations
like rotation in a way that is both efficient and meaningful for downstream tasks.

The explicit prediction of the transformation parameter, the rotation angle, from
the latent representation grants interpretability and flexibility to the model, ensuring
that the geometric transformation can be explicitly applied and controlled. This
approach is designed to generalize well to unseen transformations. By learning the
underlying principles of geometric operations in the latent space, the model can
handle geometric transformations beyond those explicitly present in the training data.

5



2 Background

2.1 Diffusion Models

Diffusion models employ a diffusion process to convert data into a random noise
distribution and then learn to reverse this process. A sample of noise is initialized
and this sample is refined iteratively towards the data distribution by performing
a series of denoising steps. At each step, a neural network predicts the noise that
was added at each step, thus effectively learning to reverse the diffusion process. The
original image x0 is sampled from the clean data distribution (p(x)) and the noisy
image xt is sampled from the Gaussian distribution (N (0, 1)).

Figure 3: Visualizing the forward and reverse diffusion process

2.1.1 Forward Diffusion

This process adds noise to an original data sample incrementally until it is entirely
transformed into Gaussian noise over several steps. The forward diffusion process is
described by:

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

where:

• q(xt|xt−1): Conditional probability of xt given xt−1.

• N : Gaussian distribution.

•
√
1− βt: Scaling factor for xt−1.

• βt: Noise variance at time t.

• I: Identity matrix for isotropic noise.

• xt, xt−1: States at time t and t− 1.

6



Gaussian noise is added incrementally to the data, controlled by βt, to gradually
transform the original data distribution into a standard Gaussian distribution.

2.1.2 Reverse Diffusion

This is the generative phase where the model starts from pure noise and learns to
denoise as it progressively reconstructs the data by estimating and subtracting the
added noise at each previous step. The reverse diffusion process is described as:

pθ(xt−1|xt, c) = N
(
xt−1;µθ(xt, t, c), σ

2I
)

(2)

Explanation:

• pθ(xt−1|xt, c): Conditional probability of xt−1 given xt and condition c.

• N : Gaussian distribution.

• µθ(xt, t, c): Predicted mean parameterized by θ, dependent on xt, time t, and
condition c.

• σ2I: Variance term with isotropic Gaussian noise.

• xt, xt−1: States at time t and t− 1.

• c: Additional conditioning information, such as class labels or input data.

The diffusion process allows the model to generate high-quality and coherent images,
as it inherently models the complex distribution of natural images by learning the
denoising trajectory.

2.2 U-Net Architecture for Denoising

U-Net [19] is a convolution network (represented in figure 4) that was originally
designed for biomedical segmentation tasks but has increasingly been applied to
image-to-image translation tasks, including in diffusion models.

• Encoder-Decoder Structure: U-Net consists of a symmetric encoder-decoder
structure. The encoder compresses the input into a dense representation, and
the decoder expands it back to the output resolution.

• Skip Connections: The model includes skip connections that transfer the
feature maps from each level of the encoder to the corresponding level in the
decoder. These connections help preserve the spatial hierarchies and details in
the image.
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Figure 4: U-Net Architecture [20] for Denoising in Diffusion Models

In the context of diffusion models, U-Net is popularly used as the backbone architecture
for denoising. The denoising process in diffusion models involves progressively refining
a noisy input to reconstruct a coherent output, which aligns perfectly with U-Net’s
encoder-decoder structure. The encoder compresses the noisy input into a latent
representation that captures the important features, while the decoder expands this
representation back into the original resolution, ensuring that fine details are preserved.
UNet’s skip connections are ideal for transferring feature maps from the encoder
layers to their corresponding decoder layers so that spatial details from the input are
retained and the outputs are both visually coherent and rich in detail.

Since diffusion models often require additional inputs, such as timestep embeddings
or text prompts, to guide the denoising process, U-Net accommodates these by
incorporating them into the network. It leverages its hierarchical feature extraction
and reconstruction capabilities to effectively model noise distributions for a smooth
and accurate denoising trajectory from pure noise to a fully reconstructed image. The
predicted mean for denoising in the reverse diffusion process is:

µθ(xt, t, c) =
1

√
αt

(
xt −

√
1− αtϵθ(xt, t, c)

)
(3)

where:

• µθ(xt, t, c): Predicted mean for the reverse diffusion step.

• xt: The noisy input at time t.

• αt: Time-dependent scaling factor controlling the noise level.

• ϵθ(xt, t, c): Predicted noise at time t, estimated by a U-Net model, parameterized
by θ, based on xt, t, and optional condition c.

• c: Conditioning information (text embeddings).
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• 1− αt: Represents the noise variance added during forward diffusion.

• 1√
αt

: Normalization factor ensuring proper scaling of the denoised output.

The U-Net architecture is used to predict ϵθ(xt, t, c), the noise added to the data
during the forward process. By subtracting the noise term

√
1− αtϵθ(xt, t, c) from the

input xt, the model recovers the denoised mean µθ(xt, t, c). The process iteratively
reduces noise from xt to reconstruct the original data.

The forward and reverse diffusion processes work with the U-Net model to convert
random noise to high-quality outputs. The forward process incrementally adds noise
to the original data, and the reverse process denoises it step-by-step using U-Net’s
predictive capabilities. The integration of text prompts in the form of conditioning
information allows for precise and semantically aligned transformations.

2.3 Baseline Methods

The following subsections delve into three text-guided image transformation methods
used as baselines for this research.

2.3.1 FastEdit

FastEdit [21] is a method for text-guided image editing that uses semantic-aware
diffusion models to understand and incorporate the meaning and context of the
content it is processing. It uses LoRA (Low-Rank Adaptation) [22], which is a
lightweight technique to adapt the model to specific edits while making sure that the
core features of the original image remain impact. LoRA adjusts only a small subset
of the model’s parameters, specifically targeting the rank of weight matrices within
the transformer layers, which makes it an extremely efficient technique to fine-tune.
Advanced natural language processing is used to interpret the editing instructions and
FastEdit manipulates the noise reduction paths of diffusion models. By controlling
how noise is added and removed based on the text prompts, the model produces
edited images according to the users’ specifications.

2.3.2 SDEdit (Stochastic Differential Equation Editing)

SDEdit [23] is a diffusion-based guided image synthesis and editing method that
implements the principles of stochastic differential equations for smooth transitions
between the input image and target image based on the text prompt. Traditional
diffusion models involve a forward process of gradually adding noise to an image and a
reverse process of denoising it. SDEdit has an underlying diffusion model mechanism
as well but modifies its approach by starting with either a partially noised image
or a simple sketch, then performing a guided denoising process based on a provided
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text prompt or another form of guidance. It uses a controlled way to inject noise
into the image as shown in figure 6, which creates a starting point that retains some
characteristics of the original or base image but includes enough stochastic variation
to allow for significant transformation during the denoising process. The role of SDEs
(stochastic differential equations) is to provide a mathematical framework that models
the addition and removal of noise. It describes the evolution of image pixels through
noise levels which grants the model better control over the editing process.

Figure 5: Visualizing SDEdit [23]: Perturbation with Gaussian Noise that is progres-
sively removed by simulating the Reverse SDE

2.3.3 IP2P (Instruct Pix2Pix)

IP2P [12] is a diffusion-based model developed by Hugging Face as an extension
to the traditional Pix2Pix [24] models for image-to-image translation. IP2P was
introduced to generalize the original framework. It incorporates natural language
instructions into the image-editing pipeline. The combination of GANs and language
understanding models applied to fine-tuned Pix2Pix models using a dataset of (image,
edit instruction, edited image) triples allows instruction-based transformations.

The IP2P method uses a denoising diffusion probabilistic model to generate images
by iteratively refining noise into coherent images [12]. It uses a text encoder to convert
text prompts into embeddings that condition the image generation process using
cross-attention layers, along with a UNet-based neural network for the denoising
process, which is conditioned on both the input image and text embeddings. Thus,
IP2P leverages diffusion models to allow users to perform complex image edits using
natural language prompts by guiding a diffusion model through text conditioning
which allows it to generate high-quality images.
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Figure 6: The Instruct Pix2Pix (IP2P) Architecture

Classifier-Free Guidance
Generative diffusion models like IP2P use the classifier-free guidance technique for
tasks where the model needs to generate images that adhere to a given text description.
It improves the quality and alignment of generated images by using both conditioned
and unconditioned noise predictions to guide the generative process. It ensures that
the generated images align with prompts while maintaining visual fidelity. The guided
noise prediction, incorporating both unconditioned and conditioned passes, is defined
as:

ϵguided(xt, t, c) = ϵθ(xt, t, ∅) + w · (ϵθ(xt, t, c)− ϵθ(xt, t, ∅)) (4)

where:

• ϵθ(xt, t, ∅): Noise prediction from the unconditioned pass, capturing general
image features for stability.

• ϵθ(xt, t, c): Noise prediction from the conditioned pass, guided by the text
prompt c for semantic alignment.

• w: Guidance scale, a hyperparameter controlling the trade-off between semantic
alignment and image quality.

The guided reverse diffusion mean is calculated as:

µguided(xt, t, c) =
1

√
αt

(
xt −

√
1− αtϵguided(xt, t, c)

)
(5)
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where:

• µguided(xt, t, c): The denoised mean, ensuring the reverse diffusion aligns with
the guided noise prediction.

• xt: The noisy input at time t.

• αt: A time-dependent scaling factor that controls the noise level.

Classifier-Free Guidance makes sure that the generated images adhere to both semantic
and geometric constraints and is a powerful technique to align text prompts with
generated transformations.

12



3 Objective

While diffusion models have impressive capabilities for image synthesis and editing,
they face limitations when it comes to learning and applying geometric transfor-
mations. Even after fine-tuning, the performance depends on the quality diversity,
and extensivity of training data. If the dataset used for fine-tuning doesn’t represent
various rotation scenarios, the model might not generalize well. Real-world applica-
tions often require models to understand and adapt to transformations like rotation,
scaling, and translation in a computationally efficient and unsupervised manner.

This thesis addresses these challenges by shifting the transformation learning
to the latent space. This allows the model to learn geometric properties implicitly,
without relying on an extensive amount of labeled data. Instead of passing the
transformation parameter as an explicit input, we’re training the model to predict
and learn this parameter as part of its internal mechanism. This method is a proposed
step forward in advancing the flexibility and robustness of generative models.

The primary objective of this work is to fine-tune and develop a method that
forces the model to implicitly learn and apply geometric transformations. Current
approaches operate in the pixel space which limits their flexibility and computational
efficiency. This research aims to address these limitations by introducing a novel
framework for transformations in the latent space and seeks to evaluate the proposed
method through comprehensive evaluation metrics. This approach is expected to
generalize beyond rotations, allowing the model to learn various transformations such
as scaling, translation, and perspective shifts.

The goal is to advance generative modeling by bridging the gap between abstract
latent space learning and explicit geometric understanding, with applications in
domains requiring precise image manipulation and synthesis.
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4 Related Work

This section explores the significant advancements and foundational methods in
fine-tuning generative models, manipulating latent spaces, and applying geometric
transformations. These elements are integral to this thesis, which focuses on modi-
fying a pre-trained diffusion model, InstructPix2Pix, to implicitly learn geometric
transformations.

4.1 Fine-tuning Generative Models

Fine-tuning generative models is central to this research, as it involves adapting
pre-existing models to new tasks and datasets. Dhariwal and Nichol [25] explored
the potentials of diffusion models for high-resolution image synthesis, achieving
results competitive with those of GANs, and highlighted the importance of fine-
tuning diffusion models to enhance sample quality and adapt to specific datasets.
Rombach et al. [11] introduced Latent Diffusion Models (LDMs), which operate in
the latent space of a pre-trained autoencoder. They showed that fine-tuning LDMs
on specific tasks allows for efficient and high-quality image generation with reduced
computational demands.

4.2 Manipulating Latent Spaces

A latent space is a lower-dimensional representation of the data. It captures the
most salient features of the data, allowing the model to manipulate the features
independently of the raw space. Latent spaces are obtained from encoding mechanisms
like Variational Autoencoders (VAEs) or Convolutional Neural Networks (CNNs) [26],
which compress input data into a lower-dimensional representation [27]. In VAEs,
the encoding is done by mapping the input data into a probabilistic latent space
defined by a mean and variance, for smoothness and continuity in the latent space.
CNN-based encoders focus on extracting hierarchical features [28] through a series of
convolutional layers, providing a deterministic latent representation that captures
spatial and structural attributes of the data [29].

Manipulating the latent space of generative models refers to the controlled modi-
fication of generated outputs by modifying the underlying latent codes. Latent space
manipulations are a powerful way to modify and generate variations of the data [30]
[31]. This enables tasks such as image editing, style transfer, and applying specific
attributes or transformations.

Building on the concept of vector arithmetic in embedding spaces, introduced for
word representations [32], this approach was extended to image generation, showing
that vector arithmetic in the latent space of GANs can achieve semantic image
editing by adding or subtracting latent vectors corresponding to certain attributes
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[33], implying that adding or subtracting latent vectors corresponding to certain
attributes results in images with the desired modifications. Upchurch et al. (2017)
[34] further explored the manipulation of visual attributes by interpolating in the
latent space. They demonstrated that smooth transitions between images can be
achieved, and specific attributes can be controlled by navigating the latent space in
certain directions.

Manipulating latent spaces is fundamental to the proposed method, which relies on
altering latent representations to implicitly learn and apply geometric transformations.
The reviewed works highlight techniques for controlling image attributes through
latent space manipulation, providing a foundation for developing models that can
predict transformation parameters like rotation angles. By extending these concepts
to diffusion models and integrating them with text conditioning, we aim to achieve
precise and interpretable image transformations.

4.3 Geometric Transformations with Generative Models

The application of geometric transformations within generative models has seen
significant developments, particularly with the advent of Spatial Transformer Networks
(STNs) [35] and Geometry-Aware Generative Adversarial Networks (GAGAN) [36].
These methods help the model to understand and manipulate spatial data for context-
aware image manipulation.

4.3.1 Spatial Transformer Networks (STNs)

Introduced by Jaderberg et al. in 2015, Spatial Transformer Networks (STNs) [35] were
introduced as a novel approach to enhance the geometric invariance of convolutional
neural networks without extensive data augmentation or complex preprocessing. STNs
incorporate a learnable module that allows neural networks to learn how to perform
spatial transformations on input data within the network itself and thus, explicitly
allows for the spatial manipulation of data within the network figure 7. This module
called the spatial transformer, is a differentiable attention mechanism that can be
embedded into existing CNN architectures, enabling them to adapt to geometric
variations in input data dynamically.
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Figure 7: Spatial Transformer Network (STN) Architecture [35]

The components of STNs include:

Localization Network
This part of the STN learns the parameters of the desired transformation by analyzing
the input feature map. It outputs the parameters for the spatial transformation that
needs to be applied, such as scaling, rotation, or skewing.

Grid Generator
Using the transformation parameters provided by the localization network, the grid
generator creates a sampling grid. This grid is a set of points from which the input
image should be sampled to produce the transformed output.

Sampler
The sampler uses the grid to perform the actual sampling from the input feature
map, producing the spatially transformed output. This step applies the learned
transformation to the input image, enabling the model to handle variations in
orientation, scale, and position.
The introduction of STNs has significantly impacted the field of computer vision, by
improving the robustness of neural networks to geometric variations and providing
a mechanism for models to learn spatial manipulations autonomously. The concept
of learnable transformations within a neural network framework can be extended to
include not only spatial transformations as learned by STNs but also transformations
guided by semantic inputs.

4.3.2 Geometry-Aware Generative Adversarial Networks (GAGAN)

Developed in 2018, GAGAN ([36] introduces a novel method for incorporating
geometric information directly into the generative process of GANs as shown in the
figure 8. Traditional GANs often struggle with maintaining the geometric structure of
objects, which can compromise the visual realism of the generated images. GAGAN
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addresses these limitations by embedding geometric fidelity into the adversarial
training framework.

Figure 8: Overview of the Geometry-Aware GANs Model [36]

GAGAN samples latent variables from the probability space of a statistical shape
model. This allows the generator to maintain the geometric integrity of generated
objects by aligning generator outputs to a canonical coordinate frame through a
differentiable geometric transformation. The generator uses a statistical shape model
to enforce the geometry of objects, This feature is particularly beneficial for generating
images with specific attributes like facial expressions, poses, and morphology. GAGAN
can be seamlessly integrated into any existing GAN architecture, which enhances
the morphological credibility of the generated images by leveraging prior geometric
knowledge from the data distribution.

While STNs and GAGAN have advanced the field by introducing mechanisms to handle
geometric transformations within neural networks, challenges remain in applying
these transformations in an unsupervised and generalized manner, particularly in the
context of text-guided image generation. These advancements lay the groundwork for
this thesis, which aims to implicitly learn geometric transformations to guide geometric
transformations in images through text-driven inputs. By integrating concepts from
LDMs, STNs, and GAGAN, we aim to address the limitations of traditional models in
learning and applying geometric transformations in an unsupervised manner, thereby
improving results, reducing the reliance on extensive labeled datasets, and enhancing
the flexibility of generative models across various domains.
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5 Methodology

The following section outlines the approach taken to develop the proposed generative
model for learning and applying geometric transformations implicitly through latent
space manipulation. This framework integrates various components, including data
preprocessing, model architecture, and training protocols for text-guided geometric
transformations. The proposed methodology leverages the Google Quick, Draw!
dataset to provide diverse scenarios, focusing on rotation as a proof of concept.
By combining text embeddings, latent space representations, and a diffusion-based
denoising pipeline, the model aims to address the limitations of current generative
methods in handling spatial transformations.

5.1 Proposed Model Architecture

The foundation of the proposed model architecture for implicitly learning and applying
geometric transformations through latent space manipulation is the IP2P framework.
This proposed architecture as shown in the figure 9 integrates latent space learning,
text guidance, and diffusion-based generative modeling to enable text-guided geometric
transformations.

Figure 9: Proposed Model Architecture

The generation process can be divided into the following main phases:

• Input Processing: The system takes the source image (S) (original image
before transformation) and a text prompt (e.g., "rotate by 45 degrees") as

18



inputs. The target image (T ) (ground truth transformed image) is used during
training to supervise the process.

• Latent Space Learning: A CNN encoder processes S and T to encode their
geometric relationship into a latent representation. This latent representation
captures the transformation between the source and target images.

• Transformation Parameter Prediction: An MLP ThetaPredictor network
predicts the transformation parameter (θpred, i.e. the rotation angle) from the
refined latent space.

• Diffusion-Based Denoising: Noise is added to the latent representation, and
a diffusion model (U-Net) denoises it using text embeddings from the prompt
and the downsampled source image for structural alignment. This process refines
the latent space to ensure that it encodes the intended transformation.

5.1.1 Detailed Component Descriptions

CNN Encoder
The CNN Encoder learns to encode the geometric transformation between the source
(S) and target (T ) images. It is essential because it helps to establish a manipulatable
latent space that represents the transformation between the images. Encoding the
images reduces the number of parameters being updated at each step, thus increasing
computational efficiency. The transformation of the input data into a latent space
representation can be mathematically expressed as:

z = fθ(x) (6)

where fθ is the encoding function parameterized by θ, and x is the input data.

MLP ThetaPredictor
This is a specialized MLP network with layers designed to extract features and
regress the transformation parameter - the rotation angle (θpred) from the latent
space generated by the encoder. The final layer of the network is a tanh layer which
generates an output in the range of [0,1]. The complete network architecture of MLP
is shown in the figure fig:networkLayers. This is scaled by a factor of 180 to predict
the final angle θpred. The output of this network is thus constrained to the range
[−180◦, 180◦]. The transformation parameter is validated by comparing the rotated
source image with the target image.
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Figure 10: Network Layers of the ThetaPredictor MLP

The mean squared error (MSE) loss [37] is a commonly used loss function in regression
problems, particularly in machine learning contexts where continuous outputs are
predicted. For the ThetaPredictor in this work, the MSE loss evaluates the difference
between the target image (Ti) and the rotated source image (R(Si, θpred)) based on
the predicted rotation angle (θpred). To ensure stability and prevent overfitting, a
regularization term is included in the loss function. The loss function for the Encoder
and MLP model is:

LEncoder+MLP =
1

n

n∑
i=1

∥f(Si;w)− Ti∥2 + λ · Reg(w)

where:

• LEncoder+MLP: The total loss for training the Encoder+MLP network.

• n: The number of training samples.

• Si: Input data (e.g., features) for the i-th sample.

• Ti: Target or ground truth value for the i-th sample.

• f(Si;w): Output of the network with parameters w, given input Si.
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• ∥f(Si;w)− Ti∥2: Mean squared error (MSE) between the predicted and target
image.

• λ: Regularization coefficient that controls the influence of the regularization
term.

• Reg(w): Regularization term applied to the network parameters w to prevent
overfitting.

CLIP Text Encoder
It converts text prompts into meaningful text embeddings and provides semantic
guidance to the model, allowing it to understand and act upon the instructions in
the text prompt [9]. It converts the text prompts into meaningful embeddings in
the form of high-dimensional vector representations of the semantic content in the
text. First, the text prompt is tokenized into smaller units and each token is mapped
to a corresponding embedding, a dense numerical representation that captures its
semantic meaning. The individual token embeddings are combined to get a single text
embedding that represents the entire prompt which represents the overall meaning
of the text instruction. This embedding is incorporated into the pipeline through
attention mechanisms. The text embeddings are computed using the CLIP model’s
text encoder as follows:

etext = CLIP_TextEncoder(Tokenizer(text)) (7)

where Tokenizer(text) converts the input text into a sequence of tokens that are input
to the CLIP text encoder. The output etext is a high-dimensional vector representing
the semantic content of the text.

Noise Scheduler
The noise scheduler controls the amount of noise being added to the latents at each
timestep during training, thus simulating the diffusion process, which is essential for
denoising the latent feature [38]. For the noising process, noise is incrementally added
to the data. The mathematical representation of the noising process can be described
by the equation:

xt =
√
αtx0 +

√
1− αtϵ (8)

where x0 is the original data, ϵ is the noise vector, and αt is the variance of the noise
at step t.

Diffusion Model
The role of this component is to refine the latent space using a denoising process to
integrate the text embeddings. A noisy latent space (LT ) is generated by adding noise
to the output of the encoder. Text embeddings and the downsampled source image
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are passed to provide additional structural information. A U-Net architecture predicts
the noise (ϵT ) and recovers the denoised latent representation (L0) over multiple time
steps. This ensures that the latent space accurately represents the transformation
described in the text prompts. The output is a clean latent representation of the
geometric difference between the source and target images. The reverse diffusion can
be represented as:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
(9)

where ϵθ represents the predicted noise at step t.

The MSE loss for the Diffusion Model is given by:

LDiffusion = ELt,ϵ

[
∥ϵ− ϵθ(Lt, t, emb)∥2

]
where:

Lt = αtL0 +
√
1− αt ϵ

• Lt is the noisy latent representation at timestep t, with αt representing the
noise scheduling parameter.

• ϵ is the ground truth noise added to the latent representation L0.

• ϵθ(Lt, t, emb) is the noise predicted by the U-Net-based diffusion model, condi-
tioned on the timestep t, text embeddings, and the source image.

5.1.2 Model Workflow

Training Phase
The CNN encoder and MLP work together to learn latent representations and
predict transformation parameters. The MSE loss between the rotated source image
(R(S, θpred)) and the target image (T ) is calculated and the encoder and MLP
weights are frozen after training them. The U-Net is trained to denoise these latent
representations using text embeddings (for geometric guidance) and the source image
(for structural alignment). The MSE loss between the predicted latent (LT−1) and the
ground truth latent (L0) is used to train the diffusion model to generate the denoised
latent representing the geometric difference between the source and target image.

Inference Phase
The source image S and the text prompt (e.g., "rotate by 45 degrees") are provided
to the trained diffusion model. The diffusion model starts from random noise and
refines it to generate the latent representation guided by the text prompt and the
downsampled source image. The final denoised latent representation is passed to the
MLP to predict the rotation parameter (θpred) from the denoised latent.
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5.2 Experimental Setup

5.2.1 About the Dataset

For training and validating the proposed approach to implicit geometric transfor-
mations, a dataset that can challenge the model to generalize across different types
of geometric transformations is important. The dataset used is the Google Quick,
Draw! dataset which is a collection of hand-drawn sketches collected from the Quick,
Draw! online game developed by Google. In this game, users have 20 seconds to draw
an object or concept that they are prompted with, and an AI tries to guess what
they are drawing. It contains over 50 million drawings of animals, objects, and more,
spanning more than 340 categories. The wide range of categories makes it ideal for a
study focused on geometric transformations. Ten of these categories were selected to
fine-tune and develop the models with a balanced representation of different shapes
and complexities.

Figure 11: Samples from the Google Draw dataset

For each category, 200 distinct sketch samples were chosen as the base set. These
images served as the base from which the transformed versions were generated.
The rotation task is defined with a range from -180 to +180 degrees. To ensure
comprehensive coverage, this range is divided into 24 bins, each representing a 15-
degree interval. For each bin, five angles are randomly chosen, ensuring variability in
the rotation angles applied. A rotation transformation in a 2D space for an angle θ

can be represented by the following matrix:

R(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(10)

This matrix is applied to the pixel coordinates of the image to perform rotation. Each
base image undergoes rotation according to the selected angles, resulting in multiple
versions of the same sketch at different orientations. The distribution of angles in the
dataset is uniform and there are between 3000 to 3500 samples for every angle. This
method provides a robust dataset for training the model to recognize and handle
various rotational transformations.

5.2.2 Data Preprocessing

The data preprocessing pipeline involves the following methods:
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• Reshaping: The sketches, originally available as flattened arrays on Google
Cloud, are reshaped back into their original 28x28 pixel grid format.

• Scaling: To accommodate the input requirements of the model, images are
resized to a standard dimension of 128x128 pixels, providing sufficient resolution
for capturing detailed transformations.

• Normalization: Pixel values are normalized to a range of [-1, 1] to facilitate
more stable training dynamics and convergence.

• Saving: Finally, the processed images are saved in PNG format, preserving
their quality and ensuring compatibility with the training pipeline.

For each rotated image, a corresponding text prompt is generated in the format
"rotate by X degrees," where X denotes the specific rotation angle. These prompts
are essential for training the model under the instruction-based framework, aligning
visual changes with text commands.

Final Dataset Structure: The final dataset consists of image pairs (original and
rotated) with a resolution of 128x128 each, along with the text prompt associated
with the rotated image (for example - rotate by 78 degrees). Features of the dataset
include:

- Original Image: The original image before transformation for reference.
- Rotated Image: The image after rotation.
- Description: A text prompt describing the transformation, e.g., "rotate by 30

degrees."

Text prompts are tokenized and converted into embeddings using the CLIP tokenizer
and text encoder, using mean pooling over token embeddings to get fixed-size rep-
resentations. Tokenization converts the prompts from text to a series of tokens and
embeddings transform these token sequences to high-dimensional embeddings that
capture semantic information.

5.2.3 Training Configuration

This section outlines the training configuration for each model used in the study.
The number of training steps was decided focusing on when training should cease
based on the stabilization of the loss to ensure that computational results are used
optimally and prevent overfitting. Some other training parameters include:

Batch Size: A consistent batch size of 32 was maintained for all models to ensure
uniformity in the amount of data processed per iteration across different training
scenarios.
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Learning Rate: All models were trained with a learning rate of 1× 10−5. This rate
was chosen to facilitate gradual and stable convergence, which is crucial when models
are trained until the loss stops changing significantly.

Optimizer: The Adam optimizer was used for its advantages in handling adaptive
learning rates and efficiently managing sparse gradients. This optimizer is well-suited
for the models in this study, particularly in scenarios where training durations are
variable and dependent on loss stabilization.
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6 Results and Discussion

6.1 Quantitative Evaluation Metrics

6.1.1 IS (Inception Score)

The Inception Score metric [39] evaluates the quality and diversity of generated
images by using a pre-trained network, such as Inception v3 to classify images. A
higher score indicates a better quality of generated images.

IS = exp
(
Ex∼pg [KL(p(y|x)∥p(y))]

)
(11)

where:

• pg: The distribution of generated output images.

• p(y|x): The conditional class distribution given an image x, as predicted by the
pre-trained model.

• p(y): The marginal class distribution, computed as the average of p(y|x) across
all generated images.

• KL(p(y|x)∥p(y)): The Kullback-Leibler divergence between the conditional and
marginal distributions.

• Ex∼pg [·]: The expectation over the distribution of generated images.

6.1.2 FID (Frechet Inception Distance)

The FID score [40] compares the distribution of generated images to real images using
features from a pre-trained network. Higher scores indicate better quality.

FID = ∥µ1 − µ2∥2 + Tr(Σ1 +Σ2 − 2(Σ1Σ2)
1
2 ) (12)

where:

• µ1 and µ2 are the mean feature vectors of the real and generated images,
respectively.

• Σ1 and Σ2 are the covariance matrices of the real and generated images,
respectively.

• Tr denotes the trace of a matrix (sum of its diagonal elements).
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6.1.3 SSIM (Structural Similarity Index)

The SSIM metric [41] evaluates structural similarity, focusing on luminance, contrast,
and structure.

SSIM(I,K) =
(2µIµK + C1)(2σIK + C2)

(µ2
I + µ2

K + C1)(σ2
I + σ2

K + C2)
(13)

where:

• µI and µK are the mean pixel values of images I and K, respectively.

• σ2
I and σ2

K are the variances of images I and K, respectively.

• σIK is the covariance between I and K.

• C1 and C2 are constants to prevent division by zero.

6.1.4 ThetaPredictor Metrics

The model’s performance in predicting transformation parameters (rotation angles)
was evaluated using Mean Squared Error (MSE) (the average squared difference
between predicted and true rotated images,) and Mean Absolute Error (MAE) (the
average absolute difference between predicted and true rotation angles, providing a
direct measure of prediction accuracy.). These metrics help in understanding how
well the model aligns predicted rotations with ground truth values. For the encoder
and MLP phase, the following metrics were computed:

• Test MSE: 0.64, indicating low squared error in predicted rotations.

• Test MAE (theta_loss): 4.33 degrees, showcasing high accuracy in predicting
rotation angles.

For the diffusion model, a 95% confidence interval was computed for the predicted
rotation angles to quantify the uncertainty in the predictions. The margin of error
(MOE) was calculated as follows:

MOE = t0.025,n−1 ·
σ√
n
= ±7.11 (14)

This leads to a confidence interval:

CI =
[
θ̄ − 7.11, θ̄ + 7.11

]
(15)

This interval quantifies the range within which 95% of the predicted values are
expected to fall, given the inherent stochasticity of the reverse diffusion process.
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6.2 Comparative Analysis

The table 1 represents loss metrics discussed in the previous section for the baseline
methods (FastEdit, SDEdit, and IP2P) and the proposed methods, calculated for the
test images.

Method FID Score ↓ IS ↑ SSIM ↑
FastEdit 13.857 1.0740 0.2854
SDEdit 10.644 1.0713 0.5263
IP2P 11.794 2.0689 0.6570
Proposed Model 4.857 3.5278 0.8860

Table 1: Quantitative Loss Metrics Comparison

FastEdit performs the worst across all metrics, with the highest FID score (13.857),
indicating a significant deviation from the real image distribution. Its low Inception
Score (1.0740) highlights a lack of diversity and poor image sharpness, while the SSIM
(0.2854) shows severe structural inconsistencies, showing that this method struggles
to generate realistic or structurally accurate images.

SDEdit shows moderate improvement over FastEdit, with a reduced FID score (10.644)
and slightly better diversity and clarity, as indicated by its marginally higher Inception
Score (1.0713). The SSIM (0.5263) shows better structural alignment with the ground
truth but remains far from ideal, suggesting this method has potential but lacks
robustness.

IP2P performs moderately well, with an improved Inception Score (2.0689), suggesting
better diversity and sharpness than FastEdit and SDEdit. Its FID score (11.794)
is still relatively high, indicating distribution misalignment, but the SSIM (0.6570)
reflects decent structural similarity. While better overall, IP2P struggles with realism.

The proposed model significantly outperforms all other methods, achieving the lowest
FID score (4.857), indicating excellent alignment with the real image distribution.
Its Inception Score (3.5278) highlights high diversity and image sharpness, while the
SSIM (0.8860) demonstrates near-perfect structural similarity to the ground truth,
making it the most robust and reliable method in this comparison.
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6.3 Qualitative Evaluation

Figure 12: Comparison Results for the Fine-Tuned Baseline Models and Proposed
Model)

The tuned FastEdit method results shown in the figure 12, show the use of other
classes in results (e.g., shapes not related to the category, thus misclassifying objects
or pattern classes in results. Incorporating features from other classes leads to severe
misclassification, where results are distorted and irrelevant shapes come into play.
Patterns from unrelated classes make the outputs noisy and incoherent, further
reducing realism.

The fine-tuned SDEdit model preserves the structure of the source image better
than the FastEdit method. However, it introduces a wide variety of noise and artifacts
and struggles with preserving the finer details of the images.

The fine-tuned IP2P model shows better rotational alignment than both the
FastEdit and SDEdit methods. Structural consistency is improved, as the shapes
retain clearer edges. However, texture inconsistencies are present in many generated
images and complex shapes tend to lose fine details.

The proposed model shows significantly better geometric alignment than all other
methods. The model effectively captures rotational transformations without breaking
the topography and can handle complex shapes with ease. The alignment between
output images and ground truth rotations is usually close.
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6.3.1 Summary of Results

Table 2 provides a comparative analysis of the strengths, weaknesses, and overall
performance of different methods:

Method Strengths Weaknesses Overall Perfor-
mance

FastEdit Basic alignments
preserved.

Very low gener-
alization to cate-
gories and noisy
outputs.

Struggles with
both realism and
diversity.

SDEdit Improved struc-
tural consistency
for simpler shapes.

Limited diversity,
struggles with de-
tails.

Moderate im-
provement but
lacks robustness
and does not learn
rotations.

IP2P Better alignment
and diversity.

Noise, texture in-
consistencies.

Better generation
but breaks topog-
raphy in most
cases.

Proposed Model Outputs are
aligned with the
text prompt.

Predicted rotation
is off in some cases

Comparable per-
formance overall.

Table 2: Comparative Analysis of Methods
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6.4 Discussion

6.4.1 Why This Architecture is Effective

This section discusses the main factors that contribute to the effectiveness of this
architecture.

Implicit Learning of Transformations
Instead of relying on explicitly labeled rotation angles corresponding to each category,
the model learns to associate latent space differences with specific geometric trans-
formations. It learns to predict the rotation angle based on the patterns it discovers
in the latent space which allows it to generalize to unseen images and categories.
This reduces the dependency on extensively labeled datasets, which are costly and
time-consuming to produce. The latent space encodes high-level abstractions of the
input data, which allows the model to generalize the concept of rotation instead of
specific pixel manipulations.

Flexibility for Transformations
While this work focuses on rotations, the architecture can generalize to other geometric
transformations. For example:

• Scaling: The architecture can be adapted to learn a scaling factor (e.g., "scale
by a factor of 1.5"). Example Application - To augment medical datasets where
images of organs must be resized to match anatomical proportions.

• Shearing: Shearing transformations (e.g., tilting an image by a shear factor)
could be encoded similarly. For instance - applying a shear to sketches could be
useful for perspective changes, to view an object from a different angle.

• Combination Transformations: By working in latent space, the model can predict
combined transformations like rotating and scaling simultaneously, which would
otherwise require separate processing.

Interpretable Outputs and Text Guidance
The model uses a clear and interpretable parameter that represents the degree of
rotation applied to the image. This helps in understanding the model’s behavior
and verifying that it performs as intended. The explicit prediction is valuable in
applications requiring precision. By explicitly predicting rotation angles, the model
ensures that users can verify its decisions. For example, in an augmented reality setup,
if a virtual object fails to align correctly with a real-world reference frame, the user
can inspect the predicted angle (θpred) and adjust it if needed.

The integration of text prompts also ensures interpretability and user-friendly
control.
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6.4.2 Limitations of the Proposed Model

Dependence on Parametric Transformations
The model is designed to predict and apply geometric transformations that can be
defined by explicit parameters (e.g., rotation angle, scaling factor, etc). However,
more complex, non-parametric transformations, such as elastic deformations may
require significant architectural adjustments.

Extending the latent space representation to incorporate localized, non-parametric
transformations or integrating a spatial transformer module could enable the model
to handle elastic deformations.

Limited to Single Transformation Type
The current implementation performs well for single transformations involving only
one parameter (like the rotation angle). For applications where simultaneous trans-
formations (e.g., rotation + scaling) are required, an extended version of the model
would need to predict multiple parameters. This will require significant architectural
modifications and may introduce additional computational costs.

A multi-task learning framework where the model predicts multiple parameters
(e.g., θ for rotation, tx and ty for translation, and s for scaling) could address this
limitation.

Lack of Localized Control
The architecture, in its current form, works for global transformations, where all
parts of the image are affected uniformly. This is well-suited for tasks such as
alignment or resizing that require consistent, global changes. However, it struggles
when transformations need to be applied to specific regions while keeping the rest of
the image the same.

Training Data Requirements
Although the model reduces the need for explicit labels for each category to learn
transformations, it still requires a substantial amount of data representing the trans-
formations to learn effectively. If the training data does not cover a wide range of
rotation angles and contexts, the model may fail to generalize to unseen cases.

For example - if the training dataset lacks rotations for asymmetric objects
(e.g., a chair viewed at extreme angles), the model may struggle to predict accurate
transformations for these objects during inference.

32



7 Future Work

7.1 Expanding beyond Rotations

While the primary focus of this research has been learning rotations, the ultimate
goal is to create a generative model that can handle a broader array of geometric
transformations. Expanding the model’s capabilities to include scaling, translation,
shearing, and perspective transformations can greatly enhance its utility across various
applications.

The proposed architecture can be made more versatile by enhancing the model to
handle a wider range of geometric transformations. These complex image manipu-
lations find applications in a variety of domains including advanced graphic design,
augmented reality, and medical imaging.

7.2 Enabling Localized Tranformations

The model’s capability can be extended to handle region-specific transformations for
localized edits while preserving the rest of the image. This capability can be integrated
by predicting complex parameter spaces, i.e., grids of transformation parameters for
localized control. This is useful for adjusting the relevant elements of the image and
transforming specific regions without affecting the surrounding image.

7.3 Real-World Applications

7.3.1 Medical Imaging

In medical imaging, accurate geometric transformations are essential for image
registration tasks including aligning or augmenting images [42]. Different modalities
(such as MRI, CT scans, and X-rays) or scans taken at different times must be
aligned accurately. A geometrically aware diffusion model will enhance this process
by automatically adjusting and aligning images based on their internal geometric
structures. This improves the accuracy of medical diagnoses by providing clearer,
more consistent images [43]. For example - in tumor tracking across sequential images,
the model will ensure that each image is perfectly aligned over time for accurate
analysis. Another application is the transformation of pre-operative scans to predict
post-operative outcomes or simulate surgical adjustments.

7.3.2 Robotics and Autonomous Systems

In robotics, understanding and predicting geometric transformations is important for
object recognition and navigation as generative models can enhance robots’ spatial
awareness. This is useful to recognize and manipulate objects that are oriented in
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various positions. Generative models can help predict transformations (e.g., rotation,
scaling) needed to align an object with the robot – robots can also learn to align
their tools or sensors with target objects by predicting geometric transformations
[44] [45]. This would enhance the efficiency of the robot and its ability to perform
complex tasks autonomously.

7.3.3 Augmented and Virtual Reality

In AR and VR applications, object manipulation significantly can enhance the user
experience by allowing dynamic interaction with digital content [46]. Generative
models can adjust virtual objects to align with the user’s perspective or environment.
For example - in an AR application, the model could adjust the appearance of virtual
objects based on the virtual space’s dimensions and perspective [47]. Similarly, in
VR, these models could help in creating more immersive worlds where users can
manipulate objects in real-time, thus enhancing the engagement of virtual experiences.

7.4 User Interaction and Control

To improve the user experience, and make the model more adaptable - graphical
user interfaces can be developed that allow users to input custom transformation
parameters or adjust predictions with real-time previews. Feedback loops can be
integrated where users can provide corrections to allow the model to learn from user
inputs and improve over time. Users could also customize aspects of the transformation
process, such as specifying areas of interest or constraints on the transformations.

Together, these features would make the model more intuitive and adaptable, and
allow for adoption in fields like healthcare, design, and automation.
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8 Conclusion

The research presented in this thesis contributes to the advancement of generative
modeling by introducing an architecture that enables implicit learning of geometric
transformations through latent space manipulation and improves the generalization
of the model as it explicitly learns to associate latent differences with interpretable
transformations. The explicit prediction of transformation parameters, such as the
rotation angle θ, makes the model more versatile.

The proposed architecture represents a step toward creating generative models
that are both powerful and interpretable. By addressing current limitations and
exploring the avenues outlined for future work, the model’s impact can be further
amplified, contributing to advancements in fields ranging from computer vision to
human-computer interaction.

In conclusion, this research lays the groundwork for developing generative models
capable of learning and applying a wide array of geometric transformations. It high-
lights the importance of latent space manipulation and explicit parameter prediction
in achieving these goals, thus offering important insights for future developments in
the field.
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