
Automating Dashboard Capabilities at Capital One

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Matthew Yang

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Daniel Graham, Computer Science

 M. Yang

Technical Report

Automating Dashboard Capabilities at Capital One

CS4991 Capstone Report, 2021

Matthew Yang
Computer Science

University of Virginia

School of Engineering and Applied Science

Charlottesville VA USA

my9uu@virginia.edu

ABSTRACT
At Capital One, a major pain point involved across the tech division

creating their own dashboards for their own purposes, causing

redundancy, since most dashboards served the same functionality.

My internship team was tasked with leveraging different languages

and frameworks as well as company technologies to automate the

creation of dashboards through both a web wizard and a command

line utility. Our project, the dashboard automator, allows teams to

automate the process of creating a dashboard and standing it up on

the cloud without significant manual intervention. This effort not

only substantially reduces the effort needed to stand up a

dashboard, but also kick-starts the potential beginning of a

“marketplace” with the purpose of reducing redundancy throughout

the company. Some limitations that the dashboard automator

currently faces includes limited customizability as well as lack of

complete testing.

1 Introduction
Automation has been a key driving force in human innovation and

ingenuity for centuries. In a sense, the idea of automating human

labor is quite intuitive: less effort, but same result, at the cost of

some initial investment. As humans and society evolved,

automation has taken on many different forms. During the

agricultural revolution, we saw humans automate food production

in the form of farming instead of hunting and gathering. In the

industrial age we saw the automation of mass production in the

form of factories instead of heavy manual labor. And now, we are

living in an age of large-scale technological evolution where we are

seeing automation in almost every aspect of life.

Currently, society is primarily dominated by millions of

corporations, each with their own markets. However, to really

break through to the top of these markets, companies need to be

efficient with the use of their resources. In a constantly evolving

competitive technological world, many large businesses and

companies are looking to automation in the workplace as a way to

best use their business resources. More specifically, the idea of

reducing redundancy and allocating business resources to other

business endeavors is quickly becoming a top priority in order to

stay competitive.

2 Background

Capital One is trying to break through to the top, especially in

online and digital banking. There have been enormous efforts,

especially in recent years, to increase the company’s presence in

the technology sector. Whether that be a massive surge in new

technology department hires, or a commitment to be fully on the

cloud, Capital One is committed to becoming a leader in the

industry.

They are looking for any areas where they can redistribute and

refocus business resources to stay competitive. In order to do that,

there are internal non-customer facing teams responsible for

developing tools for customer-facing teams to do their jobs more

efficiently. One of the key goals of these teams is to help reduce

redundancy; that is, to reduce common efforts across the company

that have the same general goal. One of the biggest areas of

redundancy is the creation of dashboards. Many teams have uses

for dashboards and commit resources to creating and maintaining

these dashboards. Every dashboard served a similar purpose but

every team was responsible for creating them them from scratch.

Our project, the dashboard automator, seeks to reduce these

redundant efforts and automate the process of creating and standing

up a dashboard on the cloud for teams to use in an effort to reduce

this area of redundancy.

3 Related Work
Automation exists everywhere in the industry. The degree of

automation extends from things like automatically sending out

emails to a list of people all the way to advanced artificial

intelligence making advanced decisions and predictions.

One prominent automation tool used by companies, including

Capital One, is automated content analysis and automated report

generation. These two functions, especially of those on media,

generate important insights to help the company understand their

users [1]. It helps reduce intensive human interaction of sifting

through tons of data but also provides a more holistic and

comprehensive analysis of the data as a whole, since a machine can

compute and analyze large amounts of data a lot more efficiently

than a human can.

The dashboard automator’s role serves a similar purpose: to

automate a process that a human can do but in a much more

efficient manner. Although teams can spend a week or two to

 M. Yang

prepare and stand up a dashboard, the dashboard automator will

help them jump start that effort in just a matter of a couple of days.

However, where the dashboard automator differs from automated

report generation and content analysis is the dashboard automator

is a lot more static. It is less focused on automating the generation

of insights; rather, it is focused more on automating the production

of a tool or product

4 Project Design
The project given to our internship team was to create a tool called

the Dashboard Automator. Its primary purpose is to generate and

create the code needed to kickstart a dashboard application, as well

as generate the necessary resources and infrastructure to get it

running on Amazon Web Services (AWS). This is an effort

intended primarily to streamline and reduce the redundancy of

having teams across the company creating dashboards from

scratch.

4.1 Review of System Architecture

The team split the architecture of the dashboard automator into two

primary sections: the generation phase as well as the deployment

and runtime phase.

4.1.1 Generation Phase
The generation phase is primarily concerned with the generation of

the necessary code and resources needed to kickstart a dashboard.

Users have the option of using either a command line interface

(CLI) or a web-wizard. When the user runs one of the CLIs, it

prompts them to fill in some details about team information,

product information, etc., in order to fill out template files. Once all

the information is received, the program then fills out several

template files and creates a local repository that houses the relevant

code. This code is then automatically pushed to GitHub too. There

are several CLIs responsible for the front end, backend, and the

infrastructure necessary in order to stand the dashboard up on the

cloud.

Users who are less familiar with command prompts and running

CLIs may choose the option to use our web-wizard application. The

web-wizard is an internal cloud application that can be accessed by

employees and essentially executes the same function as the CLIs,

but with forms instead of prompts. Once all the forms are

completed and submitted, the web-wizard actually has a back-end

that will run the previously mentioned CLIs with the inputs in the

forms.

4.1.2 Deployment and Runtime Phase
With the code and the repositories that are created in the generation

phase, the deployment and runtime phases runs them through

Capital One’s internal continuous integration and continuous

development (CI/CD) pipeline in order to get the dashboard

running on the cloud. This phase primarily concerns itself with

taking the infrastructure code that is generated and then running it

through the CI/CD pipeline. The infrastructure code that is

generated by the previous phase allows users to generate and create

the necessary AWS credentials. Once the necessary cloud

infrastructure is set up, the front-end application is then stood up on

an internal cloud application being supported by either a backend

EC2 server or a serverless Lambda function.

4.2 Key Components
The design of the dashboard automator is split up into several key

components: the frontend, backend, frontend infrastructure,

backend infrastructure, and finally the CLIs themselves. These are

all the necessary components to not only get the application

working, but also to get it on the cloud.

For our frontend component, users used an internal library that’s

used in Capital One. As a design decision, we wanted to utilize as

many internal Capital One technologies as possible, so choosing an

internal frontend library was an obvious choice. The frontend

component primarily provides a frontend application for users to

interact with. It includes a simple navbar with customizable links

as well as a table display for database queries.

For the backend, we give users a choice in either using a Flask,

NodeJS, or a serverless Lambda function. These frameworks and

solutions were primarily selected as they are currently industry

standards for backend applications. The backend component is

primarily responsible for allowing our frontend component to be

more dynamic. For the purposes of our project, the backend

application was only responsible for interacting with a database.

Both the backend and frontend infrastructure components were

primarily used to generate and create necessary AWS resources for

cloud deployment. The files were mostly scripting files to feed into

our internal CI/CD pipeline which would do most of the work of

allocating necessary resources.

Finally, the backbone of the dashboard automator is our command-

line interface tools. The previously mentioned components are all

files that are templatized according to a NodeJS library that each

CLI uses to fill out the templates. Each CLI prompts the user for

different information such as database information, product

information, and other things that are needed to correctly configure

the template files. The CLI prompts the user for inputs then sends

these to the template files to generate repositories that are then

automatically pushed onto GitHub.

We were also able to reach our stretch goal, the web-wizard. This

component is primarily used as a one-stop-shop for all of the

previously mentioned CLIs. It compounds them all into a web-

based application that has a NodeJS backend that runs all the CLIs.

The web wizard, instead of using individual prompts, has several

forms that the user can fill out instead and once submitted, will also

generate and push the necessary repositories to stand up a

dashboard. This also allows users not to install each individual CLI

on their local machine since the web-wizard itself runs through

AWS.

4.3 Challenges
For the team, the biggest challenges were learning how to use the

internal Capital One resources, as well as learning new languages

and frameworks. We spent the first couple weeks just doing our

own research and getting more familiar with the tools that we used.

For every one of us, this was our first time coding a large-scale

JavaScript application and our first time working with the NodeJS

and Flask frameworks. We spent a significant time in the beginning

 M. Yang

experimenting with sample applications just to get familiar with

everything.

Thereafter, we split into different “specializations.” Team members

involved with getting the CLIs working or working on the web-

wizard had their own challenges. As the one responsible for making

sure everything went through the CI/CD pipeline and getting

everything on the cloud, I faced significant challenges in learning

and understanding everything that goes on behind the scenes. I

spent a good amount of effort learning about Docker containers,

AWS resources, and scripting files in order to make sure that all of

our tools could be successfully built and tested through the CI/CD

pipeline. There is not a lot of course material that could have

prepared me for this so it took a lot of digging through other team’s

codes and searching for references to make sure that I got

everything right in the end.

5 Results
Since the project itself was generally just a proof of concept, the

team was able to accomplish its goal. We were not only able to

release a working product on its own, but we were also able to reach

our stretch goal. Although it may not be fully customizable or

exactly what every team needs from a dashboard, it does set up all

the most time-consuming components such as configuring AWS

resources and creating proper CI/CD scripting files.

Currently, several teams have actually chosen to use the dashboard

automator to create a dashboard. These teams have reported success

and with a bit of tweaking, were able to twist our skeleton

dashboard into one that would be useful to them.

6 Conclusion
The result of our tool significantly helps teams reduce redundant

efforts to create a dashboard. It can take one to two weeks or more

for teams to create a dashboard from scratch, but with the use of the

dashboard automator, that effort can be reduced to one to two days

of configuring a working dashboard already running on the cloud.

The dashboard automator, however, is only the tip of the iceberg,

as the company plans to use it as the starting point for a plethora of

other automated tools to reduce redundancy throughout the tech

department.

7 Future Work
Although we were able to reach our stretch goal of implementing a

web wizard along with the CLI tool, there is still much room for

improvement for the dashboard automator. For one, due to our

limited experience with industry technologies and CI/CD, there are

still some that are not yet completely automated. Ideally, a user

should be able to just fill out the forms in the web wizard and have

a dashboard automatically spun up; however, there are several steps

where the user has to manually intervene to generate things like

AWS tokens or initiate CI/CD builds.

In order to further improve the dashboard automator, we would also

have liked to integrate more functional tools or capabilities. The

dashboard automator currently only sets up a basic navbar and

establishes a connection to a database to pull data from.

Automating the creation of things like search tools or the creation

of figures and graphs would benefit certain teams greatly.

Additionally, due to the nature of our time on the internship, there

is room for improvements in code structure. Given more time, we

would have liked to properly go through and clean up and refactor

redundant code (ironic given the purpose of the application itself)

and overall make it a bit more readable for anyone trying to make

any changes in the future. We would have also have liked to include

a lot more documentation so that future contributors will be able to

easily understand what all of the code is doing.

We also did not spend as much time on testing as we initially had

planned to do. We had basic unit tests, but were not able to

successfully complete a comprehensive test suite to test all the

features of the dashboard automator. Given more time, we would

like to have implemented such a test suite to ensure that all

components worked correctly.

The end-goal of the dashboard automator was primarily to establish

the first in a line of many shared tools among internal Capital One

teams. As time goes on, this “marketplace” will be populated with

similar tools that help automate processes for teams in order to

further reduce redundancy throughout the company.

8 CS Evaluation
I was not as prepared for my internship as I thought I would have

been. However, I do not believe that is an inherent flaw of UVA’s

CS department, but rather the nature of the work at Capital One.

Although certain classes helped me feel more comfortable with

certain aspects of the work, such as databases and the agile

development cycle, my biggest struggle this past summer was

really learning and understanding new technologies.

It is really hard for courses to properly prepare students to know

how to pick new technologies and languages, since every company

and every project and team utilize something different. For

example, although a lot of the code that I wrote was in JavaScript,

the majority of my time during the project was spent learning how

to write Docker and Jenkinsfiles in order to feed our work into the

CI/CD pipeline. Yes, classes provided me with the basic

understanding of how to write good code, but did not really prepare

me in terms of creating things like scripting files, which, to be fair,

can be hard to integrate in a classroom setting.

The most significant room for improvement for the CS department

would be to either make adjustments to the CS3240 curriculum or

create another path for students seeking to pursue academia or a job

in the industry. I think it is important to make that distinction

because some classes such as Computer Architecture and Operating

Systems, although important and interesting topics, do not

generally have any practical applications to most entry-level

positions in the industry.

Although CS3240 provides that experience to many students, it:

1) is far too short of a class to really properly simulate what the

development cycle really feels like;

2) is a bit dated in terms of the technologies that are used

(although Django is a popular web framework, from my own

and other students’ experience frameworks such as NodeJS

are much more prevalent in the industry); and

 M. Yang

3) does not spend nearly enough time on the CI/CD portion of

software development.

Creating a separate pathway for students interested in jumping

straight into the industry will help better prepare them for future

jobs. A couple suggestions would be to:

1) make another class that is a continuation of CS3240. Similar

to the new curriculum with classes like DSA1 and DSA2, we

could see something similar that would help build on CS3240;

and

2) update the languages and frameworks used in CS3240 and

provide a larger focus on the CI/CD pipeline.

Other than those suggestions though, there are not many other

complaints for the CS department. It can be a bit hard to tailor and

fully prepare every student for every possible job in the industry

because everything is always a bit nuanced. The biggest lesson that

a student can really learn is how to problem-solve, and I think the

courses provided in the CS department do properly prepare students

for that. Learning how to learn and picking up new technologies

quickly is something that our department does better than any other,

in my opinion.

REFERENCES
[1] UNIVERSITY OF HELSINKI, M.AND M., UNIVERSITY OF HELSINKI, D.OF C.S.,

TOIVONEN, H., AND BOGGIA, M. 2021. Proceedings of the EACL hackashop

on news media content analysis and automated report generation.

Proceedings of the EACL Hackashop on News Media Content Analysis and

Automated Report Generation.

https://helda.helsinki.fi/handle/10138/329203.

