
Building a Cyber Range for UVA Computer Science Students

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Chase Hildebrand

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Building a Cyber Range for UVA Computer Science Students

CS4991 Capstone Report, 2024

Chase Hildebrand
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
chaseh@virginia.edu

ABSTRACT
In recent years, the cybersecurity skill gap has
increased dramatically. Our team is combating
this problem by building a cyber range, designed
to simulate realistic networks, for UVA students
to get hands-on experience with cybersecurity. To
build this system, we chose OpenStack as our
virtualization platform, and Ceph as our storage
solution. We designed our network to support
2000 concurrent virtual machines and to be
flexible, resilient, secure, and scalable. This
project is expected to bring computational
resources to over 200 UVA students seeking to
learn cybersecurity. Going forward, we want to
improve automation and explore integrating this
system with course curriculum to enhance
cybersecurity education at UVA.

1. INTRODUCTION
As the frequency and complexity of cyber

attacks reaches unprecedented levels, the need
for highly skilled cybersecurity professionals has
never been more pressing. A study conducted in
2023 revealed a global shortage of approximately
4 million skilled cybersecurity professionals [2].
However, despite this demand, students often
encounter significant barriers to gaining practical
experience in cybersecurity. These barriers in
part stem from the formidable technical expertise
required to set up learning environments and the
need for substantial computing infrastructure to
simulate larger networks. These hurdles limit
students’ access to hands-on learning
opportunities, leaving many to rely solely on
classroom instruction, which, in addition to being

sparse at UVA, often falls short at providing the
realistic applications needed to prepare them for
the demands of the field.

To address these problems, our team
plans to develop a platform designed to empower
UVA students to easily engage in hands-on
learning, giving them the freedom to explore
within reasonable boundaries while preventing
inadvertent harm to adjacent systems and the
internet at large. Additionally, it will equip
professors, club leaders, and competition
organizers with the resources to provide virtual
environments to many students at scale.
Moreover, this initiative will inspire and serve as
a starting point for other educational institutions
who want to build similar systems for their
cybersecurity students, promoting accessibility
throughout the field.

2. RELATEDWORKS
This project builds on the work done by

Emil Baggs in 2023 [1]. He presents a system for
a small-scale cyber range with emphasis on
automation to build training networks for
students. The system was transformative within
its niche, but struggled with building and running
large networks. This project builds upon his work
and addresses its shortcomings by redesigning
the cyber range from the ground up, emphasizing
scalability, reliability, and user experience.

3. PROJECT DESIGN
We completed this project in four phases:

requirements elicitation, software selection,
system design, and implementation.

mailto:chaseh@virginia.edu

3.1 Stakeholders
While its application is not imminently

planned, to account for predicted future needs,
this project needs to support a wide range of
stakeholders and varying use cases. These
stakeholders include Computer and Network
Security (CNS, the cybersecurity club at UVA)
members, CNS presenters, CS students doing
independent research or personal practice,
competitive cyber teams, and professors. Each of
these stakeholders has a specific use case that we
foresee. CNS presenters need a way to host
workshops for CNS members. CS students and
CNS members need to be able to participate in
workshops and have a ground to build networks
to experiment with. Competitive teams need an
arena to practice live cybersecurity engagements.
Professors need a way to host assignments and
labs. Each of these stakeholders needs their
environment segmented from others, but also
need a way to collaborate in some cases.

3.2 Design Requirements
Accounting for the needs of the

stakeholders, we curated a list of design
requirements. We separated this list into three
sections: critical, important, and nice to have.

3.2.1 Critical
● Users should be able to create and delete

VMs, networks, and routers without admin
intervention

● User-created VMs should be able to reach the
internet, if desired

● Networks created by users should be
completely segmented from others' networks

● Simulated systems and networking should
emulate real environments as close as
possible

● Users should be able to share projects (groups
of VMs) between each other

● Physical aspects of computing environments
should be abstracted from the user

● System should support 100 concurrent users
and 1000 running VMs

● System should have a web interface to
control the system

● System should be designed to easily scale

3.2.2. Important
● Users should be able to log in with NetBadge
● System should log user activity
● Admins should be able to set resource quotas

for users
● Users should be able to share projects without

admin intervention
● System should support 300 concurrent users

and 3000 running VMs
● User interface should be easy to use for the

average CS student
● Automation support

3.2.3. Nice to Have
● Users should be able to connect to their

networks with a VPN
● System should automatically or offer a

self-service option to configure VPNs for
user networks

● System should automatically deallocate
resources that are not being used to save
compute power

3.3 Hardware Requirements
Based on the requirement of having 3000

running VMs, we estimate that each Linux server
(no GUI) VM will use around 2 GB of RAM and
1 CPU core and each Windows or Linux Desktop
VM will use 8 GB of RAM and 4 CPU cores. We
also allocate 32 GB of disk space per instance on
average. We expect about a 50/50 split GUI to
non GUI machines, which puts the average
resources per instance at 5 GB of RAM and 2.5
CPUs. We can allow 4x overprovisioning on
CPU. This adds up to 3000 * 2.5 / 4 = 1875
vCPU cores, 3000 * 5 = 15,000 GB of RAM, and
96TB of disk space total, which we rounded to
100 TB. In practice, due to budget constraints,
we had to alter these numbers down to 10,000
GB of RAM and 1250 vCPU cores, keeping the
100 TB of disk space. These specifications will
support a minimum of 2000 concurrent VMs.
While this is less than the ideal 3000, it is not too
great a problem because our system is designed
to be scalable, so adding compute later is easy
and 2000 VMs is within the 1000 to 3000 range
outlined in the design requirements.

3.4 Software Selection
To determine which software and system

architectures best fit our requirements, we first
searched online for software that advertised
support for all of our critical requirements and
most of our important requirements. After
building a short list of potential solutions, we
evaluated each one. To evaluate each of these
systems, we built virtualized mock-ups of each of
them in our private cloud using a technique that
lets us run hypervisors inside of virtual machines,
called nested virtualization. We then evaluated
each software's effectiveness of fulfilling our
design requirements using the following criteria:
presence of important features, presence of
nice-to-have features, user interface design, ease
of setup and maintenance, availability of
automation tooling, availability of community
support, scalability, extensibility. The software
we chose to evaluate are Apache CloudStack,
OpenStack, OpenNebula, and Proxmox, because
they are well-maintained, featureful, and have
community support. We chose not to use any
enterprise or paid software because of vendor
lock-in and funding considerations in the future.

We ultimately decided to build
OpenStack because of its scalability,
extensibility, availability and presence of
automation software, and the availability of
decent documentation and community support.
The main downside to this option is its
complexity and its user interface design, which is
somewhat confusing, ugly and sluggish.

3.5 System Design
Our system consists of three control

servers, twelve compute servers, and three
storage servers. The control servers are
responsible for managing the cluster. The
compute servers host the virtual machines and
the storage servers store data. Due to the
extensive design requirements and sheer scale,
the in-depth implementation of this cluster is
outside the scope of this report. This section will
provide a high level overview of each of the
components that we implemented and what they
are used for.

3.5.1 Provisioning and Deployment

Before we can install a server into the
cluster, we need to install an operating system
and install and set up the OpenStack software on
it. The process of getting servers ready to use is
called provisioning. The process of taking a
provisioned server and installing software on it is
called deploying. Rather than manually doing this
for each server in our cluster, we decided to
automate the process. This also makes it easy to
add, remove, or repurpose servers as needed,
making our system rapidly scalable.

To implement this, we used two
technologies: metal as a service (MaaS) for
provisioning and Kolla Ansible for deployment.
MaaS has the capability of automatically
provisioning servers. To register a device in
MaaS all we have to do is plug it in to the
network and turn it on. MaaS also has an
interface that tracks resources, allowing us to
remotely manage bare-metal resources with ease.
Kolla Ansible takes a configuration state and
deploys services on the network to match that
state. Kolla Ansible provides additional
flexibility to our cluster design by allowing us to
quickly move or redeploy services as needed.

3.5.2 Storage
For storage, we run Ceph on the three

storage servers. Ceph is a distributed storage
system and supports the three different types of
storage that we need: block, object, and file
storage. We decided to use Ceph because it is
widely supported in the community and
well-supported by OpenStack. Because Ceph is
distributed, it provides redundant storage so if
one node goes offline unexpectedly or is taken
down for maintenance, the cluster will continue
to be fully operational. Additionally, Ceph
provides triple replication across disks. This
means that there are three copies of data stored in
case of disk or system failure.

3.5.3 Networks
The networking is the most sophisticated

part of the cluster design. To build this cluster,
we split our network into seven sub networks,
called VLANs, or “virtual local area networks.”
VLANs segment a physical network into
multiple logical networks without having to add

additional network equipment or cables. These
VLANs are outlined below:
● VLAN 28 iDRAC

Network for managing physical hardware.
This network is used by MaaS to manage
hardware.

● VLAN 29 PXE Boot
Used by MaaS to provision servers using
PXE boot, which is a way to network boot
servers.

● VLAN 30 Openstack management network
Used for internal OpenStack communication
and management by administrators.

● VLAN 31 API Network
Used by users accessing the cluster

● VLAN 32 External storage network
Used by Ceph to share data with OpenStack.

● VLAN 33 External network
Provider network used for VM traffic going
to the internet.

● VLAN 40 Internal storage network
Used by Ceph to replicate data between
nodes. Unlike the other networks, which are
10Gbps, this network is 40Gbps.

● VLAN 999 Public
This is UVA’s public network. We have a
Palo Alto firewall between VLAN 30, 31, 33
and the 999 (the public internet). This
firewall is used to regulate traffic and log
requests for accountability.

Our network is fully redundant, so if any
cable or networking appliance fails, the cluster
will continue to operate as normal. To implement
this, we have two switches running virtual
chassis. This allows the second switch to take
over if the first one fails. Each host is connected
to both switches and uses a protocol called LACP
that enables redundancy.

4. EXPECTED RESULTS
This project is expected to bring the

resources to build realistic cybersecurity
environments to 200 students. It will enable CNS
to host larger competitions internally that have
historically been limited in size due to the lack of
computing resources. This project will also
enable running larger scale intercollegiate
competitions.

5. CONCLUSION
Building a cyber range is a big step towards

training a strong cybersecurity workforce. As the
frequency of cyber attacks increases, this is
becoming critically important. The cyber range
will add to the list of resources that distinguish
UVA as a leader in cybersecurity.

6. FUTUREWORK
There are still many ways this project can be

expanded upon. Currently, there is no automation
to build networks implemented outside of what
OpenStack provides. In the future, we hope to
integrate the automation that we developed last
year [1] with this project.

We would like to open this project for
professors to use in their classes. While students
can use it in its current state, going through the
process of getting the cyber range approved as an
official educational tool and ensuring it follows
education laws and university guidelines is a
subject for future work. Additionally, because
allowing professors to use it for their classes
would attract a larger user base, we may need to
scale up the system to account for the additional
load.

7. ACKNOWLEDGMENTS
I would like to thank the Jefferson Trust

for graciously providing us with a $71,548.79
grant to build this project. I would also like to
thank members of the CNS systems team,
especially Vincent Zhang, Shreyas Mayya, and
Lulu Han, for their hard work on this project.

REFERENCES
[1] Emil Baggs. 2023. Designing and Building a Virtual

Cyber Security Range; Analyzing the Competition
Between Internet Protocol Versions 4 and 6. Retrieved
April 29, 2024 from
https://doi.org/10.18130/p5e0-xz56

[2] ISC2 Cybersecurity Workforce Study: Looking
Deeper into the Workforce Gap. Retrieved May 8,
2024 from
https://www.isc2.org/Insights/2023/11/ISC2-Cybersec
urity-Workforce-Study-Looking-Deeper-into-the-Wor
kforce-Gap

https://doi.org/10.18130/p5e0-xz56

