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INTRODUCTION.

According to Prof. Sophus Lie, the ¢ theory of Differential Equa-
tions is the most important branch of modern mathematics.” During
the last century, this branch of mathematical science has been devel-
oped in a number of different directions, one of the most important
of which is that based on the theory of transformation groups. As
is well known, this whole method was originated by Lie in 1869-T0,
when he showed that most of the older theories of integration owe
their origin to a common source and at the same time introduced
new theories of integration, based on the theory of groups.

In order to apply Lie's method to the problem of integration, it is
necessary to know what group, if any, a given differential equation
admits of. In his “ Vorlesungen iiber Differentialgleichungen mit
Bekannten Infinitesimalen Transformationen” and various other
publications, particularly in Vol. XXXII of the Mathematische
Annalen, Lie established in complete detail all differential invariants
of every group in two variables, and showed how to reduce as far as
possible the problem of integrating the differential equations invar.
iant under such groups. It would seem most desirable to do the
same thing, as far as possible, for groups in «, y, 2. This great
problem has been solved only for a few special cases: by Lie, for
example, for the group of Euclidean movements and a few other
special groups (see “ Continuierliche Gruppen,” Kap. 22); by Tresse
for the G, of conform transformations (see Comptes Rendus, 1892,
Tom. 114); by Dr. G. Noth in a Leipzig. thesis on the differential
invariants of a certain @, One object of the present paper is to
begin the solution of this general problem in a systematic manner, by
establishing the desired results for all G,’s in x, y, 2

The problem before us divides itself naturally into three parts :

L. The establishment of the normal forms of the @, (» < 5) in 2-

variables,

II. The esté.bhshment of the differential invariants of the G,s in

®, ¥, 2: (1) when y and 2 are each functions of »; (ii) whenz is a
function of « and y.

II1. Applications of, and remarks on, the results obtained.
. 8
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CHAPTER 1.

Tae NorMAL Forms oF THE @.(r<5).

In Vol. III of the * Theorie der Transformationsgruppen ” by Lie
and Engel, two methods of establishing these groups in x, ¥, » are
indicated ; but the groups of this class — namely, those imprimitive
ones which leave invariant one curve family

¢(x,y,2)=const. and ¥ (x, y, 2) = const.,

and at the same time at least one surface family

Q2 (¢, {r) = const.

— are exceedingly numerous, and, so far as the present writer
is able to discover, have never been established and tabulated,
as was done for the other classes. We shall make direct use of
neither of the methods given by Lie in the reference mentioned
above, but shall follow other methods frequently used by him in
other connections for establishing the normal forms of groups. It is
believed that the G.,’s, given on pp: 6-7, and the tables of G.’s, G.’s,
given on pp. 15-16 and pp. 29-85 of this paper.are acourate and
exhaustive so that they can be confidently referred to by any one
desiring to use these groups, ‘

§ 1. Normal Forms of the G,'s of Space.

In his ¢ Theorie der 3eriihrungstransformationen," Lie established
in all essentials the normal forms of the G/sinx,y,z. In deduc-
ing the G.’s of n-dimensional space, we shall follow the method used
by him in the above mentioned case, and at the same time show that
the four types obtained by Lie are exhaustive also for n-dimensional

space. 'We shall use , to represent 3f/om, .
1t ‘

‘U;:fEEEk,l(wl"'W ,) P (k=1,2)

are two representative transformations of the group, it is well known
4




THE @, (1 <5) OF n-DIMENSIONAL SPACE. )

that they can be assumed to satisfy one of the structures (Zusam-
mensetzungen)

(U0)=9, (U,0;,)=T1,.
O=0, U,f=0

will in each case define a complete system of at most two members in
the n-variables ,, -+, @,. Hence this complete system will have at
least n — 2 common solutions, which are independent functions of
the variables o, «--, .. If (e, ooy @), < o5 Y (s o0y )
are the solutions of the complete system, we may without loss of gen-
erality assume the v, to be independent functions with regard to the
n — 2 variables a,, - -, o, ; hence we may introduce as a new system

Hence

of independent variables the @, defined by

&, =, :?72 =, ®=1Y,(0, w”) (8==8,--+,n).
In these new variables, we have
ﬁ;,f': gk,l(ﬁn A | E")z—), + Ek,z(ﬁu B | En)'ﬁz (k=1,2),

where the &, .., &, play the role of constants. One of these trans-
formations U, f'(say) can, by the introduction of new variables

Pl

El = 961(5-’1’ e "’E’n)” §z=¢z(5’v Tty ‘En)’ '§s=5a’ cTty En':En’.

always be thrown into the form of a translation 7,, or let us say

simply p,. Suppose that by the introduction of the new variables
the other transformation becomes

U;f= Ex(wl’ tt wn)pl + Ez(wl’ M wn)pz'

Now there are two cases according as the two transformations have
the same path-curves or not. 'We consider these in order.
I. When the path-curves are the same,

,sz=P(wu ey %) Py
(i)y (U,G,)=0: .. (Pn P2y 20y "%)2’1) = p,pl=0,

‘Hence p is free of @,. Also p cannot be a constant, since then there

would be only one transformation, As p must contain at least one




6 WILLIAM B, STONE.

of the variables w,, ..., x_, suppose that it contains @,. Then we
may introduce p as a new @,y 80 that

U,f=%p, (5>1).
Hence for this case we have the group

Dy P, (i>1) |,

() (U O =T . (pyp(2s ey m,)p,) = poyp,=p,e
Hencepswl+a(w2, s ).

Putting %, =, + a(w,, +++, ), we have TTZf= %, p,, while
U,f=p,. Hence for this case we have the group

Dy 2Py,

II. 'When the path-curves of the transformations are different,
Uof & p(as s m,) U, f.
For this caéq ,Ulfy‘EPu U f = (o, ym)p+E(2, -y @) p,e
() (O0)Z0: i (py bipu+ bupa) = £ py+ by, py = 0,
Hence £, and £, are free of ,, so that

U;f._=_ a(@yy -y mn).pl + B(wz’ Tty wn)pz (B=+0).

Introducing as new variables

o dx,
m ——— m am— -——-2
T, =, fgdwz, %= g

ﬁ;f=ﬁ1’ ﬁzf:ﬁz'
Hence for this case, we obtain the group

we have

P Py,

(il) (GO)=1U: .. (Pis &p + Eep) = Ex,,lpx + Ez,lpz =DP1
Hence '

fwal'f‘a.(wz’ e 1), fzsﬁ(mz’i"’mﬂ) (A=0).
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Introducing as new variables
dg

Bo=w + (2, ), T=¢ F,
and choosing ¢ so as to make the arbitrary function in £ disappear,
we obtain

(71f=f’1' ﬁzf: %, P, + @, P,
Without changing the first transformation, the second can be thrown
into the symmetrical form :

U,f= ;w.'pe

by introducing @, = &,, #, = &,, ¥, = %,% (j=3,.--,n). Hence
for this case we obtain the group

y 20 Z D |
1i=1

As all possible cases have been considered these four types must
be exhaustive.

§ 2. Normal Forms of the G's of Space.

Lie has shown;that' the representative transformations U, f, U, f,
U, f,ofa G, in n variables can always be chosen so that the G, has
one of the structures (Zusammensetzungen) I, ..., V, below (see
“Theorie der Transformationsgruppen,” Dritter Abschnitt, Kap. 28).
Under each one of these structures we must consider the various
cases which arise when the transformations satisfy two independent
linear relations, one such relation, or no such relation. These will be -
taken up in order. '

I. Let the transformations satisfy the structiire

(LU) =T, (G,T)=2T, (U,T,)="U,

(1) Suppose there are two independent linear relations connecting
the transformations, and let them be

AU+ U+ pUy=0, o0 +0,U,+ "'aU‘s": 0,

- p, and o, being functions of ..+, 2, .

Solving these two equations for U, and U, we obtain

U, f=p(zy - 2)0f, U f=a(n, - 2,)0[ .
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Hence if we suppose, as can be done, that U, f* has been thrown mto
the form of a translation p,, we have

Uf=p(ysa)p, U fsc(r, - a)p,.
Since the path curves of U, and U, which form a G,, are the
same, we can, by the preceding section, put

U.f = =p,.
Substituting in the structure, we find.

(O0,) = (p,s op,) = 0,9, = 2“’12’1" or &G, = 2‘61

(0, U,) = (%, py) op,) = 2%} p, — ap, = ap,,
whence

oc=w} and U, f=aip,..
Hence for this case we have the group

2
Py ZyP1s TPy

(2) Suppose there is only one linear relation connecting the trans-
formations, namely

P1UI+PzUz+P30;;=0’

p, being functions of w,, .-, x,. Since the U,f do not occur sym-
metrically in the structure of the G, we shall further subdivide this
case according as :

® p=0,p,p,0; (ii) p,=0,p,p, 5 0;

‘(iii) Ps=0,pp%k0; (iv) py Py Py 0.

(6)) p=0, ppf0.
Then U, f = p(2,,+++,%,)U,f, while U f and U,f are not con-

nected by any linear relation, i. e.,
USfkc(ey,.2)0f.
It U, f = p,, we must have by the preceding section
U.f =p, + %,p,.

Hence by the structure, we obtain

(Pn p(w,p, + wzpz)) =(p+ @, Py )y + @y, P, = 2(0, P, + 2, 0,)
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| From this relation

P+ p, =2, wxp, =2,
i. e, p = 0, consequently there is no @, for this case. In the same
way it is shown that the subdivisions (ii) and (iii) above give no
groups.
Let us consider the last of these, i. e,

(iv) PPy Py 0.

For this case we may take U, f =p,, U,f = ®, p, + %, p,, since no
linear relation connects any two of the transformations. Also we
can take

U.f = pUpf + o U,f peasho,

~ p and o being functions of x,, .. -, w, . .

Thus we have ‘
Uf = (p+ @0)p, + L300

{ Substituting in the structure

( Py (p+z,0)p, +x2‘72’2) =(py+a,0.,+9)p, +,0, p, = 2(, p,+ %, p,),
(wxpx + 2,0, (p +~w1">1’; + =, "'Pz) = 2“’1(‘”1?1 + x,p,)
+ 2 {(p, + 2, 0., )P, + (wz"'za +o)p,}—(p+ z,0)p—2,0p,

‘ ’ =(p+u,0)p, + L, 0P,
Equating coefficients in these two relations, we have
Pry + %0, + 0 =22, 2x %, + x}0,, = 2,0,
2%} + @,p., + 72,0, = 2p + 220, . xog =2,

From these relations we obtain immediately
=20+ 2, N, p=—al —xw\ + 2y,
A and u being functions of ,, ..., w,.
Hence
Uf = (o} + 2ju)p, + (22,2, + 2 N) p,.

Introducing as new x,, %, =, + ®,p(2g,++,2,),and choosing ¢ so
that ¢* — A — p = 0, we obtain
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U.f = 8P, + [ 28,2, + wE M (2 s @,)] Pas
Mgy vory @) = M(gy - 00y 0,) — 26 (g, -+ 1» 22, ).
. Now if A, = 0, then U, f = «} p, + 2w, 2,p,, and we have the @,

Dy TPy + Bypyy 21, + 22,2, p, |

If A\ & 0, put &, = x,\,, and we have the G,

DPis TPy + %, P, @ py + (200,20, 4 27) p, |

(8) Suppose there is no linear relation connecting the transforma-
tions. Then we may take

Uf=p, USf=ap +ap,

and as U,f=0 (i =1, 2, 8) form a complete system of three mem-
bers in n-variables, we may assume the variables so chosen that U, f
has the form

Uf=E(®,-s)p + E(w, o 2,)p, + E(x, “eey %, ) Py-
Substituting in the structure

(U;Us) =(pp o+ Ep, + &p,) = Elz‘f’x + Ez,lpz + Esxlpg

e =2(2,p, + 2,p,)-
Whence . » 1)
E=ulta(z, He,), &=20x+8(x, - x,),

- b= (e m,) (r0).
So that : v -

U f= (%] + a)p, + (2w, + B) p, + 7+ ps-
Next we have ' .
(0, U,) = w,(22,p, + 2w, p,) + 2, { 2, p, + (22, + B,,) p, +~'7'ng3}

— (2} + a) p,—(2,20,+ B)P'z:(w'i! +a)p+ (2w1w2+ B) p,+ Py
From this relation
20? + ;- a,, = 22} 4 2a,

2w, @, + 2“’1?’: + @, 8, = 4x 0, + 28,

wz'YIg =A'Y’
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.50 that

a=aiN(%, oy 2), B= W3 (Byy e o0y 1), ¥ = L,V (%gy v 0y ),
and 7
U.f = (o} + @A) p, + (20,2, + a2 p) p, + wyop,  (vepo).

Introduce %, = [ dw,/v and denote the new arbitrary functions in the
coefficients of p,, p,, by \,, u,, respectively. Then

ﬁst (2} + wi M) p, + (2,2, + w3 1, ) p, + %, Dy
Introduce again
Ty =0, + @, P (g -4y ),

and choose ¢ to satisfy

: Mtup—¢'+¢,=0.
‘. Then

U,f = @ p + [25,2, + w30 (Rgy ++0s ,) ]2, + %, 4,
where, for brevity, we substitute

. ~ -'&P‘(wss sy ®,) = gy — 24,
Now introduce

Ty = z‘l"(ws’ BRRE) wn)’ @3=f1]'dw3’

in which 4 must be different from zero. Leaving off the bars, we
have finally

U.f = «}p, + 22,2,p, + 2, p
and thus the G, : mh ak 2w

DPys B Py + 2, pyy P, + 2w, 7, p, + @,y |

IL. Let the three transformations satisfy the structure
(TT) =0, (G,0)="0, (GT,) =0,

(1) If two linear independent relations exist among the transfor-
mations, then as.in the preceding case we have

Uf=p(2y oy 2)p, Uf=o(n, -, @) Prs
if, as usual, we assume that U, f = p,.
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Since the path curves for U, £ and U,‘, J are the same, we must by
the preceding section take

UZf=wkpl (k>1),
Substituting in the structure
(Pn UP:) =00 Epul (%Pu ”Pl) = Ly P1 = C, Py
Hence for this case to exist ¢ = 1 and
o=+ a(x,, e, @),

Introducing &, = «, + a, we have U,f=wp,. Hencethe @,

Dy TPy X Py (x>1) |,

(2) If one linear relation exists, we have four cases as under I,
page 8.

(i) . P1=0’ Pz'Ps+09
so that _; '

Ouf=p(@s s 2) Uy Upf ok ooy s 2,) U, f.
Hence for (U, U,) = 0, we must by the preceding section have
Uf=p, UJf=p, Uf=pp,

Evidently this case gives a contradiction under the above structure,
80 that there is no @, for it.

(ii) p.=0, PP 0.
In this case
Uy f=p(z, -y 2,) 0, f, U fk (e -y 2,)U, f.
Hence by the preceding section we must take
Gfspn Uf=p, US=p(m,- - ,)p,.

Applying the structure we see that this case holds only when ¢ = 0.
Then p,, =1,p,=0. Whence p = », + a(ay, «++y 2,). Putting
% =&, + a, we have U, f'= &, p, and thys the @, '

, Dys Poy % Py
(liii) , ps=0, p-p, 0.
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Hence U, f'= p(%,, -+, 2,)U, f, and by the preceding section, we

have '
U,.f=p,, U,f==,p,.

It remains to determine U, f, for which there will be two cases and
which according to hypothesis is not linearly connected with U, f and
U,f. Now U, f=0 (i=1, 2, 8) form a complete ‘system, of
which, since two of the equations are independent, there are n — 2
independent solutions. Now we make two cases according as £, in

U,f= Z £,
(@) is not zero; or (B) is zero. .
(a) .Ez(wl, try m") * 0.
* %, and @, are not solutions of the complete system and can therefore be
introduced as new variables. Introducing also &, =Y, (v, - -+, @,),

(J=8,:-yn) where the 4, are the n — 2 mdependent solutions, we
have o

Uf El(a’l’ ""E'n)px'*'Ez(‘T’u ""i’n)ﬁz'
Leaving off the bars and applying the structure, we have immedi-
ately & =, + a2,y -y 2,), = (1~ ¢)a,. Introducing again
®, =, + ¢(x,, --+, 2, ) and choosing ¢ so that

a—¢+(1—c)w, ¢, =0,
we geb

Of=8p+(1~c)zp, (1)
Thus we have the group

Py B0y 2Py + (1 — ¢)a,p,
() E (2 oo 2,)=0.

In this case z, will be a solutlon of the system, but at least one of

the variables, x, (say), will not be a solution. We can mtroduee as
new variables &%, = @, , &, = », and the n — 2 solutions

%, = o,, wj?"”j(wu vy L) (=4, n),

ﬁst E—l(ﬁl’ tty En).l—’x + E—a(ﬁv ooy ) Py

Then
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Leaving off the bars, and applying the structure we find
?vl =0 Ty o0y, )y Byg=L(%y ery ).
Introducing again
By b 2y Bym [,
and determining ¢ from a — ¢ + B+ ¢,, = 0, we have

U,f=2p, +ps.
Thus we get the G, ’ e

pl’ mzpl’ mlz)l +]’3 .
(iv) PPy Ps £ 0.
By § 1, we must have in this case,
U,f=p» U f=p,
(]nfE P(wl’ Tt mn)[’l + a(wl’ R wn)l’z'
The structiire gives :

(215 PPy + 0P3) = oy Py + T2 Py =Py
(22 PP1 + OP;) = Py Py + 0 Py = Pos

Then

whence
p=oy+ a(wyg, oy 2,), c=cr,+ B(xyy o0y 7,).
If ¢ 4= 0, we can put
B

ml=w1+a’w2=mz+zv'-

Then U, f = =, p, + cx, p, and we have the @,

Dys Poy @ Py + €2y Py (ed0) 1,

If ¢ =0, put 3, = B(«,, -+, %,) and we have the G,

P> Doy TPy + 25, |,

(8) Finally let us suppose that no linear relation exists among the
transformations. Then by § 1, we must have

Uf=p, Uf=p,.
Now, since U, f= 0 form a complete system of three independent
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equations, there are n — 8 common solutions Y (,, -+, @,),

ceey
P (2, 000y 2,), (s8Y).

Introducing as new variables

Bi=ay, B=z, L=, T=V9,(7, ®,) (j=4,n),

we have [—]S‘fEEI(E"l’ Tt 52")]'5,+Ez(53,, Tt 573,.)1_’:-*-53(@“ ve ey &, )Py
By the structure '

(o EptEp,tEp) = glxl.pl + Ezzll’z + Eazlps'—'f’n
(o bip+ Ep,+Ep) = ‘51,,1’1 + 52,,,1’2 + Es,,ps = CpPy,
whence

E=wta(zy o 2,), E=ctt By - ym,)y &=y 1w,)

1 By hypothesis ¢ cannot be zero. Introducing

B=y 4 ¢, oy 2,)y D=2, 4P (T o0y ®,), By= R

and choosing ¢ and 4 so as to make the functions in £, and £, disap-
pear, we have ~

U,f =@, p, + 6% p, + Py
and thus the group

Py Py Py + cmzpé + P

The treatment for the remaining structures’is quite similar to the
preceding ; we shall therefore not give the calculations in detail, but
shall, in concluding this section, give the results in a complete table
of all G;’s classified according to the various structures.

L (UU)=U, (G,0)=20, (T,U,)=U,

DPus TP 2P | Pys B Py F Py ¥ Py + 20,2, P, + 2, Py

P> %Py + %, Py @ Py + 20,7, p,

Pry @ Py + %, 0,y ¥ P, + (22,2, + x3)p,
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L (G0)=0, (TT)="T, (GU)=oT,
Py TPy T Py Pis Par Uy Dy Dys %Py mlpl-i-(:.l—C)wzp,

Py 2 P1s ‘”}Pl"*'l’a D1y Py @ pi+cx, p, P Py Ty P+ py

Py Pyy P+ e, p, + Py
oL (G,0)=0, (GU)= T, (G,0)="U;+ U,

Py Py By Py — P, Py Pas (2, + @,)p, + %, p,

DPry Pos (%, 4 %,) py + @, p, + Py
V. (GO)=0, (G,0)=0, (GT)= 7T,

Py Pay %Py | - | Prs Pos TP %P, (5>2) DPys Pgs Xy P1+py
v. . (GU0)=0, (L,U)=90, (U,0,)=0.

| rpl, Poy Ps | | Pus Pos @spy + F(@ys -3 %,)p,

Py %Py F(@yy s )py | | Pos Pos %0y, (3>2)

§ 8. Normal Forms of the G''s of Space.

It is known (see Lie’s “ Theorie der Transformationsgruppen,” Drit-
ter Abschnitt, Kap. 28) that the G,’s of n-dimensional space satisfy one
of the structures I, ..., XII below. In each case, the G, contains a
sub- @, for which we can assume one of the normal forms established
in the preceding section. In the following the fourth transformation
of the G, is determined from the fact that it must either be connected
linearly with the transformations of the sub-@,, or not so connected.

1. Suppose the transformations of the @, satisfy the structure

(G.0,)=0, (U U,)=20, (G,U)=0U, (UU,)=0

’ (i=1,2,3). |
For the sub-@, U,, U,, U, of this structure, we have found in the |
preceding section the following cases : '

) D1y % Py mfpl




(i) Prs @ Py + %, Py @1 Py + 22,2, p,
. (iif) Py @, Py + %, pyy %Py + (20,7, 4 23) p,
(iv) DPry B Py + %, Py % Py + 20,9, P, + 2, |

‘Putting
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Further, we have for each of these cases the subdivisions

M) Uf=XelUf o @) UfkXeld,

the p; being functions of «,, ..+, 2,. We shall proceed to consider
the cases and sub-cases for this structure in order.

(i) Uf=p, Uf=wp, Uf=dxip.
(1) For this égsp ‘

ﬁ:fé‘;_lp,- Uf=E(2y,y2)p,.

The structure shows that £ = 0, hence there is no G@,.

() Ok Ta U= S b, )

U./=0(k=1,...,4) form a complete system of two members ;
hence there will be » — 2 solutions independent of each other and of |
x,. Since U,f is not connected linearly with U, f, ..., U,f,at
least one other variable, x, (say), is not a solution. Suppose the

common solutions are Yy (2, <+ %,)y = ++y Y, (2}, -++y 2,). We
introduce as new variables

. 5’1=w17. ﬁ,:wz, Ej=_‘kj(wn“"w,.) (j=3, 4y n),
and obtain.

ﬁ;f=ﬁ1’ ﬁzf=':'_’1i’1’ I—jsf=5’?f’i’ ﬁhf': Exi’x +-Ez?7v
E and £, being functions of z,, ..., %, . Leaving off the bars and
applying the structure we find :

ElEo’ 52513(%,-“,10”)*0.
d,

m= | g
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we have U, f = p,, and thus the G,

Py @ Pyy %Py Py
(i) O, f=p» U f=wp +p, USf=2aip + 202p,

(1) Uuf= ZpTf = b 2Pt bl )0
By the structure

(G,U) =&, p+E:0,=0,

(O, U,)=(8, 0+ &, 1) 0 — &P =0,

(U, U,) = 2w, (€, p, + &,p,) — 2§, (2, p, + 2, p,) — 22,E,p, = 0.
‘Whenece

¥ ,,51= 0, &=u,B(2y  s2)+0."
Putting &, =B8(w,, ++ -, %,) =& const., we have the @,

Pry B Py + 2Py 5Py + 20,2, 0,0 ®,2,P, |,
If 8 = const., the G, has the form

Dy TPy + 0,25 @ Py + 23,7, 0y P, |

3
(2) AED N A
As under (i), we can introduce new variables so that

UJS=E(my o) p + &y vy 2,)py + E(0yy o005 2,) pye
By the structure

=0, E=a,8(2 i), E=v(wy, ) F 0.
Introducing o
: - _ d
&, = 2, (@5 _""mn)’ Ty = 7%"

and choosing ¢ so that 8¢ + y¢,, = 0, we have

'ﬁ4f=1—’3'

‘Thus for this case we get the group

Drs Py + 2,0y %Py + 22,0, pyy ps .
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() Of=py Of=ap+ap, Uf=ulp+(22,+)p,
(1) Ouf = X 00 = e )+ (s -3
The structure gives the conditions
(GO) =&, p+ &, p,=0,
(G.U,) =y (b, 0+ &, 1) — Ep — E,p,=0,

(G U,) = (20, + ) (&p +Ep,) — 2, (2, p, + 2, p,)
— 22, &, p,— 2u0,8,p,= 0.

‘|  From the third relation & =& = 0; hence there is no @, for this

case,

() U % LRS-

As before, we can introduce new variables so that

Uf= El(wl’/:i","= %), + A CEEER x,)p,+ E(), 0oy ,) Py
Hence by the structure,
GU,)= Slzlpl + ‘Ez,,Pz + ES;,PS =0,
(0.0)= wZ(Elzﬁpl + Ezzﬂpz + Es,,_,ps) —&p —&p, =0, _
(G0)= (2“’1"'“2)(61 pl+£2p2)-2el( €, p1+mzpz)—2(wl+wz)fzpz=o .
From these relations ‘ ‘
E;"——Ez:o) EsE 'Y(%,a‘") w,.)* 0.

Introducing

- dx,

3 ™

”
we have U, f = p,.

Hence we find the @,:

P P, + 2,0, TP + (2,2, 4 @} )Pas Pyl
(iv) U f=p,, U,f=wp, +u,p,, U f= @} p, + 22,2, p, + Ty P3e

(1) Uf= LRl = Tk 8)p,
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The structure gives the conditions

(G,U) =k, p,+&, p+ & p,=0,

(GU) =, p+ &, P+ &, p)—Ep —Ep, =0,
(O,0) =20,(§p, + &0,) + 2, (€0, + &, Py + &, 1y)

‘Whence — 26, (00, + %,p,) — E,(20,p, + p,) = 0 .

E=aa(z,: -, 2,)s & =2mwa(e, - m,)+ @B (@y ey 2,),
E=aofa(m, )+ 2,82, z,)+ V(@ @),
so that

Uth x ap, + (2‘”2“’3“ + B)pz + (w:a + %B + 'y)p\‘l'
(@ a(sy 00y m,) % 0.

Introduce
Ty =y (yy vy @,)y By=wya(,, -0, x,).
Then (omitting the bars)

B .
UcfE T,p + 2“’2(“’3 + ﬁ)pz + (m§ +u,8 + a'Y)ps'
Introduce again

B B

T'vs=w3+—2~, §4=a'7-"—4—+c°n8t‘
Hence

Dy 2y py 2, P,y mfp1+2m1mzpz+wzps’ w2p1+2w2w,p2+(m§+w4)pa .

If ay — 8%/4 = const., we have

Prs P+ 2,0, xfp, + 2”1”22’2'*"”21’3’ w2p1+2w2w3p2+w§p3 .

() .a(w‘,---,'wn)éo, B,y )k 0.
Introduce .
T, =0, 533—_~wsﬁ+ry, &, = BB %= const.

Then

O.f = &3,p, + 5,8,
and we get the @, ¢ 204 Py T C3®y Py

Doy %P+ %, p,s 2P, + 2, 7,p, + T, Pg0 B (2,0, + 24, ) |
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IfB= const.‘we have:

Py Py + wzpz.’ i”fpx + 22, 2,0, -+ 2,5y 2,0, + %3Py |

(¢) If Bis also zero, y &= 0. Then introduce ¥, =, /v, %; = z,/[v,
and we have the @,

Prs %Py + T, Dy TPy + 22,2, D, + 2,04y Py

(2 U 2 p U

- As before, we can introduce new variables so that

Uf= gf‘(%, ey @, )P

By the structure we get, as in the preceding case,

U.f=wap, +v2w2"(a’sa + g)l’z + (73 +.%B + 7) Py + Oy

a, B, 9,9 beingkf’uné{ionS of w,,:--,,. )
8 cannot be zero, so that we can assume that the coefficient of p, has
been made unity by the substitution

— dz,

w‘ = —8—'-
Then
B

" Now by assuming o = 0, which is certainly one value the arbitrary

function a may have, and by introducing as new variables

— [Bdz -
= € S '—ffye S de,,

U.f=p,

_ —f8d24 —
&, = w,€ ) g

we find

Thus we get the group

Prs %Py + T,y %P, + 22,%,p, + @,y P,

This group is simply transitive in the four variables x, ..., w,.
Hence by Lie’s ¢ Theorie der Transformationsgruppen” (Vol. I,
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page 340), all types under this structure and subdivision that arise

when a 3= 0 and 2 = 4 can be transformed into the above given form.

Moreover when n > 4, the variables «,, .- ., =, play the role of con-

stants. Hence all G’s belonging to this type— 1. e., which have

this structure and are simply transitive with regard to x,, ..., 2, —

can be transformed into the above G, by a proper choice of variables.
II. Let us consider next the groups satisfying the structure

(U.0,)=(UU,) =(L,U0)=(U,U,)=0,
(0)=0, (G,U)=0,.
For the sub-G, U,, U,, U,, we having the following cases:

(1) Py Doy T2y
(i) Pys %3Py — %,
@ Prs Pas @Dy + @,
(iv) 2’.1, Doy %P2+ s |

(1) We will consider first all the cases for which

3
Uf= ;Pi(wl’ e w)U f.
(i) For the case (i) above, :
) U;fE El(wl’ sy ®)P; + gz(ml.’ ceey @)Dy
By the structure, we find immediately
=2 4a(rg, o0 a,), &=0.
Putting &, = x, + a, we obtain the &,,

Prs P2y TPys TPy .

(ii) Likewise here
UJS=E(mym)p +E(, -y ©,) P,

The structure gives &, ==, + a(o, -+, »,), £, =w,. Hence putting
&, =, + a, we get the G, ’

\
1
i
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Py BPyy — TPy P+ 2,0,

(iii) The structure gives no new G, for this case.
(iv) For this case

3
UJS= glfi(mu s ) Py
By the structure we find
E=wx 4 a(m, yn,), E=ethCucam E=qg(x, ).

If a and B are not zero, they can be made to disappear by the new

&  variables

B =w+a, G=2,4+8, ®,=v(x, ,x,) 3 const.
_Thus we obtain the @,

D1y Pys CPy + Pas TP+ €p, 2,9, 1,

If = const., we have

a

Pis Das TPy +Dgs X P+ €°py+ Cpy

(2) We will consider next the cases for which
3 n
UJSf% EP.'U.'J“E EE‘(M“ ceny @) Py

(i) In this case U, f=0 (k=1, ..., 4) form a complete system
of 8 independent members; hence there will be 7 = 8 common solu-

tions, ¥, (@ ¢ 5 8, )y « -y ¥, (%4 + -5 @, ), independent of each other
and of 2,, ,, and at least one of the remaining variables, «, (say).
Then we can introduce as a new system of variables

Ty=0y, Ly=12, =2, ‘Ej=‘!’j(‘”1' vy @)y (=4, w00, m)
By these U, U,, U, remain unchanged, and
ff«fE Eli)l + Ezi’z + Esi’a’

£, being functions of the new variables &, ..+, @, From the struc-
ture we find immediately

U f=2,p + ps
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and thus we have.the @,

Pys Pgy @3 Pp X P, + Py

(i) As in the preceding case we have
3
UJf= EE.'(T’H “rry %, )Pis
and by the structure we find

U f=wp + 2,p,+ ps.
Hence the @, ‘ e

Pry B3P1s BPgy &Py + 0Py + Py |

(iif) For this case we have to make two subdivisions, according as
E,=0or g 40, :

(@) £, 4 0. Then w, is not a common solution of the complete
system, and we can introduce, as above,

B=wx, B=2, L=x, G=1, (j=4,-,n).

Then

_ 3
U4f5‘=21 E(ops ooy 2,) P00
and we obtain the G, '

Prs Pyy TP+ 23050 Ty Py + X5 Py |

(d) &=0. For this case x, isa common solution of the complete
system, and at least one of the other variables x,, .., x, is not a.so-
; lution (say, ;). Then we can introduce as a new system of variables

i1 ﬁl=wl, 53’=w2, E‘=w‘, Es=w3, ?i’j= 1P‘J (j=5' LY "),
[ the first three because they are not solutions, and the last » — 8 be-
cause they are independent common solutions, Thus we get
! ﬁAfE El(;:i’l’ o B,) P, + gz(.‘i’u o0y B,)P, + E-A(ﬁn ooy @) Py
O Applying the structure, we find

(GO)= 81,,?1 + &, 0.+ E‘zlp‘ =D
- (GU)= El,,Px + Ezz,pz + 54,,1’4. =0,

(G,0)) B - gzpz =0.
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Hence this case holds only when 2, = 0, which is impossible.
(iv) For this case

Tf = T h(@s s )

-The structure gives the conditions

4
0,0)= Efizlpi =P
4
(Uzl]A) = EE.',J’;= Oa
4 .
(G,0,)= Ef‘zap“— & p,=0.

E=a ta(n, Hw,), E=8(x, - x,)e,
E=v(my o 2,), E=8(m, )

£, can be made zero and £, can be made unity by the introduction of

new variables. Also if - we assume B =1, we get a @,, to which,

being simply transitive in four variables, all groups under this case

will be similar, as on page 22. Hence we obtain the G,

Pis Pas TPy + Pyy TP+ €0, + Py |
III. Suppose the four transformations satisfy the structure
(G.0,)=0, (U,G;)=0, (L,0,)=U,,
(CO) =cb,, (GU) =T, (UU)=(¢—1)T,, (e+1).
For the sub-@,, U,, U,, U,, we found in § 2 these cases:

@ DPiy Poy TPy |

(i) | | 21y P2y %Py + %P,

(i) B | P1s Pay TPy + s .
To these will be added _

(iv) Dy %Py — P,

which as a G, is the same as (i), but these two give rise to different

G "s. . -
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(1) As before we will consider first all the cases for which
3
Uf= ;l P UL
(i) For this case )
US=E(, )P+ E(y, ooy %,) Py
From the structure we find immedijately .
E =cx + a(mgy+evyn,), & =u,.

(@) If ¢ 4= 0, put &, = cx, + @, and we have the group

Dys Pys By €T Py X,

(6) If ¢ =0, put &, = «, and we have

DPrs Doy TPy TPy + 2,1,

(ii) Here also

US=§(2, @, )P + gz(wn cery @) Py
‘We find-from the structure that ¢ = 2 for this case to hold.
Then follows that

E =2 +a(xy, -2,), E=a,.
Putting %, = @, + a/2, we obtain the group

Pyy Pys %0y + %Py 20, p 4 ®yp, |,
(iii) For this case o ‘
U.f =&, cens @)+ E(y ey w) P, + E(mys ooy wq)ps':
Substituting in the structure, we find
E=cx 4 a(oy, o), E=(c—1)a,+ 9(m, ),

E=so+ o, =04 B(m, ).

a= xR 4 M(x, 000y 2,).
A and v can be made to disappear in the usual way.

Then introduce as new variables

By =+ By ey 2,) 0 By=m,+ By, 0y 1),
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Thus we obtain the group

Di> Do ©Py+ Pyy 0Py + @ppa+ (e —1)agp, |
(iv) For this case

US=E(2) o 2,)p + E(2ys o0y 2,) pye
By the structure we find immediately
E =cw, + a(mgy -0y m,), &= (c—1)ax,.

(2) ¢4 0. Introduce cx, =cw, + a(2,,+-+,2,). Then we have

; Py %Py — Py e py + (¢ —1)ayp, .

. (b)) ¢e=0. Put®, = a(wx -+, x,) % const. Thus

DPrs T3Py — Pos T3Py — TPy |

(¢) e=0,a= qgnét, . Then we have

—

DPrs ZyPys Pos Pr— %Py |

(2) We will next consider all the cases for which
3 n
UJf % ‘Z_:IP.'U.'fE g_lfa(wn . ",“’n)pa'
(1) For this .case we can introduce new variables so that
s v .
Ule ;E"(wl’ ttt wu)pa"

Applying the structure and reducing in the usual way, we obtain
the group

P1y Pgs @yPys €0, Py + TPy + Ps |,

(i) Here we have to make two cases according as
£=0 or £ 40,

(@) & 2= 0. Then since there are three independent members of
the complete system, obtained by writing U, f= 0, there will be
n — 3 common solutions, independent of x,, ®,, x,, and of each
other. Suppose these solutions are Y,y « ++y@,), -+ -y Y (2y + -+, 2,).
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Then we cail introduce as new variables

b=, =, =, G=Ny (@, y2,) (G=4,, 1),
and thus obtain

ﬁ;fs ﬁ(%l, ttty 5’7-)?1 + Ez(a’u t ‘T’n)ﬁz‘f' Es(‘in ttt ':"’n)ﬁs' ‘
Applying the structure we find

U.f= cxp, +,p, + (2 = € )5 Pys
and thus we have the @,

Prs Pys X3P, + 2y gy €y P, + 2, p, + (2—- c)mapa l'

(0) §,=0. In this case w, will be a solution, and there will be

only n — 4 others, ¥, (,, -+, @), -+, Yo (v, ooy 2,). At least
one of the remaining variables, @,(say ), must not be a solution for
this case to hold. Hence we can introduce as new variables

X, =, "a‘:,=:v2,‘- B=x, Ty=w, B=P (@) ooy @)  (§=5,++ n).
Then

ﬁnfE El(‘-vl’ Tty E;n)ﬁl + gz(‘;’n HR) 5»)I72 + 24(“-’1’ ttty “-’u)i’l'
From the structure we find, leaving off the bars,

=20 4 a(wy, -y m), b=w, Eso(ay, . @,) # 0.

This shows ¢ = 2 for this case.
Now introduce

- — dx
By =2 + $(wy, -+, ,), w4=f—,y“’
and choosing ¢ 50 as to make the arbitrary function in £, disappear,

we find

: Ufs2sz+wp+p.
Thus the @, ) T

Piy Pyy @,p + %5 p,, 200, p, + TP+ D, |

(iil) We can introduce new variables directly so that

U‘fﬁglﬁ«(w‘, Tty w;.)l’i‘
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From the structure, we find immediately
E=cm +a(my, - 2,), E=a+ B2y,

Ey=(e—1)my+ (w5 -5 2,) E; = 8wy ey m,) 0.
g, can be made unity by the substitution

— dx
w‘ = f——6~4,

and v can be made to vanish in the usual way. Now if « and 8,
-which are arbitrary, have the value zero, we obtain the group, which
- is simply transitive in four variables

Prs Pas %Py + Pgy €2,y + %, p, + (¢ — 1)23py + 1, |

To this group, being simply transitive, every group under this case,
when 2 = 4, must be similar, whatever be the forms of the functions
a and B, according to, Lie’s ¢ Theorie der Transformationsgruppen,”
(Vol. I, page 340).~ The' remaining variables w,, - .., «, play the
"role of constants in the arbitrary functions, and do not affect the
equations of transformations in four variables, that would transform
any type into the one above. Hence all @,’s belonging to this type
can be transformed into the above-given G,.

(iv) Finally for this case, we can introduce new variables so that

3
U.AfE‘:leiU;f'

Applying the structure and reducing in the usual way, we obtain the
group

Pyy 2Dy Py €% P+ (¢ — 1)@, p, + Py |

The treatment for the remaining structures is very similar to the
preceding ; we will therefore not give the calculations in full, but will
in concluding this section give the results in a complete table of all
G's, classified according to their structures. -

L (0,0) =0, (G.0)=20, (GU)=U, (G;U,)=0
' , (i, k, =1, 2, 3).
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Py TPy ®P, Py Py TP+ 2,0y @ P+ 22,2, Py 2,25,

Py B P+ 2,y wip + 2,2, Dy %, P,

P> Py + 0,0,y Py + 20,7,0,, Py

Pis 0y + %,y % Py + (22,2, + 2F) pyy Py

Pyy @ Py, 0, @ Pyt 20,0, Pyt Py 5 T, Py 22,2, Pyt (05 +2,) Py

Pis ¥, Py + @,y @1 p, + 20,2, P, + X, pyy X, Py + 22,25, + 25 Py

P> %Py + @, 0,5 @7 Py + 22,2, 0, + X, Py5 %,(2, P, + ¥ P;)

Pys @ p + T, Pps XLy + 20,3, 0, + Xy Pyy Ty Py + Xy Py

' Dy TP+ Xy, wip, + 2,2, p, + B, Py Py

Prs @ Py + TPy APy + 20,2, 0, + T, 050 P,
Il (U\0,)=(0,0,)=(U,0,)=(U,U,) =0, (U,U,)=T,,
(0,0,)=0,.

Py Pys TyPg5 B P DPis TpPys TPy TPyt TP,

DPrs Pas TPy + Py wl‘pl + éxal’z + 2, g

N Prs Pas TypPys TPyt Py

Pys Pgs TPy + Pgy @, P+ €2, + €y

DPys ®Pys TyPyy Py + X, Py + Py

Dy Pys B3Py + TPy By Py + Ty Py

Prs Py XDy + Pyy #, P+ €°P, + Py
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| 1L (O.0) = (0,5,)=0, (G,U)=0, (GU)=cl,,
| (GU)=U,, (GU)=(c—1)T, (c1).

Dy Dyy %P1y CR P+ Ty P,

Pis Pyy TPy TPy + %P,

Prs Dys TPy + 2P, 20 p, + wzi’z

P1s Pyr TPy +p3’ ¢, Py + C, Py + (c"" 1)933])3

Dry %Pys Py 2Py + (¢ —1)z,p,

Prs ZPyy Doy TPy — TPy (e=0).

Prs Pys @y €0 Py + 2,0, + Py

Dy Py wzpl'**‘ ”spz’ e, P+ 2P, + (2 — c)wspsl

Prs Por TPy + 3Py 200, Py + 2,0, + P,

DPys Poy 2Py + Py €2y Py +w2p2+(c—1)w,p, + 2,

Pyrs %Py Pos %, p; + (c—l)w2p2+p3

Dis TPy Poy Py — TPy ‘
IV. (U,0,)=(U,0,)=0, (U,0,)=0,, (U,U)=2U,
(U0 =T, (GUY=T,+ T,

Dyy Ty Prs Pas (2%, — ) p, + @, P,

P> Poy By + Py (22, + 393) P, + (2 + %) P, + (%5 + ) ps

Prs TPy Poyr (2w, —%mg)pl"'wzpz'i'psl

Prs Doy TPy + ®gDyy 22,0, + 2,0, — Py
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P> Py @py+ Dy (22,4 322) py + (@ + 3) p, + 23, + P,

V. (O,0,)=(0,0,)=0, (U,U)=U,, (U,U,)=U,
(G,0,)=0U,, (U,U,)=0.

Dys Doy Py TPyt Ty, DPrs CPyy Doy TPy

j)l’ Dy TPy + Pyy TPy + %Py + F (20,0005 2,)p, |

D1y Pos TPy Py + %P, + Py Pys @Pys Py TP+ Py

Dy Pas TPy + TPy Py + TPy + By Py

Drs Pas TP+ Py 4P+ TP, + Py |
VL (0,0)=U,, (U,U)=eU, (UJU,)=cU,

(G0,)=0 (i, k=1,2,3)
- Mpl, @, p,, F(2x,, ---,w")pll, @, p, (a=c=1)
Drs Pps 3Pyy TPy + O, P, (a=c¢)

Pis %3Pys Ppy @ Py + Xy Py (a=1)

Py P2y T3Py o+ F(“’a’ tty wn)pz’.wlpl + %, p,| (a=o=1)

Dy Pys Pyy Py + a%, Py + 0y Py

Prs %Py Fi(2g 000y ®,)pyy 2y + Fyp(yy 005 ,)p, | (a=1)

[P TePry TPy p1+(1—c)w3p, (a=1) .

Drs T3Py X3Pys pl‘+ (1 —=a)mp,+ (1 — )y p,

Pys %ypy AW 0p 0w p 4 (1 —a),p,

Pys Pay T3Py B P+ a2, P+ py| (a=c¢)

BT
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D1y Poy T3Pys Py + @, p,+ F(w)p,

D1y Prs Pos TPy + ey py + (1 —a)ayp,

D1y Pos @yPy+ @ Py @ P+ ax,p, + (1 — @)z, p,

P> Pys g+ Iy (2gy 1y ®,)pys @ P, + @, Pyt Iy (g5 o s 2, )y

(a=c=1)

Prs Pay Pyy %Py + A% p, + 003 Py + P,
VIL (TUy=eT, (GU)=(1+0)T, (GU)=0U,+c0,

(U,U,)=0 (¢, k, =1,2,;3).
Dyy Doy 2’51 (e, + 2g) py + (1 + ¢)mypy + exypy | (c0)

Pys Pay P w3p1+wzpz+F(w49""w")P3 (e=0)

Py X3Py TPy C Py — Xy Py — Py

P> TP longpv Ly Py — Xy Py

Py B3Py Py (02 4 2,) Py + 2, p, +., Py

DPrs Doy TP+ 2,0y e py 4+ (1 + )2, p,— py + 2, p,

D1y Pos TP+ €2 p,, ey p+ (14 ¢)w,p, — py

P Py Py (o0 + 2)py+ (14 0)a,p; + caypy + |
VIL (0,0)=0,f, (GU)=0, (GU,)="U,
(UU)=0 (i, k=1, 2, 3).

Prs Pos Pys Tspy+ 2,0, + F(myy -0y 2,)py

Prs TPy Bgpys B %P, + 23, + (2,2, — 1) pg
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v 1 2
Py TpPys Ty Pry B0, P+ Xy P,

DPrs T3Pys Py (@0 + 2,) Py + %5 p,

D1y Pgs TPy + Xy Py By Py — Py + P,

Py Pyy 2039y — X3Py %, Py — Py

DPrs Py Pys TP+ 0P+ Py .
IX. (G0)=U/+U0S, (G,U)=Uf, (G,0,)=UrS+0f,
(l‘fi’ Uk)=0 i (i, k=1,2, 3).

Prs Por Pys (2 + %) py + (% + 2,) P, + T, Py

Pry®aPis %3 Pys (2, + %,%,) p, + 2§ P, + (w25 — 1) pg

Prs @Pys 7Py (% + m7,) py + 23 p,

Prs B3Py Py () + 2,2 4+ @,) Py, + %, p, + 2 Py

Prs Pas %Py + 0, Pps 2Py + (%, + @) P, — Py + %, P,

Pry Py 2P, — Dy, @ py + (2 + ) P, —P;

Piy Pos Pos (4 25) Py + (2 + @) Py + %3Py + Py
X. (GU)=Uufs (GO =TT =T TY=0 (i km1,2,3)
Prs ByPrs Pys B30y + F(ag, ooy 2,) Py

D1y Pyy Pso w;p1+ﬂ33}92 + F(w“ ""wn).ps

Prs TPry YPry L3Py

D1y Pas T3Py Py

Py T3Pys Pys %Py + F(agy - o0y %,) P,
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Py Pos TPy + 2,0y Py

Prs Pas Pgr T3P+ Dy
XL (U,0)=0./, (GU)=U, (GU)=UsS+ TS
(,0,)=0 (i, k=1,2,3).

Pys %3 Pys Poy (0 + %%5) py + @, p,

Dry Pas Pss TPy + (%, + %) p, + % Py

Pis Py yPrs By Py — TP

DPis Po> BPpy TPyt TPy — Py

D1y @ Pyy Poy (2 + @, %3 ) Py + %, Py + F(gy - ®, )P,

DPrs Pys B3Py + Py 0y Py + %P, — Py

Dys Do pz;’ ®, Py + (%, + @) p, + 2y Py + Py
XII. (U, 0)=0 (i, k=1,2,3,4).

j Py %Py B (000005 2,)py, Fz(“’z."“’h’n)l’;

Prs Pos By Pyy Fy(@gs ooy @)py + Fyp(gy o0y @,)p,

Pu P P+ T3 -y ) Py Fy(gy o oy 0,) py+ Fy(Rgs -y ) 2y I

Prs Pys Pss @, Py + X5 Py + X Py

Dys X3 Py5 TgPys Py Pry XDy By (0)pys (s vy ®,)py

Py Pas By Pyy T2, 0+ ®,)p,

Prs Py Py + B pys F(Rgs oo 2,)p,  (5>4)

Py Py Py + Fi(205) Dy (g -0y ©, )2 (7>3)

Dyy Pas Pss Py
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CHAPTER IL

INVARIANTS OF 1HE @, (r <4).

Having established all the groups of two, three, and four parame-
ters in 2 variables, we are next concerned with the finding of their
differential invariants when 72 << 4. In this problem a division is to
be made according as y and z are functions of x; or z is a function
of 2 and y. The calculations for finding the invariants for these two
cases are different and will be given in different sections.

§ 1. Invariants When y and z are Functions of .

In this section we shall give the detailed work for several of the
more difficult types, and tabulate the remaining results at the end of
the papers Lie’s general method consists in equating to zero the
transformations after they have been extended, and finding the solu-
tions of the resulting complete systems.

As is customary, we shall use ¥, , #, to represent the total first de-
rivatives of y and 2 respectively with respect to x; ,, 2,, the total
second derivatives, etc. The expressions by means of which the in-
crements of the higher derivatives are obtained were deduced by Lie,
and for this case they have the forms

. d . dt., dE
n(n)E_T(Zi—l)—yn_d—w’ g(n)"=" t(ixl)_zn%’

where 7,,, &, represent the increments, which y,, z,, respectively
receive.
1. Let us find first the differential invariants of the group,

Py 2p +yq, ¥ p + 2wyq|.

Calculating the increments of y,, z, for each of the transformations

by means of the expressions given above, we have for the once-

extended transformations :
: 36
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U;fsp =0,
Uyf=ap+yq+0r+0g—2zr=0,
- Uy f=o"p + 2wyq + Or 4 2yq, — 22,7, =0,

of of
(qls-a—yl, TIE—a;l’ etc.).

The first equation shows that « does not occur in any of the invariants.
The second linear partial differential equation is equivalent to

of which the integrals are 2z, y,, yz, = u.

. Introducing these as new variables into U, /=0, the coefficients

in the new equation can be expressed as functions of the new variables.
" Performing the operatlon, we get

_ Usf 0r + ¢, + O f =0.
The solutions of tlns lmear partial dxﬁerentlal equation are directly
Zy, U S Y2,

To find the invariants of the second order, the transformations
must be extended twice. They then have the forms:

U/ f=p=0, |

U”f= wp +yq + Or + 0g, — 2,7, — y, 9, — 2zzr2= 0’

U, f=o*p + 2wyq + Or + 2yq, — 2wz, 7,
+2(?/1—wyz)%—2(zl+2mz)rz—o

The third equation can be considerably simplified by replacing it by
Vyf=U/f—2aU, f + «*U f, giving

Vif=0r + 2yq, + 2y,9, — 22,1, = 0°

@, Then the solutions of U} f are directly .
' z,yl,yzlsu,yyzsv,g{’zzsw.
Introducing these solutions as new variables into V7 f, it becomes

Vs =05§ +0 +2 lav Y ow?

f-i
1
i

As before, Uy f wmerely shows that the invariants are independent of
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of which the solutions are: z, u, y? — 2v, y, + w/u. Hence the
invariants of the second order are
Y2,

l
By continuing to extend the transformations in this way, the differ-
ential invariants of any order can be found; but the work becomes
very complicated after a few extensions and a simpler method is at
hand.

This method makes use of the differential parameter to find the

invariants of higher orders. If ¢ is an invariant of lowest order, we
seek a function '

yi—2yy u

do
‘Q(ma YaRs Ypa 2y 000y ‘f’sag‘)

which shall be a differential invariant whenever ¢ is.

Indicating by 8 the increment received by means of an infinitesimal
transformation of the group, we have, since d¢ = ¢’ dw,

S g = 8¢'dw + ¢'de;
or since the operations denoted by d and 8 are interchangeable,
8¢’ = d8¢ L d8m

.

Now if ¢ is an invariant, it receives no increment, i. e., 8¢ = 0, so
that

, , dox .
o' = — —d—::

This is the expression to determine the increment, which ¢’ receives
by means of a transformation..

Applying to the transformations of the group under consideration,
we have the following complete system:

Uf—aﬂ='0,

a , 20

U, f=a §g+2my aﬂ—-2x¢ Fr =0,
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One common solution of this system is found immediately to be y¢'.
Hence if ¢ is an invariant under the transformations of the group
A¢ = y¢', obtained by multiplying the first derivative of ¢ with
respect to by ¥, is also an invariant.

Thus, knowing the two invariants above of second order, we can
by this process find those of the third order; then applying the
parameter to them, find those of the fourth order, and so on.

(2) Let us consider next the group

Py g, Yp+2q|.

new variables

e _ v . 1
—_ — z=—.
2 2’ 2’

we change the group into the similar one

A ep, gy yp g,

The twice-extended forms of these last transformations are:
U/ f=2p—ypug —4n— (% + 20%)¢,— 3227,=10,
U, f=2q+2q0+2%9,=0,
U f=yp +9—vi0— %hanh — 39%%— (202% + 4,%)r, = 0.
. The solutions of the second equation are c
By Zy 2y By BY,— 2 Y S U, 2Y, —2,Y =0,

Introducing these as new variables into the first equation, it becomes
_ ' 0 .0
U'f=up+0r—zir, — 8227, — Wzg%“ (uz, + 2vzl)5‘—£= 0.

The integrals of the corresponding simultaneous system are

x 1 e 0 u v uz,
By = =P =Py Sl aTm Sy
%, 2, 2 2

[A

z o2

Introducing these as new variables into the third equation, we have

— . ’
Cféfsor_&_ai+P4Pz.a._f_g_f_+oaf=0,

z Op, z  Op, Ps 5/%

L i e e SR

8 The invariants are obtained more easily if, by the introduction of the
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of which the solutions are

2

2, 220, — P}y P>
or in the original variables

2
PPy P2

2% (zy, —29) 2( %Yy~ 2

2, 2w_;__( Y ~ 19) =1I; ( 13/2zs ’yl)EIz;
1 1 1 .

%y _zyl_zly___:_J.

2 Y — %W % 2

By the method of the preceding paragraph, we find

¢I
A¢ = '-z-l- .
Applying this to the invariants I, J;, above, we find Z;, J; of the
third order, ete.

We will now tabulate all the groups of two and three para-
meters and their total differential invariants. The classification is
made according to the order of the first derived groups. The in-
variants are found up to the second order and we will use z,,.J,, to
represent those of the first order, I, /;, those of the second order.

'The invariants of higher orders can easily be obtained by the use of | .
the differential parameter for each group, as explained on pages 88— |

89. From these invariants, the invariant differential equations can |

easily be set up by equating an arbitrary function of the invariants
to zero.

G,’s.
I. When the first-derived group is one-membered :

_? _y _
1] | p» ap|: 1=y—:; L=§/—§; J, =

%,
23’

[2] |p» wptygt+or|: L=y Jy=z; Li=sw,; J,Sn;

Ad =24,
II. When the first-derived group is zero-membered :

2, [T !
[3] Py, 2p|: lE:%i; ];E;%;_Jzay___lz Y21, A¢E¢

3 ’ o
% %

[4] [Py 2| L=y Ji=n; L=y Jymr; Ap=¢.




THE G, (7 <5) OF n~DIMENSIONAL SPACE. 41

Gys.
L When the first-derived group is three-membered.

(11 [ opr #p s L=l =Bas¥i pp=?
% Y %

1

[2] | Py wp +yg, ©p + 20yq|: Li=yz; L=y —2yy,;

(]; = ylzl:- ?/zz; A¢ = y¢r.

1

81 |2 tyg, w’p+(2wy+y’)q : 1513’_:;1-
I=y2,— 2% Jy=yy,—(1 L,
1 =Y Y2, 5 Yy, — (1 + ) A+
__¢'
Ap=

[4] | ) %p +yg, 'p + 20yg +yr |2 L=2—y,; Ji=yi—dyz;

L=yy, =25 Jy=ye(y—20) —y'; Ad =yd.
II. When the first-derived group is two-membered :

6] |raryor|: L=ys Lisy,; Ad=4¢.

[6] |7 ary g42r|: L=y Li=y,; Jy =€V 2, Ap=¢.

[1] 17y &ry (L —c)ap+2r|: L=wny,; L=aly, J=u0'"" z“",.

A¢E-;—f:'

[8] | Py 9> 2P +2q|: LE%'*'Ingx; Li=27%2,;

,fzé2z—%+logzz; A¢E%—.
. 2

1

[9] | Py @ 2p+oyg|: L=y L=yi~ty"s J,=%"%;

§
1
S

)

{
-3
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[10]

[11]
[12]

[18]

IIL.

[14]
[15]

[16]
[17]

[18]
[19]

WILLIAM B. STONE.

Py @ Xp+cyg +7

— at—2 . _—2a
L =2y, Jy=2""%;

Ad

1

E¢/

%

2

1
Py ¢y (2+y)p+yg|: LE%E’_’;; I;Eg—,eﬁ;

1

: Iy =2+4logz; Jx—=-zl'3/}’(°"‘);

ryary p—zr|: L=y Li=y,; J=€2; Ap=¢

1

Y I Sl 7AW _¢
.L_eﬂl( 1 )’ A¢~zl.

- 1 7 L
p,q,(w+y)p+yq+r=flsz—-l; 1=
L=l JE;(M) ap =¥
R A 1 %

When' the first-derived group is one-membered :
=Y 1=% g2 ae=®
pg ) L=t L=l g=l ap=t
; 1 3
Py g o=y w i+ =22 L=
1 2
= YRy, =z(y1z2'_?/2"zl), =-£
5= 5 o= 2 ’ Ad’—zx.
. . B ,
Py ¢y YP|: .I;Eﬁ-; 'Iz—:il’ J;_:yzzl 3ylzzs A¢E¢
n 2 n 1
P T L=ty J=ly L=
' A vl Ty
J;Eylzz _;'y‘ézl; A(ﬁEﬁ.
n 1

ry xry F(e,y)r|: I =y,; Izs Yy Ap=¢.

Py g, 2p|: I

2, yz—yz __¢'
%; Ls%; J=""5700 A=
1 1 1

Y
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[20] [y g, 2p +(2)q|: L =%="(2), L=,

% 1

J = Yot =Y 1%+ 7(2) Ry — ﬂ”(z)‘z?
2= _ 2

H Ad)—z'%.

[21] [2 g5 7] L=y Times L=y J=n; Ap=4.

§ 2. The Invariants when z is a Function of % and y.

In this section the invariants when z is a function of » and y are
found for the groups of two and three parameters. For the four-
membered groups the results are not given, though they can be
deduced, by a theorem due to Lie (see, * Continuierliche Gruppen,”
page 761), from the total invariants of the @,’s, which have been
obtained by the writer, though not given in this paper.

For these invariants, wé-shall make use of the following relations
to determine the increments of the partial derivatives:

ddz = 8pda + Sgdy + pddx + ¢ddy,

ddp = &rdx + Ssdy + rddx + sddy,

ddq = Ssda + Stdy + sdéx + tdSy,
P, q,r, 3, tstanding respectively for

00 o Fu Bx O

Ox’ Oy’ Ox*’ Ow-0y’ Oy’

In the same way the corresponding expression for finding the differ-
ential parameters is '

dbp = 8¢, - dw + 8¢, - dy + ¢?d3w+ ¢, ddy.

5 I. Let us consider first the groups. of two parameters, which were
{ found in Chapter I. ' ’

O of of _of  of

) w67+3/@-+z7z .

The twice extended forms of these transformations, when z is a
function of « and y, are
‘ v of 0
=V,

3
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af of L ,of o9 af 6f of _,of
+yay+zaz+0p+0 —-85?—3-—=0.
The first equation shows merely that the invariants do not con-
tain z. Then the solutions of the second are directly
Py gy xr, 8, wt

By using the above-given expression for the differential parameters,
they are found in the same way to be

wd,, xp,.

(2) For the group
of of
oz’ * O

the invariants are found in the same way to be

g T pe—gr pt—2pqe!+q”r

s P’ P ps ’ P ’
and the differential parameters are
¢ 9b.—pd,
P’ q
(8) For !
of of
5:; ] 'a";'/ s . ‘
the invariants are p, ¢, », s, £, and the differential parameters
¢x’ ¢y‘
(4) For
of of
ow’ o

the invariants are g, ¢, 7/p*, s/p and the parameters ¢ , ¢_/p.

II. We will now give in detail the finding of the invariants for
some of the G,’s, and tabulate the results of the rest.

(1) Let us consider the group

of of af
' oy fam " (z)ay




THE (, (r<<5) OF n-DIMENSIONAL SPACE. 45

The twice extended forms of‘these transformations are

of
Friahd
of

ay ="

of of ..., nOf nof
z@;c-H(Z)@—p(pHn)@—Q(p+qn)a—q—(3pr+qrn

) . \8
+ 2psn’ + p*qn’) 5{ — (2ps+2gsn'+ptn' +pg'n +qr)5{
’ 77 a
— (2¢s8 + pt + 8qty’ + ¢*n )—a‘—{=0.

The first two equations show merely that the invariants are free of
zand y. The simultaneous system corresponding to the third is then

dz dp _ dg _ dr
0 p(p+agn) q(p+gn) Bpr+ g+ 2psy’ + p'gn”
_,'d-'.' .’/;: dt

= s 7 Sger T plT+ T+ ¢~ o F b+ Sgir o (D
Two integrals are immediately z, p/q, and to find the remaining, the
differential parameters have to be used. They are found from the
system v

dp ~  dg do, _ de (B)
p(p+an) g(p+an) p(.+é,7) (b +¢, )
of which' the integrals are (g¢, — p,)/q, (¢, + ¢,-7')/p. Oper-

ating with these on the solution p/gq, two solutions of the second
order are found to be

. ¢'r — 2pgs + p*t gr —ps + (g3 — pt)7
and 2 .
i’ . g
Equating p/q and these two solutions of the second order to con-
stants, using the second ratio of (4) with the fourth, or fifth, or
sixth, and eliminating, by means of the solutions equated to constants,
from the denominators the variables that do not occur in the numer-
ators, we have left ordinary differential equations of the first order,
which are linear in , or s, or ¢, respectively. These can be integ-
rated by quadratures and give three solutions of the second order, of
which the two above are functions.
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2. We will next find the invariants of the group

of of of . of
o’ oy’ Yow T oy

As in the last section, we will use the similar group, obtained by the
introduction of the new variables

- T _ - 1

W=;’ y=g, z=;,

I af of L of

“on "oy’ Yout oy oy |

. These transformations, twice extended, have the forms

9 ) 9 ) 9
aﬁ: p’ag—pqa‘; 3pra—f—(2ps+qr)a—{—(p&298)3{=°a
o 9 ) )
.{/" f qza_(:’_(2p8+qr)———(2qs+pt)3—{—3qta~{=0,
3f of L o% of f of
6m+ay+06z +0 op paq+ ar — 2 ot~

The solutions of the third equation are immediately

2y Py Ty Y¥—22=p, gtpy=p, s+ry=p, SS—rt=p,.
Introducing these as new variables, the first equation becomes

of o , of o,
0 +p* p+3pr +2 5 +sza{+(2ppa+rﬁz)a +41””4af_° |

of which the integrals are, in the original variables,

P yi—2c 1 q+py 8*—nrt sp—gqr.
%y = U, —-= L 7= =

G Tp=U Ty =W =T T =
Introducing these as new variables into the second equation, it becomes

0 f+2 2n—‘-f+wa‘::‘+ a‘£+0 or (un2+um) ‘f

The solutions are 2z, m, w® — 2vz, un®+ wm, w(un® 4 wm) + 2n,
or in the original variables :
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8 —rt + py ) 2 1 T ( pe—qr\? . st—nt
v . p?y) _%(y 2 +1_0)’ %[(p 7 ) P ]’

*(g + sp—aqr\? &—nrt s8p — qr
10(97‘1»3/){(10193!1)Jr = }+z(pp3q).

In the usual way, the differential parameters are found to be
% —qb. ped. + (9 +py) (99— q4,)

p o’ I3
(8) We will next consider the groups:
| of of  of ,of or |,
] @ o T Yoy Yot Moy |}
o 7
(1) f af:'*' 55 a f+ (20y + o) 2L ay ;

af af af of of  of
(i) ot Yoy Yapt Wty |

The first two transformations of these three groups are the same, and
the partial differential invariants are easily found to be:
%y YPEPy YIS=p, Yr=p, YPe=p, YL=p

(i) Introducing these into the twice-extended form of the third
|  transformation, it becomes

0? d d P 5 oF
f -2 ’B{Jr 06—{2_ 2(p, + 2p.) 4_3%;_2(P2+P5)5‘£+05ﬂ=0;

the solutions of which are
%y Pas Pss PiPy+ PiPs — PuPar (P2 + Ps)'Ps — 3PiP, — Pips

— P(PiP+ PPy — i)
Expressed in the original variables, these are:

2y Y9 ¥ty ¥ (pg + pty — q8y), ¥ (g + ty)r — 3y°qs — ¥ st
—y's(pg + pty).

i
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The differential parameters for this group are:

yby ¥9b.— PP, |
(ii) By the new variables, the third member of the second group is

of of of of
0 5;+(P1"2P2)5,;;_P25’72+(2P3_291;)“4&)5; o
- 2(”2 + Ps)éF - 2(Pz + Ps)% =0.
. f s
The solutions are : ;
+2 , 2 '
Zy Py—Pss PiPy—P3s Bs 2 Pz’ P:'Pa_2P§(P4_P5)—%P;(")_g+—)_4P:° g
P2 4 Pz P

These can easily be expressed in the old variables. The differential
parameters are found to be

% yrg(d—
2 V.= 4)

(iti) In the same way, the invariants for the third of the above
groups are: - :
2—y¢, ¥ty yp +¥'¢ Y2+ '8 + 2eg,
y'r+ 2°pg + 4y'gs + 497 + 4y' gty
and the differential parameters are: ‘
ybys yb, + 2294,
(4) As the finding of the differential invariants of the remaining
G,'s offers no special difficulties, we will merely state the results.

Weuse 1, /), for the invariants of the first order, and I, Z,, K, for
those of the second order. The differential parameters can be easily

computed for each group.

Group. Invariants,

. [ar of o :
@) %, 5?;’ % t L=p; Ji=gq; Li=r; Jy=3; K,=t.

r 8 — g1
=3 J, P 395

p

i

. [of of of],
(i1) o By’ 2% | A

=

*t — 2pgs + g*r
PR AEL R8s
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ey |0 ) 0
(iii) —éé 5‘:—‘ ?/'a—"}::IzE"; J,=8; K,=t.
. (7]
(iv) Ef, ¥ F() rL=gq; Li=s; J,=t.
of o 7] 7]
0|2 ZovZE+L| f=p d=als Lars
i stz+7s—'; K, =12 4 282 + ¢.
| o |8f 0 0
| (vi) a—‘g, 5‘5, —-‘gleEp; L=r; J,=gr—ps;
K, = ¢*r 4 2p*t — 2pqs.
. |Of O )
(vii) gg,a;, (‘”+"/)aw+ a§+a’; : L =z+logp;
r 8—rlo
JIE%—IOEW 1, = 5 Jz="'—‘§ﬂ)’
t—pr[logp]*—2slo
&, =Pl g;:s] — 2o log p
vee af af af af o 7 =q . = —
(““) 55, ’a_y" (w+:¢/)5;+3/@ "[1'—5'_logp’ 2= 2’
8 —rlo t—prflo 2w 2slog
| JZE*?_MB; K= pr( gjz:ﬂ] 3
. 7 of o 7]
(ix) —a‘L;, 5‘2,3% a—::I,Ew-{-logq; I,=o 4 logr;
J,=x+logs; K, =wx4logt.
of of 6f . 1= . JT=L.
® |25 3y 6a:+ Yoy 55 || h=7+logps =
—p pl‘-i-o —pZo
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of of _of of
EE —6—37’ wg;f*'c:‘/a_y'

(xi)

:IIE%; Iz_.=_p ;

8
K =L.
(xi) %{, m%é, (1_c)ma—£—+z%§ :1159:; I,qu;:l;
%E% &E%
(xiid) %, w%, ’Z—w I=g; IZE%; Jy=t
(xiv) %, %‘5, w%%+z% :IIElog%+—, ’55;

and for this group, the remaining two invariants of the second order
are found by quadratures from :
ds 2¢+1 ﬂ _2 +9q 2se—Va
4q=" 7 i~ ¢ T 4q
where for s in the second equation must be substituted its value in
terms of ¢ from the first equation. In these two equations

8 + ber-2,

)

p 1 t
a=log=+-, b=-."
8ty " =g
of Of O |. r—0. I =2 J=F. =P
(xv) 'a_a", 'a_‘y, wa_w . L=q, .I;=t, !];=—r—, .K;=-§o
w|of Of ofi y_T. s5_8. =!
(xvi) o U5 " 'Iz—§’~Jz—§’ K2_§
.. |ef af of @ _ o s
(xvii) a;:, m-a‘—:, a;;+z5‘£-‘ : I=evq; z'="§; Jz=§;

K, =
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To these we will tabulate, for the sake of reference, the partial
differential invariants obtained on pp. 44-48.

ey | O —2ngs t
woit) [, 4 Y ¥ | = gaLr=tear, i

g, = qr—zfs+(qs—pt)n(. ).

; [see page 46].

py’
. oL O O, p (1YY g (V=2 1
o [F G Er ) ne(2) ()

88—t 3 8 — qgr\? s* — 9t
h=—ps & %[(pp“q)“L P ];
7 s2—urt 8p — qr
("pr)[( pq)+ I3 ]H(pp"‘q )

of Lof  Zof ~.of of |
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CHAPTER IIL

OBSERVATIONS AND APPLICATIONS.

Many interesting investigations are suggested by the knowledge of
the groups which have been found. We shall conclude this paper
with a few remarks that have an important bearing on the general.
problem of integration.

The Operations Necessary. for Reducing the @ (r<4)
to Normal Forms.

1. Asis well known if the &,

Uf=ép+ng+br

is given, it can be’'thrown into the form of a translation, p b, only by
the integration of the simultaneous system

@ Eoom &’
unless the path curves of U, f are known.
2. If a given &,, U,f, U,f, belongs to the type Py %Py ¥ it is
easily seen that the reduction to normal form requires, in general, |
the integration of the simultaneous system (1)." If the G, belongs |
to either of the other three types, the reduction can be accomplished |
by the integration of an ordinary differential equation of first order
in two variables, together with certain quadratures. '

8. Let us next consider the G,'s.
I. When no linear relation exists.
If the @, belongs to the type ([4], table of @,, page 41),

[4] Py P+ Y TP+ 22,9, + N7

the reduction is accomplished as follows :
If the three transformations are given in the form

Uf=Ep+ng+ & (i=1, 8, 3),
52
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we know that there must exist three functions of , ¥, r—x,(Ty Y, 2),
Yi(e, 9, 2), zl(w, ¥ s 2)—such that
Uf=bp+ng+tr=p,
@) U,f= E2P+”ZQ+§27‘=w1pl+qul’

Of =§p+n9+ §r=alp + 20,99, + %7y
Hence @ is determined by

o ox
U(wl)""gl am+ 1ayl+§1—l=1,
. ox ow
’ (2) U(wl)'—fz aw + 2ayl+§2 azl—mn
o ox
U(wl)-—Ea aw Ft aayl C, l—mi'

By DuBois-Raymond’s method (see Lie’s « Differentialgleichun-

gen,” page 553), x, can be determmed from (2) by the integration of
a Riccati equation. -

Now consxdermg ‘that “’1 has been found and introduced as a new

~variable in place of x, ¥, is given by

0 3/1

o
Ui (v, Ei"‘ h +c1 =0,

a:‘/x

0
U(?/l)—wla + 7 3 +§z azl—yu}

9y 6y
Uy(w, -wfawl'l‘ 53 1+§s "‘2“’1?/1'

Here @, = «,(«, y, 2); and the third equation is not the same as
the second. Dividing the third equation by the known function 2,
and solving for the partla.l derivatives, we get

2y,

Ft=p + oy a_gﬁ= +-'a' %= 4o
O, AT Y oy P 23/1’ oz PsT %Y

Hence y, is found by quadrature.
In the same way 2, is given'byv

oz
U(zl)Ea +7 1a,l+§1 az—'o
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oz 0% Oz
Uz(zl) E%a_m—i-*-%???/l-{- 4‘2521: 0,

0
Uy(n) = wiz +
where y, is a known function. Hence the partial derivatives of 2,
are known, and z, is given by a quadrature,

In this case, therefore, the integration of a Riccati equation and
certain quadratures are demanded. If the @, belongs to any one of
the other four types ([10], [13], [17], [21], pages 42-48) of this
class, the reduction is seen to require only quadratures. '

II. When one linear relation exists.

If the @, belongs to one of the types ([8], [15], [19], [20],
pages 41-43), the reduction to normal form requires only quadra-
tures. In the other cases of this class, the integration of an ordinary
differential equation of first order in two variables is necessary.

IIT. When two lincar relations exist.

If the @, belongs to the type [1], the reduction can be accom-
plished only by integrating a simultaneous system

de dy d»

oz oz
’73797J'+§'3‘5,jl=%,

If the @, belongs to either one of the other two types of this class
([5], [18]), the reduction requires in the most unfavorable case the

integration of an ordinary differential equation of the first order in
two variables, )

In the Leipziger Berichte, Vol. 47, pp. 494-499, Lie shows that
if with the transformations of the G, of rotations

X f=yp—ag
X, f=2q—yr
X f=wr—2p

we form the functions X 1¢(X, /X, X,/ X,) where ¢ is arbitrary,
these functions can be considered to be the characteristic functions of
contact transformations. From this, it follows that this G, is a finite
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sub-group of an infinite group of contact transformations, and several
interesting properties are obtained from this fact. As we now have -
all the G,’s, we can use each one as the starting-point for theories
similar to those deduced by Lie in the case of rotations.

In his «Beriihrungstransformationen * [Kap. 18], Lie has dis-
cussed the general problem of the integration of a non-linear partial
differential equation of the first order, which is invariant under two
transformations. As we can obtain a @,, under which the equation

_is invariant when two transformations are known under which it is

invariant, we can obtain Lie’s results in an exceedingly simple manner,
by- using the typical forms of the @,’s, established above. '

I. The Partial Differential Equation admits of a G,. In this case,
by the introduction of new variables, the transformation can be
brought to the form of a translation 8f/0x. Hence this shows that,
in the new variables, the equation will be free of 2 and will have the
form

- F(y,z,p, q)=0,
as is well known.

IL. The equation admits of a @,.

(1) If the path-curves are the same, then by Theorem 5, p. 615,
Lie’s “ Beriihrungstransformationen,” the equation is linear in Psq.
We see the same here for the two @,’s, which have the same path-
curves.

@ of of

o’ *on

By page 44, the typical invariant equation is

F(y,z,g) =0,
This is equivalent to
0z 0z
(9, 2) 5 + B(y, 2) gy =0

and since z = const., is a solution, the problem can be solved com-

| pletely by a quadrature.
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. of of
(“_) _ | em %o

By page 44, the typical invariant equation is

Fy,2,q)=0
which is equivalent to T ’

0z Y dz
a_y=f(y’ z)7 or _T=f(y,z)'
This is an ordinary differential equation of the first order, and thus

far only, will the knowledge of the G, be of service in the integration
in this case. '

(2). The path-curves are different.

s of of
@) o) 3y

By page 44, the typical invariant equation is
F(z, p,g)=0,
This equation is immediately integrable by quadrature,

. of of ,  of - of
(i) % w%+y@+z—a;

The invariant equation is

7(Z, ,)=o;
(ypq

The solution of this equation demands at most the integration of an
ordinary differential equation of ‘the first order.

III. Suppose the equation admits of a G U f,(1=1,2,8). In
cases (i), (ii) under (1), pages 55-56, we have U,= pU,; so that the
invariant partial differential equation of first order, Q& = 0, is Zinear
and p is one solution. Then if U, =0 U, where o is not a fune-
tion of p, o is the other solution. Or if no linear relation connects
U, and U, the other solution of £ = 0 can be found by quadrature.
But if p= F(0), above, the integration of an ordinary differential
equation of first order is still necessary to integrate O = 0,
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In case (2), (ii), Lie has shown that without reducing the @,, U,,
U, to normal form, the integration of the invariant differential equa-
tion (%, y, 2, p, ¢g) =0 may be made to depend upon the integra-
tion of an integrable total equation

Pdr 4+ Qdy + Rdz =0,
Then if PE, + Q 1y + RBE, 4 0, this equation is integrable by

quadratures. [See Page’s “ Note on the Invariant Total Differential
Equation Pdx + Qdy + Rdz=0," Annals of Mathematics, Vol.

12, No. 6.]

If the @, can be reduced to normal form without an integration,
as is often possible, the invariant partial differential equation of first
order must take the form (see pages 48-51], '

@) yg = 0(z),

or

(i) ye(yp=%9)=Q(2) or yg= const,
or '

(iif) ¥q — z = const,

. Each of these equations is integrable by quadrature.

If I, J,, are the total differential invarianfs, ﬁrsi; or(ier, of any -
given @, the equation
. Q(Z, 7)) =0

will be an invariant Monge equation. Its integration depends, (see
Lie, ¢ Beriihrungstransformationen,” page 5563), upon that of the
corresponding non-linear partial differential equation of the first order

F(wv Y, z,p; Q)=0’

which of course is also invariant and is handled by the method above, |
It is interesting to note that @;'s belonging to the types [1],[2],

(31, [5]. [6], [7], [11], [14], [15], [16], [18], [19], [20],
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leave no Monge equation, but only integrable total equations of first
order of the form ’

1) Pdx + Qdy 4+ Rdz =0
invariant. This equation is integrable by quadrature if
PE + @n,+ BE %0

for any value of ¢=1,2,8. These groups consequently leave no
non-linear partial differential equation of the first order invariant.
The other types may leave both Monge equations and equations of
form (1) invariant.

From the partial differential invariants, we see that every G, in
normal form leaves a partial differential equation of first order inva-

~ riant except

ry or, yr

In this, the invariant partial differential equation is of at least the
second order. .~ 7

We saw above that certain G'’s leave no Monge equations invari-
ant, and hence no non-linear partial differential equations of first
order. This was evident, ¢ priori, if any transformation of the G,
was connected with any other of the G, by a linear relation, (see Lie,
¢ Berithrungstransformationen,” Kap. 18). But the G’s

Py ¢y 2p +n(2)¢ (e 2)

and

Py ®p +yg, 'p + 2xyq

are exceptional, as no such linear relation exists; and still only a

linear partial differential equation of first order can be invariant
under each of them, '

By the method developed by Lie, (Leipziger Berichte, Oct. 10,
1893, pages 98, ff.), if a partial differential equation of order m,
QM =0, is invariant under a known G, we can find, by integrat-
ing an ordinary differential equation of mth order in two variables,
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oo™t integral surfaces of O = 0, which are composed of path
curves of the general transformation of the G,

=3 aUr.

Hence if the form of Q™ — 0 shows that it is invariant under a
known @, it is frequently possible to find co™+2 integral surfaces of
™ = 0 by Lie's method. Of course the operations are much sim-

. plified if the @ has been thrown into normal form, and the path

curves of Jf have been determined.

Tt is easily seen that the most general transformation of space that
leaves directions invariant belongs to one of the G,s. The coordi-
nates of a line element in space are x, y, 2, Y1 2,y and if the direc- -
tions are to be invariant, the increments of y, and 2, must be zero.
Thus we have -7

dn dE
M= g =ttt a—yn(E+E 4§ )=0,
/9 (43

& ST Mg L& m+8a—2(E+ €y + &2)=0.
Since these relations are independent, we have
Ey=§z=n:=nx=cz=gy=0’ Ez=7’y=ga'

Whence, immediately £ = max + 2, 3 = my + B, §=mz 4 v; m,
a, B, v, being arbitrary constants. Hence the transformation is

(mx + ﬂg% (my + B)g‘—;-f- (mz + ry)%—:
This is recognized at once as the most general transformation of the
fifth group under VI, (see table @,’s, p. 82), obtained by putting the
arbitrary constants ¢ and c equal to unity.

This @, is of importance in the problem of spherical representa-
tion of curves.

In the same way, it can be shown that the transformation obtained
above is the most general one that leaves the direction of surface
elements invariant.
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‘We notice that there is only one @, in one variable ; that there are
four in two variables, and four in n-variables. There iz one G, in
one variable, eleven in two variables, twenty-one in three variables,
and twenty-one in n-variables. There are 16 G,’sin two variables, 71
in three variables, 105 in four variables, and 105 in n-variables.
That for these three cases there is the same number of G'.’s in 7-vari-
ables as in n-variables is to be expected according to Theorem 84,
page 458, of the first volume of Lie’s « Theorie der Transformations-
gruppen.” It will readily be seen that more is shown in the above-
given result than is stated in the theorem referred to.
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