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Abstract

The objective of this work is to establish bounded generation for two families of S-

arithmetic groups. We first establish bounded generation for the special linear group

over certain S-orders of a quaternion algebra. We also establish bounded generation

for certain special unitary groups.

This thesis consists of three chapters. The first chapter provides much of the

background necessary as well as providing some applications of bounded generation.

The second chapter contains the proof of bounded generation for some special linear

groups, and the third chapter contains the proof of bounded generation for some

special unitary groups.



ii

Acknowledgments

I would like to thank my advisor, Andrei Rapinchuk, for all the assistance and advice

he has given me. I would also like to thank everyone in the University of Virginia math

department for providing support through my years here. Most of all, I would like to

thank my husband, Ben, for being an unending source of support and encouragement.



iii

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Background Material 6

1.1 Bounded Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Definition and some Basic Properties . . . . . . . . . . . . . . 6

1.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Quaternion Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Orthogonal Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Unitary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Clifford Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6 Strong Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 SLn(OD,S) has bounded generation 48

2.1 Special Linear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 SUn has bounded generation 58

3.1 Induction Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



1

Introduction

This work demonstrates that two different families of S-arithmetic groups have bounded

generation.

Definition. A group G has bounded generation if there exist elements a1, . . . , am of

G such that G = 〈a1〉 〈a2〉 · · · 〈am〉, where 〈ai〉 is the cyclic group generated by ai.

Let K be an algebraic number field with ring of integers OK . In [3] Carter and

Keller showed that for n ≥ 3 any element in SLn(OK) is a product of a bounded

number of elementary matrices. This implies that SLn(OK) has bounded generation

(see Section 2.1). Theorem 2.7 extends this result to SLn over an order of a quaternion

algebra (see Section 1.2).

Let S be a finite subset of the set V K of all valuations of K which contains V K
∞ ,

the set of all archmidean valuations. Let V be a quadratic space of Witt index at

least 2 or assume S contains at least one nonarchimedean valuation and V has Witt

index at least 1. (We refer to Section 0.1 for all unexplained notations.) In this case

Rapinchuk and Erovenko showed in [7] that Spin(V )OS
(and thus the corresponding

orthogonal group) has bounded generation. In Chapter 3 we extend their method to

establish bounded generation for certain unitary groups.

We now give precise statements of our theorems. Let K be an algebraic number

field, α, β ∈ K and let D =

(
α, β

K

)
be a quaternion algebra with standard basis
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1, i, j, k (see Section 1.2). Assume S ⊂ V K is such that α, β ∈ OS, then let

OS,D := {x+ yi+ zj + wk | x, y, z, w ∈ OS}.

For n ≥ 1, SLn(D) denotes the subset of elements of Mn(D) with reduced norm 1.

We set SLn(OS,D) = Mn(OS,D) ∩ SLn(D). (See Section 1.2.)

Theorem (Main Theorem 1). Let S be a finite subset of V K such that S contains V K
∞

and at least one nonarchimedean valuation. Then SLn(OS,D) has bounded generation.

The proof involves reducing the general case of n ≥ 2 to the case where n = 2,

and then showing SL2(OS,D) has bounded generation by giving an isomorphism to a

spin group which has bounded generation by [7].

For our second result we let L = K[
√
d] be a quadratic extension of K. For a

Hermitian matrix F ∈ Mn(L) we let SUn,F denote the associated special unitary

group (see Section 1.4).

Theorem (Main Theorem 2). Let f be a nondegenerate sesquilinear form on Ln and

let F be the associated matrix, and G = SUn,F . Fix S ⊂ V K such that V K
∞ ⊂ S. If f

has Witt index at least 2 then GOS
has bounded generation.

Similarly to the proof of the first main theorem, this result is proved by reducing

the general case to SU4,f and then obtaining bounded generation by exhibiting an

isomoprhism to a spin group with bounded generation.

Chapter 1 contains the necessary background material for the proofs of the main

theorems. Section 1.1 introduces bounded generation, some theorems related to

it, and contains some applications of bounded generation to other problems. Sec-

tion 1.2 discusses general properties of quaternion algebras, including the definition

of SLn(D). Section 1.3 gives a brief overview of orthogonal groups. Section 1.4 dis-

cusses properties of unitary groups including Witt’s theorem for lattices. Section 1.5
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defines a Clifford algebra and the spin group. Finally, Section 1.6 introduces the

concept of strong approximation. Chapter 2 contains the proof of Main Theorem 1,

and Chapter 3 contains the proof of Main Theorem 2.

0.1 Notations

We introduce some standard notations and provide some basic facts about the corre-

sponding structures; see for example [17]. Let K be an algebraic number field. Two

valuations on K are called equivalent if they induce the same topology on K. We

let V K denote the set of equivalence classes of valuations. There are two subsets

of V K that we will frequently refer to: V K
∞ , the set of all archimedean valuations,

and V K
f = V K \ V K

∞ , the set of all nonarchimedean valuations. For v ∈ V K we let

| · |v denote an absolute value corresponding to v. The completion of K with re-

spect to the metric induced by v will be denoted by Kv. For any v ∈ V K
f we define

Ov := {k ∈ Kv | |k|v ≤ 1}. For a finite subset S ⊂ V K containing V K
∞ we define the

ring of S integers,

OS := {k ∈ K | |k|v ≤ 1 for all v /∈ S}.

For α ∈ K× we define

V (α) := {v ∈ V K
f | |α|v 6= 1}.

We now define the ring of adeles, AK , which will be needed in Section 1.6. We

define

AK = {(xv) ∈
∏
v∈V K

Kv | xv ∈ Ov for all but finitely many v ∈ V K}

with addition and multiplication defined componentwise.

Let S be a finite subset of V K containing V K
∞ , and for each v ∈ S let Wv be an
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open set in Kv. We define a topology on AK by taking sets of the form∏
v∈S

Wv ×
∏

v∈V K\S

Ov

as a basis.

Let S ⊂ V K . Define AK,S as the image of the projection map

π : AK →
∏

v∈V K\S

Kv.

There is a topology on AK,S given by taking as open sets the sets U ⊆ AK,S with

π−1(U) open in AK .

Consider the diagonal map δ : K →
∏
v∈V K

Kv. Since x ∈ Ov for all but finitely

many v ∈ V K
f , we have that δ(K) ⊂ AK , and composing with the projection map we

can define a diagonal map into AK,S for any S.

Proposition 0.1 ([17]). For any nonempty S ⊂ V K the image of δ is dense in AK,S.

We now define some notations related to varieties. Let F be an algebraically

closed field and let T be a subset of F [x1, . . . , xn]. We define

V (T ) = {a ∈ F n | f(a) = 0 for all f ∈ T}

and say X ⊂ F n is a variety if X = V (T ) for some T . Let X be a variety, we can

define

I(X) = {f ∈ F [x1, . . . , xn] | f(a) = 0 for all a ∈ X}.

We say that X is defined over a ring R if I(X) ∩ R[x1, . . . , xn] generates I(X). If X

is defined over R, we can consider

XR = {a ∈ Rn | f(a) = 0 for all f ∈ I(X)}.

If X, Y are both varieties an R-defined morphism X → Y is a map given by poly-

nomials belonging to R[x1, . . . , xn]. Notice that we can view the special linear group
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SLn as a variety in Mn(F ) = F n2
, since the determinant is a polynomial. We can

view GLn as a variety by indentifying it with

{(xij) ∈ SLn+1 | xin = xni = 0 for all i 6= n}.

Throughout this work we will be considering linear algebraic groups, i.e., subgroups

of GLn which are also varieties.

Two subgroups G1, G2 of a group G are commensurable if

[G1 : G1 ∩G2] <∞

and

[G2 : G1 ∩G2] <∞.

If G is an algebraic group a subgroup Γ ⊂ G is called S-arithmetic if Γ and GOS

are commensurable. If S is the set of all archimedean valuations then Γ is called

arithmetic.
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Chapter 1

Background Material

1.1 Bounded Generation

1.1.1 Definition and some Basic Properties

We start with a discussion of the definition and some basic properties of bounded

generation.

Definition. A group G has bounded generation if there exist a1, . . . , an ∈ G such

that G = 〈a1〉 〈a2〉 · · · 〈an〉, where 〈ai〉 denotes the cyclic group generated by ai.

In other words, any element g in G can be written in the form g = am1
1 am2

2 · · · amn
n

with mi ∈ Z. Notice that the definition does not require that the ai’s be distinct. It

is clear that any finite group has bounded generation, and that groups with bounded

generation are finitely generated. However, there are finitely generated groups with-

out bounded generation (for instance Fn the free group on n ≥ 2 generators [24]).

One example of an infinite group with bounded generation is the infinite dihedral

group, G = Z/2Z ∗ Z/2Z = 〈a, b | a2 = b2 = 1〉, since G = 〈a〉 〈ab〉 〈b〉.

On the other hand, the free product Z/2Z ∗ Z/3Z does not have bounded gener-

ation. In fact Tavgen showed in [24] that a non-trivial free product A ∗ B does not
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have bounded generation unless both factors are isomorphic to Z/2Z.

We now prove a useful fact about bounded generation.

Proposition 1.1 ([6],[11]). Let H ⊂ G, [G : H] <∞. Then H has bounded genera-

tion if and only if G does.

Proof. Assume H has bounded generation; then H = 〈a1〉 〈a2〉 · · · 〈an〉 for some ai ∈

H. Since H is of finite index in G, there exist b1, . . . , bm ∈ G such that G =
⋃
i biH.

Thus G = 〈b1〉 · · · 〈bm〉 〈a1〉 · · · 〈an〉, and therefore G has bounded generation.

Assume that G has bounded generation. Since every subgroup of finite index

contains a finite index normal subgroup, we only need to consider the case where H

is normal in G. Let m := [G : H] and G = 〈g1〉 · · · 〈gn〉. The image of gi in G/H has

order divisible by m, so for hi := gmi we have that hi ∈ H. Let

S = {I = (i1, . . . , in)|0 ≤ ij ≤ m for all 1 ≤ j ≤ n},

and for I = (i1, . . . , in) let gI denote gi11 · · · ginn . Define T := {I ∈ S|gI ∈ H}. We

claim

H =
∏
J∈T

〈gJ〉
n∏
j=1

∏
I∈S

〈
g−1
I hjgI

〉
.

Let h ∈ H. Then h = gr11 · · · grnn . We can write each rj as ij +maj where 0 ≤ ij < m.

Then

h = gi11 h
a1
1 · · · ginn hann

= g(i1,...,in)g
−1
(0,i2,...,in)h

a1
1 g(0,i2,...,in)g

−1
(0,0,i3,...,in)h

a2
2 · · ·hann

= g(i1,...,in)

n∏
j=1

g−1
(0,...,0,ij+1,...,in)h

aj
j g(0,...,0,ij+1,...,in) ∈

∏
J∈T

〈gJ〉
n∏
j=1

∏
I∈S

〈
g−1
I hjgI

〉
as desired.

Corollary 1.2. Assume H,K ⊂ G are commensurable. Then H has bounded gener-

ation if and only if K does.
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Proof. If H has bounded generation then since H and K are commensurable by

Proposition 1.1 H ∩K has bounded generation and thus by Proposition 1.1 K does.

Corollary 1.3. Assume H,G are algebraic groups, and let K be an algebraic number

field, assume there is a K-isomorphism φ : HK → GK. Then HOK
has bounded

generation, if and only if GOK
does.

Proof. By proposition 4.1 in [17] φ(HOK
) is commensurable with GOK

and thus by

Corollary 1.2, we have that φ(HOK
) has bounded generation if and only if GOK

does.

1.1.2 Applications

We now discuss various applications of the property of bounded generation. We first

define bounded generation for profinite groups. One reference for profinite groups is

[5].

Definition. A profinite group Γ is said to have bounded generation if there exist

a1, . . . , an ∈ G such that G = 〈a1〉 〈a2〉 · · · 〈an〉, where 〈ai〉 denotes the closure of 〈ai〉.

There is a connection between the property of bounded generation for an abstract

group G, and its profinite completion, Ĝ := lim←−
N∈I

G/N , where I is the set of all finite

index normal subgroups of G.

Lemma 1.4. Let G be a group. If G has bounded generation then its profinite com-

pletion Ĝ has bounded generation as profinite groups.

Proof. Let G = 〈g1〉 · · · 〈gn〉, and let ι : G→ Ĝ denote the canonical homomorphism.

Notice that for each gi, 〈ι(gi)〉 is compact. This implies that 〈ι(g1)〉 · · · 〈ι(gn)〉 is

compact, and therefore closed. However ι(G) ⊂ 〈ι(g1)〉 · · · 〈ι(gn)〉 implying that Ĝ =

〈ι(g1)〉 · · · 〈ι(gn)〉 since ι(G) is dense in Ĝ.
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Bounded generation for profinite groups allows for a nice characterization of all

analytic pro-p groups. A pro-p group is called analytic if it is an analytic manifold

over Qp, the field of p-adic rationals, and the group operations are analytic functions,

i.e., it has the structure of a p-adic Lie group.

Theorem 1.5 ([19]). A pro-p group is analytic if and only if it has bounded generation

as a profinite group.

Bounded generation is also closely connected to the congruence subgroup property.

Let G be an algebraic group defined over an algebraic number field K. Fix S ⊂ V K

such that V K
∞ ⊆ S and fix an embedding G ↪→ GLn. Recall that GOS

= G∩GLn(OS).

For any nonzero ideal a ⊂ OS, we define that congruence subgroup G(a) by

G(a) = {g ∈ GOS
| g ≡ In (mod a)}.

Lemma 1.6. The congruence subgroup G(a) has finite index in GOS
.

Proof. Notice that GOS
/G(a) ⊆ GLm(OS /a) for some m, and as OS /a is finite, so

is GOS
/G(a).

To describe the congruence subgroup property we consider two different topologies

on GK . Define a topology on GK by taking all normal subgroups of GOS
of finite

index as a base of neighborhoods of the identity. Let ĜS denote the completion of

GK with respect to this topology. We can define an alternative topology by taking

all congruence subgroups of GOS
as a base of neighborhoods of the identity. Let ḠS

denote the completion of GK with respect to this alternative topology. Since the first

topology is stronger, there exists a natural, continuous, surjective homomorphism

ĜS → ḠS. The kernel of this map is called the S-congruence kernel and is denoted

by CS(G). If CS(G) is finite we say that GOS
has the congruence subgroup property.

For an overview of developments on the congruence subgroup problem see [21].
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To illustrate the connection between the congruence subgroup property and bounded

generation we will need to focus on groups which satisfy the Margulis-Platonov con-

jecture (MP). This states: If

T = {v ∈ V K \ V K
∞ | G is Kv-anisotropic},

then for any non-central normal subgroup N ⊂ GK there exists an open normal

subgroup W ⊂
∏
v∈T

GKv such that N = GK ∩W . This has been proved in most cases;

see Appendix A of [22] for a survey of this conjecture. With this condition it was

proved in [16] that:

Theorem 1.7. Let G be an algebraic group over a field K satisfying (MP), and let

S ⊂ V K with V K
∞ ⊂ S and S ∩ T = ∅. If GOS

has bounded generation, CS(G) is

finite.

Another application involves the commensurator-normalizer property. A subgroup

G1 is commensurated by the conjugation action of G if for all g ∈ G, g−1G1g and G1

are commensurable. A group G has the outer commensurator-normalizer property if

for any group H, and a homomorphism φ : G → H, any subgroup Γ of H which is

commensurated by the conjugation action of φ(G), is almost normalized by φ(Γ),i.e,

there exists a subgroup H ′ ⊂ G commensurable with H which is normalized by φ(Γ).

In [23] Shalom and Willis used bounded generation to show that certain S-arithmetic

groups have the outer commensurator-normalizer property. Let K be a global field,

with ring of integers O, and G an absolutely simple, simply connected algebraic group

overK. Then letG beK-isotropic of rank at least two, and Γ ⊂ G(K) commensurable

with G(O). With these assumptions they showed (Theorem 6.12) that if G(O) is

boundedly generated by unipotents then Γ has the outer commensurator-normalizer

property.

Bounded generation is also related to the notion of SS-rigidity. We say that a
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group G has SS-rigidity if it has only finitely many equivalence classes of complex

fully reducible representations in each dimension.

Theorem 1.8 ([19]). Let G be a group with the property that every finite index

subgroup of G has finite abelianization. If G has bounded generation, then G is SS-

rigid.

Another application involves right-orderability. Morris and Lifschitz used bounded

generation in [14] to show that certain groups are not right orderable, and thus have

no nontrivial action on the line. Let K be an algebraic number field which is neither

Q nor an imaginary quadratic extension of Q. Let Γ be a finite index subgroup of

SL2(OK). They showed that Γ has no nontrivial orientation preserving action on R,

using the bounded generation of SL2(OK). A discrete subgroup Γ of a Lie group G

is called a lattice if G/Γ has finite volume, for example SL2(Z) is a lattice in SL2(R).

It was shown that if it is true that any noncocompact lattice in SL3(R) or SL3(C) is

boundedly generated by unipotents, then for any connected, semisimple Lie group G

with finite center and R-rank G ≥ 2 if Γ is a noncocompact, irreducible lattice in G,

then Γ has no nontrivial orientation-preserving action on R.

Bounded generation has also been related to Kazhdan’s Property (T). In particular

it has been used to show that SLn(Z) has Property (T) without using the property

that SLn(Z) is a lattice in SLn(R) and to give an explict Kazhdan constant. (This

is explained in Chapter 4 of [2].)

1.2 Quaternion Algebras

In this section we introduce (generalized) quaternion algebras, some of their basic

properties and the notion of an order. One reference for these basics is Chapter 1 of

[8].
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Definition. Let K be a field (of characteristic not 2) and α, β ∈ K×. The quater-

nion algebra D =

(
α, β

K

)
is the 4-dimensional K-algebra with basis {1, i, j, k} and

multiplication determined by i2 = α, j2 = β, ij = k and ji = −k.

There is a standard involution on D, denoted by ·̄, defined by

x0 + x1i+ x2j + x3k = x0 − x1i− x2j − x3k.

Notice that if x ∈ K, then x̄ = x, and if x = x1i + x2j + x3k, then x̄ = −x. We can

show that ab = b̄ā. A simple computation verifies this for basis elements, and since ·̄

is additive and K-linear the result follows.

For x ∈ D we can define its norm N :

(
α, β

K

)
→ K by N(x) = xx̄. Taking

x = x0 + x1i+ x2j + x3k and multiplying we can see that

N(x) = x2
0 − αx2

1 − βx2
2 + αβx2

3.

Notice that this can be viewed as a quadratic form on K4.

Lemma 1.9. For any x, y ∈ D, N(xy) = N(x)N(y).

Proof. We can see that

N(xy) = xyxy = xyȳx̄ = xN(y)x̄ = xx̄N(y) = N(x)N(y)

since N(y) ∈ K.

Notice that if N(q) 6= 0, then by construction we have 1
N(q)

qq̄ = 1, so q−1 = 1
N(q)

q̄.

If q 6= 0 and N(q) = 0 then q is a zero divisor and thus not invertible. This implies:

Lemma 1.10. An element q ∈
(
α, β

K

)
is invertible if and only if N(q) 6= 0. In

particular,

(
α, β

K

)
is a division algebra if and only if x2

0−αx2
1−βx2

2 +αβx2
3 = 0 has

no nonzero solutions over K.
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We first consider a simple example where D is not a division algebra.

Lemma 1.11. Let D =

(
α2, β

K

)
, for α, β ∈ K×. Then D ∼= M2(K).

Proof. We define a homomorphism φ :

(
α2, β

K

)
→M2(K) by taking

φ(i) =

α 0

0 −α

 , φ(j) =

0 1

β 0

 .
Then φ(i)2 = α2I, φ(j)2 = βI and φ(j)φ(i) = −φ(i)φ(j). Since φ(i) and φ(j) satisfy

the relations of the quaternion algebra this defines a homomorphism. We can also

see that 1 0

0 0

 =
1

2
(I +

1

α
φ(i)),

0 0

0 1

 =
1

2
(I − 1

α
φ(i)),

0 1

0 0

 =
1

2
(φ(j) +

1

α
φ(i)φ(j)),

0 0

1 0

 =
1

2β
(φ(j)− 1

α
φ(i)φ(j))

so φ is surjective. Since the dimensions of D and M2(K) are both 4, φ is an isomor-

phism.

We will later use that if τk : D → D is a K-linear map fixing 1, i, j such that

τk(k) = −k, then

φ(τk(φ
−1(X))) =

 1
β

0

0 1

X t

β 0

0 1


since we can see from the proof of the previous lemma that φ◦τk ◦φ−1 will fix

1 0

0 0


and

0 0

0 1

 and take

0 1

0 0

 to

0 0

β 0

.

Lemma 1.12. Let D be a quaternion algebra, then either D is a division algebra, or

D ∼= M2(K).
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Proof. Given Lemma 1.11 and Lemma 1.10 it suffices to show that if

x2
0 − αx2

1 − βx2
2 + αβx2

3

has a nontrivial solution in K, then

(
α, β

K

)
∼=
(
y2, z

K

)
for some y, z ∈ K. Let

y0, y1, y2, y3 be such that

y2
0 − αy2

1 − βy2
2 + αβy2

3 = 0.

Then

y2
0 − αy2

1 = β(y2
2 − αy2

3),

implying that

N(y0 + y1i) = βN(y2 + y3i).

If N(y2 + y3i) = 0 then α is a square in K and thus by Lemma 1.11, D ∼= M2(K).

Assume N(y2 + y3i) 6= 0, then

β = N(y0 + y1i)N(y2 + y3i)
−1.

Since N is multiplicative there exists a, b ∈ K such that β = N(a + bi). Let j′ =

1
β
(a+ bi)j, then

(j′)2 =
1

β2
N(a+ bi)j2 = 1.

Notice that ij′ = −j′i, and so 1, j′, i, j′i forms a basis for a quaternion algebra,

implying that D ∼=
(

1, α

K

)
. Therefore by Lemma 1.11 we have thatD ∼= M2(K).

We now define the reduced norm for quaternions, and matrix algebras over quater-

nions. Notice that if L is a field extension of K and D =

(
α, β

K

)
, then

D⊗KL ∼=
(
α, β

L

)
.

Thus by Lemma 1.11 we have that

D⊗K(
√
α) ∼= M2(K(

√
α)).
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In particular there is an injective homomorphism φ : D →M2(K(
√
α)), given by

x0 + x1i+ x2j + x3k 7→

 x0 + x1

√
α x2 + x3

√
α

β(x2 − x3

√
α) x0 − x1

√
α

 .
We can extend this to an injective homomorphism φn : Mn(D)→M2n(K(

√
α)). De-

fine a determinant on Mn(D) by detX = detφ(X) for X ∈ Mn(D). This is also

known as the reduced norm (note that the standard notation is Nrd not det). We

notice that if q ∈M1(D) = D, the reduced norm

det[q0 + q1i+ q2j + q3k] = detφ(q)

= (q0 + q1

√
α)(q0 − q1

√
α)− β(q2 − q3

√
α)(q2 + q3

√
α)

= q2
0 − αq2

1 − βq2
2 + αβq2

3

= N(q).

So it corresponds with our original norm. We define

SLn(D) = {X ∈Mn(D) | detX = 1}.

To prove that SLn(OD,S) has bounded generation, we will analyze its structure

using elementary matrices. For ease of notation we let [X]ij denote the ijth entry of

the matrix X.

An elementary matrix is a matrix with 1s on the diagonal, 0s elsewhere except

for a single nonzero entry. We will use Eij(a) with i 6= j to denote the elementary

matrix given by

[Eij(a)]lk =


1 if l = k

a if l = i and k = j

0 otherwise

.

We can see that φ(Eij(α)) will be an upper or lower triangular matrix with 1s along

the diagonal, so φ(Eij(α)) has determinant 1, implying that Eij(a) ∈ SLn(D) for all

a ∈ D, i 6= j.
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Our first main result involves SLn for an OK,S-order of a quaternion algebra,

which we will now define. Let A be a finite-dimensional algebra over an algebraic

number field K. An order in A is a subring O that is also an OK,S lattice, i.e., O is

a finitely generated OK,S-module which contains a basis for A as a vector space. An

order is maximal if it is not contained in a larger order. (See section 1.5 in [17].)

In our case we let D =

(
α, β

K

)
with α, β ∈ OK,S. Let S ⊂ V K be finite with

V K
∞ ⊂ S. Define

OD,S = {x0 + x1i+ x2j + x3k | xi ∈ OS}.

We define SLn(OD,S) = SLn(D) ∩Mn(OD,S). Clearly Eij(α) ∈ SLn(OD,S) for all α

in OD,S.

As a preliminary lemma for Main Theorem 1 we prove a result concerning Eij(OD,S) :=

{Eij(α) | α ∈ OD,S}.

Lemma 1.13. Fix i, j and S. There exists g1, . . . , gm ∈ SLn(OD,S) such that Eij(OD,S) ⊂

〈g1〉 · · · 〈gm〉.

Proof. If S = V K
∞ then OD,S = OD and Eij(OD,S) ∼= O+

D the additive group of

OD, which is a finitely generated abelian group and thus has bounded generation so

Eij(OD,S) = 〈g1〉 · · · 〈gm〉 for gi ∈ Eij(OD,S). Assume that S 6= V K
∞ . Then by Lemma

6 in [24] there exists a ∈ OK such that OS = OK
[

1
a

]
, which implies that for any

x ∈ OD,S there exists xi ∈ OD such that

x =
M∑
i=0

xia
−i.

Let A = diag(1, . . . , 1, a, . . . , 1/a, . . . , 1) (i.e. [A]ii = a, [A]jj = 1/a and [A]ll = 1 for

l 6= i, j.) Notice that A ∈ SLn(OD,S) and that

Eij(x) = A−MEij

(
n∑
i=0

xia
2M−i

)
AM .

Thus Eij(OD,S) ⊂ 〈A〉 〈g1〉 · · · 〈gm〉 〈A〉 as desired.
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1.3 Orthogonal Groups

In this section we define properties that are used in [6] to show that some orthogonal

groups have bounded generation. In the next section we introduce analogous prop-

erties for unitary groups. Throughout, K will be a field and W a finite-dimensional

K-vector space.

Definition. A map W ×W → K denoted by (x, y) 7→ 〈x, y〉 is a bilinear form if

〈αx, y〉 = α 〈x, y〉 = 〈x, αy〉 ,

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ,

and

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

for all α ∈ K and x, y, z ∈ W .

If we also have that 〈x, y〉 = 〈y, x〉 for all x, y ∈ W , then 〈·, ·〉 is called symmetric.

We say 〈·, ·〉 is nondegenerate if for every nonzero x ∈ W there exists y ∈ W such

that 〈x, y〉 6= 0. A vector x ∈ W is called anisotropic if 〈x, x〉 6= 0. The space W is

called anisotropic if every nonzero vector in W is anisotropic, and is called isotropic

otherwise.

Let e1, . . . , en be a basis for W . Define aij = 〈ei, ej〉 and form the matrix

F = (aij)1≤i,j≤n.

With respect to this basis we have that

〈x1e1 + · · ·+ xnen, y1e1 + · · ·+ ynen〉 = [x1, . . . , xn]F


y1

...

yn

 .
Notice that if 〈·, ·〉 is symmetric then F t = F . For any matrix F , we may define a

bilinear form by 〈x, y〉F = xtFy.
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Definition. Let 〈·, ·〉 be a symetric bilinear form. We define the orthogonal group

O(W ) = {σ ∈ GL(W ) | 〈σx, σy〉 = 〈x, y〉 for all x, y ∈ W}.

If we fix a basis, then O(W ) can be identified with:

On,F (K) = {M ∈ GLn(K) | 〈Mx,My〉 = 〈x, y〉 for all x, y ∈ Kn}

= {M ∈ GLn(K) |M tFM = F}.

We can also define SOn,F (K) = {M ∈ On,F (K) | detM = 1}.

Theorem 1.14 (Witt’s Theorem version 1). Let W be a finite-dimensional K-vector

space with a symmetric nondegenerate bilinear form 〈·, ·〉F . Assume we have two

linearly independent sets of vectors x1, . . . , xr, and y1, . . . , yr with 〈xi, xj〉 = 〈yi, yj〉

for 1 ≤ i, j ≤ r. Then there exists σ ∈ On,F (K) such that σ(xi) = yi for 1 ≤ i ≤ n.

This is Theorem 5.2 in [9].

Let M ⊂ W be a maximal subspace of W such that all vectors of M are isotropic.

Assume that N is another such subspace and dimM ≤ dimN . There exists a sub-

space N ′ ⊆ N with dimN ′ = dimM . By Witt’s theorem there exists σ ∈ On,F (K)

such that σ(N ′) = M . Then M ⊆ σ(N) and all vectors in σ(N) are isotropic, so

since M is maximal M = σ(N) and dimM = dimN . Thus all such subspaces have

the same dimension. We call this dimension the Witt index of W . Notice also that if

V is nondegenerate that the Witt index is at most half the dimension of V since

dimM⊥ = dimV − dimM,

but M ⊂M⊥ implying that

dimM⊥ ≤ dimV − dimM⊥

so 2 dimM⊥ ≤ dimV .
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Corollary 1.15. Let W , x1, . . . , xr, y1, . . . , yr be as in the theorem, and further as-

sume that 2r + 1 ≤ n. Then there exists σ ∈ SOn,F (K) such that σ(xi) = yi for

1 ≤ i ≤ n.

Proof. From the theorem we have that there is σ′ ∈ On,F (K) such that σ′(xi) = yi

for all 1 ≤ i ≤ r. Since σ′ ∈ On,F (K), detσ′ = ±1. Assume detσ′ = −1. For any

anisotropic u ∈ W we can define a map σu : W → W by

σu(v) = v − 2
〈u, v〉
〈u, u〉

u.

Then σu(u) = −u, and if 〈u, v〉 = 0, σu(v) = v, implying detσu = −1. We can also

see that σu ∈ On,F (K), since for arbitrary vectors v1, v2 ∈ W ,

〈σu(v1), σu(v2)〉 =

〈
v1 − 2

〈u, v1〉
〈u, u〉

u, v2 − 2
〈u, v2〉
〈u, u〉

u

〉
= 〈v1, v2〉 − 2

〈u, v1〉 〈u, v2〉
〈u, u〉

− 2
〈u, v2〉 〈v1, u〉
〈u, u〉

+ 4
〈u, v1〉 〈u, v2〉
〈u, u〉

= 〈v1, v2〉 .

Thus it suffices to show there exists w ∈ span(x1, . . . , xr)
⊥ which is anisotropic, since

then σ = σ′σw will have the desired properties. The dimension of span(x1, . . . , xr)
⊥

is at least n−r, but this means that the dimension is at least r+1, and thus contains

anisotropic vectors since the Witt index of W is at most r, so the desired w exists.

Now assume K is an algebraic number field. Let W be a vector space with a

nondegenerate, symmetric bilinear form and basis e1, . . . , en. Let L be the OK-lattice

defined by this basis. Then we can define GLn(L) and On,F (L) as the subgroups of

GLn(K) and On,F (K), respectively, that fix this lattice. Similarly we can consider

the lattice Lv over Ov with v ∈ V K
f . Let x̄ denote the image of x ∈ Lv under the

map Lv → Lv /pv Lv and let kv = Ov /pv.
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Theorem 1.16 (Witt’s Theorem for local lattices). Let {a1, . . . , am} and {b1, . . . , bm}

be elements of Lv such that {ā1, . . . , ām} and {b̄1, . . . , b̄m} are each linearly indepen-

dent sets over kv and 〈ai, aj〉F = 〈bi, bj〉F for all 1 ≤ i ≤ j ≤ m. Then if detF ∈ O×v
and |2|v = 1 then there exists σ ∈ On,F (Lv) such that σ(ai) = bi for all i = 1, . . . ,m.

This is theorem 2.24 in [6].

1.4 Unitary Groups

We now consider unitary groups. Let K be a field, L = K(
√
d) be a quadratic

extension, and τ be the involution taking
√
d to −

√
d. We also fix a finite-dimensional

vector space W over L.

Definition. A map 〈·, ·〉 : W ×W → L is called a sesquilinear form if it satisfies the

following:

� 〈αx, y〉 = τ(α) 〈x, y〉

� 〈x, αy〉 = α 〈x, y〉

� 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

� 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

for all x, y, z ∈ W , α ∈ L.

We call 〈·, ·〉 Hermitian if

τ(〈y, x〉) = 〈x, y〉

and skew-Hermitian if

τ(〈y, x〉) = −〈x, y〉 .

All our forms will be Hermitian or skew-Hermitian.
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As for bilinear forms, we call 〈·, ·〉 nondegenerate if for every nonzero x ∈ W ,

there exists y ∈ W such that 〈x, y〉 6= 0. An element x ∈ W is called anisotropic

if 〈x, x〉 6= 0 and isotropic if 〈x, x〉 = 0. A subspace V ⊂ W is called anisotropic if

every element of V is anisotropic, and is called isotropic otherwise; if all elements of

V are isotropic the space is called totally isotropic.

We now prove a useful fact about isotropic spaces that will be used in Chapter 3.

Lemma 1.17. Let W be a finite-dimensional L-vector space with a non-degenerate

Hermitian sesquilinear form 〈·, ·〉. If W is isotropic, then for any k ∈ K, there exists

an element w ∈ W such that 〈w,w〉 = k.

Proof. Since W is isotropic there exists nonzero v ∈ W such that 〈v, v〉 = 0. Let

e1, . . . , en be an orthogonal basis of W (see Theorem 10.10 in [18] for the existence of

such a basis and write v = v1e1 + · · ·+ vnen. Since v 6= 0, vi 6= 0 for some i. Define

v′ = v1e1 + · · ·+ (−vi)ei + · · ·+ vnen.

Then 〈v′, v′〉 = 0, and 〈v, v′〉 6= 0. Set w = v +
k

2 〈v, v′〉
v′. Then we can see that

〈w,w〉 =

〈
v +

k

2 〈v, v′〉
v′, v +

k

2 〈v, v′〉
v′
〉

=
k

2τ(〈v, v′〉)
〈v′, v〉+

k

2 〈v, v′〉
〈v, v′〉

= k

as desired.

We define the unitary group

U(W ) = {g ∈ GL(W ) | 〈gx, gy〉 = 〈x, y〉 for all x, y ∈ W}.

Fix a basis e1, . . . , en of W and let F = (〈ei, ej〉). For a matrix M = (mij) let

τ(M) = (τ(mij)) and M∗ = τ(M)t. Then we can express the unitary group as

Un,F (L) = {M ∈ GLn(L) |M∗FM = F}.
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We define

SUn,F = {M ∈ Un,F | detM = 1}.

Theorem 1.18 (Witt’s theorem for unitary groups). Let W be a finite-dimensional

vector space over L with a Hermitian (or skew-Hermitian) nondegenerate sesquilinear

form 〈·, ·〉. Assume we have two linearly independent sets of vectors x1, . . . xr and

y1, . . . , yr of W such that 〈xi, xj〉 = 〈yi, yj〉 for 1 ≤ i, j ≤ r. Then there exists

σ ∈ U(W ) such that σxi = yi for all 1 ≤ i ≤ r.

This is Theorem 10.12 in [9].

As before, we define the notion of the Witt index. If M ⊂ W is a maximal totally

isotropic subspace of W , then dimLM is called the Witt index of W . The same

argument used in the orthogonal case shows that Witt’s theorem implies that the

Witt index is well-defined.

Corollary 1.19. Let x1, . . . xr, y1, . . . , yr be as in Theorem 1.18. If 2r + 1 ≤ n then

there exists σ ∈ SUn,F (L) such that σxi = yi for all 1 ≤ i ≤ r.

Proof. Let σ′ be an element of Un,F (L) given by Theorem 1.18. Let w ∈ Ln be

anisotropic with 〈xi, w〉 = 0 for all 1 ≤ i ≤ r. Such an element exists because

2r + 1 ≤ n and W is nondegenerate. For l ∈ L, w ∈ W define σl,w : W → W by

σl,w(v) = v + l
〈w, v〉
〈w,w〉

w.

Then σl,w is a linear map which fixes all v ∈ W with 〈w, v〉 = 0. We also can see that

σl,w(w) = (1 + l)w. Thus detσl,w = 1 + l and σl,w ∈ U(W ) if (1 + τ(l))(1 + l) = 1.

Let

l = (detσ′)−1 − 1,
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then

(1 + τ(l))(1 + l) = (det τ(σ′))−1(detσ′)−1

= (det(τ(σ′)σ′))−1

= (det(τ(σ′)Fσ′F−1))−1

= 1

since σ′ ∈ U(W ). By construction detσl,w = (det σ′)−1. Thus σ = σ′σl,w has the

desired properties.

Define an injective homomorphism φ : L× → GL2(K) by

φ(x+
√
dy) 7→

x dy

y x

 .
Note that the image of this map is an algebraic group as it can be described as the

set of X ∈ GLn such that [X]11 = [X]22 and [X]12 = d[X]21. The map φ extends

to an injective homomorphism GLn(L) → GL2n(K) given by (xij) 7→ (φ(xij)). By

identifying Un,F with its image under this map we can see that Un,F is an algebraic

group over K.

Alternatively we can view Un,F as a variety defined over K by expressing the

hermitian matrix F as

F = F1 +
√
dF2

(with F1 ∈ Mn(K) symmetric, F2 ∈ Mn(K) skew-symmetric.) Then the map

Un,F (L) → (Mn(K))2 given by X + Y
√
d 7→ (X, Y ) is an injection whose image

is

{(X, Y ) ∈ (Mn(K))2 | (X −
√
dY )tF (X +

√
dY ) = F}

= {(X, Y ) ∈ (Mn(K))2 | X tF1X − dY tF1Y + dX tF2Y − dY tF2X = F1

and X tF1Y − Y tF1X +X tF2X − dY tF2Y = F2}.
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We define the multiplication on (Mn(K))2 by (X, Y ) ∗ (Z,W ) = (XZ + dYW,XW +

Y Z).

We will need a lattice version of Witt’s Theorem for unitary groups. Let v ∈ V K
f .

Let Lv := L⊗K Kv (note that this is not necessarily a field), and define τv : Lv → Lv

by τv(x ⊗ y) = τ(x) ⊗ y. The unitary group Un,F (Lv) acts on a n-dimensional Lv-

module (which is a 2n-dimensional Kv-vector space). Let Ov,L := OL⊗OK
Ov. We

let Lv = (Ov,L)n, an n-dimensional free Ov,L-module. Let pv,L be the ideal generated

by 1⊗ pv in Ov,L, `v = Ov,L /pv,L, and for a ∈ Lv let ā(v) denote the image of a under

the map Lv → Lv /pv,L Lv.

Theorem 1.20 (Witt’s theorem for local lattices, unitary case). Let v ∈ V K
f such that

|2|v = 1, and |d|v = 1. Let F ∈ Mn(Ov,L) be a Hermitian matrix with detF ∈ O×v .

Let a1, . . . , am, b1, . . . , bm ∈ Lv with 〈ai, aj〉 = 〈bi, bj〉 for all 1 ≤ i, j ≤ m. Assume

span`v(ā
(v)
1 , . . . , ā

(v)
m ) and span`v(b̄

(v)
1 , . . . , b̄

(v)
m ) are m-dimensional free modules. Then

there exists g ∈ Un,F (Ov,L) such that gai = bi for all 1 ≤ i ≤ m.

We consider two cases. In the first case Lv is a field. In the second case we have

Lv ∼= Kv ⊗Kv.

Case 1: v ∈ V K
f is such that Lv is a field, i.e., Lv = Kv[

√
d]. In this case the

proof is built from a proposition and a few lemmas. Notice that in this case `v is a

field which is a quadratic extension of kv. Throughout we will let πv denote a fixed

generator of pv,L. Notice that since |d|v = 1 we may take πv ∈ Ov.

Proposition 1.21. Let L be a field with involution τ , K = Lτ and [L : K] = 2.

Let W be an n-dimensional vector space over L with non-degenerate Hermitian inner

product 〈·, ·〉. Let

R = {Y ∈ End(V ) | 〈x, Y y〉+ 〈Y x, y〉 = 0 for all x, y ∈ V }.
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For x1, . . . , xm ∈ V linearly independent, let

Ω = {(y1, . . . , ym) ∈ V m | 〈xi, yj〉+ 〈yi, xj〉 = 0 for all 1 ≤ i, j ≤ m}

and

Γ = {(Y x1, . . . , Y xm) | Y ∈ R}.

Then Ω = Γ.

Proof. Notice that R,Ω and Γ are K-vector spaces. By the construction of R it is

clear that Γ ⊂ Ω. Thus if we show that dimK Γ = dimK Ω then the two are equal.

Let V = spanL(x1, . . . , xm),

T = {Y ∈ R | Y x1 = · · · = Y xm = 0}.

Then dimK Γ = dimK R − dimK T . We first compute dimK R. Fix a basis of W and

let F be the matrix of 〈·, ·〉 in this basis. We can see that R consists of matrices

Y ∈ Mn(L) such that Y ∗F = −FY . Let H (respectively H ′) denote the subspace of

Hermitian (respectively skew-Hermitian) matrices in Mn(L). Then Mn(L) = H ⊕H ′

sinceH∩H ′ = 0 and for everyX ∈Mn(L), X = (X+X∗

2
)+(X−X

∗

2
), i.e., X is the sum of

an element of H and an element of H ′. We can also see that dimK H = dimK H
′ since

the map X 7→
√
dX takes the space H to H ′. Therefore dimK H

′ = 1
2

dimKMn(L) =

n2. Finally dimK H
′ = dimK R since the map X 7→ F−1X takes the space H ′ to R.

Therefore dimK R = n2.

We can view T as

{Y ∈Mn(L) | Y ∗F = −FY and Y v = 0 for all v ∈ V }

and express V as V1 ⊥ V0 where V1 is nondegenerate and V0 = V ⊥. Fix an orthog-

onal basis e1, . . . , ek for V1 and let vk+1, . . . vm be an arbitrary basis of V0. By the

construction of V0, vk+1, . . . , vm ∈ V ⊥1 which is nondegenerate. Therefore there exist
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v̂k+1, . . . , v̂m ∈ V ⊥1 such that

spanL(vk+1, . . . vm, v̂k+1, . . . v̂m) ∼= span(vk+1, v̂k+1) ⊥ · · · ⊥ span(vm, v̂m)

where each vk, v̂j forms a hyperbolic pair. Thus W can be written as

W = V1 ⊥ (V0 ⊕ span(v̂k+1, . . . , v̂m) ⊥ V2.

Since Y anhilates V there exists a basis and matrices F1, F2 and Yij with 1 ≤ i ≤ 4,

j = 1, 2 such that:

F =


F1 0 0 0

0 0 Im−k 0

0 Im−k 0 0

0 0 0 F2


, Y =


0 0 Y11 Y12

0 0 Y21 Y22

0 0 Y31 Y32

0 0 Y41 Y42


so

Y ∗F =


0 0 0 0

0 0 0 0

Y ∗11F1 Y ∗31 Y ∗21 Y ∗41F2

Y ∗12F1 Y ∗32 Y ∗22 Y ∗42F2


and

FY =


0 0 F1Y11 F1Y12

0 0 Y31 Y32

0 0 Y21 Y22

0 0 F2Y41 F2Y42


.

Since F is invertible we have that Y11, Y12, Y31 and Y32 are all 0. We also have that

Y21 = −Y ∗21, F2Y41 = −Y ∗22 and F2Y
∗

42 = −Y ∗42F2. It is clear Y41 is completely deter-

mined by Y22, and Y22 can be aribtrary, so the dimension of the K-subspace consisting

of possible Y22s is Y22 = 2(m−k)(n−2m+k). By our previous argument the dimension
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of the K-subspace consisting of possible Y21s is (m−k)2 and dimK Y42 = (n−2m+k)2.

Therefore

dimK T = (m− k)2 + 2(m− k)(n− 2m+ k) + (n− 2m+ k)2

= ((m− k) + (n− 2m+ k))2

= (n−m)2

and thus

dimK Γ = dimK R− dimK T = n2 − (n−m)2 = 2mn−m2.

For each i from 1 to m define a linear map fi : W → L by fi(w) = 〈xi, w〉 for all

w ∈ W . Because the xis are linearly independent and W is nondegenerate, the fis

are linearly independent. We define Φ: Wm →Mm(L) by

Φ(w1, . . . , wm) = (fi(wj))1≤i,j≤m.

Since the fi are linearly independent their span is an m-dimensional L-vector space

and dimL(Φ(Wm)) = m2, so Φ is surjective. We can express

Ω = {(y1, . . . , ym) ∈ Wm | Φ(y1, . . . , ym) + Φ(y1, . . . , ym)∗ = 0}

since

fi(yj) + τ(fj(yi)) = 〈xi, yj〉+ τ(〈xj, yi〉) = 〈xi, yj〉+ 〈yj, xi〉 .

Let

U = {X ∈Mm(L) | X +X∗ = 0}.

Then

dimK Ω = dimK ker Φ + dimK U.

From previous arguments dimK U = m2. Since

ker Φ = {(w1, . . . , wm) | fi(wj) = 0 for all i, j},
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we have that dimK ker Φ = m dimK V
⊥ = 2m(n−m). Therefore

dim Ω = 2mn− 2m2 +m2 = 2mn−m2

which is the dimension of Γ.

Lemma 1.22. Let v ∈ V K
f be as in the theorem and satisfying Lv = Kv[

√
d]. Let

F ∈Mn(Ov,L) be a Hermitian matrix and suppose that detF ∈ O×v . Given an integer

l ≥ 0 and a matrix X in Mn(Ov,L) satisfying

X∗FX ≡ F (mod plv,L)

there exists Y ∈Mn(Ov,L) such that

Y ∗FY ≡ F (mod pl+1
v,L )

and Y ≡ X (mod plv,L).

Proof. By assumption X∗FX − F = πlvA for some matrix A ∈ Mn(Ov,L). Clearly,

A∗ = A. The requirement that Y ≡ X (mod plv,L) implies that Y must be of the

form X + πlvZ for Z ∈Mn(Ov,L). Computing, we see that

Y ∗FY = X∗FX + πlv(Z
∗FX +X∗FZ) + π2l

v Z
∗FZ

≡ F + πlv(−A+ Z∗FX +X∗FZ) (mod pl+1
v,L ).

Thus, it remains to find a matrix Z such that

Z∗FX +X∗FZ ≡ A (mod pv,L).

Since detF ∈ O×v and

F−1X∗FX ≡ I (mod plv,L)

we have that X−1 ∈Mn(Ov,L). Let Z = ((FX)∗)−1(1
2
A). Since |2|v = 1 we have that

Z ∈Mn(Ov,L). Then

Z∗FX +X∗FZ = (
1

2
A∗) +

1

2
A = A

as desired.
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Lemma 1.23. Let v ∈ V K
f as in Lemma 1.22. For any integer l ≥ 1 and any

matrix X ∈Mn(Ov,L) such that X∗FX ≡ F (mod plv,L) there exists X̂ ∈ Un,F (Ov,L)

satisfying X̂ ≡ X (mod plv,L).

Proof. Applying Lemma 1.22 iteratively we construct a sequence X = Xl, Xl+1, . . .

such that

X∗kFXk ≡ F (mod pkv,L)

and Xk ≡ Xk+1 (mod pkv,L). This is a Cauchy sequence since |Xk − Xk+1|v ≤ |πv|kv .

Since Lv is complete the sequence has a limit, X̂. Since each Xk is contained in

Mn(Ov,L), we have that X̂ is in Mn(Ov,L). Similarly, since X̂ ≡ Xk (mod pkv,L), we

have that X̂∗FX̂ ≡ F (mod pkv,L) for all k ≥ l, so X̂∗FX̂ = F and X̂ ∈ Un,F (Ov,L).

Lemma 1.24. Let v be as in Lemma 1.22 and let a1, . . . , am, b1, . . . , bm be as in the

theorem. If ai − bi ∈ plv,L Lv, for all 1 ≤ i ≤ m, then there exists X ∈Mn(Ov,L) such

that

X ≡ En (mod plv,L), X∗FX ≡ F (mod pl+1
v,L )

and Xai ≡ bi (mod pl+1
v,L ) for all 1 ≤ i ≤ m.

Proof. We can write bi = ai + πlvci for some ci in Lv. Then

〈bi, bj〉 =
〈
ai + πlvci, aj + πlvcj

〉
= 〈ai, aj〉+ πlv(〈ci, aj〉+ 〈ai, cj〉) + π2l

v 〈ci, cj〉 ,

so 〈ci, aj〉 + 〈ai, cj〉 ≡ 0 (mod pv,L). It sufficies to find a matrix Y ∈ Mn(Ov,L)

such that Y ai ≡ ci (mod pv,L) and Y ∗F + FY ≡ 0 (mod pv,L), because in that case

X = En + πlvY has the desired qualities. The existence of such a Y follows from

Proposition 1.21 by leting xi = ai, L = `v, K = kv. Since〈
ā

(v)
i , c̄

(v)
j

〉
+
〈
c̄

(v)
i , ā

(v)
j

〉
= 0,
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we have that (c̄1
(v), . . . , c̄

(v)
m ) ∈ Ω, and thus is in Γ so there exists Ȳ (v) ∈Mn(`v) such

that Ȳ (v)(ā
(v)
i ) = c̄

(v)
i and

(Ȳ (v))∗F̄ (v) + Ȳ (v)F̄ (v) = 0.

Lifting we get an appropriate Y ∈Mn(Ov,L).

Proof. (of the first case of Theorem 1.20) Applying Theorem 1.18 to the āi
(v)s, b̄i

(v)
s

gives an X̄ ∈ Un,F̄ (`v) such that X̄āi
(v) = b̄i

(v)
. Lifting we obtain X0 ∈Mn(Ov,L) such

that X0ai ≡ bi (mod pv,L) and X∗0FX0 ≡ F (mod pv,L). By Lemma 1.23 there exists

X1 ∈ Un,F (Ov,L) such that X0 ≡ X1 (mod pv,L), so X1ai ≡ bi (mod pv,L). Assume

that we have found X1, . . . , Xk ∈ Un,F (Ov,L) such that Xl ≡ Xl+1 (mod pl+1
v,L ) and

Xl(ai) ≡ bi (mod plv,L). By applying the Lemma 1.24 to {Xk(a1), . . . , Xk(am)} and

{b1, . . . , bm} there exists Y such that

Y ≡ En (mod pkv,L),

Y ∗FY ≡ F (mod pk+1
v,L )

and

Y (Xk(ai)) ≡ bi (mod pk+1
v,L ).

Then by Lemma 1.23 there existsXk+1 ∈ Un,F (Ov,L) such thatXk+1 ≡ Y Xk (mod pk+1
v,L ).

The Xi’s form a cauchy sequence. Let X be the limit of the Xis. We have that X is

in Un,F (Ov,L) and Xai = bi for all i as desired.

Before proving case 2 we prove a lemma which has a similar flavor to the proof of

case 1.

Lemma 1.25. Let f1, . . . , fn ∈ Ov[x1, . . . , xm] such that fi = ai0 +
∑
aijxj and

n ≤ m. Assume the image of {f1, . . . , fn} under the map Ov → kv has rank n. For

any y1, . . . , ym ∈ Ov such that fi(y1, . . . , ym) ≡ 0 (mod pv) for all 1 ≤ i ≤ n there
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exists ŷ1, . . . , ŷm ∈ Ov such that fi(ŷ1, . . . , ŷm) = 0 and yi ≡ ŷi (mod pv) for all

1 ≤ i ≤ n.

Proof. First we note that since the image of f1, . . . , fn has rank n in kv there exists

linear equations fn+1, . . . , fm, with fi = ai0 +
∑
aijxj such that fi(y1, . . . , ym) = 0

for all n + 1 ≤ i ≤ m and {f1, . . . , fm} has rank n. Let A = (aij) be the matrix of

coefficients, x =


x1

...

xm

, a =


a10

...

am0

 and y =


y1

...

ym

. With this notation, we are trying

to find a solution to Ax + a = 0 such that x ≡ y (mod pv). Since f1, . . . , fm has

rank m in kv, there exists A′ ∈Mm[Ov] such that AA′ ≡ I (mod pv). We claim that

given y(k) such that Ay(k) +a ≡ 0 (mod pkv) there exists y(k+1) such that y(k) ≡ y(k+1)

(mod pkv) and Ayk+1 + a ≡ 0 (mod pk+1
v ). Since Ay(k) + a ≡ 0 (mod pkv), there exists

b ∈ Onv such that Ay(k) + a = πkvb. Let y(k+1) = y(k) − πkvA′b. Then

Ay(k+1) + a = Ay(k) + a− πkvAA′b = πkv (b− AA′b)

and since AA′ ≡ I (mod pv) we have that Ay(k+1) + a ≡ 0 (mod pk+1
v ). Thus we can

construct a Cauchy sequence y(1) = y, y2, . . .. Let ŷ be the limit of this sequence, we

can see that Aŷ + a = 0 as desired.

Case 2 of the proof of Theorem 1.20: Let v ∈ V K
f such that Lv ∼= Kv⊕Kv. We now

give the isomorphism explicitly. Assume v ∈ V K
f is a valuation such that d is square in

Kv. Let t ∈ Kv be an element such that t2 = d. Define an isomorphism φ : Lv → Kv⊕

Kv by φ((a+ b
√
d)⊗ k) = (k(a+ bt), k(a− bt)). Notice that φ(τ(φ−1(x, y))) = (y, x).

and that if x ∈ Ov,L, we have that φ(x) ∈ Ov⊕Ov.

Since the ā
(v)
i are linearly independent there exists a basis e1, . . . , en such that

ei = ai for all 1 ≤ i ≤ m.

Notice that the isomorphism defined above extends to a map Lnv → (Kv ⊕Kv)
n

via φ(
∑
ciei) =

∑
φ(ci)(ei, ei), and similarly extends to a map Mn(Lv)→Mn(Kv)⊕
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Mn(Kv). Let (F1, F2) = φ(F ). Since F is Hermitian, we have that F t
1 = F2. For

x, y ∈ Lv, if φ(x) = (x1, x2) and φ(y) = (y1, y2) then

φ(〈x, y〉) = (xt2F1y1, y
t
1F2x2).

Let X ∈ Un,F (Lv). We have X∗FX = F , thus if φ(X) = (X1, X2) we see that

(X t
2, X

t
1)(F1, F2)(X1, X2) = (F1, F2)

implying X t
2F1X1 = F1. Therefore X2 = F−1

2 (X t
1)−1F2. This implies that finding

g ∈ Un,F (Ov,L) such that gai = bi, is equivalent to finding G ∈ GLn(Ov) such that

(G,F−1
2 (Gt)−1F2)(ei, ei) = φ(bi)

for 1 ≤ i ≤ m. Let φ(bi) = (b
(1)
i , b

(2)
i ). The condition now reduces to constructing

G ∈ GLn(Ov) such that Gei = b
(1)
i and F−1

2 (Gt)−1F2ei = b
(2)
i . Notice that the second

condition may be rewritten as F2ei = GtF2b
(2)
i . From the first condition, we see we

should take

G =
[
b

(1)
1 · · · b

(1)
m xm+1 · · · xn

]
where

xj =


x1j

...

xnj


for some xij. With this it is clear that Gei = bi for all 1 ≤ i ≤ m. Then

GtF2b
(2)
i =



(b
(1)
1 )t

...

(b
(1)
m )t

xtm+1

...

xtn


F2b

(2)
i =



(b
(1)
1 )tF2b

(2)
i

...

(b
(1)
m )tF2b

(2)
i

xtm+1F2b
(2)
i

...

xtnF2b
(2)
i


=



〈bi, b1〉
...

〈bi, bn〉

xtm+1F2b
(2)
i

...

xtnF2b
(2)
i


.
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We also can see that

F2ei =


〈ei, e1〉

...

〈ei, en〉


but 〈ei, ej〉 = 〈bi, bj〉 for 1 ≤ i, j ≤ m, so

F2ei =



〈bi, b1〉
...

〈bi, bm〉

〈ei, em+1〉
... 〈ei, en〉


.

Therefore F2ei = GtF2bi for all 1 ≤ i ≤ m, if xtjF2b
(2)
i = 〈ei, ej〉 for all m+ 1 ≤ j ≤ n

and 1 ≤ i ≤ n. Thus there exists an appropriate G if there is a solution to the system

of equations
∑n

l=1 xjl 〈bi, el〉 = 〈ei, ej〉 for all 1 ≤ i ≤ m, m + 1 ≤ j ≤ n in Ov. Note

that if m = n the system is empty and since span`v(b̄
(v)
1 , . . . , b̄

(v)
m ) is an m-dimensional

free module we have that G is invertible. Consider this system modulo pv and add if

m < n add the requirement that detG ≡ 1 (mod pv). Since detF ∈ O×v (implying

that its determinant is nonzero mod pv) there is a solution to this system in kv, and by

Lemma 1.25 this lifts to a solution in Ov. Since detG ≡ 1 (mod pv), G ∈ GLn(Ov)

as desired.

Corollary 1.26. Let ai, bi be as in the previous two theorems, v ∈ V K
f such that

|2|v = 1, |d|v = 1, and further assume that 2m + 1 ≤ n. Then there exists g ∈

SUn,F (Ov,L) such that gai = bi for all i.

Proof. Let σ′ be the element of Un,F (Ov,L) found in Theorem 1.20. Since 2m+ 1 ≤ n

there exists an element w ∈ Lnv such that 〈w,w〉 6= 0 and 〈ai, w〉 = 0. By multiplying

by an appropriate constant we can guarentee w ∈ Onv,L. Then g = σ′σ(detσ′)−1−1,w

(where σl,w is as defined in Corollary 1.19) has the desired properties.
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We will also need the following fact about Un,F .

Proposition 1.27. Assume 〈·, ·〉F is a hermitian form with Witt index Milliat least

2. If n ≥ 3 we have [Un,F (L), Un,F (L)] = SUn,F (L).

This is proved by combining statements 2 and 4 on pages 48-49 in [4]

1.5 Clifford Algebras

The structure of Clifford algebras and spin groups are key in establishing the base

case for both main theorems. One reference for the basic definitions and properties

is Chapter 5 in [13]. To construct the Clifford algebra we will need the following

notations. Let K be a field with characteristic not 2, V a finite-dimensional vector

space over K, 〈·, ·〉 a nondegenerate symmetric bilinear form on V , and let q : V → K

given by q(v) = 〈v, v〉 be then corresponding quadratic form.

Definition. The Clifford algebra defined by V , denoted Cl(V ), is T (V )/I, where

T (V ) is the tensor algebra, and I is the two-sided ideal generated by {v ⊗ v − q(v)}

for all v ∈ V .

Henceforth we will suppress the tensor notation and write vw for v⊗w. We claim

that for any v, w ∈ V , vw + wv = 2 〈v, w〉. By construction of Cl(V ),

(v + w)(v + w) = q(v + w) = q(v) + 2 〈v, w〉+ q(w).

By expanding the expression on the left we also have that

(v + w)(v + w) = v2 + wv + vw + w2 = q(v) + wv + vw + q(w).

Therefore by setting the two expressions equal we get wv + vw = 2 〈v, w〉. Thus if

〈v, w〉 = 0, then vw = −wv.
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Let e1, . . . , en be an orthogonal basis for V , and let I = (i1, . . . , im) be a sequence

of integers, 1 ≤ ij ≤ n. Define eI = ei1ei2 · · · eim , and e() = 1. Let S be the set of

all strictly increasing sequences consisting of integers between 1 and n including the

empty sequence.

Proposition 1.28. The set {eI}I∈S is a basis for Cl(V ), and dimK Cl(V ) = 2n.

A proof can be found in [13].

We define an involution τCl(V ) on Cl(V ). If I = (i1, . . . , im), let Ī denote (im, . . . , i1).

Then define τCl(V )(
∑
aIeI) =

∑
aIeĪ . When the algebra is clear from context we will

write τ instead of τCl(V ).

Lemma 1.29. For all x, y ∈ CL(V ), we have that τ(xy) = τ(y)τ(x).

Proof. Define an involution τ ′ on T (V ) by

τ ′(
∑

vi1 ⊗ · · · ⊗ viri ) =
∑

viri ⊗ · · · ⊗ vi1

Notice that τ ′(v⊗v−q(v)) = v⊗v−q(v), and if p is the quotient map T (V )→ Cl(V ),

τ ◦ p = p ◦ τ ′. We can see that for arbitrary basis elements of T (V ), a = v1⊗ · · ·⊗ vr,

b = w1 ⊗ · · · ⊗ ws,

τ ′(ab) = τ ′(v1 ⊗ · · · ⊗ vr ⊗ w1 ⊗ · · ·ws)

= ws ⊗ · · · ⊗ v1

= τ ′(w1 ⊗ · · · ⊗ ws)τ ′(v1 ⊗ · · · ⊗ vr)

= τ ′(b)τ ′(a).

Since τ ′ is additive, this means for any a, b ∈ T (V ), τ ′(ab) = τ ′(b)τ ′(a). Let x, y ∈

Cl(V ), a ∈ p−1(x) and b ∈ p−1(y). Then

τ(xy) = τ(p(ab)) = p(τ ′(ab))



36

and thus

τ(xy) = p(τ ′(b)τ ′(a)) = p(τ ′(b))p(τ ′(a)) = τ(p(b))τ(p(a)) = τ(y)τ(x)

as desired.

For I = (i1, . . . , im) define |I| := m. We define Cl0(V ) to be the K-subalgebra

generated by the eJ with |J | even, and Cl1(V ) to be the K-subspace spanned by

the eJ with |J | odd. Then Cl(V ) = Cl0(V ) ⊕ Cl1(V ) making Cl(V ) a Z/2-graded

algebra. We can see that Cl0(V ) has dimension 2n−1.

Lemma 1.30. Let e1, . . . , en be an orthogonal basis of a vector space V with nonde-

generate quadratic form q. Then Cl0(V ) is generated (as an algebra) by e1e2, . . . , e1en.

Proof. First we claim that {eiej}1≤i<j≤n generates Cl0(V ). We can write an arbitrary

basis element of Cl0(V ) eI = ei1 · · · ei2m as (ei1ei2) · · · (ei2m−1ei2m), a product of eiej’s.

Now we notice that since (e1ei)(e1ej) = −q(e1)eiej, the e1ei’s generate Cl0(V ).

For dimK V ≤ 3 we have the following explicit descriptions of Cl(V ).

Example 1.31. Let V = span(e1) with q(e1) = a1. Then Cl(V ) ∼= K[x]/ 〈x2 − a1〉.

Notice that if a1 is a square in K× K[x]/ 〈x2 − a1〉 is isomorphic to K ⊕K, since

the homomorphism φ : K[x]/ 〈x2 − a1〉 → K ⊕K given by

a+ bx 7→ (a+ b
√
a1, a− b

√
a1

is an isomorphism. Further, though the involution on the clifford algebra is trivial in

this case, if τ is the involution taking x to −x then φ(τ(φ−1(x, y))) = (y, x). (These

facts are used in later proofs).

Example 1.32. Let V = span(e1, e2) with 〈e1, e2〉 = 0, q(e1) = a1, q(e2) = a2. Then

Cl(V ) ∼=
(a1, a2

K

)
, a quaternion algebra.
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To prove this fact, we define a map φ :
(a1, a2

K

)
→ Cl(V ) by

φ(x0 + x1i+ x2j + x3k) = x0 + x1e1 + x2e2 + x3e1e2,

which is K-linear isomorphism of vector spaces. Since i2 = a1 = e2
1, j2 = a2 = e2

2,

φ(ij) = φ(k) = e1e2 = φ(i)φ(j), and φ(ji) = φ(−k) = −e1e2 = e2e1 = φ(j)φ(i) we

have that φ is a K-algebra isomorphism.

We also notice that the involution on Cl(V ) does not correspond to the usual

quaternion involution, since

τ(x0 + x1e1 + x2e2 + x3e1e2) = x0 + x1e1 + x2e2 − x3e1e2.

We can see that φ−1 ◦ τ ◦ φ fixes i and j and sends k to −k.

Example 1.33. Let V = span(e1, e2, e3) with the ei’s orthogonal, and q(ei) = ai.

Then Cl0(V ) ∼=
(
−a1a2,−a1a3

K

)
.

We define a map φ :

(
−a1a2,−a1a3

K

)
→ Cl0(V ) by

φ(x0 + x1i+ x2j + x3k) = x0 + x1e1e2 + x2e1e3 − x3a1e2e3

which is an isomorphism of vector spaces. Since

i2 = −a1a2 = (e1e2)2,

j2 = −a1a3 = (e1e3)2,

φ(ij) = φ(k) = −a1e2e3 = (e1e2)(e1e3) = φ(i)φ(j)

and

φ(ji) = φ(−k) = a1e2e3 = (e1e3)(e1e2) = φ(j)φ(i),

thus φ is a K-algebra isomorphism.
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We also note that τ(x0 +x1e1e2 +x2e1e3 +x3e2e3) = x0−x1e1e2−x2e1e1−x3e2e3

implying φ−1 ◦ τ ◦ φ is the standand quaternion involution.

For an arbitrary quadratic form, we define the discriminants,

d(q) =
n∏
i=1

q(ei),

and d±(q) = (−1)n(n−1)/2d(q) where n = dimK V . Further, for a Clifford algebra

defined by this form it can be seen that d±(q) = (e1e2 · · · en)2. For m ∈ Z we define

a K-algebra homomorphism ψm : Cl(V ) → Cl(V ) by ψm(
∑
aIeI) =

∑
(−1)m|I|aIeI .

Notice that for m even this is the identity homomorphism, and for m odd this is the

homomorphism from Cl(V ) = Cl0(V ) ⊕ Cl1(V ) to itself which fixes Cl0(V ) and is

multiplication by −1 on Cl1(V ).

The following two lemmas can be found as Corollary 2.7, and Corollary 2.9 on

page 113 in [12].

Lemma 1.34. Let V1 be a vector space of dimension 2m with quadratic form q1, V2

a vector space with quadratic form q2. Then there is an isomorphism

φ : Cl(V1 ⊥ V2)→ Cl(V1)⊗K Cl(V ′2)

where V ′2 is the vector space V2 with quadratic form given by q′2 = d±(q1)q2. We obatin

an involution on Cl(V1)⊗K Cl(V ′2), φ ◦ τ ◦ φ−1, which is given by

(τCl(V1) ⊗ ψm) ◦ (id⊗ τCl(V ′2)).

Proof. Let V1 = span(f1, . . . , f2m) where the fi’s are orthogonal. Let A be the sub-

algebra of Cl(V1 ⊥ V2) generated by f1, . . . , f2m. Let V2 = span(e1, . . . , en) where

the ei’s are orthogonal. Let B be the subalgebra of Cl(V1 ⊥ V2) generated by
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f1f2 · · · f2me1, . . . , f1f2 · · · f2men. Notice that

fi(f1f2 · · · f2mej) = (−1)i−1(f1 · · · f 2
i · · · f2mej)

= (−1)2m−1f1 · · · f2mfiej

= (f1f2 · · · f2mej)fi

for any fi, ej, so any element of A commutes with any element of B. We claim

that any basis element of Cl(V1 ⊥ V2) can be expressed as an element of A times an

element of B. Any basis element is a product of fi’s and ej’s, but the fi’s are all

elements of A, and the ej’s can be expressed as

ej =
1

d±(q1)
f1f2 · · · f2m(f1f2 · · · f2mej).

Thus by dimension counting Cl(V1 ⊥ V2) = A ⊗K B. Clearly A ∼= Cl(V1). To show

B ∼= Cl(V ′2) we define a map φ : B → Cl(V ′2) by φ(f1 · · · f2mei) = ei. Since

(f1 · · · f2mei)(f1 · · · f2mej) = −(f1 · · · f2mej)(f1 · · · f2mei)

and

(f1 · · · f2mei)
2 = d±(q1)q2(ei) = q′2(ei),

φ is a K-algebra isomorphism, establishing the lemma. Furthermore,

φ(τCl(V1⊥V2)(φ
−1(ei))) = φ(τCl(V1⊥V2)(f1 · · · f2mei))

= φ(eif2m · · · f1)

= φ((−1)mei(f2m−1f2m) · · · (f1f2))

= φ((−1)mei(f1f2) · · · (f2m−1f2m))

= φ((−1)mf1 · · · f2mei)

= (−1)mei

= ψm(τCl(V ′2)(ei))

so the induced involution is as described.
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Lemma 1.35. Let V1 be a vector space of dimension 2m + 1 with quadratic form

q1, V2 a finite-dimensional vector space with quadratic form q2. Then there is an

isomorphism

φ : Cl0(V1 ⊥ V2)→ Cl0(V1)⊗K Cl(V ′2)

where V ′2 is V2 with quadratic form q′2 = −d±(q1)q2. Further,

φ ◦ τ ◦ φ−1 = (τCl(V1) ⊗K ψm+1) ◦ (id⊗ τCl(V ′2)).

Proof. Let V1 = span(f1, . . . , f2m+1), V2 = span(e1, . . . , en). Let A be the sub-

algebra generated by f1f2, . . . , f1f2m+1 and let B be the subalgebra generated by

f1 · · · f2m+1e1, . . . , f1 · · · f2m+1en. Then

f1fi(f1 · · · f2m+1ej) = (f1 · · · f2m+1ej)f1fi

so every element of A commutes with every element of B. We also notice that for

any j,

1

q1(f1)m−1d±(q1)
(f1f2)(f1f3) · · · (f1f2m+1)(f1 · · · f2m+1ej) = f1ej,

and so every generator of Cl0(V1 ⊥ V2) can be expressed as an element of A times

an element of B, so by dimension count Cl0(V1 ⊥ V2) = A ⊗ B. It is clear that

A ∼= Cl0(V1). As in the proof of Lemma 1.34 we define a map B → Cl(V ′2) by

φ(f1 · · · f2m+1ej) = ej. Then

(f1 · · · f2m+1ei)(f1 · · · f2m+1ej) = −(f1 · · · f2m+1ej)(f1 · · · f2m+1ei)

and

(f1 · · · f2m+1ei)
2 = −d±(q1)q2(ei)

= q′2(ei)
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so φ is a K-algebra isomorphism, establishing the lemma. As in the previous lemma

τCl(V1⊥V2)(f1 · · · f2m+1ei) = (−1)m+1f1 · · · f2m+1ei

implying that

φ(τCl(V1⊥V2)(φ
−1(ei))) = ψm+1(τCl(V ′2)(ei)).

The following theorem can be found as Proposition 1 in [15].

Theorem 1.36. Let V be a vector space with nondegenerate quadratic form

q(
∑

xiei) =
∑

aix
2
i ,

and dimK V = 4n+ 2. Then there is an isomorphism

φ : Cl0(V )→ D1⊗D2⊗ · · · ⊗ D2n⊗K[x]/
〈
x2 + a1 · · · a4n+2

〉
where Di =

(
(−1)ia1 · · · a2i, (−1)ia1 · · · a2i−1a2i+1

K

)
. Further, φ ◦ τCl(V ) ◦ φ−1 gives

the standard quaternion algebra involution on Di with i odd, the involution given in

Example 1.32 on Di with i even, and takes x to −x.

Proof. Let V = span(e1, . . . , e4n+2) and q(
∑
xiei) =

∑
aix

2
i . Define V1 = span(e1, e2, e3),

V2 = span(e4, . . . , e4n+2), then V = V1 ⊥ V2. By Lemma 1.35

Cl0(V ) ∼= Cl0(V1)⊗K Cl(V ′2).

By Example 1.33 we have that Cl0(V ) ∼=
(
−a1a2,−a1a3

K

)
⊗KCl(V ′2). The quadratic

form on V ′2 = span(e4, . . . , e4n+2) is given by

4n+2∑
i=4

xiei 7→ a1a2a3

4n+2∑
i=4

aix
2
i ,



42

and the involution is the standard quaternion involution on D1 =

(
−a1a2,−a1a3

K

)
and ψ2 ◦ τCl(V ′2) = τCl(V ′2) on Cl(V ′2). We now let V21 = span(e4, e5) and V22 =

span(e6, . . . , e4n+2), so V ′2 = V21 ⊥ V22. By Lemma 1.34

Cl(V ′2) ∼= Cl(V21)⊗ Cl(V ′22)

and by Example 1.2 we have

Cl(V ′2) ∼= (
a1a2a3a4, a1a2a3a5

K
)⊗K Cl(V ′22).

The quadratic form on V ′22 is given by

4n+2∑
i=6

xiei 7→ −a1a2a3a4a5

4n+2∑
i=6

x2
i

and the involution is the involution given in Example 1.2. The involution on Cl(V ′22)

is ψ1 ◦τCl(V ′22). We continue in this manner until we are left with Cl(span(e4n+2)) with

quadratic form given by

x4n+2e4n+2 7→ −a1a2 · · · a4n+2x
2
4n+2.

By Example 1.1 this is isomorphic to K[x]/ 〈x2 + a1a2 · · · a4n+2〉 with an involution

given by x 7→ −x. Thus we have the desired isomorphism and involutions.

Define

Cl+(V ) = {x ∈ Cl(V ) | τ(x)x = 1}

and

Spin(V ) = {x ∈ Cl+(V ) ∩ Cl0(V ) | xvx−1 ∈ V for all v ∈ V }.

There is a natural map φ : Spin(V ) → O(V ), the orthogonal group on V given by

φ(x)(v) = xvx−1. The map given by φ(x) is clearly in GL(V ), and by construction

of the clifford algebra

q(xvx−1) = (xvx−1)2 = xv2x−1 = xq(v)x−1 = q(v)
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, thus we have that φ(x) ∈ O(V ). In fact Imφ = SO(V ) and kerφ = {−1, 1} (There

is a discussion of this in Chapter 5 of [1].)

We shall need the following for the base case of the second main theorem:

Theorem 1.37. Let V = Kn with n ≥ 3 and K algebraically closed. Then the

commutator subgroup, [Spin(V ), Spin(V )] = Spin(V ).

Proof. We first note that by statement 2a on page 56 of [4] we have that

SO(V )/[SO(V ), SO(V )] ∼= K×/K×2, which is {1} since K is algebraically closed, im-

plying that SO(V ) = [SO(V ), SO(V )]. Since Spin(V ) surjects onto SO(V ) with ker-

nel {−1, 1} the statement of the theorem reduces to showing that−1 ∈ [Spin(V ), Spin(V )],

which holds if there are elements of x, y ∈ Spin(V ) such that xy = −yx. We take a

orthonormal basis of V , f1, . . . , fn, which exists since K is algebraically closed. Let

x = f1f2, y = f2f3. We can see xτ(x) = 1, x fixes fi for all i > 2, xf1τ(x) = −f1 and

xf2τ(x) = −f2. Therefore x ∈ Spin(V ). Similarly y ∈ Spin(V ) and

xy = f1f2f2f3 = −f2f3f1f2 = −yx

as desired.

We will also need bounded generation for spin groups.

Theorem 1.38. Let V be a vector space over a number field K with dimK V ≥ 5. Let

S be a finite subset of V K containing V K
∞ . Then Spin(V )OS

has bounded generation

if the Witt index of V is at least 2, or the Witt index of V is one, and S contains at

least one nonarchimdean place.

This is the main theorem of [7]

AssumeK is an algebraic number field and let S be a finite subset of V K containing

V K
∞ . Let V be a vector space, and fix a basis, e1, . . . , en such that q(ei) ∈ OS for all i.

We define Cl(V )OS
as the set of OS-linear combinations of the basis of Cl(V ) formed

by the ei’s.
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1.6 Strong Approximation

One of the useful properties of the special unitary group used in the proof of the second

main result is strong approximation. We define this property by first extending the

notion of adeles (Section 0.1) to affine varieties. If X is the set of zeroes of a system

of polynomial equations in K[x1, . . . , xn], then XAK
is the set of zeroes of the same

system of polynomials in AK . This is equivalent to setting

XAK
= {(xv) ∈

∏
XKv | xv ∈ XOv for almost all v ∈ V }.

The set XAK,S
is defined similarly.

Definition. Let X be an affine variety, and S ⊂ V k containing V K
∞ . We say X has

strong approximation with respect to S if the image of the diagonal map

δ : X → XAK,S

is dense.

Example 1.39. SLn has strong approximation with respect to S = V K
∞ .

Proof. The proof relies on the fact that SLn is generated by elementary matrices.

Take a basic open set U in SLn(AK,S). Without loss of generality we may assume

U =
∏
v∈T

Brv(gv)×
∏
v/∈T

SLn(Ov)

where T ⊂ V K
f is finite and

Brv(gv) := {g ∈ SLn(Kv) | g − gv ∈Mn(prvv )}.

For each v ∈ T note that gv =
∏mv

l=1 Eilvjlv(αlv). Since T is finite, there exists some

m ∈ Z such that gv =
∏m

l=1 Eiljl(αlv) for all v ∈ T . Notice that for each v ∈ T there

exists sv such that
m∏
l=1

Eiljl(αlv + psvv ) ⊆ Brv(gv).
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Let

Ul =
∏
v∈T

(αlv + psvv )×
∏
v/∈T

Ov .

This is an open set in AK,S, so by Proposition 0.1 we have that there exists αl ∈ K

whose image under the diagonal map lies in Ul. Set g =
∏m

l=1Eiljl(αl). Then the image

of g under the diagonal map lies in U , and thus SLn has strong approximation.

We note the following fact concerning strong approximation:

Proposition 1.40. If X and Y are biregularly isomorphic varieties over K, then X

has strong approximation if and only if Y does.

(This is part 1 from proposition 7.1 in [17].)

We will also need the following facts about strong approximation specific to alge-

braic groups.

Proposition 1.41. If an algebraic group G has strong approximation, then

GAK,S
= δ(GK)

∏
v/∈S GOv .

Proof. By definition of the adele topology, U =
∏

v/∈S GOv is an open subgroup of

GAK,S
. Let g ∈ GAK,S

. Since G has strong approximation, gU ∩ δ(GK) is nonempty,

implying that g ∈ δ(GK)U , so GAK,S
⊆ δ(GK)

∏
v/∈S GOv and so the two sets are

equal.

Theorem 1.42 (Strong Approximation Theorem). Let G be a reductive algebraic

group over an algebraic number field K, and let S be a finite subset of V K. Then G

has strong approximation with respect to S if and only if

1. G is simply connected

2. G does not contain any K-simple component Gi with Gi
S compact.

This is Theorem 7.38 in [17].
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Proposition 1.43. SUn,F where F is Hermitian with Witt index at least 1 has strong

approximation.

Proof. We let SUn,F = G and apply the strong approximation theorem. We first

claim that GK̄
∼= SLn(K̄), where K̄ denotes the algebraic closure of K. Since SLn is

simply connected, we have that G is also simply connected. Further, since the Witt

index is at least 1, G contains a nontrivial K-split torus, so GS is noncompact and

thus G has strong approximation.

It remains to be shown that GK̄ = SUn,F (L⊗ K̄) is isomorphic to SLn(K̄). To do

so we use the second characterization of Un,F as a variety in Section 1.4. It is clear

that if (X, Y ) ∈ GK̄ (note that X, Y ∈ Mn(K̄) and satisfy the equations given in

Section 1.4), then X+
√
dY ∈ SLn(L) and this is an injective map of varieties. What

remains to be seen is whether this map is surjective. Let M ∈ SLn(L), the map is

surjective if there exists (X, Y ) ∈ Ḡ such that X +
√
dY = M . Let

X =
1

2
(M + F−1(M t)−1F )

Y =

√
d

2d
(M − F−1(M t)−1F ).

It is clear that X +
√
dY = M .

X tFX =
1

4
(M tFM + 2F + FM−1F−1(M t)−1F ),

Y tFY =
1

4d
(M tFM − 2F + FM−1F−1(M t)−1F )

so X tFX − dY tFY = F . Also

X tFY =
1

4
(M tFM − FM−1F−1(M t)−1F ) = Y tFX.

Thus (X, Y ) ∈ GK̄ , so Ḡ ∼= SLn(K̄) as needed.

We will also need strong approximation for “spheres.”
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Proposition 1.44. ([20]) Let G′ be a simply connected K-subgroup of a connected

algebraic K-group G. Suppose V K
∞ ⊂ S and G has strong approximation with respect

to S. Then the homogeneous space X = G/G′ also has strong approximation with

respect to S.

Combining the previous two propositions, we obtain the following corollary.

Corollary 1.45. Let f(x) = 〈x, x〉 where 〈·, ·〉 is a nondegerate hermitian form with

Witt index at least 1. Fix c ∈ K× and let C = {x | f(x) = c}. If CK 6= 0, then C has

strong approximation.

Proof. Let G = SUn,F and fix x ∈ CK . By Theorem 1.18 the map G → C given

by g 7→ gx is surjective. Therefore, if we let G(x) denote the stabilizer of x, we

have a bijective morphism φ : C → G/G(x). However, G(x) ∼= SUn−1,F ′ for some

hermitian matrix F ′, and so is simply connected. By Proposition 1.43, G has strong

approximation and therefore by Proposition 1.44 C does.
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Chapter 2

SLn(OD,S) has bounded generation

2.1 Special Linear Groups

The goal of this chapter is to demonstrate that under certain conditions SLn over an

order of a quaternion algebra has bounded generation. We first reduce the general

case to SL2 and then demonstrate that this group has bounded generation by showing

it is isomorphic to a spin group.

We fix K, an algebraic number field, S ⊂ V K such that V K
∞ ⊂ S, and let D =(

α, β

K

)
be a non-split quaternion algebra with α, β ∈ OS. Recall that SLn(D) =

{X ∈ GLn(D) | detX = 1}, where the determinent is defined by the reduced norm.

Let φ : Mn(D) → M2n(K(
√
α)) denote the homomorphism defined in Section 1.2.

We define SLn(OD,S) = SLn(D) ∩Mn(OD,S) where OD,S is as defined at the end of

Section 1.2.

In the argument we will use the properties of elementary matrices from Section 1.2.

We notice that if A = (alk)1≤l,k≤n, then mulitplying by an elementary matrix gives

[AEij(x)]lk =

 alk if k 6= j

alix+ alj if k = j
,



49

and

[Eij(x)(A)]lk =

 alk if l 6= i

xajk + aik if l = i
.

We use these types of calculations extensively in the proof of Theorem 2.3.

We start our proof of Main Theorem 1 by proving a basic lemma necessary for

the induction step.

Lemma 2.1. Let V be a finite-dimensional vector space over a field K, and let

f, g : V → V be linear transformations. Then there exists h ∈ EndK(V ) such that

Im(f + gh) = Im f + Im g.

Proof. Let v1, . . . , vn be a basis of V such that f(v1), . . . , f(vr) form a basis of Im f .

Let W be a subspace of V such that g|W is injective and

Im f + Im g = Im f ⊕ g(W ).

Let n := dimV , r := dim Im f and t := dimW . We can see that t ≤ n − r. There

exists h ∈ EndK(V ) be such that h(vi) = 0 for i = 1, . . . , r and h(vr+1), . . . , h(vr+t)

form a basis of W . Then (f + gh)(vi) = f(vi) for i = 1, . . . , r, so Im(f + gh) ⊇ Im f .

Since

(f + gh)(vi) = f(vi) + g(h(vi))

for i = r + 1, . . . , r + t, we have that Im(f + gh) ⊃ g(W ), and thus Im(f + gh) ⊃

Im f + Im g. Therefore Im(f + gh) = Im f + Im g.

Corollary 2.2. With V as before, and f1, . . . , fn : V → V linear transformations,

there exist h2, . . . , hn ∈ EndK(V ) such that

Im(f1 + f2h2 + · · ·+ fnhn) = Im f1 + · · ·+ Im fn.

Proof. This follows directly by induction on n, the previous lemma providing the base

case.
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Theorem 2.3. Let D be a non-split quaternion algebra over an algebraic number

field K, and let S be a finite subset of V K containing V K
∞ . Then SLn(OD,S) =

E1 · · ·ErXEr+1 · · ·Es where for each 1 ≤ i ≤ s, Ei = Eliki(OD,S) for some li, ki, and

X is the group of matrices of the form

X ′ 0

0 I

 where X ′ is in SL2(OD,S). Further

s ≤ 2n2 + 2n− 12.

Proof. By induction on n. We will prove the theorem by showing that for an arbitrary

A ∈ SLn(OD,S) we have thatA = El1k1(α1) · · ·Eliki(αi)CEli+1ki+1
(αi+1) · · ·El4nk4n(α4n)

where l1, . . . , l4n, k1, . . . , k4n are not dependent on A and C is of the form

C ′ 0

0 1


with C ′ ∈ SLn−1(OD,S).

Let

A = (aij)1≤i,j≤n.

Since A is invertible, there exists a matrix

B = (bij)1≤i,j≤n ∈ SLn(OD,S)

such that AB = I. Thus,

an1b1n + · · ·+ annbnn = 1.

Case 1: an2 = 0. Let

A′ = AE12(b1n)
n∏
j=3

Ej2(bjn).

We can see that

[A′]n2 =
∑

anjbjn = 1.

Now let

A′′ = A′E2n(1− ann)
n−1∏
j=1

Enj(−anj).
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Computing, we find that [A′′]nj = 0 for all j < n. Finally if

A′′′ := (
n−1∏
j=1

Ejn(−[A′′]jn))A′′

we have that [A′′′]nj = [A′′′]jn = 0 for all j < n and [A′′′]nn = 1. Notice that the total

number of Elk’s in this case is 3n− 2.

Case 2: an2 6= 0. We will need to use a few facts about the Jacobson radical of

a ring. The Jacobson radical of a ring R, denoted J(R), is the intersection of all

maximal left ideals of R.

Lemma 2.4. 1. The Jacobson radical is a 2-sided ideal.

2. If R is Artinian, R/J(R) is semsimple.

3. Let x ∈ R, and let x̄ denote the image of x in R/J(R). If x̄ is invertible then

x is invertible.

Proof. 1. See Theorem 4.1 in [10].

2. Proposition 4.4 and the theorem on page 203 in [10] show that if a ring A is

artinian and J(A) = 0 then A is semi-simple. Since R is Artinian, R/J(R) is

also Artinian. Notice that J(R/J(R)) = 0. Thus R/J(R) is semisimple.

3. By Theorem 4.1 in [10] every element y ∈ J(R) has the property that 1− y has

an inverse. Let z = x̄−1, then 1 − zx ∈ J(R). Then 1 − (1 − zx) = zx has an

inverse, and thus x does.

We now continue our consideration of case 2. If ann = 0 then by replacing A

with AE2n(1) we may assume ann = an2 6= 0. Let a ∈ annOD,S ∩OK be nonzero.

Such an a exists since N(ann) 6= 0 (D is non-split and a 6= 0) and is in OK . Let
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C := OD,S /aOD,S, which is finite. By part 2 of the lemma, C/J(C) is a semisimple

ring. Thus there is an isomorphism

ψ : C/J(C)→Mm1(k1)⊕ · · · ⊕Mmr(kr)

for finite fields ki, 1 ≤ i ≤ r. Thus for each 1 ≤ i ≤ r there exists a homomorphism

φi : OD →Mmi
(ki). We use this to view φi(anj) as a linear transformation kmi

i → kmi
i

for any i, 1 ≤ i ≤ n. Since
∑
anjbjn = 1, its image,

∑
φi(ani)φi(bin), is the identity

endomorphism. Therefore

Imφi(an1) + · · ·+ Imφi(ann) = kmi
i .

By Corollary 2.2 there exist c2i, . . . cni ∈Mni
(ki) such that

Im
(
φi(an1) + φi(an2)c2i + · · ·+ φi(ann)cni

)
= kmi

i .

Thus

φi(an1) + φi(an2)c2i + · · ·+ φi(ann)cni

is invertible for all φi. Pick c2, . . . , cn ∈ C/J(C) such that cj ∈ ψ−1(cj1, . . . , cjr).

Thus if φ : OD,S → C/J(C) is the quotient map,

φ(an1) + φ(an2)c2 + · · ·+ φ(ann)cn

is invertible. Further, there exist c′2, . . . , c
′
n ∈ C such that φ(c′i) = ci.

Thus

φ(an1 + an2c
′
2 + · · ·+ annc

′
n)

is invertible. By part 3 of the lemma this implies that an1 + an2c
′
2 + · · · + annc

′
n is

invertible in C = OD,S /aOD,S. Taking A′ to be A
∏n

2 Ei1(c′i) we may assume that

[A′]n1 is invertible mod a. Therefore there exists d such that

[A′]n1d+ an2 ≡ 0 (mod a).
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Let A′′ = A′E12(d), we have that

[A′′]n2 ≡ 0 (mod a).

This implies that there exists x such that ax = [A′′]n2 , but by construction a = annz

for some z. Thus [A′′En2(−zx)]n2 = 0. Thus after multiplying by n + 2 elementary

matrices we may apply case 1. Therefore multiplying by 4n elementaries reduces

SLn(OD,S) to SLn−1(OD,S) and thus multiplying by 2n2+2n−12 elementaries reduces

SLn(OD,S) to SL2(OD,S).

Let V be a 6-dimensional vector space over K with basis e1, . . . , e6. Define a

quadratic form on V by

q(x1e1 + · · ·+ x6e6) = −αx2
1 + x2

2 + αβx2
3 − βx2

4 + βx2
5 − βx2

6.

Notice that q(e5 + e6) = 0, implying that the Witt index is at least 1. We can also

see that V = span(e1, e2, e3, e4) ⊥ span(e5, e6) and q restricted to the first component

gives x2
2 − αx2

1 − βx2
4 + αβx3

3 which has no solutions since D is nonsplit. Thus the

Witt index of q is exactly 1.

Theorem 2.5. There is an isomorphism

φ : M2(D)⊕M2(D)→ Cl0(V ).

Furthermore, if τ is the involution on Cl(V ), the isomorphism can be constructed

such that

φ−1(τ(φ(X, Y ))) = (FY
t
F−1, FX

t
F−1),

where F = ( 1 0
0 −1 ).

Proof. Define an alternative quadratic form on V by

q′(x1e1 + · · ·+ x6e6) = −αx2
1 + x2

2 +
β

α
x2

3 −
1

β
x2

4 +
1

β
x2

5 − βx2
6.
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Let V ′ denote V with this quadratic form.

We construct a map φ′ : M2(D)⊕M2(D)→ Cl0(V ′) as the composition of several

algebra isomorphisms. We then note that there is an isomorphism ψ : Cl0(V ′) →

Cl0(V ) which commutes with the involution given by e1 7→ e1, e2 7→ e2, e3 7→ 1
α
e3,

e4 7→ 1
β
e4, e5 7→ 1

β
e5 and e6 7→ e6.

By Theorem 1.36 we have an isomorphism

φ1 :

(
α, β

K

)
⊗K

(
1,−1

K

)
⊗K K[t]/

〈
t2 − 1

〉
→ Cl0(V ),

with an involution induced on the tensor product given by τ1 ⊗ τ2 ⊗ τ3 where τ1 is

the ordinary quaternion involution, τ2 is the involution given in Example 1.32 and

τ3(a+ bt) = a− bt.

By Example 1.31 we have an isomorphism

φ2 : K ⊕K → K[t]/
〈
t2 − 1

〉
,

and φ−1
2 (τ3(φ2(x, y))) = (y, x).

Let

φ3 : D⊕D → D⊗K(K ⊕K)

be the isomorphism given by

φ3(x0+x1i+x2j+x3k, y0+y1i+y2j+y3k) = 1⊗(x0, y0)+i⊗(x1, y1)+j⊗(x2, y2)+k⊗(x3, y3).

(where 1, i, j, k is the basis of D.)

By Lemma 1.11 there exists an isomorphism,

φ4 : M2(K)→
(

1,−1

K

)
.

By examining the map we can see that φ−1
4 (τ2(φ4(X))) = FX tF .

Define an isomorphism

φ5 : M2(D)⊕M2(D)→M2(K)⊗ (D⊕D)
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by

φ5([ x y
z w ], [ a bc d ]) = [ 1 0

0 0 ]⊗ (x, a) + [ 0 1
0 0 ]⊗ (y, b) + [ 0 0

1 0 ]⊗ (z, c) + [ 0 0
0 1 ]⊗ (w, d).

Now define

φ′ = φ1 ◦ (id⊗ id⊗ φ2) ◦ (id⊗ φ3) ◦ (φ4 ⊗ id) ◦ φ5.

It is an isomorphism because it is a composition of isomorphisms. Finally, we see

that φ = ψ ◦φ′ is an isomorphism M2(D)⊗M2(D)→ Cl0(V ) and following the maps

we see that φ−1(τ(φ(X, Y ))) = (FY
t
F, FX

t
F ) as desired.

Remark. Following the maps in the proof of the previous theorem, we can see that

φ−1(Cl0(V )OS
) ⊂ M2(OD,S) ⊕ M2(OD,S). Further, if X, Y ∈ M2(OD,S) such that

X ≡ I (mod (2αβ)) and Y ≡ I (mod (2αβ)) then φ(X, Y ) ∈ Cl0(V )OS
.

Corollary 2.6. SL2(D) ' Spin(V ) (with the associated quadratic form as before).

Proof. Define

ψ : GL2(D)→M2(D)⊕M2(D)

by

X 7→ (X,F (X
t
)−1F−1)

for X ∈ GL2(D). I claim that φ ◦ ψ defines an isomorphism from GL2(D) to the set

of elements x ∈ Cl+(V ) ∩ Cl0(V ), i.e., the set of x in Cl0(V ) such that xτ(x) = 1.

Since φ and ψ are injective, φ ◦ ψ is injective. To establish surjectivity it is enough

to show that the image of ψ is

{(X, Y ) | (X, Y )τ ′(X, Y ) = (I, I)}

where τ ′ = φ−1 ◦ τ ◦ φ. Let X, Y ∈M2(D) with (X, Y )τ ′(X, Y ) = I. Then

(X, Y )(FY
t
F, FX

t
F ) = (I, I),
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so Y FX
t
F = I, implying Y = F (X

t
)−1F therefore ψ(X) = (X, Y ), and thus ψ is

surjective.

We now verify that φ(ψ(SL2(D))) = Spin(V ). Let X = [ 1 x
0 1 ] for an arbitrary

x = x0 + x1i+ x2j + x3k ∈ D. Then

φ(ψ(X)) = 1 +
1

2
(
x0

β
e4 −

x1

β
e3 + x2e2 + x3e1)(−e5 + e6) =: ξ

is in Spin(V ) since for any ei, 1 ≤ i ≤ 6, ξeiτ(ξ) ∈ V . Explicitly,

τ(ξ)e1ξ = e1 + αx3e5 − αx3e6

τ(ξ)e2ξ = e2 − x2e5 + x2e6

τ(ξ)e3ξ = e3 + αx1e5 − αx1e6

τ(ξ)e4ξ = e4 + x0e5 − x0e6

τ(ξ)e5ξ = βx3e1 + βx2e2 − x1e3 + x0e4 + (1 +
1

2
N(x))e5 −

1

2
N(x)e6

τ(ξ)e6ξ = βx3e1 + βx2e2 − x1e3 + x0e4 +
1

2
N(x)e5 + (1 +

1

2
N(x))e6

Similarly if X ′ = [ 1 0
x 1 ] then φ(ψ(X ′)) ∈ Spin(V ) since

φ(ψ(X ′)) = 1− 1

2
(−x0

β
e4 −

x1

β
e3 + x2e2 + x3e1)(e5 + e6)) =: ξ

satisfies

τ(ξ)e1ξ = e1 + αx3e5 + αx3e6

τ(ξ)e2ξ = e2 − x2e5 − x2e6

τ(ξ)e3ξ = e3 + αx1e5 + αx1e6

τ(ξ)e4ξ = e4 − x0e5 − x0e6

τ(ξ)e5ξ = βx3e1 + βx2e2 − x1e3 − x0e4 + (1− 1

2
N(x))e5 −

1

2
N(x)e6

τ(ξ)e6ξ = −βx3e1 − βx2e2 + x1e3 + x0e4 +
1

2
N(x)e5 + (1 +

1

2
N(x))e6.
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For any g ∈ GL2(D), g = XZ where X = [ x 0
0 1 ] for some x = x0 +x1i+x2j+x3k ∈

D× and Z is a product of elementary matrices [4]. Set ξ := φ(ψ(X)) and

θ = (1 +
1

N(x)
+

1

αβ2
(1− 1

N(x)
)e1e2e3e4e5e6.

Computing we see that

ξ =
1

2
(1− 1

αβ
e1e2e3e4) +

1

4
(x0 + x1e1e2 +

1

α
x2e1e3 + x3e2e3)(1 +

1

αβ
e1e2e3e4)θ

and

τ(ξ)e1ξ = e1(
1

2
(x0 + x1e1e2 +

1

α
x2e1e3 − x3e1e4)θ

which is in V if and only if N(x) = 1. In this case we have that ξ ∈ Spin(V ).

Therefore X ∈ SL2(D) if and only if N(x) = 1. Since elementary matrices are are in

SL2(D), this proves that SL2(D) ∼= Spin(V ).

Theorem 2.7 (Main Theorem 1). Let S be a finite subset of V K such that V K
∞ ⊂ S

and S contains at least one nonarchimedean place. Let D =

(
α, β

K

)
with α, β ∈ OS.

Then SLn(OS,D) has bounded generation.

Proof. By Theorem 2.3 SLn(OS,D) = E1 · · ·ErXEr+1 · · ·Em and X ∼= SL2(OS,D).

Thus by Lemma 1.13 it is enough to show that SL2(OS,D) has bounded generation.

Let

C := {X ∈ SLn(OS,D) | X ≡ I (mod (2αβ))}.

This is a congruence subgroup and thus has finite index in SLn(OS,D) by Lemma 1.6.

By our previous remark and theorem,

φ(C) ⊂ Spin(V )OS
∩ φ(SLn(OD,S),

and since Spin(V )OS
⊂ φ(SLn(OS,D)), φ(C) has finite index in Spin(V )OS

so it and

φ(SLn(OS,D)) are commensurable. Since S contains a nonarchimedean valuation, and

the Witt index of the relevant form is 1, by Theorem 1.38 Spin(V )OS
has bounded

generation. Then by Corollary 1.2 SLn(OD,S) has bounded generation.
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Chapter 3

SUn has bounded generation

3.1 Induction Step

In this chapter we prove that special unitary groups of hermitian forms over L|K

with Witt index at least 2 over a ring of S-integers have bounded generation. We

first reduce the problem to the case SU4 and then show this group is isomorphic to a

spin group and then again use Theorem 1.38.

Let K be an algebraic number field, L = K(
√
d) a quadratic extension. We fix a

finite subset S ⊂ V K containing V K
∞ .

Let 〈·, ·〉 be a non-degenerate sesquilinear Hermitian form on Ln and define the

quadratic form f(x) = 〈x, x〉. Throughout we assume that the Witt index is at least

one and n ≥ 5.

Fix a basis e1, . . . , en of Ln such that

f(x1e1+· · ·+xnen) = x1τ(x2)+x2τ(x1)+x3τ(x4)+x4τ(x3)+α5x5τ(x5)+· · ·+αnxnτ(xn).

Let F denote the matrix corresponding to 〈·, ·〉. Throughout G = SUn,F and thus

GK = SUn,F (L). For v ∈ V K
f ,

GOv = SUn,F (OL⊗OK
Ov)
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and for S ⊂ V K ,

GOS
= SUn,F (OL⊗OK

OS).

For a ∈ Ln, G(a) denotes the stabilizer of a in G.

Lemma 3.1. Assume that n ≥ 5 and f has Witt index at least 1. Let a, b ∈ Ln with

〈a, b〉 = 0, f(a) 6= 0 and f(b) 6= 0. If spanL(a, b)⊥ is isotropic, then we have following

for every extension K ′|K we have that GK′ = G(a)K′G(b)K′G(b)K′.

Proof. We define the K-varieties

X = G(a)×G(b)×G(a),

Y = {t | f(t) = f(a)},

Z = {(g, t) ∈ G× Y | 〈t, a〉 = 〈g(a), a〉 , 〈t, b〉 = 〈a, b〉}.

The product map µ : X → G factors through the maps φ : X → Z given by φ(x, y, z) =

(xyz, y(a)) and ψ : Z → G given by ψ(g, t) = g.

To prove the lemma we must consider two cases.

Case 1: AssumeK ′⊗KL is a field. We show thatGK′ = G(a)K′G(b)K′G(a)K′ by show-

ing that φ and ψ are surjective on K ′-points. Let g ∈ GK′ and define t′ :=
〈g(a), a〉
f(a)

a.

Since spanL⊗K′(a, b)
⊥ is isotropic, by Lemma 1.17 it contains a vector t′′ such that

f(t′′) = f(a) − f(t′). Let t = t′′ + t′. Since t′ and t′′ are orthogonal we can see that

f(t) = f(t′′) + f(t′) = f(a). We also have that

〈t, a〉 = 〈t′, a〉

=
〈g(a), a〉
f(a)

〈a, a〉

= 〈g(a), a〉

and 〈t, b〉 = 0 = 〈a, b〉. Thus (g, t) ∈ ZK′ implying that ψ−1(g)K′ is nonempty.

Let (g, t) ∈ ZK′ . Assume g(a) = λa for some λ ∈ K ′⊗L. Then since 〈g(a), g(a)〉 =

〈a, a〉, λτ(λ) = 1. Let c ∈ spanK′⊗L(a, b)⊥ such that 〈c, c〉 6= 0. Let h = σλ−1,cσλ̄−1,a
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where σl,w is as defined in the proof of Corollary 1.19. We can see that h ∈ G(b)K′ and

gh ∈ G(a)K′ so g ∈ G(a)K′G(b)K′G(a)K′ . Therefore we may assume that g(a) 6= λa

and the spaces spanK′⊗L(t, a) and spanK′⊗L(g(a), a) are isometric and 2-dimensional.

By Corollary 1.19 there exists x ∈ GK′ such that x(t) = g(a) and x(a) = a. Similarly,

there exists y ∈ GK′ such that y(a) = t and y(b) = b. Let z = (xy)−1g. By

construction, xyz = g, x ∈ G(a)K′ , y ∈ G(b)K′ and

z(a) = y−1(x−1(g(a)))

= y−1(t)

= a

so z ∈ G(a)K′ . Since y(a) = t we have that (x, y, z) ∈ φ−1(g, t)K′ .

Thus µ is surjective on K ′-points, implying GK′ = G(a)K′G(b)K′G(a)K′ .

Case 2: Assume K ′ ⊗ L ∼= K ′ ⊕ K ′. In this case by the argument in Proposi-

tion 1.43 there is an isomorphism φ : GK′ → SLn(K ′). Notice that under this map

the requirement that ga = a for g ∈ GK′ becomes φ(g)v = v for some v ∈ K ′n. Thus

there is a change of basis such that

A := φ(G(a)K′) =

SLn−1(K ′) 0

0 1


and

B := φ(G(b)K′) =

1 0

0 SLn−1(K ′)

 .
The result is then equivalent to showing that for any X ∈ SLn there exists a1, a2 ∈ A

such that a1Xa2 ∈ B. Let r1, . . . , rn denote the rows of X and let c1, . . . cn denote

the colums. Notice that the following operations are equivalent to multiplying X by

an element of A:

� ri 7→ mrj + ri for any i 6= j, i, j > 1 and m ∈ K ′ (RA),
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� ci 7→ mcj + ci for any i 6= j, i, j > 1 and m ∈ K ′ (CA),

� ri 7→ rj and rj 7→ −ri for any i 6= j, i, j > 1(RS),

� ci 7→ cj and cj 7→ −ci for any i 6= j, i, j > 1(CS),

� ci 7→ nci and cj 7→ 1
n
cj for any i 6= j, i, j > 1 and n 6= 0 (Sc).

If for all 1 < i < n, [X]1i = 0 and [X]1n 6= 0, we perform a (CS) so [X]1n = 0, and

if for all 1 < i < n [X]i1 = 0 and [X]n1 6= 0 we perform a (RS) so [X]n1 = 0. After

possibly performing a (RS) and (CS), we can guarentee that [X]nn 6= 0. (Note that

since n ≥ 4, we can guarentee that the action does not effect the result of the first

two operations). By adding appropriate multiples of rn to ri for 1 < i < n we obtain

[X]in = 0. If [X]n1 6= 0, there exists i such that [X]i1 6= 0 and by adding a multiple

of ri to rn we now have that [X]n1 = 0. (Note that this will not change the value

of [X]nn.) By adding multiples of cn to ci for 1 < i < n we obtain [X]ni = 0 for

1 ≤ i < n. If [X]1n 6= 0 there exists i such that [X]1i 6= 0 and by adding a multiple

of ci to cn we now have that [X]1n = 0. (Note that this did not change the value of

[X]ni for 1 ≤ i ≤ n.) As before by adding multiples of rn to ri we have that [X]in = 0

for 1 ≤ i < n. By performing a (Sc) operation we can obtain [X]nn = 1 and X ∈ B.

Thus SLn = ABA implying GK′ = G(a)K′G(b)K′G(a)K′ .

Corollary 3.2. Let v ∈ V K, A,C ⊂ G(a)Kv open, B ⊂ G(b)Kv open, then there

exists a open subset of µ(A,B,C) = ABC in GKv .

Proof. Lemma 3.1 shows that the product map is surjective, so the claim follows from

Corollary 1 in section 3.1 of [17].

Fix V0 := V (d)∪ni=5 V (αi). Let a := en, b := en−1. By the previous corollary there

exists an open compact subset U ofGV0 =
∏

v∈V0 GKv contained in
∏

v∈V0 G(a)OvG(b)OvG(a)Ov .

We can further assume that U ⊂ {g ∈ G | g(a) and a are linearly independent}.



62

Theorem 3.3. Let ∆ = G(a)OS
G(b)OS

G(a)OS
, then GOS

∩ U ⊂ ∆∆∆.

We first prove several lemmas.

Lemma 3.4. Let (g, t) ∈ ZOS
. Suppose that

1) φ−1(g, t)K and φ−1(g, t)Ov are non-empty for all v /∈ S.

2) The subspace spanned by a and t is two-dimensional and nondegenerate.

Then φ−1(g, t)OS
is nonempty, hence g ∈ ∆.

Proof. By condition 1 there exists (xK , yK , zK) ∈ φ−1(g, t)K and (xv, yv, zv) ∈ φ−1(g, t)Ov

for each v /∈ S. By construction xK(t) = g(a) and xv(t) = g(a) with xK ∈ G(a)K

and xv ∈ G(a)Ov . Therefore we have that (x−1
K xv)v/∈S ∈ G(a, t)AK,S

. By Propo-

sition 1.41, G(a, t)AK,S
= G(a, t)K

∏
v/∈S G(a, t)Ov , so there exists hK ∈ G(a, t)K ,

hv ∈ G(a, t)Ov such that (hKhv)v/∈S = (x−1
K xv)v/∈S. Then xKhK = xvh

−1
v ∈ G(a)Ov for

all v /∈ S, so xKhK ∈ G(a)OS
. Similarly we have that yK(a) = t and yv(a) = t with

yK ∈ G(b)K and yv ∈ G(b)Ov implying that (y−1
K yv) ∈ G(a, b)AK,S

and that there ex-

ists jK ∈ G(a, b)K such that yKjK ∈ G(b)OS
. Let x = xKhK , y = yKjK , z = (xy)−1g.

Then (x, y, z) ∈ φ−1(g, t)OS
as desired.

We use the same notations as in Theorem 1.20.

Lemma 3.5. Let (g, t) ∈ ZOS
. Assume that:

1) The space spanned by a and t is two-dimensional and nondegenerate.

2) φ−1(g, t)Ov is nonempty for all v ∈ V0.

3) For any v ∈ V K \ (S ∪ V0) the `v-modules span`v(ā(v), ¯g(a)
(v)

), span`v(ā(v), t̄(v)),

and span`v(b̄(v), t̄(v)) are free and 2-dimensional.

Then φ−1(g, t)OS
is not empty and thus g ∈ ∆.

Proof. Let v ∈ V K \ (S ∪ V0). Since span`v(g(a)
(v)
, ā(v)) and span`v(t̄(v), ā(v)) are

free 2-dimensional modules, f(t) = f(a) = f(g(a)), and 〈g(a), a〉 = 〈t, a〉, by Theo-

rem 1.20 there exists x ∈ GOv such that x(t) = g(a) and x(a) = a. Similarly since
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span`v(t̄(v), b̄(v)) and span`v(ā(v), b̄(v)) are free 2-dimensional modules and 〈t, b〉 = 〈a, b〉

there exists y ∈ GOv such that y(t) = a and y(b) = b. Let z = (xy)−1g. Then

(x, y, z) ∈ φ−1(g, t)Ov so φ−1(g, t)Ov is nonempty for all v ∈ V K \ (S ∪ V0) and by

condition 2), φ−1(g, t)Ov is nonempty for all v ∈ V K \ S. Thus by condition 1) and

Lemma 3.4 φ−1(g, t)OS
is not empty.

Lemma 3.6. Given g ∈ GOS
∩U there exists δ ∈ ∆∆ such that span`v(ā(v), δg(a)

(v)
)

is a 2-dimensional free module for all v ∈ V K \ (S ∪ V0).

Proof. Choose an open subgroup Ω ⊆ GV0 such that ΩU = U . We first verify that

such an Ω exists. Notice that the multiplication map µ : GV0 × GV0 → GV0 is

continuous, implying µ−1(U) is open. For any x ∈ U , the element (1, x) is in µ−1(U)

so there exists a basic open set Tx × Ux ⊂ µ−1(U) such that Tx contains 1 and Ux

contains x. The Ux’s form an open cover for U . By construction U is compact so

there exists x1, . . . , xm with Ux1 ∪ · · · ∪ Uxm = U . Let T := ∩i=1Txi . We can see that

TU = U since T contains 1 and thus U ⊆ TU , and we also have that TxiUxi ⊆ U .

Thus an appropriate open subgroup Ω ⊆ T exists.

Let

∆Ω = (G(a)OS
∩ Ω)(G(b)OS

∩ Ω)(G(a)OS
∩ Ω).

By the Borel Density Theorem (Theorem 4.33 in [17]) G(a)OS
∩ Ω and G(b)OS

∩ Ω

are Zariski-dense in G(a) and G(b) respectively, and thus by Lemma 3.1 ∆Ω is dense

in G. Let

(x)m = 〈x, em〉 / 〈em, em〉 .

The set of all g′ ∈ G with the property that (g′g(a))n−1 6= 0 is Zariski-open and

nonempty. Therefore there is a δ1 ∈ ∆Ω such that β := (δ1g(a))n−1 6= 0. If β̄(v)

is invertible, then clearly ā(v) and δg(a)
(v)

are linearly independent and generate a

2-dimension free `v-module. Let

V1 = (V K \ (S ∪ V0)) ∩ V (βτ(β)).
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For each v ∈ V1 the setWv ⊂ G(b)Ov such that for every hv ∈ Wv, span`v(hvδ1g(a)
(v)
, ā(v))

is a 2-dimensional free module is open. The subgroup G(b) has strong approximation

so there exists

δ2 ∈ G(b)OS
∩
∏
v∈V1

Wv × Ω.

Then for all v ∈ V K \(S∪V0), we have that span`v(δ2δ1g(a)
(v)
, ā(v)) is a 2-dimensional

free `v-module. Taking δ = δ1δ2 proves the lemma.

Lemma 3.7. Let g ∈ GOS
∩ U . There exists t ∈ YOS

such that (g, t) ∈ ZOS
,

satisfies conditions 1 and 2 of Lemma 3.5, and in addition both span`v(ā(v), t̄(v)) and

span`v(b̄(v), t̄(v)) are 2-dimensional free modules.

Proof. Let t′ = (g(a))na and

r =
f(a)2 − 〈g(a), a〉 τ(〈g(a), a〉)

f(a)
= f(a)− f(t′).

Since g ∈ U , 〈g(a), a〉 6= λf(a) with λλ̄ = 1, thus we have that r 6= 0.

Let

C = {(x1, . . . , xn−2, 0, 0) | f(x1, . . . , xn−2, 0, 0) = r}

and

V2 = (V K \ (S ∪ V0)) ∩ V (r).

Since g ∈ U for all v ∈ V0 there exists xv, zv ∈ G(a)Ov , yv ∈ G(b)Ov such that
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g = xvyvzv. Let sv := yv(a)− t′. Computing f(sv) we get:

f(sv) = 〈yv(a)− t′, yv(a)− t′〉

= 〈yv(a), yv(a)〉 − 〈yv(a), t′〉 − 〈t′, yv(a)〉+ 〈t′, t′〉

= 〈a, a〉 − 〈yv(a), (g(a))na〉 − 〈(g(a))na, yv(a)〉+ 〈(g(a))na, (g(a))n, a〉

= f(a)− τ((g(a))n 〈g(a), a〉 − (g(a))n 〈a, g(a)〉+ (g(a))nτ((g(a))n)f(a)

= f(a)− (g(a))nτ((g(a))n)f(a)

= f(a)− 〈a, g(a)〉 〈g(a), a〉 1

f(a)

=
f(a)2 − 〈g(a), a〉 τ(〈g(a), a〉)

f(a)

= r

Since (sv)n = (yv(a))n − (t′)n = 0 and (sv)n−1 = 0, sv ∈ COv .

For each v ∈ V0 define Rv := G(a, b)Ovsv. By Corollary 2 of Proposition 3.3 in

[17] we have that Rv is open in COv . For each v ∈ V2 define

Rv := {s ∈ COv | (s)1 ∈ (OL⊗Kv Ov)∗}.

This set is also open, and it contains (1, r
2
, 0, . . . , 0) so it is nonempty. The variety

C has strong approximation with respect to S by Corollary 1.45 so there exists t′′ ∈

COS
∩
∏

v∈V0∪V2 Rv. Set t := t′′ + t′, then

f(t) = f(t′′) + f(t′) + 〈t′′, t′〉+ 〈t′, t′′〉 = f(a),

and therefore t is in YOS
. Computing, we see that

〈t, a〉 = 〈t′, a〉 = 〈g(a), a〉

and

〈t, b〉 = 〈t′, b〉 = 0,
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so (g, t) ∈ ZOS
. By construction span`v(a, t) = span`v(a, t′′) which is 2-dimensional

and nondegenerate.

For each v ∈ V0, t′′ = hvsv with hv ∈ G(a, b)Ov . Then

hvyv = hv(t
′ + sv) = t′ + t′′ = t

implying that (xvh
−1
v , hvyv, zv) ∈ φ−1(g, t)Ov . For all v /∈ S ∪ V0, we have t̄(v) 6= 0.

Therefore span`v(ā(v), t̄(v)) and span`v(b̄(v), t̄(v)) are 2-dimensional free modules for all

v ∈ V K \ (S ∪ V0) as desired.

3.2 Base Case

Theorem 3.8. Let G = SU4,F where F =


r 0 0 0

0 −r 0 0

0 0 −s 0

0 0 0 s


and

r, s ∈ OS nonzero. Let V = K6 with quadratic form q = dx2
1−x2

2− dx2
3 +x2

4− rsx2
5 +

rsdx2
6, H = Spin(V ). Then HK

∼= GK.

Proof. We begin by demonstrating an explicit isomorphism φ : Cl0(V )→M4(L) and

showing that the involution on the Clifford algebra induces an involution on M4(L)

taking X → F−1X∗F . Given such an isomorphism, the image of its restriction to

Cl+(V ) ∩ Cl0(V ) is U4,F (L). Let φ′ = φ|U4,F
. This map extends to an isomorphism

U4,F (K̄)→ (Cl+(V ) ∩ Cl0(V ))K̄ .

By Theorem 1.37 the commutator subgroup of (Cl+(V )∩Cl0(V ))K̄ contains Spin(V )K̄ .

By Proposition 1.27 the commutator subgroup of U4,F is SU4,F . Therefore Spin(V )K̄

is contained in the image of φ′(GK̄). As varieties dim Spin(V ) = dimSU4,f = 15 (see

[18]) so we have Spin(V )K = φ′(SU4,F (L)).
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It remains to show that there exists an appropriate isomorphism Cl0(V )→M4(L).

We do this by composing a few isomorphisms. Define V ′ as the vector space V with

quadratic form given by

q = dx2
1 − x2

2 −
1

d
x2

3 + x2
4 −

r

s
x2

5 +
s

r
dx2

6.

Then there is an isomorphism Cl0(V )→ Cl0(V ′). By Theorem 1.36 we have that

Cl0(V ′) ∼= D1⊗K D2⊗KA

where D1 =

(
1, d

K

)
, D2 =

(
1,− r

s

K

)
and

A = K[t]/
〈
t2 − d

〉 ∼= K[
√
d] = L.

The induced involution, τ1, on D1 is the standard quaternion involution, the induced

involution, τ2, on D2 is the involution given in Example 1.32, and the induced invo-

lution, τ3, on A takes t to −t.

By Lemma 1.11 there exists an isomorphism φ2 : D2 →M2(K) with

φ2(τ2(φ−1
2 (X))) =

−1
r

0

0 1
s

X t

−r 0

0 s

 .
Similarly, we construct an isomorphism D1⊗L → M2(L). Let 1, i, j, k be the

standard basis for D1. We can see that the elements i′ := i⊗
√
d, j′ := 1

d
j ⊗
√
d and

1⊗
√
d generate D1⊗L, and the subalgebra generated by i′ and j′ is isomorphic to the

quaternion algebra D′1 =

(
d2,−1

K

)
, therefore we have an isomoprhism φ′1 : D1⊗L ∼=

D′1⊗L, and

φ′1 ◦ (τ1 ⊗ τ3) ◦ (φ′1)−1 = τ ′2 ⊗ τ3

where τ ′2 is the involution given in Example 1.32. By Lemma 1.11 there exists an

isomorphism φ1 : D′1 →M2(K) with

φ1(τ ′2(φ−1
1 (X))) =

−1 0

0 1

X t

−1 0

0 1

 .
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Combining these maps we can we that there is a map Cl0(V )→M2(L)⊗M2(K),

which is isomorphic to M4(L). Following the maps we see that the induced involution

is given by F−1X∗F . So by the previous argument there exists an isomorphism

φ : Spin(V )→ U4,F (L).

We can now prove

Theorem 3.9 (Main Theorem 2). Let 〈·, ·〉 be a nondegenerate sesquilinear form on

Ln, let F be the associated matrix, and let G = SUn,F . Fix S ⊂ V K finite such that

V K
∞ ⊂ S. If f has Witt index at least 2 then GOS

has bounded generation.

Proof. If G(a)OS
and G(b)OS

have bounded generation then ∆∆∆ will have bounded

generation. Since G has Witt index 2, there exists an open U such that GOS
∩ U ⊂

∆∆∆ ⊂ GOS
, implying that ∆∆∆ has finite index in GOS

. Therefore GOS
has

bounded generation by Proposition 1.1. If n > 4 we can always choose a, b such that

the sesquilinear forms associated to G(a) and G(b) have Witt index at least 2. If

n = 4 then having Witt index 2 implies that there exists a change of basis such that

F is of the form given in Theorem 3.8. Therefore the problem reduces to showing

GOS
has bounded generation in that case. By Theorem 3.8 and Corollary 1.3, GOS

has bounded generation if and only if Spin(V )OS
does, but q has Witt index 2 so by

Theorem 1.38 Spin(V )OS
has bounded generation.
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