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INTRODUCTION.

According to Prof. Sophus Lie, the “theory of Differential Equa-

tions15 the most important branch of modern mathematics.” During

the last century, this branch of mathematical science has been devel-

oped'1n a number of different directions, one of the most important

of which is that based on the theory of transformation groups. As

is well known, this whole method was originated by Lie in 1869—70,

when he showed that most of the older theories of integration owe

their origin to a common source and at the same time introduced

new theories of integration, based on the theory of groups.

In order to apply Lie’s method to the problem of integration, it is

necessary to know what group, if any, a given differential equation

admits of. In his “Vorlesungen iiber Difl’erentialgleichungen mit

Bekannten Infinitesimalen Transformationen ” and various other

publications, particularly in Vol. XXXII of the Mathematische

Annalcn, Lie established in complete detail all differential invariants

of every group in two variables, and showed how to reduce as far as

possible the problemof integrating the differential equations invar-

iant under such groups. It would seem most desirable to do the

same thing, as far as possible, for groups in 11;, y,z . This great

problem has been solved only for a few special cases: by Lie, for

example, for the group of Euclidean movements and a few other

special groups (see “ Cont1nu1erl1che Gruppen,” Kap. 22), by Tresse

for the G10 of conform transformations (see C’omptes Rendus, 1892,

Tom. 114); by Dr. G. NothIn a Leipzig thesis on the difierential

invariants of a certain G’w. One object of the present paper is to

begin the solution of this general problem1n a systematic manner, by

establishing the desired results for all 03’s in w, y, z

The problem before us divides itself naturally into three parts:

I. The establishment of the normal forms of the G(r < 5)'1n 71-

variables.

II. The establishment of the differential invariants of the 613’s in

m, y, z: (iI) when 3/ and z are each functions of 11:; (ii) when 2/. is a

function of a: and 3/.

III. Applications of, and remarks on, the results obtained.
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CHAPTER I..

THE NORMAL Foams OF THE G',(r < 5).

In Vol. III of the “ Theorie der Transformationsgruppen ” by Lie

and Engel, two methods of establishing these groups in m, y, z are

indicated ; but the groups of this class —namely, those imprimitive

ones which leave invariant one curve family

(Ma), y, z ) = coast. and «Iron, 3/, z)= const.,

and at the same time at least one surface family

O(¢, 1]") = const.

—are exceedingly numerous, and, so far as the present writer

is able to discover, have never been established and tabulated,

as was done for the other classes. We shall make direct use of

neither ”of the methods given by Lie in the reference mentioned

above, but shall follow other methods frequently used by him in

other connections for establishing the normal forms of groups. It is

believed that the. G‘Z’s, given on pp; 6—7, and the tables of 03’s, GE’s,

given on pp. 15—16 and pp. 29-35 of this paper-are accurate and

exhaustive so that they can he confidently referred to by any one

desiring to use these groups. ‘

§1. Normal Forms of ike 02’s of Space.

In his “ Theorie der Beriihrungstransformationen," Lie established

in all essentials the normal forms of the 02’s in w, y, a. In deduc-

ing the 02’s of n-dimensional space, we shall follow the method used

by him in the above mentioned case, and at the same time show that

the four types obtained by Lie are exhaustive also for n-dimensional

space. We shall use p, to represent af/6:o... .

If ‘

‘U;:f5§5k,t(wn”'9wn).pi (76:11”)

are two representative transformations of the group, it is well known

4 .   



 

 

 

 

THE G, (r < 5) OF n-DIMENSIONAL SPACE. 5

that they can be assumed to satisfy one of the structures (Zusam-

mensetzungen)

<U.U.)='o, (arms-UV

U1f=09 U2f=0

will in each case define a complete system of at most two members in

the n-variables x1, -- -, a)". Hence this complete system will have at

least 71. —- 2 common solutions, which are independent functions of

the variables ml, ..., as". If «#30111, ---,a:n), -~-, \[rfl(wl, ---, m")

are the solutions of the complete system, we may without loss of gen-

erality, assume the ‘1», to be independent functions with regard to the

n — 2 variables m3, - - - , a)”; hence we may introduce as a new system

of independent variables the El defined by

Hence

{—131 =90“ (Ila =11)” E,=1p,(w,, - - -, 111") (9:3, ~--, 91).

In these new variables, we have

if: Elmo?“ ' ‘ '9 EDI—71 + E19207?“ " '1 E0232 (76:11”.

where the is, . . -, 5.. play the role of constants. ‘One of these trans-

formations Ulf(say) can, by the introduction of new variables

,2

E1 = 961(51’ ' ' "(5711),, 52=¢2(5’11 ' ' '1 in), '§s=5av ' "9 5n=5nr

always be thrown into the form of a translation E, or let us say

simply Pr Suppose that by the introduction of the new variables

the other transformation becomes

U;f= El(wl’ ' ' " a311).?1 + E2081, ‘ . " wn)p2'

Now there are two cases according as the tWO transformations have

the same path-curves or not. We consider these in order.

I. When the path-curves are the same,

,U2f=P(mn "'1 ”01%

(l) (UxUz) = 0: (P1, P(‘”n ” W ”32%) 5 Pzi'Pd: 0,

Hence p is free of m, . Also p cannot be a constant, since then there

would be only one transformation. As p must contain at least one .
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of the variables as, -~ ., (on, suppdse that it contains :31. Then we

may introduce p as a new :51, so that

if =—= 3271 <j>1)-
Hence for this case we have the group

 

 
2’19 wjpl (J>1) .

  

(ii) (Up 0'.)= U1: -(29.110061,-~-,w,.)2).)EP..-a=p.-

Hencepawl+a(w2, -.-, 11:”).

Putting E, = 1111+ a(a:2, ---,a1n), we have if: 15,131, while

Ulfa 13,. Hence for this case we have the group

 

 
271, ‘131271 -

  

II. When the path-curves of the transformations are different,

UMEF P(93n "'1 96..)171f-

For this case fUlflEpl, Ugh/”551011,, ~~ -, mn)pl+E,(wl, .. -, $0122.

(i) (U. (7;) £70: (22.. 5.22. + 2.22.) 5 5.511214. sap. = 0..

Hence {‘1 and E2 are free of “’1: so that

[Inf-=- a(m2, "'1mn)291+13(”21 ”Wainll’z (5+0)

Introducing as new variables
' ‘

_ 2a _ div
wl=xl—f3dm2, 1172:. 78—2’

if =i19 (72f =fi2'

Hence for this case, we obtain the group

we have

 

 
P1, P2 .

  

(ii) (U1 U2) = U1: (Pii E1P + 521’s) 5 51,1131 +51,le =I’1'

Hence

EIEwI'i‘a-(w'n "Wain, 5253(m2’i"’m0) ('3+0)'

  



 

 

 

THE 6‘, (r < 5) OF n-DIMENSIONAL SPACE. 7

Introducing as new variables

dza

1711=w1 +41(w2, m, m”), E2=e 5,

and choosing 93 so as to make the arbitrary function in El disappear,

we obtain

Ef=f919 if: 511—31 + 5321—72'

Without changing the first transformation, the second can be thrown

into the symmetrical form ~

sza Etc-4’1

by introducing x1: 58,, 9:, = '51,, m, = fizfij (j = 3, .. », n). Hence

for this case we obtain the group

 

P11 2 “711% '
i=1

   

As all possible cases have been considered these four types must

be exhaustive.

§72. Normal Forms of the 03’s of Space.

Lie has shown7that' the representative transformations U,f, U,f,

U;f, of a 6?3 in’n variables can always be chosen so that the G3 has

one of the structures (Zusammensetzungen) I, - - -, V, below (see

“Theorie der Transformationsgruppen,” Dritter Abschnitt, Kap. 28).

Under each one of these structures we must consider the various

cases which arise when the transformations satisfy two independent

linear relations, one such relation, or no such relation. These will be '

taken up in order. '

I. Let the transformations satisfy the structure '

(U102)'=' Uv 07an); 20,, ((7201) E U.-

(1) Suppose there are two independent linear relations connecting

the transformations, and let them be

P1UI+P2U2+PsUs=ov ”1171 +62U2+ "Val-J's"= 0’

i p, and a, being functions of a1“.- - -, w".

Solving these two equations for U2 and 0;, we obtain

Usz P0611 " '1 ”JULIO, UafE ”(”11 "'1x,,)U1f

 



 

 

   

  

 

8 ‘ WILLIAM 13. STONE.

Hence if we suppose, as can be done, that U,f has been throwninto

the form of a translation 11,, we have

U,fs p(a:,, m, wn)p,, Ufa 0(3),,. -,w )p,.

Since the path curves of U, and U,, which form a 6",, are the

same, we can, by the preceding section, put

2f:- {13,12,-

Substituting in the structure, we find.

(UIUs) 5 (P1, ”191) 5 ”211,1: 2w12’11‘ 01' 6x1 = 2“::1

(U. Us)E (“1201,6205 256% - v2». = “7’1:

whence

a=m§ and Usfa w'fpr

Hence for this case we have the group

 

 

2
P1’ ”1191! ”11’1

 
 

(2) Suppose there is only one linear relation connecting the trans-

formations, namely

P1171+P202+P30s=09

p. being functions: of m,,- , a: . Since the Uf do not occur sym-

metrically'1n the structure of the Gas we shall further subdivide this

case according as:

(i) 9.50.92'P35F0; (magma/1&0;

.(iii) Peg-039172450; (iV)P1'Pz'Ps$0'

6) P1501 P2'Ps*0'

Then mfsp(w,,---,mn)sz, while U,'f and U,f are not con-

nected by any linear relation, i. e.,

sz$ ”(xv ' ' ' 9 ”1.)sz

If U,fa 10,, we must have by the preceding section

U2f E a’11’1 + ”zpz'

Hence by the structure, we obtain

(P1! P(w1p1 + $2122» 5 (P + m1P:1)P1 + wapxipz E 2061291 + szz)‘

 



 

 

 
 

THE 6‘, (r < 5) OF 'n-DIMENSIONAL SPACE. 9

, From this relation

P + “RP.“ = 2:13,, ”2sz = 2mg,

i. e., p = 0 , consequently there is no G, for this case. In the same

way it is shown that the subdivisions (ii) and (iii) above give no

groups.

Let us consider the last of these,‘1. e.,

(“0 P1 ~11. P3 $ 0-

For this case we may take Uf—p,, Uf= cc,)9, +m2p2, since no

linear relation connects any two of the transformations. Also we

can take

UJEPUJ+UUJ ”so,

i p and a- being functions of 121,, - - - , 1c". 1

Thus we have .

UifE (P + wig-MW + ”ea-Pr

I ' Substituting in the structure -

(P11 (P +11}, ”>191 +5520?» 5 (P:1+m1‘7r1+‘7)1’1 +x20'211725 2(wlpl+w2p2)’

(”1P1 + 9721029 (P +Fmiflll’i + “’2 ”192) E 2515031321 + “32172)

+ m2{(Pza + a’1 ”:2)P1 +(1vza',, + ”)PB} — (P + x,a')p, ”$20172

. t = (P + £13,091), + $26122.

Equating coefficients in these two relations, we have '

10,, + 111,113,, + a = 2a,, 2911,1112 + 90317,, = £11,0-,

2m? + 1112;)” + :v,ocza',, = 2/3 + 2911,03 , 131,011: 2502.

From these relations we obtain immediately

a- s. 211:, + 1112.)», p a —a:f —m,:c,7t +wfiu,

7t and p. being functions of 111,, - - - , a)”.

Hence

Usfa (”i + ”12/0291 + (2:15:02 + "33")292-

Introducing as new a, , 07:, = w, +acac2<;b( 111,., , m") , and choosing (in so

that 1112— ctlt— 11—: 0, we obtain
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if? Elf-71+ [251”: + ”3750339 ' ' " mn)]1’2’

>"1(‘1711’ "'1 m") 5 love, ' "9 mu) " 2‘P(ws’ ' "1 wu)‘

. Now if 7», = 0, then Usfs mfp, + 2w,w,p,, and we have the G",

 

 
P19 $1171 + ”22329 mIPl + 2m1‘1321’2 '

 
 

If'lt, =l= 0, put 1‘13, = m,7t,, and we have the G,

 

 
.271! m1171 + 111229,, mIpl + (2:171:32 + “3)1’2 -

 
 

(3) Suppose there is no linear relation connecting the transforma-

tions. Then we may take

[fl/‘51?“ sza w1p1+w2p2’

and as U,f= 0 (1'. = 1, 2, 3) form a complete system of three mem-

bers in n-variables, we may assume the variables so chosen that USf

has the form

1]st E10319 " '9 m")1’1 "l' 52(931’ ‘ ° '.9 mn)p2 + E30319 '1 ””133-

Substituting in the structure

(Dive) 5 (P1, 51171 + gaps + E3173) 5 £13,171 + Ernpz + 53,,193

1.7 =2(a:p +111]; .

Whence ‘ ' l l 2. a)

EiEwi+a(w2"”’mn)$ 5,52%,w2+/3(w2, "5%),

- 55706 m.) (7%”)-

So that 3 2, , - v

Ust (”I + “)1’1 + (2513,1132 + fi)P2 + 'Y'Pa'

Next we have . _ .. _

(1721705 m,(2m,p, + 2162122) + ”2 i “221’1 + (2‘31 + 3:2)1’2 +~712P3}

—(wi+a)P1“(2x1w2+B)P2=(wi+a).P1+(2w1m2'l'l8)Pz+'YPs' V

From this relation

2:»? + 111,101,, = 2111: + 2a,

2111,1112 + 2m,a1, + wzflx, = 4mm, + 2/3,

$271] =,'y,
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so that

a E mgxdms! “'1 mu), :8 E 90310063, ' ' '1 in»)! 'Y -=— wz”(9331"'1 90”),

and ' '

UJEWHUOWP.+(2w1w2+w2#)r.+w.vrs (vac).

Introduce :71, = fdms/v and denote the new arbitrary functions in the

coefficients of 19,, 17,, by 1,, 11,, respectively. Then

fisfa (”I + 9357010. + (2x1w2 + wil‘xh’z + ”253‘

Introduce again

5’1 = ”1 + w2¢(m39 ' ' ‘1 mu),

and choose <11 to satisfy

h1+llll¢_¢2+¢ra=o'

.Then

UifE filial + [251% + ”3/3033, ' ° '1 a’71)]1’2 + “2193’

where, for brevity, we substitute

. 4/”! -'A¢P(w39 "'1 ma); ”1*2‘fi-
Now Introduce

5.32: z‘f’(ms, "" mu), 51=f‘l’dws1

in which it must be difierent from zero. Leaving off the bars, we

have finally

Ufacc’p +21c1cp +wp

andthus the G’,3 3 l l 1 2 2 i 3’.

 

 
1719' ”1171 + ”21729 mIPl + 2115:0211, + ”21’s -

  

II. Let the three transformations satisfy the structure

(are) .= 0. (M) = U.. cur.) = .U.

(1) If two linear independent relations exist among the transfor-

mations, then asin the preceding case we have

U,,fap(m,, "'1 ”$291"me “(mu "'1 at)?”

if, as usual, we assume that U,f a 12,.
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Since the path curves for U,f and U,f are the same, we must by

the preceding section take

UZf=wkpl (k>l).

Substituting in the structure

(P1: ”171) E ”x1171 31719‘ (9312,11 ”171) 5 431.1315 cal/.171-

Hence for this case to exist 0 = 1 and

as ac,+ a(a1,,, ---, a1").

Introducing 5, = w, + a, we have (7,fa a1, 1),. Hence the G
'3

 

1719 ”1.171, “11’1 (k>1l .

  

(2) If one linear relation exists, we have four cases as under I,

page 8.

(i) 4 P1=09 P2'Ps=l=09

so that '

were“ mum. 0210+ aces new.
Hence for (U, 0,) = 0 , we must by the preceding section have

afar“ afar» Uifa Pp.-

Evidently this case gives a contradiction under the above structure,

so that there is no G’, for it.

(ii) P2=01 'P1'P3‘=l=0"

In this case

[Is/‘5 P95? "'1 ”11)qu Urn/‘5'; ”(‘81, "" ”n)U1f'

Hence by the preceding section we must take

(Affirm szsrp UifEPm, ..., mp.-

Applying the structure we see that this case holds only when 0 = O . -

Then 11,, = 1, pg: 0. Whence-p a :11, + a(:c,, - - -, 1c"). Putting

(c, =- w, + a, we have Uafa- 51,12, and thus the G, '

 

 

, P1’I’z’w1p1

(iii) , p3=0, p,.p,,=l=0.
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Hence U2f —:—1 p(w,, .. -, w")U,f, and by the preceding section, we

have .

UifEPn szE 1321),.

It remains to determine U,f, for which there will be two cases and

which according to hypothesis is not linearly connected with U,f and

sz. Now U,f== 0 (i=1, 2, 3) form a complete system, of

which, since two of the equations are independent, there are n — 2

independent solutions. Now we make two cases according as E, in

U.5)“ 2‘. 6.12.-

(a)'Is not zero; or (6)1s zero. .

(a) .Ez(wl, "'g x”) + 0.

' 1c, and w, are not solutions of the complete system and can therefore be

introduced as new variables. Introducing alsoi: =1]rj(:v,,-- , :1:),

(j = 3 , , n) where the p, are the n — 2 independent solutions, we

have "

Usf:51(‘1’1’ ""53n)1’1+E2(‘T’11 ""5’n)132'

Leaving OR the bars and applying the structure, we have immedi-

ately E, a :r, + «($2, - "1%),52 E (1 — c)w . Introducing again

5:, = x, + 41(w2, - - -, m") and choosing it so that

01—11) + (1 — c)m2¢,,= 0,

we get

mama—Mp. ‘ (1+1)

Thus we have the group

 

 
P1! ”2291’ (0,1), + (1 '_ °)w2P2

(b) 520'?"‘ mn)=o'

In this case x, will be a solutioncf the system, but at least one of

the variables, ac, (say), will not be a solution. We can introduce as

new variables91,-—... 91,, a1, = 27,, and the n -— 2 solutions

532:“:29 mjé'd’xwu "'1mn) (i=41”'1")-

if; £10731, "'1 5’31.).131 '1' €a(i11”'1 ‘7’")133'

 
 

Then
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14 WILLIAM B. STONE.

Leaving off the bars, and applying the structure we find

5, = {31+ a(w2, --., m”), 533 = 3032, .. ., m“).

Introducing again

51=w1+ «We, 90.)} a=fd—”3,

and determining (I) from a — 4> + 31623 = 0 , we have

Ufsxp +12.

Thus we get the G, 3 1 l 3
 

 
P19 x2191, (3,1)1 +J’a -

(iv) Pl'Pz'P3=i=0'

By §1, we must have in this case,

(71.10515, Ifzfapz'

UnfE 9(a)“ .. .’ mn)pl + 0(a)” ' ' .’ wn)p2'

The structure,gives -

 
 

Then

(1’1, PP1 + ”192) E P251271 + ”x1172 =17”

. (mmm+@namm+%m=ww

whence ' ‘

p5 ”1+ a(w3, -u, at"), as cx2+ 3(w3,V---, m”).

Ifc+ 0, we can put

I3

ml=xl+a,w2=m3+;._

Then fig,fs w, p, + cmzp2 and we have the G,

 

 
p1,p2,w,p1+c:v2p2 (0+0) .

 
 

If 0 = 0, put (7;, _=_. ,B(a:,, - - -, w") and we have the G,

 

 
P1} 172" ”1191 + ”3P2 - .

 
 

(3) Finally let us suppose that no linear relation exists among the

transformations. Then by § 1 , we must have

Eprn Mfapr

Now, since U‘f= 0 form a complete system of three independent
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equations, there are n — 3 common solutions «#40231, - n, w"), ...,

drugs“ ..., :6"), (say). ,

Introducing as new variables

51:37” ‘52:“), 53:51:,” Ej=¢J(w1"”’ mu) (i=4: mi"),

we have (7J551(55n ' ' ') an)271+52(531’ ‘ ' "5n)1-’I+Ea(§’n ‘ ' '15..)103-

By the structure '

I (P1951191 + 52192 +5311»; £12,171 + 52,1172 +5331P3=P19

(1172,5131 +5215 + 53173) 5 51,2171 + £23,172 + 531,193 = 6P2!

whence

51: “31+ “(x39 ' ' " mu), E2: cwz'i‘ 30% ‘ ' " mu), 63: vy(m,, ' ' Wm")

- By hypothesis ry cannot be zero. Introducing

 

fil=wl+¢(w8’.u’mn)’ i2='mz+‘i’(a’s""’wn)! 5:3: 7’

and choosing <1) 11nd,?" so as to make the functions in El and If, disap-

pear, we haveM M

(73f; w1P1+ 6‘”sz +P3?

and thus the group

 

P1, 172’ ”1P1 + 0902294 +173
  
 

The treatment for the remaining stru'ctures'is quite similar to the

preceding; we shall therefore not give the calculations in detail, but

shall, in concluding this section, give the results in a complete table

of all 03’s classified according to the various structures.

1- <U.U.)=Up (Inmate <U.U.>=U-

 

   
Pu m. w? 291 Pu 93120. + «32102, w§p1+ 2mm + was

 
 

 

1319 $1191 + ”2192’ ”“91 + 2w1w21’2
  
 

 

  
P1, (”1171 + $2192, wiPl + (2miw2 + ””132
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II- (IAU.>=0. <U.U.>= 0.. (U.U.>=cU.-

P1, ”1:171, “’1P1 P111721 ”1P1 1’1! a32131! mlpl+(I—6)w2p2

  

    
  

 

    
P19 “2P1! wipr‘i'f’a P1, P2! a’11’1‘i'0‘132102 P1? P21 wipi'i‘wspz

 
 

 

  
P1! P2, mlpl+cw2p2 +173

111- <I/1II.)=0. <U.U.>=U., <U.U.)=U.+U.-

 

 

 
1’1, {132121, mlpl “P2 P11 172’ (”1 + $015 +xzpz

   
 

 

 
121. 292, (901 + rem + 96229. +125

IV- (UK/DE), (UlUs)=Oa (1720;)=U1-

pnrzswzp. . puppwzpfiwjpz (j>2) 231, ppwzpfipa

V- (,,(,Jil/'2)=0s (U102)=0, (U202)=0'

 
 

 

      
 

 

 
' {191,202, Pa 291,102, map. + F061, ..., $0191

  
 

 

   
pnwmnF(wza--w%)p. Popper. (j>2)

 
 

§ 3. Normal Forms of the G’,’s of Space.

It is known (see Lie’s “ Theorie der Transformationsgruppen,” Drit-

ter Abschnitt, Kap; 28) that the G,’s of n-dimensional space satisfy one

of the structures I, - . - , XII below. In each case, the G" contains a

sub- 03 for which we-can assume one of the normal forms established

in the preceding section. In the following the fourth transformation

of the G" is determined from the fact that it must either be connected

linearly with the transformations of the sub-G's, or not so connected.

1. Suppose the transformations of the G, satisfy the structure

(U102)=U19 (U101), = 2U» (020;) = Us, (H174)? 0

i (i: 11 21 3 )- '

For the sub-G3 U1, U2, U,l of this structure, we have found in the 3'

preceding section the‘following cases: i

 

  
6) P19 ”1131’ “£111
 

 



  

 
 

 

(ii) P19 wlpl 'i' ”2P2! mi P1 + 2x1w21’z

I (iii) P11 ”1P1 + $2132, wip1+ (2:31:32 + maps

(iv) P11 m1P1 + “’2 P2! mi P1 + 2w1m2P2 + maps '

V Putting
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Further, we have for each of these cases the subdivisions

'0) magma or (2) magmas

the p, being functions of ”11 . - -, m”. We 'shall proceed to consider

the cases and sub-cases for this structure in order.

(i) U1f=1719 U2f=m1pii Usf=wi171°

(1) For this case

iféiglp', Uaf-E “931’ "" ”0191'

The structure shows that E: 0 , hence there is no G".

<2) mailmwagmnmm

17,f = 0 (k: 1, - - -, 4) form a complete system of two members;

hence there will be n — 2 solutions independent of each other and of _

“’1' Since U4f is not connected linearly with U1f, - - -, 173f, at '

least one other variable, to, (say), is not a solution. Suppose the

common solutions are «#30111, ---, m"), ---, ¢”(w,, ..., to"). We

introduce as new variables

and obtain. 51 = m“, i,= mg, i=-‘kj(”1’ ° "’ m“) ”=3, "'1 ”)1

Ulf=17n if=531i919 Usf=53iii1 III-f: £151 + 5213:,

E1 and E, being functions of fix, - - ., in.

applying the structure we find

5150’ EzEB(m39"',wn)$0
.

dm,
as. 7,

Leaving oil? the bars and

 



A
A
‘
.
a
r
m
y
-
x
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we have ifa 132, and thus the G,

 

 
a, 93.20., win, 292 -

(ii) Ulf=P11 U2f=m1p1 + $2192, U3f=mipi + 2431:1721)?

(1) UJEEmergent--«.w.>p.+s.<w..---.w.)p.-

By the structure

(U. U.) 55,211.14. 15,522. = 0,

(U, U.) —=- 932(5),,1’. + £2,302) — Em. — 52222 = 0,

(U3 U4) 5 2x1(EIP1 + 521%) "' 25101311), + ”2172) '- 2x1EzP2 = 0'

Whence

 
 

,. ”£1= 09 52=m213(mav "'9 m”) 4= 0"

Puttingfig =’B(m3, . - ., as") :1: const., we have the G4

 

 
P19 ”1P1 + ”21329 wifh + 2w1wzpz’ $293315 ~

If B = const., the G, has the form

 
 

 

P1, a’11’1 + ”2P2! wifh + 231372132, ”2172 -

3

(2) U.f$ 2} U.f-

As under (i), we can introduce new variables so that

vhf—=— E1031! ' "1 5°in + Ez<wn ' ' 'v ”0192 + 63(“711 " ', wn)P3'

By the structure

.315 0" Ezawzflws, "I" 5”»), 535 7(w31"'1wn)=i= 0'

Introducing .

  
 

d_w._
a’11'=“’24’(w3’_"'9mn)’ is: 'Y

and choosing 41 so that ,8¢ + 7%, = 0, we have

vhf-1173'

Thus for this case we .get the group

 

  
P1, a’11’1'i‘ “2P2, wiPl + 2m1w2p2’ P3 '

  



 

 

 

 

-
.~

.
.
.
_
_
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(iii) U1f=29u U.f=w.201+w.p2, Zf=w§p.+(2w1w.+w§)m-

<1) magma-f: sen -~.w.)p.+5.<w.. ---,w.>p.-

The structure gives the conditions

(0301) E Elna + £2,110. = 0.

WW.) 5 w.(£..,p. + 52,102) — £1171 - 5.10. = 0,

(0.3174) 5 (2W1 + m”(£1231 + 62132) _ 251061111 + “2172)

_ 23152172 —' 237252272 = 0 '

/ ‘ From the third relation §1= E2 = 0; hence there is no G‘ for this

08.88.

"(2) was ZPUJ

As before, we can introduce new variables so that

Usfs 51(w1’1.»5'7"=§9yi)1’1+E2031, ' ' '1 man’s + £30319 ' ' '1 “Jps'

Hence by the structure,

(UIUJE £1,1P1 + 5211?: + £315,133 = 0’

(0204);- 513451753191 + grape + fanps) '" 51271 — Ezpz = 0! _

(”NOE(2w1+w2)(§1P1+Ema-251901151+962P2)-2(931+wz)52102=0
'

From these relations

£1=E3=03 ESE 7(m3""’wn)=i= 0'

Introducing

— _ in

we have Efsps.

Hence we find the G ‘:

 

 

P19 m1131+ ”2P2, miP1‘+(2x1m2 'i' mg)?” Pa -

(iv) U1f=p19 02f: {”1171 +172?” 03f: wip1+ 2wlw2p2 + 1172133-

(1) Wagswamm ---.w.>p.-

 
 

 



z
a
p
-
1
x
;
@
2
7
5
7
;
"
:
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The structure gives the conditions

(U1 U1) 5151.30. + 52,120. + 53,120. = 0.

(UM) 5 ”£51,391 + Egg-p. + 53,, ~12.) -— 51p. —- Esp. = 0.

((7.01) E 2w.(E.p. + $220.) + mm. + 52,310. + Ems.)

Whence
— 2519131191 + (11210,) — 52(2‘1’11’2 + 103) = 0 _'

£1 E $300,, " ’ ’ “'11), E: E 2m2x3a(m,, " '1 $11) + ”26(w4’ ' ' ' ’ wn)’

E: 5 ”30‘0”“ ,mfl)+a;3,3(m‘, "'9 mu) + 7(“719 1 mn)’

so that

([th wzapi + (2m2msa + (3)172 + (mid + “’33 + 'Y)P3‘

(a) «mum. w.)=4= 0-
Introduce

E2 = m,a(:c,, - . - , m"), 7.133 = 513301011“ ---, (on).

Then (omitting the bars)

6 .

04f; a321,1 + 2x2(w3 + §)P2 + (m: + $33 + MOP;-

Introduce again

3 l3"
T’Us=w3+"2‘1 fi4=a'V—-4—=i=con3t'

Hence

 

 
P19 m1P1+w2P21 wip1+2m1m2p2+w2p3$ wzp1+2w2wapz+(m§+m4)f’a -

  

If my — 182/4 = const., we have

 

 
P11 ”11714482?” wiPi + 2m1xzpz+mzpv m2p1+2w2m3p2+m§p3 '

(b) .a(w,,---,w")1=70, B(w,,---,m,t)+0.

Introduce
.

52=x2fl, 533=m33+ry, 54=l3=f=const

  

Then

(3059—05323 +5513
and we get the G, ‘ 2 4 a 3 4 39

 

 
P19 “71131 + maps! wipl + 2w1a’2pz + ”21939 ”40172192 + maps) °

  

 

 



“
a
,
u
p
»

..
é
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If ,8 = constiwe have-

 

 
Pl ’ wlpl + wzpzi’ inf?! + 231532132 + a72203, :1:sz + ”31’: '

 
 

(c) If ,8 is also zero, vy 4: 0 . Then introduce 5§= mz/ry, E3 = ms/vy ,

and we have the G4

 

 
P19 “1131 + (”21729 xi P1 + 2:0le1): + “’an P3

(2) W 42 2:3,, Um

 
 

V As before, we can introduce new variables so that

04f; $50319 ‘ ' ‘ i ”91%

By the structure we get, as in the preceding case,

UifE ”zapi +V2m2“(a:3a + g)” 'i' (mid +.w33 + V”): + 81749

a, B, y, 8 beingkf’unctions of m‘, - - - , m“. .

8 cannot be zero, so that we can assume that the coefiicient of 10‘ has

been made unity by the substitution

_ da:4
w‘ = T-

Then

3

' Now by assuming a = 0, which is certainly one value the arbitrary

function a may have, and by introducing as new variables

_ dz _.

:11); fig i—frye fadz‘. div“

(7‘)“: P4‘

_ -ffldri _.

a: _:vze , 11:3

we find

Thus we get the group

 

 
P19 mlpl + “721729 wipi + 2131:3217: + a32PM P4

 
 

This group is simply transitive in the four variables 90,, . - ~, m‘.

Hence by Lie’s “Theorie der Transformationsgruppen ” (Vol. I, .
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page 340), all types under this structure and subdivision that arise

when a :1: 0 and n = 4 can be transformed into the above given form.

Moreover when n > 4 , the variables m5, - - -, on" play the r61e of con-

stants. Hence all G73 belonging to this type—i. e., which have

this structure and are simply transitive with regard to ml, - - -, ag—

can be transformed into the above G4 by a proper choice of variables.

II. Let us consider next the groups satisfying the structure

(U101)=(U103)=(U2U4)=(0¥74)=0{

(U2U3) = U29 (0.10;): U.-

For the sub- Ga, U1, U3, Us, we having the following cases:

 

  
 

 

  
 

 

  
 

 

(i) Pu P2, ”2P2

(ii) p“ 96.291, — 902202

(iii) g 1)., 12., map. + 062292

(iv) 27., p2, $2222+P3 .
  
 

(1) We will consider first all the cases for which

3

Uth glpi<wv ' ‘ " ”MUM"

(i) For the case (i) above, . v .

. UifE Ex(w1’ ' ' "wn)p1+sz(w1.’ ' ' '! $0212.

By the structure. we find immediately

£1 5 x1 + “(my ' "’ (an), E: E 0'

Putting 5:1 = ml + a, we obtain the G",

 

 
P1! P29 $21129 ”1P1 -

 
 

(ii) Likewise here

04f; 510”“ " " 93..)1’1 +5031! " " mn)1’2'

The structure gives £1 E ”1 + a(m3, in -, m" ), £2 5 :32. Hence putting

il==w1+a,we get the G“ ’

J,

l
l

      



 

‘
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P1! ”2P1, "wzpz’ w1p1+w2p2 -

 
 

(iii) The structure gives no new G" for this case.

(iv) For this case

3

UAfE Ego“! "" ”01’."

By the structure we find

£1 E ”x + “(”0 ' ‘ " mu), 525 Eza+p(z4....,z,,), E3 5 70”“ ' ' " mn)’

If a and B are not zero, they can be made to disappear by the new

‘ variables

 

iin= ml.+ a, 53: ms + 3, 52‘= ey(m‘, ---, a3") :1: const.

“Thus we obtain the G4

 

171’ 172’ a32172 +Pa’ $1171 + 681% .+ ”4P3 -

 

If ry = const., we have
/ t

P19, 272, “322’: +173, ”1P1 + ‘1st + cps

 

  
 

(2) We will consider next the cases for which

3 n

UifEF EPaUafE E55931, ' ' '9 “01’."

(i) In this case Uhf= 0 (k = 1 , - - - , 4) form a complete system

of 3 independent members; hence there will-be n a 3 common solu-

tions, 1h(ml, -- - , mu), - - -, ‘I’..(wn . --, w"), independent of each other

and of ”31a wz, and at least one of the remaining variables, m3 (say).

Then we can introduce as a new system of variables

51 = “71’ E2 = :02, E3 = ”39 fij=‘i’j(mn ' ' '9 mu), (i=4: -,~-, ")~

By these Ul, U2, U3 remain unchanged, and

(74f; £12.31 + 52.552 + gag-’3’

2‘ being functions of the new variables El, - - -, 17;". From the struc-

ture we find immediately

 
Uth ”1P1 +193,

   



:
:
_
-
.
4
_
"
—
.
‘
5

I
'
«
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and thus we havethe G',

 

1’1! 1’2, ”2P2, wlPl-l-ps
  
 

(ii) As in the preceding case we have

3

U‘fa 555(“1’ "'a mu)?“

and by the structure we find

Ufawp +9310 +10.

Hence the G" ‘ 1 1 2 2 3
 

 
PH ”2101! “IP21 wiPi‘leaPz +193 -

 
  (iii) For this case we have to make two subdivisions, according as

E, = 0 or Es =|= 0 . -

(a) E, 4: 0. Then we is not a common solution of the complete

system, and wewcan introduce, as above,

51'2”” a2:562! fi3=m3, ‘5}:4’} (i=4,---',n).

Then

__ 3

04.105; 5.001, "" mm)?“

and we obtain the G, '

 

 
PM PM ”327144”sz ”11’: +msps -

 
 

(b) E, =' 0 . For this case as, is a common solution of the complete

system, and at least one of the other variables x“ - - -, m" is not a.so-

, lution (say, an). Then we can introduce as a new system of variables

 t fil=xn £7},=a:z, 54:“? Es=wv Ej=‘f') (i=5-"""h

' the first three because they are not solutions, and the last n — 3 be-

cause they are independent common solutions. Thus we get

: EfE El(5:l’ ' ‘ '9 03,013. + Elfin ' ' " iNIB: + E4(&l’ ' ' " :13) 1-74-

. Applying the structure, we find

. ((711705 51,1191 + 5241’: + 54,120; =P1’

‘ (UiUA) E 51,2171 + £22,172 + 541,1); = 0’

((73174) E ”apt -' gape = 0‘        



   

‘ Whence .

l
d

4
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Hence this case holds only when x, = 0 , which is impossible.

(iv) For this case

We25% 9601».-

The structure gives the conditions

4

(UIUA) E {gig-3,11); =P1’

4

(U215) E Efinlk= 0,

4 .

(173E); EEII,PI»" E2772: 0'

£1 E “’1 + “(”0 "" wn)’ £25 13(va- 'a ”0“"

5357054, ""wu)’ 5458(wu”'9wn)'

E, can be made zero and E, can be made unity by the introduction of

new variables. Also ifgwe assume B E 1, we get a G4, to which,

being simply transitive in four variables, all groups under this case

will be similar, as on page 22. Hence we obtain the G‘

 

 
P1! P2, “721’: +P39 wipi'i'é‘apz +174 -

III. Suppose the four transformations satisfy the structure

(Ule)=°’ (U1U3)= 0. (UzIL)= U“

(U101)=0Un <U.U.)=U.. <U.U.)=(c'—1)'U.. «+1»

For the sub-Gs, U1, (7,, Us, we found in §2 these cases:

 
 

 

  
 

 

  
 

 

  
 

 

6) P19 P29 ”21’: '

(ii) , _ P1: 1’2, ”22’: +33st

(iii) I I , 22.. 10.. who. +10. .

To these will be added .

(iv) P1, ”2P1! ‘1’: a
  
 

which as a G, is the same as (i), but these two give rise to different

Gis. . - ‘

 



3
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1
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(1) As before we will consider first all the cases for which

3

UlfE gPiUif-

(i) For this case I

Uif-E 51(‘1’1’ ' ' " mn)2)l + 52(‘1’1! ‘ "’ 90..)1’2-

From the structure we find immediately '

E, 5 cm, + a(w3, -- -, :13"), £2 E £13,.

(a) If 0 =1: 0, put :3, = cm, + a, and we have the group

 

P1, 172’ “721,19 “”1131 +£11.21), -
   

(b) If 0 =0, put 53 = a, and we have

 

 
P19 P2! $2191, m3171 + “72292 .

  

(ii) Here also

(7le 51(‘1’1’ ' ' " wn)1’i+ 52(931’ ' ‘ ', w..)P2~

Wéifind9from the structure that c = 2 for this case to hold.

Then follows that

E, E 2231+ (1(903, ..., m"), 5,5 ma.

Putting il = “’1 + a/2, we obtain the group

 

171$ P29 a72191 + ”3192’ 241312), + “32132 -

(iii) For this case . . ‘

Uth-EIW’U W mn)pl + E20131, "'3 a3:.)1924' £3031, "5%)173‘:

Substituting in the structure, we find

E, a cat:l + aura, -- -, w“), E, a (c — 1)::23 + 7(w4, ---, w“),

£25 {132 + “ta E mz + 189”“ "" wa)‘

   

a a 9033 + Mm“ ---, w").

7L and ry can be made to disappear in the usual way.

Then introduce as new variables

(3, =11?! + 3034’ "'I wn)‘ma’ E2=wz + 3(‘34’ "" w”).
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Thus we obtain the group

 

P1: P29 ”22’: "l' P3, cmlpl + “72172 + (c - 1)a’sp3 °

(iv) For this case

UifE 51(‘1’1’ ' ' " wn)pl + £203“ ‘ ‘ " mn)P2'

By the structure we find immediately

5, a cm1+ a(w3, ~--, w"), 52 E (c — 1)a:2.

(a) c 4: O . Introduce c5), = ca:l + a(:c3, . - ., w”) . Then we have

  
 

 

 
, P1, “’21’1’ —Pz! cwiP1+(° _ 1):!)2172 -

 
 

. . (b) c= 0. Put 533 = 01(903, - ~-, a3") 4: const. Thus

 

 
P13 “32291, -192, “(cpl—map: -

 
 

(c) c = 0, a =‘ const. , Then we have

,/
 

P1, ”321,1, P2, 271 —a:2p2 -
  
 

(2) We will next consider all the cases for which

3 'n

UcfElE {23%me £5031, "",mn)1’a'

(i) For this case we can introduce new variables so that

3 V .

(7le glficvl’ ' . .’ “WP."

Applying the structure and reducing in the usual way, we obtain

the group
 

P1! P29 wzpl’ 0“31171 + ”21’: +293 -
  
 

(ii) Here we have-to make two cases according as

83:0 or 534:0.

(a) £3 4: 0. Then since there are three independent members of

the complete system, obtained by writing U,f= 0, there will be

n — 3 common solutions, independent of 11:1, wz, m3, and of each

other. Suppose these solutions are 1]»,(wl, - --, w"), - - -, dance“ - - -, w”).
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Then we can introduce as new variables

51:33:, fi2=w2, fia=wv Ej=¢j(wn ' ”’wn) (j=4' " " ’0’

and thus obtain

[74.105 5(fin ' ' ’9 5301'"; + 52(531, "'9 ‘7’")fiz‘l‘ £3051, ‘ ' " 5.)133- 2

Applying the structure we find

(5f; 641211), + “32192 + (2 ‘ 0):”st

and thus we have the G"

 

 
p1! P2’ i”2191+ ”3P2, “”1171 + “72192 + (2 '_ (0:331), l.

(b) E, = 0. In this case ms will be a solution, and there will be

only 72. — 4 others, «Meal, -- -, w”), - - -, V3001," -, m”). At least

one of the remaining variables, m‘(say), must not be a solution for

this case to; hold. Hence we can introduce as new variables

fil=mv liz=tv2,i- 5:,=w‘, 53:11:” ij=~p~,(w,, ' - -, in") (5:51"? ")-

Then

Efa 51(5’1’ ’ ’ ’a 5..)2'51 + E2031, ‘ ' " ‘7’»)I72 + E4051? "" 55..)174-

From the structure we find, leaving 01? the bars,

E, .=_ 2ml + «(my .. -, w"), 53.5 my 5‘5 7(933’ ' ' " mu) 4: 0'

This shows a = 2 for this case.

Now introduce

_ _ div
wl=wl+¢(ws"”’mn)’ w‘=f_ry!’

and choosing 4: so as to make the arbitrary function in E1 disappear,

we find

* Ufa2aip+wp+p.
Thus 'the G" i I l 2 2 ‘

 

 
P1’ P29 mzpi + ”3132’ 2wlpl + maps +174 -

  

(iii) We can introduce new variables directly so that

”US$549?” " " ”0174‘   
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From the structure, we find immediately

Elacwl+a(w,,-~-,w,.), Ezsw2+l3(w., ---,w,.),

£3 E (c— 1);”: + f70734, ' ' " mu), 54 5 8(90‘, ‘ ' " mu) =l= 0-

E, can be made unity by the substitution

_ da:

{13‘ ..=_. fT4,

and 11 can be made to vanish in the usual way. Now if a and» [3,

which are arbitrary, have the value zero, we obtain the group, which

is simply transitive in four variables

 

 
P1, P2, wzpi'i‘Ps’ cwlpl + “52292 + (c— 1)w3p3 +P4 -

 
 

To this group, being simply transitive, every group under this case,

when n = 4, must be similar, whatever be the forms of the functions

a and [3, according to, Lie’s “ Theorie der Transformationsgruppen,”

(Vol. I, page 340).‘/"Th'e" remaining variables (as, - - -, at" play the

’r61e of constants in the arbitrary functions, and do not affect the

equations of transformations in four variables, that would transform

any type into the one above. Hence all Gis belonging to this type

can be transformed into the above-given 0,.

(iv) Finally for this case, we can introduce new variables so that

3

(fifEEPavif'

Applying the structure and reducing in the usual way, we obtain the

group
 

 
P1, (0,19,, P2, cw1p1+(°_1)w21’2 +Ps -

 
 

The treatment for the remaining structures is very similar 'to the

preceding; we will therefore not give the calculations in full, but will

in concluding this section give the results in a complete table of all

(His, classified according to their structures. -

I'(DIU;)=UU (UiUs)=2Ué, (020$)=Uu (UaUk)=0

' , (i,k,=l,2,3).  
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P1! “71171, with, P2 P1! wipi'l'mzpzi miP1+2miwzpv 1132533112

 

 

 
Pp ileI‘l‘ m21°29 wipi + 2m1w2p2, ”2 p2

 
 

 

 
P1, ”1131+ “’an with + 2m1m2p2, P3

 
 

 

 
Pl, a:11)1-i- $2192, wiP1+ (2:13le + w§)p2, 1’s

 
 

 

1’1! wlpl+w2p2’ wipi+2w1wzpz+wzpv m2P1+2w2m3P2+(m§+w4)Ps

 

 

 P1, “1P1 + wzpz’ mi P1 + 2:155!)sz + “2133’ m1p1+ 2272233792 + ”3P3  
 

 

P1, 93,101 + wzpz’ mil): + 2w1a’21’2 + wePs’ {1501:2122 + ”3103)
  
   

 
1’1 , wiPi + $2192, wiI’I + 225123215 + ”2P3? {E2172 + ”31’;

 
 

 

 
I 1,1,1: 331171 + szza ”3% + 2mim21’2 + :”2173’ P3

 
 

 

 
19., 76.22. + 962292, wfp. + Zena. + 902293, 19.

11- (UIUI)=(UIUE)=(U2UI)=(IUL)=°a (UH/'3)=Uz,

(UlUI)=Ul-

P1, P2, $2192, $1191 PH “321919 ”2P2, ”1P1 +5021),

 
 

 

    
 

 

P1, P2, ”21’: +1939 wiPl + gapz +w41’3
  
 

 

 
‘ P1, P2, ”21’” {”1171 +193

 
 

 

  
 

191,172, 5”ng +193, 931131 + elapz + cps

 

P15 wzpv'wzpsa wlpl + w2P2+Ps

 

 

P19 p2, ”.5101 + ”2P2, ”1P1 +w3P3   
 

 

PULP” 532192 +173, wlpl + craps +134
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4 111- (UIUE)=(UIUE)=0a (U;U.-.)=Un (UIUI)=°Un

I (UzUI)=U2, (030;)=(0-1)U3 (n+1).
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P19 map” P2, Pl_w2P2 I

IV- (IflU2)=(UlUS)=0’ (UzUa)=Uu (UIUI)=2U1,
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191,192, “321°14'29” (2x1+2m§)P1 +(x,+w3)p2+w3p3+p4

V- (U,U,)=(U,U,)=0, (U203)=Un (Ultfl)=Ul’

(U,U,)=U2, (UaU4)=°~

1’1, 1’2! a32171! “711714432772 P1, 972171, 172’ ”1P1

 
 

 

  
 

 

 
271’ 1’29 {”2191 +Pa, 231171 + (”2272 + F(m4, " " ”Ops

 
 

 

   
P19 172’ 932131, ”1171 + {”2172 +173 1’1 ! 5”2171’ P2, ”1P1 +P3

 
 

 

 
1’1, 1’2, ”2P1 + map-v 931271 + “’21’2 + “33293

 
 

 

P19 P2, wzpi'l'l’s’ 931291+w2pz+174 V

VI- (Uilfl)=Ul’ (U2UI)=“Uza (U301):ch

  
 

 

  
 

 

 

 

(U.Uk)=0 (i.k-—~1.2.3)

I M121, aezpl, F(w2, ---,wn)pl, mlpl (a=c=1)

1’1, 1’2, “’3st “1P1 + “”2172 01:0)

P1, ”31919 P29 “312’: + ca’21’2 (“=1)  
 

 

  
 

P1, P2! ”32,1 + F(ma9 ' ' " mn)P2’.mlpl + maps (a=o=1)

 

 
P1! P29 173’ (31]), + “”2272 + “”3273

 
 

 

 
P1, “2171’ F1032, ' ‘ " mu)?” 931191 + F2032, ' ' " ”0P4 (“=1)

 
 

 

  
 

 

 
2’1, “’2?” 933131, Pli‘l', (1 " a)a32p2+ (1 -' 6)w3p3

 
 

 

 
P1, sz’u wake/(14)?“ “31291 + (1 "" (1)5021),

 
 

 

 
P1! P2! ”spa! w1p1+aw2P2+P4 _ (4:0)

 
 

._1’1a {132191, w5P11p1+(1—c)w3p3 (“=1)_

   

m
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p19 “’22’1, logw2pl, cm1171 —~%P2
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P1! 292, m3p1+ $4132! c("1191+“- + ”Tape—pa + ”4P4

 
 

 

 
P1, P29 w3p1+ rape, 013,221+ (1 + c)m2p2 "Ps
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P19 m21319 “’2 P1, “’1 wrpi+m2172
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P1, P2, 2%?1—‘5337’13 wipz-Pa
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29., 202, psa'(w.+w.)20. + (w. +w2)102+w3p3+p.

x. <U.U.>=U.fi (010:)'=(U.IL)=<U. U. =0 («3k=1.2.3)
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P1, P2, mapl'i'mipv P4
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XI- (TAU.)=U.fa (U2U.)=sz, (0301)=sz+ Usf’
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P1, ”3191’ [’29 (a), + 932%)1’1 + ”2P2
  
 

 

  
P19 1’23 1’3, m1P1 + (“’2 + $0192 + maps

 

 

 
P1, (”2271’ warn ”1P1 — “’ng

 
 

 

 
P1, [172’ 233172! :131191 + 532272—103

 
 

 

P1, “33131, 172,1(5111 + m2w3)p1+ “32292 + F033, ' ' " ”0194
  
 

 

 
191’ 1’2, m3101 + (”4292’ “31171 + {”2192 _P4

 
 

 

P1! P2, Pa, w1p1+(w2 + m3)P2 + maps +134

XII. (UN U1.)= 0 (i,k=1,2, 3, 4).

  
  
 

2 P19 “2191, F1(‘”29"‘,mn)Pn F2(m2'9”"i”n)2’i
  
 

 

 
P1, P2, 5”an F1033! ‘ ‘ " 5”in + F2012}, ' "’ ‘11..)192

 
 

 

 
P1, P29 w3P1+Fl(w3’ ' ' '9 mu)?” 172033, ‘ ‘ " my.)Pi+F3(wa’ ' ‘ " wu)]’2 l

 

 
1719 Pt, PM wipl+m5172+wsps

 
 

 

P1, “32131, “7313:, P4 P1: 902231: flWflPn Fz(a:2, "" mum
    
 

 

  
P1, 292, {"31929 Fm, "" ”"1374
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CHAPTER II.

INVABIANTs OF THE G, (r <4).

Having established all the groups of two, three, and four parame-

ters in n variables, we are next concerned with the finding of their

differential invariants when n < 4 . In this problem a division is to

be made according as y and z are functions of mg or z is a function

of a: and y. The calculations for finding the invariants for these two

cases are different and will be given in different sections.

§ 1. Invariants When 3/ and a are Functions of m.

In this section we shall give the detailed work for several of the

more difficult types, and tabulate the remaining results at the end of

the paper? Lie’s general method consists in equating to zero the

transformations after they have been extended, and finding the" solu-

tions of the resulting complete systems.

As is customary, we shall use 3/, , a, to represent the total first de-

rivatives of y and s respectively with respect to ac; 3/2, 22, the total

second derivatives, etc. The expressions by means of which the in-

crements of the higher derivatives are obtained were deduced by Lie,

and for this case they have the forms

d1)"__ dE . dt’"; d5 '
"(fig—éE-Q—yn—d—m’ {005 éxl)—zn%’

 

where 410,), Q") represent the increments, which 3/", a”, respectively

receive.

1. Let us find first the ditferential invariants of the group,

 

  
12,0612 + 3151.96”? + 2qu -
 

Calculating the increments of 3/1» 21 for each of the transformations

.by means of the expressions given above, we have for the once-

extended transformations :

' 36
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Uifsp = 0,

Uéfamp +3194; 0r+ Oq1 — em: 0,

.Uéfs 3221; + Zmyq + 0r + 2yq1 :— 2:1:zl'rl = 0,

6f 8f
(gls-a—yl, TIE—a—z‘l, etc.).

The first equation shows that a: does not occur in any of the invariants.

The second linear partial differential equation is equivalent to

   
of which the integrals are 2, 3/19 3/2., a u.

. Introducing these as new variables into U;f= 0 , the coefficients

in'the new equation can be expressed as functions of the new variables.

' Performing the operation, we get

_ Usf 07‘ + 91 + Oa—af_""0

The solutions of this linear partial differential equation are directly

2, u=_yzl.

To find the invariants of the second order, the transformations

must be extended twice. They then have the forms:

U’,’pr=0, .

(Inf: mp + 3/9 + 01‘ + 021 _' 2171— 3/222 _ 2227b: 0’

U"f= $21; + 2qu + 0r + 2qu —- 2mm

+2(3/1—my2)22_2(zi+2mz)rz=0'

The third equation can be considerably simplified by replacing it by

V: E U;’ — 2w Ug’f + m” Ui'f, giving

V’s’f- .01‘ + 2991+ 23/122 '_ 2%": = 0 '

it). Then the solutions of U’,’f are directly .

' z,y,,yzlau,yyzsv,yzzzaw.

Introducing these solutions as new variables into V’s’f, it becomes

73 =052+ 1+02759+2y16v_ ua—zb’

a:
7?

{i

As before, Uff merely shows that the invariants are independent of-

 



:
n
z
d
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of which the solutions are: a, u, 3/? -— 2v, y1+ w/u Hence the

invariants of the second order are

3/7“z

2'1

By continuing to extend the transformations in this way, the differ-

ential invariants of any order can be found; but the work becomes

very complicated after a few extensions and a simpler method is at

hand.

This method makes use of the differential parameter to find the

invariants of higher orders. If 4) is an invariant of lowest order, we

seek a function '

yi—2yz/2, 3/.

d,

9(m, 3/1 39 211,21, "'3 ¢93§>

which shall be a differential invariant whenever qt is.

Indicating by 8 the increment received by means of an infinitesimal

transformation of the group, we have, since d4: Egb’ die,

,2 » - 8d¢> = sad.» + ¢’8dw;

or since the operations denoted by d and 8 are interchangeable,

8¢_d__8¢ _,¢__,d8m

\

Now if qt is an invariant, it receives no increment, i. e., 84> = 0, so

that

I ,d3.
34) _=..— 21—:

This is the expression to determine the increment, which d)’ receives.

by means of a transformation-

Applying to the transformations of the group under consideration,

we have the following complete system:

Uf=a—Q='0,

a_n 3/9..“

U,,f:_m2:%+2my a—yn—2x:§:3—4), =0.
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One common solution of this system is found immediately to. be y¢’.,

Hence if qt is an invariant ‘under the transformations of the group

Ad) 5 yet’, obtained by multiplying the first derivative of 41 with

respect to a: by y, is also an invariant.

Thus, knowing the two invariants above of second order, we can

by this process find those of the third order; then applying the

parameter to them, find those of the fourth order, and so on.

(2) Let us consider next the group

 
1’19: 3117449 -

new variables

a: __ y _ 1
_. — z:—

z z’ z’

we change the group into the similar one

 

./5 ’ 2p, 29, yp+q .
  
 

The twice~extended forms of these last transformations are:

UiIfE “P "' 912191 — zi’h "‘ (ll/1% + 23/112092 _ 321527.11 = 0’

Ué’fE ”9 + ”191 + Z292 = 0’

Ui’fE 3/17 + 9 “' yiQI " 3/1217'1 '_ 33/13/292 '— (23/122 + 3/220": = 0'

v The solutions of the second equation are . ’ ,

a2, a, 2,, 22, 23/, — sly E u, 2y,— ,y as.

Introducing these as new variables into the first equation, it becomes

_ ' a ' a

Ul’ifazp + 0r -— sir, — 32,2er — W264;— (W.2 + 20505—5: 0.

The integrals of the Corresponding simultaneous system are

a: 1 zi‘ P u '0 us,

a, '—‘EP1’ ‘5 2’ —EP3,—2—TEP4'
” 21 ”2 2'1 2'1 gr
III

Introducing these as new variables into the third equation, we- have

_
2 ,

mtaor—’13§£+P‘P= ai—g—J:+oa—Jf=0,

a: 6P1 2 6P2 P5 6P4

.
'
_
'
-
_
«
.
—
.
-
.
,
A
»
-
-
J
v
'
k
'
“

" The invariants are obtained more easily if, by the introduction of the!
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of which the solutions are

2
- z

2’ 2zP1—P31P4’ Bria—P3,

or in the original variables

22 z —z y 2 z z --z
z"2w_;__(y1221 )5113 (13/223 23/1)EI2;

l l l »

a z —z
2 __ 3/1 IyEJ'z.

z1y2"223/1 21

By the method of the preceding paragraph, we find

=W
A¢ — ‘2‘; 0

Applying this to the invariants 12, J2, above, we find I3, J3 of the

third order, etc.

We will now tabulate all the groups of two and three para.-

meters and their total differential invariants. The classification is

made accgrding to the order of the first derived groups. The in-

variants are found up to the second order and we will use I,,.J,, to

represent those of the first order, I2, Jz, those of the second order.

The invariants of higher orders can easily be obtained by the use of 3 '

the differential parameter for each group, as explained on pages 38- 3

39. From these invariants, the invariant differential equations can :,

easily be set up by equating an arbitrary funCtion of the invariants

to zero.

02’s.

I. When the first-derived group is one-membered:

-2 _y _
[1] an“ .=y—:; 1.43;; J.=

 

2}.

zf’  

 

  
 

[2] P. wp+yq+zr =I.Ey.s £71521: 1257431.; Jeane;

A93 5 zet’.

II. When the first-derived group is zero-membered:

 

2 z— z ’

[3] P9 ”P: 15%; AEEEpJZEy—lz3/2
0.}. A¢E¢

s 1 "

z1 31
 
 

 

  
 

‘[4] Ps9=115y13 «Amalgam; Jags; Mae?
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d
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w
;
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';$=4’V

“elz=5f‘,_ffi,_§/iE‘I5,-Sz'fia'1":Mo+daa‘6‘d[6]

 

 

lz

.___=_:5E

51'tv£301+.—,,z—‘1'

1.

S‘s-2125’]E‘zfiol+,—%E‘I:bz+dm‘13‘(l[8]
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.76E‘PV

 

this-impair“flaws”;E‘fimz—‘I:az+dm(o—I)‘am‘5[L]
 

 

 
'.¢E¢V92135935913575152‘]:n+5‘am‘a[9]

 

 

34’54’V5‘55“]S‘fiE‘I:¢z‘¢m‘.¢[g]
  

:peseqmem-omqs1dnoaBpearIep-asageqanew'11

'955541V5“ea/3—Caz—“link?E“f.5‘e/ige-‘Ii/i-=-"I
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{Vi—Ft:

°‘zz/i
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Vi‘2

'%=¢Viii/77275:!173=Iidzm‘dw‘d[I]

 

 

   

paaeqtnem-99.1114s1(1110.13peauep-qsageqqIraq)“I
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It'HovasTVNOISNHIna-uso(9>.4)‘195mm
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lz‘.lfi

$=¢Vm='1’ I

 

 

 

573551#511:.;_—’zE‘I:,,+J/iébsd

 

5%A‘16
 

 3:”2W5:5'7'T=Id’i‘i‘d  
.lg.lz‘lz

———————.5‘

5(‘2z%‘—ze‘li)e=21.‘fiz—‘z/i[

 

I
‘2_zZ
 

“1—2:O’I"_—=I:5+Jfi‘bz‘dz=bz+dfi‘5‘Cl-

8   

1,.l
 

-—:¢v5:35?ffl=‘-.—,':I-——-‘I=55151.5
   

:pequmem-enos1anIBpeAuep-qsageqq11qu

_z__,I5;5,i<'

5:le'mtg’=“1“L:3—=.

 

Zfi—

I5,I5,
out—=-o. 13‘2"!“Iz—I'5+5/i+cl(/i+'c)‘1')‘d

   

‘z‘1,53

'35W(m)$=if

 

 

fi"Elf—=I:bli+d(fi+m)‘6‘cl

IZ

 

.‘i’E‘f’V£52.95?fizflEzIE‘fi'E‘I:.m—cl‘.tm‘.5
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[81]

'[LI]

[91]
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[51]

'III

[at]

[81]

[II]

[01]

av

.
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[20] p, q,zp+1}(z)q : [15%; £333;

1 1

J: yrs—«1122+ 5(2) — 2mm:
2— . z: ; Art—3%.

 

  
[21] M- :Lsys 27.52.; 1.525; 552.; A¢=¢’-
 

§ 2. Tke Invariants wken z is a Function of a: and y.

In this section the invariants when a is a function of a: and y are

found for the groups of two and three parameters. For the four-

membered groups the results are not given, though they can be

deduced, by a theorem due to Lie (see, “Continuierliche Gruppen,”

page 761), from the total invariants of the 04’s, which have been

obtained by the writer, though not given in this paper.

For these invariants, we‘Ishall make use of the following relations

to determine the increments of the partial derivatives:

d8z = 8pdm + Sgcly + pdb‘m + gdBy,

d8p= Brda; + Ssdy + rde + sd8y,

daq= Sada + Stdy + sdBm + td‘a‘y,

p, q, r, a, t standing respectively for

.6: :2. - s: 22: ' 933 '
6a: ’ 6y ’ 6:02 ’ 6m-6y’ 8y”

In the same way the corresponding expression for finding the diifer-

ential parameters is
'

d8¢= Sting-cilia + 8¢>y«dy+ ¢§d3w+ (by-(Ry.

5 I. Let us consider first the groups. of two parameters, which were

-. I’ found in Chapter I. V ’

(1) 6f 6f 6.5 6f

 
 

az: $57+y§i+zyz -

   

The twice extended forms of these transformations, when z is a

function of w and y, are

. . 6f 0

= 7
73?

 



-
v
—
-
‘
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a 6 6 6 a a 8

ma—f+y-a—-‘;+za—‘:+0§—£+Oaf— ra—f-—-sé§—t-£=0.

The first equation shows merely that the invariants do not con- I.

tain 2. Then the solutions of the second are directly

1), q, wr, we, not.

By using the above-given expression for the differential parameters,

they are feund in the same way to be

 

a: 2, 11:4)”.

(2) For the group

6f 21f
Ba: ’ 6a:

  
 

the invariants are found in the same way to be

42 1 108—91 pt-2PQHW
 

 

  
 

 

,r' MP, P5, P3 , P3 9

and the differential parameters are

4> qqh—___p_%

P 9

(3) For '

6f af
5;; 9 5?] s . .

the invariants are p, q, 1-, s, t, and the differential parameters

¢x9 (#u'

(4) For

if af

6m ’ ”6m

  
 

the invariants are q, t, r/p', 8/10 and the parameters (by, EM“-

II. We will now give in detail the finding of the invariants for

some of the 63’s, and tabulate the results of the rest.

(1) Let us consider the group

of 5f zif

5] 5? 777+"(2)631
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The twice extended forms of‘these transformations are

ex
55=°I

6f

W0,
6f 6f - _ ,6f ' ,af
255+?(z)@-P(P+9I7)g—Q(P+9fl)@—(3Pr+qm

a ,, a

+ 2Psn’,+ a” an”) 51;: (2108+ 2qsn’+ptn’+109”n +(1")7-1fif

I I/ a

—(2qs+pt+3qt17 +9377 )—a'—{=0.

The first two equations show merely that the invariants are free of

a: and y . The simultaneous system corresponding to the third is then

  

‘ §£_ dp __ dq _ d1-

0 —p(p + 972’) 79(20 + qn’) — 31M + qm’+ 220877’ +10%”

I'd-'3 1,5: dt

 

= 2108 + 2qsn'+ ptn’+‘p2qn”+ qr = 298 + pt + Sqtn'+ qsn’" (A)

Two integrals are immediately a, p/q, and. to find the remaining, the

difierential parameters have to be used. They are found from the

system .

dp _ d9 . _ 01¢. _ dd» (3)

P(P + 912’) " 9(10 + ant—10W. + ¢>,,'77') “9W. +4>,~n’)’

of which the integrals are (wt, —FAQ/91 (4’: + 45,; n')/p. Oper;

ating with these on the solution p/q, two solutions of the second

order are found to be

. q’r—ZP98+P”I qr—Ps+(qs—z>t)n'
————————- and —————,————.

sq“ . m

Equating 10/9 and these two solutions of the second order to con-

stants, using the second ratio of (A) with the fourth, or fifth, or

sixth, and eliminating, by means of the solutions equated to constants,

from the denominators the variables that do not occur in the numer-

ators, we have left ordinary differential equations of the first order,

which are linear in r, or s, or t, respectively. These can be integ-

rated by quadratures and give three solutions of the second order, of

which the two above are functions.
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2. We will next find the invariants of the group

5_f 5f 0f if

EN 631’ y6_m+z 6y

 

  
 

'As in the last section, we will use the similar group, obtained by the

introduction of the new variables

 

_ a: _ _ 1

53:;1 y=gs 2:;9

zaf aJ“ 6f _f_5

2810’ 25—a’y yam-+76y '
  
 

. These transformations, twice extended, have the forms

a a a a 6

za—jZ—p’g—g—pqégg— 3pra—Jrc—(2ps+qr)a-{—(ptf298)g{=°a

5 6 6 6flag—m6ffag—(2108+qr)———(2qs+pt)5—‘:—3qta—{=0,

yaf 6f 6f 5f 7.21; 6f

y6m+6y+06z+ogp—pfiq+0 ar— —2sa—t=

The solutions of the third equation are immediately

2,10, r, 312—2105;)“ q+py5p2,s+ry5p,, Sz—TtEp‘.

Introducing these as new variables, the first equation becomes

of 6f 6f i V05—+102 ap+3pr—a—r +2367 +PP267€+(2PP3+TP2)5£ +4PPIaf=°’ '

of which the integrals are, in the original variables,

E _ y2—2w 1 _ q+py __ s’—rt _ sp~qr‘_

z, 1' :16, 22 P: , 7—70, 13‘ =m, 7:7?“

Introducing these as new variables into the second equation, it becomes

0 af+ 2“2nj+wa{+zoi:

 
 

+0——6f —-a(un2+um)n6f:

The solutions are 2, m, 'w2 — 2112, 1m” + um, 'w(un2 + um) + an,

or in the original variables:
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si—rt + "' 2—2a: 1 3 s— r z . s2—rt

7" 10‘ ’(q 103m ‘2z(y 22 +13)’ I“? P‘q > + p‘ ]’

z+ s—r281—rt s—rp(qrpy){(ppsq)+ p‘ “451039).

In the usual way, the differential parameters are found to be

54>. - at. 52¢. + (q +py)(10¢. — 9145).

 

 

 

 

 

  
 

  
P , ’ p“

(8) We will next consider the groups:

. if 6f 0f 6f 6f.
(1) 5a? “’5‘+ 955'”5‘5"“2xya‘y I

.. a a

(II) 1;, wag-HI55 90” 210++(2wy+ y’)a—5y ;

  
 

 

5f m5f 5f 5f 5f 5f

(III) ova—may 6y mzfi+2my5§+ygi.

  
 

The first two transformations of these three groups are the same, and

the partial differential invariants are easily found to be:

2, 3/10 E P11 as E P21 1/21 5 P31 9’8 E Pu 3/5515-

(i) Introducing these into the twice-extended form of the third

l transformation, it becomes

05 a a a 5 6f

6f2”Ia—iii 06%? 2(5. + 2P4) 5%:—2(PI+PI)5£+
°555=°I

the solutions of which are

2, a, a, P1P2 + M. '— P4P” (92 +. am - 239m — Pia

— Map. + Pia. — P1P.)-

Expressed in the original variables, these are:

2, 3/9, W, 3/2009 +pty- 983/), y‘(q+ ty)"-ty‘qs—3/°8”t

—y‘s(Pq +1919)-

 

I
.
.
.
,
_
.
.
_
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.
.
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The diiferential parameters for this group are:

21% 31W. - y’mby- .

(ii) By the new variables, the third member of the second group is

6f (if 5f 5f
0 5;+(P1‘2P2)5;;_P25;2+(2P3—2plgf4pi)5; af

— 2(P2 + Mg; "' 2(P2 + Mg =O'

, 4 5

The solutions are: _

+2 V 2 '

z, P4-P59 Ple—Pi, P5 2 P2, P:'Pa_2P§(P4-P5)—%P;(P_g+_)_4P:' ' ‘

P2 . P2 Pz

These can easily be expressed in the‘old variables. The differential

parameters are found to be

%, M4,. -— «m-

(iii) In the l,same;way, the invariants for the third of the above

groups are: M f -

z — 3/9, W, 3/29 + 31% 3/28 + 3/29” + 2W4,

3/”r + 23/2209 + 4qu + 43/292 + 43/‘q’t,

and the diiferential parameters are: ‘

3/45, 21¢. + 2w.-

(4) As thefinding of the diflerential invariants of the remaining

Ga’s oifers no special difficulties, we will merely state the results.

We use Il , J), for the invariants of the first order, and I2, 1,, K2, for

those of the second order. The differential parameters can be easily

 

computed for each group.

Group. Invariants.

, a a a .

(1) $0, 55, a]; ”1510;. «7.52; 1257‘; I725“; 335"

 

 
 

 

r s—r

‘3‘;le P 393
P

Il
l

 

 
.. 6f 6f 6f .

(‘1) 5;, 53", 26—50— - I1

 

"
B

 

2t—-2 8+ 'r

mar—Mg9.
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a

2:, 41:66:, 31%,:451'; £58; last.

6f if
52"“: ’maaF()'_:

49

(iii)

 

(iV) I.=-=—qi 12583 27.156-

 

 
 

 

W‘W
at;

yflf if

(v) yaw +_62

LET;

  

:IIEP; Jlaz+%;

 

,z+8.

a"

a
45 : I151);

.72 .Kzarz’+2sz+t.

6/“ 6f
67!)" 5‘37,

 

Lam £5(vi) qr — ps ;

 
 

K2 5 fr + 21922: — 2pqs.

if: 3f 3f

am ’ 6y 6y

 

af
(vii) ,(m+y)g—m-‘z/+ +57 =I152+1°EP3  
 

a=——
r s—rh

logpi 1.5—2; =——-.—”
29

int—WHOM?—
K2E 293

 

af 6f 5.
avg —

(viii) 6y .
a

,(w+4/)g§+y

  
 

s—rlogp. K _pt—pr[logp]’-—2slogp

2= . 'P a ,f , fl

 

(i3)
(31"
a,

6f 6f

55’ 535“

ff

”as

 
 

:Law+logq;

J 5w+logs;

Izam+logm

K 5m+logt.

 

5f a_f ”eff
(X) ax’a—y mg,“yg—y+a—; 11524-19310; 1  
 

1:.
I
z 'r I

II
I 20”“ __ p

£ET=E=T-

 

  
 

 



,
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6f 6f 5f 3f
55) ‘a‘gi ”giftcya—y‘

 (xii
  

:Ilai—g [zap .

 

 

  

  
 

 

 
 

 

8

K22123-

(xii) %,m%£,(1—c)ma—£+z%£ 4159:; 459:3;

AE% &E%

(xiii) gmg. 22—90 1.5% 125%; «Ii—=4

(xiv) %, gig, w%+z% =I1510g%+-i 25$;

  
 

and for this group, the remaining two invariants of the second order

are found by quadratures from -

d8 2g + 1 1 dr 2 + q 2se°—'/‘1
_ “— I — = __ —.

dq 92 3+“ q’ dq q” r q ’

where for s in the second equation must be substituted its value in

terms of g from the first equation. In these two equations

 

 

 
 

 

  
 

 

p 1 t

aslo — ,— b-E—.‘

gq+q’ q

6f 5f 5f. _ . _. -192. -20
(xv) a, 'a—‘y, ma - 'II=Q’ .I‘2=t, (6:7, .K;=-§o

- 6f aJ" 0f, =". =3. =5
(gm) 67,155.25; 'Iz_§"Jz—§’ K2_§.

.. 5 a a a _ __r _s
(xvu) 64:, 43-84:, $54-25? :Ilael'q; fig; J2=§;

  
 

K25
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To these we will tabulate, for the sake of reference, the partial

diiferential invariants obtained on pp. 44—48.

a r—2 8 t
(xvm) 55, 55’ za_£+,,()f;11:1:; I-5%

 

  
 

V¢]2="‘q___~_____T—1Is+(1.?;-Pt)fl.( ); [seepage 45].

 

  
2’53, 83/ ‘ 2e +10

sz—rt s-— r 2 33—”

I"; 19‘ ; '72 %[(Ppiq)+ 20‘ ];

r 32—443 s — r

51%(q+py)[(mpssq)+ 24‘ ]+z(P sq )
p

a a

(XX) 5:;wy£+ya;€£+2wJ5§I 1.54/9; 1254/”;

 

l.(xix)z glue if yaf+__a_f 115(g_+_ng)2_2(yI_—_2m 1);

 
 
 

  
 

 

  
 

E 4/2009 +20t4/ — 984/); K. a We + I40”

— 54/598 — 4/“82t -— 4/‘8(m Hots/)-

(xxi) 5544€5+ygi4 ”22f1'2mygef1'a‘:

 

 
ILEz—yq;

 
 

J. E 4/4I + 4/29”: I; 5 WI J. E 4/28 + 4/29"2 + 2W9;

K2=

— 3127‘ + 2MP? + 43/398 + 43/29” + 431‘ta

(mi) 5‘fI ”‘5‘";01‘3’afy5‘yI “2 5‘f

 

 

w+ (2464/ + 4/2%) =1iaz/‘pq—4I’q’:

 
 

2

tare—esa=.+—-
9 419’

a 2
KE‘2—2‘2 _t_ 4[_ _._]_4 2.

2 4/94. 419(8 ) 541‘s 92+?” 4/‘9

  



 

  

CHAPTER III.

OBSERVATIONS AND APPLICATIONS.

Many interesting investigations are suggested by the knowledge of

the groups which have been found. We shall conclude this paper

with a few remarks that have an important bearing on the general.

problem of integration.

The Operations Mcessaryfor Reducing the G’(r<4)

to Normal Forms.

1. As is well known if the G,

UifE SIP + 7719+ :17.

is given, it can be.’ thrown into the form of a translation,10 , only by

the integration ofthesimultaneous system

(1) £1 '— 771 _ :1 ,

unless the path-curves of Uf are known.

2. If a given 0,, Ulf, Uf, belongs to the type 10, mp,1it is

easily seen that the reduction to normal form requires, in general, ‘,

the integration of the simultaneous system (1). If "the G, belongs “-

to either of the other three types, the reduction can be accomplished ‘-

by the integration of an ordinary differential equation of first order

in two variables, together with certain quadratures. '

3. Let us next consider the 03’s.

I. When no linear relation. exists.

If the 9, belongs to the type ([4]; table of 0,, page 41),

[4] P1, ”1% + 3/121, mg?! + 2w13/191 + 3/1719

the reduction is accomplished as follows:

If the three transformations are given in the form

Uifs E,p+n.-q+§.r (5:119:33):

52
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we know that there must exist three functions of w, y, z—w,(m, y, z),

y,(w, 3/, z), 21(121, y, z)——such that

U1f= £11) + 7719 + §1r=P19

(1) U2f‘="E2P+n2q+§2r=w1pl+quv

Uf= £31) + 7739 + {37' = wiP1+ 2w13/191 + 3/17'1'

Hence a1,is determined bya

5a: 6a:

U(w1):Ela621+ "layl+§1—l=19

. 6:13 am

' (2) U2(‘”1)=§28—a:1+""ea—'yl‘l'gz azl=mn

Ba: Ba:

wal)=fe§—a:+77":‘a‘j‘l‘ gee21:93:.

By DuBois-Raymond’s method (see Lie’s “Differentialgleichun-

gen,” page 553), “’1 can be determined from (2) by the integration of

a Riccati equation.’

Now considering that a),has been found and introduced as a new

q variable1n place of 11:, y, is given by

8116
a

U1(3/1 53ml:+’7’71 y'l'cifiggj = 0’

63/1
a

U(3/1)=w1a"‘:: +7777527+4;$5621:ny

63/ a:
03(3/1 =wiam“l'+’73,3.‘ji‘l‘tsyz.=2m13/1'

Here w, E. 11:1(111, y, z), and the third equation is not the same as

the second. Dividing the third equation by the known function :5, ,

and solving for the partial derivatives, we get

3y 6y . 63/

‘37: = 91+ 0.13/1! 5371 = P2 +'°'2y1$ 721 = P3 + Gal/1'

Hence 3/1 is found by quadrature.

In the same way :2, is givenvby.

az

U1(zi)55_:,: +77"157l+§1%‘:1=07
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as as 02

(72(21) Eglfii+flefij+ (25:: 0’

62 62 65%

(73(21 5 ”#55: + "3331+ 4115;1‘1-7/1’

where y, is a known function. Hence the partial derivatives of z,
are known, and 21 is given by a quadrature.

In this case, therefore, the integration of a Riccati equation and
certain quadratures are demanded. If the G3 belongs to any one of
the other four types ([10], [13], [17], [21], pages 42—43) of this
class, the reduction is seen to require only quadratures. '

II. When one linear relation exists.

If the 0, belongs to one of the types ([8], [15], [19], [20],

pages 41—43), the reduction to normal form requires only quadra»
tures. In the other cases of this class, the integration of an ordinary
differential equation of first order in two variables is necessary.

III. When twa/lincar relations exist.

If the 03 belongs to the type [1], the reduction can be accom-
plished only by integrating a simultaneous system

If the 0', belongs to either one of the other two types of this class
([5], [18] ), the reduction requires in the most unfavorable case the
integration of an ordinary differential equation of- therfirst order in
two variables.

‘

 

In the Leipziger Berichte, Vol. 47, pp. 494—499, Lie shows that
if with the transformations of the Ga of rotations

X.f=—=z/p—.wq

Karma—yr

Xsfswr—zp

we form the functions Xa ¢(X1 /1Y3", If, /X,) where <11 is arbitrary,
these functions can be considered to be the characteristic functions of
contact transformations. From this, it follows that this Gs is a finite
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sub-group of an infinite group of contact transformations, and several

interesting properties are obtained from this fact. As we now have -

all the Ga’s, we can use each one as the starting-point for theories

similar to those deduced by Lie in the case of rotations.

In his “ Beriihrungstransformationen ” [Kap. 13], Lie has dis-

cussed the general problem of the integration of a non-linear partial

differential equation of the first order, which is invariant under two

transformations. As we can obtain a 6’2, under which the equation

1 is invariant when two transformations are known under which it is

invariant, we can obtain Lie’s results in an exceedingly simple manner,

by using the typical forms of the 02’s, established above. '

I. The Partial Differential Equation admits of a G, . In this case,

by the introduction of new variables, the transformation can be

brought to the form of ,a translation Qf/azv. Hence this shows that,

in the new variables, the equation will be free of a: and will have the

form

'FCVs ”1P1 9)=0’
as is well known.

II. The equation admits of a 9,.

(1) If the path-curves are the same, then by Theorem 5, p. 615,

Lie’s “ Beriihrungstransformationen,” the equation is linear in p, q.

We see the same here for the two 92’s, which have the same path-

curves.

6) 5f 6f
55’ 255

 

   

By page 44, the typical invariant equation is

F(y,z,%) ; 0.

This is equivalent to

62 62

“(3112);, + My, z);9—y= 0,

and since 2 = const., is a solution, the problem can be solved com-

.« pletely by a quadrature.
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..
6f 6f

(11) _ . a 1 :1: 5a?

   

By page 44, the typical invariant equation is

F(y 2 q) = 0

which is equivalent to , , ,

as 3/ dz
6—3/=f(y, 2), 01' T=f(y,z)'

This is an ordinary differential equation of the first order, and thus
far only, will the knowledge of the G, be of service in the integration
in this case.

'

(2). The path-curves are different.

'-
6f 6f

(1) 5:39 @

 

   

By page 44, the typical invariant equation is

F(2, p , q) = 0 .

This equation is immediately integrable by quadrature.

.. 6f 6f 3f ‘ af(1‘) 5;: wa+yfi+za

 

   

The invariant equation is

F 9, ,)=o.(gas

The solution of this equation demands at most the integration of an

ordinary differential equation of‘ the first order.

III. Suppose the equation admits of a 6",, U,f, (i = 1, 2, 3). In

cases (i), (ii) under (1), pages 55—56, we have U2 = pUl ; so that the

invariant partial differential equation of first order, a = 0, is linear

and p is one solution. Then if U3 = on 0;, where a- is not a func-

tion of p, a' is the other solution. Or if no linear relation connects

U; and U,, the other solution of .0. = 0 can be found by quadrature.
But if p = F(u), above, the integration of an ordinary differential

equation of first order is still necessary to integrate Q = 0 .
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In case (2), (ii), Lie has shown that without reducing the-GE, U1,

U2 to normal form, the integration of the invariant diEerential equa-

tion 0(111, y, z, p, g) = 0 may be made to depend upon the integra-

tion oftan integrable total equation

de + Qdy + Rdz= 0.

Then if PE, + Q-ns + Rf, =f= 0, this equation is integrable by

quadratures. [See Page’s “ Note on the Invariant Total Differential

Equation Pdw + 9113/ + Rdz =0,” Annals of Mathematics, Vol.

4 12, No. 6.]

If the G, can be reduced to normal form without an integration,

as is often possible, the invariant partial difierential equation of first

order must take the form (see pages 48-51], h

6) 3/9 = 0 (Z).

Or

(ii) Myra; 219).!= 0 (2) or 3/9 = count-1

or '

(iii) yg — z = const.

. Each of these equations is integrable by quadrature.

If I,, J,, are the total differential invariants, first order, of any '

given 0,, the equation

. m1. J.) = 0

will be an invariant Monge equation. Its integration depends, (see

Lie, “ Beriihrungstransformationen," page 553), upon that of the

corresponding non-linear partial differential equation of the first order

£10313], 2,1); 9)=0’

which of course is also invariant and is handled by the method above. '

It is interesting to note that 03’s belonging to the types [1] , [2] ,

[3], [5], [6], [7], [11], [14], [15], [16]: [13], [19]: [2°],
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leave no Monge equation, but only integrable total equations of first

order of the form '

(1) Pdm + Qdy + Rdz .-= 0

invariant. This equation is integrable by quadrature if

PE$+ Qni+R€i$ 0

for any value of 73: 1, 2 , 3 . These groups consequently leave no

non-linear partial differential equation of the first order invariant.

The other types may leave both Monge equations and equations of

form (1) invariant.

From the partial differential invariants, we see that every G3 in

normal form leaves a partial differential equation of first order inva-

' riant except
 

9', mr , yr

  
 

In this, the invariant partial differential equation is of at least the

second order. 5”: ”I":

We saw above that certain 03’s leave no Monge equations invari-

ant, and hence no non-linear partial difierential equations of first

order. This was evident, a priori, if any transformation of the G3

was connected with any other of the 0,, by a linear relation, (see Lie,

“ Beriihrungstransformationen," Kap. 13). But the 03’s

 

 
p, 9.1410 + Mm

 
(n+0?)

 

and
 

 
10, mp + 3/9, 902p + 2qu
 

 

are exceptional, as no such linear relation exists; and still only a

linear partial differential equation of first order can be invariant

under each of them. ' '

By the method developed by Lie, (Leipziger Berichte, Oct. 10,

1893, pages 98, if), if a partial differential equation of order m,

9"") = 0 , is invariant under a known G3, we can find, by integrat-

ing an ordinary differential equation of mth order in two variables,
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oc'"+2 integral surfaces of Q‘l")= 0, which are composed of path

curves of the general transformation of the G3,

075 ism-f.

Hence if the form of 0"") = 0 shows that it is invariant under a

known G3, it is frequently possible to find oo”'+"’ integral surfaces of

0"") = 0 by Lie’s method. Of course the operations are much sim-

1 plified if the G3 has been thrown into normal form, and the path

curves of [17“ have been determined.

'It'is easily seen that the most general transformation of space that

leaves directions invariant belongs to one of the 04’s. The coordi-

nates of a line element in space are m, y, 2, 3/1, 21, and if the direc- .

tions are to be invariant, the increments of y, and z, must be zero.

Thus we have "I I"

1177 d6

”15233-3/1325 c.+n,'3/1+n.jzl—yl(§.+ 5,,‘3/1 + §.'zi)=°1

dé' (ZE

C, sac—213315 §1+ {fl/1 +§z'z1_ ”1(52 + Eff/1 + £1.21): 0'

Since these relations are independent, we have

Ey=§s=nl=na=§z=ty=0’ Ex=ny=§s‘

Whence, immediately £ a mm + a, 17 a my + [3, CE me + «y; m,

a, fl, 7, being arbitrary constants. Hence the transformation is

(mm+ a>§w£+ (my+ ,8);{+ (ms + ”1%;

This is recognized at once as the most general transformation of the

fifth group under VI, (see table 94’s, p. 32), obtained by putting the

arbitrary constants a and 6 equal to unity. ,

This G, is of importance in the problem of spherical representa

tion of curves.

In the same way, it can be shown that the transformation obtained

above is the most general one that leaves the direction of surface

elements invariant.
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We notice that there is only one 0, in one variable; that there are

four in two variables, and four in wvariables. There is one 6‘, in

one variable, eleven in two variables, twenty-one in three variables,

and twenty-one in n-variables. There are 16 Q’s in two variables, 71

in three variables, 105 in four variables, and 105 in n-variables.

That for these three cases there is the same number of Gr’s in r-vari-

ables as in n-variables is to be expected according to Theorem 84,

page 458, of the first volume of Lie’s “ Theorie der Transformations-

gruppen.” It will readily be seen that more is shown in the above-

given result than is stated in the theorem referred to.
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