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Abstract
Understanding the interaction and dynamics of quantum many-body systems

is a longstanding research interest that has led to numerous theoretical, experimental

and technological advances. However, the quantum Hilbert space of quantum many-

body systems scales exponentially with the number of degrees of freedom, making

direct brute-force approaches intractable to understand the non-equilibrium quantum

dynamics exhibited in these systems. Furthermore, the study of out-of-equilibrium

quantum dynamics is further enriched by taking into account external interactions and

manipulations on an otherwise closed quantum systems. In this dissertation, we inves-

tigate and simulate the non-equilibrium quantum dynamics of both closed and open

quantum systems, where we study quenched dynamics in the former case, and the

effect of quantum measurements for the latter case.

We first examine non-interacting fermionic lattice systems subject to quantum

measurements (as well as other quantum operations such as particle injection). Re-

peated, periodic sequence of quantum measurements can induce effective new non-

equilibrium dynamics in matter with chiral edge transport via measurement alone [1].

We consider the additional diffusion transport that is present in these systems with

measurement-induced chiral transport, providing analytical and numerical treatments

to describe these diffusive modes. In addition, we consider the effects of various types

of disorder in these systems: site dilution, lattice distortion, and disorder in onsite

chemical potential. In the quantum Zeno limit, the effective descriptions for the dis-

ordered measurement system with lattice distortions and random onsite potential can

be modelled as a classical stochastic model, and the overall effect of increasing these

disorders induces a crossover from perfect flow to zero transport. On the other hand

if vacancies are present in the lattice the flow of particles per measurement cycle un-

dergoes a percolation phase transition from unity to zero with percolation threshold

pc ≈ 0.26, with critical exponent ν ≈ 1.35. We also present numerical results away
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from Zeno limit and note that the overall effect of moving away from the Zeno effect

is to reduce particle flow per cycle when the measurement frequency in our protocol is

reduced.

In the second part of this thesis, we attempt to simulate quark confinement dy-

namics in low-dimensional systems by framing the problem in a condensed matter

setting. More precisely, we provide an analogous description of quark confinement

by studying the quenched dynamics of domain walls in the Mixed Field Ising Model.

We explore the interplay of confinement, string breaking and entanglement asymme-

try in this setting. First, we consider the evolution of an initial domain wall and show

that, surprisingly, while the introduction of confinement through a longitudinal field

typically suppresses entanglement generation, it can also serve to increase it beyond a

bound set for free particles. Our model can be tuned to conserve the number of domain

walls, which gives an opportunity to explore entanglement asymmetry associated with

link variables. We study two approaches to deal with the non-locality of the link vari-

ables, either directly or following a Kramers-Wannier transformation that maps bond

variables (kinks) to site variables (spins). We develop a numerical procedure for com-

puting the asymmetry using tensor network methods and use it to demonstrate the

different types of entanglement and entanglement asymmetry.
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Chapter 1

Introduction

1.1 Quantum Engineering and Quantum Dynamics

Over the past few decades, numerous advances have been made in understanding

novel phases of matter arising from quantum mechanical interactions of atoms and

electrons. This has led to many important discoveries on various quantum states of

matter, such as the Bose-Einstein condensations [6], high-temperature superconductiv-

ity [7], and topological phases of matter [8], with the promise to revolutionize the next

generation of quantum technologies in areas such as quantum computing [9]. These

important discoveries also serve as a feedback loop to further galvanize new theoreti-

cal ideas, inspire developments in powerful computational and numerical techniques,

and open up new avenues for experimental efforts to help understand new emergent

quantum phenomena and dynamics. These new developments have made it possible

not only to investigate and prepare new quantum states of matter but also to provide

external control over quantum many-body systems. This provides the possibility to not

only simulate and probe quantum dynamics in closed quantum many-body systems,

but also to engineer new quantum dynamics in open quantum systems by external

manipulations such as quantum measurements.

Conventional methods to understand emergent behavior of quantum materials
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have mostly been focused on isolated systems near equilibrium [10], and the number of

numerical and analytical toolkits available to tackle non-equilibrium quantum dynam-

ics and behavior is far more restrictive. Understanding out-of-equilibrium quantum

dynamics in both closed and open quantum systems poses great theoretical and nu-

merical challenges due to the exponential scaling of the dimension of the Hilbert space

with respect to physical degrees of freedom (such as the number of qubits, spins, etc).

Numerous theoretical and computational tools have been developed over the years to

help simulate these dynamics in both closed and open quantum systems. In this chap-

ter, we will introduce some of the theoretical formalisms and numerical tools that are

relevant to the non-equilibrium systems of interest, namely, free fermionic lattice under

periodic measurements [1, 2], and quenched dynamics of the quantum Ising chain [3].

We will also provide pedagogical introductions by giving various background materi-

als relevant to the subsequent chapters in this dissertation.

In chapter 2, we consider diffusion and the effect of disorder in free fermionic

systems under periodic measurements. This open quantum system setting requires

theoretical tools developed from the Linbladian formalism to deal with density matri-

ces, and a great simplification arises when we consider a subset of Krauss operators

that close the hierarchy on the two-point correlation function [11]. The tools will be

introduced in Sec 1.2 below. The closed hierarchy formalism will be needed to describe

various aspects of the measurement-induced chirality in chapter 2.

Chapter 3 will then investigate confinement and entanglement dynamics in a

quantum Ising chain. The problem of understanding quark confinement dynamics and

quantum chromodynamics is notoriously difficult due to asymptotic freedom at low

energy effective field theory of these systems. This provides a motivation to study the

problem of confinement in a low-dimensional, condensed matter analogue system, and

we discuss this in Sec 1.3.

After introducing the basic motivation behind using quantum Ising chain as a toy
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model to study low-dimensional confinement, we will proceed to introduce an aspect

of quantum entanglement that has been hotly researched in the last two years, namely,

the entanglement asymmetry [12]. We will discuss the motivation behind the entan-

glement asymmetry, give an intuition about what this quantity represents, and briefly

mention the quantum Mpemba effect as a recent quantum dynamical phenomena that

is observed in the setting of entanglement asymmetry.

Finally, we will introduce the tensor network algorithm [13, 14] as a powerful nu-

merical tool to tackle our quenched dynamics of interest in Sec 1.5. We will focus pri-

marily on the matrix product states (MPS) and time evolving block decimation (TEBD)

algorithm as a classically efficient method of simulating quantum many-body systems

in one dimension. The key idea behind tensor network algorithms is to approximate the

target quantum state by throwing away degrees of freedom encoded in the quantum

state that will not introduce significant errors in the simulations. More details about

how tensor network works will be provided in Sec 1.5 below.

For ease of presentation, each chapter contains the main results and ideas in its

body with many of the technical details included in the corresponding appendix.

1.2 Open Quantum Systems

In a closed quantum system, the quantum state |ψ⟩ with is typically described by a

statevector of dimension CNd, where d is the dimension of each degrees of freedom

and N is the total number of physical degrees of freedom (for a spin-1/2 or a qubit,

d = 2). Its time evolution given a Hamiltonian H is typically described by a unitary

evolution U = exp(−iHt) of dimension CNd × CNd for real time evolution t ∈ R.

Dealing with open quantum systems typically involves non-unitary operations

acting on our quantum state, and these operations can arise from various sources, such
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as system-environment interactions, quantum measurements, etc. The general way

to describe a quantum state in an open quantum system is given by a density matrix

ρ = ∑k pk|ψk⟩⟨ψk|, where {ψk} is an orthonormal basis spanning the quantum state

space and pk is classical probability that sums to 1. The general evolution of density

matrices can be described using the Krauss operator formalism

ρ −→ L(ρ) = ∑
ν

AνρA†
ν ; ∑

ν

A†
ν Aν = 1. (1.1)

This form ensures that ρ remains non-negative (i.e., its eigenvalues are not negative, or

equivalently ⟨ψ|ρ|ψ⟩ ≥ 0 for any statevector |ψ⟩) and the normalization condition on

the Kraus operators Aν preserves Tr{ρ} = 1. We will refer readers for more in-depth

discussions on open quantum systems in [15].

Explicitly working in the general Krauss operator formalism is often intractable,

and one typically imposes certain restrictions or approximations to make the Krauss

operator formalism more tractable. A popular choice is to use the Lindblad formalism,

with the basic assumptions that (1) the system is weakly coupled to the bath (environ-

ment), and (2) the time scales for dynamics in the bath and the bath-system coupling

are both much faster than the typical time scales for evolution in the system itself. Un-

der these assumptions, it is possible to make the Markovian approximation to simplify

the Krauss map on ρ into the Lindblad form. We refer interested readers to the excellent

Preskill’s lecture notes [16] for more details. The system is then Markovian and has no

memory of the state of the system from the distant past, and this in turns imply that the

density matrix ρ(t + δt) can be written completely in terms of the density matrix ρ(t)

for short time interval δt. The evolution of the density matrix can then be written as

a first order linear differential equation (known as the Lindblad master equation) with

respect to time t.

In this dissertation, however, we will introduce another approach that is more
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relevant to our problem in Chapter 2. We will restrict ourselves to a class of Krauss

operators where dynamics is more tractable but still exact [11]. To motivate the class of

dynamics that is relevant to our discussion, we first look at the evolution of a general

correlation function

〈
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

〉
= Tr

{
ρa†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

}
(1.2)

given by

〈
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

〉
−→

〈
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

〉
+∑

ν

Tr
{

ρA†
ν

[
a†

i1 ...a†
iℓ1

ai(ℓ1+1)
...ai(ℓ1+ℓ2)

, Aν

]}
(1.3)

where we have used the normalization condition of Aν, i.e., ∑ν A†
ν Aν = 1. The ℓ1 +

ℓ2 correlation function is, in general, taken to a higher-order correlation function by

this evolution, leading to a hierarchy of equations which quickly becomes intractable.

However, a subset of this general evolution can be found by considering just the two-

point function Gij ≡
〈

a†
i aj
〉
, and asking under what set of Krauss operators does the

hierarchy close, i.e., what set of Krauss operators map two-point functions to two-point

(and not higher) correlation functions G → G′ = K(G).

In [11], it is shown that, for fermions on a lattice, the following Krauss operators

form a set of possible operations that close the hierarchy on the two point function
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level:

Non-interacting Evolution: Lu(ρ) = UρU† (1.4a)

Particle Detection: LD,i(ρ) = niρni + (1 − ni)ρ(1 − ni) (1.4b)

Soft Particle Injection: Lin,i,ϵ(ρ) = ϵ(2 − ϵ)a†
i ρai (1.4c)

+(1 − ϵ(1 − ni))ρ(1 − ϵ(1 − ni))

Soft Particle Extraction: Lout,i,ϵ(ρ) = ϵ(2 − ϵ)aiρa†
i (1.4d)

+(1 − ϵni)ρ(1 − ϵni)

Here, ϵ is a real number between 0 and 1 and U describes the non-interacting evolution

under which fermionic operators transform as U†a†
i U = Uija†

j , where U is called a

single-particle evolution. We can then compute the corresponding transformations on

the two point function by applying the anti-commutation relations of a†, a:

Non-interacting Evolution: KU(G)ij = (UGU†)ij (1.5a)

Particle Detection: KD,i(G) = PiGPi + (1 − Pi)G(1 − Pi) (1.5b)

Soft Particle Injection: Kin,i,ϵ(G) = (1 − Pi)G(1 − Pi) (1.5c)

+(1 − ϵ)PiG(1 − Pi) + (1 − ϵ)(1 − Pi)GPi

+(1 − ϵ)2PiGPi + ϵ(2 − ϵ)Pi

Soft Particle Extraction: Kout,i,ϵ(G) = Kin,i,ϵ(G)− ϵ(2 − ϵ)Pi (1.5d)

Here, Pi = |i⟩⟨i| is the (single particle) projector onto site i.

We emphasize that no approximations are used in the derivation of Eq. (1.5).

Great simplification arises due to the restricted set of Krauss operations allowed in our

consideration. If we are only interested in transport or particle density properties of a

system which may be written completely in terms of the two-point function, the closed-

hierarchy formalism thus allows for the exact solution of the dynamics via a function
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which scales polynomially (the two-point function) instead of a function which scales

exponentially (the density matrix) in system size. We will use the closed hierarchy

formalism in the the next chapter and study the particle flow in an open system subject

to non-interacting evolution and particle detection.

1.3 Confinement as Quenched Dynamics

In this section, we will provide the motivation to simulate confinement in condensed

matter physics setting. The phenomenon of low-energy quantum chromodynamics

(QCD) in three dimension is difficult to understand due to the phenomenon of asymp-

totic freedom in 3-dimensional non-Abelian gauge field theory exhibiting QCD [17–19].

Roughly speaking, when a field theory flows from its high-energy, ultraviolet limit to

its low-energy, infrared limit in a renormaliztion group sense, the coupling strengths

in the non-Abelian gauge field theory describing QCD and confinement in quarks also

grow in this instance. This makes the phenomenon of quark confinement and QCD

highly non-perturbative at low-energy scales, and hence difficult to treat analytically in

its native, field theoretic setting.

One approach to get around the analytical difficulty of simulating and under-

standing the low-energy dynamics and physics of the non-Abelian gauge field theory

is to write down discrete version of the non-Abelian gauge theory by putting it on a

lattice. This effort was initially spearheaded by Kogut and Susskind and one of the ear-

liest models in the study of lattice gauge theory is the Kogut-Susskind Hamiltonian [20,

21]. Lattice gauge theories then provide toy models platforms to tackle the problem of

QCD and confinement using numerical simulations.

In this vein, the simplest lattice gauge theory that one could study is the Z2 lattice

gauge theory. One famous example of the Z2 lattice gauge theory is the Kitaev Toric



8 Chapter 1. Introduction

code model [22]. However, in this dissertation, we will consider another famous con-

densed matter toy model that, while not considered strictly a Z2 lattice gauge theory,

nonetheless mimics many aspects of the confinement dynamics in QCD in low dimen-

sion.

FIGURE 1.1: Two counter-propagating domain walls bounce back and
forth due to the confining potential. Figure is taken from [23].

We will consider the Mixed Field Ising model (MFIM), and in chapter 3, we will

add an additional three-body spin interaction term. For pedagogical reason, how-

ever, we will consider the simpler version of the problem, with the following one-

dimensional MFIM on an open spin chain

H = −J0

L−1

∑
i=1

σz
i σz

i+1 − g
L

∑
i=1

σx
i − h

L

∑
i=1

σz
i . (1.6)
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To simulate confinement dynamics in the Ising model setting, one will turn the prob-

lem to a quantum quenched dynamics problem, an approach that is spearheaded in

[23]. In this setting, mesons (a composite particle of a quark and an anti-quark) is rep-

resented by a domain wall/kink in the Ising spin chain, i.e., by a spin slip | . . . ↑↓ . . . ⟩

in the spin chain. We will initialize a chain of spin-1/2 system with the following initial

state, representing two mesons with two domain walls:

|j, n⟩ = | ↑1 . . . ↑j−1↓j . . . ↓j+n−1↑j+n . . . ↑L⟩. (1.7)

Although a detailed treatment of the semi-classical treatment will not be dis-

cussed in this Introduction, a rough physical description will be given to help the read-

ers understand the physics behind confinement of the domain wall dynamics. The

longitudinal field terms with coupling strength h acts to confine the propagation of the

domain walls, which is illustrated in the semi-classical picture in Fig 1.1.

FIGURE 1.2: Time evolution of probability dynamics of kinks simulated on
real IBM superconducting qubits, without (h = 0, Left) and with (h = 0.5,
Right) confining potential. The yellow dashed and solid lines are added
to display the propagating velocity of the domain walls, and introducing
confining field reduces the propagation velocity in the IBM quantum sim-

ulation experiment. Figure is taken from [24].

We can understand this more systematically in the following way. Consider the

two-kink projection of the Hamiltonian in Eqn 1.3, H2 = P−1HP, for basis written in
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Eqn 1.3 |j, n⟩, the two-kink subspace of the MFIM can be written as [24]

H2 = ∑
0≤j<L−1

0<n<L−j−1

2hn|j, n⟩⟨j, n| − g
(
|j− 1, n+ 1⟩+ |j+ 1, n− 1⟩+ |j, n− 1⟩+ |j, n+ 1⟩

)
⟨j, n| .

(1.8)

Within the two-kink subspace (polynomially large) of the exponentially large Hilbert

space, this projected two-kink Hamiltonian then displays more clearly that the longi-

tudinal term acts as a confining potential that increases with the separation distance of

the domain wall.

This confinement dynamics has also been demonstrated recently on real, noisy

IBM quantum superconducting qubits [24]. In Fig 1.2, 10 qubits are selected to initial-

ize a two domain wall states | ↑↑↑↑↓↓↑↑↑↑⟩. One then runs through trotterized time

evolution to evolve the qubits to simulate the quenched dynamics of the domain wall

propagations.

With both theoretical investigation and quantum simulation experiments demon-

strating the confinement dynamics of domain walls in MFIM, we will proceed to intro-

duce other background ideas, namely, the concepts of entanglement asymmetry and

tensor network algorithms, in the remaining sections of this chapter.

1.4 Entanglement Asymmetry

In this section, we will introduce the motivation and concept of entanglement asym-

metry to familiarize the readers for many of the contents in Chapter 3. Background

materials in this chapter will be based on pioneering works by Klich and Levitov [25]

and Ares et. al. [12].

The motivation to formulate the concept of the entanglement asymmetry arises

from the motivation to understand the effect of symmetry and conservation laws on
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the amount of entanglement generated in a quantum many-body system. In Klich and

Levitov [25], the authors explore the constraint particle number conservation imposes

on the amount of entanglement entropy one can measure a fermionic system when

one is restricted to detect entanglement with local experimental probes. This motivates

further study on the relation between conservation laws and entanglement entropy,

and Ares et. al. proposes the notion of entanglement asymmetry in their recent work to

quantify this connection more clearly [12].

FIGURE 1.3: In the eigenbasis of the subsystem charge QA, the action of
projector Πq projects the density matrix ρA unto the eigenspace of QA with
integer eigenvalue q ∈ Z. This results in the elimination of off-diagonal
charge sector blocks with different charge eigenvalues q. The entangle-
ment asymmetry is then the difference in entanglement entropies from

these density matrices. Figure is taken from [12].

We define the entanglement asymmetry as the difference between the entropy

arising from symmetry-projected reduced density matrix ρA,Q and the entropy from

regular reduced density matrix ρA [12]

∆S(n)
A ≡ S(n)(ρA,Q)− S(n)(ρA). (1.9)

with the entanglement entropies defined by

S(n)(ρA) =
1

1 − n
log(Tr(ρn

A)). (1.10)
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Here, the symmetry-projected reduced density matrix is defined by

ρA,Q = ∑
q∈Z

ΠqρAΠq, (1.11)

where the density matrices are illustrated in the eigenbasis of subsystem charge opera-

tor QA in Fig 1.3. In numerical simulation, it will be more expedient to use the following

form of the symmetry-projected reduced density matrix

ρA,Q =
∫ π

−π

dα

2π
e−iαQA ρAeiαQA . (1.12)

In practice, the integration is carried out by using various numerical method, for ex-

ample, the trapezoidal rule, to approximately projects out the off-diagonal symmetry

sectors, and this will be used in Chapter 3.

A few remarks are in order on the entanglement asymmetry. First of all, the entan-

glement asymmetry is a measure of explicit symmetry breaking and not spontaneous

symmetry breaking. In the conventional quantum phase transition and condensed mat-

ter settings, order parameters are used to detect phase transition and spontaneous sym-

metry breaking [10]. The entanglement asymmetry should not be understood in this

sense. Rather, in a very rough physical sense, it is an entanglement measure that quan-

tifies the distance of our quantum state to the nearest symmetric quantum state (with

respect to some charge Q).

Another remark is that the quantity ∆S(n)
A can be shown to possess 2 proper-

ties that allow it to quantify explicit symmetry breaking. (1) ∆SA = limn→1 ∆S(n)
A =

Tr(ρA,Q log ρA,Q − ρA log ρA) = Tr(ρA(log ρA,Q − log ρA)) ≥ 0 is non-negative [26].

This can be seen most easily in the case of ∆SA = limn→1 ∆S(n)
A , although in the more

general case treatment ∆S(n)
A ≥ 0 has also been made in [12]. (2) ∆S(n)

A = 0 if and only

if the state is symmetric with respect to the subsystem charge operator QA, and ρA is

block diagonal in the eigenbasis of QA and ρA = ρA,Q.
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FIGURE 1.4: The symbols are the numerical results for various values of
the subsystem length l, the replica index n (for n-th order entanglement
asymmetry), and the initial tilting angle θ. The continuous lines are our
prediction obtained from analytical calculations obtained in [12]. The inset
displays the asymptotic behaviors from analytical predictions for large t/.

Figure is taken from [12].

An interesting phenomenon made manifest by the entanglement asymmetry is

the quantum Mpemba effect [12]. Roughly speaking, the quantum Mpemba effect is

a counter-intuitive phenomenon in which the more a quantum state initially breaks a

symmetry, the faster the symmetry is restored when the quantum state evolves under

the real time evolution of a Hamiltonian that preserves the symmetry. We will briefly

illustrate this with an example from [12].

In [12], consider the initial cat state of the following form

|Ψ(0)⟩ = |θ;↗↗ · · · ⟩ − | − θ;↗↗ · · · ⟩√
2

, (1.13)



14 Chapter 1. Introduction

where the states in superposition is understood to be the tilted ferromagnetic product

state of an infinite spin chain of the following form (not aligned in the z-axis)

|θ;↗↗ · · · ⟩ = e−i θ
2 ∑j σz

j | ↑↑ · · · ⟩. (1.14)

For θ ̸= πm, m ∈ Z, this tilted ferromagnetic product state in Eqn 1.4 (and also the cat

version of the state in Eqn 1.4) breaks the U(1) symmetry associated to the conservation

of the total z-axis magnetization Q = 1
2 ∑j σz

j .

The state in Eqn 1.4 is then evolved under the quenched dynamics according to

|Ψ(t)⟩ = e−iHt|Ψ(0)⟩, (1.15)

where our Hamiltonian of interest is the symmetric XX Hamiltonian preserving the

total z-axis magnetization, [H, Q] = 0,

H = −1
4

∞

∑
j=−∞

[
σx

j σx
j+1 + σ

y
j σ

y
j+1

]
. (1.16)

We now look at the quantum Mpemba effect by observing the relaxation be-

haviour of initial quantum states |Ψ(0)⟩ with various tilt angles θ in Fig 1.4. We will

focus on the main Figure and not the inset since we are interested at how rapidly the to-

tal magnetization symmetry Q is restored for various initial cat states Eqn 1.4 breaking

the total magnetization symmetry. In Fig 1.4, we notice that for the same n = 2 compar-

ison, the state with higher entanglement asymmetry ∆S2
A relaxes to zero more quickly

than the state with lower entanglement asymmetry ∆S2
A. This counterintuitive phe-

nomenon, occurring in this example and also other examples (see, for instance, [27]),

is called the quantum Mpemba effect, and this effect is illustrated effectively when we

define a symmetry breaking entanglement measure (the entanglement asymmetry) to

quantify and illustrate this effect. Recent trapped ion quantum simulation experiment
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has also demonstrated the quantum Mpemba effect [28]. For our dissertation, how-

ever, we will not look into the quantum Mpemba effect, but use it merely to motivate

the study of entanglement asymmetry itself.

1.5 Tensor Network Algorithm

We now turn to our final ingredient required to understand the materials in this the-

sis, namely the tensor network algorithms, in this section. We will introduce the ma-

trix product state (MPS) as a way to efficiently represent one-dimensional quantum

state, and the time evolving block decimation (TEBD) algorithm as an approximation

to apply the Trotterized time evolution of the Hamiltonian to our MPS. Tensor network

algorithms introduced here will be used in Chapter 3.

Tensor network algorithms are a class of classically efficient approaches to repre-

sent and simulate quantum many-body systems. Writing up a thorough introduction

to the vast literature and background of the available tensor network algorithms will be

a daunting task, so we will only skim through the bare minimum needed to understand

the small subset of tensor network approaches needed to understand Chapter 3 in this

dissertation. We refer interested readers to [13, 14] for more in-depth introductions to

tensor network theory.

1.5.1 Tensor Network Notation and Singular Value Decomposition

We begin by introducing the tensor network notation and the basic ingredient behind

the tensor network compression schemes: the singular value decomposition (SVD). In

tensor network notation, a scalar is represented by a block without any tensor leg, while

the number of legs of a tensor represents the rank of a tensor. This is best visualized in

Fig 1.5 below. The introductory note in this subsection is taken largely from [13].
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FIGURE 1.5: (a) A scalar, (b) a vector, (c) a matrix, and (d) a rank-3 tensor
in tensor network notation. Figure is taken from [14].

In tensor network notation, a leg connecting two tensors represents a tensor con-

traction, with the shared index representing the connecting/common leg of the 2 ten-

sors. In this notation, taking a trace of a matrix involve connecting 2 legs of a matrix in

a loop. A summary of useful tensor network notations for tensor contraction is illus-

trated in Fig 1.6 below.

FIGURE 1.6: (a) Matrix-like contractions involving a single leg connection
between tensors with at most two legs (matrices). Here, the top figure rep-
resents a matrix-vector contraction, the middle figure represents a matrix-
matrix multiplication, and the bottom figure represents taking the trace
from the resulting matrix. (b) and (c) show tensor contractions involving
contractions between tensors with more than 2 legs. (b) illustrates the in-
dices written out on tensor legs more explicitly. The top and bottom figures

in (c) represents more convoluted tensor contractions.

The diagramatic notation of the tensor network also allows us to visualize and

quickly estimate the computational complexity of a tensor network algorithm/contraction
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rather easily. For instance, the top figure of Fig 1.6 (a) represents a matrix-vector con-

traction, and assuming each index (i.e., leg) of the matrix and vector is of dimension d,

this contraction will be of order O(d3). The general rule for estimating the computa-

tional complexity of a tensor contraction therefore involves multiplying the dimension

of each leg of the 2 tensors involved in the contraction, taking care not to repeat the

shared index (or indices) twice. In other words, the tensor network notation simplifies

the estimation of complexity of tensor contractions into a simple leg counting exercise.

One basic ingredient on how tensor network manipulation can allow for great

computational simplification involves the singular value decomposition (SVD) proce-

dure. The SVD is the basic engine and backbone of data compression in approximat-

ing the exponentially large wavefunction into a wavefunction with polynomially large

number of coefficients. This point will be illustrated using the Matrix Product State

(MPS) in the next subsection. In addition, the SVD is also rapidly used when a unitary

matrix is applied to an MPS to rapidly truncate the relevant dimensions of wavefunc-

tion. Again we will postpone the discussion of this to the subsection dealing with the

Time-Evolving Block Decimation (TEBD) algorithm.

We will briefly discuss the SVD here. The SVD guarantees for an arbitrary (rect-

angular) matrix M of dimensions NA × NB the existence of a decomposition

M = USV†, (1.17)

where U is an NA × NA matrix (U†U = I) with orthonormal columns (left singular

vectors), V† is an NB × NB matrix (V†V = I) with orthonormal rows (right singular

vectors), and S is an NA × NB rectangular diagonal matrix with non-negative real num-

bers on the diagonal. The diagonals of S, which we denote as {σi}i=1,...,min(NA,NB), is the

singular values of M, while {ui}i=1,...,NA and {vi}i=1,...,NB form two sets of orthonormal

bases.



18 Chapter 1. Introduction

It is customary to construct U and V† such that the singular values {σi} are ar-

ranged from the highest value to the lowest value. In this way, we can write the SVD

as

M =
min(NA,NB)

∑
i=1

σiuiv∗i . (1.18)

Here we briefly remark that the SVD is not unique. In tensor network compression

scheme, we compress information contained in a quantum state (wavefunction) (1) ei-

ther by fixing a set maximum number of allowed singular values we keep (we will call

this maximum the bond dimension), (2) or truncating a number of singular values (the

number of singular values thrown away is flexible) as long as the sum of the squared

singular values being thrown away, i.e., ∑
min(NA,NB)
i=k σ2

i ≤ δ, is less than some threshold

error rate δ.

1.5.2 Matrix Product States and Schmidt Decomposition

Having introduced the tensor network notation and a brief foray into the SVD, we are

now ready to discuss the simplest tensor network representation of a quantum state

wavefunction in one dimension: the Matrix Product States (MPS).

Consider a one dimensional lattice of L sites with d dimensional local state space

{si} on sites i = 1, . . . , L. The most generic form of the quantum state is of the form

|ψ⟩ = ∑
s1,...,sL

cs1,...,sL |s1, . . . , sL⟩. (1.19)

A notation that gives a more local notion of the state and helps to break down the

wavefunction into parts effectively is the MPS. There are 3 different forms of the MPS:

(1) The left-canonical MPS, (2) The right-canonical MPS, and (3) the mixed-canonical

MPS. We will introduce each type of MPS below. We will restrict our discussion to

open boundary condition in this subsection since the MPS we will consider in Chapter
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3 will have open boundary condition.

FIGURE 1.7: (a) An iterative procedure to cast a wavefunction into the
left-canonical MPS, done by applying successive SVD on the wavefunc-
tion starting from left to right. (b) This represents the wavefunction being
cast into the right-canonical MPS, by performing successive SVD from the
right end instead. (c) This is the form of the mixed-canonical MPS, by ap-
plying successive SVD from both ends of the wavefunction. Figures are

taken from [13].

(a) Left-canonical MPS. In the first step, we reshape a state vector with dL compo-

nents into a matrix of dimension d × dL−1, where the coefficents before and after the

reshaping are related by

Ψs1,(s2,...,sL) = cs1,s2,...,sL . (1.20)

Performing an SVD on Ψ gives

cs1,s2,...,sL = Ψs1,(s2,...,sL) =
r1

∑
a1

Us1,a1Sa1,a1(V
†)a1,(s2,...,sL) ≡

r1

∑
a1

Us1,a1ca1,(s2,...,sL), (1.21)

where in the last step we multiplied S and V†. The rank (hereby we shall call it the bond

dimension) r1 is taken to be r1 ≤ d, where equality holds when there is no truncation
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after SVD. Reshaping Us1,a1 = As1
a1 and ca1,(s2,...,sL) as Ψ(a1,s2),(s3,...,sL) of dimension r1d ×

dL−2, we have

cs1,...,sL =
r1

∑
a1

As1
a1Ψ(a1,s2),(s3,...,sL). (1.22)

We subject the new Ψ matrix into another SVD and get (repeating the procedure

above)

cs1,...,sL =
r1

∑
a1

r2

∑
a2

As1
a1 As2

a1,a2Ψ(a2,s3),(s4,...,sL), (1.23)

and the new Ψ now has dimension r2d × dL−3, where r2 ≤ r1d ≤ d2. Upon further

SVDs, we eventually get

cs1,...,sL = ∑
a1,...,aL−1

As1
a1 As2

a1,a2 . . . AsL−1
aL−2,aL−1 AsL

aL−1 , (1.24)

or, more compactly,

cs1,...,sL = As1 As2 . . . AsL−1 AsL . (1.25)

Thus, we have expressed a wavefunction into the left-canonical MPS form

|ψ⟩ = ∑
s1,...,sL

As1 As2 . . . AsL−1 AsL |s1, . . . , sL⟩. (1.26)

The procedure of repeated SVD is summarized graphically in Fig 1.7 (a). If no trunca-

tion ever occurs, the bond dimension {ai} each tensor A (not to be confused with phys-

ical local dimension {si}) has the maximum bound of (1, d), (d, d2), . . . (dL/2−1, dL/2),

(dL/2, dL/2−1), . . . , (d2, d), (d, 1), going from the first to the last site. Of course, in tensor

network algorithms and computation, we often set a maximum bond dimension so as

to keep the dimension from growing exponentially. If we set a maximum bond dimen-

sion to be D, counting the number of parameters in an MPS will then give an estimate

of order

LdD2, (1.27)
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rather than dL if there is no truncation of the singular values after SVD.

Another important remark is of interest here. It is so-called left-canonical because,

at each step of the SVD, when we redefine U’s into A’s, we note that the set of A-

matrices are left-normalized, i.e., from the property U†U = I (left singular vectors in

SVD), we have

∑
si

(Asi)† Asi = I. (1.28)

We will proceed next to the right-canonical MPS.

(b) Right-canonical MPS. We could equally start from the right end of a chain for

the iterative SVD proceed to cast the quantum state into the right-canonical MPS. Doing

this, we have

cs1,...,sL = Ψ(s1....,sL−1),sL

= ∑
aL−1

U(s1,...,sL−1),aL−1
SaL−1,aL−1(V)†

aL−1,sL

= ∑
aL−1

Ψ(s1,...,sL−2),(sL−1aL−1)
BsL

aL−1

= ∑
aL−2,aL−1

U(s1,...,sL−2),aL−2
SaL−2,aL−2(V)†

aL−2,(sL−1,aL−1)
BsL

aL−1

= ∑
aL−2,aL−1

Ψ(s1,...,sL−3),(sL−2aL−2)B
sL−1
aL−2,aL−1 BsL

aL−1 = . . .

= ∑
a1,aL−1

Bs1
a1 Bs2

a1,a2 . . . BsL−1
aL−2,aL−1 BsL

aL−1 , and

|ψ⟩ = ∑
s1,...,sL

Bs1 . . . BsL |s1, . . . , sL⟩. (1.29)

Here, we deduce, from the property V†V = I, that the B-matrices are right-normalized

(hence it is called the right-canonical MPS)

∑
si

Bsi(Bsi)† = I. (1.30)

The procedure of the iterative SVD from the right is illustrated in Fig 1.7(b).
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(c) Mixed-canonical MPS. We can also start from both ends and perform the SVD

down to the site l, ending up with a mixed-canonical MPS illustrated in Fig 1.7(c).

We perform SVD from the left up to the site l, ending up with

cs1,...,sL = ∑
al

(As1 . . . Asl)al Sal ,al(V)†
al ,(sl+1,...,sL)

. (1.31)

Reshaping V† and performing successive SVD from the right, we obtain

(V)†
al ,(sl+1,...,sL)

= ∑
al+1,...,aL−1

Bsl+1
al ,al+1 . . . BsL

aL−1 . (1.32)

All A-matrices are left-normalized while all B-matrices are right-normalized. We hence

end up with a decomposition

cs1,...,sL = As1 . . . Asl SBsl+1 . . . BsL , (1.33)

with singular values on the bond (l, l + 1) as illustrated in Fig 1.7 (c).

The mixed-canonical MPS also gives us the Schmidt decomposition of an MPS into

parts A and B automatically. Introducing the (normalized) vectors

|al⟩A = ∑
s1,...,sl

(As1 . . . Asl)1,al |s1, . . . , sl⟩, (1.34)

|al⟩B = ∑
sl+1,...,sL

(Bsl+1 . . . BsL)al ,1|sl+1, . . . , sL⟩, (1.35)

then we see the Schmidt decomposition of an MPS more explicitly (write sa = Sa,a)

|ψ⟩ = ∑
al

sal |al⟩A|al⟩B. (1.36)

The states on A and B are orthonormal respectively. Thus, the mixed-canonical MPS

(with gauge center at site l) gives us Schmidt decomposition by construction.
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One particular advantage of the bipartition structure of the Schmidt decompo-

sition by the mixed-canonical MPS is that we can calculate n-th order Renyi entropy

rather easily in this form of MPS. In fact, the sum of individual singular values sa raised

to the 2n-th gives us the n-th order Renyi entropy easily. To see this, we note that, first

of all, the reduced density matrix of a mixed-canonical MPS for left part A of the system

is

ρA = TrB(ρ) = ∑
al

∑
al′

TrB(sal sal′ |al⟩A|al⟩B A⟨al′ | B⟨al′ |)

= ∑
al

∑
al′

sal sal′ |al⟩A A⟨al′ | δal ,al′ = ∑
al

s2
al
|al⟩A A⟨al′ | , (1.37)

where we trace out the right partition B via TrB(|al⟩B B⟨al′ |) = δal ,al′ via the orthonor-

mality of the set of basis |al⟩B. For n-th order Renyi entropy, we can then make use of

the orthonormal property of |al⟩A to compute ρn
A easily and this will give us

S(n)
A (ρA) =

1
1 − n

log(TrA(ρ
n
A))

=
1

1 − n
log

 ∑
al1

,...,aln

TrA(sal1
. . . saln

|al1⟩A A⟨al1

∣∣ . . . |aln⟩A A⟨aln |)

 .

The trace will gives use many kronecker delta’s owing to orthonormality of the basis

{|al⟩A}, enforcing al1 = · · · = aln , and will then give us this nice final expressions

S(n)
A (ρA) =

1
1 − n

log

(
∑
al

s2n
al

)
. (1.38)

Thus, once we cast the MPS into a mixed-canonical form, we can obtain the n-th order

bipartite Renyi entropy easily via Eqn 1.38 above.

We note that while Eqn 1.38 is useful to obtain the regular Renyi entropy from ρA

without computing the reduced density matrix ρA explicitly, computing the symmetry-

resolved Renyi entropy in Sec 1.4 from ρA,Q is not that straightforward. To date, the
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author is only aware of the method to compute entropy from ρA,Q via ’brute-force’

approach of obtaining ρA,Q directly rather than extracting the singular values of the

mixed-canonical MPS. In Chapter 3, the normal entropy from ρA is calculated via the

simple SVD approach above after casting MPS into the mixed-canonical form, while

the symmetry-resolved version is computationally more expensive and requires one

to obtain ρA explicitly and perform the projection numerically before extracting the

symmetry-resolved Renyi entropy.

1.5.3 Time-Evolving Block Decimation

We end our discussion on the tensor network algorithm with a discussion on the nu-

merical method used to perform real time evolution of the Hamiltonian. For illustrative

purposes, let us consider the one-dimensional spin-1
2 Heisenberg Hamiltonian1

H =
L−1

∑
j=1

hj,j+1 =
L−1

∑
j=1

Sx
j Sx

j+1 + Sy
j Sy

j+1 + Sz
j Sz

j+1. (1.39)

The exact real-time unitary evolution is given by

Uexact(δ) = e−iδH. (1.40)

If we represent this as a tensor without breaking this down into smaller tensor

blocks, we will end up with a tensor with L incoming legs and L outgoing legs, and

the unitary matrix itself will scale exponentially as dL × dL. We clearly need to break

this down for large system size L beyond the reach of the exact diagonalization method

(capable for size up to L ∼ 16) and perform trotterized time evolution to avoid pro-

hibitive exponential scaling.

1Other Hamiltonians involving summation of both one- and three-body terms Hamiltonian can be
adapted accordingly.
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FIGURE 1.8: (a) First order TEBD, and (b) Second order TEBD, for Hamil-
tonians with 2 qubits gates. 3 qubits gates can be generalized accordingly
by having 3 sets of gates instead, labelling set 1 {3j − 2, 3j − 1, 3j}, set 2
{3j − 1, 3j, 3j + 1}, and set 3 {3j, 3j + 1, 3j + 2}, instead of odd {2j − 1, 2j}

and even {2j, 2j + 1} sets for 2 qubits gates.

Instead, we will introduce the Time-Evolving Block Decimation (TEBD) method.

Roughly speaking, we will break down the exact unitary real-time evolution operator

Uexact into smaller, trotterized blocks of unitary real-time evolution operators consisting

of individual hj,j+1 terms in the Hamiltonian H.

For Hamiltonian with 2-qubits gates, we break down the Hamiltonian sum into

its odd and even parts

Heven = ∑
j even

hj,j+1, (1.41)

Hodd = ∑
j odd

hj,j+1, (1.42)

H = Hodd + Heven. (1.43)
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From the Baker–Campbell–Hausdorff (BCH) formula

eZ = eXeY,

Z = X + Y +
1
2
[X, Y] +

1
12

[X, [X, Y]]− 1
12

[Y, [X, Y]] + . . . ,

we can approximate the exact unitary as

Uexact(δ) = e−iδH

≈ e−iδHevene−iδHodde−iδ2[Heven,Hodd]

≈ e−iδHevene−iδHodd ≡ UTEBD1(δ). (1.44)

Both e−iδHeven and e−iδHodd are easy to evaluate, since all terms within each summation

now commute with each other. We note that, for instance,

e−iδHodd = e−iδ ∑j odd hj,j+1 = ∏
j odd

e−iδhj,j+1 .

Therefore, the first order TEBD is given by the form below and is represented diagra-

matically in Fig 1.8 (a),

UTEBD1(δ) = ∏
j even

e−iδhj,j+1 ∏
j odd

e−iδhj,j+1 . (1.45)

The order of error, for small δ, is Uexact(δ) = UTEBD1(δ) +O(δ2) (due to the approxima-

tion e−iδ2[Heven,Hodd] ≈ I − iδ2[Heven, Hodd]). Consider a long time interval T, which we

divide into T
δ smaller intervals. In this case, the error accumulates to T

δ O(δ2) = O(δ).

The error for long time interval T using the TEBD scheme in Fig 1.8 is thus of first order

(and hence its name).

A better way to perform the trotterization is to decompose the trotterization sym-

metrically as illustrated in Fig 1.8 (b). In that case, we introduce the second order TEBD
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of the form

UTEBD2(δ) = ∏
j odd

e−i δ
2 hj,j+1 ∏

j even
e−iδhj,j+1 ∏

j odd
e−i δ

2 hj,j+1 , (1.46)

which has the third-order error per step

Uexact(δ) = UTEBD2(δ) +O(δ3), (1.47)

and hence error rate of second order in longer time intervals (hence its name). This

is the trotterization scheme we will use in Chapter 3, suitably readapted to include

trotterization with one- and three-qubits gates.

FIGURE 1.9: The process of applying a trotterized 2 qubits unitary gate
as tensor onto the 2 qubits sites of an MPS. The 2 qubits gate in general
multiply a particular bond by its rank k (for 2 qubits gate, the maximum
rank k is 4) when applied exactly without any truncation. We then perform
SVD and truncate the extra singular values so that the bond dimension
of the particular MPS bond grows to D2 instead, and finally absorbs the
diagonal S tensor into the 2 tensor sites of the MPS via multiplication and

redefinition.

One final remark is in order to explain how each small TEBD block works in

the tensor network algorithm. The inner working of each small TEBD block on the

qubits/sites acted upon is summarized pictorially in Fig 1.9. In this case, any 2-qubits

gate comes with it the rank k of the gate, where k can range from 2 to 4 at most in the

case of 2-qubits gates. The famous example of the unitary 2-qubits gate from the kicked

Ising model is of rank 2, since e−iδZiZi+1 can be expanded to only include identity I and

ZiZi+1. The spin-1
2 Heisenberg model example we have in Eqn 1.5.3, however, saturates

the maximum rank k that a 2-qubits gates can multiply onto the bond dimension link-

ing the 2-qubits of interest. In each small TEBD sub-step, we will trotterize the bond
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dimension after SVD as illustrated in Fig 1.9 above. This will be used extensively to

perform time evolution for the quench problem in Chapter 3.
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Chapter 2

Measurement Induced Chirality:

Diffusion and Disorder

2.1 Introduction

The development of engineering novel quantum systems by applying periodic (Flo-

quet) driving has produced quantum phases without a static analog [29–37]. A promi-

nent example is the anomalous Floquet topological insulator [33–36], where a chiral

edge state emerges alongside completely trivial bulk bands, in stark contrast to stan-

dard topological insulators. The idea behind this phase is to break time reversal sym-

metry by sequentially modulating particle hopping on a lattice; this stirs the particles

in such a way that their trajectories in the bulk trace out closed loops, whilst on the

edge chiral states emerge [29]. Such dynamics has been realized experimentally in, for

example, cold atom systems [38, 39], while theoretically these ideas have recently been

extended to interacting systems where an even more diverse class of topological phases

emerges [35, 40–42].

On the other hand, the interplay between measurements and unitary time evolu-

tion in quantum many-body systems has received renewed interest in recent years [1,

43–71]. This is, in part, due to developments on phase transitions in the entanglement
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entropy of random unitary circuits with measurements (see [62] and references therein)

as well as on the utility of measurements to induce non-trivial dynamics and to prepare

quantum states [1, 72–76].

In [1], it was shown that periodic sequences of measurements may be used to in-

duce chiral edge charge transport alongside trivial bulk dynamics in a way much anal-

ogous to anomalous Floquet insulators. The general intuition behind this procedure is

to use measurements to control the effective particle hopping on a lattice. This may be

seen most clearly in the limit of rapid measurements, the quantum Zeno limit, where

dynamics is frozen within monitored sections of the lattice and hopping is eliminated

between monitored and un-monitored sections of the lattice. This measurement-based

control of the particle hopping may then be leveraged to recreate the periodic modu-

lation of hopping amplitudes used to induce anomalous Floquet insulators. However,

the measurement-based scheme also exhibits distinct features due to the non-unitary

nature of the evolution.

In this work, we continue an investigation of the measurement-induced chiral-

ity protocol [1] by looking at the following aspects. (1) The diffusive dynamics of the

measurement-induced chiral systems when the system is tuned away from the ’per-

fect swapping’ limit and away from the Zeno measurement limit, and (2) the effects

of various kinds of disorder on the measurement-induced chiral flow rate in our free

fermion systems hopping on a Lieb lattice. In particular, we consider chiral flow in the

case of site vacancy disorder, random hopping strength, and random onsite potential,

both in and out of the Zeno measurement limit, and diffusive dynamics for the case

of random onsite potential. Indeed, an important characterization of systems exhibit-

ing chiral physics is their response to disorder, as have been long studied in, e.g. the

context of the quantum Hall effect [77, 78], where relations to percolation physics have

been explored. Disorder also plays a crucial role in the anomalous Floquet insulators

mentioned above.
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FIGURE 2.1: The three varieties of disorder considered in this work: a)
Sites are randomly removed from the lattice with probability p. b) Random
on-site potentials are applied to the lattice (the strength of the potential at
each site is represented by the size of the vertex) c) The hopping strength
between adjacent sites is given by a uniform, random distribution (repre-

sented by the size of the edge).

The approach we take in this paper will import techniques developed in [11], in

similar spirit taken in our earlier work [1]. In [11], the competing effects of unitary

evolution and measurements were studied using a closed hierarchy approach. This

technique has also been used, for example, to describe non-equilibrium steady states

of current [11] and density fluctuations (quantum wakes) following a moving particle

detector and other disturbances [79].

The structure of our work is as follows. In section II, we briefly review the mea-

surement protocols and the basic physics behind our earlier work on measurement-

induced chirality [1]. This is followed by studying the diffusive dynamics of the measurement-

induced chirality out of the ’perfect swapping’ parameter and out of Zeno limit in sec-

tion III. After dealing with clean systems, we proceed to study 2 variesties of disorders

in subsequent sections as illustrated in Fig 2.1. In section IV, we deal with site vacancy

disorder for our system in the Zeno limit, as motivated by our system. In particular,

there is a percolation threshold when measurement period is tuned to ’perfect swap-

ping’ case with deterministic walk [80]. In section V, we numerically simulate the effect
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of random hopping strength and random onsite potential on the chiral flow rate in-

duced by measurement, still operating in the Zeno limit, and provided an analytical

mean field treatment to describe the weak disorder limit. In section VI, we investi-

gate numerically the diffusive dynamics and the chiral flow rate for our measurement-

induced chiral system under all three types of disorder (vacancy, random hopping and

random potential) away from the Zeno limit. We present discussions and possible out-

look in section VII.

2.2 Measurement Induced Chirality Protocol

In this section, we briefly review the protocol realizing the measurement induced chi-

rality in [1]. We consider fermions freely hopping on a Lieb lattice, subject to a cycle of

local density measurements as follows.

The measurement cycle in Fig 2.2 consists of 8 steps taking an overall measure-

ment period T. At each step, we take repeated measurements to detect particles through-

out a subset of the lattice, while the system is allowed to evolve freely in between mea-

surements with the nearest neighbour hopping Hamiltonian H = −thop ∑⟨i,j⟩ c†
i cj +

h.c.. We denote the set of sites not being measured at step i by Ai as marked in Fig (2.2)

and enforce periodicity by setting Ai+8 = Ai. Within step i, we carry out the following

steps:

1. Particle densities at all sites in (Ai ∩ Ai−1)
c are measured, i.e., we measure all

other sites in the lattice except the sites circled in each step in Fig 2.2

2. Free evolution under a free hopping Hamiltonian H = −thop ∑⟨rr′⟩ c†
r cr′ + h.c. for

a time τ = T
8n . Here n is an integer describing the measurement frequency.

3. Particle densities at all sites in Ac
i are measured.
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4. Steps 2 and 3 are repeated n times.

FIGURE 2.2: Measurement protocol. Yellow vertices indicate the set of re-
peatedly measured sites, while black sites are the unmeasured, free evolv-
ing set, Ai. The adjacent black vertices trace out a chiral path around a
plaquette in the Lieb lattice. In the Zeno limit with perfect swapping pa-
rameters, particles will trace out the path as shown by the red loops in first

figure.

The overall effect of the measurement protocol has been shown in [1] to exhibit

protected chiral charge flow of the particles, as shown by the red loops in Fig 2.2. The

physical intuition of measuring everywhere in the lattice other than the circled sites is

to restrict (and in the case of rapid Zeno monitoring, freeze entirely) particle motion

elsewhere other than between the circled pairs of sites. This dynamics is reminiscent of

the Anomalous Floquet Topological Insulator [29] in that we selectively switch on cer-

tain links on the lattice where free evolution are allowed to take place, but also presents

differences due to the non-unitary nature of the measurements.

We emphasize that the Lieb lattice was chosen for ease of comparison with the

Floquet insulator dynamics of [29], however the particularities of the band structure

associated with the Lieb lattice (a flat band) are not important since any coherent dy-

namics is quickly disrupted by measurement as we will see in detail. It is only for
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reduced measurement rates that effects from the band structure may begin to emerge.

We also remark that the measurement protocol is not restricted to the Lieb lattice alone.

For a more thorough discussion on the geometric conditions a lattice needs to satisfy

in order to carry out a measurement protocol as above, we refer interested readers to

Appendix C in [1].

In order to study the charge flow, we focus on the dynamics of the two point corre-

lation function G(t)rr′ = Tr
(
ρ(t)c†

r cr′
)

under measurement and unitary time evolution.

The correlation G transforms in a simple way under particle detection measurements

and under non-interacting evolution, respectively (see e.g. [1, 11]):

G → (1 − Pr)G(1 − Pr) + PrGPr, (2.1)

G → UGU†, (2.2)

where Pr = |r⟩ ⟨r| is the projector onto site r where a particle detection measurement is

has been performed, and U = exp(−iHt) is the (single particle) unitary time evolution

between consecutive measurements under the free Hamiltonian H for time t. We stress

that the map (2.1) is the result of averaging over measurement outcomes.

It is informative to consider the limit of many measurements per step (n → ∞),

i.e. the quantum Zeno limit. The signature characteristic of this regime is the freezing

of evolution in the subspace of measured sites while free evolution continues to occur

between unmeasured sites. In other words, the time evolution during the i-th step of

the 8 step measurement cycle may be replaced by evolution under the Hamiltonian

HAi = −thop ∑⟨rr′⟩∈Ai
c†

r cr′ + h.c., (2.3)

where now the evolution is confined to between unmeasured sites within each set Ai.

Another important aspect of the dynamics in the Zeno limit is that in this limit,
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repeated application of Eq. (2.1) under our protocol, kills off-diagonal elements of G

between sites in the set Ai
c, and the switch between measurement of Ai

c to the next

step Ac
i+1 eliminates any lingering off-diagonal correlations that have developed inside

the set Ai during the evolution [1]. Therefore, at the beginning/end of steps we only

need to keep track of the diagonal components Grr. Let us combine these in a vector,

|g(t)⟩, where ⟨r|g(t)⟩ ≡ Grr. Then the effective action of step i in the protocol, including

the unitary evolution and measurements in the Zeno limit, is described by

|g(t)⟩ → R |g(t)⟩ (2.4)

Ri = ⊕⟨r,r′⟩∈Ai

 1 − phop phop

phop 1 − phop

⊕other sites I, (2.5)

i.e. the evolution of the local particle density |gi(t)⟩ in the Zeno case is given by a

periodically driven random walk. The probability for hopping between sites is related

to the period of each measurement step T/8 by the following equation [1]

phop = sin2(
T
8
). (2.6)

Note that when the full measurement period T = 4π(2n + 1), n ∈ Z, we have phop = 1

and the evolution becomes deterministic hopping/walk, a situation we call "perfect

swapping". Similarly, when T = 8πn the evolution is frozen, with phop = 0. We now

summarize the two methods used in [1] to measure the chiral charge transport induced

by the measurement protocol in the system.

In the first method, the charge flow is found numerically by making a cut through

the lattice and measuring the charge flow across it, Fig. 2.3. Namely, the number of

particles flowing across the slice is found by measuring the change in total particle
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number below the cut, i.e. given by

Fsim(t) ≡ ∑
r below slice

(
G(t)rr − G(t = 0)rr

)
. (2.7)

In order to measure the charge flow along a given edge in the system, we fill up all

the sites near that edge with particles and then measure (2.7) while applying the mea-

surement protocol. The filling of half the system with particles must be done since, if

the whole system was filled, opposite edges in the system would exhibit charge trans-

port with equal magnitude but opposite direction, thereby leading to a no net flow of

particles across the cut. The details of how particles are inserted into the bulk of the

system and the specific path of the cut through the lattice do not affect the charge flow

per measurement cycle (beyond transient effects) [1].

FIGURE 2.3: Left: The initial configuration and setup for studying chiral
particle flow for all disorder cases considered (with left half plane filled
with particles in blue). The particle exhibits both downward chiral motion
(black arrow) and diffusive motion which moves the front to the right (blue
arrows). Right: After running the protocol in the half-filled lattice setting,
particles density increases beyond the initial configuration, where lighter

blue indicates lower particle density.

The second method used to measure the chiral particle flow assume rapid mea-

surements and relies on the counting statistics of the transport up or down in the sys-

tem. We introduce a counting field eiθ to each vertical link by modifying the transition
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matrices R3, R4, R7, R8 to

Ri = ⊕⟨r,r′⟩∈Ai

 1 − phop eiθ phop

e−iθ phop 1 − phop

⊕other sites I (2.8)

whenever r, r′ are nearest neighbours on a vertical line such that site r is located above

r′. We will denote the transition matrix (with counting fields) of the full measurement

cycle by

Rcyc(θ) = R8R7R6R5R4R3R2R1 (2.9)

With the counting field present, we can introduce the moment generating func-

tion after N measurement cycles

χN(θ) = ∑rr′ [Rcyc(θ)N]rr′Grr(t = 0) (2.10)

which may be used to calculate the charge transport in the y direction. Namely, the

flow per unit length per measurement cycle (in the long time, N → ∞, limit) is given

by

F = lim
N→∞

1
Ly

1
N

i∂θχN(θ)|θ=0 (2.11)

with Ly the length of the system in the y direction.

In [1], it was shown that the analytical form of the flow in the Zeno limit exhibits

bulk-edge decomposition in the sense that F can be decomposed into a term that is

calculated entirely with bulk operators only and another term that is computed from
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the edge operators alone

F = Fbulk + Fedge. (2.12)

A computation performed in [1] shows the flow Fedge depends on phop via

Fedge = p2
hop + p3

hop + p4
hop. (2.13)

The other flow term Fbulk, on the other hand, depends on phop in a more nontrivial way,

and it is best instead to express Fbulk in the following form in terms of the bulk operators

Fbulk = i ∑
αβ

[
JB(k)

1
I − RB(k)

∂ky RB(k)
]

αβ

∣∣∣∣∣
k=0

. (2.14)

Here, RB(k) = RB(k, θ = 0) is a bulk transition operator, equivalent to Rcyc(θ) in Eqn

(2.9) except that it comes with periodic boundary conditions instead of open boundary

conditions. In equation (2.14) RB is expressed in k-space. The explicit construction of

RB(k, θ) is delineated in Appendix 2.A as a 6 × 6 matrix in terms of phop, k and the

counting field θ. Here, JB(k) = −i∂θRB(k, θ)|θ=0. From the expressions of JB(k) and

RB(k) (as a nontrivial matrix of phop) one can then compute Fbulk from a given phop as a

sum of the resulting matrix elements. This formalism is summarized rather briefly here

and we refer readers to [1] for a more extensive discussion and proof.

2.3 Measurement induced diffusion

In [1] (as reviewed in Sec. 2.2), the focus was on the emergence of the protected, chi-

ral transport near the edge of the system. However, it is worth analyzing further the

dynamics in the bulk.

One reason is that the bulk dynamics sets the time scale over which the chiral edge

transport is sustained. To see this, take for example the initial particle configuration



2.3. Measurement induced diffusion 39

described in Fig. 2.3. Note that if any of the holes initially located in the right half plane

of the lattice reach the left boundary of the system at some time during the evolution,

then the hole may be transported along the edge in place of a particle. This would then

alter (namely, reduce) the edge flow. Hence, the time scale over which the flow F is

robust is set by the length of time it takes for holes initially in the bulk to reach the

boundary. In this section, we study the diffusive behavior of bulk particles (and holes).

We calculate the diffusion coefficient analytically in the Zeno limit of our measurement

protocol and find it numerically for finite measurement frequencies.

Another reason to take a closer look at the dynamics in the bulk, is that it acts as a

further probe of the interplay between the chirality of the measurement scheme and the

stochastic behavior induced from the random measurement outcomes. The juxtaposi-

tion of these two effects was particularly clear when analyzing the edge dynamics. For

example, working in the Zeno limit, consider replacing the chiral stochastic evolution

Rcyc (2.9), by evolving with a randomized protocol, where in each step of the 8-steps

protocol we randomly pick Ri and average over all possible outcomes. This situation

is described by the averaged cycle Rcyc = R1+R2+R3+R4+R5+R6+R7+R8
8 . In this case, the

random walk exhibits diffusive dynamics even in the perfect swapping case, in sharp

contrast with the chiral protocol Fig 2.6. It is truly the chiral nature of the drive that

then is responsible for the ballistic transport along the edge. In the bulk of the sys-

tem, transport is diffusive as it would be without the introduction of chirality into the

drive, but nonetheless the chirality does still play a role leading to different diffusion

constants.

A clarifying comment is in order about different origins of the diffusive dynam-

ics in the system. Namely, there are two distinct ways to induce diffusion discussed in

this paper: through the measurements (via the tuning of the length of each measure-

ment step away from perfect swapping or by reducing measurement frequency) which

occurs already in the clean system, and through the addition of disorder (e.g. on-site
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FIGURE 2.4: A finite droplet on 51 × 51 Lieb lattice is allowed to evolve
under quantum Zeno measurement and unitary evolution. The droplet
configuration for phop = 0.6 exhibits both outward diffusion and clockwise
chiral edge transport while the droplet for phop = 1 exhibits clockwise
chiral edge motion only. The droplet setup is employed for all calculations

and simulations on the diffusion constant.

potential or hopping strength disorder). In this Section, we focus on the former, leaving

a discussion of disorder-induced diffusion to Sections 2.5 and 2.6.

Transport in a system is defined as diffusive when the average squared displace-

ment from the center of mass is linear in time, i.e.

⟨∆r2(t)⟩ = Dt, (2.15)

where D is the diffusion constant. In our case, starting with Grr(t = 0) = δrr′δr,0, we

have

⟨∆r2(t = NT)⟩ ≡ ∑r(r−rmean(t=NT))2Grr(t=NT)
∑r Grr(t=NT) ,

rmean(t = NT) ≡ ∑r rGrr(t=NT)
∑r Grr(t=NT) ,

D = limN→∞
⟨∆r2(t=NT)⟩−⟨∆r2(t=0)⟩

NT . (2.16)

Numerical results for the diffusion constant are shown in Fig. 2.5, for both Zeno limit

and finite measurement frequencies.
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As one reduces the measurement frequency per measurement step away from

the Zeno limit, the diffusion constant increases. The feature where diffusion transport

is suppressed (or absent in the Zeno limit) at T = 4πn, n ∈ Z+ becomes less pro-

nounced in low frequency limit, and eventually the diffusive transport will become

ballistic without any measurement.

In the Zeno limit, the absence of diffusion at T = 4πn, n ∈ Z+ can be attributed

either to the perfect swapping case where n ∈ odd, or the zero hopping case where

n ∈ even by inspecting Eqn 2.6, with phop = sin2(T
8 ) (setting thop = 1). We note that the

Zeno limit diffusion constant curve exhibits 8π periodicity.

FIGURE 2.5: The diffusion constant in a measurement induced chiral Lieb
lattice as a function of the period of measurement cycle T up until T = 16π,
where in the Zeno limit the diffusion constant is periodic with 8π. Various

measurement frequencies per measurement step, f , is shown.

We can extract the diffusion constant both analytically and numerically in the

Zeno limit. Numerically, we calculate the diffusion constant on a finite lattice using

Eqn 2.16 for intermediate time scale before the particle distribution hits the boundary
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by having nonzero Grr(t) > 0 for boundary sites r. Analytically, we consider a trans-

lationally invariant system with setup considered in Appendix 2.A, placing a single

particle at the position 1 of the unit cell at origin and performing the calculation in

momentum space with the formula (see derivation in Appendix 2.A)

D = lim
N→∞

1
8N

[
6

∑
µ=1

[−∇2
kRN

B (k)|k=0]µ,1

+

[
6

∑
µ=1

[∂kx RN
B (k)|k=0]µ,1

]2

+

[
6

∑
µ=1

[∂ky RN
B (k)|k=0]µ,1

]2
 (2.17)

where RB = R8R7R6R5R4R3R2R1 is the 6 × 6 transition matrix in Eq 2.5 written in

k-space (see Appendix 2.A for explicit form of Ri(k)) by making use of translational

invariance. We see that the analytical and numerical result agree well as shown in

Figure 2.6.

FIGURE 2.6: The diffusion constant as a function of hopping probability
for measurement induced chirality in clean system, in the Zeno limit. The
averaged randomized quantum Zeno measurement protocol is shown in

the blue line.

Identifying the diffusion coefficient, is also helpful for the numerical calculation

of the edge flow we discuss in the next section. Indeed, to correctly extract the late time
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FIGURE 2.7: Left: Mean flow per cycle in the perfect swapping case phop =
1 plotted as a function of probability of site vacancy in the lattice pα for
various linear system sizes Lx (see Fig 2.3) over 1000 disorder realizations.
Middle: The fluctuations of the mean flow per cycle across 1000 disorder
realizations for various system sizes with peak around pc ≈ 0.26. Right:
The scaling collapse with the functional form ⟨F⟩ = f ((pα − pc)L1/ν),

where pc ≈ 0.26 and ν ≈ 1.35.

dynamics of the measurement induced chiral flow, one wants to estimate the maximum

time scale tmax for which the chiral flow counts mostly only the flow travelling to the

lower half of the Lieb lattice setup in Figure 2.3 before the transverse spreading from

diffusion hits the right boundary of the Lieb lattice in Figure 2.3. This is done to exclude

finite size lattice boundary effects on the numerical counting of the chiral flow. By tak-

ing into account the transverse diffusive transport, we can extract the late time chiral

transport for different system sizes while taking into account finite size effect system-

atically. We discuss how we extract the late time mean flow per cycle for the rest of the

paper in appendix 2.B.

2.4 Site dilution and Percolation Threshold

In [1], the measurement induced chiral charge transport along the edge of the system

was shown to be protected against edge perturbations in analogy with the protected

edge flow induced in anomalous Floquet insulators. In order to investigate further the

nature of the measurement-induced protection, we now turn to consider the effects of
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several different varieties of disorder on the chiral flow. Furthermore, these considera-

tions of disorder will also be useful for gaining insight into the effects of imperfections

that may occur in real experimental implementations of the measurement protocol.

The first kind of disorder we consider is site vacancy disorder. Namely, as shown

in Fig. 2.1a, we consider a situation where there is a probability pα for each site on the

Lieb lattice to be vacant, i.e. where particles are prohibited from hopping to or from

the vacant sites. The locations of the vacant sites then stays constant throughout the

measurement protocol.

In this section, we will only consider the quantum Zeno limit and postpone re-

sults away from the Zeno limit until section 2.6. In this case, there are 2 different scenar-

ios: (1) the perfect swapping case (phop = 1) where we will see that the dynamics is en-

tirely determined by geometric considerations with the flow set by the site percolation

threshold pc of the Lieb lattice, and (2) cases away from perfect swapping (phop < 1)

where both the stochastic nature of the dynamics and site percolation effects play a role.

2.4.1 Perfect swapping Case: Percolation Threshold

With phop = 1, the dynamics is deterministic, with particles moving in a chiral fashion

along edges while performing localized trajectories in the bulk. Importantly, the chiral

flow in this case is robust against geometric deformations as shown in our previous

work [1]. Therefore the flow across the system given a specific disorder realization is

simply determined by whether a percolating cluster can be formed, and the disorder

average flow should exhibit a percolation threshold as function of the local vacancy

probability pα. We numerically study the mean chiral flow per cycle as a function of

the site vacancy probability pα averaged over disorder realizations in the perfect swap-

ping case. We denote chiral flow as F and mean chiral flow averaged over disorder

realizations as ⟨F⟩.
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In Fig 2.7(a), we set the linear system site to take values L = 25, 33, 41. We observe

that at low disorder, the mean flow per cycle ⟨F⟩ is close to unity. Increasing the prob-

ability of site vacancy eventually causes the flow to drop sharply to zero chiral flow,

with a sharper percolation threshold expected as we increase L.

The disorder averaged ⟨F⟩ at different linear lattice sizes intersect around pc ≈

0.26 in Fig 2.7(a), roughly matching the peak fluctuations (standard deviation) in the

chiral flow across disorder realization in Fig 2.7(b). To understand the critical properties

of the flow near percolation threshold in the perfect swapping case, we note that since

F determines whether a percolating cluster exists in a given disorder configuration,

having the values 1 (if percolating cluster exists) or 0 (if no percolating cluster exists).

When taken as an average over different disorder configurations, ⟨F(pα, phop = 1)⟩

then gives the probability that a percolating cluster exists.

The percolation threshold pc we obtained matches with the earlier result on 2D

site percolation in Lieb lattice in an earlier work [80], but there we should interpret the

result by mapping pα → 1 − p as we starts with a filled Lieb lattice and adding in site

vacancy when tuning up pα, while [80] starts with empty Lieb lattice and gradually

filling the lattice sites.

Given that disorder averaged ⟨F⟩ gives the probability that a concentration pα

gives a percolating cluster, according to the classic percolation theory [81], we then ex-

pect such quantity to exhibit finite size ansatz of the form ⟨F⟩ = f ((pα − pc)L1/ν) to

describe the percolation threshold around pc ≈ 0.26. We find that the critical expo-

nent obtained is around ν ≈ 1.35, which roughly coincide with the 2D site percolating

Lieb lattice result in [80]. The fluctuations of the mean chiral flow across disorder re-

alizations also peak around the percolation threshold pc ∼ 0.26, and the size of peak

increasing with system length L as shown in the middle panel in Fig 2.7.
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2.4.2 Away from Perfect swapping: Crossover

Away from the perfect swapping case, the flow ceases to be robust over a finite range

of disorder and drops as soon as we introduce site dilution, as shown in Figure 2.8 (a)

and (b). The sharp transition feature we have observed in the perfect swapping case

is therefore specific to the perfect swapping case, where we have deterministic walks

rather than random walk for the case of finite hopping probability phop < 1, where now

both random walks and site percolation affect the chiral flow rate in our study.

FIGURE 2.8: (a) Mean flow per cycle for phop = 0.8 and (b) for phop = 0.95,
averaged over 1000 disorder configurations, (c) Fluctuations (standard de-
viation) of the mean flow per cycle for phop = 0.8 and (d) for phop = 0.95
over across 1000 disorder realizations for various system sizes L. Note that
in contrast to the phop = 1 case, the fluctuation decreases as a function of
system sizes, signifying a crossover. phop < 0.8 has similar qualitative fea-
tures for the mean flow per cycle curve as that of phop = 0.8 and a less

pronounced fluctuation.

Another distinction with the perfect swapping case can be seen from the fluctua-

tions in the chiral flow rate across disorder realizations as shown in Figure 2.8 (c) and

(d). In contrast with the perfect swapping case (where fluctuation of the flow increases
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with system size), the fluctuation of the flow decreases as we increase the system size.

The averaged flow across disorder no longer exhibits sharp percolating threshold, un-

like the perfect swapping case.

The physical reason for the difference is that the flow is a quantity that is af-

fected by both the hopping probability and site vacancy, and in the case of random

walk phop < 1 both factors affect the late time chiral flow per cycle, obscuring contri-

butions from site vacancy (geometric percolation) alone. This is not an issue for perfect

swapping case, where the only factor affecting the flow is geometrical. Finally, we

present a contour plot of the mean chiral flow per cycle across disorder realizations

with 2 parameters of interest here in Figure 2.9: the hopping probability phop and the

probability of blockade disorder pα.

FIGURE 2.9: 2D plot of the mean chiral flow per cycle for site vacancy
for a 33 × 33 Lieb lattice, averaged over 1000 disorder realizations. The
horizontal axis represents hopping probability phop and the vertical axis
is the probability of vacancy in the lattice pα. The percolation transition

happens on the line phop = 1.

A comment is in order for stochastic random walks on lattice with site vacancies.
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In [82], particle diffusion was studied in the context of site percolation. When no per-

colating cluster can be formed (in our convention, pα > pc), the mean square spreading

⟨r2⟩ = const in late time dynamics for a particle undergoing diffusive behaviour. In an-

other limit when percolating cluster can always be formed (pα < pc), we have normal

diffusive behaviour ⟨r2⟩ = Dt in late time. However, interesting anomalous diffusive

behaviour occurs right at pα = pc according to [81, 82], where ⟨r2⟩ ∝ t2/3. While we

have not investigated diffusive transport for the case of site vacancy disorder, this will

constitute an interesting point to investigate.

2.5 Lattice Distortion and Onsite Potential disorder

We next investigate two additional models of disorder. Namely, we consider the case

where the hopping parameter strength between sites is disordered and the case where

a random on-site potential is applied to each site (represented in Figs. 2.1c and 2.1b

respectively with explicit details for each model below). We will again restrict ourselves

to the Zeno limit, leaving results on the effects of disorder away from the Zeno limit to

Section 2.6.

The first model we consider is the application of the measurement protocol to a

Lieb lattice with the random hopping Hamiltonian

H = − ∑
⟨rr′⟩

trr′a†
r ar′ , (2.18)

where trr′ is now a random variable drawn from the uniform random distribution

[−δt + 1, δt + 1], i.e. we set the mean of ⟨trr′⟩ = 1 with disorder strength δt, which

we allow to be at max |δt| ≤ 1. Hopping disorder is associated with random lattice dis-

tortion, with distances between lattice sites randomly lengthened or shortened, leading

to an alteration in the hopping integral thop between sites.
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In the Zeno limit, we calculate the transition matrix Ri which characterizes the

evolution for the ith step of the measurement protocol with the random hopping disor-

der, replacing Eq. (2.5) with

Ri = ⊕⟨r,r′⟩∈Ai

 1 − phop,rr′ phop,rr′

phop,rr′ 1 − phop,rr′

⊕other sites I (2.19)

and the hopping probability depends on trr′ via

phop,rr′ = sin2(
trr′T

8
).

In other words, the random hopping Hamiltonian translates to a periodic random walk

where different links have different hopping probabilities.

The second disorder model we study in this section is a random on-site potential.

We note that it was shown in [33] that this variety of disorder, when added to the

Floquet model of Rudner et. al. [29], may prevent bulk diffusion (due to Anderson

localization) while still preserving protected edge transport. Such a system is referred

to as an anomalous Floquet-Anderson Insulator.

We note that, in the measurement-induced model, the diffusive behavior in the

bulk is expected even when a disordered potential is present. This occurs even if the

disorder is sufficient to result in Anderson localization in the absence of measurements.

Indeed, Anderson localization is a wave effect that emerges due to interference within

a single particle wave function as it moves through a random potential. The projec-

tive measurements rapidly collapse the wave function to single sites within the lattice,

thus no interference is possible ruining Anderson localization (as long as the distance

between measured sites is smaller than the expected localization length). We note,

however, that Anderson localization physics may still play a role in the limit where the

measurements are temporally and spatially sparse enough [72].
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FIGURE 2.10: (a) The mean Flow per cycle for the case of random hopping
strength δt and (b) The mean Flow per cycle for the case of random poten-
tial δW. Here the line represents numerical simulation taken on a 33 × 33
Lieb lattice averaged over 1000 disorder realization, and is compared to

the mean field result (dot) outlined in the main text.

In this section, we analyze in detail the effect of the disorder on the diffusion

constant as well as its effect on the chiral edge flow. We also present a mean-field type

argument which approximately captures these effects.

The Hamiltonian for the case with random on-site potential takes the form

H = −thop ∑
⟨rr′⟩

a†
r ar′ + ∑

r
Wra†

r ar, (2.20)

where Wr is sampled from the random uniform distribution Wr ∈ [−δW, δW]. We set
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FIGURE 2.11: The mean diffusion constant as a function of the strength of
disorder potential for system with random onsite potential averaged over
1000 disorder realizations in the Zeno limit. Here T = 4π corresponds
the perfect swapping case in the clean limit without any diffusion. The
mean diffusion constant from the crude mean field treatment agrees with

the numerical simulations for weak disorder.

thop = 1 and T = 4π in our numerical results below, while we keep the variable thop

and T in the our expression of the random stochastic transition matrix below (Eqn 2.21).

The random stochastic transfer matrix describing two neighboring unmeasured sites r

and r′ is (surrounded by measured sites and in the Zeno limit) takes the form with Ri

from Eqn 2.19 with phop,rr′ taking the form below instead (for derivation see Appendix

2.C)

phop,rr′ =
2t2

hop(1 − cos
(

T
8

√
4t2

hop + (Wr − Wr′)2
)
)

4t2
hop + (Wr − Wr′)2

. (2.21)

Let us unpack Eq 2.21. For low disorder, the typical chemical potential difference be-

tween adjacent lattice sites is small and the model is close to the mean hopping prob-

ability phop determined by T. As disorder strength increases, the denominator grows

while the numerator stays bounded by the cosine function, leading to the hopping

probability to zero (thereby freezing the dynamics) due to huge potential difference.
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FIGURE 2.12: Comparison between flow per cycle for the case of (a) site
vacancy, (b) random hopping strength, and (c) disordered potential. The
comparisons are made across different measurement frequencies against
the Zeno limit case and in all cases the lattice size is 33 × 33 and averaged

across 1000 disorder realizations.

Let us interpret the numerical results on the mean chiral flow per cycle and diffu-

sion constant for the case of random onsite potential as shown in Fig 2.10 (b) and 2.11

respectively. In the intermediate disorder strength, we have an interesting situation

where chirality is partially suppressed but diffusion transport proliferates as shown in

Fig 2.10 and 2.11 respectively. This can be understood in that in the intermediate dis-

order strength we have a random bond model where many links takes intermediate

hopping probability 0 < phop,rr′ < 1. In the intermediate disorder case with random

walk, diffusion is more pronounced than in the case close to perfect swapping (with

deterministic walk) or freezing (with phop ≈ 0). In the strong disorder case, we again

have strong localization in both the measurement induced chiral transport and diffu-

sive transport.

In the limit of weak disorder, we can estimate the flow by computing the spatial

average of phop,rr′ at different links and using the resulting spatially averaged p̄hop as

the effective hopping probability in Eqn (2.12) to compute the flow transport in a trans-

lationally invariant system to get the effective flow. In this sense, we call this approach

the ’mean-field’ approach, where we replace a disordered model with inhomogeneous

hopping probability phop,rr′ at different links with homogeneous p̄hop over all links, and
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treat it as if it has translational invariance. The inhomogeneity in the hopping probabil-

ity at different links in a disordered model can be caused by random hopping strength

or random onsite potential.

For the case of random hopping, the effective hopping p̄hop is given by averaging

p̄hop(δt, thop) =
∫ thop+δt

thop−δt
dtrr′ sin

(
trr′T

8

)
. (2.22)

We compute F using the translational invariant formula Eqn (2.12) using p̄hop for vari-

ous δt and compare with direct numerical simulations in Fig 2.10 (a). As expected, the

agreement goes well for small and intermediate δt ∼ 0.3 relative to thop = 1 before

deviation occurs for larger δt.

In the presence of potential disorder, the average hopping probability as function

of disorder strength δW and hopping thop is

p̄hop(δW, thop) =
1

4δW2

∫ δW

−δW

∫ δW

−δW
dWrdWr′ ×

2t2
hop(1 − cos

(
T
8

√
4t2

hop + (Wr − Wr′)2
)
)

4t2
hop + (Wr − Wr′)2

. (2.23)

In Fig. 2.10(b) we show the effective ’mean-field’ result vs numerical simulations of

the disordered system, and similarly find good agreement at weak disorder. Note that

both numerically and mean field approximation show that large disorder leads to an

effective suppression of flow.

We also performed the ’mean-field’ approach to evaluate the diffusion constant

for the case of random onsite potential in Fig 2.11. In this case, the diffusion constant

for the mean-field approach agrees with numerical simulation for weak disorder, but

is not as tight for intermediate disorder compared to its use in for estimating the flow

2.10. It is interesting to note that the maximal diffusion coefficient coincides with the

region where the drop in chiral flow as function of disorder strength is the steepest.
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We emphasize that the actual flow depends in a complicated nonlinear way on

the particular disorder realization, therefore we can only expect the above approach to

work in the weak disorder limit, where fluctuations in phop,rr′ are small.

In the next section we turn to consider all variety of disorders considered in this

paper away from the Zeno limit in the next section.

2.6 Numerical Results Away from Zeno Limit

We now investigate the effect of relaxing the Zeno limit assumption on our measure-

ment protocol in the chiral flow transport in various disordered systems we previously

simulated. In Figure 2.12, we study the cases of site vacancy, random hopping strength

and random onsite potential against finite measurement frequencies of 16, 32, 64, and

128 measurements per measurement step (8 measurement steps make up a measure-

ment cycle in our protocol).

Intuitively, the overall effect of reducing measurement frequency will tend to re-

duce the amount of chiral flow transport in our systems, as shown in Fig 2.12. In Figure

2.12 (a), we study site vacancy disorder where we set T = 4π, which in the Zeno limit

corresponds to perfect swapping. The robustness of the chiral flow to low disorder in

the Zeno limit disappears as soon as we tune the measurement frequency away from

the Zeno limit and the chiral flow starts decreasing as soon as we introduce disorder.

The same feature of the lack of robustness against (global) minute disorder are also seen

with the random hopping strength in Fig 2.12 (b) and random onsite potential in Fig

2.12 (c).

Nonetheless, we would like to note the interesting case of random onsite potential

in Fig 2.12(c). Near the clean limit, we expect that lowering the measurement frequency

will lower the chiral flow. Meanwhile, strong disorder limit suppresses both diffusive
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and chiral transport in our half-filled system. In a finite window of intermediate onsite

disorder strength, however, decreasing the measurement frequency actually enhances

the chiral flow. However, whether this effect is an artifact of finite size/time effect, or a

genuine non-trivial effect arising from the interplay between chiral flow and diffusive

spreading, is currently unknown and this is a possible avenue for future work.

FIGURE 2.13: Diffusion constant for various measurement frequencies
(and the previous Zeno limit result in 2.11) as a function of disorder poten-
tial strength δW, simulated with T = 4π over 1000 disorder realizations.

Finally, we turn our attention to diffusive dynamics, specializing in the case of

diffusion constant of the measurement-induced chiral system under random onsite po-

tential away from the Zeno limit. The diffusion constant generally increases as the

measurement frequency is decreased away from the Zeno limit, which aligns with the

intuition that away from the Zeno limit particle dynamics in our measurement protocol

becomes more diffusive. The result is presented in Fig 2.13, where we fix T = 4π for all

measurement frequencies.
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2.7 Discussions and Outlook

In this work we presented a systematic investigation on the diffusive dynamics and the

effect of disorder on measurement-induced chirality exhibited by free fermions under

various disorder types. In particular, there is a putative percolation transition-like be-

havior exhibited by the mean chiral flow of the particles in site blockade disorder in

the disorder limit. It is also noteworthy that our measurement protocol in general is

reliably robust to the introduction to global disorder, with mean chiral flow rate de-

creasing significantly only when disorder strengths are significant. Finally, we also

provided various analytical mean field picture to describe the random hopping and

random onsite potential cases and the agreement holds up to significant disorder.

It is an interesting question whether the behavior we find persists if the disorder

were time dependent. In standard quantum systems, a time-dependent disorder is fun-

damentally different from a quenched disorder (e.g. Anderson localization is absent in

the dynamic case [83]). Because of the time-dependent protocol used for measurement-

induced chirality, we speculate that dynamic disorder should result, in the same behav-

ior as the quenched disorder we consider above, at least in the Zeno limit. However,

as the rate of measurement drops, corrections due to coherent behavior and localiza-

tion phenomena may start appearing at intermediate times. The investigation of time

dependent random potentials in the low measurement frequency limit would be an

interesting direction for additional work.

Several comments are in order regarding the relation of our work to recent rel-

evant literature. This work analyzed the average transport and dynamics of densities

over all possible measurement outcomes and averaged over different disorder realiza-

tions. The recent work by Pöpperl et. al. [72] studies particular quantum trajectories

(measurement outcomes) of the particle density profile using wavefunctional approach

(while we used density matrices instead) with different interesting averages for a 1D
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fermion on an Anderson localized chain. [69] also studied free fermions on 1D Ander-

son chain, but has focused primarily on entanglement properties.

We now turn to discuss open problems and possible avenue for future work in

the general direction of measurement-induced chirality. First, it would be interesting

to define an effective "cyclotron frequency" ωe f f ∼ 1/T which is proportional to an

effective magnetic field Be f f for this kind of system. This is inspired by analogy of

our measurement-induced chiral flow to the anomalous Floquet topological insulator

proposed in [29] and would constitute an interesting subproblem to develop the idea

further.

Various interesting investigations can also be further explored on the diffusive

dynamics in for monitored fermions exhibiting measurement-induced chirality. It will

be interesting to investigate to see if statements can be made about how the diffusion

coefficient in the diffusion dynamics from an occupied region to the empty in our setup

can be related to Fick’s law. Another interesting thought to exploration is the question

of describing an effective electrical resistance for our system given the diffusion con-

stants for our system.

Finally, one could also extend the question of measurement-induced transports

to measurement-induced delocalization transitions [72] and other interesting quantum

walk behaviours [84, 85] caused by different types of measurements. The direction of

using measurement to engineer interesting transport and dynamics is a nascent and

new area of research that could potentially lead to more interesting discoveries.
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Appendix

2.A Derivation for the analytical expression for the Dif-

fusion constant

In this Appendix, we derive the expression Eq 2.17 from the definition Eq 2.16 using a

translationally invariant setup in Figure 2.A.1 and working in momentum space. The

setup is shown in Figure 2.A.1.

We define a set of consistent Fourier transformation by using the following con-

ventions

Rcyc(r, µ; r′, ν) =
∫ d2k

(2π)2 RB(k, µ, ν)eik(r−r′) , RB(k, µ, ν)

= ∑
(r−r′)

e−ik(r−r′)Rcyc(r, µ; r′, ν) (2.24)

where V = LxLy. Here, we would like to make two remarks about our convention. (1)

The matrix Rcyc(r, µ; r′, ν) is only dependent on the difference r − r′, by making use of

the translational invariance, hence Eq 2.24. (2) We count distance a little differently than

how one would normally count distance for setup with unit cell decomposition. Nor-

mally, one only keeps track of the distance between different unit cell in the expression

(r − r′) in Eq 2.24. However, as our numerical calculation keeps track of distance be-

tween lattice sites rather than unit cells, we will do likewise for our k-space calculation

for consistency.
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FIGURE 2.A.1: The Lieb lattice is divided into 6 lattice sites per unit cell,
and the set of unmeasured sites in each step is shown as Ai in the Figure.
Here, we note that we count the distance between neighbouring lattice
sites with lattice constant a (conveniently set to 1) rather than counting
that as the inter-unit cell distance in typical systems for consistency with

numerical simulation when computing the diffusion constant D.

For example, the k-space R5(k, θ) and R4(k, θ) are 6 × 6 matrices of the following

form respectively

R5(k, θ) =



1 − p 0 0 0 0 pe−ikx

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

peikx 0 0 0 0 1 − p


, R4(k, θ) =



1 − p peiky eiθ 0 0 0 0

pe−iky e−iθ 1 − p 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and we can construct RB(k, θ) = R8R7R6R5R4R3R2R1 based on this construct of the
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k-space stochastic transition matrices by keeping track of the factors e−ikx whenever the

particle hops to the right and e−iky e−iθ whenever the particle hops upward, and vice

versa for the left and downward hopping elements, and θ is the counting field keeping

track of the vertical flow alone in our setup.

Starting from Eq 2.16, which we reproduce here for convenience,

rmean(t = 8N) ≡ ∑r rGrr(t = 8N)

∑r Grr(t = 8N)
,

⟨∆r2(t = 8N)⟩ ≡ ∑r(r − rmean(t = 8N))2Grr(t = 8N)

∑r Grr(t = 8N)
,

D = lim
N→∞

⟨∆r2(t = 8N)⟩ − ⟨∆r2(t = 0)⟩
8N

(2.25)

For the term ∑r(r − rmean)2Grr(t = 8N) term, we simplify to get

∑
r
(r − rmean)

2Grr(t = 8N) = ∑
r

r2Grr(t = 8N)− r2
mean(t = 8N) (2.26)

We Fourier transform the real space Gr′r′(t = 8N) ≡ (RN
cyc)r′r |gr(t = 0)⟩ accord-

ing to Eq 2.24 in the definition ⟨∆r2⟩. In our current setup, we start with a single particle

with unit density placed on the origin so that ⟨∆r2(t = 0)⟩ = 0, and since there is no

injection and extraction, particle number is conserved and we have ∑r Grr = 1 at all
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times. Focusing on the ∑r r2(RN
cyc)rr′ |gr′(t = 0)⟩ term, we have

∑
r,µ

r2(RN
cyc)(r,µ),(r′,ν) |gr′,ν(t = 0)⟩ = ∑

r,µ
r2(RN

cyc)(r,µ),(0,1) = ∑
r,µ

∫ d2k
(2π)2 r2eikr(RN

B (k))µ,1

= ∑
r,µ

∫ d2k
(2π)2 (−∇2

keikr)(RN
B (k))µ,1

= ∑
r,µ

∫ d2k
(2π)2 eikr(−∇2

kRN
B (k))µ,1

= ∑
µ

∫
d2kδ2(k)(−∇2

kRN
B (k))µ,1

=
6

∑
µ=1

[−∇2
kRN

B (k)|k=0]µ,1. (2.27)

In the first line, we make use of the fact that |gr′,ν(t = 0)⟩ = δr′,0δν,1. In the second line,

we use the fact that r2eikr = −∇2
keikr and we integrate by part. From the second to the

third line, we summed over r with ∑r e−ikr = (2π)2δ2(k) and finally we integrate with

the delta function to arrive at our final expression.

For the r2
mean term, we perform similar computation as the one above to get

r2
mean =

[
∑
r,µ

r(RN
cyc)(r,µ),(0,1)

]
·
[

∑
r′,µ′

r(RN
cyc)(r′,µ′),(0,1)

]

=

[
6

∑
µ=1

[−i∇kRN
B (k)|k=0]µ,1

]
·
[

6

∑
µ′=1

[−i∇k′RN
B (k

′)|k′=0]µ′,1

]

= −
[

6

∑
µ=1

[∂kx RN
B (k)|k=0]µ,1

]2

−
[

6

∑
µ=1

[∂ky RN
B (k)|k=0]µ,1

]2

. (2.28)

Collecting both terms Eq 2.27 and Eq 2.28, we get Eq 2.17.
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2.B Extraction of the late time dynamics of the mean flow

per cycle on a finite size lattice

We comment on the approach we take to extract the late time chiral mean flow per

cycle in a finite size system. Given the geometry shown in Figure 2.B.1, there will be

both chiral transport and diffusive transport in our measurement protocol away from

the perfect swapping case or away from the Zeno limit. In an infinitely large half-filled

system, both chiral and diffusive transport will continue forever without significant

boundary effect from the lattice. Nonetheless, in a finite size system, the late time flow

of our measurement protocol can be altered after significant amount of particle diffuses

to the boundary of the Lieb lattice rather than transported solely via chiral motion (see

Fig 2.B.1).

To account for this effect, we therefore extract the chiral flow rate of our lattice

system by averaging about 5 cycles before the cumulative density of particles at the

upper right half edge (see Fig 2.B.1) becomes significantly populated at some cutoff

total density ρcuto f f ∼ 0.1. Here we track the cumulative sum of density of particles

that has ever arrived at these sites as we immediately extract these particles after each

protocol step. We then extract a tcuto f f that happens when ρcuto f f reaches 0.1 and we

averaged 5 measurement cycles around tcuto f f for our late time dynamics.

In the main article, except in the particular case of site vacancy disorder in the

perfect swapping Zeno limit, where the protected chiral edge flow dynamics is deter-

ministic (phop = 1) and not random (thereby diffusive dynamics is absent), we gener-

ally apply this approach for the extraction of the late time chiral flow dynamics. The

diffusive behaviour is present in all other disorder cases (both in and out of Zeno limit).
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FIGURE 2.B.1: In our measurement protocol, the net chiral flow is mea-
sured by the number of particles transported along the direction of the
black arrow. The diffusive transport takes place along the transverse di-
rection (the direction of the grey arrow). We constantly inject particle on
the left edge of the lattice and extract particle on the right edge. We keep
track of the particle density at the top half edge of the lattice (circled sites)
prior to extraction to truncate and obtain the late time chiral flow per cycle

in the vicinity of the time steps.

2.C Derivation of the stochastic transition matrix for the

random onsite potential disorder

We outline the derivation of Eq 2.21 in this Appendix. We start off with the matrix form

of the Hamiltonian and focusing on 2 unmeasured sites r and r′ in the Zeno limit, where
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there is no other hopping elements coming into sites r and r′

Hzeno =



0 0
...

...

0 0

0 . . . 0 Wr −thop 0 . . . 0

0 . . . 0 −thop Wr′ 0 . . . 0

0 0
...

...

0 0



. (2.29)

Here, we note that the Zeno limit measurement effectively decoupled sites r and r′ from

the dynamics of the rest of the Hamiltonian. The time evolution unitary will retain the

same decoupled form so for convenience, we only retain a 2 × 2 matrix for the rest of

the derivation.

The resulting unitary matrix Uzeno = exp(−iHzenot) acting on the two sites when



2.C. Derivation of the stochastic transition matrix for the random onsite potential

disorder
65

the Hamiltonian Hzeno is allowed to evolve for time t = T
8 now takes the form (calcu-

lated using Mathematica)

Uzeno =

 U11 U12

U21 U22

 , (2.30)

U11 = exp
(
−i

T
8
(Wr + Wr′)

2

)(
cos

(
1
2

T
8

√
4t2

hop + (Wr − Wr′)2
)

−
i sin

(
1
2

T
8

√
4t2

hop + (Wr − Wr′)2
)
(Wr − Wr′)√

4t2
hop + (Wr − Wr′)2


U22 = exp

(
−i

T
8
(Wr + Wr′)

2

)(
cos
(

1
2

T
8

√
4t2

hop + (Wr − Wr′)2
)

+
i sin

(
1
2

T
8

√
4t2

hop + (Wr − Wr′)2
)
(Wr − Wr′)√

4t2
hop + (Wr − Wr′)2


U12 = U21 =

2i exp
(
−i T

8
(Wr+Wr′ )

2

)
sin
(

1
2

T
8

√
4t2

hop + (Wr − Wr′)2
)

√
4t2

hop + (Wr − Wr′)2
.

For an initial distribution G = diag(g1, g2), one then applies G → UGU† and

a subsequent measurement to delete the resulting off-diagonal components in G. The

resulting form of G after the sequence of modified Zeno evolution and subsequent mea-

surement takes the form

 g1 0

0 g2

→

 g′1 0

0 g′2

 (2.31)

g′1 =
g1(2t2

hop(1+cos
(

T
8

√
4t2

hop+(Wr−Wr′ )
2
)
)+(Wr−Wr′ )

2)+g2(2t2
hop(1−cos

(
T
8

√
4t2

hop+(Wr−Wr′ )
2
)
))

4t2
hop+(Wr−Wr′ )

2

g′2 =
g2(2t2

hop(1+cos
(

T
8

√
4t2

hop+(Wr−Wr′ )
2
)
)+(Wr−Wr′ )

2)+g1(2t2
hop(1−cos

(
T
8

√
4t2

hop+(Wr−Wr′ )
2
)
))

4t2
hop+(Wr−Wr′ )

2 .
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From these, one can readily extract the elements of the stochastic transfer matrices to

take the form

Ri = ⊕⟨r,r′⟩∈Ai

 1 − phop,rr′ phop,rr′

phop,rr′ 1 − phop,rr′

⊕other sites I,

phop,rr′ =
2t2

hop(1−cos
(

T
8

√
4t2

hop+(Wr−Wr′ )
2
)
)

4t2
hop+(Wr−Wr′ )

2 (2.32)

which is Eq 2.21 in the main text.
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Chapter 3

Confinement and Kink Entanglement

Asymmetry on a Quantum Ising Chain

3.1 Introduction

Strongly-coupled theories such as QCD can possess rich structure-forming properties

relevant to many domains in modern physics. Despite advances in nonperturbative

methods like lattice gauge theory and phenomenological modeling, a thorough under-

standing of QCD remains elusive due to the phenomenon of confinement [86]. Recently,

entanglement entropy has been suggested as providing a theoretical tool to investigate

QCD systems, both in terms of bound states [87–89] and with respect to scattering pro-

cesses [90–94].

In parallel, quantum spin chains have been proposed as analogous systems to in-

vestigate confinement analytically and numerically [24, 95–100]. In particular, the Ising

spin chain has been a useful setup to study confinement in real time [23]. Here, a two-

fermion system is represented by domain walls, with binding effects introduced via a

longitudinal field that gives an energy penalty linearly proportional to the length of the

domain wall [101–103]. This configuration simulates key aspects of the confinement

of quark-antiquark pairs into mesons, or the binding of two-nucleon systems into the
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deuteron. This simple model, demonstrating confinement in non-equilibrium quantum

quench dynamics, has led to an avalanche of related theoretical works [104–119], and

the Ising chain confinement was also recently realized on IBM’s quantum hardware [24,

120].

The theory of many-body quantum entanglement can shed insights into confine-

ment and symmetry breaking. Indeed, signatures of confinement show up in entan-

glement dynamics, where the entanglement entropy is greatly suppressed upon the

introduction of the confining field [23, 24, 109]. Symmetry breaking can also manifest

in measures of entanglement entropy. When a wave function possesses a local sym-

metry, its entanglement entropy is a statistical combination of entropies associated to

each local occupation number sector [25, 121, 122]. When a local symmetry is broken,

however, additional contributions to entropy are generated and can be quantified us-

ing “entanglement asymmetry” [12, 123–125]. Various measures of symmetry-resolved

entropy have been explored [27, 126–132].

3.2 Model and Entanglement Measures

In this paper, we study the nature of meson dynamics through the lens of entanglement

entropy and its asymmetry. In particular, we address the questions: is entropy always

suppressed by a confining field? How can one address entanglement asymmetry for a

quasi-local conservation law? To do so, we consider the Ising model with transverse

and longitudinal fields and an additional three-body term that can be tuned to render

the dynamics meson-number conserving for special points in parameter space [133,

134]:

H =−J0

L−1

∑
i=1

σz
i σz

i+1−g
L−1

∑
i=2

σx
i −h

L

∑
i=1

σz
i − J

L−2

∑
i=1

σz
i σx

i+1σz
i+2 . (3.1)
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This model exhibits confinement in the spreading of meson (kink/anti-kink pair) exci-

tations for nonzero longitudinal fields, h ̸= 0 [24, 111, 135]. When we set J = −g, the

model is dual to a fermionic chain coupled with a Z2 gauge theory [136]; it is kink-

number preserving and exhibits quantum many body scars [133, 134, 137]. We further

note that the three-body term in the kink preserving regime naturally appears in ap-

plications such as the anti-blockade regime of the Rydberg simulators [138], and that

quantum many-body scar eigenstates of the kink preserving model have been prepared

on IBM superconducting hardware [137].

The Hamiltonian (3.1) can be mapped to a fermionic model using a combination

of Kramers-Wannier and Jordan-Wigner transformations (see Sec 3.6):

H = −2J0

L

∑
j=2

c†
j cj − (g− J)

L−1

∑
j=2

(c†
j cj+1 + h.c.)

− (g+ J)
L−1

∑
j=2

(c†
j c†

j+1 + h.c.)− h
L

∑
j=1

j

∏
i=1

(
2c†

i ci−1
)

. (3.2)

Here c†
j are fermion creation operators associated with creating a kink between site j

and j − 1 in the original model. Eq. (3.2) shows that indeed kink-number preservation

is exact for J = −g, allowing us to study regimes away from small g, J. On the other

hand, when g ̸= −J, only the kink-number parity is conserved. Throughout the rest of

the paper we set J0 = 1, h̄ = 1, thus time scales throughout this paper are set in the unit

of J−1
0 .

We consider the time evolution of an initial domain wall product state of length

n, i.e., of the form

|j, n⟩ ≡ | . . . ↑↓j . . . ↓j+n−1↑ . . . ⟩ . (3.3)
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Entanglement can be quantified via Rényi entropies,

Sn(ρA) = log2(Tr(ρn
A))/(1 − n) , (3.4)

where ρA = TrBρ is a reduced density matrix associated with a subset of sites A when

its complement, B, has been integrated out. In particular, the second-order Rényi en-

tropy is S2(ρA) = − log2 Tr(ρ2
A).

We evaluate S2(ρA) in numerical simulations below. Within time-evolving block

decimation (TEBD) [139–141], this generalizes to other entropy orders. Another quan-

tity of interest is the kink density, ∆zz
i,i+1 ≡ 1

2⟨(1− σz
i σz

i+1)⟩, with ∆zz
i,i+1 = 1 (0) for a spin

flip (alignment).

3.3 Kink-preserving Dynamics

As mentioned, with the choice J = −g, the Hamiltonian in Eq. (3.1) preserves kink

number. To study the evolution of a kink, we project H onto the two-kink subspace in

the kink basis, Eq. (3.3):

H2 = ∑
0≤j<L−1

0<n<L−j−1

2hn|j, n⟩⟨j, n|−(g − J)
(
|j − 1, n + 1⟩+

|j + 1, n − 1⟩+ |j, n − 1⟩+ |j, n + 1⟩
)
⟨j, n| . (3.5)

This projection is exact when H conserves kink number. Eq. (3.5) highlights an advan-

tage of adding the three body term in controlling kink production compared to working

without the three body interaction σz
i σx

i+1σz
i+2 modification of the transverse field Ising,

while assuming g is small. Indeed in the later case, kinks appear perturbatively on

the background of a classical Ising chain and propagate slowly, since their kinetics is

governed by g. Including the three body term, Eq. (3.5) shows that the dynamics of



3.4. Rényi Entropy saturation, integrability and confinement 71

the two kink bound states (with g = −J) is characterized by the kinetic energy scale

g − J, which can be tuned to be arbitrarily large, allowing us to study regimes of fast

dynamics while preserving kink number.

We note that the exactness of H2 offers an opportunity to benchmark tensor net-

work methods against the corresponding computation by exact evolution in the two-

kink subspace. In particular, we compare the evolution of the local kink density, as

well as the 2nd Rényi entropy as computed by exact diagonalization within the two-

kink subspace with corresponding computations within TEBD evolution. Interestingly,

we are not aware of any previous calculation of Rényi entropy directly in the two-kink

subspace Hamiltonian in Eq. (3.5), and we outline the computational approach in Ap-

pendix B. We also verify the validity of the two-kink subspace dynamics by comparing

the time evolution for various observables and the Rényi entropy with identical quan-

tities computed from small-size exact diagonalization in Appendix 3.A.

3.4 Rényi Entropy saturation, integrability and confine-

ment

In Fig. 1, we consider the evolution of an initially small domain, focusing on the half-

chain entropy, S2(t), and on the kink density. Note the remarkable agreement between

the exact diagonalization and TEBD computations, validating the TEBD approach, at

least for small kink numbers.

A striking feature of the Rényi entropy dynamics in Fig. 1 (a) is that when h = 0

and g = −J, the second-order Rényi entropy saturates at S2 ≤ 2 when we set our initial

state to be a two-kink state. This is surprising at first since a generic two-kink wave

function can have a much larger entropy, up to log2(L/2 + 2). In Appendix 3.E, we

prove that if h = 0, and given an initial two-kink state, we have S2 ≤ 2 when kink
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FIGURE 1: Evolution of half chain Rényi entropy for (a) g = −J = 0.7, h =
0 and (c) g = −J = 0.7, h = 0.05. The corresponding domain wall profile
following a quench are (b) g = −J = 0.7, h = 0 and (d) g = −J = 0.7, h =
0.05 respectively. The initial state | ↑ . . . ↑↓↓↓↓↑ . . . ↑⟩ is L = 100 spin

chain with n = 4 initial domain size in the middle of the spin chain.

number is conserved.

This bound can be roughly understood as follows. An initial domain wall state

(3.3) corresponds, in the fermion formulation (3.2), to two initially localized fermions

c†
j c†

j+n|vac⟩. (3.6)

When we take h = 0, J = −g, the second line in (3.2), vanishes leaving us with a

free fermion Hamiltonian. The subsequent evolution is of a pair of non-interacting,

uncorrelated, fermions. Intuitively, each fermion can contribute at most S2 = log2(2) =

1 due to its de-localization in the system. The uncorrelated nature of the fermions then

implies S2 ≤ 2. A rigorous proof is given in Appendix 3.E.
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FIGURE 2: Half chain Rényi entropy for (a) g = −J = 0.25, h = 0.05, L =
140 and (c) g = −J = 0.5, h = 0.1, L = 160. The right figures are bipartite
Rényi entropy at all possible cuts along the chain for (b) g = −J = 0.25, h =
0.05, L = 140 and (d) g = −J = 0.5, h = 0.1, L = 160, for which the left
figures are only a slice along the middle of the spin chain. The initial states
| ↑ . . . ↑↓↓↓↓↑ . . . ↑⟩ has n = 4 initial domain size in the middle of the
spin chain of size of either L = 140 or L = 160. See Appendix C for

accompanying kink density plot.

3.4.1 The effect of confinement and integrability breaking

What happens when h > 0? Naively, one may expect that entropy generation will be

decreased, due to the reduction of the spread of the particles.

However, considering Fig. 1 (lower), we encounter a surprise: with a small h =

0.05, we find a clear violation of the free-particle (h = 0) bound. Indeed, the collisions

and interactions with h ̸= 0 do not correspond to non-interacting particles and are

not bound by the above argument, as can be seen in the fermionic model (3.2) where

the confining term h gives rise to a highly non-local interaction term, thereby allowing

quantum correlations and entanglement to develop. We explore this more closely in
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Fig. 2. The evolution exhibits the following features: when the string reaches its max-

imal extent, the entropy starts decreasing, due to a suppression of the wave function

spread. However, close to the minimal string size, where collision is possible, entropy

shows a rapid increase. When this collision-related increase is sufficient to overcome

suppressed entropy, the S2=2 bound is violated.

Note that in Fig. 1, the bound violation is enhanced when the size of the chain is

smaller than the maximal extent of the wave function spread. In Fig. 2 and the accom-

panying kink density plot in Appendix 3.C, however, we find that early time collisions

can still violate the bound before these boundary effects become substantial, showing

that the bound violation may persist also in the thermodynamic limit, L → ∞. The

variations in the Rényi entropy of the system at all cut positions are plotted in the right

panels of Fig. 2, showing that the oscillatory behavior of the entropy is reproduced

along the internal structure of the meson.

In Fig. 3 we take advantage of the fact that, in exact diagonalization, no Trotteriza-

tion error is introduced and we can simulate our time evolution dynamics to arbitrarily

late times in the exact kink-preserving simulation. Consistent with Fig. 1, when we

have h = 0, the Rényi entropy is bounded by S2 ≤ 2. Upon introducing a small con-

fining field, we see that the Rényi entropy can exceed this upper bound. On the other

hand, once the confining field becomes significantly stronger (h = 0.5), the Rényi en-

tropy is suppressed compared to the unconfined case, and exhibits oscillatory behavior.

3.5 Entanglement Asymmetry

We now turn to our second question. What is the effect of symmetry breaking on en-

tanglement entropy when the symmetry operator is not exactly local? Given a local

symmetry operator of the form Q = QA ⊗ I + I ⊗ QB such as charge or magnetization,
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FIGURE 3: The long time dynamics of the bipartite Rényi entropy S2(t)
from the exact diagonalization of the two-kink Hamiltonian H2 in Eqn 3.5.
Here, the kink kinetic energy parameter is set to g = −J = 0.7, the chain
is of length L = 100, and we notice that for weak confining field h, the
entropy exceeds the S2 = 2 limit while strong confining field h eventually

suppresses the entropy growth.

a useful quantity utilized to study symmetry breaking and its relation to entanglement

entropy is the entanglement asymmetry.

The entanglement asymmetry is obtained as follows. First, we project ρA onto the

blocks associated with different symmetry sectors of QA:

ρA,Q = ∑
q

ΠqρAΠq , (3.7)

where Πq are projectors onto a subspace with a given eigenvalue q of QA. When QA

has integer eigenvalues, the projected density matrix can be written as

ρA,Q =
∫ π

−π

dλ

2π
e−iλQA ρAeiλQA . (3.8)
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Then, the projected density matrix can be used to construct the entanglement

asymmetry [12], given by

∆Sn(ρA) = Sn(ρA,Q)− Sn(ρA) , (3.9)

where Sn(ρA,Q) = log2 Tr(ρn
A,Q)/(1 − n) is the symmetry-resolved Rényi entropy. The

entanglement asymmetry vanishes, ∆Sn = 0, if computed for a state that commutes

with Q. A more detailed introduction to entanglement asymmetry is given in, e.g. [12].

3.5.1 Kink and Kramers-Wannier Entanglement Asymmetries

In contrast to the discussion above and also examples presented in existing literature,

we ask the question as to how we can treat entanglement asymmetry when the sym-

metry operator is not fully local, i.e., the operator associated with the symmetry is not

a sum of single site operators.

In our current context, the conservation of kink number is associated with a quasi-

local charge (a two-body operator in our case), Nk, since kinks live on the dual lattice,

with the number of kinks given by

Nk =
L−1

∑
i=1

∆zz
i,i+1 =

1
2

(
L − 1 −

L−1

∑
i=1

⟨σz
i σz

i+1⟩
)

. (3.10)

We break the spin chain into complementary subsystems, A and B, where A contains

spins 1, .., LA; then,

Nk = Nk,A ⊗ I + I ⊗ Nk,B + ∆zz
LA,LA+1 , (3.11)

where Nk,A, Nk,B count the number of kinks within A and its complement B respec-

tively. The last term measures the presence of a kink at the interface between A and
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B.

The presence of a kink at the interface between A and B is impossible to deter-

mine from within subsystem A alone. However, we may compute a coarse-grained

entanglement asymmetry by projecting onto blocks with fixed kink number inside A.

We define the projected density matrix, ρA,Nk,A , as

ρA,Nk,A =
∫ π

−π

dλ

2π
e−iλNk,A ρAeiλNk,A . (3.12)

This projection is depicted schematically in Fig. 4; from this, we define an asymmetry,

∆Skink
2 ≡ ∆S2(ρA,Nk,A), as in Eq. (3.9).

FIGURE 4: Left: The reduced density matrix ρA for an initial wave function
with a fixed number of kinks may have terms coupling n kinks in the bulk

of A with n + 1 or n − 1 kinks. Right: the projected matrix ρA,Nk,A .

We note that asymmetries computed using ρA,Nk,A may be nonzero even if the

overall wave function has a fixed kink number. This is in contrast with the entan-

glement asymmetry ∆Sn associated with strictly local (one-body) symmetry operator,

where ∆Sn necessarily vanishes when the wave function has fixed symmetry eigen-

value. In the case of quasi-local (two-body) kink operator, owing to the presence of the

kink at the interface, ∆Sn can be nonzero even when the wave function has fixed kink

number.
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To see this, consider the example of a very simple wave function:

1√
2
(| ↑↑↓↓⟩+ | ↑↓↓↓⟩) , (3.13)

where the first two spin sites define subsystem A, giving:

ρA =
1
2
(| ↑↑⟩+ | ↑↓⟩)(⟨↑↑ |+ ⟨↑↓ |) . (3.14)

Note that ρA describes a pure state with no entropy, however it is not in block form

from the point of view of internal kinks in subsystem A. On the other hand

ρA,Nk,A =
1
2
(
| ↑↑⟩⟨↑↑ |+ | ↑↓⟩⟨↑↓ |

)
(3.15)

describes a mixed state with entropy log2 2 = 1.

Thus our generalized entanglement asymmetry will only vanish for wave func-

tions that have a fixed number of kinks and no kink at the interface between A and B.

The presence of kink at the interface, even with fixed kink number, leads to nonzero

asymmetry. Nevertheless, the contribution to the asymmetry, ∆Skink
2 , from the bound-

ary kink is small: it will be responsible for at most an O(1) contribution to the entropy,

and is thus suitable for probing entropy scaling in large systems.

How can we take into account the effect of a possible kink lying at the interface of

the bipartition when one calculates quantities such as the entropy? Here, we propose

an asymmetry measure that vanishes for eigenstates having total kink number Nk. To

do so, we use an open boundary Kramers-Wannier (KW) transformation UKW , which

maps |s1, ..sN⟩ → |t1, ..tN⟩ where t1 = s1 and ti = si−1si for i > 1. The Kramers-

Wannier transformation maps the link variable (in our case, the kink) to a local site

variable, i.e., σz
i σz

i+1 → σz
i+1, and naturally deals with the kink lying in the interface

of the bipartition. In particular, UKW maps kink number into magnetization which is
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completely local, thus in the Kramers-Wannier (KW) basis, the magnetization entan-

glement asymmetry should vanish for a wave function with a fixed kink number.

Let us consider the relationship between entropies in the original basis vs the KW

basis. We take as the set of sites A = 1, .., LA to be fixed. Given a quantum state on the

full system we can define ρKW = UKWρU†
KW , and ρKW

A = TrBρKW . We show in appendix

E that UKW only contains a single two-qubit gate operating between subsystems A, B,

and hence S(ρA) and S(ρKW
A ) differ by at most the entropy that can be generated by such

a gate, i.e. at most 2 log2 2. Therefore we can use S(ρKW
A ) as an alternative measure for

questions of entanglement scaling, i.e., whether entropy is bounded when A is large.

Next, let us discuss the transformation of the kink entanglement asymmetry in the

original basis into the magnetization entanglement asymmetry in the Kramers-Wannier

basis. Note that under UKW , we have ∏l−1
i=1 e±iλσz

i σz
i+1 → ∏l

i=2 e±iλσz
i (see Sec 3.6). Thus,

following Eqs. (3.8),(3.12), we define the KW projected density matrix as:

ρKW
Nk,A =

∫ π

−π

dλ

2π
e−i λ

2 ∑
LA
l=2 σz

l ρKW
A ei λ

2 ∑
LA
l=2 σz

l , (3.16)

and the KW kink asymmetry as ∆SKW
2 ≡ S2(ρ

KW
Nk,A)− S2(ρ

KW
A ). Note that, ∆SKW

2 obeys

the desired property that ∆SKW
2 = 0 if the system is in a state with a fixed number of

kinks. Even in cases when kink number is not conserved in the original basis, we in

general expect ∆SKW
2 ≤ ∆Skink

2 , as the kink entanglement asymmetry in the original

basis can miscount a kink lying at the interface [see Eq. (3.11)].

3.5.2 MPS implementation

Many 1D systems can be analyzed efficiently using matrix product states (MPS). Previ-

ous work has explored entanglement asymmetry in the context of exact diagonalization

[12], where large system sizes can only be explored for non-interacting models, and
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iTEBD time evolution for interacting models with integrability [142]. Another recent

work [143] has explored entanglement asymmetry in matrix product states in the con-

text of the ground state of a symmetric Hamiltonian undergoing spontaneous symme-

try breaking. Here we implement the computation of the ∆S2 entanglement asymmetry

given an MPS for generic models that includes non-integrability, an interacting Hamil-

tonian, and a more general setting that includes non-local entanglement asymmetry.

To proceed beyond the kink conserving dynamics we have developed a Matrix

Product State (MPS) procedure to compute S2. Given a local charge of interest (magne-

tization or Nk,A) we compute the asymmetry by expressing S2(ρA,Q) as

S2(ρA,Q) =
∫ 2π

0

dλ

π

(
1 − λ

2π

)
TrA[eiλQA ρAe−iλQA ρA]. (3.17)

We carry out the trace in Eq. (3.17) by representing ρ as a matrix product operator and

doing the necessary contractions.

We will now outline the general algorithm for the straightforward computation

of the bipartite entanglement asymmetry for MPS.

1. Perform the time evolution of the MPS from |ψ(t − ∆t)⟩ to |ψ(t)⟩ with the choice

of tMPS, tDMRG or TEBD.

2. Choose the orthogonality center of the MPS across which the bipartite 2nd Rényi

entropy S2(ρA) is calculated (mixed canonical MPS).

3. Contract the indices efficiently (with increasing bond dimensions) from one end

of the MPS to the orthogonal center to construct the reduced density matrix ρA

(Fig. 5(a)).

4. With ρA, split the numerical integration of Eq. 15 in the main text into k + 1 steps.

For each discrete λ perform the MPO application onto the ρA [Fig. 5(b) or (c)].
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Perform the full trace after evaluating eiλQρAe−iλQρA. The MPO application and

tracing is done k + 1 times to evaluate S2(ρA,Q) and subsequently ∆S2.

In this work, we calculate two different types of entanglement asymmetry: onsite

entanglement asymmetry (such as the magnetization entanglement asymmetry previ-

ous considered in [12] with QA = ∑l
i=2 σz

i ) and link-type entanglement asymmetry (in

our case, the kink entanglement asymmetry with QA = ∑l−1
i=1 σz

i σz
i+1, shown in Fig. 5(c)).

FIGURE 5: (a) The order of contraction of the legs of the tensor of the
MPS wave function in the construction of the reduced density matrix
ρA = TrB(|ψMPS⟩⟨ψMPS|) is shown in the arrow. (b)The MPO operators
e±iλQ = ∏l

i=1 e±iλσz
i (in site-type symmetry resolved entropy), and (c) The

MPO operators e±iλQ = ∏l−1
i=1 e±iλσz

i σz
i+1 (in link-type symmetry resolved

entropy) are applied successively via the DMRG algorithm. If the integral
is split into k+ 1 steps, λ takes discrete values in the interval [−2π, 2π] and
this calculation is done for (k + 1) different λ before the Trapezoid Rule is

applied to obtain ρA,Q

A detailed discussion of the computational complexity of the procedure is pro-

vided in Appendix 3.D.
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3.6 Kramers-Wannier Unitary Transformation and the XY

Model

Given the problem that the kink entanglement asymmetry at the interface cannot be

tracked in our current basis, we perform a site-to-link transformation to map link vari-

ables (such as the domain wall operator σz
i σz

i+1) to site variable. This has traditionally

been associated to the Kramers-Wannier duality on a 2D Ising Model. In the context of

the (1+1)D Transverse Field Ising Model, one cannot construct a unitary that represents

the Kramers-Wannier duality since it maps the ferromagnetic phase of the Transverse

Field Ising model (g < 1) with ground state degeneracy and spin-flip symmetry break-

ing to the paramagnetic phase of the Transverse Field Ising Model (g > 1) with non-

degenerate ground state possessing spin-flip symmetry. Hence, we wish to clarify from

the onset that our unitary defined below is a Kramers-Wannier unitary transformation

that is only well-defined on an open chain and serves to perform a basis transformation.

We define a Kramers-Wannier unitary UKW that is distinct from the Kramers-

Wannier duality in the sense that: (1) it is defined on open boundary condition, (2) it

maps all links to sites except the first site, which also maps to the first site in the ’dual’

lattice, and (3) the unitary is not self-dual, i.e., U2
KW ̸= I. In this way the dimension of

the Hilbert space is preserved, since an open chain with N sites only has N − 1 links.

The unitary is defined and represented in the quantum circuit language as a series of

CNOT gates, as shown in Fig. 6.

Here, we have defined |0⟩ ≡ | ↑⟩ ≡ |s = +1⟩, |1⟩ ≡ | ↓⟩ ≡ |s = −1⟩, and one can

verify that the action of the CNOT gate on the target qubit/spin matches the value of

the product of spin tj = sj−1sj. In this dual lattice picture, we can perform the unitary
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FIGURE 6: This quantum circuit implements the Kramers-Wannier Unitary
on an open Ising spin chain.

transformation on the Hamiltonian H′ = UKW HU†
KW to get, in this dual picture,

H′ = −
[

J0

L

∑
i=2

σz
i + g

L−1

∑
i=2

σx
i σx

i+1 + h
L

∑
i=1

(
i

∏
j=1

σz
j

)
− J

L−1

∑
i=2

σ
y
i σ

y
i+1

]
, (3.18)

where the Kramers-Wannier unitary UKW maps σz
i → ∏i

j=1 σz
j , σx

i → σx
i σx

i+1, and the

coefficients above identity the origin of the terms of the original Hamiltonian in Eq. 1

in the main text. While the form of the Kramers-Wannier mapping for σz
i and σx

i has

been given in [138], to our knowledge the explicit form of the unitary has not been

given in earlier works. In this dual picture, the symmetry operator is transformed as

∏l−1
i=1 e±iλσz

i σz
i+1 → ∏l

i=2 e±iλσz
i , the total magnetization of the left half of the spin chain

except the magnetization on site 1.

Interestingly, while the original Hamiltonian had 4 sectors associated with local

boundary spins σz
1 and σz

L, our transformed Hamiltonian now commutes with σz
1 as well

as with the parity operator ∏L
i=1 σz

i which is non-local. We also note that the original

Hamiltonian preserves the parity of the kink number, even when g ̸= −J. This form

also makes explicit the conservation of kink parity, where kink is now represented by

the number of down spins.

When h=0 in the Hamiltonian Eq. (3.18), this Hamiltonian is the XY model. This
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can readily be cast into the free fermion picture using the Jordan Wigner Transforma-

tion, with the resulting Hamiltonian (ignoring constant terms)

H = −
[

2J0

L

∑
j=2

c†
j cj + (g + J)

L−1

∑
j=2

(c†
j c†

j+1 + cj+1cj) + (g − J)
L−1

∑
j=2

(c†
j cj+1 + c†

j+1cj)

+ h
L

∑
j=1

(
j

∏
i=1

(
2c†

i ci − 1
))]

. (3.19)

In this form, the fermions represent the domain walls, and we can read off that the

hopping strength of the domain wall is (g − J) while the kink number violation term

comes with the strength (g + J).

3.7 Numerical results

We present the numerical results for both the kink-preserving cases and the string

breaking cases in Figs. 7 and 8 respectively, in both the original basis and the KW ba-

sis, and for Rényi entropy S2 and Rényi asymmetry ∆S2. We begin by commenting on

the kink-preserving case g = −J in Fig. 7. Note that the kink Rényi asymmetry ∆Skink
2

does not vanish even when the kink number is conserved, consistent with our exam-

ple illustrated earlier Eq. (3.13). On the other hand, we verify that in the KW basis the

asymmetry ∆SKW
2 vanishes, as expected 1.

In Fig. 7, we study three different cases with different confining field strength

while keeping the kinetic energy g = −J constant: (1) the free fermion case h = 0, (2)

weak confinement, h = 0.05, and (3) strong confinement h = 0.5. We note that S2(ρ
KW
A )

and S2(ρA) are quite close to each other. Moreover, we observe that S2(ρ
KW
A ) > S2(ρA)

consistently. We can explain this feature as follows. For weakly correlated states, with

1Due to the approximate nature of the TEBD time evolution on the MPS, we note that there is error
of order 10−3 on the kink number conservation, and the magnetization asymmetry error is fluctuating in
order of 10−3.



3.7. Numerical results 85

low entropy, the wave-function in the vicinity of the cut region is close to a product

state in the original basis. As mentioned, the transformation UKW (see Sec 3.6) contains

an entangling 2-qubit gate (a CNOT) acting between the sides of the system, which will

generically increase the entropy when acting on a weakly correlated state. Thus, we

expect that the Rényi entropy S2 will be enhanced after the Kramers-Wannier transfor-

mation compared to the Rényi entropy S2 in the original basis.

FIGURE 7: Entropy S2(t) and asymmetry ∆S2(t) for the original basis vs
Kramers-Wannier basis. Here, (a) S2(t) for h = 0, (b) ∆S2(t) for h = 0 (c)
S2(t) for h = 0.05, (d) ∆S2(t) for h = 0.05, (e) S2(t) for h = 0.5, and (f)
∆S2(t) for h = 0.5. Here, the transverse field and three-body strength are
set at g = 0.3 = −J for all figures. The initial states | ↑ . . . ↑↓↓↓↓↑ . . . ↑⟩ for
L = 100 spin chain has n = 4 initial domain size in the middle of the spin
chain and the evolution is kink conserving. Note that the shorter time scale
of (c) and (d) is due to the higher computational complexity to simulate the

Rényi asymmetry for the case h = 0.05.

Note the pronounced oscillation of the entropy in the strong confining case. Due
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to the strong confinement, the kink is oscillating near the entropy cut, which is reflected

in large oscillations of the asymmetry in the original basis, while, consistent with our

construction, showing that the KW asymmetry vanishes ∆SKW
2 = 0 to a good approxi-

mation.

FIGURE 8: Entropy S2(t) and asymmetry ∆S2(t) in the original vs. the
Krammers-Wannier basis.Here, (a) S2(t) for h = 0, (b) ∆S2(t) for h = 0
(c) S2(t) for h = 0.4 and (d) ∆S2(t) for h = 0.4. Here, the transverse field
and three-body strength are set at g = 0.4 and J = 0.1 respectively for all
figures. The initial states | ↑ . . . ↑↓↓↓↓↑ . . . ↑⟩ for L = 60 spin chain has
n = 4 initial domain size in the middle of the spin chain and the evolution
is not kink conserving. Note that the short time scale of the asymmetry
evolution owes to the limit of the computational ability to simulate the

Rényi asymmetry at later time scales, especially for the h = 0 case.

Finally, note that the dip in Rényi entropy in the original basis around t ≈ 85

for h = 0 in Fig. 7 is associated with collision of kinks, and is accompanied with a

spike in kink asymmetry in the original basis. In general, we observe that dips in S2

corresponds to spikes in kink asymmetry ∆Skink
2 . A kink density heatmap is provided

in Appendix 3.C (see Fig 3.C.2) for reference.
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Next we consider kink number violating dynamics in Fig. 8. A common feature

shared by the Rényi entropy in the kink-preserving Fig. 7 and string breaking Fig. 8 is

that the Rényi entropy in the original basis is in general lower than Rényi entropy in

the KW basis.

On the other hand, the kink entanglement asymmetry ∆Skink
2 is greater than the

KW kink asymmetry ∆SKW
2 , though the difference is more pronounced in the kink-

preserving case. This behavior may be attributed to the entropy associated with the

possibility of a kink at the center of the chain, exactly at the boundary between the left

and right regions, as outlined in our discussion in earlier section justifying ∆SKW
2 ≤

∆Skink
2 . Comparison with Fig. 7 also shows that, as expected, as soon as kink produc-

tion is increased, kink-entanglement entropy asymmetry is enhanced. In addition, we

see that the KW kink asymmetry ∆SKW
2 is in better agreement with ∆Skink

2 . This fea-

ture can be understood as due to the contribution from possible kinks precisely at the

interface playing a less dominant effect.

3.8 Conclusion and Outlook

In summary, we studied entanglement associated with meson dynamics via confined

string evolution and effects of string breaking; we quantified these phenomena through

a novel application of entanglement asymmetry in a QCD-analogue model system,

a transverse-field Ising chain with three-spin interaction and longitudinal field. We

performed the Rényi entropy calculation directly in the two-kink subspace. For kink-

preserving dynamics, the absence of a longitudinal field gives rise to integrability that

sets an upper bound on Rényi entropy. We find that the dynamics of entanglement

production generically involves two stages: when the string is contracting, entropy is

reduced, followed by an increase when the minimum size is reached. Turning on the

confining field can break the integrability bound with weak confining field. However,
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the Rényi entropy is suppressed upon further increasing the strength of the confining

field. This calculation reveals the internal dynamics of a simulated bound-state system

resembling the meson in QCD through the lens of entanglement entropy.

Another significant aspect of our work is the study of the interplay of entangle-

ment and kink production in the context of entanglement asymmetry. To do so, we

introduced the kink entanglement asymmetry and the Kramers-Wannier entanglement

asymmetry to address the nature of kink number in our spin chain. To study these nu-

merically, we devised a new calculation of Rényi asymmetry using MPS methods and

demonstrated its application in the context of kink entanglement asymmetry.

We comment on a few future directions that are worthy of consideration. A few

recent papers [126, 127, 132] explored and proposed measuring entanglement asymme-

try in quantum hardware simulations, and it will be interesting to simulate new types

of entanglement asymmetry on NISQ devices. In addition, there is a need to develop

a more computationally efficient approach to obtain Rényi asymmetry (see e.g. [144]).

Addressing this question might allow us to access later time dynamics for Rényi asym-

metry, and to see if dynamical purification [126] can be observed in settings similar to

our setup. Finally, lattice gauge theories with site and link variables provide natural

playgrounds to explore the concept of kink entanglement asymmetry proposed in this

work.
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Appendix

3.A Benchmarking exact diagonalization, two-kink dynam-

ics and tensor network simulations

In this appendix, we present numerical data benchmarking. (1) We study the time

evolution dynamics of the spin, initial domain wall, and Rényi entropy for both the

exact diagonalization and the two-kink Hamiltonian dynamics, both at the special point

J = −g (where they should match) and J ̸= −g (where they generally differ). (2) We

compare the time evolution dynamics for the initial domain wall and Rényi entropy for

tensor network simulation and two-kink dynamics for larger system size.

FIGURE 3.A.1: From left to right: The spin expectation value ⟨σz
3⟩, the do-

main wall expectation value ∆zz
3,4 and the half chain Rényi entropy S2 at

parameter values g = 0.7 = −J, h = 0.1 for both exact and two-kink dy-
namics. At this special point where g = −J, the time evolution dynamics
for the exact diagonalization can be described exactly by two-kink sub-

space dynamics.
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FIGURE 3.A.2: From left to right: The spin expectation value ⟨σz
3⟩, the

domain wall expectation value ∆zz
3,4 and the half chain Rényi entropy S2.

From top to bottom: The set of physical quantities at the top panel was
simulated at g = 0.3, h = 0.4 and J = −0.05 while the bottom panel was
at g = 0.6, h = 0.1, J = −0.1. Note that the top panel corresponds to a
more confined dynamics, where the deviation of the time evolution and
exact diagonalization occurs only at late time, while for parameter with
less confinement (smaller h), the deviation is significant even at early times.

For the first benchmarking between exact diagonalization and two-kink dynam-

ics (to establish the reliability of two-kink dynamics in kink-conserving cases), we ini-

tialize the quantum state of a L = 10 quantum Ising spin chain to |ψ0⟩ = | ↑↑↑↑↓↓↑↑↑↑

⟩, and time evolve the state using (a) exact diagonalization of the Hamiltonian Eq. 1

in the main text and (b) two-kink Hamiltonian Eq. 4 in the main text. For Fig. 3.A.1

and 3.A.2, the spin expectation values ⟨σz
i (t)⟩ are tracked at the underlined spin | ↑↑↑

↑ ↓↓↑↑↑↑⟩ in the initial state |ψ0⟩, and the domain wall expectation values ∆zz
i,i+1(t)

are tracked at | ↑↑↑ ↑↓ ↓↑↑↑↑⟩, and the Rényi entropy is cut at half chain bipartition

respectively.

In Fig. 3.A.1, we see that the time evolution of the various different physical quan-

tities of interest match between exact diagonalization and two-kink subspace evolution.

As demanded by the symmetry of the Hamiltonian when g = −J, the domain wall
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number at this special line is exactly conserved.

We then turn to the string breaking (more generic) cases, where kink number is

not conserved. In Fig. 3.A.2, we observe that while we generally expect the dynamics of

the exact Hamiltonian to differ from that from the two-kink subspace projection at g ̸=

−J, the macroscopic expectation values for spin ⟨σz
i ⟩ and domain wall ∆z

i,i+1 overlaps

significantly for early times and only deviate at later time for strong confining field h.

In contrast, with weak confining field h the dynamics deviates significantly at early

times. This establishes the general physics and intuition that with strong confinement

h, two-kink approximation is reasonable for quantum quench problem with initial state

| ↑ . . . ↑↓ . . . ↓↑ . . . ↑⟩.

FIGURE 3.A.3: The set of parameter values used for the time evolution of
the domain wall ∆zz

48,49 at position 48 and 49 following a quantum quench
are (a) g = 0.3, J = −0.3, h = 0, (b) g = 0.3, J = −0.3, h = 0.05, (c)

g = 0.7, J = −0.7, h = 0.0, (d) g = 0.7, J = −0.7, h = 0.05.
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After verifying the validity of the two-kink dynamics for kink-conserving dy-

namics, we then turn to the benchmarking of the tensor network simulations with the

two-kink dynamics. In the main article, we provided the benchmarking of MPS with

two-kink dynamics for the time evolution of the Rényi entropy S2 for g = −J = 0.7

in Fig. 1 in the main text. Here, we provide additional numerical simulations of

the domain wall profile located at the initial domain wall positions at 48th and 49th

sites for a spin chain of length L = 100 and initial state with 4 middle flipped spin

| ↑1 . . . ↑48↓49↓50↓51↓52↑53 . . . ↑100⟩, as shown in Fig. 3.A.3. This provides an additional

check (besides the Rényi entropy dynamics) that the MPS time evolution from TEBD is

approximated well by two-kink time evolution.

3.B Construction of the reduced density matrix in the Two-

Kink Subspace

In this section, we outline the overall approach we used to construct the reduced den-

sity matrix in the two-kink subspace in order to calculate the 2nd order Rényi entropy

for dynamics within the two-kink subspace. We represent all possible two-kink states

in a spin chain of length L, | ↑1 . . . ↑jL−1↓jL . . . ↓jR↑jR+1 . . . ↑L⟩, with the two number

representation |jL, jR⟩, where jL is the position of the left domain wall and jR is the po-

sition of the right domain wall. In the two-kink Hilbert space, for sites i = 1, . . . , L, the

two numbers can take the following values 1 < jL ≤ jR < L.

With this two-number representation, a quantum spin chain of size L will have a

two-kink subspace of dimension (L − 1)(L − 2)/2. To proceed with the Rényi entropy

calculation, given a bipartition bond lB separating the spin chain into left-right bipar-

tition with sites 1, . . . , lB to the left side of the chain and sites lB + 1, . . . , L to the right,
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we will proceed to perform bipartition in the two-kink states

|ψ⟩ = ∑
1<jL≤jR≤lB<L

αjL,jR |one/two-kink⟩L|no-kink⟩R

+ ∑
1<jL≤lB<jR<L

αjL,jR |one-kink⟩L|one-kink⟩R

+ ∑
1≤lB<jL≤jR<L

αjL,jR |no-kink⟩L|one/two-kink⟩R, (3.20)

where we decompose the sum into three types of terms classified by the location of

the bipartition cut relative to the domain wall positions. Here, the states with label

|one-kink⟩L|no-kink⟩R and |no-kink⟩|one-kink⟩R are cases where the bipartition cut lB

coincides with one of the left/right domain walls.

Constructing the full pure state density matrix |ψ⟩⟨ψ| and taking the partial trace

over the right partition, we have

ρL = TrR(|ψ⟩⟨ψ|) = ∑
1<jL≤jR≤lB

∑
1<j′L≤j′R≤lB

αjL,jR α∗j′L,j′R
|one/two-kink⟩⟨one/two-kink|

+ ∑
1<jL≤lB

∑
1<j′L≤lB

(
∑

lB<jR<L
αjL,jR α∗j′L,jR

)
|one-kink⟩⟨one-kink|

+

(
∑

lB<jL≤jR<L
αjL,jR α∗jL,jR

)
|no-kink⟩⟨no-kink|

+ ∑
1<jL≤lB

(
∑

lB<jR<L
αjL,jR α∗j′L=lB+1,jR

)
|one-kink⟩⟨no-kink|

+ ∑
1<j′L≤lB

(
∑

lB<jR<L
α∗j′L,jR

αjL=lB+1,jR

)
|no-kink⟩⟨one-kink| (3.21)

We shall elaborate on each term below.
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The first term

The first term in Eq. (3.21) is obtained from the multiplying the first terms of Eq. (3.20)

in both |ψ⟩ and ⟨ψ|, followed by partial right trace over all spin-up state |no-kink⟩R.

Hence, the coefficients in the first term in Eq. (3.21) can be understood to be constructed

without performing any sum from partial tracing.

The second term

The second term in Eq. (3.21) is obtained by multiplying the second terms of Eq. (3.20)

in both |ψ⟩ and ⟨ψ|, followed by partial right trace over |one-kink⟩R. In this case, the

coefficients in the second term in Eq. (3.21) is constructed from summing over lB <

jR = j′R < L where the right partition states |one-kink⟩ and ⟨one-kink| must agree in

the partial trace process.

We also note here that terms labelled as ’the second term’ is actually a subset

of ’the first term’ and not a new set of distinct terms (which we label separately only

because they had different origin), so the coefficients here should add to the coefficients

of the first term when the states are the same.

The third term

The third term in Eq. (3.21) is actually a single state, and its coefficient is constructed

from a sum over the modulo square |αjL,jR |2 for lB < jL ≤ jR < L. Here jL and jR both lie

on the right partition basis states, for which the indices must match (hence mod square)

when one performs the partial trace.



3.B. Construction of the reduced density matrix in the Two-Kink Subspace 95

The fourth and fifth terms

The fourth and the fifth term in Eq. (3.21) are the complex conjugate of each other, so it

suffices to explain one of them. The fourth term comes from the cross multiplication of

the second term |one-kink⟩|one-kink⟩ and the third term of type ⟨no-kink|⟨one-kink|

in Eq. (3.20).

Note that the third term of the form ⟨no-kink|⟨two-kink| cannot contribute since

the right partition partial cannot match those from |one-kink⟩|one-kink⟩. This explains

the setting of j′L = lB + 1 in the coefficient of the fourth term (likewise the corresponding

term in the fifth term). We also understand that there is a single sum matching the

indices jR = j′R over the range lB < jR < L when one construct the coefficients of the

fourth and the fifth term.

Matrix representation of the reduced density matrix

Collecting these terms, it helps to visualize these various terms on a matrix represen-

tation. We label row sectors according to |two-kink⟩, |one-kink⟩ and |no-kink⟩ and

likewise for the column sectors. The matrix representation is as below.

ρL =



First term

|two-kink⟩⟨two-kink|

First term

|two-kink⟩⟨one-kink|
0

First term

|one-kink⟩⟨two-kink|

First + Second term

|one-kink⟩⟨one-kink|

Fourth term

|one-kink⟩⟨no-kink|

0
Fifth term

|no-kink⟩⟨one-kink|

Third term

|no-kink⟩⟨no-kink|


Here, the third row is a single row and the third column is a single column. The re-

duced density matrix can then be used to calculate the Rényi entropy for the two-kink
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dynamics.

3.C Rényi Entropy Evolution and Collisions: Early time

and Entropy bound violation with large system size

FIGURE 3.C.1: The half-chain Rényi entropy S2 (left) and the domain wall
profile across link positions (right) for the parameter value set g = −J =
0.7, h = 0.1. Here the top diagrams are results from initial state with do-
main wall separation l = 4 (4 down spins in the middle) while the bottom
diagrams are results with initial domain wall separation l = 24. The in-
crease in S2 in the early time roughly coincides with the time scale of colli-

sion for kink-conserving dynamics. The spin chain is of length L = 100.

In this appendix, we cover two points. (1) We outline several qualitative features

of the Rényi entropy evolution that highlight several interesting features that are not

discussed in the main article. (2) In addition, we show that the entropy bound violation

with confining field is independent of the finite system size effect. We will mainly

concern ourselves with the kink-preserving dynamics in this appendix.
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For generic model parameters, as the initial product state domain wall starts

evolving, entanglement immediately appears, dominated by the dynamics of kink-anti

kink pair creation and motion. In contrast, for kink-number preserving dynamics, the

half-chain entanglement can only begin emerging when the kinks collide. To see this,

we compute the Rényi entropy of half of the chain. In Fig. 3.C.1, we show how a rapid

increase in the half-chain Rényi entropy S2 for small domain wall and large domain

wall separation is associated to the time of the domain wall spreading and collision.

Here, a small initial domain wall separation (l = 4) has a collision around t ≈ 1 while

that of the large separation l = 24 has collision around t ≈ 5.

FIGURE 3.C.2: The half-chain Rényi entropy S2 (left) and domain wall heat
(right) for g = −J = 0.3, h = 0, L = 100, and initial domain wall separation
size l = 4. The dip around t ≈ 85 corresponds to kink collisions. The
color scale has been magnified near ∆zz

i,i+1 = 0 as the kink density becomes
diluted upon spreading.

We provide additional details for the Rényi entropy dips found in Fig. 5 in the

main text. Here, the dip around t ≈ 85 is directly associated with kink collision after

bouncing off the open boundary chain. We provide the associated domain wall/kink

heatmap in Fig. 3.C.2.

We now turn to demonstrate that the violation of the S2 = 2 bound is independent

of the system size, along with other qualitative features of the entropy evolution. In

Fig. 3.C.3, we vary various parameters within the kink-conserving dynamics: (1) the

kinetic energy (g − J), (2) the confining potential field h, and (3) the system size L.
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FIGURE 3.C.3: The half-chain Rényi entropy S2 (left), the Rényi entropy
map with different bipartite cut position (middle), and the domain wall
profile across link positions (right) for g = −J = 0.25, h = 0.05, L = 140

(top) and g = −J = 0.5, h = 0.1, L = 160 (bottom).

In Fig. 3.C.3, we see the S2 entropy bound is violated upon the second collision of

the kinks. The first collision happens at early time and is discussed in detail earlier in

this appendix. Here, we verify that the total kink density near the ends of the chain is

negligible when the second collision occurs upon the acceleration of the kink dynamics

back to the middle of the chain owing to the confining potential.

Another feature of the kink-conserving dynamics is the dip in the Rényi entropy

before the periodic collisions of the kinks after expanding to maximal extent set by

the strength of the confining potential. This can be observed in the half-chain Rényi

entropy, as well as in the Rényi entropy heatmap diagram, where the color code shows

a lower Rényi entropy dip right before the periodic collisions of the kinks.
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3.D Computational Complexity of the MPS Implementa-

tion

We will comment on the computational complexity of our algorithm above, and possi-

ble speed up that could possibly be implemented in a future work. In iTensor, working

with density matrices is actually sub-optimal since it creates MPO with bond dimension

D2, which we illustrate in Fig. 3.D.1. Depending on the details of how iTensor package

handles the contraction of two (different) reduced density matrices, this computation

can either scale as O(Ld3D8) in the worst case or O(Ld3D6) in the most optimal case.

Dealing with reduced density matrices directly is more straightforward in code devel-

opment with existing methods in iTensor, but severely limits the simulability of Rényi

entropy evolution to later times when bond dimension is large everywhere on the spin

chain. This is the case for string breaking (kink number violating, generic case) situa-

tion when g ̸= −J, as shown in Fig. 6 in the main text when we attempt to calculate

Rényi asymmetry directly with density matrix contractions and issue with computa-

tional cost only allows time evolution for early times (t = 10).

FIGURE 3.D.1: In iTensor, taking an outer product of an MPS |ψ⟩ with it-
self (with bond dimension D) automatically forms an MPO density matrix

with bond dimensions D2.

Instead, an optimal approach is shown in Fig. 3.D.2. The algorithm represented

pictorially in Fig. 3.D.2 will necessitate contractions without constructing reduced den-

sity matrices directly. In this approach, we contract tensors individually and avoid the

dealing with the full D2 bond dimensions of each ρA MPO link. The algorithm in this
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FIGURE 3.D.2: Minimal contraction order for individual tensors to com-
pute Tr(eiλQρAe−iλQρA). Here the top 2 and bottom 2 rows of tensors can
come from different reduced density matrix. The strategy for implemen-
tation here is to perform contractions of individual tensor component in
MPS wave functions without first forming the density matrix MPOs, and
the size tensor from partial trace can also be formed partial inner product

of MPS wave function with itself.

case will dramatically improves the complexity to O(LdD3), but it comes with a more

complicated code development. We will leave the development of a more efficient en-

tanglement asymmetry computation as a future research avenue.

3.E Upper bound on Rényi Entropy for h = 0 and kink-

number preservation.

In this appendix, we prove that starting with a domain wall, and evolving with our

Hamiltonian with J = −g and h = 0 the second order half chain Rényi entropy S2 =

− log2(Tr(ρ2
A)) is bound by 2 at all times. Concretely, we consider an initial state of the

form:

|ψ(0)⟩ = | ↑ ... ↑↓x ... ↓y−1↑y ... ↑⟩ (3.22)
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To compute the evolution, we first apply the Kramers-Wannier UKW , mapping the state

to:

UKW|ψ(0)⟩ = |1...(−1)x111(−1)y11 ...1⟩. (3.23)

Via a Jordan Wigner transformation this state will become the two particle state

UKW|ψ(0)⟩ = c†
xc†

y|vac⟩. (3.24)

As explained above, the evolution of the state in the Jordan-Wigner picture is governed

by the quadratic fermion Hamiltonian (3.6). In particular, when g = −J, the Hamilto-

nian does not involve pair creation terms. Under such evolution, the creation operators

in (3.24) transform as:

c†
α −→ Σjuαjc†

j (3.25)

with a unitary L × L matrix u. Therefore the evolved state is of the form:

UKW|ψ(t)⟩ = Σi,juxiuyjc†
i c†

j |vac⟩ = Σi<j
(
uxiuyj − uxjuyi

)
c†

i c†
j |vac⟩ (3.26)

We now undo the Kramers-Wannier transformation to get:

|ψ(t)⟩ = Σi<j
(
uxiuyj − uxjuyi

)
| ↑ ... ↑↓i ... ↓j−1↑j ... ↑⟩ (3.27)



102
Chapter 3. Confinement and Kink Entanglement Asymmetry on a Quantum Ising

Chain

We now proceed by bounding the Schmidt rank of the state (3.27). We expand the

summation explicitly as:

|ψ(t)⟩ = Σi≤LA Σj>LA

(
uxiuyj − uxjuyi

)
| ↑ ... ↑↓i ... ↓j−1↑j ... ↑N⟩

+ Σi>LA Σj>i
(
uxiuyj − uxjuyi

)
| ↑ ... ↑↓i ... ↓j−1↑j ... ↑N⟩

+ Σi<jΣj≤LA

(
uxiuyj − uxjuyi

)
| ↑ ... ↑↓i ... ↓j−1↑j ... ↑N⟩

=
(
Σi≤LA uxi| ↑ ... ↑↓i ... ↓LA⟩

)
⊗
(
Σj>LA uyj| ↓LA+1 ... ↓j−1↑j ... ↑N⟩

)
−

(
Σi≤LA uxj| ↑ ... ↑↓i ... ↓LA⟩

)
⊗
(
Σj>LA uyi| ↓LA+1 ... ↓j−1↑j ... ↑N⟩

)
+ | ↑ ... ↑↑LA⟩ ⊗

(
Σi>LA Σj>i

(
uxiuyj − uxjuyi

)
| ↑ ... ↑↓i ... ↓j−1↑j ... ↑N⟩

)
+

(
Σi<jΣj≤LA

(
uxiuyj − uxjuyi

)
| ↑ ... ↑↓i ... ↓j−1↑j ... ↑LA⟩

)
⊗ | ↑ ... ↑↑N⟩.(3.28)

Observe that in the last line we have explicitly separated |ψ(t)⟩ into a combination of

the form:

|ψ(t)⟩ = Σ4
α=1|ϕα⟩ ⊗ |ϕ̃α⟩. (3.29)

Note that for the rest of the argument, it doesn’t matter if ϕα, ϕ̃α, are normalized or

represent orthogonal sets. Indeed, the form (3.29) immediately implies that the Schmidt

rank of the state |ψ(t)⟩ with respect to this partition is at most Sch(ψ(t)) ≤ 4 (see

Problem 2.2 in [26]). Since the logarithm of the Schmidt number is a bound on entropy

(Von Neumann entropy, and as consequence also Rényi entropy) we have that:

S2 ≤ log2 Sch(ψ(t)) ≤ log2 4 = 2. (3.30)
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Conclusion

Recent theoretical and experimental progress has allowed for unprecedented ability to

simulate the dynamics of quantum many-body systems out of thermal equilibrium in

recent years. Many theoretical formalisms and numerical methods have been devel-

oped to tackle the difficult problem of simulating non-equilibrium quantum dynamics

in both open and closed quantum systems. In this thesis, we have introduced and ana-

lyzed both open and closed systems where the surprising behavior of non-equilibrium

dynamics is showcased.

Specifically, in Chapter 2, the closed hierarchy formalism has been applied to

the problem of non-interacting fermions under repeated measurements with diffusive

transport and various experimentally realistic disorders. The first part of the chapter

is devoted to understanding both analytically and numerically the diffusion constant

associated to the diffusion transport in the measurement-induced chiral current. The

second part then turned to understanding analytical and numerically the influence of

disorder on the flow rate of the measurement-induced chiral current. The flow rate of

the chiral current induced by repeated measurements is generally reduced by the intro-

duction of various types of disorder. In the case where both Zeno measurement limit

(where time intervals between measurements get infinitesimally small) and determin-

istic walk (achieved by tuning the time interval of each of the 8 measurement steps in
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the cycle to be of certain values), the site dilution disorder case displays a geometric

percolation threshold. Analytical treatment is amendable to cases strictly in the Zeno

measurement limit only, and most of the investigation is numerically in nature.

Attention is then turned to the quenched dynamics of closed quantum system

in Chapter 3. Specifically, the goal is to understand and investigate confinement by

mapping confinement into the quenched dynamics of domain walls in quantum Ising

model in one dimension. By tuning the model, the majority of Chapter 3 is focused on

understanding domain wall dynamics where domain wall number is conserved. The

model of interest displays integrability in the kink-preserving Ising model when no lon-

gitudinal field exists and this integrability sets a bound of the entanglement entropy of

the quantum state. This bound is then broken when one introduces confinement into

the problem. The second part of Chapter 3 then turned to investigate a new type of

entanglement asymmetry that is two-body in nature, and reveal surprising properties

about the entanglement asymmetry. Along the way, we developed a tensor network

algorithm to compute entanglement asymmetry in the most generic setting, and also

uncover a unitary quantum circuit that realizes the the Kramers-Wannier transforma-

tion for a one-dimensional problem with open boundary condition.

Overall, this dissertation has made theoretical advances on the simulation of

quantum dynamics in quantum many-body systems outside of equilibrium. New meth-

ods have been proposed and utilized to tackle the problems of (1) open, non-interacting

quantum system under measurements, and (2) closed, interacting quantum system.

The study of entanglement dynamics in Chapter 3 is especially of interest to various

quantum simulation experiments conducted by Google Quantum AI, IBM Quantum,

and other quantum industry as recent classical shadow methods has been proposed to

extract Renyi entropy in real quantum simulations via very few measurements [145,

146].
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