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Abstract

Carbon nanotube (CNT) materials constitute a broad class of multifunctional hierarchical
materials deriving their properties from the intimate connections between the atomistic structure
of individual CNTs, the arrangements of CNTs into mesoscopic structural elements, such as CNT
bundles and branching structures, and the structural organization of the mesoscopic elements into
a macroscopic network. Due to their unique combination of structural (low density, high surface
area, and nanoscale porosity), mechanical (high conformity, ability to support large reversible
deformation, and absorb mechanical energy) and transport (thermal and electrical conductivity
tunable over a broad range by structural modification) properties, CNT materials are attractive for
a variety of applications. The strong structural sensitivity of the mechanical and thermal properties
of CNT network materials makes it possible to tune the properties to the needs of practical
applications, but also highlights the need for clear fundamental understanding of the structure-

property relationships.

Under conditions when a systematic experimental exploration of the structure-properties
relationships is hampered by the difficulty of growing CNT materials with well-controlled
structures, computer modeling presents an attractive alternative. Therefore, in this study, the
structure and mechanical properties of CNT network materials are investigated with a state-of-the-
art mesoscale computational model. As the first step, an effective and flexible method for the
generation of computational samples for mesoscopic modeling of anisotropic networks of CNT
bundles with various degrees of CNT alignment is developed and applied for investigation of
structural self-organization of nanotubes into vertically aligned CNT forests. Structural
characteristics of the computational samples, such as bundle size distribution, average and
maximum bundle sizes, magnitude of the Hermann orientation factor, and average tilt of CNT
segments with respect to direction of alignment, are calculated and related to parameters of the
sample preparation procedure. Good agreement between the computer-generated and

experimentally grown network structures is demonstrated.

Once generated, the response of in silico vertically-aligned carbon nanotube (VACNT)
forests with different densities and microstructures (bundle size distribution and degree of

nanotube alignment) to uniaxial compression is measured, and a clear microscopic picture of the



i

structural changes in the networks of interconnected CNT bundles undergoing mechanical
deformation is obtained. The simulation results reveal the important role of the collective buckling
hermanof CNTs across bundle cross-sections as well as a complex deformation behavior of
VACNT arrays defined by an interplay of different modes of bundle deformation. The loading rate
and the CNT attachment to the indenter are found to have a strong effect on the deformation
mechanisms and the overall mechanical behavior of VACNT forests. A good agreement with
experimental data from in situ mechanical tests is observed for the general trends and magnitudes

of loss coefficients predicted in the simulations.

Mechanistically, the compressive deformation of sufficiently tall VACNT forests proceeds
as a phase transformation. Mesoscale simulations of a 2-micron-high forest sample reveals the
formation of a localized densified phase consisting of entangled CNT bundles oriented parallel to
the indenter. At a given strain, the densified layer coexists with a rarified, vertically oriented phase
characteristic of the unstrained forest, and the densification front advances with increasing
compressive strain until it reaches the base of the forest. In addition, the simulations reveal the

origin of the collective buckling of CNT bundles localized within a forest cross-section.

In the last part of this study, the resistance of CNT films to a high velocity impact by a
metal nanoparticle is investigated. Modifications of a general coarse-grained model for the
mesoscale representation of a metal projectile are introduced to make it suitable for use in
simulations of high energy collisions, where local thermal equilibrium cannot be assumed.
Specifically, a heat bath approach accounting for the heat capacity of the projectile material and a
force scaling correction for accurate description of thermophysical properties are incorporated into
the model. The first mesoscopic simulations of metal nanoparticle impact reveal an important role
the network structure of the CNT films plays in defining the ballistic impact resistance. A simple
analytical model is suggested for the estimation of the penetration depth of a nano-projectile into
a bulk CNT network material for different impact velocities. The model is parametrized based on
the results of the mesoscopic simulations, and represents an important advance in the

understanding of the ballistic resistance of CNT materials.
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1. Introduction

1.1 Carbon nanotubes

Carbon nanotubes (CNTs) are hollow, cylindrical carbon structures that are essentially
seamless rolled up graphitic sheets (Figure 1.1). Like graphene, CNTs are arranged in a hexagonal
pattern of sp? bonded atoms. These strong covalent bonds give CNTs their excellent stiffness and
strength. Another partially occupied p orbital extends radially from the nanotube for each atom,
contributing to the weak non-bonded interaction between CNTs. CNTs have garnered significant
interest for their extraordinary mechanical and transport properties. In particular, CNTs are among
the strongest and stiffest materials known, with the upper ranges of measured Young’s modulus
and tensile strength approaching 1 TPa and 63 GPa, respectively [1]. In addition, the axial thermal
conductivity of CNTs can exceed that of Cu [2].

Two major types of CNTs exist. One type is made up of a single sheet it is termed a single-
walled carbon nanotube (SWCNT), and if a CNT has multiple concentric cylinders around a single
hollow core it is called a multi-walled carbon nanotube (MWCNT). The “nano” in nanotube comes
from their small diameters, ranging from 0.4-4 nm for SWCNTs, and between 5-100 nm for
MWCNTs. However, their aspect ratios are typically quite high, reaching 10° or greater [3]. Aside
from the number of walls, CNTs are distinguished by their chirality, categorized by a chiral vector
and angle. The length of the chiral vector, alternatively termed rollup vector, is equal to the
circumference of the tube, and is perpendicular to the tube axis (Figure 1.2). The structure of

SWCNTs is defined by the rollup vector (equation (1.1)).

Cp =naqy + ma, = (n,m) (1.1)

The primitive vectors of graphene are denoted by a; and a,, with m and n as integers. The
translation vector, T is directed along the SWCNT axis and perpendicular to Cp. Its magnitude
relates to the length of the (n, m) SWNCT unit cell. The integers m and n can be used to determine

other properties of the SWCNT, such as its diameter, d yr.

V3
dent = <7> A M2 + mn + n? (1.2)




where a.. is the carbon atom nearest neighbor distance of 0.142 nm. The graphene sheet can be
rolled up in different ways to form three types of CNTs: (i) armchair, (ii) zigzag, and (iii) chiral.
Armchair CNTs result when two C—C bonds on opposite sides of each hexagon are perpendicular
to the tube axis, so that n = m and the chiral angle defined by equation (1.3), is equal to 30°.

(1.3)

@ = arctan

\/§ml

2Zn+m

Zigzag tubes are formed when two C—C bonds are parallel to the tube axis, making either n = 0
orm = 0, and 8 = 0. Chiral CNTs makeup every other conformation, where 0° < 8 < 30°. The
type of CNT configuration can lead to different properties. For example, a (n, m) CNT is metallic
if n —m = 3q, where q is an integer, and semiconducting if n — m # 3q. Armchair CNTs (n =
m) are always metallic, zigzag (n = 0 or m = 0) tubes are semi-metallic with a zero band gap
between the valence and conduction bands, and two-thirds of chiral tubes are semiconducting (with

a non-zero band gap).

Figure 1.1: Schematic representation of (a) single-walled carbon nanotube (SWCNT), (b) multi-
walled carbon nanotubes (MWCNTs). The color distinguishes separate walls [4].
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Figure 1.2: (a) Schematic of the roll-up of graphene to form a SWCNT structure. (b) OO’ defines
the chiral vector, Cj. Translation vector, T, is along the nanotube axis and perpendicular to Cp,.
The shaded area represents the unrolled unit cell formed by T and Cp. The chiral angle, 9, is
defined as the angle between Cj, and the (n, 0) zigzag direction. The (n, 0) and (n,n) armchair
SWCNTs are indicated in blue and red markings, respectively [4, 5].

1.2 Carbon nanotubes materials and their applications

CNT materials constitute a broad class of hierarchical materials deriving their properties
from the intimate connections between atomic structure of individual CNTs, the arrangements of
CNTs into mesoscopic structural elements, such as CNT bundles and branching structures, and the
structural organization of the mesoscopic elements into macroscopic networks materials.
Depending on the material density and production method, the CNT materials exist in many forms,
form low-density aerogels and sponges with densities of ~0.01 g/cm? [6, 7], to medium-density
CNT films [8-11], “forests” [12, 13], mats, and “buckypaper’” [14-16] with densities of ~0.1 g/cm?,
and to high-density super-aligned CNT fibers [17-19], forests [13] and films [20] with CNT
arrangements approaching the ideal packing limit. While, in general, the van der Waals attraction

between nanotubes [21] results in their self-assembly into networks of interconnected bundles [22,



23], the degree of CNT alignment, bundle and pore size distribution, and other structural
characteristics of CNT networks are not uniquely defined by the length and flexural rigidity of
CNTs and material density, but can be modulated by changing the parameters of the production

process [23], mechanical [16] and chemical [24, 25] post-processing or radiative treatment.

The complex hierarchical organization of CNT materials and wide diversity of material
structures give rise to a large variability of physical properties. For instance, the experimentally
measured values of thermal conductivity of CNT materials fall into an amazingly broad range of
values from 0.02 to 1000 W/m/K [19, 20, 26, 27], and suggest that the variation in structure and
density of the CNT networks as well as the modulation of the intrinsic thermal conductivity of

individual CNTs can turn CNT materials from perfect thermal conductors to insulators.

The mechanical properties of CNT materials also exhibit a wide range of values. Under
uniaxial compression elastic properties such as the yield strength, elastic modulus, and the modulus
of resilience can each vary over several orders of magnitude depending on the structural properties
of the forest such as mass and tube densities, CNT radius, number of CNT walls [28]. The extent
to which a CNT forest, also referred to as a vertically aligned carbon nanotube (VACNT) array or
foam, recovers after it has undergone uniaxial compression is also highly variable, where some
samples can withstand thousands of loading cycles [29] while deforming primarily elastically,

while other forests show significant plastic deformation even after a single loading cycle [30, 31].

Although their mechanical and thermal properties can span over orders of magnitude, CNT
materials and VACNT foams in particular, show promise as mechanically strong and resilient
foams with exceptional thermal properties relative to conventional foam materials. Figure 1.3
shows an Ashby chart comparing the mechanical and thermal properties of VACNT foams to a
variety of conventional foam materials taken from ref. [32]. From the chart, VACNT foams can
be seen to have an attractive combination of mechanical and thermal properties unrivaled by

conventional foams with a variety of structures.
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Figure 1.3: Ashby chart of loss coefficient vs the product of plateau stress and thermal
conductivity of a variety of foam materials. Taken from ref. [32].

1.3  Guide to dissertation

The primary goal of this dissertation is to elucidate the structural dependence of the
mechanical properties of CNT materials via computer simulation. Background on the coarse-
grained model used to represent the CNTs is given in chapter 2. Next, chapter 3 details the
generation of realistic, structurally distinct VACNT forest samples. The next two chapters report
on the uniaxial compression of the in silico forest samples. Chapter 4 details the influence of the
structural characteristics of the forest, e.g. density, microstructure, and CNT length on their
deformation behavior and mechanical properties. In chapter 5 the results of a detailed investigation
into the deformation mechanisms of uniaxial compression are reported. In particular, the formation

of a localized dense phase during compression is described.

After chapter 5, the focus shifts away from VACNT forests and uniaxial compression, and

to the high speed impact of CNT films with metallic nanoparticles. Chapter 6 outlines a model for



the coarse-grained representation of metals, and in chapter 7 the results of impact simulations on
CNT films are described. This dissertation then concludes with a summary and suggestions for

future work in chapter 8.



2 Coarse-grained model for the representation of CNT materials on the
mesoscale

2.1 Atomistic molecular dynamics and its limitations

The computational modeling of materials is not a new development. Early atomistic
modeling took off with the molecular dynamics (MD) method in the 1950s [33, 34]. This method
is based on classical Newtonian mechanics and has become a popular tool for understanding
atomic scale processes that cannot be reliably observed in experiments. In MD, the positions and
velocities of every particle at some initial time are used to calculate the forces acting on them.
Then, the equations of motion are solved for every particle, and other physical quantities such as
the potential energy of the system are determined for the specified time interval. Figure 2.1
provides a schematic representation of this process, and more detailed information about MD
modeling can be found in Allen and Tildesley’s text, Computer Simulations of Liquids [35]. With
a proper choice of interatomic potentials, atomistic MD modeling can accurately describe the
properties of CNTs. But, this accuracy comes at a computational price, in particular from the many
calculations that must be performed for each particle, or atom, in the system. Generally,
computational cost of MD simulations scale with the number of particles to some power greater
than one, depending on the potentials used, and the number of atoms scales as the length scale of
the system cubed. Even with high performance supercomputers, simulations are confined to 10—
10® atoms, corresponding to a maximum length scale on the order of 100 nm. Furthermore, the
larger the length scale, the smaller the time scale needs to be in order to keep simulations at a
reasonable cost (see Figure 2.2). There are some pioneering projects, however, that extended the
atomistic MD range. For example, one simulation kept track of 10'? atoms and micron length
scales [36], and another one pushed the millisecond timescale [37], but simulations such as these
make use of extensive computational resources not commonly available to the majority of

researchers.

For CNTs, atomistic MD has proven valuable for calculating mechanical and thermal
transport properties of individual tubes [38-49], and small groups of CNTs, e.g., [50-53]. However,
VACNTs are typically comprised of millions or more CNTs that are microns, if not millimeters,
long. Furthermore, the tendency of CNTs to form networks of bundles can result in structural

features that may span microns, and these features can strongly influence deformation behavior,



impact resistance, and transport properties of CNT materials. Therefore, atomistic MD is not a

feasible option for modeling systems that are sensitive to mesoscale structure.

Schematic diagram of a basic MD code

Define initial positions and velocities %(t,)and v,(t,) ’

}

Calculate forces at current time t;:
E =-ViU@E.5,5,.... 5y )
Solve equations of motion for all particles in
the system over a short timestep At.

E(‘tn ) - ﬁ(fm—l ) 171' (tn ) == 17:' (tn+1 )
tn+1 = ti:' + At

!

Calculate desired physical quantities, write ;
data to trajectory file

!

| Write to the disc final atomic configuration & finish

Figure 2.1: The MD algorithm. Reproduced from L. V. Zhigilei’s course notes for Atomistic
Simulations (MSE 4270/6270) at the University of Virginia
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Figure 2.2: Typical length and time scales of various levels of computational modeling. Adapted
from L. V. Zhigilei’s course notes for Atomistic Simulations (MSE 4270/6270) at the University
of Virginia.

2.2 Overview of mesoscopic modeling of CNT materials

The complexity and inherently multiscale nature of the structural organization of the CNT
network materials suggest that complete understanding of the connections between the structural
parameters and the effective (macroscopic) properties of these materials can only be achieved
through a combination of various computational techniques. In particular, the atomistic molecular
dynamics (MD) technique [35] is well suited for simulation of the mechanical and thermal
transport properties of individual nanotubes, e.g., [38-49], and small groups of CNTs, e.g., [50-
53]. The information gained from the atomistic simulations can be used for parameterization of
mesoscopic models that adopt simplified representations of nanotubes [54-57] and are capable of
simulating the collective behavior and properties of large CNT ensembles, e.g., [55, 57-60]. The
results of the mesoscopic simulations can be, in turn, used for revealing general trends and
formulating continuum-level constitutive relations that describe the macroscopic behavior and

properties of the CNT network materials.



10

In the atomistic — mesoscopic — continuum chain of the multiscale computational treatment
of CNT materials, the “weak member” is the mesoscopic modeling. While the atomistic and
continuum models are well established and implemented in user-friendly computational software
packages, the general framework of the mesoscopic computational treatment of nanotube materials
is still being developed, validated, and redesigned. Several alternative approaches for mesoscopic
modeling of CNT materials have been suggested in literature. One of the early models developed
by Buehler [54] is based on the bead-and-spring model commonly used in simulations of polymers
[61]. In this model, the van der Waals inter-tube interactions are represented through spherically
symmetric pair-wise interactions between mesoscopic nodes arranged along the axes of nanotubes.
Due to its simplicity and straightforward implementation, the bead-and-spring model has been
adopted by several groups and used in a number of investigations of the structural and mechanical
properties of CNT films [58, 62-68] and VACNT arrays [69]. The model, however, suffers from
large artificial barriers for relative displacements of neighboring CNTs introduced by the pair-wise
interactions between the “beads” in the bead-and-spring model. As discussed in Refs. [55, 57, 59,
70], the presence of these barriers prevents long-range rearrangements of CNTs into continuous
networks of bundles and strongly affects the structure and mechanical behavior of the CNT
materials. More recently, a finite element model [71] describing van der Waals inter-tube
interactions by linear elastic bar elements added at localized “contacts” has been proposed and
applied for simulation of mechanical behavior of two-dimensional CNT forests. The description
of CNT-CNT interaction by strong localized bonds that cannot be broken in the course of the forest
“growth” or compressive deformation casts doubt on the ability of the model to provide an
adequate description of the structural self-organization or mechanical properties of the CNT

materials.

More advanced descriptions of non-bonding inter-tube interactions that do not result in the
artificial corrugated inter-tube interactions have been developed and include a mesoscopic model
[55, 72, 73] based on the distinct element method [74, 75] and a model representing nanotubes as
a sequence of cylindrical segments [56] interacting with each other through the tubular potential
method [57]. The latter approach has been parametrized to provide a realistic description of
nonlinear deformation, buckling [59, 76] and mechanical energy dissipation in individual CNTs

[77], as well as collective heat transfer in CNT materials [51, 60, 76, 78]. This mesoscopic model
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(Figure 2.3) is detailed in the remainder of this chapter, and is referred to all throughout this

dissertation.
(a) Schematic CNT section (b) Equations of motion
.03
M aX =— O_U +F Translational
dr’ ox ¢ motion
\/ nanotube darT ) ) )
EP e RLRY) O = 1) C i O, +0, +0;, Intormp) state
(-
* matrix unit
(c) Components of mesoscopic force field

U=U Tay T Urr+Uy @y T U i tiion —bonded 5 T U M-T

Internal CNT-CNT Internal Inter-molecular | [ CNT-matrix
CNT modes | | interactions | | matrix modes interactions interactions

Figure 2.3: Overview of the coarse-grained model for mesoscale representation of CNTs.
Schematic representation of a section of nanotube represented by four segments and five nodes
(a). The position of the i™ node in the nanotube (), the radius of the nanotube at node i (Rf), and
the torsion angle at node i (Af) are the independent variables that describe the behavior of the
nanotube. The equations that control the motion and thermal transport in CNT materials (b), and
the components of the mesoscopic force field (c).

2.3 Tubular mesoscopic model for CNTs

The mesoscopic model includes terms accounting for stretching, bending, torsional
deformation, radial breathing, and coupled stretching-bending, stretching-torsion, and stretching-
breathing interactions, as well as bonded and non-bonded interactions between CNTs, CNT-matrix
units, and matrix units. The Lagrangian (potential energy of system subtracted from its total kinetic

energy) for CNT-polymer nanocomposites can be written as
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Here, 7f is the position of the ith node in a nanotube, 77" is the position of the kth unit of the
matrix, R} is the radius of matrix unit k, 6; is the torsion angle at node i, mf = % (Mmi—1; + mMjit1)
is the mass of a part of the nanotube, represented by the node i, m; ;4 is the mass of the segment
{i,i + 1} of the nanotube located between nodes i and i + 1, m" is the mass of the k™" unit of the
matrix, Mf and M{"* are the inertia parameters of the internal breathing motion of the nanotube at
node i and matrix unit k, respectively, Ml-g is the inertia parameter for the twisting motion of the
nanotube. The potential energy of the system consists of the internal energy
(Ustr, ybnd (Rt 6 pstr-R pystr-bnd pystr-6 th)’ as well as bonded (Um—m(bond))’ and
nonbonded (U™~™) interactions among the matrix units, bonded and nonbonded interaction terms
among the nanotube (Ut™*) and matrix units (U™, Ut=™®ond)) " and the internal breathing
motion of the matrix units (UR™). In particular, US'" is the internal stretching potential defined as
a function of axial deformation of the nanotube segments; U™ is the bending potential defined
as a function of local curvature of the nanotube segments; UF! is the internal breathing potential

defined as a function of the local radii R} at each node i along the nanotube; U? is the torsion term

Ustr—R Ustr—bnd

defined as a function of the torsional deformation of the nanotube; and are the
potential energy terms describing coupling between stretching of two segments adjacent to a node,
radial contraction at the node and local curvature at the node; U*™™ is the potential for nonbonded
van der Waals interaction between matrix molecules and nanotubes; Ut~™®P°@) {egcribes the

bonded interaction between matrix molecules and nanotubes due to the formation of chemical
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bonds; U™ ™ and U™ ™04 describe the nonbonded and bonded interactions among the matrix

units; and UR™is the internal breathing potential [79] for the matrix units.

The terms appearing in equation (2.1) can be parameterized by simulation or experimental
data. In fact, this mesoscopic model can be fitted to a variety of CNT diameters, or even completely
different types of tubular structures. After the potential energy of the system is defined, the
equations of motion for the sets of independent variables in system, {q} = {rf, r%", R}, R{", 0;} can

be directly obtained from the equation (2.2) by substituting in equation (2.1).

doL_oL_ 02
dt aql aql B '

Just as in classical MD, the equations of motion for the independent dynamic degrees of freedom
can be integrated to obtain their trajectories. These trajectories are sufficient to describe the
dynamics of the nanotubes and the matrix molecules. Note that the mesoscopic model does not
explicitly represent surfaces of nanotubes, and distances between “virtual surfaces” are calculated

for particular interactions during the runtime of the code.

2.3.1 Axial deformation
At low tensile strains below the fracture limit and at compressive strains the tube deforms

elastically, and a harmonic approximation is used to describe axial deformation.

2

Lijyr — LQ’. 1
UStT = Z Ll i+1 2 StT'El i+1 — Z Lu+1 2 str (ULO—lH— (2-3)

L,i+1
Here, Ll i+1 is the equilibrium length of the segment between i and i+/ nodes, L; ;.1 = |r{,; — r{]
is the length of the segment, €; ;. is the local axial strain of the segment, and kg, is the stretching
force constant. Atomistic simulations performed on infinitely long (by using periodic boundary
conditions) CNTs, and the linear stretching force constant was determined to be well modeled by
kstr = 86.64 4+ 100.56R7, for CNTs with a radii of greater than 4 A. Beyond 4 A, the force
constant value becomes independent of radius and chirality of the nanotube at approximately 46.8

eV/atom. Nanotubes with smaller radii have somewhat higher force constants (~51-52 eV/atom).
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2.3.2 Bending deformation
The bending energy of a CNT depends on its local curvature between segments, and takes on
different functional forms based on the radius of curvature. At small curvatures, the bending

potential can be approximated as a harmonic function

N-1 2
1 1
Ut = = kpna Z Ly (W)
i=1

i,i+1

N-1 2 2
1 1, 1 1, 1
~ Ekbnd Z ELi,i—l Ricurv + ELi,H‘l Ricw"”

i=2

(2.4)

where L, is the equilibrium length of the segment between i and i+/ nodes, Rf*"” is the radius
of curvature at node 7, and k4 is the bending force constant. Atomistic simulations were run for
CNTs of different radii and of different configuration (i.e. armchair, zigzag) without periodic
boundary conditions. Each CNT is given a constant radius of curvature between 22,528 and 4,528
A (corresponding to bending angles ranging from 0.0025 to 0.0127 degrees/ A). Taking the second
derivative of the strain energy with respect to curvature, the bending force constant was determined
to follow the function kp,,; = 63.80R£q2'93. When the curvature of a CNT gets large enough, it
buckles and the bending potential changes. This transition is included in the mesoscopic model
[76] (see Figure 2.4) by using an almost linear dependence of the strain energy with curvature after
buckling, compared to the harmonic dependence at lower curvatures. In the pre-buckling regime

the bending energy takes on the form

ond 1 kbnd 5
U zjiﬁﬁﬁﬁm 2.5)

where the bending energy is integrated along the length of the unbuckled CNT, f; dl using the

local radius of curvature at each point (see Figure 2.4). Realizing that the bending angle relates to

the radius of curvature as

g=lr (2.6)
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then, in the case of a uniformly bent CNT of length L, the equation for bending energy simplifies

to

kbndgz
2Ly

Ubnd —

2.7)

When the CNT becomes buckled, the bending energy is modified to include an additional term for
the energy of the buckling kink, K?{™,

C

1 kbnd 1 kbnd
ybnd = ghleyn 4 ] 5 Ry dl + ] 5—(RCWV)2 dl (2.8)
where s is the angle between the two talfgents to the elasticBline at the point of the kink (point B
in Figure 2.4). The power, n, is set to one since the bending energy is approximately proportional
to the bending angle. The remaining constants can be obtained from atomistic simulations, similar

to those discussed previously in this section.

@ (b) 0.4 r
bent CNT bent CNT with
buckling at B

B + buckling point (y > 0)

S
w
—

¥
/ ~ Ty
@2 (‘)” (0]

harmonic bending

Strain energy U, ,/ U,
[ =)
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I
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Figure 2.4: Schematic representation of the description of bending buckling in the mesoscopic
model (a) and the dependence of the bending energy U™ on the bending angle 0 in a uniformly
bent CNT with a single buckling point appearing in the middle (point B in the insert) when the
critical radius of curvature, R, is reached (b). Bending energy in (b) is obtained by minimizing
the strain energy associated with the bending and buckling. Values of the bending energy in (b)
are scaled by U, = ky,4/Lt where Ly is the length of the CNT. Taken from ref. [76].
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It is worth noting that the buckling of CNTs is not necessarily a straightforward process of
simply kinking the nanotube. The mesoscopic model currently only considers buckling for
SWCNTs, but buckling in MWCNTs proceeds in a more complicated fashion due to the interaction
of the multiple CNT walls, leading to a rippling effect [80] during bending rather than the single
kink observed for SWCNTs. Parameterization of the mesoscopic model for MWCNTs will be the

subject of future work.

2.3.3 Torsional deformation
In addition to bending and stretching terms, it is possible to account for the twisting of CNTs,
although it is not included in the current computational implementation of the mesoscopic model.

The torsion term is represented by

= 1 (6,— 6\
— 0,
ue = Z L(i),i+1_kt l 0 - (2.9)
p 2 Lijsa

Here 6; is the torsion angle at node i and k; is the torsion force constant. The force constant is
determined with a series of atomistic simulations for CNTs of different radii where they are
initially twisted between 0.0025 to 0.0127 degree/A and allowed to relax with the end segments
fixed. The force constant is calculated from the second derivative of the strain energy with respect

to the torsional deformation. At tube radii larger than 4 A, the torsion force constant is given by
kips = 38.44R,§qg'01 and conforms to the expected cubic dependence on radius expected for a

hollow cylinder.

2.3.4 Intertubular potential

The main advantage of the tubular mesoscopic model compared to the simpler bead and spring
representation of CNTs is the introduction of a smooth non-bonded interaction between nanotubes
which allows for the natural and realistic self-organization of nanotubes into networks. In the bead
and spring potential, the CNTs interact artificially via a strongly corrugated potential centered at

the “beads”, leading to poor CNT networking.

For classical MD atomistic simulations, the weak vdW potential is often approximated with

the Lennard-Jones model [81],
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o(r) = 4e [(g)12 - (5)6] c(r) (2.10)

where 7 is the distance between the interacting atoms, € and o are parameters of the potential that
define the energy and length scales of the interatomic potential, respectively, and C(r) is a cutoff
function. For carbon-carbon interactions, the parameters and the form of the cutoff potential are

taken from the AIREBO potential [82] for the MFF.
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Figure 2.5: Schematic sketch illustrating the introduction of local coordinates Oxyz and
geometrical parameters used for characterization of the relative positions of two nonparallel (a)
and parallel (b) straight cylindrical CNT segments. The side and top views are shown in panel a;
only the side view is shown in panel b. In panel a, the axis x is directed along the vector OO’
defining the shortest distance between the axes of the segments. In panel b, for the origin of the
Cartesian coordinates is chosen so that the axis Ox goes through the left end of the second segment
(11, = 0). Cross sections of the segments are shown in panel b, with angles ¢;and ¢, specifying
positions of points in the cross sections used for integration over the surfaces of the two segments.
Taken from ref [57].
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In the mesoscopic model, the relative position of two CNTs or CNT segments can be described
by six independent geometric parameters as illustrated in Figure 2.5 where h denotes the shortest
distance between the two CNT axes, «a is the angle between them, 7, and 7, represent the ends of
one CNT segment, and &; and &, are the ends for the second CNT segment. The CNTs are aligned
along the O and O'axes. In this model, the atomic potential, described by equation (2.10), is
integrated over the surfaces of the interacting nanotubes, but the atomic configuration is

represented by an averaged continuous distribution of atoms with a surface density n,.

For two CNT segments with equal radii Ry, the interaction potential between them can

therefore be expressed as

USS (h, a, fl) 521 N1, 7]2)

$2 2m M2 2m

—uzis [ [ [ [ oGthnas.gungn)dp,andg, s 1)

§&1 0 11 0

where the integral is taken over the lengths of the two axes, £ and 1, and the angles ¢, and ¢, that
define the points in the cross sections of the segments (see Figure 2.5). The distance between two

points on the surfaces, r, is written as

T'(h, Q, f; d)l' 771 ¢2)
= [(h + Ry (cos ¢p, — cos cpl))z
+ (Ry(sin ¢, cos a — sin ¢p;) — i sin a)? (2.12)
1

+ (Rysing, sina + ncosa — 5)2]E

Although, equation (2.11) is sufficient to describe the interaction of two segments of arbitrarily
orientation and length, the accuracy is acceptable only with a large number of quadrature points,
making the calculation too costly to do during the simulation. Furthermore, the six independent
parameters in this equation make the tabulation of the potential impractical. Therefore, it is
simplified using a series of approximations. First, if one of the tubes is assumed to be infinitely or
semi-infinitely long, the one or both of the axes variables for that tube can be dropped. For a

segment interacting with an infinitely long segment, the potential becomes
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$2

Usen(hy @, 1,&,) = nZR2 f oo (hy 0, €) dE 2.13)
&1

where u, (h, @, &) is the interaction potential density along the axis of the segment. The simplest
case is that of parallel tubes, and then the potential density does not depend on £, and the angle is

fixed, so that equation (2.13) becomes

Useol (h, €1, §2) = (§2 = §1)uoo) (R) (2.14)

where U (h) is the potential density for parallel and infinitely long tubes,

2T 27T

w1 W) =2 [ [ [ 0o, 9)ds, dn d, (2.15)
0 —-o00

And

r(h, d1,1, 62) = [(h + Rr(cos d, — cos )
1
+ RZ(sin ¢, — sin ¢; + n?]2

(2.16)

Now, it is possible to record the potential in a one-dimensional table, cutting the computational
cost of the vdW force calculations. Although this potential is only appropriate for infinitely long
and parallel tubes, U (h) can be used to also determine the potential density for arbitrary tube
orientations. The main idea is to approximate the potential density at arbitrary orientations with
simple geometric relations, and then to resolve the discrepancy between the approximation and the
true potential with a set of scaling functions, and thereby good accuracy for the vdW interaction
force can be cheaply obtained. Further information on the details of this method and the analogous
treatment of the semi-infinite case is provided in ref [57]. This method of modeling the vdW
interactions between CNTs eliminates the artificial friction between tubes resulting from the bead
and spring model, and is a computational efficient way to simulate the interaction of multiple

CNTs with each other. Figure 2.6 shows the self-organization of CNTs with the MFF model and
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the bead and spring model. Note that the poor alignment between the CNTs for the bead and spring
model is attributed to its roughly corrugated vdW potential.

The mesoscopic force field does not include an explicit description of friction forces related
to the relative displacement of tubes with respect to each other, as these forces are too weak to
prevent room-temperature rearrangements of defect-free CNTs [83, 84]. The contribution to the
static friction forces originating from the changes in the inter-tube interaction area, however, is
fully accounted for in the mesoscopic model. Experimental measurements and simulations of the
sliding force required to pull an inner tube from an outer one in a MWCNT [85] and the static
friction between two highly crystalline double-walled CNTs and MWCNTs [57, 84] reveal that
the friction force is independent of the overlap area and its magnitude is comparable to that
expected from the changes in the inter-tube interaction area. Atomistic simulations predict that the
oscillating force originating from the atomic-scale corrugation of the inter-tube potential is more
than two orders of magnitude lower that the force related to the decrease in the surface area of van
der Waals interaction [85] and cannot be expected to make any significant contribution to the static
friction [85, 86]. As a result, the force required to pull out a nanotube from a bundle of pristine
defect-free nanotubes is similar in the mesoscopic and atomistic simulations and is defined by the
energy needed to create new surface [86, 87]. For (10,10) CNTs considered in the present study,
the CNT-CNT interaction energy is ~1 eV/nm [21, 57] , and the corresponding pullout force from
a bundle is ~1 nN. The presence of defects, functional groups, and chemical cross-links can
significantly increase the strength of the shear interactions between nanotubes [86, 87], but these

effects are not considered in the present study.
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Figure 2.6: Schematic representation of the tubular mesoscopic model (a), and the bead and spring
model (b). The CNT configurations in the right panels are fragments of CNT networks obtained
in the simulations performed with the two models. In (a) the CNTs are colored by their local radii
of curvature where the red color corresponds to buckled segments. The configuration in (b) is from
ref. [58] The CNTs do not bundle together due to the artificial friction present in the bead and
spring model, but the mesoscopic model with the tubular potential does accurately reproduce this
behavior.

2.4 Heat bath

2.4.1 Temperature control through thermostats

The primary advantage of using a mesoscopic model is that it is less computationally intensive
because of the reduced number of degrees of freedom. For simulations where local thermodynamic
equilibrium can be assumed the effect of the missing degrees of freedom on energy distribution
can be neglected. For these cases, a thermostat control such as the one introduced by Berendsen
and co-workers [88] is oftentimes used. This scheme couples the system to a heat bath at a fixed
temperature. If the system’s temperature fluctuates a temperature difference will be established
with the heat bath and the temperature of the system is exponentially restored towards the heat

bath temperature, such that
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dr  To—T

Z 2.17
dt T ( )

where the T, is the heat bath temperature, T is the temperature of the system, and 7 is a time
constant. The Berendsen thermostat is efficient and commonly used for larger systems where it is
approximately consistent with a canonical ensemble. Another scheme commonly used is that
proposed by Nosé [89] and advanced by Hoover [90], which is more realistic in that it achieves a
canonical temperature distribution. The formulation of this approach is more complicated than the
Berendsen thermostat, introducing an additional degree of freedom in the Hamiltonian for the
system, but provides more accurate results for smaller systems. The mesoscopic code implements
Berendsen’s method as it provides an adequate temperature control for the large scale systems

used in the simulations.

2.4.2  Inclusion of heat bath in mesoscopic code for CNTs

Although the Berendsten thermostat mitigates temperature variations in a system, it does so
on a global level. That is, the kinetic energy of the entire system is scaled by redistributing the
temperature to all of its parts. However, in dynamic processes occurring on timescales too short to
assume the establishment of thermal equilibrium the local energy dissipation becomes important.
If a system absorbs a large amount of energy in a localized region, such as during a high-velocity
impact of a projectile with CNTs as shown in Figure 2.7, the kinetic energy around this site will
be artificially large due to the missing degrees of freedom in the mesoscopic model. It is therefore
necessary to incorporate these absent degrees of freedom implicitly in the form of a heat bath
coupled to the dynamic degrees of freedom of individual CNTs. Energy is exchanged between the
explicit dynamic degrees of freedom and the heat bath variables, and a general approach was
proven for an analogous case of energy transfer between the electrons and the lattice in metals
[91]. In CNTs, however, there is no obvious physical distinction between low-frequency acoustic
vibrational modes explicitly represented in the mesoscopic model and the higher frequency modes
that the heat bath represents. Nonetheless, based on previous MD simulations [92, 93] that show
limited coupling of the high (optical) and low frequency (acoustic) vibrational modes in CNTs,
the distinctness of these modes appears justified. Furthermore, simulations show that the bending

oscillations in cantilevered [94, 95], free [96], and clamped [97] CNTs only diminish gradually,
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and that there is a bottleneck in phonon transfer between the acoustic vibrational modes and the

optical modes [97].

One important parameter in developing a heat bath approach is the heat capacity of the heat bath.
This is calculated by first adding up all of the dynamic degrees of freedom represented in the
mesoscopic model and then subtracting them from the experimentally determined specific heat of
the CNT. Another important parameter for the heat bath approach is the rate at which energy
transfers between the two sets of vibrational modes, can be extracted from atomistic MD

simulations.

55 ps

100 nm 100 nm A *:,J/ 100 nm

Figure 2.7: Snapshots from mesoscopic simulation of the high-velocity impact of a spherical
projectile with a diameter of 100 nm, a density of 2.8 g/cm® and an initial velocity of 1000 m/s on
a free standing 20-nm-thick CNT film. The snapshots are shown for 55, 125, and 255 ps after the
onset of the impact. The film has a density of 0.2 g/cm?, and the CNTs in the film are arranged in
a continuous network of bundles. The nanotubes are colored by their local kinetic energy, and the
projectile is not shown in the snapshots.

2.4.3 Heat capacity of the heat bath

The details of implementing the heat bath approach are presented in ref [77], and only a brief
overview will be given here. First, the totality of the vibrational modes in a CNT can be separated
into four distinct groups: the bending acoustic (BA), longitudinal acoustic (LA), radial (RAD), and
the remaining heat bath (HB) modes. Without the heat bath, the mesoscopic model only explicitly
represents the low frequency BA and LA modes, and it currently does not account for the RAD
modes because CNT diameter is fixed throughout the mesoscopic simulations. The HB modes
represent all of the degrees of freedom that are not represented in the coarse-grained model. Figure

2.8 schematically illustrates how the atomistic model is related to the mesoscopic model, where
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the atomistic representation of the CNT is partitioned into nodal segments. The CNT unit length

is long enough to account for all LA and BA modes, and is equal to the mesoscopic segment length

in this analysis.

() 40 atoms j=12..10

Figure 2.8: Schematic illustration of the mapping of (a) the atomic model of a (10,10) CNT to a
chain of coarse-grained particles and (b) a unit cell ring of the (10,10) CNT to a closed chain of 10
point masses. The coarse-grained representations are used in the analysis of the partitioning of the
vibrational energy between the longitudinal, bending, and radial modes. Taken from ref [77].

The potential and kinetic energies associated with each group of modes are calculated to define

their instantaneous total energy. For the LA modes, the potential energy is defined as

N-1
1k . .
Upa = 5= (Jri*t = ] - a)” (2.18)
2 a /4 :
L=
and for the BA modes, it is
1 N-1 132
Usa = 5 kpnac Z <R_i> 2.19)
=

where 7is the position of the node i, a is the equilibrium separation between the nodes, kg, and
kpna are the stretching and bending force constants, respectively, and R; is the local radius of
curvature at node i. The corresponding kinetic energies are found by taking the nodal velocity
components, v', both parallel and perpendicular to the local elastic line, e’ = (r'*! —
ri=1)/|r** — r=1| for internal nodes and to the line directed along two end segments for nodes

i = 1and N. For the LA modes, the kinetic energy is written as
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N
1 o
T =5m Z(vl el)’ (2.20)
i=1
and for the BA modes, it is written as

N

Typs = %‘m Z[(vi)2 — (v e))’] 2.21)

i=1

where m is the total mass represented by each node. For the LA modes, E; 4, = T; 4 + U4 can be
used without further modification to the equations. However, the equation for the potential energy
of the BA modes must be rewritten in order to account for the periodic fluctuations commensurate
with large-amplitude bending oscillations. This is done by a normal mode analysis that sums the
small bending oscillations relative to a fixed axis, and the BA potential energy is thus reconstructed

as a sum of energies contained in each of the mesoscopic normal modes.

Despite lack of radial modes in the mesoscopic model, they are still distinguished in the atomistic
simulations from the rest of the modes. The kinetic energy of the RAD modes is obtained by
summing the radial velocities of the particles of a unit cell (see Figure 2.8b) over all of these rings
1 N n
m . 2

Traqa = E;Z‘ (vi)) (2.22)

i=1j=1

where v}"z, ; 1s the radial component of the velocity of particle j in unit cell ring i with respect to the

center of mass of the ring. The equation can be decomposed to a single summation of the radial

modes.
Then, the heat bath energy can be obtained from the equation

Eyp = Ecnr — (Epa + Epa + Egqa) (2.23)

2.4.4 Dissipation of stretching and bending vibrations into heat bath
The rate of energy dissipation from the stretching and bending vibrations depends how

large the temperature difference is between the heat bath and the remaining degrees of freedom.
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Another factor influencing the rate of energy dissipation is whether the nanotube is buckled or not.

For the LA modes, the differential equation to describe this rate is given by

E..—EE, pLa

_ (2.24)
ELA

) (55

d
E (ELA - ELHA) = —)/LA (

ELa—EY, . : . e
where % is the relative excess energy with respect to the equilibrium LA energy at the heat
LA

LA RLA and yL4 are fitted from atomistic
Y

bath temperature 6, Ef, and the tunable parameters a
simulations. Analogous to the LA modes, the equation describing the dissipation of energy from

the BA modes is

d
dt (EBA - EgA)

6
— _yBAD <M (EgA)BBA(’)
27 (2.25)
E g oBAUD aon
BA — LBA pBAUI
v (E—e> (E34)
BA

X H[(Ega — Efa) — Epal

where H(E) is the Heaviside step function, and Eg 4 is the critical excess energy for the onset of
buckling. The rest of the terms have corresponding definitions to equation (2.24), but for the BA
modes. One difference between equation (2.24) and equation (2.25) is the inclusion of additional
dissipation regimes for the BA modes. Regime I represents small bending deformations without
buckling, and regime II accounts for buckling kinks in the CNT. In the buckling regime, the energy
decay rate sharply increases over that for the harmonic buckling regime, and the parameters in this
regime are found to be insensitive to temperature. However, the dissipation associated with the
harmonic bending is still active in the buckling regime, but contributes insignificantly to the total

dissipation.

2.4.5 Dissipation of acoustic vibrations in the mesoscopic model
The heat bath modes can be either associated with a localized portion of a CNT or with the
entire CNT. However, due to the large, non-local wavelengths typically resulting from acoustic

excitations, and the high thermal conductivity of CNTs, we opt to associate the heat bath with the
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whole tube. The rates of energy dissipation and the heat capacity of the heat bath for the
mesoscopic model are taken from the results of the atomistic simulations. To reproduce the gradual
dampening of the acoustic vibrations, a restoring force, F., is introduced for a node i for the sum

of the stretching and bending dampening contributions,

Fcli = _fstrmivétr - fbndmiv;'md (2'26)

where m'is the mass of a part of the nanotube represented by the node i and &, and &,,,4 are the
stretching and bending dampening coefficients, respectively, that are chosen to match the
dissipation rates from the atomistic simulations. The dampening force is added to the force term
calculated in the mesoscopic code, mitigating the translation motion of the segments. So that CNT
momentum is conserved, the contributions of the dampening forces to the net force and torque are
subtracted out, and the damping forces are renormalized to maintain the appropriate dissipation

rate.

As described in the previous section, the energies of the stretching and bending modes are
comprised of both kinetic and potential energy components, and for a given heat bath temperature,
6, the instantaneous dissipation is defined by equations (2.24) and (2.25). Since there are many
more modes associated with the heat bath relative to the LA and BA modes, the heat bath
temperature slowly increases with the acoustic energy transfer, and the time dependence

derivatives for EZ, and ES, can be neglected, so that

dEsty d(Ea—Efs)  dEpna _ d(Epa — ES,) 5 27
=~ and ~ ( )
dt dt dt dt

Therefore, at every time step, At, the stretching and bending energy transferred to the heat bath in

the mesoscopic code is represented as

d(Eps—Ef d(Ega — E§
AEg, = %At and AE,,y = %At (2.28)

The dampening force coefficients are taken [91] as
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_ AEstr _ AEbnd
$str = N Y and $ppg = N 1 \2 (2.29)
AtZi:lml(vstr) AtZi:lml(vbnd)
and the energy removed from the LA and BA modes is transferred to the heat bath as
1
AG = _(AEStT + AEbnd) (230)

Chup

where cypis the heat capacity of the heat bath modes, and A8 is the increase in the heat bath

temperature, such that 8(t + At) = 6(t) + A6.

2.4.6  Localized energy dissipation

Although the dampening forces describe the energy dissipation from the LA and BA modes
to the heat bath modes at small strains, at larger strains the rate of dissipation increases
dramatically, and deformation is much more localized. The globally acting dampening force does
a poor job at removing energy from buckled nodes, and tubes remain buckled for an artificially
large number of oscillation periods. Therefore, an additional dissipation mechanism is introduced
to account for the axial and bend buckling regimes in the form of hysteresis loops in the stretching
and bending potentials. The idea behind this approach is illustrated in Figure 2.9, where the
potential for compressive strain is shown. At a critical strain, |€§’tcrl|, the CNT axially buckles, and
the potential switches from a harmonic form to a linear form. Furthermore, there is a drop in the
potential energy, AEZ™®, corresponding to the rapid transfer of energy to the heat bath in the
buckling regime. When the strain diminishes, the linear potential remains in effect until a strain

|eZgt=min| 5o that the energy deposited in the heat bath is not reintroduced to the acoustic modes.

The heat bath temperature is increased as A8 = AEZS! /cyp, and the value of AELS can be tuned
by adjusting the value for €2S~™" The latter parameter is chosen so that the energy dissipated
matches the results of the atomistic simulations. An analogous approach is followed for the BA
modes. The inclusion of the hysteresis method in the mesoscopic model results in a more accurate
reproduction of the energy transfer from acoustic modes to the higher frequency optical modes

found in atomistic simulations, relative to simulations without the hysteresis approach.
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Figure 2.9: An illustration of the hysteresis approach to the localized energy dissipation upon
buckling in the mesoscopic model. The compressive part of the axial strain energy is shown
schematically in (a), and an enlarged view of the hysteresis region is shown in (b). The blue arrows
in (b) represent the path followed when a buckling kink is created. The red segments of the plot
are the irreversible parts of the strain energy hysteresis. AE2S is the amount of energy transferred
to the heat bath of the CNT in each buckling cycle. Taken from ref [77].
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3 Structural self-organization of carbon nanotubes into vertically

aligned arrays

3.1 Introduction

Carbon nanotube (CNT) materials possess an attractive combination of structural,
mechanical, and transport properties, and continue to hold high promise for a broad range of
practical applications [98, 99]. One type of CNT material with pronounced directional anisotropy,
vertically aligned carbon nanotube (VACNT) arrays, are of particular interest for applications with

stringent requirements for the mechanical strength, toughness, and thermal energy dissipation.

The VACNT arrays, also known as VACNT “forests,” [12, 100, 101] are typically composed
of long (up to centimeters [101]) CNTs extending through the whole length of the arrays. These
materials are usually produced by chemical vapor deposition (CVD) [28, 102-108], where a
hydrocarbon gas reacts with catalytic metallic nanoparticles and decomposes to provide carbon for
continuous growth of CNTs. The mass density, types and diameters of constituent CNTs, nanotube
areal density, and the mesoscopic structure of VACNT arrays can be strongly affected by the CVD
growth conditions [8—10], type, size, and dispersion of the catalyst nanoparticles [106], as well as
the properties of the substrate [107, 108]. The VACNT arrays have been shown to exhibit a unique
combination of mechanical resilience (ability to support large reversible deformation and absorb
mechanical energy) and high anisotropic thermal conductivity in the direction of CNT alignment
[32], which makes them good candidates for applications requiring both heat management and

mechanical energy dissipation.

The mechanical and transport properties of CNT forests are highly sensitive to the
arrangement of individual CNTs into mesoscopic structural elements of the network materials,
such as CNT bundles and branching structures, which produces materials characterized by
different bundle size distribution, porosity, and the degree of nanotube entanglement. The
structural characteristics of CNT forests are not uniquely defined by the length and flexural rigidity
of CNTs and material density, but can be modulated by changing the parameters of the production
process, mechanical and chemical post-processing, radiative treatment, etc. The empirical

exploration of the broad space of structural parameters of anisotropic CNT network materials is



31

challenging [28, 109] and the structural optimization can be greatly assisted by computer modeling

targeting the structure — properties relationships.

Using the mesoscopic model described in chapter 2, a method for in silico preparation of
structurally distinct VACNT arrays based on the variation of the initial inclination of nanotubes
with respect to the direction of alignment and the annealing temperature is detailed in section 3.2
The results of the structural characterization of VACNT arrays of different density are presented
and related to the sample preparation procedure in section 3.3. The effect of CNT length on the
structure of VACNT arrays is considered in section 3.4. Several examples of the applications
benefiting from the fine control over mesoscopic structure of VACNT samples enabled by the
developed sample preparation method are provided in section 3.5, and the results are summarized

1n section 3.6.

3.2 Making VACNT forests in silico

A series of computational VACNT samples composed of single-walled carbon nanotubes
(SWCNTs) and featuring distinct structural characteristics are generated and equilibrated using the
mesoscopic force field model described in chapter 2. In order to produce realistic in silico SWCNT
forests, the CNT diameter and nanotube areal density (i.e., the number of nanotubes grown on a
unit area of the substrate) are selected to match those characteristic of experimentally grown
VACNT arrays. The ranges of the CNT diameters and areal densities reported in literature for
SWCNT forests grown by CVD are illustrated by several representative examples [74-78] in
Figure 3.1. Due to the narrow distribution of CNT diameters typically found in SWCNT forests
[75-79], a constant diameter of 1.357 nm, characteristic of (10,10) CNTs [47], is selected for all

nanotubes in the computational samples.
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Figure 3.1: Chart showing the areal densities and CNT diameters of five representative SWCNT
forests grown by CVD (marked as Zhong 2012 [78], Kang 2007 [76], Zhong 2006 [74], Einarsson
2007 [77], and Futaba 2006 [75]) along with the four SWCNT forests generated in silico in this
work (marked as FA, FB, FC, and FD).

The CNT areal density of experimental samples illustrated in Figure 3.1 exhibits a large,
more than three orders of magnitude, variability. The areal density is an important parameter as it
directly affects the structural characteristics of the network of bundles generated during the growth
of a CNT forest. The balance between the inter-tube interaction energy and bending energy of
CNTs, which defines the propensity of nanotubes to join the bundles or form interconnects
between the bundles, is to a big extent controlled by the areal density of CNTs. To investigate the
effect of the areal density on the structural characteristics of the CNT forests, the computational
samples are generated in this work for two values of the areal density. Three samples, designated
as FA, FB, and FC in Figure 3.1, have an areal density of 6.09 x 10'! cm™2, and one denser sample,

FD, has a five times higher areal density of 3.05 x 102 cm ™,

Another important consideration is the choice of the length of CNTs. If the nanotubes are
too short, then the degree of CNT-CNT interactions and connectivity of CNT networks is limited
by the relatively large energy penalty associated with bending the nanotubes needed to form
bundles. Computational treatment of very long nanotubes, however, is costly, as the number of
dynamic units (nodes) for which the equations of motion are solved in mesoscopic simulations is
proportional to the CNT length. The length of the nanotubes in the experimentally grown VACNT

forests illustrated in Figure 3.1 range from several micrometers to hundreds of micrometers, but
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the microstructural characteristics are already well-defined at the micrometer scale. Therefore, in
order to cost-effectively reproduce the microstructure observed in experiments, the length of CNTs
is chosen to be 2 um in the computational VACNT samples considered in this section. The
dependence of the structural characteristics of VACNT forests on the CNT length is discussed and

illustrated by simulations performed for shorter, 200 and 600 nm, forests in section 3.4.

Once the initial parameters are selected, there are two ways to proceed for making a
realistic forest microstructure. Either the forest can be “grown” by lengthening the nanotubes over
the course of a simulation [61] or the fully sized nanotubes can be made to self-organize [80]. We
chose the latter option because it is more straightforward, and has already been proven to be
effective in generation of CNT films, or “buckypaper,” with random orientation of nanotubes

within the planes of the films [47—49].

As the first step of the sample generation, perfectly straight nanotubes are randomly placed
on a substrate at a certain inclination with respect to the substrate surface normal (the choice of
the inclination angle is discussed below). The positions of CNT segments (two nodes) adjacent to
the substrate are fixed, so that these segments stay at their initial inclination during the self-
organization of nanotubes into a network of bundles. In the course of the generation of the initial
forest, a new CNT is only added to the sample if the minimum gap between the surfaces of the
new and any of the CNTs already present in the sample is larger than the equilibrium distance of
3.14 A [47]. If the new CNT is too close to an existing CNT, the nanotube is not added and another
random location for the next CNT is selected. This acceptance-and-rejection process of the random

generation of new nanotubes continues until a desired material density is reached.

The random placement of the nanotubes on the substrate is done within a rectangular area
of pre-defined dimensions. For all computational samples but sample FD, periodic boundary
conditions are applied in the lateral directions, parallel to the surface of the substrate. These
boundary conditions make it possible to represent VACNT forests extending much further than
the actual lateral dimensions of the computational system. The choice of the lateral dimensions of
the computational system is defined by the condition that the sample is sufficiently wide to ensure
that any nanotube would not span more than half of the computational domain at any time during
the simulation. This condition is more stringent than the requirement of the absence of CNT self-

interactions and is imposed in this work to ensure that the structural characteristics of the generated
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samples are not affected by the periodic boundary conditions. Due to the difference in the
maximum initial inclination of the nanotubes with respect to the substrate normal (see below),
different lateral dimensions are chosen for samples FA, FB, FD (0.64 pm x 0.64 pum), and sample
FC (12.82 pm % 1.82 pum). The parameters of the VACNT samples generated with 2-um-long
(10,10) CNTs are summarized in Table 3.1.

Table 3.1: Parameters of the CNT forests generated in the mesoscopic simulations. The CNT
spacing is defined as center-to-center distance assuming hexagonal packing of the nanotubes. Data
files defining the structures of computational samples listed in this table are accessible from Ref.
[110].

Density Aregl Volume CN,T CNT length | Lateral size Number Max'. 1n1.t1a1

Forest (g/em’) density oceupanc spacing (um) (um x um) of CNTs inclination

g (CNT/em?) PAEY 1 (am) H hm > | Omax(deg.)
FA 0.64 x 0.64 2,498 0.6°
FB 0.02 6.09 x 10" 0.9% 13.77 2 0.64 x 0.64 2,498 12°
FC 2.00 x 2.00 20,438 27°
FD 0.1 3.05x 10" 4.52% 6.16 2 0.64 x 0.64 12,676 0.6°

In our first attempt to generate CNT forests, all nanotubes are initially oriented
perpendicular to the substrate, and the process of self-organization of CNTs into a network of
bundles is induced by bringing the system to a high temperature, maintaining the temperature for
1 ns using the Berendsen thermostat algorithm [82], and then relaxing the sample at 300 K. A large
fraction of the nanotubes (~55%), however, is found to remain isolated from any of the
neighboring CNTs in samples with density of 0.02 g/cm?, even when the thermal annealing is
performed at a temperature as high as 10,000 K (the model does not include the possibility of
thermal decomposition of CNTs, and the temperature is defined based on the average kinetic
energy of mesoscopic dynamic units of the model). The relatively high bending energy associated
with bringing the vertically-oriented nanotubes into bundles is preventing the formation of
continuous networks of bundles, commonly observed in experiments [3—14,74—79,83,84], through

the high temperature annealing alone.

In order to facilitate the formation of interconnected network of bundles, the algorithm
used for the generation of VACNT arrays is modified by introducing a random inclination of the

straight nanotubes relative to the substrate normal. This way, the nanotubes can more easily
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interact with each other during the high temperature stage of the sample preparation and join
different bundles along the height of the forest. Moreover, we found that the maximum inclination
of the CNTs can serve as a parameter that effectively controls the microstructure of the VACNT
arrays. Thus, the three-step process developed for the generation of VACNT samples with tunable
structural characteristics can be described as follows. First, a sample composed of straight
nanotubes with initial inclinations with respect to the substrate normal chosen randomly in a range
from 0° to a maximum angle 0,,,, is generated. Then, the initial sample undergoes thermal
annealing in a mesoscopic dynamic simulation performed at a temperature of 5000 K for 1 ns.
During this high temperature stage, the initially straight and isolated nanotubes self-organize into
a continuous network of bundles, as schematically shown in Figure 3.2, where the shape of a
representative nanotube before and after annealing is highlighted. Finally, the VACNT forest is
quenched to 300 K and allowed to relax until a metastable configuration, defined as a state where
the rate of change in the inter-tube interaction energy slows down to a level below 0.05% per ns,
is reached. Note that the computational procedure described above cannot be directly mapped to
laboratory conditions, where a variety of growth and post-processing procedures have been
developed to control the degree of nanotube alignment in VACNT forests, e.g., Refs. [4,8,85,86].
Nevertheless, as demonstrated below, in sections 3.3 and 3.4, the choice of 0,,,, can be used as
an effective way to tune the structural characteristics of the computational samples and to

reproduce the structure of experimental samples in the mesoscopic simulations.

The procedure described above is applied in this work for generation of three VACNT
forests with density of 0.02 g/cm® and one forest with a higher density of 0.1 g/cm?. The parameters
of the four samples are provided in Table 1. The structure of the low-density forests is controlled
by the maximum initial inclination of the nanotubes, 0,,,,, chosen to be 0.6°, 12°, and 27° in the
three forests denoted as FA, FB, and FC, respectively. The VACNT forest with a density of
0.1 g/lcm?, five times greater than that of the other three forests, is prepared using the same method
and the maximum inclination of 0.6° i.e., the same as in the sample FA. This higher-density
sample is denoted as FD in Table 3.1 and further discussion. The results of the structural

characterization of the four VACNT forests are presented in the next section.
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Segments
in Bundle

Figure 3.2: Schematic representation of the procedure used for the generation of VACNT samples.
Straight CNTs are first randomly placed on a substrate with a random inclination with respect to
the substrate normal @, ranging uniformly from zero to a maximum angle 6,,,, (a). The high
temperature annealing followed by a relaxation at 300 K is used to induce self-organization of
CNTs into a continuous metastable network of interconnected bundles (b). A single representative
nanotube is highlighted, colored by its local bundle thickness, and shown in front of the other
nanotubes. All other nanotubes are colored gray.

3.3 Structural characteristics of VACNT forests

The visual views of three lower-density VACNT forests generated in silico as described
above are provided in Figure 3.3, where the CNT segments are colored by local thickness of
bundles they belong to. The bundle thickness is defined as the number of CNTs in a bundle cross
section. Therefore, an isolated CNT segment has a bundle thickness of one and is colored blue in
Figure 3.3. Despite having the same average density and being composed of CNTs of the same
length and type, the three VACNT forests have distinct structures characterized by different
thicknesses of nanotube bundles and densities of interconnects between the bundles. The

nanotubes are assembled into fewer number of thicker bundles in sample FA, the bundles are the
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thinnest and most numerous in forest FC, while forest FB is intermediate between these two

extremes.

Segmenis
mn Bundle

gsz28zgig

Figure 3.3: Side views of computational samples of forests FA (a), FB (b), and FC (c) generated
in mesoscopic simulations. The CNT segments are colored by the local bundle thickness (number
of segments in a bundle cross section). Data files defining the structures of the computational
samples shown in this figure are accessible from Ref. [110].

Figure 3.4: Enlarged views of computational VACNT forests FA (a), FB (b), and FC (c)
illustrating the degree of interconnection among the bundles. The coloring scheme is the same as
in Figure 3.3.

The degree of interconnection between the bundles in the network structures of VACNT

forests can be characterized by the extent to which individual nanotubes are parts of multiple
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bundles. Visually, the difference between the forests' morphologies can be seen from Figure 3.4,
where enlarged views of the network structures are shown for each of the three forests. It is
apparent from Figure 3.4 that, on average, CNTs in sample FC tend to be parts of larger number
of bundles as compared to samples FB or FA. This observation is not surprising given the initial
inclinations of the nanotubes in each sample, but has important implications for mechanical and

thermal properties of the forests.
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Figure 3.5: The bundle thickness distributions calculated for computational samples FA (a), FB
(b), and FC (c), as well as for a laboratory-grown forest analyzed in Ref. [77] (d). In the
computational and experimental CNT forests, the bundle thickness is expressed in the number of
nanotubes present in bundle cross sections, and each bin covers a thickness increment by 1 CNT
segment. In (d), the filled bars are for SWCNT bundles where the number of nanotubes can be
reliably counted in TEM images, while the unfilled bars are estimates based on the visual thickness
of the bundle. The star marks the number of isolated SWCNTs, and could be higher than the
estimate shown in the figure.

The structural differences between computational samples generated with different initial
maximum inclinations of CNTs can be quantified by considering bundle thickness distributions

shown for the three samples in Figure 3.5a—c. The bundle thickness distributions calculated for
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samples FA and FB are qualitatively similar, although the distribution is narrower and shifted to
smaller bundle sizes in sample FB. In sample FC, a big fraction of the nanotube segments (~16%)
are not in contact with other segments. However, as can be seen from Figure 3.4, this is the result
of nanotubes spanning across the sample and participating in multiple bundles connected by
isolated portions of CNTs, rather than entire CNTs remaining isolated from the neighboring CNTs.
The maximum thickness of bundles found in the simulated network structures FA, FB, FC is equal

to 230, 162, and 70 nanotube segments, respectively.

The structures of the computational samples can be related to the results of experimental
analysis of the bundle thickness distribution in a VACNT forest of comparable density (0.035—
0.05 g/cm?), reported in Ref. [77] and reproduced in Figure 3.5d. Experimentally, the bundle
thickness distributions were determined through inspection of transmission electron microscope
(TEM) images of VACNT forests composed of 2-um-long SWCNTs. The filled bars in Figure
3.5d correspond to the bundles where the number of CNTs can be reliably counted based on the
TEM images and the unfilled bars are the estimates based on the bundles where the number of

CNTs was not clear from the images.

The fraction of individual (isolated) CNTs in the computational sample FC (Figure 3.5¢)
is close to that in the experimental VACNT forest, ~15%, while the width of the distribution is
almost twice wider in the computational sample than in the experimental one. Although the
agreement between the experimental and computational bundle size distributions in Figure 3.5¢c
and d are only semi-quantitative, we note that the thickness of the CNT bundles and other structural
characteristics can be effectively controlled by the CNT synthesis parameters in experiments
[4,8,85,86] and by the choice of the initial maximum inclination angle 0,,,, in the computational
procedure. Two laboratory-grown SWCNT forests are shown in Figure 3.6. The sample shown in
Figure 3.6a [77] is the one used in the analysis of the bundle size distribution illustrated by Figure
3.5d. As discussed above, bundle size distribution and overall structure of this forest are similar to
those of the computer-generated sample FC. Another CVD grown forest of similar density
(0.03 g/cm3), shown in Figure 3.6b [75], exhibits thicker bundles and a remarkable visual
similarity to the computational sample FA. Both the in silico and laboratory-grown forests in
Figure 3.4a and Figure 3.6b are characterized by similarly sized and oriented bundles.

Interestingly, since the three computational samples, FA, FB, and FC, have the same basic
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parameters (material density, length and type of the CNTs), the results of the simulations suggest
that the forest morphology is not uniquely dictated by the nominal parameters of the CNT network

material, but can be altered to a large degree by the sample preparation method.

(a)

Figure 3.6: Scanning Electron Microscopy (SEM) images of CVD grown SWCNT forests with
smaller [77] (a) and larger [75] (b) nanotube bundles.

The ability to accurately control the microstructure of computer-generated VACNT forests
can be further evaluated by performing statistical analysis of the connection between the initial
maximum CNT inclination angle 0,,,, and the resulting structural characteristics of the
anisotropic networks. The structural characteristics of the computational samples FA, FB, and FC
are summarized in Table 3.2 and include the average tilt of CNT segments with respect to the

max

direction of VACNT alignment (@), average bundle size (Ng), maximum bundle size Nj***,

standard deviation (SD) of the bundle size, and magnitude of the Herman orientation factor (HOF)
defined as § = % [3(cos? @) — 1], where 8 is the local angle between a nanotube and the vertical

axis, and the angle brackets () denote averaging over all CNT segments in a sample. The HOF
quantifies the extent of the orientation of nanotubes with respect to an axis of interest, and ranges
from —0.5 to 1, where values of —0.5, 0, and 1 correspond to perpendicular alignment, isotropic
orientation, and parallel alignment with respect to the axis, respectively.

Table 3.2: Statistical information on the structural parameters of three computational forests of

the same density of 0.02 g/cm?>. The average tilt of CNT segments (8), average bundle size (Ng),

, maximum bundle size Nj***, standard deviation (SD) of the bundle size, and magnitude of the
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Herman orientation factor (HOF) are listed for computational samples FA, FB, and FC. The
coefficients of determination R? are listed for linear dependencies of the structural parameters on

Onmax-
Sample [0,;,4.] (0) (Np) Ng** SD HOF
FA [0.6°] 13.7° 77 230 43 0.88
FB [12°] 17.6° 42 163 28 0.82
FC[27°] 19.4° 12 70 9 0.79

R? 0.92 0.98 1.00 1.00 0.93

Remarkably, all of the structural parameters of the three samples listed in Table 3.2 exhibit
nearly linear dependences on the maximum inclination angle ©,,,,,, as shown by the nearly perfect
values of the corresponding coefficients of determination (R?). The clear statistical link between
the structural material parameters and ©,,,, suggests that the sample preparation procedure
described in section 3.2 can be used to precisely engineer the microstructure of a VACNT forest

to match that of an experimental material of interest.

Finally, the effect of material density on the structural characteristics of computer-
generated VACNT structures can be evaluated by considering the higher density sample FD.
Although the density of this sample (0.1 g/cm?® or 3.05 x 10!2 cm2) is about an order of magnitude
below the close-packing limit and does not quite compare with the densest laboratory-grown
forests produced by advanced growth techniques [78,83,84] or post processing methods [75], it
nonetheless is higher than density of majority of VACNT forests reported in literature, e.g., Figure
3.1. The visual inspection of the microstructure of sample FD shown in Figure 3.7a and b suggests
that the size of bundles is comparable to that of sample FA, Figure 3.3a and Figure 3.4a. Indeed,
despite the five times higher density of sample FD, the bundle size distribution shown is Figure
3.7c is similar to the distribution shown for sample FA in Figure 3.5a. The forest FD has an average
bundle thickness of 71, very close to that of 77 calculated for FA, although the maximum number
of segments in a bundle for FD is 301 compared to 230 for FA. The more densely packed structure
of sample FD, however, is characterized by higher degree of vertical alignment, with the average
angle between the CNT segments and the vertical axis, (#), equal to 8.4°, and the magnitude of

HOF equal to 0.95. The results of the structural characterization of sample FD agree well with the
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correlation between density and the degree of CNT alignment observed in laboratory-grown
forests [4], and imply that at high densities, the variation of microstructure exhibited by CNT
forests is more constrained by crowding of the nanotubes.
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Figure 3.7: The overall view (a), an enlarged fragment (b), and the bundle thickness distribution
(c) of the computational sample FD. In (a) and (b), the CNT segments are colored by the local
bundle thickness (number of segments in a bundle cross section), and in (c) each bin covers a
thickness increment by 1 CNT segment. Data file defining the structure of the computational
sample shown in this figure is accessible from Ref. [110].

3.4 The effect of CNT length in short VACNT forests

All the results discussed above are for VACNT forests composed of 2-um-long CNTs, where
the effects of the substrate and free surfaces of the VACNT arrays on the structural organization
of the networks of bundles is limited to relatively shallow bottom and top layers of the samples
(Figure 3.3), while the internal structure can be assumed to be largely unaffected by the finite
length of the CNTs. The length effect, however, can be expected to be more significant for shorter
VACNT arrays, warranting an investigation of the length dependence of the VACNT structures

presented in this section.

To reveal the length dependence of the structural parameters of the VACNT forests, two
additional sets of VACNT forests composed of nanotubes with lengths of 200 nm and 600 nm are
prepared using the method described in section 3.2. The initial VACNT samples are cubic, i.e.,

have dimensions of 200 x 200 x 200 nm* and 600 x 600 x 600 nm?. In each set, three samples of
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the same areal density of 6.09 x 10'! cm™ are prepared with initial maximum CNT inclinations of
0.6, 12, and 27°. Except for the CNT length, all other parameters of the sample preparation
procedure are identical to the ones used in the generation of samples FA, FB, and FC discussed in

the previous section.

Segments
in Bundle

0.2 um
0.2 um

(L6 pm
(L6 pm

Figure 3.8: Side views of computational VACNT samples composed of nanotubes with lengths
of 200 nm (a—c) and 600 nm (d—f) generated in mesoscopic simulations according to the procedure
described in section 3.2. The CNT segments are colored by the local bundle thickness (number of

segments in a bundle cross section).

The relaxed structures of the samples generated with 200- and 600-nm-long nanotubes are
shown in Figure 3.8. Here we notice that, regardless of the initial inclination, the shortest (200 nm)
forests do not display the complex morphology of the 2-pm-long samples (Figure 3.3), but rather
form smaller and largely isolated bundles even when the initial maximum inclination of CNTs is
27°. The limited connectivity between the bundles in this case cannot be enhanced by further
increase of the maximum inclination angle, as the lateral divergence from the point of origin on
the substrate that corresponds to ® = 27° is about 91 nm for a 200-nm-long straight CNT, which
is more than 6 times larger than the characteristic distance between the CNTs on the substrate (see

Table 3.1). Thus, the virtual absence of participation of CNTs in multiple bundles is not related in
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this case to the lack of initial interactions, but is defined by the high bending energy penalty
associated with the formation of interconnects between the bundles at such a short length-scale.
Indeed, the characteristic length of branching of CNT bundles in Figure 3.3 and Figure 3.4, and
well as the typical length of nanotube segments participating in different bundles that can be seen

for the nanotube highlighted in Figure 3.2, are both exceeding 200 nm.

When the height of the forest is increased to 600 nm, the degree of interconnection between
the CNT bundles increases (Figure 3.8d—f), and the structures become more similar to those
observed for 2-um-long forests (Figure 3.3). The sample with the smallest maximum inclination
angle of 0,4, = 0.6° still exhibits mostly straight bundles with a rather limited degree of
interconnection between the bundles (Figure 3.8d). This observation can be explained by the
limited initial interaction between the inclined nanotubes, as the maximum lateral divergence from
the point of origin on the substrate that corresponds to ® = 0.6° is only 6.2 nm for a 600-nm-long
straight CNT, which is more than twice smaller than the spacing between the CNTs on the substrate
(see Table 3.1). As aresult, the nanotubes are mostly forming bundles with their nearest neighbors
and are unlikely to participate in multiple bundles, thus limiting the degree of inter-bundle
connectivity in the VACNT array shown in Figure 3.8d. In samples generated with larger
maximum inclination angles, Figure 3.8¢ and f, the nanotubes do participate in multiple bundles
and self-organize into interconnected networks of bundles similar to those obtained for longer
forests and discussed in section 3.3.

Table 3.3: Statistical information on structural parameters of six computational forests of the same
density of 0.02 g/cm?® composed of CNTs with lengths Lent of 200 nm and 600 nm. The average

tilt of CNT segments (8), average bundle size (Ny), maximum bundle size N§***, standard
deviation (SD) of the bundle size, and magnitude of the Herman orientation factor (HOF) are listed

for computational samples generated at maximum inclination angles 0,,,, of 0.6°, 12°, and 27°.

Sample: Loyt O max (0) (Np) Ng** SD HOF
200 nm, 0.6° 5.6° 4 10 3 0.96
200 nm, 12° 11.5° 7 24 5 0.89
200 nm, 27° 20.5° 10 36 9 0.73
600 nm, 0.6° 5.7° 28 82 19 0.95
600 nm, 12° 17.2° 22 98 18 0.82

600 nm, 27° 22.9° 10 65 9 0.72
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The discussion based on the visual analysis of the computer-generated samples can be
supported by quantitative analysis of the structural characteristics provided in Table 3.3 for the
200 and 600 nm VACNT forests. Both the average and maximum bundle sizes, (Ng) and Ng***,
are smaller in the samples generated with 200- and 600-nm-long CNTs, as compared to the 2-pum-
long VACNT samples discussed in section 3.3 and listed in Table 3.2. The gap in the bundle sizes
is particularly large for the shorter 200 nm VACNT forests, but decreases with increasing 0,4,
for both sets of samples. The structural parameters listed in Table 3.2 and Table 3.3 become similar
in all three sets of the samples generated at the largest maximum inclination angle of 27°, although
the structure of the shortest VACNT array is still visually distinct, as apparent from comparison
of snapshots shown in Figure 3.3c, Figure 3.4c and Figure 3.8c and f. Interestingly, the similar
bundle sizes at the largest are approached through different trends observed for the 200-nm-long

Nmax

forests, where (Ng) and Ng*** increase with increasing 0,4, and the 600-nm-long forests, where

the bundle sizes decrease with increasing ©,,,, (the non-monotonous dependence of NZ***on
Omax for 600 nm VACNT array can be attributed to the high susceptibility of N3*** to statistical
fluctuations). The latter trend is similar to the one observed for the 2-pm-long forests (see Table
2), suggesting that the factors controlling the structural parameters of the 600-nm-long and 2-pm-

long forests are similar.

Overall, we can conclude that while it is possible to produce short VACNT arrays with the
average structural parameters similar to those of longer VACNT forests, the network structures
characterized by interconnected bundles and typically observed in experiments [3—14,74—
79,83,84] can only be built of CNTs that are ~300—500 nm or longer. The distinct structure of the
short VACNT arrays observed in the simulations is not a result of the limitations of the
computational sample preparation procedure, but a reflection of the natural energy minimization

in forests consisting of short nanotubes.

3.5 Application of mesoscopic modeling to investigation of mechanical and thermal
properties
The development of the sample preparation method capable of reproducing, for the first
time, the experimentally observed mesoscopic structure of vertically aligned networks of nanotube

bundles opens up a broad range of opportunities for investigation of mechanical and thermal
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transport properties of this important class of CNT materials. In this section, we only provide a
few examples illustrating some of the potential applications of the dynamic mesoscopic model by
preliminary results of first mesoscopic simulations performed for VACNT forests generated as

discussed in section 3.2.

One broad area where the mesoscopic modeling can be highly instrumental is the analysis
of the deformation mechanisms that control the mechanical properties of VACNT forests. The
understanding of the mechanical properties is critical for a variety of applications, including energy
absorption [29, 111, 112], electromechanical probing [113], fabrication of compliant contact
structure for semiconductor packaging [114] and compression-modulated filter membranes [115].
One of the types of mechanical deformation that is commonly realized in the applications is the
uniaxial compression of VACNT forests. The mechanical characteristics, including elastic
modulus, yield stress, and resilience, characterizing uniaxial compression of VACNT forests
reported in the literature are spanning several orders of magnitude [116-119]. Moreover, the
recovery of uniaxially compressed VACNT forests also vary from near perfect [29, 120] to
mediocre [30, 31]. The large variability of the mechanical properties is related to the high
sensitivity of the structural organization of these network materials to the growth methods and
conditions [28, 121], as well as to the presence of CNT defects [122, 123] and contamination.
Forest density and density gradients within a sample also influence the mechanical response during
compression, and several works report linear dependence of the mechanical properties, such as the

stiffness and elastic modulus, on density [123-125].

The relationship between the structural characteristics and mechanical properties of VACNT
materials can be effectively and systematically explored in mesoscopic simulations performed for
computational samples with realistic structures. This exploration is enabled by the computational
procedure described in this paper and providing a high level of control over the structural
characteristics of vertically aligned networks of nanotube bundles. A series of snapshots from a
small-scale simulation of the uniaxial compression of a VACNT forest, shown in Figure 3.9a—c,
illustrates some of the capabilities of the mesoscopic modeling. The folding and bowing of the
short CNT bundles in this simulation is facilitated by collective bending buckling of nanotubes in
localized regions of bundles (red segments in the snapshots), which reduces the resistance of

bundles to the bending deformation. The corresponding stress-strain curve predicted in the
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simulation (Figure 3.9d) agrees well both qualitatively and quantitatively with stress responses
measured in VACNT forest compression experiments [31]. In particular, three characteristic
regimes, (i) elastic, (ii) plateau, and (iii) densification, commonly reported for VACNT forests [31,
32, 126], can be clearly identified in the simulated stress-strain curve shown in Figure 3.9d. A
thorough analysis of the uniaxial compression of in-silico VACNT forests is presented in a chapter
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Figure 3.9: A series of snapshots (a—c) and a stress-strain dependence (d) obtained in a mesoscopic
simulation of uniaxial compression of the VACNT forest composed of 200-nm-long (10,10) CNTs
prepared with 0,,,, = 27° (see Figure 3.8c). The snapshots are shown for compressive
engineering strain of 0.2 (a), 0.4 (b) and 0.6 (c). The indenter velocity is 10 m/s, which corresponds
to a deformation rate of 5x107 s™!. The CNT segments adjacent to the buckling kinks are colored
red.

The mesoscopic simulations can also be used for investigation of thermal transport
properties of CNT networks, which hold promise as thermal interface materials. Indeed, the values
of the cooling rate reported for different CNT-based on-chip integrated cooling solutions for
transporting and dissipation of heat from microelectronic devices are as high as 100 Wem 2 [127]

or even 5000 Wem 2 [128], making CNT materials viable candidates for cooling systems of the
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next-generation microprocessors [128-133]. Moreover, the high degree of anisotropy of thermal
conductivity of VACNT forests [27, 134, 135] opens up attractive opportunities for guiding the
heat transport along a desired path in thermal management applications. In order to realize these
opportunities, however, a clear understanding of the key microstructural features and elementary

processes that control thermal transport properties of CNT network materials has to be achieved.

With the flexible approach to the generation of computational samples discussed in this
chapter, it is possible to perform a thorough investigation of the dependence of thermal
conductivity on the structural characteristics of the anisotropic network structures. The values of
thermal conductivity can be calculated by connecting the opposing sides of a CNT sample to two
heat baths with different temperatures, obtaining the steady-state temperature profile along with
the heat flux through the sample, and fitting the results to the Fourier law [59, 70, 76, 78]. The
values of the intrinsic thermal conductivity of CNTs and inter-tube conductance, needed for
parametrization of the mesoscopic description of the heat transfer, can be obtained from results of

experimental measurements, e.g., [136-139], or molecular dynamics simulations, e.g., [45-53, 76].

The mesoscopic modeling of the heat transfer is illustrated in Figure 3.10 for VACNT
samples FA, FB, and FC discussed in sections 3.2 and 3.3. All CNT segments falling within
300 nm sections of either the top or base of the forest are assigned fixed temperatures, 300 and
600 K on the cold and hot sides, respectively, and the remaining nanotube segments are colored
by the heat flux in the steady state regime. A visual inspection of the heat flux distributions
suggests that the average heat flux is greatest in FA, and decreases for FB and FC samples. One
can also discern that the heat flux is higher in the CNTs that belong to thick bundles crossing the
sample from the hot to the cold heat bath regions, and is smaller for thin bundles and individual
CNTs serving as interconnects between the thick bundles. This observation is in contrast to the
results of the calculations performed for CNT films with random orientations of CNTs within the
plane of the film [60, 76, 78], where the heat flux passing through the CNTs that are parts of the
inter-bundle connections is found to be, on average, higher than in other parts of the network

structures [76].
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Figure 3.10: The steady-state heat flux along the nanotubes obtained in the calculations of thermal
conductivity of the VACNT samples FA (a), FB (b), and FC (c), see Table 1. The calculations are
done assuming an intrinsic conductivity of 2000 W m 'K™! for individual CNTs, and the inter-tube
conductance is parametrized based on the results of atomistic simulations as explained in Refs.
[53, 60, 70, 76, 78].

The predicted values of thermal conductivity of the VACNT samples are 17.6, 17.2, and
16.4Wm 'K! for VACNT samples FA, FB, and FC, respectively. These computational
predictions fall well within, the admittedly large, range of values measured for VACNT forests
and fibers, e.g., 2.1 Wm 'K™! [109, 140], 42 Wm 'K™' [135], and more than 200 Wm 'K!
[134].The corresponding effective conductivities recalculated on “per nanotube” basis are 1929,
1874, and 1771 Wm'K™! for the FA, FB, and FC samples, respectively. Given that the actual
intrinsic conductivity of individual nanotubes is fixed at 2000 Wm 'K—1 in the calculations, the
reduction of the effective conductivity is reflecting the “loss” of the conductivity due to the
arrangement of CNTs into the continuous network. This reduction of the thermal conductivity
exhibits a clear correlation with the decrease in the bundle size and the degree of CNT alignment,

as can be seen from the structural characteristics of the three samples listed in Table 3.2.

Overall, the preliminary simulations performed for the VACNT forests reveal a significant

sensitivity of the thermal conductivity to the structural details of the CNT networks and suggest
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that the conductivity can be controlled through the structural modification of VACNT materials
with nominally identical macroscopic parameters, such as material density, type and length of the
CNTs. Similar to CNT films [60], the thermal conductivity can be evaluated for different directions
of the imposed heat flux, and the values of the conductivity can be related to the degree of
anisotropy of the material structure. Moreover, the calculation of the thermal conductivity for
transient structures produced in the simulations of the mechanical loading, such as the ones shown
in Figure 3.9, can help to quantify the effect of the deformation on thermal transport and, in
particular, reveal the changes in the conductivity upon critical events, such as the onset of

collective buckling in CNT forests under compression or material failure under tension.

As a final example, out of many potential applications of the mesoscopic modeling of
VACNT forests, we consider the CNT forest response to a high-velocity impact by a submicron
projectile. The impact resistance of CNT materials is relevant to the exploration of the performance
of these multifunctional low-density materials in aerospace applications [141, 142] or as a
protective armor [143], in the form of either pure CNT materials [144-146] or composites [147]
reinforced with nanotubes. Using the mesoscopic model, we are in a position to methodically study
the effect the CNT forest microstructure has on the absorption of the projectile energy. The
development of the local heat bath approach, describing the energy redistribution between the
collective degrees of freedom explicitly represented in the mesoscopic model and the internal
degrees of freedom that correspond to the high-frequency atomic vibrations [ 77], enables a realistic
representation of the energy dissipation in simulations of high-strain-rate deformation or impact
loading, where the system can be expected to strongly deviate from the conditions of thermal
equilibrium. As an illustration of this area of applications of mesoscopic modeling, a series of
snapshots from a simulation of a platinum nanoparticle with diameter of 100 nm impacting the
sample FB with an initial velocity of 100 m/s is shown in Figure 3.11. Interestingly, a global
deformation of the forest occurs despite the relatively small size of the nanoparticle. This suggests
that the structural arrangement of nanotubes into the continuous network plays a key role in how
the energy of the projectile is absorbed and redistributed. Overall, the several examples briefly
discussed above demonstrate that mesoscopic simulations performed for realistic computational
samples generated with the method developed in this work are capable of capturing the complex
interplay of an array of processes defining the mechanical behavior of CNT network materials

under conditions of both quasi-static deformation and dynamic impact loading.
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Figure 3.11: Snapshots from a mesoscopic simulation of a high-velocity impact of a spherical Pt
projectile with a diameter of 100 nm, a density of 21.45 g/cm? and an initial velocity of 100 m/s on
the VACNT sample FB (see Table 3.1). The snapshots in (a), (b), and (c) are shown for 2.5 ns,
6.0 ns, and 10.0 ns after the impact, respectively. The nanotubes are colored by their local kinetic
energy, and the location of the projectile is shown by a semitransparent circle drawn in front of the
VACNT configuration. Note that although it appears that the projectile is exchanging energy with
the CNTs only in its localized vicinity, the entire forest is deformed during the collision, as
evidenced by the shrinking height of the sample.

Overall, the several examples briefly discussed above demonstrate that mesoscopic
simulations performed for realistic computational samples generated with the method developed
in this work are capable of capturing the complex interplay of an array of processes defining the
mechanical behavior of CNT network materials under conditions of both quasi-static deformation

and dynamic impact loading.

3.6 Summary

An effective and flexible method for in silico preparation of structurally distinct mesoscopic
samples of vertically aligned networks of nanotube bundles is developed and applied to VACNT
forests and CNT fibers. The method involves generation of an initial sample composed of straight

nanotubes inclined with respect to the axis of the CNT forest/fiber, followed by a high-temperature
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annealing performed in a mesoscopic dynamic simulation and leading to structural self-

organization of CNTs into an interconnected continuous network of CNT bundles.

The structures of the in silico generated VACNT forests and CNT fibers are characterized
in terms of the bundle size distribution, average and maximum bundle sizes, the magnitude of the
Herman orientation factor, the average tilt of CNT segments with respect to the direction of
nanotube alignment in the forest/fiber structures, and the average tortuosity of the nanotubes. The
structural parameters of the computational samples are compared with available experimental data
and the ability of the developed computational procedure to produce structures closely matching
those observed in experiments is demonstrated. Moreover, the structural parameters of the
computational samples are found to exhibit a nearly linear dependence on the maximum angle of
the initial inclination of nanotubes with respect to the direction of CNT alignment, thus providing
an opportunity to precisely engineer the microstructure of computational samples to match those

of particular experimental materials of interest.

The development of the sample preparation method capable of reproducing the experimentally
observed mesoscopic structure of anisotropic networks of nanotube bundles opens up a broad
range of opportunities for the computational exploration of structure — properties relationships in
VACNT forests and CNT fibers. These opportunities are illustrated by first results obtained in
mesoscopic simulations of the uniaxial compression and nanoparticle impact resistance of VACNT

forests, as well as the heat transfer through the aligned interconnected networks of bundles.
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4 Uniaxial compression and recovery of VACNT forests

4.1 Introduction

Vertically aligned carbon nanotube (VACNT) arrays, also known as carbon nanotube (CNT)
“forests,” [100] hold significant promise as mechanically strong and resilient lightweight
materials. When subjected to compressive loading, VACNT arrays exhibit a number of fascinating
properties caused by collective interactions among CNTs organized into anisotropic networks of
bundles, such as collective or coordinate buckling [29, 126] leading to the formation of
microscopic wavy patterns on surfaces of the deformed samples and enabling compression up to
85% strain for thousands of cycles with almost complete recovery after unloading [29]. The
impressive ability of VACNT forests to withstand repeated loading while maintaining high
uniaxial stress makes them ideally suited for use as light-weight, energy absorbing materials,
cushions, and pressure sensors [29, 32, 71, 116, 148, 149]. Compared with conventional low-
density foams, CNT materials often exhibit a superior combination of compressive strength,

recovery rate, fatigue resistance, and sag factor characterizing cushioning quality [29, 32, 116].

Not all VACNT forests, however, show good resilience, and some undergo significant plastic
deformation after a single loading cycle [30, 31]. A clear understanding of microscopic structural
parameters of anisotropic CNT networks that define the balance between reversible and
irreversible modes of material deformation is needed for targeted fine-tuning of the mechanical
properties required for engineering applications. CNT diameter and forest density have been
shown to be among the key factors that define how well a forest would recover after uniaxial
compression [28]. Denser forests consisting of multi-walled nanotubes (MWCNTs) with large
diameters are found to be stiffer and better able to recover after CNTs form new contacts with each
other via van der Waals non-bonded interactions during compression, resulting in a better
resilience in cyclic loading. The superior resilience of MWCNT forests can, in part, be attributed
to the specifics of bending buckling deformation, which is characterized by appearance of
localized ripples along the outer wall of a MWCNT rather than buckling kinks observed for single-
walled CNTs (SWCNTs) [80, 150, 151]. This results in a strong inter-wall repulsion that acts as a
restoring force for straightening of MWCNTSs. Conversely, sparser forests, especially those
consisting of CNTs with fewer walls, are prone to plastic deformation as the nanotubes irreversibly

aggregate during compression. These differences are partially responsible for variability in the
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magnitude of mechanical properties (e.g., modulus of elasticity, modulus of resilience, loss
coefficient) of VACNT forests reported in the literature [116-119]. Other important factors
affecting the mechanical response of VACNT forests are the CNT-CNT contact density and
morphology [152, 153], CNT surface roughness [118, 154], presence of defects [123, 155], and
strain rate [31, 32, 153, 156]. Table 4.1 provides ranges of elastic properties for structurally distinct
VACNT forests taken from Ref [28]. Therein, the modulus of resilience is the energy per unit mass
that a material can store elastically. Mathematically, the mass specific modulus of resilience is

defined as the quotient of the square of the yield strength (o) over twice the elastic modulus (E)
times the material density (p), i.e.,
2
T (4.1)
2Ep

Table 4.1: Typical range of mechanical properties of multi-walled VACNT forests with mass
densities ranging from 0.008 to 0.2 g/cm?[11].

Yield Strength (MPa) Elastic modulus (MPa) Modulus of resilience (kJ/kg)
0.02-10 1-150 0.03-3.6

A systematic evaluation of factors affecting the mechanical properties of VACNT forests
through in situ tests and ex situ analysis, however, is hampered by the difficulty of growing
VACNT forests with precisely controlled structural characteristics, as well as by the large number
of structural parameters, such as CNTs diameter, length, and number of walls, forest density,
degree of alignment, bundle size distribution, porosity, presence of defects and cross-links, etc.,
which have to be controlled during the growth process. Under conditions when it is difficult, if not
impossible, to grow a series of samples with the controlled variation of some of these structural
characteristics while keeping other characteristics fixed, predictive and reproducible computer
simulation presents an attractive approach to the exploration of the multi-dimensional space of

structural parameters of CNT network materials and their effect on the mechanical properties.

Faithfully reproducing the multiscale nature of VACNT forests, from the atomic structure of
CNTs to their arrangement into complex networks of interconnected bundles, has been a long-

standing challenge for traditional materials modeling techniques. At the atomic scale, the
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molecular dynamics (MD) technique [35] has been widely used to simulate the mechanical and
thermal transport properties of individual nanotubes, e.g., [38-49] and small groups of CNTs, e.g.,
[50-53, 157]. Although the investigation of the properties of individual nanotubes and their
interactions is a necessary step in the analysis of the behavior and properties of CNT network
materials, macroscopic properties of these materials are defined by the collective interactions of
thousands of nanotubes organized into a network of bundles. The macroscopic properties,
therefore, cannot be derived directly from the properties of individual nanotubes and can only be
addressed in simulations performed at a length scale that encompasses a sufficiently large
representative part of the network structure, which is far beyond the capabilities of the atomistic

MD model.

To close the gap between the well-established atomistic description of individual nanotubes
and the macroscopic properties of CNT materials that can be formulated at the continuum level in
terms of constitutive relationships, a number of mesoscopic computational models [54-57] capable
of simulating the collective behavior and properties of large CNT ensembles, e.g., [55, 58-60],
have been developed. The common features of several alternative mesoscopic models proposed
for CNT materials [54-57] include the coarse-grained description of nanotubes, where nanotube
segments composed of many atoms are represented by a highly reduced number of dynamic
degrees of freedom. In addition, they share similar formulations of the internal parts of the
mesoscopic force fields that account for the stretching and bending deformation of individual
nanotubes, and are parameterized based on the results of atomistic simulations. The different
models, however, adopt very distinct computational approaches for the description of the non-

bonded van der Waals inter-tube interactions.

The first and most straightforward mesoscopic approach to the description of CNT-CNT
interactions is based on the bead-and-spring model [54], commonly used in coarse-grained
simulations of polymers [61]. In this approach, the van der Waals inter-tube interactions are
modeled through spherically symmetric pair-wise interactions between mesoscopic nodes
representing segments of nanotubes. Due to its simplicity, the bead-and-spring model has become
a popular choice for mesoscopic modeling of CNT films [58, 62-68] and VACNT arrays [69]. As
discussed in Refs. [55, 57, 59, 70], however, the pair-wise interactions between the “beads” in the

bead-and-spring model introduce large artificial barriers for relative displacements of neighboring
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CNTs, which prevents long-range rearrangements of CNTs required for their self-assembly into
continuous networks of bundles and strongly affects the structure and mechanical behavior of the

CNT materials.

More recently, a “finite beam element” model [71] describing van der Waals inter-tube
interactions by linear elastic bar elements added at localized “contacts” has been proposed and
applied for simulation of the mechanical behavior of two-dimensional (2D) CNT forests.
Although the model is capable of reproducing some of the general experimentally observed
features of the stress-strain response of VACNT forests undergoing uniaxial compression, the 2D
nature of the model and the description of CNT-CNT interactions by strongly localized bonds that
cannot be broken in the course of the forest “growth” or compressive deformation prevent
application of this model for realistic simulations of structural self-organization or mechanical

properties of the CNT network materials.

More advanced descriptions of non-bonding inter-tube interactions that do not produce the
artificial corrugation of the inter-tube interactions have recently been developed, namely a
mesoscopic model [55, 72, 73] based on the distinct element method [74, 75] and a model
representing nanotubes as a sequence of cylindrical segments [56] interacting with each other
through the tubular potential method [57]. The latter approach has been parametrized to provide
a realistic description of nonlinear deformation, buckling [59] and mechanical energy dissipation
in individual CNTs [77], as well as collective heat transfer in CNT materials [50, 60, 70, 76]. This
model is detailed in chapter 2, and is used in the present chapter for simulation of the uniaxial
compression of VACNT forests. An overview of the computational samples used in the
simulations is provided in section 4.2 and is followed by presentation of the results of the
simulations. A detailed discussion of the effect of the mesoscopic structure of the VACNT forests,
compression rate, material density, and the interaction of the CNTs with the indenter on the
mechanical properties and deformation behavior of the VACNT forests is provided in section 4.3.
The results of the simulations of repetitive loading and unloading of a VACNT forest over five
cycles are presented in section 4.4 for two different types of CNT - indenter interactions. Finally,

a summary of the results is given in section 4.5.
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4.2 Computational samples of VACNT forests

The generation of computational samples for mesoscopic modeling of the mechanical
compression and recovery of VACNT forests is done with a recently developed method described
in Ref. [158]. The method involves generation of an initial sample composed of straight nanotubes
inclined with respect to the axis of the CNT forest, followed by a high-temperature annealing
performed in a mesoscopic dynamic simulation which leads to the structural self-organization of
CNTs into an interconnected network of CNT bundles. The choice of the maximum angle of the
initial inclination of nanotubes with respect to the direction of preferred CNT alignment is found
to provide a high degree of control over the structure of computational samples, thus enabling the
generation of microstructurally distinct VACNT forests with tunable bundle thickness distribution

and degree of nanotube alignment.

The three samples used in the present study are composed of (10,10) single-walled CNTs
(SWCNTs) with a diameter of 1.357 nm [57], typical for SWCNT forests grown by chemical vapor
deposition (CVD) [13, 159-162]. The CNT areal density (i.e., the number of nanotubes per unit
area of the substrate) of experimental samples exhibits a large, orders of magnitude, variability
[13,159-161] and, in order to explore the effect of density on the mechanical properties of VACNT
forests, computational samples with different areal densities are considered. The first two samples,
designated as FA and FB, have the same density 0.02 g/cm? (areal density of 6.09 x 10'! CNT/cm?)
but differ in their microstructure. The CNTs of FA are highly oriented and form smaller bundles
as compared to FB, where CNTs are poorly oriented but arranged into thicker bundles. The third
sample, designated as FC, has a five times higher density of 0.1 g/cm? (areal density of 3.05 x 10'?
CNT/cm?). Its bundles are much thicker than those of FB, and its nanotubes are moderately
inclined. For each sample, Table 4.2 provides details on the density, average CNT segment tilt,

average bundle size, maximum bundle size, and magnitude of the Herman orientation factor (HOF)
defined as S = % [3(cos? 8) — 1], where 8 is the local angle between a nanotube segment and the

vertical axis and (...) denotes averaging over all CNT segments in a sample. The HOF quantifies
the extent of the orientation of nanotubes with respect to an axis of interest, and ranges from -0.5
to 1, where values of -0.5, 0, and 1 correspond to perpendicular alignment, isotropic orientation,

and parallel alignment with respect to the axis, respectively. The bundle size is defined locally as
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the number of CNTs in a bundle cross-section, and a CNT is considered to be a part of a bundle if

it is within the range of inter-tube interaction potential from any other nanotube in a bundle.

For all of the computational samples, the length of CNTs is fixed at 200 nm, periodic boundary
conditions are applied in the lateral directions (parallel to the surface of the substrate), and the
lateral size of the computational system is chosen to be 200 x 200 nm? to ensure that the mechanical
behavior of the computational samples is not affected by the periodic boundary conditions.
Although 200 nm is relatively short as compared to multi-micron-long samples typically used in
experimental studies [29, 32, 126, 163, 164], we find that the stress-strain response and
deformation behavior observed for VACNT forests in laboratory compression tests are reproduced
in the simulations performed with the short forests. At the same time, the use of the relatively small
computational systems allows us to perform a comprehensive parametric study of the dependence
of deformation behavior and mechanical response of the computational VACNT forests on (1) the
sample density and microstructure, (2) rate of compressive deformation, and (3) nature of the CNT
- indenter interaction. Such systematic study would not be feasible for longer CNTs (and
correspondingly larger lateral dimensions of the computational samples) due to the high
computational cost of the simulations. Indeed, for a 200 x 200 x 200 nm? coarse-grained VACNT
forest consisting of 248 nanotubes represented by approximately 25,000 dynamic elements
(samples FA and FB), 1 ns of simulated time with a time step of 10 fs takes approximately 12 wall-
clock hours on 16 standard compute nodes of Comet supercomputer at the San Diego
Supercomputer Center [165] accessed through the Extreme Science and Engineering Discovery
Environment (XSEDE) [166]. Given that a simulation of a uniaxial compression down to the
engineering strain of 0.8 with an indenter velocity of 10 m/s takes 16 ns, running a large number
of simulations for systems composed of longer tubes would put a significant strain on the available
computational resources. Instead, we address the effect of CNT length on the mechanical
properties of VACNT forests by performing a smaller number of simulations for forests composed

of longer CNTs. The results of these simulations will be reported in the chapter 5.
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Table 4.2: Statistical information on structural parameters of three computational forests used in
the simulations of compressive deformation reported in this paper. The density p, average tilt of
CNT segments (6), average bundle size (Np), maximum bundle size NF***, and Herman

orientation factor HOF are listed for computational samples FA, FB, and FC.

Sample p (g/cm3) (0) (Np) NFox HOF
FA 0.02 5.6° 4 10 0.96
FB 0.02 20.5° 10 36 0.73
FC 0.1 16.4° 108 315 0.83

All simulations reported in this paper are performed at a constant temperature of 300 K,
enforced by the Berendsen thermostat algorithm [88]. The stresses are calculated from the total
force that the forest exerts on the indenter. The engineering strain is defined with respect to the
length of the CNTs within the forest (i.e., 200 nm), rather than the maximum initial forest height,
which is shorter than 200 nm by less than 1%. For the convenience of representation of stress-
strain dependences for VACNT forests undergoing compressive loading, we adopt a sign
convention where the stress is positive in compression, and present the magnitude of the

engineering strain as a positive quantity.

4.3 Uniaxial compression of VACNT forests

In this section, we discuss four sets of simulations of the uniaxial compression of forests FA,
FB, and FC. In the first three subsections, the VACNT forests are not attached to the indenter,
rather interacting with it in a purely repulsive manner. The role of the mesoscopic structure of the
forest, rate of compression, and density of the material are analyzed in the first three subsections.
In the last subsection, the effect of the CNT — indenter interaction is addressed based on the results

of additional simulations in which the top parts of the CNTs are attached to the indenter.

4.3.1 Role of microstructure

In our first set of simulations, we consider forest samples FA and FB, which have the same
density and differ only by their structural characteristics (i.e., thickness of the bundles and CNT
inclination, as seen in Table 4.2). Both forests are compressed at an indenter velocity of 10 m/s,
corresponding to a deformation rate of 5x107 s! for these 200-nm-long VACNT forests. Note that
10 m/s is a relatively fast velocity compared to the ones typically used in experiments, 1-1000

nm/s. While matching the experimental deformation rates in our simulations is not feasible due to
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computational limitations, the stress-strain curves obtained in the simulations are in a reasonable
semi-quantitative agreement with experimental observations, suggesting that further reduction of
the deformation rate is unlikely to result in major changes in the deformation mechanism. Indeed,
the analysis of the dependence on the deformation behavior on the rate of compression reported in
section 4.2 reveals substantial changes in the shape of stress-strain curves upon the reduction of
the indenter velocity from 50 m/s to 20 m/s, and only moderate quantitative changes upon further

decrease of the velocity to 10 m/s.

Snapshots from the two simulations are shown in Figure 4.1, where nanotube segments
adjacent to the buckling kinks are colored red. In both cases, the top parts of the nanotubes form
a dense layer right below the indenter. As the indenter presses down on the forest, the nanotubes
reorganize themselves to fit into the smaller volume. Ideally, the dense packing of CNTs would
correspond to a horizontal, close-packed alignment of nanotubes along the substrate. However,
the attachment of the nanotubes to the substrate limits the CNT rearrangement and activates
multiple modes of the forest deformation. One scenario occurs when the CNT fold over in a
coordinated fashion from the base of the forest at a height where many CNTs coalesce into thick
bundles. The CNTs move together when bundled, and this deformation mechanism is favored
when the nanotubes belong to the thicker, less oriented bundles of FB. This deformation mode,
referred to here as “folding” (the bundles fold over at their bases) is illustrated in a snapshot shown
for FB compressed to 0.6 strain (Figure 4.1b). Another possible response of CNT bundles to the
compression is lateral deflection along its height, or bowing outward from the initial axis of the
bundle. This deformation mode, referred to herein as “bowing,” is observed for thinner, more
oriented bundles, and is exemplified in a snapshot shown for FA at 0.6 strain in Figure 4.1a.
Although both folding and bowing deformation modes can be identified in each of the two
computational samples in Figure 4.1, the prevalent deformation mode is defined by structural
characteristics of the samples. In particular, the smaller, more oriented bundles of FA tend to bow
outward near the indenter head, while the larger, less oriented bundles of FB tend to fold near the

base of the forest.

Turning our attention to the bending buckling of the nanotubes, visual analysis of Figure 4.1
suggests that at a strain of 0.6 or higher CNT buckling is more prevalent in sample FA as compared
to FB, and that the additional buckling appearing at later stages of compression is much more

localized. In fact, FA has approximately 50% more buckling kinks than FB at a strain of 0.6, and
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more than double the number of buckling points of FB at a strain of 0.8. This difference can be
attributed to the prevalent modes of deformation discussed above for the two samples. When
bundles bow out in FA, bending stress concentrates in localized regions of the bundles, leading to
the collective buckling of many nanotubes across the corresponding bundle cross-sections. A clear
example of this localized collective buckling can be seen in the upper part of the bundle outlined
in a snapshot shown for 0.6 strain in Figure 4.1a. The folding mode of deformation characteristic
of FB differs in that the bending stress resulting from compression is localized at the base of the
forest, and the curvature in the upper portions of thick bundles does not reach the level required to

induce bending buckling [59].

Figure 4.1: Snapshots from simulations of uniaxial compression of computational samples FA (a)
and FB (b) up to a maximum strain of 0.8 with an indenter velocity of 10 m/s. From top to bottom,
the strain is 0.2, 0.4, 0.6, and 0.8. The CNT segments adjacent to buckling kinks are colored red.
Two bundles exemplifying the bowing and folding modes of deformation are outlined by blue
dashed lines in the snapshots for 0.6 strain in (a) and (b), respectively.

Note that neither FA nor FB exhibit the ubiquitous periodic buckling observed in experimental

studies of the compression of VACNT forests [29, 31, 124, 126] characterized by the buckling
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instability extending across the whole sample thickness and producing an accordion-like wavy
pattern, distinct from the natural wrinkling observed during the compression of a sheet [167].
According to the classical Euler-Bernoulli beam theory [168], the critical stress at which a column
under compression deflects laterally is inversely proportional to the square of its height. Hence,
the difference in the nanotube length between the computational samples and many of the CVD-
grown forests can be partly responsible for the absence of the repeated coordinated buckling in the
computational forests [169]. Another important factor is the pristine nature of the computational
samples, which do not have any defects or density variation along the vertical axis. Defects and
the density gradients have been found to play a key role in the onset of coordinated buckling. In
particular, the coordinated buckling often starts near the base of the forest, where the density can
be lowest [31, 32, 124, 163], and CNT diameter may be smaller [28]. Our samples do not have
such types of preferential nucleation sites, and hence periodic buckling may be suppressed.
Finally, the periodic boundary conditions applied in the lateral directions eliminate free surfaces
on the sides of the samples and prevent the surface nucleation of the buckling instability [29, 31,

126].
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Figure 4.2: Stress-strain dependences obtained in the simulations of uniaxial compression of
computational samples FA (a) and FB (b) with an indenter velocity of 10 m/s, and a typical
experimental stress-strain curve measured for a VACNT forest compressed at 1000 nm/s (adapted
from Ref. [124]) (c). The white, blue, and red shaded regions in (a) and (b) correspond to the
elastic, plateau, and densification regimes of the compressive deformation, respectively.

The measurement of the stress-strain relationship is a common way to evaluate the mechanical
properties of the VACNT forests. The stress-strain response of VACNT forests is usually similar

to that of conventional foam-like materials and is characterized by three distinct regimes, as
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illustrated by Figure 4.2c [124]. The initial deformation proceeds in an elastic regime
characterized by a sharp increase in stress without noticeable structural changes in the material.
After the initial buckling event, which can involve multiple bundles, the stress drops, giving way
to the plateau regime. For VACNT forests, the plateau regime is often characterized by a
corrugated, upward trending stress-strain response produced by repeated, localized, coordinated
buckling occurring along the height of the forest. Buckling occurring in this regime may be either
reversible or irreversible, depending on the CNT types and structural characteristics of the forest.
Finally, at high strains, the forest cannot readily deform via soft bending and buckling modes, and
the densification regime characterized by material stiffening is reached. It is important to note that

99 <c

the terms “elastic,” “plateau,” and “densification” do not necessarily correspond to a particular
mode of deformation and are herein used to denote the stress-strain response only. For instance,
the deformation occurring in what we term the elastic region is not necessarily entirely reversible
due to the metastable nature of the VACNT samples. The elastic modulus and the yield strength
used for characterization of the “elastic region” of stress-strain dependence are formally defined
here as the slope of the initial stress increase and the maximum stress of the “elastic peak,”

respectively.

The stress-strain curves obtained in the simulations performed for samples FA and FB are
shown in Figure 4.2a and Figure 4.2b, respectively. Comparing these plots to Figure 4.2c, we see
that the three characteristic deformation regimes are clearly present. Following the unshaded
elastic regime, two shaded regions identify the plateau (blue), and densification (red) regimes,
which were visually discerned. Despite the much shorter length of the nanotubes and differences
in the CNT types and deformation conditions, the magnitude of the stress response is in a good
agreement with the experimental results, especially for the loading of sample FB. This semi-
quantitative agreement suggests that the simulations capture the main deformation mechanisms
that define the shape of the stress-strain curves under compressive loading. Interestingly, although
the collective buckling of individual CNT bundles does not lead to the lateral propagation of the
buckling instability through the computational samples (Figure 4.1), the low stress plateau regime
is still reproduced in the simulations, suggesting that the macro-scale periodic buckling of the
forest is not the main cause of (or a necessary condition for) the flat low-stress region of the stress-

strain dependence.
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When drawing an analogy between the stress-strain behavior of VACNT arrays and cellular
foams, it is prudent to differentiate two types of mechanical response of foam structures. Most
common open and closed-cell foams exhibit bending-dominated behavior characterized by
bending of the cell walls during deformation, whereas the cell walls stretch in foams exhibiting
stretching-dominated deformation response [170]. From a mechanical standpoint, the bending-
dominated foams are compliant but well suited for energy absorption applications due to their
extended and flat plateau stress regime, while the stretching-dominated foams have a large elastic
peak followed by post-yield softening, and are generally quite stiff [171]. Although the
deformation mechanisms of conventional cellular foams and VACNTSs are not directly
comparable, there are still some interesting parallels between the stress-strain responses of each
type of material. The large spike in the elastic stress of sample FA (Figure 4.2a) is similar to that
of a stretch-dominated structure, whereas sample FB (Figure 4.2b) behaves more like a bending-
dominated foam structure. The analogy between the mechanical response of foams and VACNTs

are further discussed in section 4.3.2, where the role of the deformation rate is considered.
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Figure 4.3: Plots of the changes in (a) bending, (b) axial stretching, and (c) inter-tube interaction
energies per nanotube in sample FA undergoing compression at an indenter velocity of 10 m/s.

In the initial elastic responses of the two samples, FA has a larger yield strength (1.66 MPa)
and elastic modulus (284 MPa) as compared to FB (0.44 MPa and 8.67 MPa yield strength and
elastic modulus, respectively). The reason for the more robust elastic response of sample FA is
that a greater fraction of vertically-oriented nanotubes undergoes a substantial axial compression

before the onset of bending and buckling. This is evidenced by a spike in the CNT stretching
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energy shown in Figure 4.3b at the initial stage of compression, occurring at the same strains where
the elastic stress reaches its peak values (Figure 4.2a). The plots of the bending, axial, and inter-
tube interaction energies shown in Figure 4.3 for sample FA compressed at 10 m/s are qualitatively
quite similar to those of sample FB (not shown), except for the absence of the pronounced axial

stretching energy peak at low strains.

The initial part of the plateau regime, below 0.4 strain, is similar for forests FA and FB,
although the average stress is somewhat lower for sample FB, Figure 4.2a,b. At this stage of the
deformation, the CNTs in both samples are able to shift themselves into low resistance
configurations with relative ease. At higher strains, above 0.4, the difference between the stress-
strain responses of forests FA and FB becomes apparent, as the stress exhibits a substantial increase
for FA but remains fairly level for FB. This difference can be related to the distinct dominant
deformation modes exhibited by the two samples. The buildup of stress in FA is attributed to the
higher resistance bowing deformation, whereas the softer folding deformation mode allows for a
fairly level plateau stress. At 0.6 strain, the bundles in FA are heavily bowed along their entire
height (Figure 4.1a). Bending becomes pronounced along the height of the entire forest rather than
being mainly confined at the base of the nanotubes and near the indenter, as reflected by the
proliferation of buckled segments. In the case of FB, the bending of CNTs takes places through
folding at the base (Figure 4.1b), and this mechanism does not fundamentally change with
increased strain, resulting in a relatively level stress throughout the plateau regime. As strain
increases to 0.6 for sample FA, a small dip in stress is observed as bending buckling once again
becomes more localized (see Figure 4.1). As a result, the bending energy concentrates in small
regions along the lengths of the CNT bundles and less force is exerted on the indenter, causing the

overall drop in stress.

Finally, at strains above ~0.85, the densification regime begins, marked by the sharp increase
in stress. During this final stage of compression, CNTs within the forest become increasingly bent
and packed so that they cannot significantly rearrange themselves to reduce stress. The bending
energy begins to quickly increase in the densification regime and the CNT interaction energy starts

to level (Figure 4.3), reflecting the increased constraints on the nanotube rearrangements.

We conclude this section by noting that the characteristic three stage stress-strain response

observed experimentally for VACNT forests is reproduced for both forests FA and FB, and that
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their elastic stress responses fall well within the range reported for in situ uniaxial compressions.
The two samples of the same density but different bundle thickness and orientation discussed in
this section exhibit similar sequence of compressive deformation regimes, while the average
plateau and densification stresses are larger in the sample with smaller, more oriented CNT

bundles.

4.3.2 Role of compression rate

The effect of the compression rate on the mechanical response of uniaxially compressed
VACNT forests has been a subject of recent investigations [31, 32, 153, 156]. Faster compression
has been linked to higher resilience, stiffness, and energy dissipation [31, 32, 153, 172, 173].
Moreover, slowly compressed forests are found to undergo permanent buckling, while forests
subjected to rapid compression exhibit better recovery [32, 153]. It is speculated that under
conditions of fast loading the multi-walled CNTs are unable to reorganize themselves into the
locally buckled structures that form, in a largely irreversible manner, when the forests are loaded
more slowly. Furthermore, the stress peak in the elastic regime is observed to broaden with strain
rate, and the shape of the stress undulations in the plateau regime evolves from smooth sinusoidal

oscillations to much shaper sine-squared modulations at greater strain rates [31].

To better understand the effect of the compression rate on the mechanical properties of
VACNT forests, we repeat the simulations presented in the previous section at higher indenter
velocities of 20 and 50 m/s (deformation rates of 10% and 2.5x10% s, respectively). A snapshot
showing sample FB at 0.6 strain is presented for each of the three loading rates in Figure 4.4, with
the corresponding stress-strain curves shown in Figure 4.5. Analysis of the snapshots indicates that
the increase in the loading rate shifts the dominant deformation mechanism from the “folding” to
the “bowing” type (refer to Figure 4.1), and that the bundles coarsen less during the shorter
deformation time corresponding to the higher compression rates. The latter observation is
quantified by the plots of the average bundle thicknesses shown in Figure 4.6 for each of the three
compression rates. The unstrained sample FA has a smaller average bundle thickness than
unstrained sample FB and exhibits greater bundle coarsening with strain. However, at all but the
slowest loading rate, the average bundles thickness in sample FA does not exceed the average
bundle thickness of sample FB. By and large, a decrease in the compression rate leads to a more

substantial coarsening of the bundles. This effect is particularly evident for forest FA, whereas the
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strain effect is less pronounced for sample FB (Figure 4.6). The observed trends can be explained
by the greater amount of time available for nanotube rearrangement into thicker bundles at slower
deformation rates, as well as by a more sluggish rearrangement of the thicker bundles initially

present in the unstrained sample FB.

10m/s

Figure 4.4: Snapshots of sample FB compressed at indenter velocities of (a) 10 m/s, (b) 20 m/s,
and (c) 50 m/s to an engineering strain of 0.6.
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Figure 4.5: Stress-strain response of samples FA (a-c) and FB (d-f) compressed at indenter

velocities of 10 m/s, 20 m/s, and 50 m/s. The corresponding strain rates are 5x107, 10¥, and 2.5x108

st
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Turning our attention to the stress-strain curves shown in Figure 4.5, we notice that the general
shapes of the curves are qualitatively similar for the two slower compressions, but that at 50 m/s
the stress and its slope are more strongly affected by the loading rate. This trend of increasing
material stiffness results from the nanotubes having insufficient time to reorganize themselves into
low energy configurations as the compression rate increases. In FA, the increase in the yield
strength (up to 7.21 MPa at 50 m/s) is particularly pronounced due to a more significant axial
compression of the CNTs at the initial stage of the deformation (see the corresponding discussion
in section 4.3.1). The increase in the strain rate also results in an increase in the modulus of
resilience, which characterizes the maximum energy that can be absorbed in the elastic regime,
see equation 1. Even at the higher strain rates, however, the values of the modulus of resilience
calculated for samples FA and FB each fall within the broad range of experimentally measured
values listed in Table 4.1.

Continuing with the analogy to cellular foams discussed in section 4.3.1, the changes in the
stress-strain curve with increasing strain rate observed in the simulations can be related to a shift
from the bending-dominated to stretching-dominated mechanical response of foams. Not only
does the elastic stress increase, but a post-yield softening regime becomes more apparent at higher
strain rates, which is also observed in in-situ compression experiments for CNT forests [31].
Hence, depending on the rate of compression, VACNT forests could adopt the mechanical
behavior of both stretching- and bending-dominated foam structures. The broadening of the stress
peak characterizing the post-yield softening arises at higher compression rates due to the reduced
time that that the CNTs have to reorganize themselves in a way that minimizes stress on the

indenter, resulting a more gradual reduction of stress with strain.

The compression rate also affects the stress response in the plateau regime, where the plateau
becomes shorter and gives way to the rising stress as the rate of the deformation increases (Figure
4.5). This effect can be explained by the limitations on the deformation paths the nanotubes can
take during compression at higher loading rates. Although bending buckling of the nanotubes
mitigates the stress in the plateau regime, the slower compression enables the nanotubes to
rearrange themselves so that bending energy is further minimized. The change in the plateau
regime has important implications for energy absorption, where an ideal energy absorber is
characterized by a flat and long plateau stress. The results of the simulations suggest that the

loading rate may strongly influence energy absorption properties of VACNT forests.
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Figure 4.6: The evolution of the average bundle thickness in samples FA and FB compressed with
indenter velocities of 10, 20, and 50 m/s up to 0.8 engineering strain.

4.3.3 Role of density

The areal density of a VACNT forest is an important parameter that directly affects the
structural characteristics of the network of bundles generated during forest growth [12]. The
balance between the inter-tube interaction energy and bending energy of CNTs, which defines the
propensity of nanotubes to join the bundles or form interconnects between the bundles, is to a large
extent defined by the areal density of the CNT array. To investigate the effect of the areal density
on the structural characteristics and mechanical properties of the CNT forests, we prepared sample
FC with a density of 0.1 g/cm?, or five times that of samples FA and FB used in the simulations
discussed in the previous two sections. The structural characteristics of sample FC can be found
in Table 4.2. Notably, while the values of structural parameters characterizing the degree of CNT
alignment, (#) and HOF, place sample FC in between samples FA and FB, the average and

maximum bundle sizes, (Ng) and N§***, are much larger than those in the lower-density forests.

The dense forest is compressed at indenter velocities of 10, 20, and 50 m/s, with snapshots for
the slowest and fastest compressions provided in Figure 4.7. Like the lower-density sample with

thicker bundles (sample FB), the bundles of nanotubes in sample FC tend to move in a coordinated
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way when compressed, with the bundles folding near the substrate. The folding of the bundles
becomes less coordinated with increasing deformation rate, and a progressively larger number of
bundles undergo bowing deformation. Similar to the simulations discussed in section 4.3.2, the
contribution of the bowing deformation mode leads to higher stresses at all stages of the

deformation.

10 m/s 50 m/s

Figure 4.7: Snapshots from simulations of a computational sample FC compressed at indenter
velocities of (a) 10 m/s and (b) 50 m/s up to a maximum strain of 0.8. From top to bottom, the
strain 1s 0.2, 0.4, 0.6, and 0.8. The CNT segments adjacent to buckling kinks are colored red.

The stress-strain plots obtained for sample FC and shown in Figure 4.8 are qualitatively similar
to those predicted in simulations for sparser forests (Figure 4.2 and Figure 4.5). Remarkably, many
of the quantitative characteristics of the mechanical response of sample FC are also comparable to
those of the samples with five times fewer CNTs. In particular, the yield strength and elastic
modulus calculated for sample FC are similar to those of sample FA when the simulations
performed at the same compression rate are compared. The yield strength increases by a factor of

less than two from FA to FC, and the elastic modulus differs between the two forests by less than



71

20% for the same loading rate. These observations can be explained by a greater average
inclination of CNTs in sample FC as compared to sample FA (see Table 4.2). The more inclined
nanotubes offer less resistance to the indenter during the elastic stage of the compression, since
they deform predominately by bending rather than by axially compression, which was identified

in section 4.3.1 as the source of the initial spike in the stress-strain curve.
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Figure 4.8: Stress-strain response of sample FC compressed at indenter velocities of (a) 10 m/s
and (b) 50 m/s. The corresponding deformation rates are 5x107 and 2.5x10% s”'. Note the twice
larger scale of the stress axis used in (b).

The plateau stress evolves similarly between samples FA, FB, and FC at both low and high
compression rates. Although the slopes and magnitudes of the plateau stresses of all three samples
are comparable at 10 m/s, the slope of the stress increases more rapidly with the deformation rate
for sample FC. An explanation comes from the decreased nanotube mobility in the denser forest,
where CNTs tend to belong to thick bundles and are largely compelled to deform with the original
parent bundles. As a result, the nanotubes cannot reorganize themselves via low energy bending

and localized buckling deformations as much as they do so in sparser forests with smaller bundles.

At the final stage of the compression, a sharp increase in stress signifies the transition to the
densification regime (see Figure 4.8). Similar to the simulations discussed in preceding sections,

the sharp rise in the magnitude of the stress in this regime does not appear to be related to CNT
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crowding and repulsion between the nanotubes, since the inter-tube interaction energy decreases
until the end of the simulation. Instead, at the high strains, the localized bending of the thick
bundles becomes extreme, resulting in a large force against the indenter (see snapshots for 0.8
strain in Figure 4.7). At larger strain rates, the picture differs slightly, as the tubes start to buckle
further away from the base (e.g., see snapshot for 0.6 engineering strain in Figure 4.7b) and
bending is distributed more uniformly along the nanotubes. In each case, the higher density and
thicker bundles of FC result in a large rise in stress at lower strains compared to the sparser forest

samples.

4.3.4 Role of CNT interaction with indenter

In all simulations discussed above, the interaction of CNTs with the indenter is assumed to be
purely repulsive, presenting no barriers for lateral sliding (zero traction) of CNTs with respect to
the indenter. In real compression experiments, however, there is generally at least some attractive
interaction between the CNTs and the indenter (either non-bonding or chemical). In other words,
the adhesion between the nanotubes and the indenter can manifest itself in an attractive force
resisting the indenter pull off from the VACNT forest during unloading of a compressed sample
[172, 174]. One can also expect that the constraints on the lateral slip of the nanotubes with respect
to the surface of the indenter is likely to affect the deformation behavior, particularly for short
forests subjected to compression. To gain insights into the effect of the interaction between the
CNTs and the indenter on the mechanical characteristics of VACNT forests undergoing
compressive deformation, a series of simulations is performed for samples where the top segments
of the nanotubes located within 10 nm from the indenter are permanently affixed to the intender.
These segments move together with the indenter during the compression and have no rotational
freedom. The CNTs that have their top ends falling below the 10 nm cutoff distance from the
indenter in the initial sample do not “stick” to it even if they get closer to the indenter during the
deformation and are not affected by this boundary condition. Since the tops of many of the
nanotubes are effectively “glued” to the indenter, we, shorthanded, refer to these simulations as
“glue” simulations, while the simulations where the tops of the CNTs are not attracted to the

indenter are referred to as “free” simulations.

The first set of glue simulations is performed for sample FA and is illustrated by snapshots
shown for indenter velocities of 10 and 50 m/s in Figure 4.9. Here, the nanotubes cannot deform

via the folding deformation mode and, even at the slowest strain rate, the deformation proceeds
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through bowing of the CNT bundles. Similar to the free simulations performed for low-density
samples FA and FB (see Figure 4.1 and Figure 4.4), bending deformation of the top parts of the
CNTs leads to the formation of a dense layer adjacent to the indenters. However, since the
nanotubes cannot slide along the indenters in the glue simulations, bowing of CNT bundles readily
results in localized regions of collective bending buckling along the height of the bundles. This
effect is particularly noticeable in Figure 4.9a, where most of the CNT bundles feature well-defined
regions of localized buckling (red CNT segments) at 0.6 engineering strain. In contrast, snapshots
of the analogous free simulation, where CNTs interact repulsively with the indenter, show a lesser
degree of buckling kink localization within the bundles (Figure 4.1a). Moreover, some of the
bundles in the glue simulations are observed to undergo higher-order bending producing “S”
shaped, serpentine bundle shapes, such as the one outlined by dashed curves in a snapshot shown
for 0.2 strain in Figure 4.9b. The formation of such bending modes requires significantly higher

loads and is not observed in simulations performed with the free tops of CNTs.
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Figure 4.9: Snapshots from “glue” simulations of sample FA compressed at indenter velocities of
(a) 10 m/s and (b) 50 m/s up to a maximum strain of 0.8. From top to bottom, the strain is 0.2,
0.4, 0.6, and 0.8. The tops of the nanotubes are attached to the indenter, and the CNT segments
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adjacent to buckling kinks are colored red. A bundle exemplifying the higher-order serpentine
bending of CNT bundles is outlined by blue dashed lines in the snapshots for 0.2 strain in (b).

To make the connection between the boundary conditions applied to the nanotubes at the
location of the indenter, we can turn for a qualitative guidance to the classical Euler-Bernoulli
beam theory [168], which predicts the following expression for the critical load, or maximum
stress, that a column can withstand without buckling:

2.2

=t~ (;L)EI 4.2)
where E is the bending modulus, I is the moment of inertia about the axis of buckling, L is the
length of the column, n is the column buckling mode, and K is an effective length factor defined
by the boundary conditions applied at the ends of the column. The theory behind this equation has
been successfully applied to the investigation of buckling [175-177] and wave propagation [178,
179] in CNTs. Due to the complex structure of CNT bundles and their attachment to the substrate
and the indenter, however, the classical beam theory can only be used for general qualitative
guidance in the analysis of the deformation modes of bundles in VACNT forests. It is also
important to distinguish the column buckling of a CNT bundle, which simply refers to the onset
of its lateral deflection, from the buckling of a CNT, which is associated with an abrupt change in
the shape of the nanotube cross-section and a drop in the resistance of nanotubes to bending at a

critical radius of local curvature [59].

Two immediate conclusions one can draw from equation (4.2) are (1) the higher level of
stresses needed for activation of higher order column buckling of CNT bundles (n > 2) leading to
the appearance of serpentine-shaped bundles and (2) the increased likelihood that such higher
levels of stresses can be generated under conditions when the upper segments of the nanotubes are
fixed (the coefficient K decreases from 2 for a column with no constraints on the motion of rotation
and lateral translation of the upper end to 0.5 for a column with fixed end segments of the column).
Assuming that that equation (4.2) can be applied to the description of bending of CNT bundles
under compression, we can expect to see much higher stresses at the initial stage of the deformation
in the glue simulations, where both ends of the CNTs are fixed (K = 0.5), as compared to the free
simulations, where the tops of the CNTs are free to rotate and deflect laterally (K = 2).
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Examination of the stress-strain curves from the glue simulations (Figure 4.10) reveals that
elastic yield strength is much higher for sample FA here as compared to the case where there is no
traction between the indenter and the nanotubes (Figure 4.2a). The compression rate dependence
of the yield strength in the glue simulations follows the upward trend, similar to that discussed in
section 4.3.2 for simulations where the CNTs are unattached to the indenter. The elastic modulus,
however, decreases from 2.4 GPa at 10 m/s to approximately 1.9 GPa at both 20 m/s and 50 m/s.
The drop in the elastic modulus is in contrast with the results of the simulations with free CNT
ends and can be explained by the broadening of the stress peak that corresponds to the transition
from the elastic to plateau regimes of the compression with increasing deformation rate. Although
the yield strength is higher, the peak of the stress shifts to higher strains with the faster compression

of the forest, thus reducing the elastic modulus.
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Figure 4.10: Stress-strain response for sample FA compressed at indenter velocities of (a) 10 m/s
and (b) 50 m/s, with the tops of the nanotubes attached to the indenter.

The stress peak broadening, or post-yield softening, is also observed in the free simulations,
e.g., Figure 4.5, where it is attributed to the inability of nanotubes to reorganize themselves rapidly
enough for minimization of stress at each step of the deformation. An additional factor in the case
of the glue simulations is the appearance of the higher-order column buckling modes at high

loading rates (e.g., snapshot for 0.2 strain in Figure 4.9b), which support larger normal stresses
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applied to the indenter (n = 2 in equation (4.2)). The S shape adopted by bundles with higher order
buckling obstructs the localization of bending energy, and some bundles retain their serpentine
configuration throughout the compression. Indeed, comparing snapshots from the two extreme
compression rates, the buckled segments are more localized at 10 m/s, compared to 50 m/s (Figure
4.9). In addition, the S shapes of the bundles obstruct bundle-bundle alignment, and therefore can

also lead to greater stress on the indenter.

The association of the stress peak broadening with the relaxation of the bending deformation
of CNT bundles is supported by the plots of the bending energy as a function of engineering strain
for the three compression rates shown in Figure 4.11. The red dashed lines cross at an arbitrary
chosen point where 50% of the total increase in the bending energy during the compression has
occurred. Note that the corresponding strain is the lowest for the fastest compression rate and the
largest for the slowest compression rate. The rapid increase in bending energy at small strains
indicates that bending of CNT bundles makes an important contribution to the initial stress peak.
Therefore, the broadening of the stress peak at faster compression rates can be related to the sharper
increase of the bending stress resulting in the formation of higher order column buckling of CNT
bundles, followed by a gradual stress relaxation facilitated by the collective buckling of CNTs

localized within bundle cross-sections.
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Figure 4.11: Bending energy as a function of engineering strain for sample FA compressed at
indenter velocities of (a) 10 m/s, (b) 20 m/s, and (c) 50 m/s, with the tops of the nanotubes attached
to the indenter. The red dashed lines cross at a point where 50% of the total increase in the bending
energy has occurred, with the corresponding engineering strain labeled in the figure.
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Remarkably, the values of the plateau stresses in the glue simulations are comparable to those
of the freely compressed sample FA. This observation can be rationalized by the prominent role
that collective buckling plays in the glue compressions. Following the multiple localized buckling
events occurring in the plateau regime, the overall picture of the deformation does not change
much with further increase of the strain. Additional buckled segments form around the sites of the
original buckling, and the localization of the bending deformation within the buckled segments
ensure a constant level of the material resistance to the indenter within a broad range of strain

extending to the densification regime.

The early onset of buckling in the glue simulations is illustrated in Figure 4.12a, where the
number of buckling kinks per CNT is shown as a function of strain for sample FA with free and
fixed tops of the nanotubes. The nanotubes with fixed ends respond to compression immediately
with widespread buckling, which is initially concentrated near the two ends of the CNTs, but later
extends to the central parts of CNT bundles undergoing severe bending deformation (Figure 4.9).
In the simulations with free ends of the CNTs, the nanotubes slide along the indenter and do not
show significant buckling until around 0.4 engineering strain. Near 0.8 engineering strain, the
number of buckled kinks becomes comparable for all simulations regardless of the boundary
condition at the indenter and the strain rate. Comparing the snapshots at 0.8 strain for FA
compressed without attachment to the indenter at 10 m/s (Figure 4.1a) and those from simulations
performed at 10 and 50 m/s with the CNTs attached to the indenter (Figure 4.9), we see a visually
similar picture. The sections of the compressed forests in the middle of the snapshots are not
aligned parallel to the indenter and their relaxation is constrained by limited mobility of the upper
and lower parts of the bundles which are incorporated into the two dense layers formed near the
rigid substrate and the indenter. Further compression must result in more buckling to alleviate the
stress, as the constrained CNTs cannot easily reorient themselves. The compression in the absence
of alternative deformation paths leads to the onset of the densification regime signified by the rapid

rise of stress, Figure 4.5 and Figure 4.10.

The coarsening of bundles during the compression, discussed in sections 4.3.1 and 4.3.2 and
illustrated in Figure 4.6, is less pronounced in the glue simulations, as can be seen from Figure
4.12b. The bundles still coarsen upon compression but, for each loading velocity, the increase in

the mean bundle thickness is smaller when the ends of the CNTs are attached to the indenter. The
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thinner bundles in the glue simulations can bend and buckle more easily, which contributes to the

rapid increase in the number of buckling kinks illustrated by Figure 4.12a.
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Figure 4.12: The evolution of the number of buckling kinks (a) and the average bundle thickness
(b) in free (solid lines) and glue (dashed lines) simulations of sample FA compressed at indenter
velocities of 10, 20, and 50 m/s up to 0.8 engineering strain.

To investigate the effect of forest density on the deformation behavior and mechanical
properties of VACNT forests with ends of the nanotubes attached to the indenter, we perform a
series of glue simulations for sample FC, which has five times higher density and much thicker
bundles than sample FA discussed above (see Table 4.2). The snapshots from these simulations
are shown in Figure 4.13. Visually, the deformation of sample FC is similar to that of sample FA
(Figure 4.9) in that buckling is highly localized along the height of the CNT bundles, and the
bundles still aggregate near the indenter. Buckling occurs at lower strains for faster compression
rates, and, similarly to the sparser forest, there are multiple buckled regions along the height of

some of the nanotube bundles at the compression velocity of 50 m/s.
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Figure 4.13: Snapshots from “glue” simulations of sample FC compressed at indenter velocities
of (a) 10 m/s and (b) 50 m/s up to a maximum strain of 0.8. From top to bottom, the strain is 0.2,
0.4, 0.6, and 0.8. The tops of the nanotubes are attached to the indenter, and the CNT segments
adjacent to buckling kinks are colored red.

The stress-strain response shown in Figure 4.14 is, for the most part, qualitatively similar to
that of the more rarified forest FA (Figure 4.10), with a large elastic stress peak and a post-yield
softening shoulder that is particularly pronounced at faster compression rates, followed by a
plateau and densification regions. The average stress in all deformation regimes, however, is
substantially higher for the denser forest FC, and scales roughly with the density of the forest. This
scaling is in contrast to the weak density dependence of stress magnitude discussed in section 4.3.3

for simulations where the top parts of the nanotubes are free to slide with respect to the indenter.
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Figure 4.14: Stress-strain response for sample FC compressed at indenter velocities of (a) 10 m/s
and (b) 50 m/s, with the tops of the nanotubes attached to the indenter.

4.4 Recovery of VACNT forests

One of the most attractive aspects of the mechanical behavior of VACNT forests is their ability
to withstand repeated loading and unloading cycles with minimal permanent deformation [29, 32].
However, in some cases the CNT forest remains substantially deformed after compression [30, 31,
126, 153]. As discussed in the introduction, factors determining the extent to which a forest will
recover include the radii of CNTs, types and densities of CNT defects, strain rate, morphology,
presence of inclusions, and mass density gradients along the height of the forest. As the first step
in the computational analysis of the mechanisms that control the mechanical resilience of CNT
forest subjected to cyclic loading, a few series of simulations where sample FA is loaded and
unloaded over five cycles are performed. To explore the effect of the interaction with the indenter,

both free and glue simulations of cyclic loading are performed and reported below.

4.4.1 Repulsive CNT-indenter interaction

In all simulations of cyclic loading, FA is subjected to five compression-recovery cycles. Each
cycle consists of compression, where the indenter is depressed at 50 m/s, unloading, where the
indenter is raised to the original height of 200 nm at the same velocity of 50 m/s, and relaxation,
where the forest is allowed to recover. The relaxation stage is necessary because the forest recovery

overall is significantly slower than the indenter speed of 50 m/s, and the indenter usually detaches
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from the forest shortly after the start of unloading. During the relaxation, most of the structural
rearrangements in the forest happens within the first few nanoseconds of recovery, and by the time
of 10 ns hardly any structural changes can be observed within the sample. Therefore, in the interest
of reducing simulation time, we limit the cumulative time of the unloading and subsequent
relaxation stage to 10 ns. However, some slow structural rearrangements may still occur after 10

ns at much longer time scales.

Two simulations, with maximal compressive strains of 0.8 and 0.6, are performed for the
VACNT forest where the ends of CNTs are unattached to the indenter. Snapshots from the
simulations are shown for configurations formed by the end of the 1%, 3™, and 5" loading-
unloading-relaxation cycles in Figure 4.15. Examining the snapshots for the forest compressed
repeatedly to 0.8 strain (Figure 4.15a-c), we see that recovery is limited to less than half of the
original forest height, and after each cycle the maximum recovery is decreased. A dense layer of
horizontally aligned CNT bundles forms at the interface with the indenter and remains stable after
the indenter separates from the compressed forest during the unloading stage. The overall structure

of the forest undergoes relatively small changes with the successive cycles.

The snapshots from the simulation where sample FA is compressed to a lower maximum strain
of 0.6 (Figure 4.15d-f) show a much more significant recovery of the forest after the first cycle.
Some of the larger bundles formed during the compression are able to return to an upright position
by the end of the first cycle, Figure 4.15d, while others have been entangled and do not fully
recover. Furthermore, the bundle size appears on average to be much larger than that in the more
strongly compressed forest in Figure 4.15a. Indeed, by the end of the first cycle the average bundle
thickness of sample FA compressed to 0.8 strain is less than half of that when the forest is
compressed to 0.6 strain (Figure 4.16). Compression results in the coarsening of bundles because
the nanotubes are being forced together, but at the high loading rate (2.5x10% s™! at the indenter
velocity of 50 m/s) the CNTs do not necessarily reorganize in the way that minimizes their
interaction energy. Furthermore, when the forest is compressed to 0.8 strain, the nanotubes are
pushed into forming a metastable network of thinner bundles. When compressed down to
intermediate strains of 0.6, however, the CNTs remain sufficiently mobile to allow for substantial

coarsening of bundles once the pressure from the indenter is released. Indeed, examination of
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Figure 4.16 reveals that the largest increase in bundle size for the forest compressed to 0.6 strain

comes during the relaxation stage of the first cycle, i.e., between cycle 0.5 and 1.0.
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Figure 4.15: Snapshots from two simulations of cyclic loading of sample FA shown at the end of
cycles 1, 3, and 5. Each cycle consists of loading and unloading parts performed at indenter
velocity of 50 m/s and followed by 7.6 ns of relaxation of the forest in the unloaded state. The
loading is done up to a maximum strain of 0.8 (a-c) and 0.6 (d-f). The nanotubes are free to slide
with respect to the indenter, and the CNT segments adjacent to buckling kinks are colored red.

The structural changes in the VACNT forests undergoing cyclic loading are reflected by the
number of buckling kinks plotted for each simulation in Figure 4.16b. In general, the number of
buckling kinks increases when the samples are compressed and decreases when the indenter is
removed. The increase is particularly large at the loading stage of the first cycle, and becomes less
pronounced in the following cycles. When the compression is up to a strain of 0.8, the substantial
increase and partial recession in the number of buckling kinks is observed for the first three cycles,
but the variation in the number of buckling kinks becomes muted during the last two cycles. Some
of the CNT segments unbuckle as the forest recovers, but the degree of recovery, as seen in Figure
4.15, decreases with each cycle, and the bending deformation becomes increasingly localized
within the existing buckled regions of the CNT bundles. Interestingly, when FA is compressed to

0.6 strain only, the increase in the number of buckling kinks during compression is only faintly
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observable beyond the first two loading cycles. The high energy cost associated with collective
buckling of thick CNT bundles formed in this simulation during the first loading cycle makes the

deflection of the bundles by the indenter the favored deformation mode at the intermediate strains.
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Figure 4.16: The evolution of the average bundle size (a) and number of buckling kinks (b) in two
simulations of cyclic loading of sample FA. Each of the five consecutive cycles consists of loading
and unloading parts performed at indenter velocity of 50 m/s and followed by 7.6 ns of relaxation
in the unloaded state. The loading is done up to a maximum strain of 0.8 (black line and dots) and
0.6 (red lines and triangles). The simulations are performed for nanotubes that are free to slide
with respect to the indenter.

The ability of some of the VACNT forests to withstand multiple loading cycles with minimal
plastic/irreversible deformation is of particular practical interest and can be quantified by the

dimensionless loss coefficient,
AU;
- 2nU,

1 (4.3)

where AU; = ¢ o de is the mechanical energy dissipated in the i*"* cycle of loading and unloading,

i
€ is the strain, and U, = f:i"fax o de is the energy stored in the material after one compression.

min

i i . .. . . . i
Here, €,;,, and €,ax are denoting the minimum and maximum strains during a cycle, where €p,;,

is not necessarily equal to zero. The quantity U, can refer to the area under the stress-strain curve
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for the first compression or, alternatively, to the area for the current i*® loading cycle [180].
Graphically, the mechanical hysteresis loops for the loading and unloading of sample FA up to 0.6
and 0.8 maximum strains are shown in Figure 4.17b and Figure 4.17c, respectively. The area
inside each loop represents the value of AU; obtained for each cycle i by subtracting the area under
the unloading curve from the one under the loading curve. Visually, this area shrinks with each
successive cycle. Setting U, equal to the area under the first loading curve, we see that the loss
coefficient is decreasing with each successive cycle, Figure 4.17a. This decrease of the loss
coefficients reflects an increasing permanent deformation of the forest sample subjected to cyclic

loading.

The loss coefficient of the first cycle is almost identical in the two simulations, despite the
much more substantial recovery of sample FA compressed to 0.6 strain. The reason is that there is
almost no stress from the forest on the indenter at the unloading stage of the cycle, as the indenter
is raised with a velocity of 50 m/s, which is too fast for the top part of the forest to follow. Asa

result, the stress drops down to zero shortly after the start of the unloading (Figure 4.17b), and

~ 1 in both simulations. The loss coefficients calculated for the subsequent cycles using the

r

values of U, evaluated for the first cycles are decreasing in both simulations due to the
accumulation of irreversible structural changes, which result in the decreasing extent of the
recovery. Moreover, in the case of the lower maximum strain of 0.6, the diminishing peak stress
leads to a steeper decrease of the loss coefficient during the cyclic loading relative to the simulation
with maximum strain of 0.8, where the peak stress remains fairly constant, Figure 4.17b. The
persistent peak stress in the latter case can be related to a resilient spring-like structure generated
below the topmost, dense layer after the first loading-unloading cycle, Figure 4.15a. The
subsequent loading cycles only marginally affect the structure of the lower layer of the forest and

the corresponding values of the peak stress.

Overall, the trend in the decay and the magnitudes of the loss coefficient are in a good
agreement with experimental data [32, 153], even though the parameters of the simulated forests
(i.e. CNT diameters, forest height, lack of defects or density gradients) are rather different from
most of the laboratory grown samples. Similar to the experiments, we observe the sharp drop in

the loss coefficient on the second cycle followed by a gradual decline for subsequent cycles.
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Figure 4.17: Loss coefficient evaluated in simulations of cyclic loading of sample FA done up to
a maximum strain of 0.8 and 0.6 (a) and the corresponding stress-strain curves shown for cycles
1, 3, and 5 (b,c). The simulations are performed for nanotubes that are free to slide with respect
to the indenter.

4.4.2 CNTs attached to indenter

Additional insights into the resilience of VACNT forests can be gleaned from simulations of
cyclic loading in which the tops of the CNTs are attached to the indenter (see section 4.3.4).
Similar to the simulations discussed in the previous section, the simulations discussed below are
performed for sample FA subjected to five consecutive loading — unloading cycles. However, no
relaxation phase is included since the CNTs are fixed to the indenter. The effect of the loading
rate is investigated by comparing the results obtained with two velocities of the indenter at the
compression and recovery stages of each cycle, 10 and 50 m/s. The forest is compressed to a
maximum strain of 0.8 in both simulations. In the initial test simulations, the forest samples were
recovered to their initial heights, i.e., back to zero engineering strain. Due to the reorganization of
CNTs upon the initial compression, however, large tensile stresses arise when the height of the
forest is recovered past 0.2 strain. Therefore, to avoid the large tensile stresses, we limited the
recovery of the sample to 0.2 strain with respect to its original height in all simulations discussed
in this section. Starting from the second loading-unloading cycle, the duration of one cycle in

these simulations is 24 and 4.8 ns for the indenter velocities of 10 and 50 m/s, respectively.
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Snapshots from the simulations are shown for configurations generated by the end of 1%, 3™,
and 5" loading cycles in Figure 4.18. We can see that the overall structure changes only marginally
after the first loading cycle, and the primary visually apparent difference between the consecutive
snapshots is a gradual coarsening of the bundles. The coarsening of the bundles is quantified in
Figure 4.19a, where the average thickness of the bundles is characterized by periodic variation of
the bundle thickness in each loading and unloading cycle, indicating the temporary formation and

splitting of bundles. However, average bundle thickness increases over the course of five cycles.

Figure 4.18: Snapshots from two simulations of a cyclic loading of sample FA performed with
indenter velocities of 10 m/s (a-c) and 50 m/s (d-f). The unloading is done down to a strain of 0.2
with respect to the original height of the forest. The nanotubes are attached to the indenter, and the
snapshots are shown at the ends of cycles 1, 3, and 5. The CNT segments adjacent to buckling
kinks are colored red.

An interesting observation is that the average bundle thickness in the sample loaded at a higher
deformation rate surpasses that in the slowly loaded sample by the end of the 2" cycle, Figure
4.19a. Although we rationalized in sections 4.3.2 and 4.3.4 that, due to extra time available for the
nanotube reorganization, the CNT bundles coarsen more readily when compressed slowly, the
picture becomes more complicated when the forest is attached to the indenter and undergoes
multiple loading-unloading cycles. At the slower loading rate, thick and stable bundles form
during the first compression, and pronounced coarsening does not occur in subsequent cycles.

However, at 50 m/s, the initial compression produces relatively thin bundles, which with additional
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cycles continue to coarsen into even thicker bundles than those produced with the 10 m/s loading

rate.
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Figure 4.19: The evolution of the average bundle size (a) and number of buckling kinks (b) in two
simulations of cyclic loading of sample FA performed with indenter velocities of 10 m/s (black
lines and dots) and 50 m/s (red lines and triangles). The nanotubes are attached to the indenter,
and the unloading is done down to a strain of 0.2 with respect to the original height of the forest.

The numbers of buckling kinks shown for the two rates of deformation in Figure 4.19b exhibit
a nearly linear increase and decrease during the loading and unloading of the sample. The peak
number of buckling kinks gradually decreases for the first several loading cycles, and the bending
energy (not shown) follows a qualitatively similar trend. These decreases in the peak bending
energy and the maximum number of buckling kinks reflect the increased localization of bending
deformation with successive cycles. Rearrangement of nanotubes into thicker bundles reduces the
number of isolated buckling events in individual CNTs and thin bundles and makes the coordinated

localized buckling of bundles the dominant mode of the bending deformation.

The loss coefficients and mechanical hysteresis cycles for the two simulations are shown in
Figure 4.20. The stress-strain cycles are different from the ones observed in the simulations where
the CNTs interact repulsively with the indenter (Figure 4.17) in that the stress does not drop to

zero with the start of the recovery stage of the cyclic loading. Rather, the stress gradually decreases
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upon unloading and, due to the entanglement and coarsening of CNT bundles, can become tensile
(i.e., negative within the convention adopted in this paper) by the end of the unloading, when the

forest pulls back on the rising indenter.

The loss coefficient, calculated for both loading rates using equation (4.3) and plotted in Figure
4.20a, exhibits the same general trend that was observed for the simulations where the CNTs are
not attached to the indenter, Figure 4.17a. The slower deformation rate yields a larger loss
coefficient since the area under the stress curve during the initial loading, U,, is similar in
magnitude to those in the subsequent loading cycles. For the faster loading rate, the difference
between the level of stress realized during the initial loading and stresses observed in the
subsequent cycles is greater due to the more extensive structural reorganization of the nanotubes,
thus resulting in smaller values of the loss coefficient. The trend of the reduction of loss coefficient
in the course of the cyclic loading observed in the simulations is in a good qualitative and

quantitative agreement with experimental results obtained for longer MWCNT forests [32, 153].
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Figure 4.20: Loss coefficient evaluated in simulations of cyclic loading of sample FA performed
with indenter velocities of 10 m/s and 50 m/s (a) and corresponding stress-strain curves shown for
cycles 1, 3, and 5 (b,c). The nanotubes are attached to the indenter, and the unloading is done
down to a strain of 0.2 with respect to the original height of the forest.

4.5 Summary

The mechanical response of short VACNT forests to the uniaxial compression is systematically

investigated in mesoscopic dynamic simulations performed for computational samples with
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different density and microstructure (bundle size distribution and degree of nanotube alignment).
The effects of the loading rate and the interaction of CNTs with the indenter on the mechanical
properties and deformation behavior of VACNT forests are studied and related to experimental
observations. The mechanisms that control the mechanical resilience of CNT forests are also

explored in simulations of cyclic loading of the computational samples.

The simulations provide first insights into structural changes in the networks of interconnected
CNT bundles undergoing mechanical deformation and reveal the key elementary processes
responsible for the reversible and irreversible modes of the mechanical deformation. Remarkably,
the three-stage stress-strain dependence (an elastic peak followed by an extended plateau region
and a sharp rise of stress in the densification regime) commonly measured for VACNT forests
ranging up to millimeters in height is reproduced in the simulations performed for relatively short
forests composed of 200-nm-long nanotubes. Moreover, the mechanical properties derived from
the stress-strain curves (e.g. elastic modulus, yield strength, modulus of resilience) fall within the

ranges reported in experimental studies.

The connections between the structural characteristics of the computational forests and their
mechanical response to the uniaxial loading are investigated. The characteristic features of the
stress-strain dependence are related to the thickness of CNT bundles and the degree of their
alignment along the vertical axes of the forests. In particular, the mechanical behavior of short
CNT forests is found to be largely defined by the competition between two distinct mechanisms
of CNT bundle deformation: (i) folding of bundles at their bases, prevalent in samples with large
bundle inclination with respect to the vertical axis and (ii) bowing of bundles followed by
collective buckling of CNTs localized within bundle cross-sections, characteristic of vertically
aligned bundles with small initial inclinations. The loading rate and density of the forest are found
to have a substantial effect on the parameters of the stress-strain dependence and the deformation
mechanisms. Furthermore, the effect of the interaction of CNTs with the indenter is examined, and
the deformation of forests with CNT ends attached to the indenter is determined to proceed
primarily through localized bending and buckling of bundles, resulting in a relatively level plateau

region of stress extending past 0.8 strain.

Additionally, several sets of simulations of VACNT arrays undergoing five loading—unloading

cycles are performed to examine the effect of the strain rate and maximum compressive strain on
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the mechanical resilience of the nanotube forests. The variation of the magnitude of the loss
coefficient over successive loading-unloading cycles predicted in the simulations is in a good
agreement with the results of experimental measurements. The maximum compressive strain is
found to have a strong impact on the structural rearrangement of the CNTs, thus affecting the forest
recovery and the peak stress when the CNTs interact repulsively with the indenter. In the
simulations where the CNTs are attached to the indenter, the rate of compression is found to affect
the bundling of CNTs, with a faster rate ultimately producing thicker bundles and, therefore, lower

loss coefficient as compared to slower compression rates.

Overall, the complexity of the deformation behavior of VACNT arrays, defined by the
interplay of different modes of collective bundle deformation, and the high sensitivity of the
mechanical response to the forest morphology, density, deformation rate, and interaction with the
indenter suggest a broad range of opportunities for tuning the mechanical properties of nanotube

forests to the needs of practical applications.
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5 Mechanism of deformation and phase transformation during uniaxial
compression of VACNT forests

5.1 Introduction

The mechanical response of vertically aligned carbon nanotube (VACNT) forests [100] to
compression is comparable to that of cellular foams [171]. In particular, similar to foams, VACNT
forests can undergo repeated loading to high strains while maintaining their resilience [29, 116,
181] and exhibit a three regime stress-strain response [31, 32, 182] consisting of an elastic regime
where the bending and stretching deformation of CNT bundles does not involve any significant
structural changes in the material and stress increases linearly with strain, an extended plateau
regime characterized by relatively weak stress dependence on strain and structural rearrangements
that do not lead to significant strengthening, and a densification regime where the reorganization
within the material becomes spatially constrained, leading to a rapid increase in stress. Despite the
similarity of the mechanical behavior, the deformation mechanisms of VACNTS forests and foams
are rather different. Foams deform either through bending-dominated mechanisms where cell walls
bend and buckle or by stretching-dominated processes where the struts supporting the cell walls
are loaded axially [170, 171]. These deformation mechanisms, however, are not applicable to
VACNT forests, which are structurally characterized as anisotropic networks of interconnected

CNT bundles, quite unlike the cellular motif common to conventional foams.

The complex multi-stage stress-strain dependence of VACNTs undergoing uniaxial
compression is commonly attributed to the coordinated, localized buckling of bundles of CNTs
occurring periodically along the height of the forest [29, 31, 126]. Specifically, heterogeneity in
the density and nanotube alignment in nanotube forests results in preferential nucleation sites for
coordinated buckling of CNTs at relatively compliant sections [29, 31, 126, 163], forming a
localized high density region at the location of buckling. Analytically, the non-linear, multi-stage
stress-strain response of VACNT forests has been described [163, 164, 183, 184] by representing
CNT as a series of bi-stable springs [185-187] which are characterized by an energy landscape
with two minima separated by a convex ‘spinodal’ region. The energy minima correspond to low
and high strain conformations of the spring, and when many springs are connected in series the
mechanical response is similar to that of a CNT undergoing compression. The bi-stable spring

model saw success in reproducing the characteristic three-regime stress-strain curve of uniaxially
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compressed forests [163, 164, 183]. In the latest of these reports [164] the interpretation of the
deformation behavior of VACNT forests in terms of a phase transition between a rarefied phase,
in which the CNTs are mostly vertically aligned, and a densified, buckled phase stabilized by the
inter-tube van der Waals interactions is suggested. This hypothesis was partially motivated by
earlier studies of biopolymer (fibrin) network structures exhibiting three-regime stress response to
the uniaxial compression similar to that of foams and VACNT forests [188, 189] and deforming
by separation into two distinct, coexisting low- and high-density phases. Moreover, the formation
of a localized densified region during uniaxial compression has also been observed for VACNT

forests [29, 31, 32, 164, 169, 182], e.g. see Figure 5.1.

Figure 5.1: SEM showing deformation of a VACNT forest during the elastic, plateau, and
densification regimes [164]. Note the formation of a localized densified layer of CNTs near the
indenter in the plateau regime which broadens into the densification regime.
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Despite the extensive experimental and modeling efforts, and the successes of the bi-stable
spring model in reproducing the phase coexistence and stress-strain response of VACNT forests
undergoing compression, the structural characteristics of the two phases and the mechanisms of
the phase separation remain elusive. Major obstacles to systematic analysis of the mechanisms of
mechanical deformation of VACNT forests come from the challenge of growing forest structures
with precisely controllable structure, as well as the difficulty of detailed characterization of the
structural and energetic parameters of VACNT forests undergoing compression. Computationally
reproducing the structure of VACNT forests and inspecting the structural transformations in the
course of mechanical deformation is one way to circumvent the problem of detailed structural
characterization of experimental samples. The emergence of a new class of coarse-grained
mesoscopic models for mesoscopic dynamic simulation of large groups of CNTs [54-57]
combined with a recent development of an effective method for the generation of computational
samples with tunable microstructures based on guided structural self-organization of nanotubes
into anisotropic network structures [158], have enabled realistic modeling of the mechanical

deformation of VACNT forests.

First mesoscopic simulations of the uniaxial compression of short VACNT forests [182]
have indeed demonstrated the ability of the mesoscopic modeling to reproduce the three-stage
stress-strain dependence characteristic of experimental samples and provided initial insights into
the dependence of the mechanical behavior of VACNT forests on density, microstructure (bundle
size distribution and degree of nanotube alignment), loading rate, and interaction with the indenter.
The 0.2-um-tall forests used in these first simulations, however, are too short for reproducing the
periodic coordinated buckling across the sample and testing the hypothesis on the coexistence of
low- and high-density phases suggested for interpretation of experimental observations [31, 32,

124, 126, 164, 169].

In this chapter, we extend the mesoscopic simulations to VACNT forests consisting of
longer, 0.6-um- and 2-um-long, nanotubes, and focus our attention on the mechanism of the phase
transformation occurring in the course of the mechanical deformation of the CNT network
materials and the nature of the two phases produced by the deformation. The dynamic mesoscopic
model, the structural characteristics of in silico VACNT forest samples, and the computational
setup for simulation of uniaxial compression of the samples are briefly described in section 5.2.

The detailed analysis of the phase separation in a 2-um-tall VACNT forest undergoing uniaxial
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compressive deformation is provided in section 5.3. The effect of the microstructure on the
mechanical response of VACNT forests is explored in a series of simulations performed for 0.6-
um-tall forests and reported in section 5.4. A brief comparison between simulations where the
fracture of CNTs is modeled and neglected is presented in section 5.5. Finally, the main

conclusions of this computational study are summarized in section 5.6.

5.2 Computational Method and Setup

5.2.1 Mesoscopic force field for carbon nanotube materials

The mesoscopic force field model developed for realistic large-scale simulations of CNT
materials is based on a coarse-grained representation of individual CNTs as chains of stretchable
cylindrical segments [56, 57]. The state of each segment is defined by positions, velocities, and
internal temperature of nodes joining the neighboring segments [56]. The dynamics of a system of
interacting CNTs is described by solving the equations of motion of classical mechanics for the
positions of all nodes [56]. The forces acting on the nodes are calculated based on the mesoscopic
force field that accounts for stretching and bending deformation of individual CNTs [56], bending
buckling of CNTs [76], as well as for the van der Waals inter-tube interactions [57], with all terms
of the potential parameterized based on the results of atomistic simulations. The possibility of both
axial and bending fracture of individual CNTs is included in the model, where either event results
in clean CNT fragmentation. For (10,10) single-walled carbon nanotubes (SWCNTs), the axial
fracture is set to occur at a local strain of 0.279 [43], and the bending fracture occurs at a local
bending angle of 120° [39]. In the simulations reported in the present paper, only the bending
fracture is observed in some of the nanotubes at the late stage of the VACNT forest compression,
but it does not significantly affect the overall mechanical response of the forests (see section 5.5).
The mesoscopic force field does not include an explicit description of friction forces related to the
relative displacement of tubes with respect to each other, as these forces are too weak to prevent
room-temperature rearrangements of defect-free CNTs [83, 84]. The contribution to static friction
forces originating from changes in the inter-tube interaction area, however, is fully accounted for
in the mesoscopic model, and in the case of pristine CNTs, no significant additional sources of
friction exist [85]. The presence of defects, functional groups, and chemical cross-links can
significantly increase the strength of the shear interactions between nanotubes [86, 87], but these

effects are not considered in the present study.



95

5.2.2 VACNT forest samples

A series of morphologically diverse computational samples with realistic structural
organization is generated in silico following the procedure outlined in Ref. [158]. Briefly, the
procedure is as follows. First, full length straight CNTs are positioned randomly on a substrate
until a prescribed tube density is reached. Each CNT is given an inclination angle with respect to
the vertical axis, falling between zero and a specified maximum inclination, 0,,,,, with uniform
probability. Then, the initial sample undergoes thermal annealing in a mesoscopic dynamic
simulation performed at a temperature of 5,000 K (the model does not include the possibility of
thermal decomposition of CNTs, and the temperature is defined based on the average kinetic
energy of mesoscopic dynamic units of the model) for 1 ns. In the course of the thermal annealing,
the initially straight and isolated nanotubes self-organize into a continuous network of bundles
with the bundle size distribution largely defined by the material density and ©,,,,, [158]. Finally,
the computational VACNT forest is quenched to 300 K and allowed to relax until a metastable
configuration, defined as a state where the rate of change in inter-tube interaction energy slows

down to a level below 0.05 percent per ns, is obtained.

All samples considered in this work consist of (10, 10) SWCNTs with a radius of 0. 6785
nm and have a mass density of 0.02 g/cm?® (areal density of 6.09x10'! CNT/cm?). The density of
the VACNT forest samples falls well within the range of CVD grown samples [13, 159-161, 190],
and assigning a uniform radius to every CNT within the forest is a good approximation for the
tightly distributed radii of SWCNTs [162]. The tallest in silico sample used in the simulation
discussed in section 5.3 consists of 2,498 2-pum-long CNTs on a 0.64 x 0.64 pm? substrate and is
designated as FA (Figure 5.2a). With each internal node (dynamic unit in the mesoscopic model)
representing 2-nm-long segment of a nanotube, the computational sample is composed of
2,500,498 nodes. Three smaller samples consist of 0.6-pm-long CNTs randomly distributed on a
0.60 x 0.60 pm? substrate and are referred to as FB, FC, and FD (Figure 5.2b-d). These samples
are generated with different values of ©,,,, and are used for investigation of the structural
dependence of the mechanical behavior of VACNT forests reported in section 5.4. In all
simulations, the periodic boundary conditions are applied in the lateral directions (parallel to the
surface of the substrate) directions, thus effectively representing VACNT forests extending much

further than the actual lateral dimensions of the computational systems.
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The structure of the in silico samples is characterized by calculating a set of parameters
listed in Table 5.1, including the average tilt of CNT segments with respect to the direction of
max

VACNT alignment (6), average bundle size (Np), maximum bundle size Ng***, standard deviation

(SD) of the bundle size, and magnitude of the Herman orientation factor (HOF) defined as S =
%[3<COS 0) — 1], where 6 is the local angle between a nanotube and the vertical axis, and the

angled brackets ( ) denote averaging over all CNT segments in a sample. The HOF quantifies the
extent of the orientation of nanotubes with respect to an axis of interest, in this case the substrate
normal, and ranges from -0.5 to 1, where values of -0.5, 0, and 1 correspond to perpendicular

alignment, isotropic orientation, and parallel alignment with respect to the axis, respectively.

Among the 0.6-pm-tall forests, sample FB is prepared with the smallest 0,,,, of 0.6° and
has highly vertically oriented, thick CNT bundles with minimal interconnection between the
bundles. Sample FD is prepared with the largest 0,,,,, 0of 27°, is poorly aligned (lowest HOF), and
features thinner bundles organized into a more complex, entangled network. Sample FC is
prepared with 0,,,, of 12° and features structural characteristics intermediate between FB and FD
samples (Table 5.1). The tallest VACNT forest FA is prepared with the same 0,,,, as sample FC
and has similar degree of alignment, as characterized by (8) and HOF. The average and maximum
bundle sizes, however, and substantially larger in the tall forest, reflecting the increased freedom

of nanotubes to join multiple bundles across the height of the forest.

5.2.3  Simulation of the uniaxial compression

Both VACNT forests are compressed at an indenter velocity of 50 m/s, corresponding to a
deformation rates of 8.3x107 s' and 2.5x107 s for the 0.6-um- and 2-pm-long forests,
respectively. While the indenter velocity of 50 m/s is a much higher than typical experimental
values of 1-1000 nm/s, matching the deformation rates used in experiments is computationally
impractical. For instance, for sample FA consisting of over 2.5 million nodes, the compression to
0.9 engineering strain at the indenter velocity of 50 m/s takes 36 ns and requires 1.2M CPU hours
on Comet supercomputer [165]. The stress-strain curves predicted in earlier simulations of the
uniaxial compression of short VACNT forests consisting of 0.2-pum-long CNTs [182], are found
to be in a semi-quantitative agreement with those reported in experimental studies, despite the high
deformation rates of 5x107 to 2.5x10% s used in the simulations. Moreover, only moderate

quantitative changes in the stress-strain response are observed upon decrease of the deformation
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rate from 10® to 5x107 s™!, suggesting that the physical mechanisms of VACNT deformation are

unlikely to change upon further decrease of the deformation rate.

Another consideration at high loading velocities is the formation of a shock wave inside

the forest. In a homogenous material, the speed of sound is given by

c=+E-p1 (5.1)

where E is the elastic modulus and p is the material density. In section 5.3, the formation of a
localized densified phase (p~10% kg/m3), and an elastic modulus of E~10° Pa. Therefore,
c~10% m/s, and the question of the role of acoustic shock in the formation of the densified layer
may arise at loading rates approaching the calculated speed of sound. However, estimating the
speed of sound from equation (5.1) assumes a homogenous material, but the VACNT forest, with
its networked structure of overlapping bundles does not qualify as such, making it difficult to
estimate the true speed of sound with the forest. To provide a resolution to this question, a
simulation of FA was compressed to 0.4 strain was continued where the indenter was held in
position without any further compression. Insignificant progression of the densified layer even

after 1 ns suggested that the layer was not a result of a shock wave.

The uniaxial compression is simulated with a rigid indenter spanning the entire lateral area
of the sample and interacting with the CNTs via a purely repulsive potential. The compression is
simulated at a constant temperature of 300 K enforced by the Berendsen thermostat algorithm [88]
applied to the coarse-grained units of the model, i.e., the thermal equilibrium between different
vibrational models of the system is assumed at all times. The reported stresses are calculated from
the total force that the VACNT forest exerts on the indenter. The engineering strain is defined with
respect to the length of the CNTs within the forest (i.e., 2 or 0.6 um), rather than the maximum
initial forest height, which is shorter by less than 1%. For the convenience of representation of
stress-strain dependences for VACNT forests undergoing compressive loading, we adopt a sign
convention where the stress is positive in compression and present the magnitude of the

engineering strain as a positive quantity.
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Segments in

bundle

Figure 5.2: Side views of computational VACNT samples composed of nanotubes with CNT
lengths of 2 um, FA (a) and 600 nm, FB, FC, and FD (b-d) generated by mesoscopic simulations.
The CNT segments are colored by the local bundle thickness (number of segments in a bundle
cross section).

Table 5.1: Statistical information on structural parameters of four computational forests of the
same density of 0.02 g/cm® and composed of CNTs with lengths Lcyrof 2 and 0.6 um. The average
tilt of CNT segments (6), average bundle size (Ng), maximum bundle size N§***, standard
deviation (SD) of the bundle size, and magnitude of the Herman orientation factor (HOF) are listed

for computational samples generated at maximum inclination angles 0,,,, 0f 0.6°, 12°, and 27°.

Sample Lent 0nax (0) (Ng) Ng** SD HOF
FA 2 pm 12° 17.6° 42 163 28 0.82
FB 600 nm 0.6° 5.7° 28 82 19 0.95
FC 600 nm 12° 17.2° 22 98 18 0.82

FD 600 nm 27° 22.9° 10 65 9 0.72
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5.3 Deformation mechanisms and phase separation for 2 ym VACNT forest

5.3.1 Formation of densified phase

In this section, the structural changes resulting from the uniaxial compression of sample FA,
composed of 2 pum long CNTs, at a rate of 50 m/s (corresponding to a deformation rate of 2.5x10’
s') are described. While 50 m/s is a much more rapid compression speed compared to the typical
1-1000 nm/s rate used in laboratory tests, matching the rates used in experiment would be
computationally impractical. For instance, sample FA consists of over 2.5 million nodes, and even
at 50 m/s compression to 0.8 engineering strain takes 32 ns, which required approximately 2,700
wall-clock hours using 384 processors on the state of the art Comet supercomputer [165]. We,
however, justify the results of the simulations presented in this paper on the basis of our earlier
work on the uniaxial compression of various forests consisting of 0.2 pm long CNTs [182] where
semi-quantitative agreement is observed between the simulated mechanical stress-strain response
of these forests and those reported in experiment. Furthermore, due to the ten times longer length
of the CNTs of sample FA compared to the samples compressed in ref [182], the strain rate is an
order of magnitude less, and the physical mechanisms of VACNT deformation are unlikely to

change at slower compression rates.

All simulations reported in sections 5.3 and 5.4 are performed at a constant temperature of
300 K, enforced by the Berendsen thermostat algorithm [88] and all reported stresses are calculated
from the total force that the forest exerts on the indenter. The engineering strain is defined with
respect to the length of the CNTs within the forest (i.e., 2 um or 0.6 um), rather than the maximum
initial forest height, which is shorter by less than 1%. For the convenience of representation of
stress-strain dependences for VACNT forests undergoing compressive loading, we adopt a sign
convention where the stress is positive in compression, and present the magnitude of the
engineering strain as a positive quantity. The rigid indenter used to compress the forests interacts

with the CNTs via a purely repulsive potential and spans the entire lateral area of the sample.

In the first simulation, forest sample FA is compressed to 0.8 engineering strain. Snapshots
showing the microstructure for the original sample and at four strains during the course of
compression are presented in Figure 5.3, where the CNT segments are colored their CNT-CNT
interaction energy. In the two tone coloring scale red indicates higher energy (relatively isolated

CNTs) and blue indicates lower energy (highly bundled CNTs). Immediately apparent from the
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snapshots is the formation of an entangled, densified layer near the compressing indenter.
Although the aggregation and entanglement of the tops of CNTs near the indenter was observed
previously in simulations of shorter 0.2 um forests [182] its formation for these samples was
unclear. In sample FA, it is apparent that the layer thickens with compressive strain while the
remainder of the forest does not undergo the same type of morphological changes. During
compression to 0.8 engineering strain, approximately 8% of the 2,500 CNTs in the sample fracture

due to bending.

Figure 5.3: Snapshots of the side view from the compression of FA from 0 to 0.8 engineering
strain. The two-tone coloring of CNT segments is by CNT-CNT interaction energy where red
indicates less favorable interaction (isolated segments) and blue indicates more favorable
interaction (highly bundled segments).
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Figure 5.4: Snapshots of the top-down view from the compression of FA from 0 to 0.6 engineering
strain in 0.2 increments. The two-tone coloring of CNT segments is by CNT-CNT interaction
energy where red indicates less favorable interaction (isolated segments) and blue indicates more
favorable interaction (highly bundled segments).

Visually, the dense and perpendicularly oriented layer at the top of the forest looks quite
distinct from the lower portion of the forest characterized by vertically oriented bundles. The
development of the densified layer has been observed repeatedly, [29, 31, 124, 164, 169] and
connections between its formation and the periodic buckling ubiquitous among uniaxially
compressed VACNT forests are evident [164]. However, hitherto, the mechanism of layer

formation has not been addressed. In Figure 5.4, the top-down views of sample FA throughout
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compression are shown. The material falling within the bottom half of the sample height at the
corresponding strain is blanked in order to more clearly show the evolution of the top layer. From
the snapshots, the progression of the densified layer is seen to happen over four stages. First, at
small strains (0.2), the CNT bundles of sample FA locally deflect near the indenter. Next, as the
indenter continues to push into the forest, the bent bundles spread out laterally below the indenter
and form a densified, poorly aligned network (see snapshot for 0.4 strain). Eventually, the bundles
come into contact with one another, and coarsening of bundles can occur. However, with the
continuous addition of material to the layer, crowding can prevent more material from easily

joining, and the densified phase begins to thicken.

Although the densified and rarified phases are readily discerned from the snapshots of
Figure 5.3 and Figure 5.4, tracking the evolution density and orientation throughout the
compression of forest FA allows for the quantitative characterization of the two phases. Notice
that the top part of the forest is dense and oriented perpendicularly to the substrate, whereas the
bottom part is more rarified and aligned with the forest axis. To quantify this observation, two
“image” plots prepared using R [191] are shown for mass density and CNT orientation (quantified
by HOF) in Figure 5.5. These plots are prepared by first partitioning the original, unstrained forest
sample into layers based on height along the forest. Each layer contains a unique set of CNT nodes.
During compression, the property of interest is calculated for every node locally in its modified,
strained environment. Finally, the average of the property is computed for the set of nodes
belonging to each of the original layers. Therefore, in Figure 5.5, every box represents the set of
nodes as the laterally adjacent box. The choice of colormap for these plots is “Viridis”, considered
to be grayscale and colorblind friendly as well as have excellent perceptually uniformity compared

to more traditional rainbow or “jet” colormaps [192].
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Figure 5.5: Image plots of mass density (a) and HOF (b) calculated from sets of segments
partitioned by their original position in the uncompressed forest sample. The plots contain columns
corresponding to a set of strains from 0 to 0.8 incremented by 0.05, all with 50 vertical divisions
each representing the same CNT node IDs.

Examining Figure 5.5a, where the density along the forest with strain is depicted, there is
a distinct boundary between the high density of the layer forming near the indenter and the rest of
the forest beginning even at 0.2 strain. With increasing strain, the top layer thickens and densifies
in certain places beyond 0.2 g/cm?® (ten times that of the initial forest density) at strains beyond
0.4. However, despite the theoretical maximum close packed density of (10,10) SWCNTs of about
0.9 g/cm?’, the density does not increase beyond ~0.25 g/cm® even at 0.8 strain, suggesting that
constraints imposed on bundle reorganization prevent denser packing for this sample at this
compression rate, and instead, the region with this peak density expands with strain. Also apparent
is the formation of a density gradient between the two the low and high density regions, which
expands at high strains beginning at 0.5. At low strains the transition from low density to high
density is sharp, spanning only on the order tens of nanometers. However, once the forest becomes
highly compressed, the rigid boundary conditions imposed on the bottoms of the CNTs begins to
affect the evolution of the denser layer, since the bundles cannot properly align themselves
completely perpendicular to the substrate anymore. Consequently, beginning at 0.5 strain, the

density gradient widens as bottom part of the forest also begins to become compacted.
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The orientation of the CNTs also changes dramatically from the densified phase to the
rarified phase (Figure 5.5b), where even at small strains (>0.1) the HOF of CNTs clearly transitions
from approximately -0.5 in the densified layer to 1 in the remainder of the forest. However, the
gradient change for HOF is visibly wider than for density at moderate strains (i.e 0.2-0.6). The
reason is that as the tops of bundles are forced perpendicular to the substrate, the constrained
bottoms of the forest must follow. As a consequence, the transition from vertically to
perpendicularly oriented CNT segments is wider than that for density. The shorter the forest the
more pronounced the effect is (see section 5.4 and ref [182]). Nonetheless, there is still a clear
demarcation between the perpendicularly oriented parts of CNTs in the dense layer and those still

in the rarified layer.

5.3.2  Stability of densified phase

The phase separation is a thermodynamically favorable process for sample FA. During
compression up to 0.8 engineering strain, the changes in CNT-CNT interaction energy and in
bending energy account for ~99% of the change of non-thermal energy. Note that the rise in
bending energy is more than offset by the decrease in CNT-CNT interaction energy (see Figure
5.6a and b). Furthermore, from the image plots of CNT-CNT interaction energy and bending
energy (Figure 5.6¢ and d, respectively), the changes in these energies are more localized along
certain regions within the forest sample. The interaction energy decreases most prominently within
the center of the densified layer (approximately in the range of 0.8-0.9 original fraction height).
Above this layer near the top of the forest a region of higher interaction energy comes from the
tops of the bundles which interact with the indenter rather than other CNTs. Below, a transition
from lower to higher interaction energy is visible corresponding to the interfacial region between
dense and rarified states of the forest. The shift between the two phases is also apparent from the
image plot of the bending energy (Figure 5.6d), where by 0.4 strain there is a clear central region
of relatively high bending energy compared to the two ends of the forest. The proportion of the
forest with relatively large bending energy increases with strain, physically corresponding to the
bending of the CNT bundles constrained by their rigid bottoms. The decrease of the nanotube
interaction energy decreases the energy of the compressed forest, despite the requisite bending,
and therefore the structure should in this case be stable after the indenter is removed. Although we
do not test this due to the computational expense, plastic deformation was previously observed for

0.2 um SWCNTs repeatedly loaded and unloaded to both 0.6 and 0.8 strain [182]. Forests
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composed of MWCNTs with large diameters, however, are more likely to elastically deform [28]

due to the high bending modulus of the CNTs [80, 150, 151].
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Figure 5.6: Change in CNT-CNT interaction energy (a) and bending energy (b) with engineering
strain of sample FA. Image plots of average CNT-CNT interaction energy (c) and average bending
energy (d) calculated from sets of segments partitioned by their original position in the
uncompressed forest sample. The plots in panels ¢ and d contain columns corresponding to a set
of strains from 0 to 0.8 incremented by 0.05, all with 50 vertical divisions each representing the

same CNT node IDs.

5.3.3  Origins of coordinated buckling in VACNT forests

An interesting feature in Figure 5.5b is the non-monotonous trend in HOF along the forest

at strains above 0.5, where the middle section of the forest has a locally large HOF (less

perpendicular orientation) relative to its immediate surrounding, persisting to 0.8 strain. The
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localized change in CNT orientation is reminiscent of a section of forest undergoing coordinated

buckling, characterized by an accordion-like morphology.

To explain the origin of the local maximum of HOF, we track the evolution of five
individual and representative CNTs in sample FA from strain of 0-0.8 (Figure 5.7a). Each colored
CNT exists largely separate from the rest at 0 strain, but due to the networked structure CNTs that
have their bases hundreds of nm apart can overlap significantly near the top of the forest. At 0.2
strain, the CNTs deflect and bow outward near the indenter as they are compressed, eventually
forming the densified layer of highly bent CNT sections at 0.4 strain. However, already at 0.4
strain is visible the deflection of the CNT bundles towards the base of the forest sample. At 0.6
strain, this bowing becomes even more pronounced, and suggests the site of coordinated buckling

along the cross-section of the forest sample.

(b) Strain: 0.2, 0.4, 0.6, 0.8

> S - -
= = s

0.5+

T N
-~

- i~

000 010 200 200 ' 600
|A(r)| (um) A Buckling kinks

Figure 5.7: Snapshots of the side view from the compression of FA from 0 to 0.8 engineering
strain with an overlay showing the geometries of five typical CNTs (a) and the magnitude of the
average deviation in the lateral position of the forest relative to its unstrained state (|A(r)|) and
change in the number of buckling kinks relative to the uncompressed sample plotted as a function
of height for strains from 0.2 to 0.8 (b).

In addition to the representative