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Abstract

The extent and origin of somatic cell genome diversity is a question of central importance to
human biology and disease, and one about which surprisingly little is known. Somatic
mutations are involved in tumor formation, are implicated in many developmental and
neurological diseases, and have been suggested as a mechanism driving the vast diversity of
morphology and stochastic interconnections exhibited by neurons. Conventional genome-
wide methods applied to bulk tissue samples are ill suited for somatic variant detection.
Such samples contain diverse cell types and intermixed lineages, making it difficult to
distinguish somatic mutational patterns in a specific cell type, or the clonal prevalence of
those mutations. Examination of single cell genomes avoids these problems, but current
methods lack sensitivity.

We make two important methodological improvements to somatic mutation discovery, and
use them to study somatic mutations in single post-mitotic neurons. First, we utilize a novel
experimental design that allows deep sequencing of single cell genomes by forming clonal
cell populations derived by somatic cell nuclear transfer and enculturation. The resultant
sequencing data allows investigation of single cell somatic mutations with unprecedented
resolution. Second, we improve bioinformatic methods for the detection of structural
variation. Due to the complexity of structural variants, methods for their discovery have
lagged behind those used to identify single nucleotide polymorphisms and small insertions
and deletions. Improvements in these methods are useful in general. But they are
particularly important for the study of post-mitotic neurons, as we wish to investigate the
long proposed hypotheses that the diversity in neuronal morphology and connectivity
patterns may be due to structural variations akin to V(D)] recombination in the immune
system and/or high levels of mobile element transposition. By applying these two new
methods, we find that each neuronal genome harbors hundreds of private somatic
mutations that likely arose during late development or post-mitotic aging, and that many
somatic structural variants are complex events defined by multiple clustered breakpoints.
We also demonstrate that neither programmed or recurrent mutations, nor mobile element
insertions, are likely to be a major mutational force shaping neuronal genome diversity.



ii
Dedication

This dissertation is dedicated to the memory of my father, Vincent Faust. He instilled in me
at an early age his desire to understand how everything around him worked. I hope I have
been able to pass on this sense of curiosity and wonder to my own children.



i
Acknowledgments

[ started my graduate studies at UVA in the Computer Science Department. I would like to
thank Kevin Skadron, my CS thesis advisor who helped me through the process of passing
my CS qualifying exam, was the inspiration for ArchFP, a coauthor on the ArchFP
publication, and introduced me to Ira Hall. I would also like to thank Gabe Robbins, Marty
Humphrey, and Wes Weimer for sitting on my CS qualifying exam committee. [ would also
like to thank Mark Sherriff who mentored me through teaching Introduction to Computer
Programming to 80 students.

[ would like to thank Anindya Dutta and especially Joel Hockensmith for making it easy for
me to switch to the Biochemistry and Molecular Genetics Department. Ira Hall has been my
de facto and ultimately my actual thesis advisor for all of my bioinformatics projects
starting from my first semester at UVA. He has taught me almost everything I know about
the field, and he has been the corresponding author on all related publications. I can’t thank
him enough for all his contributions towards my success. [ would also like to thank Aaron
Quinlan and Bill Pearson who both sat on my thesis committee and had many useful
comments especially about YAHA, and Hui Zong who agreed to sit on my thesis committee
as the GSAS representative.

[ would like to thank members of Ira’s lab for their camaraderie and interesting
conversations and contributions on various projects. These include students and post-docs
Mike Lindberg, Ryan Layer, Colby Chiang, Mitchell Leibowitz and Ankit Malhotra, and staff
members Royden Clark and Svetlana Shumilina. I would like to thank all of the collaborators
on the mouse neuron project from Scripps including Kristin Baldwin and especially Jennifer
Hazen, and the rest of the Scripps team.

Finally, I would like to thank my wife Paulyn Heinmiller, and my two children Eric and
Elaina Faust for their support throughout this often trying process, with an additional
thanks to Eric for his insights on programming issues related to SAMBLASTER and YAHA.



1 Introduction and Background

The completion of a high quality draft human reference genome by the Human Genome
Project in 2001 has ushered in a new era of discovery of all aspects of human genetics
(Lander et al, 2001). One such area is the study of variation in genomes between
individuals. Previously, it had been thought that the vast majority of genetic variation was in
the form of single nucleotide polymorphisms (SNPs), the replacement of a single nucleotide
in a DNA sequence with a different nucleotide. It has been found that we each differ from
one another by approximately three million SNPs. However, a surprise finding since the
completion of the Human Genome Project has been the number and complexity of
structural variations (SVs), an insertion, deletion, duplication, or inversion of at least 50
consecutive nucleotides. Roughly 1,000 SVs distinguish the genomes of two normal humans,
and within the human population these variants collectively affect more bases of the
genome than SNPs (Conrad et al., 2010; Mills et al., 2011).

The idea that each cell in our body contains identical DNA is an oversimplification. It is
estimated that there are over 10 trillion cells in the human body (Baserga, 1985; Bianconi et
al, 2013), requiring at least as many cell divisions to produce. The eukaryotic DNA
replication and repair machinery produces approximately one base error per billion base
pairs replicated (McCulloch and Kunkel, 2008), which predicts an average of ~6 de novo
mutations per diploid mammalian genome per cell cycle. Empirical studies are in close
agreement, with estimates of the actual single nucleotide mutation rate ranging from 1 to 5
base substitutions per replication cycle for healthy somatic cells (Behjati et al., 2014;
Holstege et al, 2014; Lynch, 2010; Welch et al., 2012). The mutation rate for small
insertions and deletions in simple repeat regions of the genome may be as much 10X higher
(Frumkin et al., 2005). Therefore, an adult human is necessarily composed of genetically
distinct populations of somatic cells, a condition first termed somatic mosaicism by
Cotterman in 1956 (Cotterman, 1956).

In addition to replication errors, there are many other mutagenic processes that can add to
the somatic mutational burden, and therefore the overall genetic mosaicism of an organism.
Reactive oxygen species (ROS) are a normal byproduct of oxidative phosphorylation in
mitochondria, and are highly mutagenic (Dizdaroglu, 2012). Exposure to ionizing radiation
can generate ROS, and also directly cause thymine-thymine and other nucleotide dimers
and single and double strand breaks in DNA (Svobodova et al, 2012). People in
industrialized societies are exposed to an ever increasing number of chemical. Tobacco
smoke alone contains >60 mutagenic compounds (Pfeifer et al., 2002). Structural mutations
can occur during replication and/or single or double strand break repair, many of which
result in unique mutational signatures (Figure 1.1). These include mis-segregation or
recombination of chromosomes (Youssoufian and Pyeritz, 2002), replication slippage, non-
allellic homologous recombination (NAHR), breakage-fusion-bridge, nonhomologous end
joining (NHE]), microhomology-mediated end joining (MME]), fork stalling and template
switching (FoSTeS) and microhomology-mediated break induced replication (MMBIR)
(Hastings et al., 2009). Mitochondrial DNA is subject to higher mutation rates than nuclear
DNA, therefore single cells often contain mosaic mitochondria, a condition called
heteroplasmy (Youssoufian and Pyeritz, 2002). Recently, circular extra-chromosomal DNA
fragments 200-400bp in length and associated microdeletions have been found to be
prevalent in many cells in a mosaic fashion (Shibata et al., 2012). Another source of somatic
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mutations is the inclusion of DNA from retroviruses or endogenous retrotransposons into
the genome (Kazazian, 2011). Finally, the adaptive immune system utilizes programmed
mutations including V(D)] recombination and hypermutation of T-Cell receptors of
immunoglobulins (Di Noia and Neuberger, 2007). As we will discuss in detail below,
retrotransposon activity and programmed mutations have long been hypothesized to
contribute to the diversity of neuronal morphology and stochastic interconnectivity.

In what follows, we will use the following abbreviations; base-pair (bp), thousand bp (Kbp),
million bp (Mbp) and billion bp (Gbp).

There are a variety of types of mutations that can occur depending on a combination of their
intrinsic and/or extrinsic causes. Mutations are categorized by the nature of the change to
the DNA, and include aneuploidy, the addition or deletion of one of more whole
chromosomes; structural variation (SV), the insertion, deletion, (tandem) duplication,
inversion, or translocation of >50bp of contiguous DNA (Figure 1.3); copy humber variation
(CNV), a general term for an increase or decrease in the number of copies of a genomic
region including both aneuploidy and unbalanced structural variants; indels, small
insertions and deletions of between 1-50bp; and single nucleotide variation (SNV), the
replacement of a single base-pair by another. Mitotic crossover can result in loss of
heterozygosity (LOH). A particularly severe form of LOH occurs when two copies of one of a
pair of sister chromosomes mis-segregate into a daughter cell. When this occurs during
gametogenesis, it is called uniparental disomy (UPD). If this occurs as a somatic mutation
during mitosis it is called acquired UPD (aUPD).

Mobile elements insertions (MEIs) are structural variants that are a particularly important
category of somatic mutation leading to genetic diversity. There are several varieties of
mobile elements that have over time contributed aproximately 45% of our genome. These
include DNA transposons, mobile elements (MEs) that include long-terminal-repeat (LTRs),
long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs),
remnants of which contribute approximately 3%, 8%, 17%, and 11% of our genetic material
respectively (Cordaux and Batzer, 2009). Almost all of these insertions are millions of years
old, have drifted through accumulated mutations, and are no longer active. L1 LINE
elements are by far the most prominent ME, with ~80-100 active copies in the human
genome, and ~3000 in the mouse genome (Muotri et al., 2005). L1 elements are self-
contained as they encode the proteins needed for their own retrotransposition within the
genome, and can also can transpose SINE elements. As these MEIs can occur essentially
anywhere in the genome, they can cause the full range of effects on gene expression
including disrupting exons, creating cryptic stop signals or alternate splice sites in introns,
or alter gene regulatory regions (Cordaux and Batzer, 2009).

1.1 Significance of studying somatic mosaicism

Somatic mosaicism is a topic of growing interest, as there is increasing evidence for its
frequency in apparently healthy tissue and its implications in disease states. In many cases,
these somatic mutations are structural variants. In this section, we will briefly present the
results from a variety of recent studies aimed at better characterizing the prevalence and
phenotypic consequences of somatic mosaicism. We will then revisit these topics in greater
detail in Section 1.3 and Section 1.4 after first discussing the experimental techniques
available for studying somatic mutations in Section 1.2.
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[t is now clear that cancer is caused by one or more somatic mutations in a cell lineage
leading to abnormal cell division and/or migration (Watson et al., 2013). In the two-hit
model of cancer genesis, somatic structural variants often account for at least one of the
causative mutations. Classic examples involve LOH either by mitotic crossover or deletion in
retinoblastoma and BRCA-related breast cancers. Also, many cancers are caused by somatic
gene fusions due to translocations, and 100s of such fusion genes have now been catalogued
(Mitelman et al.,, 2007). Accurate characterization of the somatic mutations present in
subclonal populations of tumor cells will be increasingly critical to precision treatment
choices, especially given that relatively small populations of cells are often refractory to
treatment or become metastatic.

More generally, the phenotypic changes that result from somatic mutations often depend on
the genetic background of the individual (Gottlieb et al., 2001), which may account for some
of the missing heritability of complex disorders (Manolio et al., 2009). Somatic CNVs have
been implicated in the onset and severity of Alzheimer’s disease (Beck et al., 2004; Freed et
al, 2014), and a wide variety of other neurological disorders including autism spectrum
disorder, bipolar disorder, attention-deficit-hyperactivity disorder, obsessive-compulsive
disorder, depression, anxiety and panic disorder (Sebat et al., 2009; Weiss et al., 2008).
Somatic MEIs have also been implicated in a number of neurological and neurodegenerative
disorders including ALS (Douville et al., 2011), schizophrenia, bipolar disorder and major
depression (Bundo et al., 2014), Rett syndrome (Muotri et al.,, 2010), Fragile X-associated
tremor/ataxia syndrome (Tan et al.,, 2012), ataxia telangiectasia (Coufal et al., 2011), and
others. That fact that somatic MEIs have also been associated with normal neuronal
development suggests that there may be a sensitive balance between ME activity in healthy
neurons, and ME over activity leading to pathology. Further studies are needed to
understand under what circumstances that line is crossed.

Somatic mutations have been found in apparently normal tissue in healthy individuals (De,
2011). Studies of embryos show surprisingly high levels of mosaic aneuploidy (Bielanska et
al, 2002; Kano et al,, 2009; Vanneste et al., 2009). Blood samples show somatic CNV, which
usually increasing with age (Jacobs et al., 2012; Laurie et al., 2012), and displays changing
levels of clonal prevalence over time (Holstege et al.). Somatic mosaicism in monozygotic
twins has similarly shown increased divergence with age that can lead to discordant
phenotypes (Bruder et al., 2008; Forsberg et al., 2012). Behjati et al. used an experimental
technique similar to ours to precisely characterize somatic mosaicism in clonal cell
populations grown from gastro-intestinal stem cells, including SNVs (Behjati et al., 2014).

Somatic mosaicism in healthy neurons has been extensively studied due to the ongoing
uncertainty concerning the importance of somatic mosaicism to neuronal diversity. Somatic
aneuploidy, CNV, and MElIs have all been observed in healthy neurons in humans, mice, and
flies. However, different studies provide a remarkably wide range of estimates for the
prevalence of these somatic mutations, depending on the cell type being studied and the
experimental technique used. Estimates for the percent of aneuploid neurons range from
3% to 35% (Rehen et al,, 2001; Rehen et al,, 2005; Yurov et al,, 2007). Similarly, 16%, 69%,
and 100% of neurons have been reported to be harboring somatic CNVs (Cai et al., 2014;
Gole et al,, 2013; McConnell et al,, 2013). Estimates of the average number of somatic MEIs
that occur in neurons differ by three orders of magnitude from 0.07 to ~80 (Baillie et al.,
2011; Coufal et al,, 2009; Evrony et al., 2012; Evrony et al.; Muotri et al., 2005; Muotri et al,,
2009; Upton et al,, 2015). These wide ranging estimates highlight the need for additional
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studies with improved experimental design to clarify if this variability is due to differences
in experimental technique, or represents actual biological complexity.

1.2 Somatic Mutation Detection

Somatic mutation detection is difficult for two separate but related reasons. First, the
biology is complex. The prevalence of a somatic mutation in the body depends of several
factors; 1) the time during morphogenesis the mutation occurred, 2) the cell type in which it
occurred, 3) close intermixing of different cell types and lineages within tissues, 4) clonal
expansion or death of cell lineages over time, 5) cell migration, and other factors (Freed et
al., 2014; Youssoufian and Pyeritz, 2002). Second, available experimental techniques have
limitations. Current genome-wide methods require a large number of cells to obtain
sufficient DNA, typically from a blood or tissue sample that is often comprised of mixed cell
types and lineages, making it difficult to detangle the biological complexity. To simplify
things, studying mosaicism at the single cell level is often preferred. But available
techniques limit experiments to the study of large effects such as aneuploidy or large CNVs
(McConnell et al, 2013), studying only pre-identified target mutations such as
retrotransposon insertions (Evrony et al., 2012), lack sensitivity and accuracy and/or have
limited throughput thereby restricting the number of cells that can be studied. In addition,
current single-cell techniques often consume all available DNA from the original cell
therefore making it impossible to validate their specific mutations. As a result, the
distribution of somatic mutations by cell type and mutational category remains poorly
understood.

Here we present a novel experimental design for the study of somatic mosaicism in post-
mitotic neurons that shares many of the advantages of both genome-wide and single-cell
techniques. We use somatic cell nuclear transfer (SCNT) of DNA from post-mitotic neurons
of known origin in the mouse olfactory bulb to seed clonal colonies of cells. We can then
harvest sufficient DNA from these cultures to perform deep whole genome sequencing of
each neuronal genome in order to detect the entire landscape of somatic mutations
including SNVs, indels, SVs, CNV, and MEIs to single base-pair resolution with sensitivity
and accuracy unprecedented for single-cell experiments. In addition, we validate every one
of our SV and MEI calls, and a representative sample of our SNV and indel calls. Therefore
we can correctly characterize the accuracy and sensitivity of our findings.

1.2.1 Somatic Mutation Detection without DNA Sequencing

Historically, the tools available for studying somatic mutations in single cells have been
limited to the observation of chromosome-scale events (Bushman and Chun, 2013). Since
the mid to late 1800s, researchers could directly observe the karyotype of single eukaryotic
cells via direct observation with light microscopy of stained chromosomes during
metaphase. Stains that distinguish between adjacent chromosomal regions (bands) can be
used to distinguish some SVs down to ~5-10Mbp in length. By the early 1900s, long before
the discovery of DNA as the molecular substrate of genes, researchers began to suggest that
chromosomes might be the carriers of genetic material based on observation of the fate of
aneuploid cells (Carlson, 2004), culminating in the seminal paper by Morgan et al. in 1915
(Brush, 2002). Remarkably, in that same timeframe, Theodor Boveri was among the first to
suggest that tumors were created by de novo somatic mutations, based on his observations
of karyotypes in tumor cells and his study of the creation of aneuploid cells by mis-
segregation of chromosomes in multi-polar mitotic events (Boveri, 2008). Decades later,
Barbara McClintock published her famous findings based on cytological studies of the
mechanisms causing somatic mosaicism in maize. She found that many chromosomal
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transposition are involved some caused by breakage-fusion-bridge cycles, while others
involve elements that would later be recognized as retrotransposons (McClintock, 1951).
Cytogenetic techniques are still in use today, however the number of cells that can be
examined with these techniques is severely limited.

A more modern technique for the direct observation of aneuploidy in single cells is spectral
karyotyping (SKY) which uniquely labels genomic fragments on each chromosome with
distinct fluorochromes, thereby easing the identification of specific chromosomes (Schrock
et al,, 1996). For more specific chromosome loci detection, increasingly complex variations
of fluorescent in situ hybridization (FISH) are being used to probe specific genomic regions
of interest without requiring the cell to be in metaphase (lourov et al., 2005). Depending on
the choice of FISH probes used, CNVs as small as several Kbp can be detected, albeit at the
cost of choosing predetermined loci to examine (Vorsanova et al.,, 2010). These techniques
can now be combined with computerized analysis of the resultant images to improve
throughput significantly.

Comparative genomic hybridization (CGH) is a related technique that attaches control and
sample DNA to different labels, and co-hybridizes them to a collection of probes. Now, most
such probes are placed in a large array in a technique called array CGH (aCGH). The
difference in signal strength for the control and sample labels at specific probes identifies
differences in DNA copy number at the associated loci. This technique can be used to
compare different tissue from the same individual, for example a tumor/normal pair (Pinkel
and Albertson, 2005). By carefully comparing the sample signal to a predetermined
reference, somatic mutations appearing in as little as 10-20% of the cells from a blood
sample can be detected (Ballif et al., 2006). Modern CGH arrays can detect CNVs down to
~50Kbp is size. SNP arrays (SNP-CHIPs) are closely related to CGH arrays, but use probes
designed to detect common single nucleotide polymorphism (SNPs). Such an array can be
used to test for CNVs as in CGH at least at the selected loci, but can in addition detect
common disease causing SNPs and also loss of heterozygosity (LOH). The drawback of these
techniques is that they use cell samples, and are difficult to use to study somatic mosaicism
in single cells without DNA amplification.

Quantitative PCR (qPCR) is a technique that detects the amount of DNA amplified by specific
primers selected to amplify genomic loci of interest for a given experiment. For example
many experiments described below use qPCR with L1 specific primers to estimate somatic
L1 insertion rates. Typically it is difficult to tell the absolute amount of the target DNA in the
sample unless one also normalizes the results relative to a known quantity of DNA that is
spiked into the mixture. This requires specific probes for both the target DNA and the
reporter DNA that fluoresce at different frequencies. Like normal PCR reactions, qPCR is
performed in a thermal cycler, but one modified to be able to measure the fluorescence after
each cycle (Heid et al., 1996).

The total amount of DNA in each cell of a larger sample can be obtained using flow
cytometry of cells stained with Propidium Iodide, Ethidium Bromide or other dyes. This has
been used to distinguish cells in S and G2/M vs. other phases of the cell cycle to gauge
mitotic activity (Laerum and Farsund, 1981), and has sufficient resolution to distinguish X
vs. Y chromosome-bearing sperm prior to in vitro fertilization (Johnson, 1995). This
technique has also been used to measure DNA content variation (DCV) in various cell types
including neurons (Westra et al., 2010). The downside of this technique is that it cannot
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detect balanced mutations such as conservative translocation or inversions, nor where in
the genome the DCV occurs.

1.2.2 DNA Sequencing Technology

The advent of DNA sequencing technology revolutionized the study of many aspects of
genetics and ushered in the closely related field of genomics. There are often four separate
steps involved in identifying mutations from source DNA. First, the determination of the
order of bases in a fragment of sample DNA is called sequencing. Second, assembly is the
process used to create a single sequence of tens of millions of bases that appear in a
chromosome of a reference genome from millions of much shorter 100s to 1000s of base-
pair long sequences generated by available DNA sequencing technologies. Third, alignment
is the process used to find the best match between two DNA sequences represented as
strings of the letters ATCG, where one string is usually a set of one or more reference
sequences representing the DNA for an organism, and the other is a DNA read (or “query”)
from a sequencing run. Finally, variant detection uses a number of bioinformatic methods to
identify differences between two samples of DNA, or between a sample of DNA and a
reference genome.

The invention of Sanger sequencing in 1977 simplified what had previously been an entirely
manual biochemical process. The sequence of bases in fragments of DNA of approximately
100-1000bp in length is determined by a process called chain termination. The fragments
are replicated by DNA polymerase using a mixture of the four normal triphosphate bases
(dNTPs) that act as monomers for DNA replication, and a much smaller concentration of
radiolabeled variants of one of these bases that has been chemically altered to prohibit
further processivity of the replication process. With sufficient input DNA, the stochastic
incorporation of the terminating bases produce an admixture of fragments of different
lengths, which are then separated by gel electrophoresis and used to expose a photographic
plate. By running four such gels, one for each radiolabeled terminating base, the entire
sequence of the original DNA fragment could be ascertained by visual inspection (Sanger et
al, 1977). Although this process was much faster and worked on longer DNA sequences
than any previous technology, it was still required many manual steps. Over the next 20+
years, many improvements of this general process were incorporated into ever faster,
cheaper and more reliable methods (Mardis, 2013). In 1986, radiolabeled terminating bases
were replaced with ones that fluoresced at four different frequencies. This allowed all four
bases to be run in the same mixture, and removed the need for drying gels, exposing film,
and visual inspection to read the base sequences. Instead, the sequence could be read
directly by a computer (Smith et al., 1986). Combined with the use of much thinner gels, the
sequence of many input DNA fragments could now be read in parallel. This was the state of
the art at the onset of the publically funded Human Genome Project to assemble the first
human reference genome (Lander et al., 2001). By 1998, at the start of the privately funded
parallel effort to assemble a human reference genome (Venter et al., 2001), the process had
been further refined. In particular, the electrophoresis gels were replaced by small capillary
tubes whose location were more fixed than columns in a gel, and could be loaded
mechanically (Marsh et al., 1997). This added another dramatic increase in throughput,
allowing both efforts to complete drafts of the human genome by 2001. Sanger sequencing,
now often called capillary sequencing, is still is use today especially for 500bp-1000bp
segments of DNA from a few loci. It is very reliable, especially when the input DNA
fragments are redundantly sequenced from both strands in opposite directions.
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With the advent of new sequencing technologies discussed below, the cost and speed of
DNA sequencing has continued to improve at an exponential rate, which has made feasible
many new genomics projects. Reference genomes have been produced for other species,
especially so-called model organisms, including mouse (Waterston et al., 2002), fruit fly
(Celniker and Rubin, 2003), yeast (Cherry et al., 2012), and dozens of other species (See
(Mardis, 2011) for a review). In addition, many projects are now mapping the genetic
diversity within human and other animal populations. Here we mention just a small
sampling of some of the international efforts. The 1000 Genomes Project (1000 Genomes
Project Consortium et al., 2012) has already exceeded its goal of sequencing the genomes of
1000 individuals from diverse genetic backgrounds. The HapMap project is identifying and
cataloging SNPs from individuals across ethnic backgrounds, and assessing how they are
linked into common haplotypes (International HapMap Consortium, 2003). Efforts are also
underway to map structural variation across many genomes (Mills et al, 2011). The
ENCODE project is adding many functional annotations to regions of the human reference
genome (ENCODE Project Consortium, 2012). COSMIC is cataloging somatic mutations
found in cancer (Forbes et al., 2011). The Cancer Genome Atlas (TCGA) project is collecting
in-depth information about cancer genomes including full sequencing data, as well as
somatic mutations, gene expression profiles and epigenetic markers (Cancer Genome Atlas
Research Network, 2008). The Personal Genome Project is collecting full genomes of
patients with publically annotated medical histories and symptomologies to aid in precision
medicine efforts (Ball et al,, 2012). Many countries also have internal initiatives to map
diversity within their own populations. Of particularly interest to our own study of somatic
mutations in mouse neurons, common SNPs and small indels (Keane et al, 2011) and
structural variants (Quinlan et al., 2010) have been identified across mouse strains.

Next-generation or massively-parallel sequencing (NGS) dramatically both improves the
biochemical preparation protocols and increases overall throughput of sequencing
technologies. All NGS technologies share many features. The sample DNA is first broken up
into random fragments using mechanical agitation followed by selection of fragments
lengths suitable for the particular technology; a technique called whole genome shotgun
(WGS) sequencing. General attachment and primer sequences are then ligated to the ends of
the fragments. The fragments are then isolated on a surface via annealing of the attachment
sequence. Each fragment is then amplified via PCR to ensure sufficient DNA to provide
enough signal during sequencing. Sequencing itself is then a cycle of several steps. First
there is a replication step, followed by a detection step, then a cleanup step to prepare for
the next cycle (Mardis, 2013; Pettersson et al., 2009).

Three sequencing technologies utilize a similar technique to capture DNA fragments on
beads before amplification. Roche 454 technology can sequence fragments up to 500bp in
length (Margulies et al., 2005). It isolates each bead in a water bubble suspended in oil and
places each bubble into a separate well. In each replication cycle, only one type of base is
added to the mixture with no attached moiety to block replication. Therefore the signal,
measured by the amount of pyrophosphate released, is proportional to the number of
consecutive bases at the replication point that match the added NTP. The sensing of
homopolymers is error prone, and the technology tends to incorporate small insertions and
especially deletions into the reported sequence compared to the actual sample. Ion Torrent
places each bead into a well on a semiconductor chip that acts as a pH meter, measuring the
H+ ions released. It also uses non-terminating NTP one base at a time and therefore also
suffers from indel errors reading homopolymers. It is able to produce reads of ~200bp long
with an error rate of ~1% (Rothberg et al.,, 2011). The SOLiD technology ligates 2 bases in
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each replication cycle using 4x4 or 16 different flourophores in such as way that each base
is read twice, leading to the lowest error rates. The relatively long 200-500bp read length of
454 and Ion Torrent sequencing is favorable for many applications such as SV detection.

By far the most common and now most advanced NGS technology is from Illumina (Bentley
etal., 2008). It anneals 400-500bp to a glass slide, and increases the copies of each fragment
by bridge-amplification (Adessi et al., 2000). In each replication cycle, all four bases with
different attached flourophores are added to the mixture, and exactly one incorporated into
each fragment. The base added to each locus is read via a CCD camera. Once the sequence
from one end of the fragment is read, the sequencing starts over at the other end of the
bridge, allowing for the sequencing of paired-end reads. In 2005, the error rate of [llumina
sequencing became quite high after about 30-35bp, but now at least 100bp can be reliable
read from each end of the fragment with error rates below 0.5%.

All of the above NGS technologies suffer from artifacts from the biased PCR reactions used
to increase the local copies of a DNA fragment prior to sequencing. In particular, regions of
low and high GC content are not well amplified, and fragments from such areas tend to be
underrepresented in the output of the sequencing run, leading to uneven coverage of the
reads over the sampled DNA (Aird et al., 2011).

Both the assembly of genomes and the identification of structural variation are hampered
by short read lengths in regions that contain highly repetitive sequence such as simple
sequence repeats (SSRs), tandem duplications, and mobile element insertions (MEIs). There
are two strategies to help alleviate these difficulties. The first is to use short reads in pairs
that are separated by a gap of known length, resulting in a longer effective length for the
reads. Such pairs can be constructed by forming circular DNA, cleaving it near the
discontinuity on both sides, and sequencing the resultant fragment. This will form a mate-
pair of short reads separated by the length of the original circle. This technique can separate
the short reads by as much as 5-20Kbp using biochemical methods, or up to 150Kbp or
more using bacteria to clone the fragment. Mate-pairs were used extensively in the human
reference genome projects using Sanger sequencing, and can be used with any of the NGS
technologies described above. In addition, [llumina NGS sequencing inherently sequences
from both sides of a 400-500bp fragment, creating paired-end reads.

The second strategy is to use sequencing technology that is capable of reading much longer
sequence fragments. Illumina has recently developed a technology called TruSeq that
creates synthetic long reads using the same sequencing machines described above (McCoy
et al, 2014). To achieve this, the DNA is first sheared into ~10Kbp fragments, which are
then places in wells such that no well contains more than ~200 fragments. These are then
amplified by PCR and fragmented to 500bp size. Finally, an independent barcode of a short
unique DNA sequence is added to each well. After normal sequencing, the barcodes are then
used to reconstruct the 10kb fragments via de novo assembly of the resultant paired-end
reads. This technique may still suffer from GC bias and is susceptible to fragment assembly
errors if the fragments in any one well are overly repetitive. However, the consensus
sequence built from the de novo assembly can have error rates are low as 0.02%. This
technology has been used to more accurately characterize repeat sequences in the
drosophila genome, especially MEIs (McCoy et al., 2014).

The long-term best solution to these issues is to sequence single long DNA fragments
without the need for PCR amplification or other biased processing. One technology for
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doing this is to read single bases while they pass from one chamber to another through a
nanopore (Feng et al., 2015). While many such pore configurations have been suggested, the
only one is use today was developed by Oxford Nanopore (Clarke et al., 2009). In this
method, a single-stranded DNA molecule is digested by an exonuclease near the entrance to
the pore in such a way that the released nucleotides exit into the second chamber in the
order is which they are released. Each nucleotide is recognized by the current across the
pore when it flows past. In theory this technique can produce long reads with low error
rates, but currently available technology can produce 5-10Kbp reads with significant error
rates. This technology was recently used to de novo assemble an E. Coli genome (Quick et al.,
2014, 2015). Pacific Biosciences has developed a system in which the DNA polymerase is
attached at the bottom of a well, while a DNA fragment is replicated with fluorescing dNTPs.
All the chemicals are in the bath at once, and no cycling is done. The optics and related
computer processing must keep pace with the rate of polymerization. The current error rate
of this process is ~18% mostly comprised of small indels. However, the system is capable of
reads up to 10s of thousands of base pairs. To reduce error rates at the expense of read
length, the DNA fragment can be formed into a circle of up to 2kb in length, and each base is
sampled multiple times, reducing the per base error rate to <3%. This technology has been
used in conjunction with Illumina short reads and special bioinformatic processing to
further reduce the error rate to <0.1%. This combined sequencing and analysis method has
shown promise in de novo assembly of several genomes, including the identification of the
length and structure of repeat regions (Roberts et al., 2013; Shin et al.,, 2013).

1.2.3 Three Strategies for Somatic Mutation Discovery

All of the above sequencing technologies as well as aCGH and SNP-CHIP require the input of
more DNA than can be directly acquired from a single cell. Therefore, to detect somatic
mutations, one must use one of three techniques. First, one can use whole genome
amplification (WGA) techniques to increase the amount of DNA from a few or even one cell.
Second, one can identify somatic mutations in cells that have clonally expanded to the point
where they comprise a significant percentage of a bulk tissue sample, and are therefore
detectable in the sample albeit at low variant allele frequencies. Third, one can compare
bulk test and control samples from the same individual or members of a family cohort in
order to eliminate germline alleles that vary from the reference genome, but are not somatic
mutations. We now discuss each of these technique in turn using cancer studies as
instructive examples.

There are three WGA techniques in use today. They all use PCR amplification and largely
differ in the primers and polymerases that are used. Degenerative Oligonucleotide Primed
PCR (DOP-PCR) uses a single primer structure (Telenius et al., 1992). A few rounds of PCR
are done at relatively low temperature to allow the primer to saturate all its binding sites.
Then ~25 rounds of PCR are performed at a higher temperature to further amplify only
those regions created in the earlier rounds, reducing noise in genome coverage. However,
the resultant fragment size of ~100-1000bp is relatively small. The second technique is
called multiple displacement amplification (MDA) (Dean et al., 2002). The unique features
of MDA stem from the use of ®29bacteriaphage polymerase that has a very low base
replacement error rate, and is highly processive. It can displace the tail of double stranded
DNA that it encounters while replicating, leading to branching replication structures. This
eliminates the need for thermo-cycling, and can produce fragments of >10Kbp. However it
provides very uneven genomic coverage, resulting in allelic dropout rates of up to 60% in
low coverage areas. A modification to MDA called MIDAS uses a restricted amount of MDA
amplification in 12-nl micro-wells, followed by linearization of the product with POL L
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These two techniques reduce the amplification of artifacts, thereby increasing the signal to
noise ratio (Gole et al.,, 2013). The third technique is called multiple annealing looping-
based amplification cycles (MALBAC) (Zong et al., 2012). The key feature that distinguishes
this technique is the structure of the primers that form ssDNA loops of ~1Kbp in length
after each replication cycle. This means that amplification is linear instead of exponential,
leading to more even coverage over the genome with very low allelic dropout rates.

Using WGA techniques, CNV detection in single cells has been achieved with some success
using aCGH or SNP-CHIPs. When used with single-cell sequencing (SCS), the uneven
coverage can be overcome with binning techniques that identify relatively large CNVs.
However, single-cell SNP calling is quite challenging due to allelic dropout and other
artifacts. Therefore, strict calling criteria is required to avoid false positives, which in turn
leads to higher false negative rates (Ning et al., 2014).

Cancer studies have utilized WGA in conjunction with SCS. A breast cancer study used DOC-
PCR WGA and SCS to identify CNV in ~54Kbp bins (Navin et al.,, 2011). They found four
subclones of uniform composition in one breast carcinoma, and a single aneuploid clone in a
second breast carcinoma and its metastasis in the liver. Two studies used MDA WGA, whole-
exome SCS, and SNP calling to identify subclones and potential causative variants. The first
studied a case of essential thrombocythemia (Hou et al,, 2012). After quality control, 58/90
cells exhibited an average ADO of 43%. To reduce false positives, they called somatic
mutations that appeared in 25 cells, leading to a 90% validation rate by Sanger sequencing.
They also identified four genes containing driver mutations present in most of their cells.
The second used the same methodology to study a renal cell carcinoma (Xu et al., 2012).
They found that 20 cancer cells contained ~4X more somatic mutations than 4 normal cells,
and that none of the cancer cells shared enough mutations to be considered clonal.

Another cancer study used very deep (10,000X to 15,000X) 454 resequencing of the
immunoglobulin heavy chain in blood samples from 20 patients with chronic lymphocytic
leukemia in order to explore the complex etiology of cancer due to selection between
subclones of cancer cells (Campbell et al., 2008). The ~250bp reads allowed bioinformatic
haplotyping of the region to eliminate indels anomalies near homopolymers, and false
positive SNPs. They showed that disease progression is often very complex. In the two
patients exhibiting the most clonal mosaicism (19 and 7 subclones), the clonal phylogenetic
trees placed the dominant clone at neither the trunk nor a leaf.

As NGS sequencing costs have dropped, studies of cancer now routinely perform whole
genome or exome sequencing and analysis of paired tumor/normal tissue from the same
individual. Since we also use paired test/normal tissue samples in our study of somatic
mutation in post-mitotic neurons (Chapter 5), here we will limit our discussion to a few
cancer studies that elucidate general mutational mechanisms or use novel techniques with
relevance to our study. For example, as cancers have high SNV mutation rates, studies of
tumors with different cause or primary tissue of origin such as ionizing radiation in
melanoma (Pleasance et al., 2010a) or chemical carcinogens in lung cancer (Pleasance et al.,
2010b) have shed light on signatures of general mutational processes and/or DNA damage
repair mechanisms such as transcription-coupled repair and base-excision repair that also
occur in healthy tissue or contribute to other diseases (Alexandrov et al., 2013; Lawrence et
al,, 2013). For their study of the prevalence of MEIs in 43 cancer genomes across 5 cancer
types, Lee et al. devised a sensitive technique for the detection of MEIs that has now been
adopted for many MEI detection studies (Lee et al., 2012a).
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Finally, it has long been known that cancers contained many aneuploidies and large scale
CNVs, but only recently has it become clear just how complex these events can be (Stephens
et al, 2011). Complex genomic rearrangements (CGRs), the most extreme of which are
called chromothripsis, involve several to dozens of deletions, inversions and translocations
of fragments from one or more chromosomes joined together in an apparently random
fashion. These appear to be caused by a single catastrophic event resulting in multiple
double strand breaks ligated together by NHE] (Maher and Wilson, 2012). The incidence of
CGR varies markedly by tumor type (Malhotra et al.,, 2013), and is sometimes associated
with mutations in p53 (Rausch et al.,, 2012a). CGRs have also been found in the germline
(Chiang et al., 2012), and we found at least one somatic CGR in healthy post-mitotic neurons
(Chapter 5).

1.2.4 Bioinformatic Techniques for Detecting Somatic Mutations in Sequencing Data
The study of somatic mutations in paired test/normal tissue samples involves separately
identifying alleles that differ from the reference genome in each. Variants that appear in
both are deemed to be in the germline, while those only in the test sample are putative
somatic mutations. Therefore, we now discuss the tools used to identify alleles that differ
from the reference genome across all major mutational categories. This usually involves
alignment of each sequenced DNA fragment to the reference genome, and variation
detection performed by the pileup or clustering of those alignments by genomic region in
order to determine their common characteristics. We will postpone our discussion of the
alignment task until after we discuss variation detection methods, which put strong
requirements on aligners.

All the information used to detect SNPs and indels is local to a small genomic region around
their occurrence. Therefore, techniques for detecting them are easiest to understand and
tools for such detection are concomitantly more mature. While there are a large number of
such tools available today, including SOAPsnp (Li et al, 2009b), VarScan (Koboldt et al,,
2009), FreeBayes (Garrison and Marth, 2012), and GATK (DePristo et al., 2011; McKenna et
al,, 2010), they essentially all use some type of Bayesian model to calculate the probability
of a particular mutation (genotype) at a locus given the input sequence reads and prior
probabilities of each genotype. For example, all other things being equal, a heterozygous
SNP on an autosome should appear in approximately half of the sequence reads at that loci.
Prior probabilities can also be improved by using either a gold standard set of mutations
and/or using input data from multiple samples as supported by the GATK
UnifiedGenotyper. Tools typically try to reduce errors by reporting a lower probability for a
given genotype if the region has low read coverage, the genotype is supported by reads in
which the reported sequencer quality scores for the base is low, or the variant is
disproportionally represented in reads from one strand over the other strand. In addition,
some form of alignment normalization may be done in cases in which there is more than
one possible alignment for a given mutation, for example the deletion of a nucleotide from
within a homopolymer. Perhaps the best way to handle such ambiguous alignments and
strand bias is to calculate longer local haplotype regions; a technique used by FreeBayes
and the GATK HaplotypeCaller.

Once the SNPs and indels are called against the reference genome in this fashion, somatic
mutations in the test sample are identified by removing the control sample calls, and usually
also those in curated databases of known population alleles, as these are unlikely to have
arisen de novo by chance. SomaticSniper (Larson et al., 2012) and MuTect (Cibulskis et al,,
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2013) are tools that works directly on tumor/normal pairs to do this type of somatic
mutation analysis. However, these tools cannot identify somatic mutations across multiple
test samples. Therefore, to identify putative somatic mutations in post-mitotic neurons
(Chapter 5), we used the GATK UnifiedGenotyper to make our initial SNP and indel calls,
and custom Python scripts to filter out germline calls using criteria similar to those used by
(Kong et al, 2012) to identify somatic mutations during gametogenesis using family
pedigrees. Finally, to gauge false positive call rates, a subset of putative somatic mutations is
usually verified by PCR using primers for the appropriate genomic region, followed by
capillary sequencing. The resultant traces can be read visually for a small number of
heterozygous calls. However, to reduce errors in this process for a large number of calls, or
if the variant allele frequency may be different than 50%, a tool like SNPdetector can be
helpful to read capillary sequence traces (Zhang et al.,, 2005).

Somatic SV events are harder to identify than SNPs and indels for several reasons (Alkan et
al,, 2011). First, by definition, SVs cannot be identified by looking at a small local region of
the genome, and their variation in size and complexity limits the ability of tools to predict
where to look for the information needed to reconstruct them. For example, an insertion
from one genomic region to another is often detected as two separate breakpoints that then
have to be later combined into the proper interpretation of a single mutational event.
Second, informative sequencing reads for SV detection often fall into highly repetitive
sequences or span an SV breakpoint, and are therefore hard to properly align to the
reference genome.

There are two techniques used to discover SV using sequencing data. The first borrows the
strategy used with aCGH and SNP-CHIP data, using sequencing read depth to detect CNV.
The second is to use the subset of reads that align in an aberrant fashion to the reference
genome to form clusters that can signal a SV breakpoint (Figure 1.2).

To my knowledge, all CNV detection algorithms use variations on a theme. First the genome
is broken up into non-overlapping bins with varying sizes determined by GC content and
the amount of unique sequence they contain. Reads are assigned to bins, and the average
bin read depth is determined. Then z-scores are calculated for the difference in read depth
between each bin and some aggregate average of all bins. Consecutive bins of similar z-
scores are then combined to define larger genomic regions with the same copy number.
Regions with large absolute z-scores represent CNV events. The Event-Wise Testing EWT
method starts with very small bins compared to most approaches (Yoon et al, 2009).
CNVnator is probably the most widely used, and utilizes a copy-number invariant method
for calculating the aggregate mean (Abyzov et al,, 2011). For finding CNV in post-mitotic
neurons, we use a variant of this same binning approach that carefully calculates the mean
aggregate copy number separately for bins with different GC content, and uses circular
binary segmentation to combine bins into integral copy number (Malhotra et al., 2013).

The second approach to SV detection identifies pairs of clusters of aberrantly aligned reads
as putative SV breakpoints, defined as adjacent locations in the test genome that map to
discontinuous locations in the reference genome. SV breakpoints can be detected using
discordant paired-end mapping (PEM), in which the two ends of a paired-end pair do not
map to the reference genome with the expected distance or strand orientation, or split-read
mapping (SRM), in which a portion of a longer read aligns to one region of the reference
genome, and another portion aligns elsewhere (Figure 1.3). SRM is significantly more
precise and less error prone in locating SV breakpoints than PEM, as the latter can only
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Figure 1.2. Methods of SV detection.
Structural Variation, in this case a deletion, can be detected by 1) differences in read depth,

2) discordant paired-end mappings, and/or 3) split-read mappings.
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Figure 1.3. SV breakpoint signatures from paired-end and split-read mappings.
Different structural variant breakpoints are detected by different aberrant paired-end and
split-read mappings. For a deletion, discordant PEMs have the expected strand orientation
(+/-) but are farther apart on the reference than expected, while SRMs are also far apart and
point in the same direction. For tandem duplications, PEMs have the wrong strand
orientation (-/+) and in SRMs the beginning of the read maps after the end of the read. For
inversions, PEMs have the wrong strand orientation, (+/+ or -/-), and SRMs have two
alignments that point at each other. Translocations can have a variety of PEM and SRM
mapping orientations depending on the location of the two adjoined regions. Note that
insertions are not directly detected by these signatures, as they contain two breakpoints,
one on each end of the insertion. Therefore, their architecture is constructed post hoc by
combining two breakpoints into one event.
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probabilistically determine breakpoint location based on the expected insert size between
paired-end reads, while SRM can often locate SV breakpoints to single base-pair resolution.

When Illumina paired-end sequencing was first introduced, the ~30-35bp reads at each end
were too short to use SRM, and several PEM aligners were created to map SV with this
newly available sequencing data. These include PINDEL (Ye et al, 2009), BreakDancer
(Chen et al,, 2009) and HYDRA (Quinlan et al., 2010). However, each end of an Illumina pair
is now ~100bp in length, longer read technologies are becoming more commonplace, and
the techniques for de novo assembly of short reads into longer contig are more advanced.
Therefore, the latest generation of SV detection tools uses a combination of PEM and SRM
information to increase both precision and accuracy over using either alone. These include
DELLY (Rausch et al,, 2012b), GASVPro (Sindi et al.,, 2012) and LUMPY (Layer et al., 2014).
Both DELLY and GASVPro internally perform all the isolation of discordant PEMs, make
tentative breakpoint calls using them, then attempt SRM alignment to confirm those
breakpoints. However, LUMPY takes the more flexible approach of accepting discordant
PEMs and SRMs as input, and using both for breakpoint identification. Therefore, it is not
biased against breakpoints that can only be found by SRMs. In addition, it can take
advantage of best in breed aligners for doing each type of mapping, and also can be used in
variant detection pipelines in more efficient ways.

1.2.5 Improved Tools and Methods to Study Structural Variation

Tools that detect structural variation with improved accuracy are generally useful in their
own right, and can aid in the study of cancer and many other diseases, as well as improve
our understanding of structural variation within the general population. However, they are
particularly important for the study of post-mitotic neurons. A primary goal of our research
is test the long proposed hypotheses that the great diversity in neuronal morphology and
connectivity patterns are due to some form of recurrent or programmed mutations that
commonly or requisitely take place during neurogenesis or post-mitotically while
interconnections are formed. As most of the proposed mechanisms for these mutations are
structural in nature, accurate SV detection tools are of critical importance to our endeavor.

SV detection algorithms such as LUMPY are more effective when presented with accurate
SRM, yet most DNA aligners are not well designed for aligning breakpoint-containing query
sequences, and are therefore only suitable for finding SV via PEM or read pile-up for CNV
detection (Figure 1.2). Prior to 2010, the majority of DNA aligners fell into three categories.
Many, for example FASTA (Pearson and Lipman, 1988), BLAST (Altschul et al., 1990) and
SSAHA (Ning et al.,, 2001) looked for the best matching subsequence alignments for the
query DNA in the reference library or genome of DNA sequences. Others, for example BLAT
(Kent, 2002), were primarily aimed at aligning cDNA from mRNA, looking for a set of
alignments for sequential portions in the query DNA consistent with a sequential set of
exons along the reference genome with breakpoints at exon/intron boundaries. Such
aligners can identify breakpoints for deletions, but not other forms of SV. Finally, with the
advent in Illumina sequencing, efforts to produce new aligners focused on paired-end
alignments of very short ~30-35bp reads. These aligners, for example SOAP (Li et al., 2008)
and Bowtie (Langmead et al., 2009), often obtained increased speed by severely restricting
the number of allowed mismatches and/or small indels tolerated in the alignments.

Conceptually alignment requires simple string matching between a relatively short query
string and a much longer reference string, however in practice the problem is much harder.
First, the human reference genome is long and contains many repeat sequences. Second, the
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query sequence often does not exactly match the reference sequence due to both SNP and
SV polymorphisms between the test subject and the reference genome, and sequencing
errors in the reads. Therefore, algorithms targeted to finding exact string matches are not
useful in this context. Dynamic Programming (DP) is a well known technique for finding the
optimal match between two strings with inserts, deletes, and replacements. In particular,
Smith-Waterman (SW) is an algorithm for finding the optimal “local alignment” of a shorter
string against a longer one. However, for strings of length L; and L;, DP approaches require
time proportional to L; X L. A typical aligner task is to align 100Ks to 100Ms of queries. It is
not practical to use DP along the entire length of the reference genome for each query.
Therefore, aligners usually use some combination of an index and heuristics to find regions
of interest in the reference, possibly followed by either partial or full use of DP techniques
to find the best alignment of the query against the reference in just those regions. In
addition, some aligners take advantage of paired-end data, using the expected distance
between the paired reads to help anchor reads that map to multiple regions in the genome
using a mate with a unique mapping.

Two types of indexes are used by almost all modern aligners; a hash table or some form of
suffix tree (Li and Homer, 2010). A hash table maps sequences of k base pairs in length,
called a k-mer, to each place they occur as a subsequence of the reference genome. A query
is then broken into a set of k-mers, the locations where those k-mers appear in the
reference found from the hash table, and combined to find genomic loci in which the read
may map. Such an approach has the advantage of simplicity, but has drawbacks. For short k-
mers, especially ones appearing very often in the reference, the aligner may need to
consider many places in the genome that will ultimately not be the best match for the query,
and the k-mer combination step can be time consuming. YAHA (Faust and Hall, 2012),
Novoalign (Hercus, 2009), MegaBLAST (Altschul et al., 1990), SSAHA2 (Ning et al., 2001),
MOSAIK (Lee et al.,, 2014) and many other aligners use this indexing approach.

A suffix tree stores the starting position of every suffix in the reference genome. To find
matches for a read, each suffix in the read is compared to the table to find all the genomic
positions in which they occur. Such matches are not restricted to a fixed length; therefore it
is easier to identify the best matches for a query more quickly. However, suffix trees also
have their shortcomings. First, naive implementations are very large, so aligners tend to
only store portions of the tree using an FM-index on the Burrows-Wheeler transform of the
tree, from which the portions of the tree required for a given query can be reconstructed
(Ferragina and Manzini, 2000). This can be time consuming. In addition, suffix trees do not
handle high error rates in the query very well, and can’t be easily used to find all the
suboptimal alignments for a query in the cases in which it is important. BWA uses this
approach for paired-end alignment (Li and Durbin, 2009) and BWA-SW for split-read
alignment on singleton data (Li and Durbin, 2010). Recently, BWA-MEM combined these
algorithms to use paired-end information when available, and look for split-read mapping
in either paired-end or singleton reads (Li, 2013).

In Chapter 4 we present YAHA (Faust and Hall, 2012). It is a hash-table based aligner with a
novel approach to finding split-read mapping in singleton reads of 100bp-32Kbp that
optimizes the value of a biologically relevant objective function. It also uses a flexible
scoring algorithm called Affine Gap Scoring that allows it to accommodate the varied error
models of different sequencing technologies. As a result, it is a fast, flexible and effective all-
purpose aligner that outperforms best-in-class tools for three very different tasks: 1)
reporting all mappings per query; 2) reporting the single best mapping; and 3) identifying
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split-read mappings that define one or more SV breakpoints within a query. In addition,
LUMPY performs better with SRM input from YAHA than any other known aligner, helping
to identify SV breakpoints at single base-pair resolution. We use YAHA in our study of post-
mitotic neurons not only to find SV events, but also in the validation of SV and MEI events
from Sanger sequencing of the region containing the breakpoint.

In addition, we use YAHA to assist in detection of MEIs, which are notoriously hard to detect
by general methods. CNV detection algorithms are not sensitive enough to detect these
relatively short (<6Kbp) insertions. In addition, though YAHA and LUMPY are very good at
detecting most forms of SV, all general SV detection tools have a hard time detecting MEIs.
By definition, the ME is highly repetitive in the genome, and therefore reads from ME DNA
do not tend to pile up in one place, but be scattered across many (nearly) identical copies.
The result is that aligners typically report one of a number of equally good alignments.
Therefore, the clustering algorithms used by SV detection tools cannot find a strong signal
for the ME side of either breakpoint. Although YAHA is capable of reporting all the places
such a read aligns in the genome, the flood of alignments this generates confound clustering
algorithms which now have too much information. Therefore, we use YAHA to sensitively
map reads to a separate mobile element library as part of an improved version of an MEI
calling pipeline originally devised to study MElIs in cancer (Lee et al., 2012a).

The speed of bioinformatic pipelines to analyze genomic data is important both in the
research lab and especially within a clinical setting. Such pipelines can be slow either
because individual tools in the pipeline require a long time to run, or the organization of the
pipeline as a whole requires some large sets of data to be handled multiple times (Chiang et
al, 2014). One task that has historically been slow is the marking of duplicate sequences,
which are artifacts of current sequencing technologies that need to be removed from
bioinformatic analyses to avoid bias. A second source of unnecessary time consumption is
the reprocessing of large alignment files to pull out discordant read-pairs and split-read
mappings needed for SV calling tools, or the reads that didn’t map well to the genome for
use to a more sensitive split-read alignment tools such as YAHA. In chapter 3 we present
SAMBLASTER (Faust and Hall, 2014). It is a tool that marks duplicates faster while using
less memory than any current duplicate marking program. In addition, it pulls the reads
pertinent to SV detection in the same step, thereby removing the need to revisit these large
files to find those reads later in the pipeline (Chiang et al., 2014).

Finally, it is very difficult to debug and tune SV detection algorithms without a dataset that
includes known structural variants at known genomic locations. SVsim is a flexible tool for
generating a wide range of SV events built for precisely this purpose (Chapter 2).

YAHA, SAMBLASTER, and SVsim are all open source software projects freely distributed on
github for use under the MIT license (https://github.com/GregoryFaust).

1.3 Functional Ramifications of Somatic Mosaicism

Somatic mutations have been observed in many disorders, but their prevalence and
mechanism of action in disease states is not yet well understood. The phenotypic changes
that result from somatic mutations often depend on several compounding factors, including
the genetic background of the individual, perhaps accounting for some of the missing
heritability of complex disorders (Manolio et al., 2009), and when and where the mutation
occurs during development or aging (Gottlieb et al., 2001). It is now clear that cancer is
caused by one or more somatic mutations in a cell lineage that disrupts its normal
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association with its surroundings, leading to abnormal cell division and/or migration
(Watson et al., 2013). Many other disorders, especially developmental and/or neurological
ones, have also been associated with somatic mutations and mosaicism. Yet, many studies
have also found somatic mutations in apparently normal tissue in healthy individuals (De,
2011).

1.3.1 Somatic Mutation Rates Vary by Age and Cell Type

Somatic mutations occur surprising often during embryogenesis. A recent study found that
while 7/8 or 87.5% of in vitro fertilized (IVF) oocytes were chromosomally balanced, 16/23
or 70% of IVF embryos contained blastomeres with segmental imbalances (Vanneste et al,,
2009). Further analysis showed a wide variety of abnormalities including chromosome arm
imbalance, segmental duplications and LOH. In many cases, a deletion in one blastomere
from an embryo was accompanied by a duplication of the same region in another
blastomere from the same embryo, indicating mis-segregation events. A similar study
showed 48% of 4-cell embryos from in vitro fertilized eggs were genetically mosaic, rising
to as high as 90% by the blastocyst stage (Bielanska et al., 2002). Another recent study
showed high levels of L1 retrotransposon activity during embryogenesis leading to
chromosomal damage (Kano et al., 2009). Yet, as we will see, CNV of this severity is far less
common in live births. This suggests that severely aneuploid embryos may die before birth,
as 50% of spontaneous abortions exhibit chromosomal imbalances (Vanneste et al., 2009).
Another explanation is that blastomeres with severe CNV are under selection pressure, and
their cell lineage dies out. Selection pressure acting on somatic clones is a common theme in
cancer (Campbell et al., 2008), and also acts to reduce the complexity of the immune system
with age (Holstege et al.,, 2014).

Increased mosaicism with age was found in two recent studies by reexamining SNP-CHIP
data from preexisting GWAS studies, including peripheral blood samples from 50,222
subjects from the GENEVA consortium (Laurie et al., 2012), and peripheral blood and buccal
swaps from 13 separate cancer studies with a total of 37,717 cancer patients and 26,136
control subjects (Jacobs et al,, 2012). Both could detect mosaic CNV events occurring in as
few as ~5-10% of cells sampled, with size sensitivity of 50Kbp and 2Mbp respectively. The
incidence of detected CNV in patients below the age of 50 was 0.23% and 0.5%, and
increasing to 1.91% and 3% in patients over the age of 70. Identified mutations including
deletions, duplications, and LOH associated with either parental or acquired uniparental
disomy. Cancer patients showed ~1/3 higher incidence of CNV, and healthy patients with
identified CNVs had an increased odds ratio of acquiring cancer of 1.27 overall, and 1.56 and
1.98 in two smoking related cancers. A third study of three specific loci that include inverted
tandem repeats in eight healthy individuals showed noticeable levels of mosaicism for
inversions at those sites, suggesting NAHR as the mutational mechanism, and the
percentage of effected cells went up with age (Flores et al., 2007).

One way to study somatic mutations is to examine monozygotic (MZ) twins. A recent study
of nucleated blood cells by aCGH and/or SNP-CHIP from 19 MZ twin pairs, nine of which
showed phenotypic discordance for Parkinson’s Disease (PD), and ten of which were
apparently healthy, showed 5% of individuals with a mosaic somatic mutation, in close
agreement with the much large cohorts discussed above. One twin from the first cohort
showed 22Mbp and 85Mbp mosaic deletions in ~20% and 10-15% of blood cells. These
appeared in genomic regions unrelated to PD, but known to be associated with Chronic
Lymphocytic Leukemia, leading to the eventual diagnosis of the latter. A healthy MZ pair
showed a 1.6Mbp mosaic deletion in 70-80% of cells (Bruder et al.,, 2008). An extension of
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this study showed that 3.6% of 78 MZ twins and 108 single-born individuals had mosaic
mega-base CNVs, all occurring in individuals over the age of 55. In addition, for those
individuals sampled at more than one age, the percentage of cells showing the mutation
went up and down with time, showing clonal expansion and contraction of the progenitor
cells. The number of smaller scale (1Kbp) somatic CNVs went up in all cohorts with age
(Forsberg et al., 2012).

Studies examining multiple tissues in healthy individuals have found different mutations in
different tissues of the same individual. A study of 11-12 tissues from three individuals
showed as many as four different CNVs in one individual (Piotrowski et al., 2008). Another
study of six subjects found tens of events per subject, often appearing in only one tissue, and
enriched for genic regions (O'Huallachain et al.,, 2012). This mutational diversity across
tissue types in an individual has important ramifications for selection of donor tissue for
iPSC therapies, suggesting the need for careful prescreening, especially since there is
evidence that clonal expansion in culture of cells harboring CNVs can increase the
percentage of cells in which they occur (Abyzov et al.,, 2012).

Sharing many experimental design features with our study of post-mitotic neurons, Behjati
et al. used four stem cell lines from stomach, small intestine, large bowel, and prostate
known to grow in culture without reprogramming (Behjati et al.,, 2014). Individual cells
were used to seed 25 successful cultures, called organoids, from two mice each containing
enough DNA for deep Illumina NGS sequencing. These were compared to tail-snip tissue
acting as germline samples. They used phylogenetic analysis to determine the timing of SNV
mutations during development, found the number of SNVs per originating cell to vary
between 179-1190, and by tissue type from 274-916 (274 stomach, 289 prostate, 727 colon,
916 small intestine). Finally the SNV base conversion profiles differed per cell type, possibly
indicating cell-type specific mutational processes and/or rate of repair.

Several studies have estimated the SNV mutation rate per cell division. Behjati et al.
estimate the rate for small bowel stem cells to be ~1.1 based on the average number of
SNVs per organoid, the age of the animal from which the founding cells were harvested, and
an estimate of 21.5h per cell division. They also estimate ~1.5 mutations per cell division
during embryogenesis based on 35 observed mutations during the first 23 cell divisions
(Behjati et al., 2014). Welch et al. estimate 0.13 exonic mutations per year in hematopoietic
stem cells (HSCs), which corresponds to ~5 per cell division assuming the exome is 2% of
the full genome, and that HSCs divide ~1.3 times a year (Welch et al., 2012). Holstege et al.
found 450 SNVs in HSCs of a 115-year-old woman, leading to an estimate of ~3 mutations
per cell division again assuming HSCs divide ~1.3 times per year (Holstege et al., 2014).In a
review article, Lynch reports three studies of retinoblastoma, three studies of the APC gene
in intestinal epithelial cells, two studies of specific loci in cell cultures, and three studies of
fibroblast cultures that all yield similar per base mutation rates of 0.99E-9, 0.27E-9, 1.47E-9
and 0.34E-9 per cell division respectively. These average to 0.77E-9 per base per cell
division, or ~2.3 SNVs per genome per cell division (Lynch, 2010). Overall, these studies
estimate between ~1.1 to ~5 new SNVs per cell division, and are in close agreement to our
own estimate of ~6 new SNVs per cell division in neurons (Chapter 5).

However, the observed rate of inherited germline mutations is noticeably lower. Kong et al.
found germline SNPs inherited from the father to be dependent on the age of the father, and
to accrete at the rate of ~2 new SNVs per year or ~60 new germline SNPs per generation
(Kong et al., 2012). After correcting for their SNV detection sensitivity, and assuming an
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average father’s age of 30 years, this study yields a per base mutation rate of 1.2E-8 per
generation. Many other studies have produced similar results of 1.1E-8 to 3E-8 per base
mutation rate per generation (Conrad et al, 2011). These estimates equate to ~0.2
mutations per cell cycle in the maturation of sperm. The reason for the discrepancy
between this mutation rate and that for somatic cells is unclear. However, the most likely
answer is that there is significantly higher selection pressure against gametes than somatic
cells, and that these numbers only account for live births.

1.3.2 Somatic Mutation in Non-neurological Disorders

[t is increasingly clear that somatic mosaicism is more prevalent in non-cancerous disorders
than previously thought (Erickson, 2010; Freed et al., 2014; Youssoufian and Pyeritz, 2002).
For example, surprisingly, a recent study of fifteen patients that suffered atrial fibrillation
showed that three had a functional gene mutation in their cardiac myocytes that was not
found in their blood (Gollob et al., 2006). We briefly examine some additional examples
relevant to an understanding of the mechanisms at work. A given case of a genetic disease is
called sporadic when the parents and siblings of the affected individual do not have the
disease. Genetic variants that are highly penetrant for severe disease states often arise in
this manner, as carriers rarely live to reproductive age. Therefore the causative mutations
are under severe selection pressure. In such cases, the genetic cause either occurred as a
somatic mutation in the germline of a parent, or early during embryogenesis of the afflicted
child. Many of the diseases discussed below are often sporadic, and the de novo mutations
show high penetrance. In others, somatic mosaicism in the affected individual can increase
or reduce the severity of a phenotype of the genetic disorder. Also, many of the mutations
involved are structural variations, highlighting the need for the best possible tools to detect
such variants to further investigate the full spectrum of mutations affecting disease states.

Several genetic disorders alter the rate of somatic mutation in the body, usually resulting in
premature aging and susceptibility to mutagens (Freed et al,, 2014). Progeria is the result of
mutant lamin protein that disturbs normal mitosis and causes premature aging. Cockayne
syndrome is caused by a defect in the transcription-coupled repair (TCR) mechanism,
allowing SNVs to collect in genes. Werner syndrome and ataxia-telangiectasia are the result
of defects in the repair mechanism for DNA double strand breaks (DSBs). Xeroderma
Pigmentosum is caused by a defect in the base-excision repair mechanism, causing patients
to be particularly susceptible to skin damage from UV radiation. Bloom syndrome results in
an abnormally large number of mitotic recombinations between sister chromosomes.
[ronically, this can often lead to the mosaic repair of the mutant gene by a fortuitous
crossover event.

Several X-linked genetic disorders show patterns of somatic mosaicism (Youssoufian and
Pyeritz, 2002). Incontinentia Pigmenti and Rett syndrome are prenatally fatal to most 46,XY
males, but some survive if they are mosaic for 47,XXY. Turner syndrome due to 45,X is also
98% fatal unless the fetus is mosaic for 46,XX or 46,XY. Similarly, Alport syndrome is
usually very severe in males, but some males show a much milder phonotype presumably
associated with mosaicism. Trisomy 8 is not X-linked, but is also almost always fatal in utero
unless it appears only in a subset of cells.

Some genetic diseases show common mosaic reversion to the wild-type phenotype in some
somatic cells (Erickson, 2010). Included are Wiskott-aldrich syndrome, epidermolysis
bullosa, Franconi anaemia, and tyrosinaemia. The most common reversion mechanism is
mitotic recombination, but complex compensatory mutations have been observed. In one
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study, a patient with a 1bp frame-shift insertion was compensated by a 5bp insertion, and in
another, a 1bp deletion was compensated by two additional 1bp deletions, in both cases the
reading frame was restored (Waisfisz et al., 1999).

Several other diseases are often sporadic or show mosaicism. Of 113 patients with McCune-
Albright syndrome tested, 90% of affected tissue showed the causative mutation, but was
present in the blood of only the 46% of patients with the most severe phenotype (Erickson,
2010). Sturge-Weber syndrome may be similar, although the incidence of somatic
mutations in affected tissue appears to be variable, with different studies estimating the
appearance of the causative somatic mutation in 1-47% of cells (Freed et al.,, 2014). Both
Ollier disease and Maffucci syndrome may similarly be sporadic mosaic disorders (Freed et
al, 2014). Neurofibromatosis has been reported to be mosaic for specific deletions of
1.2Mbp and 1.4Mbp in 25-40% of cases, possibly formed by NAHR between tandem repeats
(Erickson, 2010).

1.3.3 Somatic Mutations in Neurological Disorders

As a major goal of this research is to study the extent of somatic mosaicism in healthy
neurons, it is instructive to review the prevalence of somatic mosaicism in neural diseases.
A sporadic case of Creutzfeldt-Jakob’s disease was shown to be mosaic in the brain of the
affected individual, appearing in ~97% of both brain and blood samples, indicating a
somatic mutation occurring early in embryogenesis (Alzualde et al., 2010). A sporadic case
of early-onset Alzheimer’s disease (AD) was similarly shown to be mosaic in 14% of
cerebral cortex cells, but only 8% of lymphocytes (Beck et al.,, 2004). The variability of the
onset of AD has led many researchers to suspect a somatic contribution to many cases
(Freed et al.,, 2014). Three cases of sporadic hemimegalenchephaly were shown by SNP-
CHIP analysis to be caused by somatic mutations involving AKT3, a know driver of the
disorder (Poduri et al,, 2012). In two of the cases, a mosaic trisomy of the region containing
AKT3 was present with a copy number of ~2.7X. As this is a non-integral value, mosaicism
is indicated. In addition, one case showed no trisomy in blood cells. The third showed a
point mutation in AKT3 in ~35% of brain cells, but not in leukocytes. This subject was also
shown by single-cell sequencing to have the mutation in 39% of neurons, and 27% of non-
neuron brain cells (Evrony et al., 2012).

CNVs have been associated with a wide range of other neurological disorders including
autism spectrum disorder (ASD), bipolar disorder, attention-deficit-hyperactivity disorder,
obsessive-compulsive disorder, major depressive disorder, anxiety and panic disorder. The
same genomic regions, for example a ~600Kbp deletion at 16p11.2, or genes, for example
neurexin-1 (NRXN1), have been associated with many of these disorders, indicating the
variability of phenotypic expression and complex nature of these diseases (Sebat et al.,
2009; Weiss et al,, 2008). Many of the cases involving rare CNVs are sporadic, and some
show mosaicism. These cases act as counter-examples to the “common disease-common
allele” model previously proposed for these diseases.

[t is a common finding in these studies that the overall mutational burden is similar in cases
vs. controls, but the mutations in cases have more severe predicted functional
consequences. A recent study of CNVs in 179 patients with Tourette syndrome, including 2
sporadic cases, stratified CNVs into 4 size categories (Nag et al., 2013). They found that only
the largest category (>500Mbp) was enriched in cases vs. controls, including 2 cases that
include the NRXN1 gene. A study of CNVs in 242 patients with schizophrenia showed that
cases were 3-4X more likely to harbor CNVs that affected genes than controls. Another such
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study of 359 cases showed that de novo CNVs are 8X more prevalent in sporadic cases than
in controls (Xu et al., 2008). A study of ASD patients detected a ~593Kbp deletion at
location 16p11.2 that occurred de novo in five cases, but was inherited in none (Weiss et al.,
2008). They also found duplication of the region in six cases in which it was inherited, and
one in which it was de novo. This region is flanked by a 147Kbp segmental duplication,
leading to the conclusion that the CNV was caused by NAHR (Figure 1.1). In a second CNV
study of 118 sporadic cases of ASD, they found 14 de novo SNVs in cases, but only 2 in
controls (Sebat et al,, 2007).

Four additional ASD studies used WGS (1) or exome sequencing (3) to more fully
characterize the causes and heritability of mutations (lossifov et al., 2012; Michaelson et al.,
2012; Neale et al,, 2012; O'Roak et al., 2012). All four studies report higher point mutation
rates for both control and affected children with older parents, especially older fathers,
consistent with the findings of (Kong et al, 2012). In addition, they found that while
synonymous and missense de novo mutations were fairly evenly distributed between cases
and controls, de novo nonsense, frame shift, and splice site mutations occurred
disproportionately more often in cases. In addition, the genes affected by these disruptive
mutations are enriched for gene ontology (GO) terms associated with neuronal function.
Two studies estimate the total number of ASD related genes to be several hundred (Iossifov
et al, 2012; Neale et al,, 2012). One study found enrichment for genes associated with
Fragile-X disorder (lossifov et al.,, 2012). Another study included affected MZ twins, and
found that of 29 de novo mutations in genes, 7 additional hits in 5 of the genes were found
by other studies, while none were found in controls from any of the reported studies. From
this they infer that de novo mutations found in sporadic cases with both MZ twins affected
are highly likely to be causative (Michaelson et al., 2012).

There may be a sensitive balance between mobile element (ME) activity in healthy neurons,
and an overabundance of ME insertions or transcripts leading to pathology. As we will
discuss in the next section, mobile element insertion (MEI) has been observed in healthy
brains, and has been suggested as one mechanism that increases neuronal diversity (Muotri
and Gage, 2006). Yet increased MEIs have also been associated with several neurological
and neurodegenerative disorders. Increased L1 insertions have been measured by qPCR in
the prefrontal cortex of patients suffering from schizophrenia, bipolar disorder, and major
depression (Bundo et al., 2014). WGS of schizophrenics vs. controls did not show increased
L1 insertions in cases, suggesting that the insertions were somatic mosaics, and therefore
not detectable in bulk tissue samples. However, the WGS data did show that L1 insertions in
cases were significantly enriched in genes associated with neuronal GO terms. Also, patients
suffering from Rett syndrome that had loss of function mutations in MeCP2 had a 2X
increased susceptibility of L1 insertions (Muotri et al.,, 2010). MeCP2 normally suppresses
L1 transcription via methylation of the L1 promoter region, a process that is suppressed by
the dysfunctional MeCP2 mutant. Similarly, patients with ataxia telangiectasia with a
mutated ATM gene had increased levels of L1 insertions in their hippocampus relative to
controls. In this case, the posited mechanism of action is the complication of the repair of
the L1 transposition, perhaps leading to tandem insertions (Coufal et al., 2011).

An increase in ME transcripts has also been noted in several disorders. A study of ALS
patients showed increased mRNA transcripts of the HERV-K LTR mobile element in the
prefrontal, sensory, occipital, and especially the motor cortex, but not in controls including
Parkinson disease patients. The increased transcription was only in neurons, but the
insertion of the transcripts into neuronal DNA was not measured (Douville et al.,, 2011).In a
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similar way, HERV transcripts were found to be higher in cell-free spinal fluid of sporadic
patients with Creutzfeldt-Jakob disorder vs. unaffected controls and patients with other
neurological disorders (Jeong et al., 2010). Geographic atrophy is an advanced form of age-
related macular degeneration in which the DICER1 complex is inhibited. In turn, this results
in an overabundance of Alu transcripts flooding retinal pigmented-epithelial cells, causing
cell death perhaps by triggering apoptosis (Kaneko et al., 2011). Similarly, TDP-43 binds to
ME transcripts, is down regulated in certain neurodegenerative diseases including ALS and
frontotemporal lobar degeneration, leading to an over accumulation of ME transcripts, and
neuron death (Li et al., 2012). There is evidence for a similar mechanism in Fragile X-
associated tremor/ataxia syndrome (Tan et al., 2012).

1.4 Somatic Mosaicism in Healthy Neurons

The diversity of morphology and apparently stochastic interconnectivity of the ~100 billion
neurons in a human brain is quite staggering, exhibiting a level of complexity not seen in
any other organ of the body. This has led to wide speculation about possible mechanisms
that drive this diversity.

The discovery of V(D)] recombination and hypermutation as the source of diversity in T and
B cells in the adaptive immune system prompted the hypothesis that a similar mechanism
may also be involved in creating somatic diversity in neurons (Chun and Schatz, 1999). This
idea gained support when it was discovered that RAG1, one of two necessary proteins for
V(D)] recombination, is expressed in mouse brains precisely where new neurons are being
formed (Chun et al., 1991). Several years later, the absence of either DNA ligase IV or XRCC4
was found to disrupt V(D)] recombination, retard development of B and T cells, increase
sensitivity of fibroblasts to ionizing radiation, and most intriguingly, is embryonic lethal in
mice starting around E14 specifically due to widespread apoptosis of newly differentiated
neurons (Frank et al., 1998; Gao et al., 1998). These and other facts support the hypothesis
that XRCC4 and DNA ligase IV are critical to NHE] of DSBs in DNA, leading some to speculate
that DSBs are associated with a necessary element of neurogenesis and diversity; for
example to repair DSBs which occur during V(D)]-like recombination.

More specifically, it had long been postulated by analogy to the active immune system that
the wide diversity of odorant receptors observed in olfactory epithelial neurons may be
generated by programmed genomic rearrangement, as each such neuron shows one or at
most a few distinct receptors in its cell membrane (Ferreira et al., 2014; Mombaerts, 2004;
Young and Trask, 2002). However, it is now known that there are up to ~900 olfactory
receptor genes in humans and ~1500 in mice. They are dispersed throughout the genome in
clusters of several up to a 100 genes presumably produced by tandem duplication followed
by differentiation over time due to random mutations. The expression of which receptor(s)
are expressed is apparently determined stochastically in each neuron, followed by
epigenetic suppression of the expression of the others. Thus, it appears that olfactory
receptors are not generated by programmed mutation.

Cadherin-related receptors are neuronal cell membrane proteins that also show a
remarkable diversity. Protocadherin genes appear in three clusters each containing 40-60
genes, and their genomic organization shared many features in common with the T-Cell
receptors and immunoglobulin gene clusters (Yagi, 2003). Intriguingly, they localize to the
synaptic regions of neural membranes, suggesting a role in the stochastic nature of synaptic
connections between neurons. The expression of each protocadherin gene can be separately
regulated. In addition, the expression of a small number of different receptors selected from
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a much larger group could lead to a nearly unique receptor pattern in each neuron in the
brain without the need for programmed mutation. Yet unusually high levels of mutations in
protocadherin transcripts have been observed. Therefore, it remains unclear whether
recombination or some other form of programmed mutation occurs in protocadherins.

Nor is it known if such mechanisms otherwise occurs requisitely or frequently during
neurogenesis, what mechanisms are involved, or what adaptive advantage they provide. We
have seen that recurrent aneuploidy and specific CNVs and other mutations are associated
with neurological disease states. Using a variety of bulk tissue and single-cell approaches,
many recent studies have investigated the mutational mechanisms that may be involved
during normal neurogenesis, including somatic aneuploidy, CNV and MElIs (See (Richardson
et al, 2014) for a review). As these studies are directly relevant to our own study of somatic
mosaicism in neurons, we will discuss them in some depth. These studies report a wide
range of estimates for the prevalence of these events, but no evidence for recurrent somatic
mutations in healthy neurons.

We start with the prevalence of mosaic aneuploidy in neurons. A study of human neurons
from six individuals ranging in age from 2 to 86 showed using FISH that 4% of NeuN+ cells
from the cerebral cortex and hippocampus were aneuploid for chromosome 21, compared
to 0.6% for lymphocytes (Rehen et al.,, 2005). Assuming chromosome 21 is representative
would lead to an overall estimate of ~50% aneuploid cells! However, naive interpretation of
FISH results has been shown to overestimate the loss of chromosomes due to the
coalescence of signal from two chromosomes that are collocated (Yurov et al., 2007). Using
an improved technique called QFISH, the level of aneuploidy in human fetal brain has been
estimated at ~30% compared to estimates for chorionic tissue and skin of 24% and 19%
respectively, consistent with prior studies of aneuploidy during embryogenesis (Yurov et
al, 2007). Using SKY for full karyotyping, and FISH of XY chromosomes, another study
determined that ~33% of mice neuroblasts were aneuploid compared to only 3.4% of
lymphocytes. Chromosome loss varied from 1.8-8% per chromosome, while gains were
<2% for every chromosome. However, culturing neuroblasts in growth medium reduced the
level of aneuploidy, consistent with the hypothesis that aneuploid cells have a higher
mortality rate or lower fecundity than euploid cells. Also, the measured rate of aneuploidy
in adult cortex was 6X lower than in neuroblasts, or about 5% (Rehen et al., 2001). Overall
these studies of neuronal aneuploidy show a very high level of aneuploidy in embryonic and
fetal brain tissue, with a lower and less certain level of aneuploidy in adult human neurons.
In addition, as described below, wide scale aneuploidy has not been confirmed in recent SCS
studies of CNVs in post-natal human neurons.

A study from our own lab examined CNV in single NeuN+ neurons from adult frontal cortex
and hiPSC-derived neurons (McConnell et al, 2013). Neurons were derived from three
separate hiPSC cell lines, DNA was amplified by MDA and copy number was measured via
SNP-CHIP. Somatic CNVs were detected in 13/40 analyzed neurons, including seven whole-
chromosome gains, four whole-chromosome losses, and 12 sub-chromosomal CNVs, each
appearing in a single neuron. This data showed a high aneuploidy rate of ~25%. However,
110 adult frontal cortex neurons were also obtained post-mortem from three individuals in
their early to mid twenties, their DNA amplified via GenomePlex, an amplification strategy
similar to DOP-PCR, followed by low coverage Illumina sequencing. One or more unique
somatic CNVs were identified in 45/110 or 41% of neurons. Of these, three covered large
areas of a chromosome, and were deemed potential aneuploid events, including one
duplication and two deletions. The other CNVs ranged in size between 2.9-75Mbp, with 2X
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as many deletions as duplications. After adjusting for an estimated 17% false-negative rate,
the estimated rate of aneuploidy observed in the SCS data was ~3-4%, far lower than the
SNP-CHIP analysis of hiPSC-derived neurons. This may be due to false positives caused by
MDA and SNP-CHIP biases, and/or higher prevalence of aneuploidy in pluripotent cells
(Peterson et al,, 2011) that is later selectively reduced in vivo via apoptosis during or shortly
after differentiation.

A second study also used a combination of MDA and GenomePlex for WGA of single NeuN+
neurons, followed by low coverage Illumina sequencing (Cai et al.,, 2014). Of 82 cortical
neurons from healthy individuals, 78/82 or 95% were euploid, and none showed a full
chromosome gain or loss, in spite of 100% sensitivity for detection of aneuploidy in
trisomy-18 control samples. However, 19 euploid neurons tested for CNV showed that
13/19 or 69% had at least one large CNV, and that these 13 had an average of 3.4 CNVs,
ranging in size from 1.7-17Mbp. Two of these CNVs were shared between two neurons
apiece, indicating the mutation occurred in the cell lineage before entering the post-mitotic
state. Their estimated sensitivity for ~2Mbp CNV was ~62%, so their actual estimates for
CNV prevalence may be too low.

A third study sequenced six adult neurons, two from a healthy patient and four from a
patient with trisomy-21 (Gole et al.,, 2013). They used MIDAS WGA, followed by Nextera
library prep, and low coverage Illumina sequencing. This resulted in much less noise in copy
number estimates in ~60Kbp bins than traditional MDA or even MALBAC. The extra copy of
chromosome 21 was easily detected in all 4 trisomy-21 samples. Yet they detected no other
aneuploidy, and found ~2 >2Mbp CNVs in each neuron, as well as 9-18 <1Mbp CNVs for
which they were unable to calculate a false positive rate.

Taken together, the SCS-based estimates for post-natal aneuploidy are ~3-5% vs. ~25-35%
from the previous studies. Some of this difference can be attributed to the inclusion of pre-
natal tissue in the higher estimates, and the outlier estimate reported by (Rehen et al,,
2005). However, it is also possible that SKY, FISH, and array hybridization tend towards
false positives created by failure to detect a chromosome, and/or the SCS approaches have
higher false negative rates. Yet the latter studies have all bioinformatically estimated FNRs
of 17-40%, leading to an upper estimate of <10% aneuploidy rate. In our study, we find 6/6
neurons are euploid. This is consistent with the SCS studies, as using 10% as the aneuploidy
rate, one would expect to see 6/6 euploid cells ~50% of the time by chance. However, our
detected CNV rates of ~1-2 per neuron are below the estimated rates for all of the above
experiments, and the CNVs we detected are smaller in size, perhaps in part due to the finer
resolution of our detection pipeline.

MEIs have also been suggested as a mechanism contributing to somatic mosaicism in
neurons. Muotri et al. found that rat hippocampus neural stem cells (HNSC) that were in the
act of committing to neuronal lineage had 1.5-2X higher L1 transcripts than the remainder
of the HNSC population as measured by qPCR (Muotri et al., 2005). This L1 expression
occurred in a very specific time course during the transition to neural progenitor cells
(NPCs), and this effect was highly correlated to reduced levels of Sox2 expression. A sharp
decline in Sox2 expression in day one, led to a marked increase in L1 expression, which then
dropped back to near baseline levels within 4 days. Cells from multiple lineages were
transfected with an L1 cassette that expresses EGFP only upon ME insertion. After 7 days,
EGFP was detected in ~1% of HNSC and NPCs, but not in neurons, astrocytes, fibroblasts or
lymphocytes. Transfected NPCs showed continued EGFP expression upon differentiation to



27

neurons, but not to astrocytes or oligodendrocytes. PCR and subsequent sequencing of the
EGFP integration sites indicated that integration often occurred in genes and particularly in
neuronally expressed genes. Finally, they formed a knock-in mouse containing the L1-EGFP
construct to test MEI events in vivo in mouse brains. By FACS, EGFP+ cells in E10.5 embryos
and adult brains collocated with a neuronal marker (NeuN), but not with markers for
oligodendrocytes or astrocytes, and sequencing of the EGFP+ cells confirmed the
integration of the EGFP construct into genomic DNA.

In a follow on study, the same L1-EGFP knock-in mouse was used to study the effects of
exercise on neurogenesis and L1 transposition in adult mice (Muotri et al., 2009). Fourteen
mice were divided evenly into two groups, one with access to a treadmill, and the other not.
The runners showed 3X higher EGFP+ cells in the dentate gyrus of their hippocampus,
perhaps indicating that they were forming new neurons from NPCs, opening a window for
L1 insertions. This was corroborated by a similar study from the same lab with mice
injected with retrovirus associated GFP construct and BrdU that showed neurogenesis in
the dentate gyrus of runners.

Coufal et al. extended this study to humans (Coufal et al., 2009). They transfected fetal brain
stem cells with the same L1-EGFP construct and found 8-12 L1 MEIs per 100,000 cells, or
~1/10,000 cells, confirming that L1 activity can occur during embryogenesis. The EGFP+
cells could be differentiated into both neuronal and glial lineages. Transfection of human
ESC lines with this construct showed similar results to (Muotri et al.,, 2005); EFGP+ cells
showed neuron markers, and could be differentiated into both neuronal and glial lineages.
Nineteen MEIs were sequenced and found to occur at known TTTT/A cleavage sites, and 16
were within 100Kbp of a gene, some of which were neuronally expressed. Target site
duplications (TSD) were found in 5/8 fully characterized insertions. By qPCR they found
that L1s were more prevalent in hippocampal tissue than matched cerebellum, heart or
liver control tissues from three adults. The same assay applied to ten brain regions from
three other individuals showed statistically more L1 prevalence in the grouped brain
samples than in control heart or liver. Finally, in what is perhaps the most controversial
finding of this study, they estimated the number of somatic L1 insertions per neuron by
comparing qPCR results of DNA samples from ~12 cells of hippocampal and cerebellum
neurons to ~12 cells worth of heart or liver DNA spiked with L1 plasmids at different ratios.
From this, they estimated that the hippocampal sample had ~1000X more L1s than heart or
liver, and therefore ~80 de novo L1 insertions per cell. This estimation technique is of
uncertain accuracy, and the results are not entirely in keeping with later studies.

Baillie et al. recently measured MEI activity in the brain using a novel experimental
technique (Baillie et al.,, 2011). Fragmented DNA from bulk tissue was hybridized to a
custom capture array to enrich ME fragments, which were then deeply sequenced. The
enrichment step helped to ensure that the collected DNA was from a ME insertion site, and
to reduce the number of PCR rounds during library preparation in order to increase the
signal of rare insertions vs. the large number of germline insertions. A sensitive ME
detection pipeline was used to cluster paired-end read alignments based on their genomic
location, strand orientation, and ME family. Concordant pairs were called as germline
variants. Discordant pairs were considered potential somatic insertions if they did not
appear in brain or blood control tissue from any individual, or match a previously
annotated MEI polymorphism. This pipeline shares many features with the one used by Lee
et al. to detect somatic MEIs in cancer, and our pipeline for detection of somatic MEIs in
mouse neurons (Lee et al,, 2012a).
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Using this approach, they tested neurons from the hippocampus and caudate nucleus of
three individuals. Of the 25,229 initial calls, only 8.4% of Alu insertions and 1.9% of L1
insertion were deemed germline. Almost all of the MElIs called as somatic were supported
by a single read-pair, and a few by two read-pairs. While the low read count compared to
germline insertions is evidence of a rare somatic event occurring in one or a few cells in the
sample, it also raises issues about potential false positives. Therefore, a subsample of calls
was stringently validated using PCR and capillary sequencing. All 35/35 germline calls,
14/14 somatic L1s and 12/15 somatic Alus were confirmed. Valid PCR primers for 3’ ends
of calls were difficult to identify, therefore they were unable to determine the existence of
TSD via capillary sequence. However, 2/3 putative somatic calls with paired-end reads that
fortuitously straddled the insertion breakpoint showed TSD. The ratio of somatic L1
insertions in the hippocampal vs. the caudate nucleus for the three individuals was 1.3, 0.5,
and 2.2, and they were enriched in genes, and those genes were enriched for neuronal GO
terms. This experimental design did now allow a per cell estimate of MEI load.

Several studies have used single-cell sequencing to estimate per neuron MEI loads. Evrony
et al. studied L1 insertions in 300 individual neurons, 50 each from the cerebral cortex and
caudate nucleus of three neurologically normal human (Evrony et al., 2012). Neurons were
obtained by FACS (NeuN+), and DNA amplified by MDA. L1 3’ regions were further
amplified by PCR using a combination of random and L1 3’ specific primers. DNA was deep
sequenced and aligned, followed by read-depth pileup. Sensitivity was high in identifying
known reference insertions, 81% and 75% with bulk and single-cell samples respectively.
Insertions within 20Kbp of known reference insertions and those annotated in other
studies were removed from the set of putative somatic mutations. Even setting a threshold
that would identify only 50% of L1 insertions from previous studies, the validation rate for
putative somatic mutations was very low. Initial putative somatic mutation rate estimates
were 1.1 total and 0.6 unique somatic insertion of per neuron. To estimate false positive
rates, the top 16 candidate somatic mutations from each sample were selected for
validation (96 total). Unfortunately, only 5/81 calls for which primers could be designed
passed PCR validation, implying a false positive rate of 94%. This dropped the estimates L1
insertion rate to 0.07 total and 0.04 unique per neuron. For the five fully validated somatic
insertions, one was full-length, showed TSD and a poly-A tail, and appeared in two neurons.
The other four appeared in a single neuron each. A follow up study using SCS on 16 neurons
from the cerebral cortex and a MEI calling pipeline similar to (Baillie et al.,, 2011) found
12/16 or 75% of neurons with no MEI insertion, and two MEI insertions overall, each
occurring in two of the remaining four cells (Evrony et al., 2015).

The most recent SCS study of L1 insertions adds additional uncertainty in estimates of L1
activity in neurons (Upton et al,, 2015). After FACS sorting NeuN+ cells, MALBAC WGA was
performed followed by L1 specific capture to increase signal to noise ratio similar to (Baillie
etal, 2011). The L1 enriched DNA was then sequenced. Putative somatic MEI calls detected
with a calling pipeline similar to the one used by (Baillie et al., 2011), (Lee et al., 2012a), and
us. Performing this procedure on 92 hippocampal neurons, they estimate an average per
neuron L1 insertion rate between 9.9 and 55.8, depending on the validation estimation
technique used, with 13.7 stated as their most confident estimate. As with some previous
studies, they found that L1s were preferentially inserted in genes associated with neuronal
GO terms and in genes expressed in the hippocampus. In addition, using large read-depth
bins, they found 5/92 hippocampal neurons contained CNVs of >5Mbp in size. They
performed the same analysis on 35 Neun+ cortical neurons, with a best estimate of an
average 16.3 MEIs per neuron. This study is unique in estimating a higher rate of MEIs in
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cortical neurons than hippocampal neurons. They also had a hard time accurately
estimating their true positive rate. This highlights the need for enough DNA left over after
MEI detection to do full validation of all calls as we do in our study.

MEIs have also been studied in drosophila. Using techniques such as qRT-PCR to measure
transposon expression levels, and transfection with vectors that express GFP after a ME
integration, MEI have been shown to increase with age, to adversely affect performance in
long term memory tests, and be associated with relaxation of the Piwi siRNA system for
eliminating such transcripts (Li et al., 2013). Using qRT-PCR it was discovered that Piwi is
uniquely constitutively turned off in alpha-beta neurons of the mushroom body responsible
for olfactory memory, leading to a high level of ME transcription from birth. From 3.1X
sequencing data, and Monte Carlo simulations, an estimate of ~200 unique de novo MEIs
appear in alpha-beta neurons per fly and ~100 per neuron, indicating many shared
mutations likely arising early in development (Perrat et al., 2013). Such MEI loads did not
appear in other neurons, implicating MEI in memory formation. Finally, low expression
levels of Hsp90 has been shown to down regulate the Piwi complex, allowing for increased
organism-wide MEIs, perhaps as a mechanism to stimulate genetic diversity in a population
of flies under environmental stress (Specchia et al., 2010).

Several lines of evidence suggest that there may be a narrow window during the transition
from NSC to NPC to neuron during which L1 expression and transposition are activated, and
that this activation is instrumental to neurogenesis and neuronal diversity (Richardson et
al, 2014). Previously we discussed that both Sox2 and MeCP2 repress L1 transposition
through enhanced methylation in L1 promoter regions. Improper MeCP2 down regulation is
associated with higher L1 activity and abnormal neurogenesis in patients with Rett
syndrome (Muotri et al., 2010). In addition, L1 transcripts have been observed to cause
DSBs even when they don’t insert (Cordaux and Batzer, 2009), suggesting their involvement
in the defects in neurogenesis observed in the context of compromised DSB repair
mechanisms (Frank et al., 1998; Gao et al., 1998). Sox2 is down regulated in a narrow
window during normal neurogenesis (Muotri et al., 2005). Recently, it has been conjectured
that Wnt signaling is responsible for down regulating Sox2 and up regulating NeuroD1,
resulting in both neurogenesis and increased L1 transcription (Kuwabara et al., 2009).

This hypothesis makes an accurate determination of the number of somatic MEI in
functioning adult neurons a matter of some importance. However, various studies report
disparate estimates of ~80 MEIs per hippocampal neuron to ~0.07 per cortical neuron; a
range of three orders of magnitude. All these studies have strengths and weaknesses
making it difficult to determine where the truth lies. Projections based on gqPCR
measurements may be more error prone than previously thought, as recent evidence in
yeast shows that L1 retrotransposition events may often fail to integrate into the host
genome, and instead form episomal DNA circles (Han and Shao, 2012). Single-cell
sequencing studies have the potential to make quite accurate predictions, but have
difficulties in validating their calls due to insufficient left-over DNA from the sequenced
cells, leading to uncertainty in their estimates.

1.5 Conclusion

In Chapter 5 we use a novel experimental design for the study of somatic mosaicism in
post-mitotic neurons that shares many of the advantages of both genome-wide and single-
cell techniques. We use somatic cell nuclear transfer (SCNT) of DNA from post-mitotic
neurons of known origin in the mouse olfactory bulb to seed clonal cell colonies. We then
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harvest sufficient DNA from these cultures to perform deep WGS of each neuron genome in
order to detect all categories of somatic mutations including SNVs, indels, SVs, CNV, and
MElIs to single base-pair resolution with sensitivity and accuracy unprecedented for single-
cell experiments. Somatic mutations are distinguished from germline mutations using bulk
tissue control samples from the same mice. In addition, we validate every one of our SV and
MEI calls, and a representative sample of our SNV and indel calls.

We detect variants using bioinformatic pipelines that combine the best available third party
tools with our own innovations. For example, YAHA (Chapter 4) is used to provide all split-
read mappings for SV and MEI detection and call validation (Faust and Hall, 2012). We use
GATK (DePristo et al., 2011; McKenna et al., 2010) to detect SNVs and indels, followed by
filtering to identify somatic mutations using a strategy similar to Kong et al. (Kong et al,,
2012). We map structural variation (SV) using a sensitive pipeline which utilizes multiple
tools including Novoalign for sensitive paired-end mapping (Hercus, 2009), YAHA for split-
read mapping of unmapped and clipped reads and LUMPY to integrate read-pair and split-
read analysis (Layer et al., 2014) to detect SV breakpoints at high resolution. We detect CNV
with a read-depth analysis pipeline that detects relatively large (>15Kbp) CNVs (Malhotra
et al.,, 2013). Finally, we detect MEIs using a pipeline that is similar to the approach first
proposed by Lee et al. (Lee et al., 2012a), improved by the use of YAHA for finding split-read
mappings to define the insertion breakpoints to single base pair resolution. For each
mutation class, we estimated variant detection sensitivity via comparison to the Mouse
Genomes Project (Keane et al., 2011; Yalcin et al,, 2012).

We compare our findings of somatic mutations in neurons to the results from previous
studies. We find ~1 L1 insertions per neuron, which falls between the extremes described
above, no recurrent mutations or aneuploidy, and other than one quite complex CGR, only
1-2 SVs per neuron. Together, this argues strongly against these mechanisms as required in
neural development. We also find ~86 SNVs per neuron, corresponding to ~6 per cell
division, in close agreement with studies discussed above. In addition, the SNVs show a base
conversion distribution similar to iPSCs derived from mouse fibroblasts (Young et al,
2012), and human hematopoietic stem cells (Welch et al., 2012), but different than those
from human germline (Kong et al., 2012) or mouse endodermal cell types (Behjati et al,,
2014). Similar to some L1 studies described above, we find that neuronal SNVs are more
prevalent in genes expressed in post-mitotic neurons, and that the genes they fall within are
enriched for GO terms associated with neuronal development and activity. Also, the lack of
shared mutations within neurons from the same animal, or clear correlation between the
number of mutations found in neurons and the amount of time they have been in a post-
mitotic state, is consistent with a burst model of higher mutational rate occurring around
the time of neurogenesis.
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2 SVsim

SVsim is a flexible structural variation simulation tool written in Python by the author.
SVsim has not been published, but is open source software that can be downloaded from
https://github.com/GregoryFaust/SVsim.

A structural variant (SV) is an unexpected juxtaposition of two regions of DNA sequence in a
test sample of DNA that are not continuous in the reference genome. Therefore, it is harder
to detect than single nucleotide polymorphisms (SNPs) and small insertions and deletions
(indels) that can be found in local sequencing and alignment information. In addition, some
types of SV, particularly deletions, are easier to detect than other forms of SV that have
more complex structures. It is estimated that roughly 1,000 SVs distinguish the genomes of
two healthy humans, and in the human population these variants collectively affect more
bases of the genome than SNPs (Conrad et al.,, 2010; Mills et al., 2011). However, there is no
simple consensus sequence for genomes that differ by these non-local structural events.
Therefore, reference genomes for humans, mice and other species that are constructed
using DNA from multiple individuals are likely to contain errors in these regions. In
addition, SV annotation databases are likely more biased, less complete, less well validated,
and contain less well-defined variant locations than corresponding SNP and indel databases.

Yet it is difficult to design, develop, debug and evaluate SV detection algorithms without
using sample datasets that contain SV events with known architecture and breakpoint
locations to act as a truth set from which to estimate the sensitivity and accuracy of such
algorithms. The easiest way to break the circular dependency between SV annotation
databases and improved SV detection algorithms is to use synthetic datasets during
algorithm development. Ergo, we have constructed SVsim, a flexible tool for simulating SV
events of all varieties including insertions, deletions, duplications, or inversions of specified
lengths using a declarative language.

SVsim was used to generate simulated SV events which aided in the development of YAHA
(Faust and Hall, 2012), LUMPY (Layer et al, 2014), and other tools. Each declarative
command for an event can specify whether the event will be placed at a specified location in
the genome, or whether SVsim should choose a random location. The source for insertion
events can also be chosen randomly, or the location specified or the inserted bases can be
included within the command itself. This latter capability allows for spiking in DNA from
foreign organisms, such as viruses or bacteria, into the test genome, and was used for Alu
insertions into the MEI test dataset for YAHA. SVsim can also be used to create random
complex genomic rearrangements (CGRs) with many clustered breakpoints while
maintaining user-specified minimum and maximum segment sizes, and ratios for deletions
and duplications. Uniquely among SV simulators, SVsim supports simulating SV events in
both haploid and diploid genomes.

The output from SVsim includes either a full-length mutated genome, or small contigs
around the SV breakpoints, as a fasta file. Simulated sequence reads can then be generated
from these files using wgsim from the samtools toolkit, which allows the specification of
various error models and read average read depth (Li et al., 2009a). Also, a bedpe file is
output for each of the SV breakpoints created. This is a standard file format for describing
SV breakpoints, is output by many SV detection tools, and can easily be generated from
split-read mappings. Therefore, one can directly compare the output of the SV tool one is
trying to debug/tune with the expected SV breakpoints output by SVsim to calculate both
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accuracy and sensitivity of SV detection. This can be done by using, for example, bedtools
pairtopair from the bedtools suite (Quinlan and Hall, 2010).

SVsim was developed in 2009 and 2010 primarily for internal lab usage and has not been
published. However, since then it has been made open source on github and used by other
groups. Several other SV simulators are also now available. For example, svsim is another
unpublished open source Python SV simulator in which a very simple set of SV events can
be specified using a declarative language. However it cannot simulate complex genomic
rearrangements. But it does have some additional features not directly related to SV
simulation (https://github.com/mfranberg/svsim). RSVsim is another SV simulator written
for R (Bartenhagen and Dugas, 2013). Unlike SVsim’s model for generating SV events in
random or user specified locations, it attempts to use a biologically derived simulation
technique that will, for example, simulate deletions or tandem duplications in genomic
regions that it selects as likely places for NAHR to occur. While this is an admirable goal, it is
unclear how well this can be done in practice without adding bias. Therefore, we specifically
decided against using this approach in SVsim in favor of simplicity and user control. Both of
these other SV simulators also output fasta files for mutated genomes, and RSVsim can also
output bedpe.

SVsim has another very important set of features that to the best of our knowledge are not
available in any other generally available SV simulation tool. These features were added and
used by the author to perform Monte Carlo simulations, incrementally adding many
clustered SV events in a random order at specified genomic locations in such a way that the
resultant CGR would have all of the same breakpoint signatures detected in a CGR from a
cancer genome. After each such simulation, the resultant count of distinct copy number
states was noted. This helped to prove that the CGRs found in certain cancers in the cancer
genome atlas had far fewer copy number states than those occurring in the simulations,
making it very unlikely that the observed CGRs could have occurred by a sequence of simple
events, and were almost certainly the result of a single complex event such as
chromothripsis (Malhotra et al., 2013).
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3 SAMBLASTER

This chapter contains a slightly edited version of material published in 2014 (Faust and
Hall, 2014) plus the author’s online supplemental material (Section 3.5 and Table 3.2) that
was not included in the original manuscript due to size limitations.

SAMBLASTER is written in C++ and is open source software that can be downloaded from
https://github.com/GregoryFaust/samblaster.

The ongoing rapid cost reduction of Illumina paired-end sequencing has resulted in the
increasingly common use of this technology for a wide range of genomic studies, and the
volume of such data is growing exponentially. Generating high quality variant calls from
raw sequence data requires numerous data processing steps using multiple tools in
complex pipelines. Typically, the first step in this analysis is the alignment of the sequence
data to a reference genome, followed by the removal of duplicate read-pairs that arise as
artifacts either during PCR amplification or sequencing. This is an important pipeline step,
as failure to remove duplicate measurements can result in biased downstream analyses.

3.1 Common usage scenario: piped SAM input

Existing popular duplicate marking programs such as PICARD MarkDuplicates
(http://picard.sourceforge.net/) and SAMBAMBA markdup (http://github.com/sambamba)
require position-sorted SAM or BAM (Li et al., 2009a) as input, and perform two passes over
the input data, thereby requiring that their input file be stored on disk. Instead,
SAMBLASTER marks duplicates in a single pass over a SAM file in which all alignments for
the same read-id are grouped together. This allows the SAM output of paired-end alignment
tools such as NOVOALIGN (Hercus, 2009) or BWA-MEM (Li, 2013) to be piped directly into
SAMBLASTER, which marks duplicates and outputs read-id grouped SAM, which in turn is
piped to SAMTOOLS or SAMBAMBA for sorting and/or compression, without the need to
store any intermediate files. This saves one compression-write-read step in the common
case in which a duplicate marked position-sorted file is needed later in the pipeline, and two
such cycles if a duplicate marked read-id grouped file is also needed (Figure 3.1). The
elimination of each such cycle is a significant cost savings of both disk space and runtime.
For example, using ~50X-coverage whole genome sequence data for NA12878 from the
[llumina Platinum Genomes (ENA Accession: ERP001960), each compressed BAM file
consumes over 100 GB of space and requires 7+ hours to compress with SAMTOOLS, and
8.5 hours of CPU time in 1.5 hours elapsed time with SAMBAMBA using 10+ threads on a
server class machine. An advantage of the two-pass duplicate marking strategy is that one
can retain the “best” read-pair of a set of duplicates, while SAMBLASTER always keeps the
first such pair found in its input. However, we will show that the quality of the resultant
duplicate marking is nearly identical using several metrics, and in practice we find this has
negligible impact on variant detection.

SAMBLASTER will mark as duplicate any secondary alignments associated with a duplicate
primary alignment, and thus works particularly well with BWA-MEM output. Currently,
neither SAMBAMBA nor PICARD has this functionality.

3.2 Extracting reads for structural variation detection

Structural Variation (SV) is a major source of genome diversity but is difficult to detect
relative to other forms of variation. SV detection algorithms typically predict SV breakpoints
based on the distribution of discordant paired-end alignments, in which the paired reads
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Figure 3.1. SAMBLASTER vs. conventional pipeline for marking duplicate read-pairs.
Comparison of SAMBLASTER (left) vs. conventional (right) pipeline for marking duplicates
and isolating discordant read-pairs, split-read mappings (BWA-MEM only), and/or
unmapped and clipped reads for realignment with a sensitive split-read aligner such as
YAHA. Note that use of SAMBLASTER saves a compression cycle, produces fewer
intermediate files, and avoid another decompression step to feed scripts used to extract the
proper reads for SV detection.
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map to either end of an SV breakpoint, and/or split-read alignments where reads align
across an SV breakpoint. Many SV detection algorithms require long runtimes due to the
overhead associated with searching for and extracting these alignments from large BAM
files comprised predominantly of uninformative read-pairs. However, some SV detection
algorithms, including HYDRA (Quinlan et al., 2010) and LUMPY (Layer et al., 2014), are able
to input files comprised solely of discordant and/or split-read mappings, which are typically
>100-fold smaller in size. This presents an opportunity to greatly increase pipeline
efficiency by extracting discordant and split-read mappings during a prior pipeline step that
already requires reading through the entire dataset. SAMBLASTER is able to extract such
reads directly from the SAM output of an aligner such as BWA-MEM that can detect both
discordant read-pairs and split read mappings. In addition, when used with other popular
paired-end aligner such as BWA-ALN or NOVOALIGN, which do not identify split-read
mappings, SAMBLASTER can extract unmapped and clipped reads for realignment with a
sensitive split-read alignment tool such as YAHA (Faust and Hall, 2012) for later use to
detect SV. By including these capabilities directly in a tool that also marks duplicates,
several SV detection pipeline steps can be eliminated (Figure 3.1).

3.3 Custom data structures

SAMBLASTER utilizes custom data structures that use significantly less memory than other
duplicate marking programs. Two or more read-pairs are considered duplicates when they
have the same signature, defined as the combination of the sequence, strand, and reference
position of both reads in the pair. To most accurately define the reference positions, it
parses the CIGAR string to calculate where the 5’ end of each read would align to the
reference genome under the assumption that the entire read is mapped. This is similar to
the strategy used by PICARD. To detect duplicates, it builds a set of such signatures, marking
a read-pair as duplicate if its signature has previously appeared in the input.

To avoid storing a structure with all of this information, the signature is broken into pieces.
Each unique combination of sequencel, strand1, sequence2 and strand2 maps to its own
position in an array in which a set of the associated position pairs is stored as a hash table.
The hash tables are optimized to store 64-bit integers; 32 bits for each reference position.
SAMBLASTER thus has low memory requirements relative to other tools, ~20 bytes per
read pair, which frees it from the need to use temporary intermediate files. See Figure 3.2
for details. In addition, SAMBLASTER does not allocate/free any per-read memory
structures for reading/writing SAM records, thereby increasing [/0 throughput.

3.4 Performance evaluation

To evaluate the speed, memory and disk usage of SAMBLASTER as a stand-alone duplicate
marking algorithm vs. PICARD MarkDuplicates and SAMBAMBA markdup, we used the
NA12878 dataset aligned via BWA-MEM as our input source. All timings were performed on
a server class machine with 128 GB of RAM and two 8-core (16 thread) Intel Xeon E5-2670
processors running at 2.6GHz. To make the comparison of SAMBLASTER to PICARD as
similar as possible, we ran both using SAM for both the input and the output format.
SAMBAMBA markdup does not support SAM format for either input or output. To make the
test as comparable as possible, we used uncompressed BAM for both, even though such files
are still much smaller than SAM. While SAMBLASTER is single threaded, to show best
possible PICARD and SAMBAMBA runtimes, each were allocated 32 threads, and
SAMBAMBA single-threaded statistics are also shown. The results of the comparison test
are shown in Table 3.1. SAMBLASTER outperforms the other duplicate marking programs
in terms of CPU seconds, wall time, disk 10, and memory usage.
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Figure 3.2. Custom data structure in SAMBLASTER.
SAMBLASTER uses a separate set of reference-offset pairs, stored as a hash table, for each
combination of sequencel, strand1, sequence2, and strand2. The hash tables are optimized
to store 64-bit integers.
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Table 3.1. Comparative performance of SAMBLATER vs. PICARD and SAMBAMBA.
Runtime, memory usage, and disk usage statistics for SAMBLASTER 0.1.14, PICARD
MarkDuplicates 1.99 and SAMBAMBA markdup 0.4.4 as stand-alone duplicate marking tools,
and in a common pipeline that produces a duplicate marked position-sorted BAM file as its
final output. In the pipeline, SAMBAMBA sort and compression are used. There is also a
control pipeline run without duplicate marking, which demonstrates that SAMBLASTER
adds little overhead. SAMBAMBA markdup times are shown for both an uncompressed and
compressed position-sorted intermediate file. These tests were run using local RAID storage
with fast read/write times. In a more common scenario using networked disk access,
SAMBLASTER’s reduced 10 results in greater runtime savings vs. the other tools.

Mark Extra Disk Total CPU Time | Wall Time Mem

Dups Space Disk 10 (seconds) (minutes) Usage

Threads (GB) (G ops) (GB)

Stand Alone Mark Duplicates Function
SAMBLASTER 1 - 1.863 2077 43 ~15
SAMBAMBA 1 2.285 6338 75 ~32
SAMBAMBA 32 2.285 6603 54 ~43
PICARD 32 3.056 63160 302 ~30
Mark Duplicates - Sort - Compress Pipeline

No duplicate marking - 1.954 51819 117 ~19
SAMBLASTER 1 0 1.987 52767 118 ~23
SAMBAMBA compressed 32 108 2.455 86512 154 ~43
SAMBAMBA uncompressed 32 391 3.997 61321 163 ~43
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3.5 Duplicate Marking Quality

Two-pass algorithms have the advantage that they can choose to keep from amongst a set of
duplicates, the read pair with the “best” score using some metric that differentiates
sequence and/or alignment quality. In contrast, SAMBLASTER'’s one pass approach can only
keep the first pair from a set of duplicate pairs. Given the high quality of [llumina paired-end
sequencing, we find this makes little difference in practice. We now analyze the quantity
and quality of reads marked as duplicates by SAMBLASTER and PICARD, the generally
agreed upon gold standard for quality duplicate marking. In particular, we count the
number of reads that each tools marks as duplicate that fall into various categories, note the
percent of the total represented by that category, and report the mean alignment score
(MAS), mean number of alignment mismatches (MNM) and the mean base sequencing
quality scores (MBQS) as measures of alignment and/or sequence quality. The results are
summarized in Table 3.2. Although there are some notable differences in the number of
duplicates in various read categories, PICARD and SAMBLASTER find almost the same total
number of duplicates. The resulting non-duplicate reads have almost identical MAS, MNM,
and MBQS statistics.

Among the duplicates, by far the largest and the most interesting group are the doubly
mapped (DM) pairs in which an alignment is found for both reads in the pair. Because
PICARD and SAMBLASTER use the same calculation to locate the 5’ end of reads used to
identify duplicates, both find the identical number of duplicate DM pairs. In addition, they
agree on which of the DM pairs to mark as duplicate ~80% of the time. Assuming that
PICARD has a metric that distinguishes all of these DM pairs, we would expect that
SAMBLASTER could choose to keep the better scoring pair by chance only 50% the time.
Therefore, to explain this 80% concordance, two things must be true. First, at least 60% of
the duplicate DM pairs must be considered by Picard to be of the same quality, and
therefore it has no way to choose between them. We call these “don’t cares”. Second,
PICARD and SAMBLASTER must pick the same DM pair to mark as duplicate for these “don’t
cares” a disproportionate percentage of the time. This latter condition is likely caused by
the fact that the input file to PICARD was position sorted using Novosort
(http://www.novocraft.com/Novosort), which is known to use a stable sort algorithm.
Therefore, many of the reads with the same nominal genomic position as reported in the
SAM file will be in the same read-id order in the input to PICARD as they were in the SAM
file used as input to SAMBLASTER. The high percentage of agreement on “don’t care” pairs
can then be explained if PICARD chooses to keep the first of these “don’t care” cases as the
non-duplicate pair, thereby picking the same one as SAMBLASTER. For the remaining 20%
of the DM pairs in which PICARD and SAMBLASTER disagree (0.43% of the total reads), the
duplicates marked by SAMBLASTER have slightly better MAS, MNM, and MBQS statistics
than those marked by PICARD, with the concomitant result that the corresponding non-
duplicate pairs kept by SAMBLASTER have worse scores for these pairs.

For the remainder of the read categories, it is clear that PICARD and SAMBLASTER are using
different strategies to identify duplicates. Read pairs in which one read is mapped and the
other unmapped are called “orphans”. SAMBLASTER compares orphans only to other
orphans to find duplicates, and always marks both reads in an orphan pair as either
duplicate or not duplicate. PICARD marks many more mapped reads in orphans as duplicate
than SAMBLASTER, and marks no unmapped reads in orphans as duplicates. One possible
explanation for this large number of mapped orphan duplicates is that Picard compares the
mapped orphan reads to all mapped reads to determine if it is a duplicate. This could also
account for the better MAS, MNM, and MBQS scores for PICARD mapped orphan duplicates
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when compared to either the DM pairs, or SAMBLASTER orphan statistics. Finally,
SAMBLASTER marks as duplicate any secondary alignments associated with primary
duplicates, while PICARD currently does not. By definition, these are the result of a split
mapping of the read, are therefore shorter alignments, and have correspondingly much
lower MAS and MNM statistics. The lower MAS and MNM scores for the SAMBLASTER
duplicate secondary alignments and mapped orphans are partially compensating for the
better scores for duplicate mismatched DM pairs, leading to a final total non-duplicate MAS
and MNM for SAMBLASTER that is very close to that of PICARD.



Table 3.2. Duplicate marking quality statistics.
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Statistics for the number and quality of duplicates and non-duplicate reads for PICARD and
SAMBLASTER runs on NA12878. Statistics include the mean alignment score (MAS), mean
number of mismatches (MNM), and mean base quality scores (MBQS). The MAS and MNM
numbers exclude unaligned reads.

PICARD SAMBLASTER
Read Category Reads %Total| MAS | MNM |MBQS Reads %Total| MAS | MNM |[MBQS
Total Reads 1,578,585,456| 100.00{ 96.95| 0.56| 36.35|1,578,585,456| 100.00|{ 96.95| 0.56| 36.35
Total Non-duplicates |1,542,595,943| 97.72| 97.52| 0.47| 36.35]1,543,282,023| 97.76| 97.51| 0.48| 36.34
Total Duplicates 35,989,513| 2.28|72.85| 4.19|36.44] 35,303,433| 2.24|72.63| 4.23|36.94
Total DM Pairs 34,690,470| 2.20| 72.60| 4.28|36.60] 34,690,470| 2.20|{72.98| 4.24|37.05
DM Matching 27,877,300| 1.77|72.57| 4.31|36.72 27,877,300] 1.77|72.57| 4.31|36.72
DM Mismatching 6,813,170| 0.43]72.74| 4.16| 36.10 6,813,170| 0.43| 74.66| 3.99| 38.42
Orphans, mapped 1,299,043| 0.08| 79.34| 1.96| 32.15 190,924| 0.01|54.33| 3.63|29.70
Orphans, unmapped 0.00 190,924| 0.01 NA NA| 24.44
Secondary Alignments 0.00 231,115 0.01]34.76] 3.16| 36.46
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4 YAHA

This chapter contains a slightly edited version of material published in 2012 (Faust and
Hall, 2012) plus a modest update of more recent findings (Section 4.5 and Figure 4.4).

YAHA is written in C and C++ and is open source software that can be downloaded from
https://github.com/GregoryFaust/yaha.

Structural variation (SV) is a major source of diversity in germline and cancer genomes, but
is difficult to map relative to other forms of variation. Since 2008, most sequence-based
studies of SV have used paired-end mapping (PEM), which relies upon clustering of
discordant paired-end reads that map to either side of an SV breakpoint. Now, with the
rapid improvement of short-read assembly algorithms and the development of third
generation long-read sequencing technologies, split-read or split-contig mapping (we refer
to both as SRM) will soon be the preferred method. SRM is significantly more precise and
less error prone than PEM. Yet, current read mappers are not well designed for aligning
breakpoint-containing query sequences. Here, we present YAHA, a flexible hash-based
aligner that is explicitly designed for optimal SV breakpoint detection from long query
sequences (100-32Kbp).

4.1 Introduction

To accurately determine SV breakpoints using SRM, an aligner must do four things well.
First, it must accurately determine the best set of alignments that cover the length of the
query; the Optimal Coverage Set (OCS). This is best accomplished by using an algorithm that
provides provably optimal results given some objective function. Our use of a best-path
algorithm on a directed acyclic graph (DAG) of alignments does just that. The objective
function is specifically tuned to finding SV events by taking into account the length and
quality of alignments, the number of alignments in the OCS and the genomic distance
between those alignments. Second, it must be able to report alignments similar to those in
the OCS in order to allow for the use of combinatorial breakpoint detection algorithms that
cluster multiple mappings per read (Hormozdiari et al., 2009; Quinlan et al,, 2010). YAHA’s
use of an optimal DAG algorithm for discovery of the OCS and its ability to find collections of
alignments similar to the OCS are completely novel. Third, it must be able to generate a
large number of viable alignments to feed the above two algorithms. Long-read aligners
such as BWA-SW (Li and Durbin, 2010) and AGILE (Misra et al., 2011) severely restrict the
number of alignments under consideration early in query processing. While this improves
speed, it reduces the likelihood of finding the OCS and precludes finding alignments similar
to them. YAHA can produce the required large number of alignments. Optionally, the user
can choose to output all of them. Other aligners such as MegaBLAST (Altschul et al., 1990)
and SSAHA2 (Ning et al., 2001) can also produce numerous alignments, but have no notion
of an OCS. Fourth, the aligner must be able to run in a reasonable amount of time. YAHA
uses a unique combination of heuristics and optimizations to accomplish this. We use a
hashing scheme similar to SSAHA, but with a considerably faster approach for sorting hash
table seeds. We use banded Smith-Waterman (SW) and a modified version of MegaBLAST’s
X-Dropoff heuristic for extensions. Finally, we calculate the OCS without unduly impacting
performance by using a time and space optimized DAG algorithm. YAHA is the only aligner
that does all four of these things well, and therefore is uniquely well suited to SV breakpoint
detection. In addition, it is important to score alignments using a metric that is capable of
accommodating a wide range of error profiles in order to perform well on queries from
diverse sources, including existing and future long-read sequencing technologies (Mardis,
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2013). To accomplish this, YAHA utilizes Affine Gap Scoring (AGS) with user specified
cost/reward parameters.

4.2 Methods

YAHA uses a seed and extend strategy for DNA alignment. Alignments are output in SAM
format (Li et al., 2009). YAHA breaks the alignment process into six stages. Steps 5, Optimal
Query Coverage (0QC) and 6, Filter By Similarity (FBS), are not included in any other DNA
aligner. Although many of the basic algorithms used by YAHA are not novel, their inclusion
in a DNA alignment tool is.

4.2.1 Find seed matches

A base-pair sequence of fixed-length k is called a k-mer. YAHA uses a hash table index to
locate the set of locations (seeds) where each k-mer in the query sequence appears as a
subsequence of the reference. There are three parameters that control the creation of the
index; seed length (k), the skip-distance between the starting locations of seeds in the
reference, and the maximum allowed hits for a k-mer before it is considered too repetitive
to be useful (maxHits). Typical values of k range from 8 to 15. The skip-distance can range
from 1 (max overlap) to k (no overlap). YAHA builds an index once per desired combination
of reference genome and index parameters and stores it in a file. While performing
alignments, the index file is accessed via memory-mapped IO as if it were stored in RAM.

For mammalian genomes, and k<15, a very large percentage of all unique k-mers will
appear at least once in the genome. Therefore, a natural way to form a hash key is to
compress the k-mer using 2 bits per base, then use it as an offset into a table with an entry
for each k-mer (Figure 4.1A). The list of reference hits for all keys are concatenated in one
large array called the Reference Offset Array (ROA). This index structure is the one used in
YAHA and was taken directly from SSAHA. Similar indexing strategies are used by
MegaBLAST, BLAT (Kent, 2002), and others. For mammalian genomes, we find that k=15
and skip-distance=1 (a 15/1 index) performs quite well, and we use such an index for all
YAHA test runs discussed below. Like MOSAIK (Lee et al., 2014) YAHA allows for sampling
of hits in the reference down to the specified maxHits parameter setting. This can have a
dramatic impact on the trade-off between sensitivity and run-time, as we later show in
Section 4.3.

4.2.2 Combine seed matches into fragments

Next, seeds are joined together to form extended seeds or fragments of contiguous matching
bases between the query and the reference (Figure 4.1B). Seeds that can be strung together
in this way appear on the same diagonal in a plot of Reference Offset (RO) versus Query
Offset (QO) (Figure 4.1C). The query length (QL) determines the number of k-mers that
appear in the query. Let N equal the sum over QL of the number of reference hits for the k-
mer starting at each query offset. To find extended seeds, many aligners collect all n seeds
for a query into an array and use an O(nlogn) sort to collocate seeds to be placed in a
fragment. However, since the seeds for each k-mer are presorted by RO in the ROA, YAHA
instead performs a QL-way merge of the presorted ROA regions. A Priority Queue (Binary
Heap) is used to aid the merging process. The process proceeds in two phases. First, the
queue is initialized with the first reference hit for each query offset. Then, we repeatedly
extract the minimum value of the heap, and replace it with the next reference hit for the
retrieved query offset (if any). The fragments are collected into an array as the seeds are
extracted from the queue. This phase continues until the heap is empty. This approach
reduces the complexity to an upper bound of nlogQL because the heap will contain a
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Figure 4.1. YAHA methods.

A) Starting at each location in the query we form a k-mer that is then converted to a hash
key by compressing the bases in the k-mer using 2-bits per base. That hash key is then used
to directly index into the Hash Array, giving the starting offset and length of the subset of
the ROA that contains the collection of reference locations for that k-mer. B) Next, seed
matches from the query and reference that fall along the same diagonal are collected into
extended seeds called “fragments” by merging the pre-sorted ROA regions for each query
location using a Binary Heap. C) In any given region of the reference, many fragments can
be included in a potential alignment. YAHA uses a graph algorithm to find the set that
maximizes the estimated score. In this example, fragments 1, 2, and 4 form the best
alignment. D) During the Optimal Query Coverage algorithm, we will find the best collection
of “primary” alignment (green lines) that has the highest non-overlapping sum of scores.
Filter By Similarity is then used to determine the remaining “secondary” alignments (blue
lines) that are highly similar to any primary alignment. The remaining alignments (red
lines) are not included in the output for the query.
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maximum of QL entries and will become smaller over time as loci on the query exhaust their
lists of seed matches. In addition, we do not need to create the large n element array, saving
memory footprint and possibly improving cache locality. To the best of our knowledge, no
other hash based aligner uses this optimization to reduce the cost of sorting the seed
matches.

4.2.3 Combine fragments into an alignment

YAHA next finds the best potential alignment in each region of the reference by combining
the fragments that contribute to the highest estimated alighment score in that region.
Selecting fragments can be difficult in regions with tandem repeats as there may be
numerous overlapping fragments with various distances between their diagonals. We
calculate the estimated score for each possible collection of fragments in the region using
the AGS parameters; fragments are scored as matches, while differences between fragment
diagonals are scored as a single indel. YAHA uses a graph algorithm that finds the path with
the maximum estimated score (Figure 4.1C). The nodes of the graph (colored lines)
represent fragments, and the edges (gray lines) represent the cost or benefit of one
fragment succeeding another in the alignment. Since fragments earlier in the query can only
be succeeded by fragments later in the query, the graph is directed and acyclic (a DAG), with
a maximum of n2/2 edges for n fragments. In DAGs, such min/max path algorithms need
visit each edge only once in the proper (topological sort) order. By placing the nodes in an
array and presorting them by starting QO using a conventional O(nlogn) sort, we perform
the graph algorithm without ever forming the edges. This saves space and improves cache
behavior. Each node is visited sequentially while checking against all nodes above it in the
sorted array. If an edge is allowed between two nodes, we immediately score and relax the
edge, resetting the best score and best-path back-pointer in the later node when
appropriate.

Traditionally, the task of selecting the best seed matches to include in an alignment has
been performed by using Dynamic Programming (DP) (Pearson and Lipman, 1988).
Straightforward DP implementations require time and space proportional to n2. However,
the Hirschberg algorithm (Myers and Miller, 1988), reduces the DP space requirement to
O(n), but approximately doubles the runtime. The graph algorithm used in YAHA also uses
time proportional to n2, and space proportional to n, but without this added complexity. We
reuse this graph algorithm in the OQC phase described below.

Once a best set of fragments is found for a reference region, it is placed into a potential
alignment to be completed as described below. If any of the remaining fragments from this
reference region do not overlap on the query with any potential alignments already found
in this region, they are used in another run of the graph algorithm. This process continues
until there are no remaining fragments in an uncovered portion of the query. We next
discard all potential alignments that contain a number of seed matches that falls below a
user specified threshold (minMatch). It is common for aligners to define this threshold in
terms of the number of seed hits from the index. As the seeds can be overlapping, YAHA
instead uses a threshold for the total number of non-overlapping bases that appear in seeds.
We believe such a threshold is both more accurate and easier for the user to manage.

4.2.4 Complete alighments using DP

YAHA now takes each potential alignment from above, and completes the calculation of the
full alignment. It uses a modified version of SW only to find the portions of the alignment
that fall between fragments, and to find the best forward and backward extensions for the
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alignment. Our implementation of SW calculates AGS with a well-known strategy to reduce
memory usage first proposed by (Gotoh, 1982). YAHA also uses a common heuristic called
‘banding’ that reduces costs by calculating only the DP values near the diagonal of the array.
Because the endpoints of extensions are not known, we heuristically use twice the
bandwidth during extension as used between fragments, and a simplified version of the well
known X-Dropoff heuristic (Zhang et al., 1998) which stops extending an alignment when
the score for the current extension is more than X below the best score for a shorter
extension. YAHA almost always finds the optimal local alignment. However, due to the use
of various heuristics such as X-Dropoff and banding, this is not guaranteed.

4.2.5 Apply Optimal Query Coverage algorithm

Optionally, YAHA can report all alignments identified through the above steps. This feature
is invaluable when it is important to gain knowledge about the uniqueness of a query
sequence or the distribution of repeats in the reference genome. However, in order to
define SV breakpoint locations, it is often preferable to ignore the potentially large numbers
of irrelevant alignments that arise from repeats embedded within larger, more unique
portions of the query. For this purpose we have devised an algorithm called 0QC, which
finds the set of alignments that cover the length of the query with the maximum coverage
score. This Optimal Coverage Set (OCS) is composed of one or more Primary Alignments.
This algorithm greatly aids in reconstructing breakpoint architecture and is a crucial, and
novel, feature of YAHA.

To find the OCS, we use a max-path DAG algorithm similar to that described in Section 4.2.3
above. The nodes now represent the alignments, and the edges represent one alignment
being included with another in the OCS (Figure 4.1D). We again presort the alignments by
starting QO to avoid creating the edges. In cases where two alignments overlap at the
breakpoint, as occurs when structural variants are generated by homology dependent
mechanisms, the score of the better alignment in the overlap region is used. In order to
avoid an overly fractured OCS, a penalty is applied for each split between adjacent
alignments. This penalty is the product of two factors. The first is a user-supplied parameter
called the Breakpoint Penalty (BP). The second is a Genomic Distance Penalty (GDP)
calculated as logio of the number of base pairs along the reference genome between the two
alignments. The user can specify a maximum GDP (maxGDP). Alignments on separate
chromosomes always incur the maxGDP. Through these two parameters, the user can
control how sensitive the query coverage score is to genomic distance, and how large the
non-overlapping portion of an alignment must be before it is included in the OCS. With a
relatively high maxGDP, collections of alignments near each other on a reference
chromosome will be favored, helping to identify deletions, tandem duplications and
inversions. A low maxGDP will be more neutral to genomic distance. A higher BP will favor
alignment sets with fewer, larger, alignments.

We believe that this OQC calculation allows for the discovery of biologically meaningful
collections of alignments. We show below that YAHA’s OQC algorithm is better at
discovering SV events than the heuristic approach used by BWA-SW for finding split
alignments.

4.2.6 Apply Filter By Similarity algorithm

Optionally, we next perform the FBS step to identify Secondary Alignments that have a high
length overlap and score agreement with a primary alignment (Figure 4.1D). This allows
the user to gain knowledge of repetitive mappings specifically for those sections of the
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query that comprise a primary alignment. This is required for clustering algorithms
designed to identify breakpoints in repetitive genomic regions, and may be useful for
characterizing the repetitive structure of fully sequenced reference genomes (Bailey et al,,
2002). This novel feature of YAHA combines the utility of finding large numbers of
alignments with the advantage of defining the optimal collection along the query.

4.3 Results

To demonstrate YAHA’s power and flexibility, we measure its performance in three test
scenarios. First, we show that YAHA is sufficiently sensitive to find large numbers of
alignments for queries with repeated (sub)sequences. Second, we measure YAHA'’s ability to
accurately find alignments when using the OQC algorithm for non-chimeric queries. Third,
we test the OQC and FBS algorithms by measuring YAHA’s ability to detect SV breakpoints
in chimeric queries. For each test, we compare YAHA to what we believe to be best of breed
among commonly used aligners for that specific task. In the sensitivity test, we compare
against MegaBLAST because it is generally considered one of the most sensitive heuristic
aligners for finding a large number of alignments in a practical amount of time. Because we
use the same indexing strategy as SSAHAZ2, we also include it in this test. BWA-SW only
reports primary alignments so cannot be included in the sensitivity comparison. We do not
include MegaBLAST or SSAHAZ2 in the accuracy or SV detection tests because neither has
any strategy for finding an OCS. For these tests, we compare our results to BWA-SW, which
is the most widely used long-read aligner, and the most challenging competitor to YAHA for
finding primary alignments on either chimeric or non-chimeric queries. In particular, it has
already been shown that BWA-SW outperforms SSAHAZ2 and BLAT on non-chimeric reads
(Li and Durbin, 2010). In all these tests, CPU time is an important metric, as any alignment
task is easy to perform by brute force if an aligner is given unlimited computer resources.
Finally, we note that it is difficult to compare results from different aligners because most
are highly parameterizable, but do not share all the same parameters. We have made a
considerable effort to select the most effective parameters to use for YAHA and the other
aligners, but we cannot exclude the possibility that untested parameter combinations might
produce superior results to those we present here.

The data for the accuracy test was generated using WGSIM (Li et al., 2009a) to sample reads
from the hg18 reference genome with the lengths and error rates shown in Table 4.2. For
the sensitivity test, we focus on the first of these datasets; 100,000 queries of length 100
with a 2% error rate. For the SV detection test, we used our own tool, SVsim, to simulate SV
events of various types.

All tests were run on a server class machine with 4 Xeon X7350 processors, 128 GB of
shared RAM, running CentOS 5.5. YAHA’s 15/1 index and compressed reference total 15.5
GB, SSAHA's total 22.3 GB and BWA-SW’s index and reference total 7.4 GB. However, we
believe that index size is a minor concern given modern computing environments.

4.3.1 Sensitivity test

To test sensitivity, we ran YAHA bypassing the OQC and FBS algorithms and output all
alignments that pass applicable thresholds. An issue arises in trying to compare results
from YAHA, MegaBLAST, and SSAHA2 because they do not have the same threshold
parameters, and SSAHA2 does not support AGS. To equalize results, we applied an external
filter to keep only alignments =50bp in length, and ran each aligner with its thresholds set
so that such alignments were not filtered out internally. Also, each aligner uses different
criteria to determine if two alignments are ‘distinct’ enough to report separately. To account
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for this, we filtered out alignments that are overlapping on the reference with another
alignment for the same query. We refer to the final set of filtered alignments as GE50U
alignments. As there is no practical way to determine every location in the reference that
can be aligned to a given query, we measure relative sensitivity in this test. Version 2.2.19 of
MegaBLAST was run using parameter settings that are as sensitive as possible with a seed
length of 15. The result is the baseline against which we compare the sensitivity of YAHA
and SSAHA2.

Seven aligner runs are used in this test (Table 4.1). We study four YAHA runs with
parameter settings representing different points along the sensitivity spectrum. For three of
the runs, we used a minMatch of 15 (one seed hit) and a maxHits of 65,525 sampled (Y1),
10,000 sampled (Y2) and 10,000 unsampled (Y3). The fourth run (Y4) used faster but less
sensitive parameters; maxHits of 650 unsampled and minMatch of 20. We also study two
runs of version 2.5.1 of SSAHAZ2. The first (S1) used SSAHA2’s built-in 454 mode, which
implies many SSAHA2 parameters, including ones for the Crossmatch back-end, and a 13/3
index. SSAHA?2’s default and solexa modes do not perform well in this test and are not
included. The second (S2) also used the 454 mode Crossmatch parameters, but with a 15/1
index, SSAHA2 default value of 10,000 for maxHits, and a minMatch of 1. These parameters
make this run directly comparable to the Y3 run.

Table 4.1 shows the test results. The percentage of queries with the same number of
GE50U alignments as M is similar across runs. In fact, 64% of the queries produce the same
number of GE50U alignments across all seven runs. Of these, 97.7% produce a single GE50U
alignment. This indicates there is high agreement between aligners for queries that map to
unique locations on the reference. In addition, all of the YAHA runs produce significantly
more total and GE50U alignments per second than any other aligner runs.

Y1 uses the most sensitive YAHA parameters possible for a 15/1 index, and produces more
total alignments, more GE50U alignments and more queries with a greater number of
GE50U alignments, in less runtime than MegaBLAST. This is a striking result. We analyze it
further by expanding the last three columns of the Y1 row of Table 4.1 into a histogram of
the difference in the number of GE50U alignments in the Y1 run versus M (Figure 4.2). This
shows that the two aligners can differ in the number of alignments for queries with highly
repetitive (sub)sequences by five orders of magnitude. Yet, the graph is highly skewed in
Y1’s favor, showing that YAHA is significantly more sensitive than MegaBLAST at identifying
large numbers of alignments for such queries, while using less runtime.

YAHA greatly outperforms SSAHA2. For example, Y3 and S2 use comparable parameters,
yet Y3 reports ~297X more GE50U alignments at ~12X greater speed (GE50U/s). The
algorithmic basis for this dramatic difference in sensitivity is unclear. While S1 fared
somewhat better, we note that this disparity persists across a wide range of SSAHA2
parameters (data not shown).

Y2 and Y3 agree in all parameter settings except Y2 uses an index with random sampling of
k-mers that appear more than 10,000 times in the hg18 genome. More than 99.9996% of all
15-mers appear fewer than 10,000 times in hgl8, yet Y2 requires ~4X the runtime and
produces ~4.5X the number of GE50U alignments. This shows that the very few highly
repetitive k-mers greatly impact queries that contain them. It also shows, together with the
use of sampling in Y1, the improvement in sensitivity derived from sampling such k-mers
instead of excluding them.



Table 4.1. Results of the sensitivity test.
The first two columns give the name and aligner parameters, column 3 gives the runtimes,
columns 4-7 contain the total alignments, GE50U alignments, total alignments/second, and
GE50U alignments/second, and the last 3 columns show the number of queries with >, =, or
< the number of alignments as the MegaBLAST run.
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CPU Alignments Versus MegaBLAST
Run|Aligner and Parameters Secs Total GE50U A/Sec|U/Sec| >M =M <M
M |MegaBLAST: wordLen=15, score=15 190,773] 4,012,294,854{ 1,827,862,215[ 21,032 9,581 0]100,000 0
Y1 |YAHA: minMatch=15, maxHits=65525S | 160,501} 6,085,988,010| 2,343,744,189(37,919| 14,603 30,638| 68,357| 1,005
Y2 |YAHA: minMatch=15, maxHits=10000S | 91,097| 3,403,790,544| 1,470,115,221{37,364| 16,138] 23,789| 68,387| 7,824
Y3 |YAHA: minMatch=15, maxHits=10000 22,385 950,852,793 327,644,121| 42,477 14,637} 20,021] 68,371 11,60
Y4 |YAHA: minMatch=20, maxHits=650 284 11,680,597 6,796,153| 41,129] 23,930 716 69,536| 29,74
S1 |SSAHAZ2: 454 mode 1850 6,066,013 5,488,465| 3,279] 2,967 834| 66,634| 32,53
S2 |SSAHAZ2: minMatch=1, maxHits=10000 937 2,633,833 1,101,352| 2,811 1,175 120 65,622| 34,25
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Figure 4.2. Alignment statistics in run Y1 vs. M.

Histogram of the number of queries in the Y1 YAHA run with varying numbers of greater,
equal, and fewer GE50U alignments than MegaBLAST (M). Note the logio scale bucket sizes.
The total number of queries >0 is 30,638 and <0 is 1005 as in Table 4.1.
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Over 99.99% of all possible 15-mers appear fewer than 650 times in hg18. Therefore, even
without using sampling, this acts as a reasonable maxHits cutoff for relatively fast runs. Y4
uses this maxHits threshold, and further reduces runtimes by using a minMatch of 20
instead of 15. These prove to be effective settings, as Y4 produces ~1.6X as many GE50U
alignments per CPU second as the other YAHA runs, and ~2.5X as many as M. Given these
results, we use 650 as the maxHits threshold for YAHA in the accuracy test below. The
nearly 11.7 million total alignments in the Y4 run act as the input to the OQC algorithm
across the 100,000 queries in the first dataset of the accuracy test as we discuss next.

4.3.2 Accuracy test

We now compare the accuracy of YAHA to BWA-SWin finding primary alignments. We use
the same process for generating synthetic queries as used in the accuracy test in the BWA-
SW paper. However, we use slightly different accuracy metrics. In that study, they
determined the false positive rate using ‘mapping quality’, a heuristically determined
measure of an aligner’s confidence in the uniqueness of its alignments. Instead, we use as
the benchmark the optimal alignment and score of each generated read at the source
reference location found by SSEARCH, a tool from the FASTA suite (Pearson and Lipman,
1988) that uses full SW to find the best local alignment. For each aligner, we place each
query into one of four categories. If no alignment was generated for a query, it is a false
negative. If a primary alignment matches the optimal alignment found by SSEARCH, it is a
‘match’. For each remaining query, we independently calculated the best non-overlapping
score of the alignment(s), called the Coverage Score (CS). If the CS is less than the SSEARCH
score, it is a false positive. If the CS equals or exceeds the SSEARCH score, the alignment(s)
produced are at least as viable as the one from the source location. Such queries are not real
false positives, and are reported in their own category. We believe that the use of externally
verified alignment scores is a far less biased and more precise metric of aligner accuracy
because it isolates the effects of alignment heuristics from the mapping quality heuristics.

BWA-SW version 0.5.8 was run with default settings. YAHA was run with OQC turned on,
BP=5, maximum GDP (maxGDP)=5, maxHits.650, and varying values for minMatch of 20, 26,
38,100 and 500 for the different QLs, respectively. Table 4.2 shows the results of the BWA-
SW and YAHA runs using these 15 datasets. The aligners differ most on the 100-mer queries
with 5% and 10% error rates, and the 200-mer queries with 10% error rate. These three
datasets are the most challenging for both aligners, but YAHA has a significantly lower false
positive and especially false negative rate, accounting for most of the large difference in
these metrics shown in the Totals column. YAHA has a lower false negative rate for six of
the datasets, versus five for BWA-SW. However, for three of the datasets in which BWA-SW
has a lower false negative rate, YAHA merely fails to align a single query. YAHA has a lower
false positive rate for eleven of the datasets, versus two for BWA-SW. YAHA has a lower sum
of error rates for ten of the datasets, versus two for BWA-SW. The aggregation of results by
query and by dataset both contain biases, albeit different ones. The former is biased by the
fact that the datasets do not all contain the same number of queries, while the latter is
biased by datasets with a small number of queries that differ. Nonetheless, YAHA achieves
better results than BWA-SW for both aggregation strategies.

As a further test of accuracy, we compare all matching alignment scores against the optimal
scores determined by SSEARCH. For reasons discussed in Section 4.2, YAHA produced sub-
optimal scores for 20/522,244 matching alignments (0.0038%). BWA-SW produced a sub-
optimal score for 1/483,786 matching alignments (0.0002%). All the sub-optimal
alignments from both aligners were from datasets with a 10% error rate.



Table 4.2. Results of accuracy test.
Accuracy comparison of YAHA to BWA-SW over 15 datasets generated in a similar fashion
as those in the BWA-SW paper. Each query is put into one of four categories depending on
the accuracy of the alignment (see text for details). The CPU time in seconds, and total error
rate for each run are also shown. The right-most column shows the aggregate runtimes and
category percentages.
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100K 100bp 50K 200bp 20K 500bp 10K 1000bp | 1K 10,000bp
Reads Reads Reads Reads Reads

Error Rate Error Rate Error Rate Error Rate Error Rate
Metric 2% 5% 10%|2% 5% 10%| 2% 5% 10%| 2% 5% 10%|2% 5% 10%|TOTALS
CPU Secs 160 135 102220 186 140|259 194 154219 193 142|155 146 129 2534
= % False Negatives|0.44 5.21 27.4|0.00 0.13 5.44]0.00 0.00 0.10{0.00 0.00 0.00{0.00 0.00 0.00 6.61
“2 % Matching 96.0 89.3 64.0198.2 97.5 89.3|98.9 98.9 98.2199.3 99.2 99.2(99.8 99.5 98.1 89.10
; % CS = SSEARCH |2.96 2.92 2.69(|1.74 1.71 1.66(1.09 1.02 1.13]0.68 0.74 0.66(0.20 0.50 0.90 2.21
M los False Positives [0.56 2.53 5.85[0.11 0.70 3.63[0.01 0.12 0.56]/0.02 0.02 0.12/0.00 0.00 1.00 2.09
% Total Error 1.00 7.74 33.3]0.11 0.83 9.08]0.01 0.12 0.66/0.02 0.02 0.12]0.00 0.00 1.00 8.70
CPU Secs 284 241 176|212 171 109|245 188 112|108 86 58 |81 79 66 2216
% False Negatives|0.32 0.12 0.55/0.03 0.00 0.02]0.00 0.01 0.00{0.01 0.01 0.07{0.00 0.00 0.00 0.19
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Summed over the datasets, YAHA uses less CPU time than BWA-SW. This is impressive given
that YAHA considers many more alignments. For example, in Table 4.1 the Y4 run on 100-
mers at 2% error rate produces ~11.7 million alignments, from which the OQC algorithm
selects 99,696 primary alignments. In contrast, BWA-SW severely restricts the number of
potential alignments early during query processing. By considering many more alignments,
YAHA achieves greater accuracy. The advantages of using many alignments as input to 0QC
becomes more apparent in our test of SV breakpoint detection in the next section.

4.3.3 SV detection test

Finally, we compare YAHA to BWA-SW in their ability to correctly identify SV breakpoints
with split-read mappings. This is an important criterion for evaluating long read aligners,
because as read lengths grow, split-read mapping is rapidly replacing PEM as the method of
choice for SV detection. We constructed three simulated datasets using SVsim, a tool we
devised for this purpose (Faust and Hall, Chapter 2). First, we simulated 10,000 SV events
with lengths from 100-10Kbp in random genome locations with equal numbers of deletions,
tandem duplications, and inversions, as well as insertions from a random distant genome
location. For events of length <500, we generated a single ‘contig’ spanning the event, with
500 flanking bases on each side. For larger events, we generated a contig for only the left
breakpoint, with 500 flanking bases. We then generated 500-mer reads by sampling these
contigs with WGSIM using a 2% error rate and 5X coverage. We examined only a single
breakpoint for each variant, yielding 10,000 total breakpoint calls. BWA-SW was run with
default settings except the z parameter was set to 1, 2, 5 and 10 to investigate the trade-off
between runtime and sensitivity. YAHA was run with similar parameters as in the accuracy
test, using a minMatch of 25 with increasing values of maxHits. We measured the
percentage of queries with a split alignment that verified the correct SV breakpoint (within
5bp) and the total number of verified breakpoints (Figure 4.3A).

Both aligners perform very well on this dataset, identifying ~98% of the simulated
breakpoints. However, YAHA verifies breakpoints in more queries than BWA-SW at
comparable runtimes. This test shows that both aligners are quite effective at identifying
isolated SV breakpoints in random (mostly non-repetitive) genomic regions.

To investigate performance at breakpoints involving repetitive sequences, we simulated
10,000 Alu insertion events. We randomly selected 1000 intact Alu elements with minimal
divergence to the canonical active elements (milliDev <10 and length 2300) from the UCSC
RepeatMasker annotation track, and injected each into 10 random genome locations. Read
simulations and performance metrics are as above. This is a challenging test, because to
detect an Alu insertion by split-read mapping, the breakpoint-containing read must be
aligned correctly not only to the flanking sequence at the recipient locus (where the Alu
inserted), but also to the Alu element at the correct donor locus. This is difficult given the
extremely large number of Alu elements in the reference genome, the high DNA sequence
similarity shared between them, and the simulated error rate in the reads.

As a result, both aligners identify fewer breakpoints from far fewer queries for Alu
insertions than for the standard SVs. Yet, YAHA again identifies slightly more breakpoints
(not shown) from more queries (Figure 4.3B). For example, using ~50K CPU seconds YAHA
identifies 79.6% of breakpoints from 24.5% of queries, while BWA-SW finds 76.8% of
breakpoints from 21.7% of queries. In addition, this test shows the utility of YAHA’s FBS
algorithm. When both primary and secondary alignments are taken into account, YAHA
identifies 96.3% of breakpoints from 43.2% of queries. These additional alignments
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Figure 4.3. Results of SV detection test.
Shown are graphs of the percentage of queries with which each aligner correctly verified an
SV breakpoint for various types of SV events vs. the amount of CPU time consumed. Note the
large improvement with the inclusion of YAHA’s secondary alignments in the Alu dataset
(B). Also note the marked improvement for both BWA-SW and YAHA in the CGR dataset
with 4% error rate by changing the AGS parameters to lower the penalty for indels relative
to replacements (D). Still, YAHA outperforms BWA-SW with both sets of AGS parameters.
Graphs C and D are shown with the same axes to ease comparison.
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enable the discovery of repetitive element insertion events using combinatorial clustering
algorithms (Hormozdiari et al., 2009; Quinlan et al., 2010).

Recent evidence indicates that complex genomic rearrangements (CGRs) are a common
form of SV in both normal and cancer genomes (Malhotra et al.,, 2013; Quinlan and Hall,
2012). The most extreme example of this is chromothripsis (Stephens et al., 2011), where
chromosome regions are extensively rearranged due to the repair of chromosome
shattering events involving hundreds of breakpoints. CGR events pose a unique challenge
for breakpoint discovery because, with long-reads or assembled contigs, numerous
breakpoints may be present on a single query. YAHA’s OQC algorithm is designed to select
the optimal collection of alignments and should handle such situations better than heuristic
strategies. To test this, we simulated 1500 chromosome shattering events each with a total
length of ~30Kbp. Of these, 1000 involve a single random genomic location, and 500
combine fragments from two different genomic locations. Fragments were generated from
random locations within the selected regions, with an average size of 300bp and a minimum
size of 50bp. Of these fragments, 30% were deleted, 10% duplicated, and 50% inverted. The
resulting collection of fragments was then randomly shuffled and ‘ligated’ into a single
contig. This generated a total of 129,915 CGR breakpoints. The contigs were used directly as
long reads after impressing two different error profiles. The first models a contig
reconstructed via de novo assembly of short reads, and has a 1% error rate, 10% of which
are indels. The second models a single long read from third generation sequencing
technology, such as the Oxford Nanopore (Clarke et al.,, 2009) instrument, and has a 4%
error rate, 90% of which are indels.

YAHA greatly outperforms BWA-SW with the long CGR contigs. In the 1% error profile data,
YAHA finds ~96% of the breakpoints, versus ~86% for BWA-SW (Figure 4.3C). In the
4%error profile data, using the default AGS parameters, YAHA finds ~67%of the
breakpoints regardless of the maxHits setting, while BWA-SW finds from 27.5% to 52.7% of
the breakpoints as the z parameter is increased. BWA-SW does not perform well on this test
with its default z=1, and requires ~2X the runtime of YAHA to approach its sensitivity
asymptote (Figure 4.3D). Both aligners use the same default AGS parameter settings
(Match=1, Mismatch=-3, GapOpen=-5, GapBase=-2). However, these parameter settings are
tuned for low error rates and especially low indel rates, and are not optimal for the high-
indel CGR dataset with a 4% error rate. Thus, we re-ran both aligners against the 4% error
rate CGR dataset with AGS parameters that increase the relative penalty for replacements
versus indels (Mismatch=-5, GapOpen=-2, GapBase=-1). While both aligners now do
significantly better, YAHA still far outperforms BWA-SW (Figure 4.3D). BWA-SW now finds
between 44% and 69% of the breakpoints, while YAHA finds ~85%. This shows the
importance of using an alignment scoring strategy, such as parameterized AGS, to handle
the high error/indel rates that exist in current and future third generation sequencing
technologies (Mardis, 2013).

The inclusion of a genomic distance penalty in the objective function of YAHA’'s 0QC
algorithm undoubtedly aids its performance in these tests, as it allows YAHA to favor
collections of alignments for the OCS that are near each other in the genome.

4.4 Conclusion
We have shown that YAHA is a fast and effective all-purpose aligner that outperforms best-
in-class tools for very three different tasks: (i) reporting all mappings per query; (ii)
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reporting the single best mapping and (iii) identifying split-mappings that define one or
more SV breakpoints within a query. YAHA’s main strength as a general alignment tool is
that it simply attempts to identify all possible matches according to the parameters set by
the user. YAHA is able to explore many possible alignments without sacrificing speed
through the use of a number of pre-existing and novel heuristics, as well as optimized
implementations of computationally intensive procedures such as seed-match sorting,
banded SW and max-path graph algorithms.

The most important and novel feature of YAHA is that it determines the set of the
alignments that cover a query using an algorithm that provably optimizes a biologically
relevant objective function tuned to SV breakpoint detection. This capability, as well as the
ability to report secondary alignments using FBS, will be invaluable for SV mapping
experiments that rely on long reads or assembled contigs. As we have shown, these
methods are especially powerful for defining breakpoints caused by repetitive elements,
and for reconstructing highly complex genome rearrangements.

4.5 Update

Since the original publication of YAHA, a new aligner BWA-MEM has been developed with
the combined features of BWA and BWA-SW (Li, 2013). As each end of an Illumina paired-
end read is now ~100bp, it has become possible to find split-read mappings from these
reads. In addition, such an aligner has the advantage of using information from the pairs to
locate potential split-read mappings. YAHA still beat BWA-MEM in the accuracy test, which
uses singleton reads (data not shown), albeit by a narrower margin. In addition, in a recent
test of SV detection using LUMPY (Layer et al., 2014), use of the split-read mappings from
YAHA had better sensitivity than those from BWA-MEM, with equally low false discovery
rate (Figure 4.4). However, BWA-MEM is now much faster than YAHA due primarily to the
use of SSE vector instructions for Smith-Waterman calculations; an upgrade that would also
improve YAHA’s performance (Farrar, 2007).
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Figure 4.4 LUMPY sensitivity use split-read mappings from YAHA vs. BWA-MEM.
A) YAHA provided better sensitivity than BWA-MEM. B) Both show equally low false

discovery rate.
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5 Mutational Landscape of Single Post-Mitotic Neurons

The material for this chapter is largely from an manuscript produced in preparation for
publication (Hazen et al., 2015). This research was performed as a large collaborative effort
between Kristin Baldwin’s Lab at the Scripps Research Institute in La Jolla CA and Ira Hall’s
Lab at the University of Virginia. The original manuscript had two first authors, Jennifer
Hazen from the Baldwin Lab, and myself, and two corresponding authors, Kristen Baldwin
and Ira Hall. Several other authors performed experiments and other work and made
experimental suggestions, but were not primary contributors to the manuscript itself.
Section 5.2.1 was written at Scripps. All other sections have had drafts and rewrites
contributed by all four primary authors. I have added and changed text, especially in
Section 5.2.3 and the Discussion (Section 5.3), for the version contained herein, and
combined main and extended figures and tables from the original manuscript into a
sequential numbering scheme consistent with their references in the text. As these tables
and figures are referenced both in this chapter and Appendix 1, they are inserted at the end
of this chapter in numeric order with all tables before the first figure. In addition, there are
11 supplemental tables (Tables S1-S11) prepared by me that appeared in the original
manuscript in an excel spreadsheet that is an adjunct to this document.

The creation and validation of the knock-in mouse, derivation of the clonal neuronal cell
lines by SCNT, the cloning of live mice by TEC, extraction of DNA for DNA sequencing, RNA
Sequencing, and PCR validations of SNV and indels were performed at Scripps.
Bioinformatic analysis of all DNA and RNA-Seq data as well as functional enrichment studies
and statistical tests were performed in the Hall Lab by myself under Ira’s guidance, although
suggestions for analyses to perform and their biological interpretation were made by all
four primary authors. In addition, most SV and MEI call validation was performed in Hall
Lab by research staff. The detailed method descriptions for this research in Appendix 1
make very clear which lab performed which tasks.

Neurons exhibit remarkable diversity and persist without cell replication for the lifetime of
an individual. The extent to which mature neurons preserve their epigenetic plasticity and
genome integrity is unclear. Here we apply nuclear transfer to reprogram and amplify the
genomes of neurons from adult mouse brains. We show that mature neurons can retain
sufficient plasticity and genomic integrity to produce fertile adult mice. However, genome
sequencing uncovered extensive genomic diversity among neurons. Each neuron harbors
~110 unique somatic mutations including structural variants (0-3), transposable element
insertions (0-4), indels (12-34) and single nucleotide variants (SNVs) (62-142). While we
did not detect recurrent rearrangements, most neurons have acquired gene-disrupting
mutations (0-3). Furthermore, neuronal SNVs are enriched in genic regions and in
neuronally expressed genes relative to other lineages. These results predict that somatic
mutations can impact neuronal function, particularly if they continually accumulate in post-
mitotic neurons during maturation and aging.

5.1 Introduction

The human nervous system contains more than one billion neurons that are divided into a
large but undefined number of subtypes based on features such as morphology,
connectivity, location, and their patterns of gene expression. Production of distinct neuronal
subtypes occurs at defined stages, typically during embryonic development when they exit
the cell cycle, differentiate, integrate into circuits and then maintain their cell identity
without cell division or replacement for the lifetime of an organism. These key features of
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neurons - their diversity, their longevity and their irreversible post-mitotic status - pose a
series of intriguing and unresolved questions regarding neuronal genomes.

One such question is the extent to which neuronal genomes maintain epigenetic plasticity
over the lifetime of an organism. Given that neurons neither divide nor serve as precursors
of other cell types, and that they must maintain a stable cellular identity over many decades,
one might predict that neuronal epigenetic plasticity might be limited relative to other cell
types. One means to interrogate the developmental potency of neuronal nuclei is to
reprogram them by somatic cell nuclear transfer (SCNT). The first reports of mouse cloning
by SCNT suggested that neurons were resistant to reprogramming compared to other
lineages (Wakayama et al., 1998). However, in 2004, two groups used SCNT to reprogram
post-mitotic olfactory sensory neurons (OSNs) and produce fertile adult mice (Eggan et al,,
2004; Li et al,, 2004). These experiments demonstrated that the genomes of at least some
post-mitotic neurons retain sufficient plasticity and integrity to produce all cell lineages in
an adult organism. An important caveat to these results is that OSNs differ from most
cortical neurons in that they are produced constantly throughout the life of an animal and
have an average lifetime of only 6 weeks. Therefore, it is possible that the mice cloned from
OSNs were derived from recently born, undifferentiated neurons, while more mature
neurons remain refractory to reprogramming due to irreversible epigenetic or genetic
changes. To address this possibility, a series of additional studies tested the developmental
potency of various populations of cortical neurons (Kawase et al., 2000; Makino et al., 2005;
Osada et al.,, 2002; Osada et al.,, 2005; Yamazaki et al., 2001). However, the only neural
populations that proved successful at producing mouse clones by SCNT included cell types
that were not mature post-mitotic neurons, leaving the authors to conclude that it is still
unclear whether adult post-mitotic neurons harbor epigenetic or genetic changes that
preclude reprogramming or impair developmental potency.

A second question that has been raised regarding neuronal genomes is whether they
undergo programmed genomic rearrangements as a mechanism for generating neuronal
cell type diversity (Chun and Schatz, 1999). Organisms ranging from yeast to lampreys to
mammals are known to use programmed DNA rearrangements to generate cellular
diversity. Perhaps the most well characterized example is the mammalian immune system,
in which site-specific DNA rearrangements and somatic hypermutation generate antibody
and T-cell receptor diversity. The similarities in neuronal and immune system cellular
diversity, and the shared expression of some immune system proteins involved in DNA
recombination led to the suggestion that neurons may undergo programmed DNA
rearrangements during their development (Chun et al.,, 1991). Furthermore, neurons are
affected by defects in DNA repair pathways that also impair the development of B and T
cells, for unknown reasons (Frank et al., 1998; Gao et al,, 1998). One hypothesis to explain
this phenomenon is that DNA repair pathways might be important in neurons to generate
cellular diversity arising from irreversible genomic changes that accompany differentiation.
One way to test this hypothesis is to sequence the genomes of multiple post-mitotic neurons
with sufficient resolution to detect DNA rearrangements or somatic hypermutation of
neuronal genes.

A third question regarding neuronal genomes is the extent to which they differ from other
genomes in the organism, termed somatic mosaicism. Recent advances in single cell whole
genome sequencing and cellular reprogramming have begun to reveal that individual
somatic cells harbor significant numbers of unique mutations, while cancer cells typically
display even higher degrees of genomic individuality (Abyzov et al., 2012; Burrell et al,,
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2013; Gore et al.,, 2011; Ji et al.,, 2012; Lupski, 2013; Young et al., 2012). Some somatic
mutations are found in multiple cells in a lineage, while others appear to be rare or unique
to an individual cell (Behjati et al., 2014). Previous studies have reported that neurons may
have increased levels of aneuploidy or DNA content (Kingsbury et al.,, 2005; Rehen et al,,
2001; Rehen et al,, 2005; Westra et al., 2008; Westra et al.,, 2010), and recent single cell
genome sequencing of human neurons revealed frequent, large-scale DNA copy number
variants (CNVs) (Cai et al,, 2014; Gole et al,, 2013; McConnell et al., 2013). However, these
studies were only able to detect megabase scale CNVs, and lacked sufficient resolution to
identify the most common classes of mutation (single nucleotide variants and indels), as
well as smaller or complex structural variants. At present, the extent to which neurons
harbor these types of mutations remains unclear.

Another potential source of somatic mosaicism in neurons is mobile element insertion
(MEI). In recent years, somatic MEIs have been detected in various regions of mouse
(Muotri et al,, 2005; Muotri et al., 2009), human (Baillie et al.,, 2011; Cordaux and Batzer,
2009; Coufal et al.,, 2009; Evrony et al., 2012), and fly brains (Li et al., 2013; Perrat et al,,
2013). While the functional significance of somatic MEIs remains unclear, some have
proposed that transposons may alter the expression of nearby genes to generate neuronal
diversity (Muotri et al., 2005). Somatic MEIs have also been proposed play a role in disease.
De-repression of transposable element transcripts has been implicated in a broad range of
neurodevelopmental and neurodegenerative disorders, including ALS, Alzheimer’s disease,
frontotemporal lobar degeneration (Douville et al,, 2011; Li et al., 2012), prion disorders
(Jeong et al,, 2010; Lathe and Harris, 2009), Fragile X Syndrome (Tan et al., 2012), and age-
related macular degeneration (Kaneko et al, 2011). Similarly, elevated levels of somatic
integration have been linked to neurodevelopmental disorders such as Ataxia Telangectesia
(Coufal et al., 2011), schizophrenia (Bundo et al., 2014), and Rett Syndrome (Muotri et al.,
2010). Preliminary estimates from studies of bulk tissue or groups of neurons predicted as
many as 80 somatic MEIs per human neuron (Coufal et al., 2009) and 129 per drosophila
neuron (Perrat et al., 2013). However, two more recent single cell sequencing based studies
found less than one transposon insertion per human neuron (Evrony et al.,, 2012; Evrony et
al,, 2015), but a third found ~13.7 per hippocampal neuron and ~16.3 per cortical neuron
(Upton et al,, 2015). The discrepancy between these estimates highlights the importance of
additional studies to understand the impact that transposons may have on neuronal
development, aging, and neurologic disease.

Here, we report results from experiments designed to address these critical questions using
a combination of two technologies: SCNT and whole genome sequencing. Using SCNT, we
established seven somatic cell nuclear transfer embryonic stem (SCNT-ES) cell lines derived
from MT neurons harvested from adult mouse brains. Several of these SCNT-ES cell lines
produced fertile adult mice without obvious neurologic or other abnormalities. These
findings demonstrate for the first time, that the cytoplasm of the egg can reverse the
epigenetic changes that arise in adult post-mitotic neurons and show that a subset of these
neurons preserves sufficient genomic plasticity and integrity to produce fertile adult mice.

In parallel, we performed whole genome sequencing on each of the neuron-derived SCNT-
ES cell lines (called MCNT-ES cell lines) along with non-neural tissue from the same donor
animals. These analyses reveal that each neuronal genome is unique, harboring on average
~110 de novo somatic mutations of all classes. However, we did not find evidence for
recurrent or programmed DNA rearrangements, somatic hypermutation or excessive
mobile element transposition. Surprisingly, we also find that neuronal SNVs are enriched in
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genes that are linked to neuronal function and which are highly expressed in MT neurons,
which suggests that somatic mutation in neurons differs from other somatic cell types.

5.2 Results

5.2.1 Adult post-mitotic neurons retain developmental pluripotency

In order to establish the epigenetic plasticity and mutational spectra of mature post-mitotic
neurons, we wished to reprogram a neuronal subtype that exits the cell cycle early in
development, and which is neither lost nor replaced during the lifetime of the animal. In
addition, because previous studies have suffered from a lack of specificity in the genetic
marking strategies, we aimed to identify a neuronal population for which we had a tightly
regulated Cre-loxP system to definitively establish the identity of the donor nucleus.

Accordingly, for this study we elected to reprogram the mitral and tufted neuronal subtype
of the olfactory bulb (MT neurons). MT neurons of the olfactory bulb are among the earliest
born neurons in the brain. The majority of MT neurons are generated in the early embryo
between embryonic days 9 and 13 (Imamura et al., 2011), and no MT neurons are produced
postnatally (Blanchart et al., 2006; Hinds, 1968a, b). MT neurons are active and functional at
birth and they exhibit spontaneous and evoked electrical activity throughout the lifetime of
an animal (Mair and Gesteland, 1982). In addition, recent single neuron tracing studies
performed at Scripps and other laboratories have predicted that MT neurons employ
stochastic mechanisms to produce their complex patterns of axonal branching and synaptic
connectivity (Ghosh et al.,, 2011; Miyamichi et al.,, 2011; Sosulski et al., 2011). Other cell
lineages that exhibit stochastic diversification, such as B and T cells, use genomic
rearrangements to generate diversity, raising the question of whether genomic changes
might be incurred during MT development or maturation. Thus, MT neurons are
representative of the morphological and functional complexity present in many other types
of CNS neurons.

SCNT typically produces embryonic stem (SCNT-ES) cell lines with a frequency of 1-10%
when applied to somatic lineages, making it difficult to exclude the possibility of
reprogramming a rare non-neuronal cell type from mixed cell populations (Ogura et al,,
2013). Therefore we devised an irreversible genetic marking strategy to label MT neurons
(Figure 5.1a). In the olfactory bulb, the Pcdh21 gene is expressed strongly and exclusively
in MT neurons (Boland et al., 2009; Nagai et al., 2005). We generated a knock-in mouse line
in which Cre recombinase is co-expressed with the Pcdh21 gene (Pcdh21/Cre). By crossing
the Pcdh21/Cre line to the Ai9 Cre-reporter mouse line (Madisen et al., 2010), we produced
the Pcdh21/Cre-Ai9 mouse line. In the olfactory bulbs of these mice, Cre expression in MT
neurons excises a stop cassette and activates constitutive expression of the red fluorescent
protein, tdTomato (Figure 5.1a). Therefore SCNT derived blastocysts, SCNT-ES cell lines
and mice cloned from neurons will exhibit uniform red fluorescence and carry a small
genomic deletion. This line and similar genetic marking strategies are described in previous
publications (Boland et al., 2009; Ghosh et al., 2011).

To establish the specificity of tdTomato expression we performed immunohistochemistry
on brain sections from mice of the same ages as those that served as donors for cloning
experiments. As expected, in tissue sections of the Pcdh21/Cre-Ai9 olfactory bulb, tdTomato
is present in the mitral and tufted cell layers (Figure 5.1b) and overlaps with a marker of
MT neurons, Tbr2 (Figure 5.1c). We also performed immunostaining for markers of
astrocytes (S100b), oligodendrocytes (Olig2), microglia (Ibal), and cell division (Ki67)
(Figure 5.1d-g). For each marker, we counted over 1,000 tdTomato positive cells and did
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not observe any co-labeling with markers of glia or cell division (Figure 5.1h-Kk). In the
tissue sections, we detected sparse tdTomato positive cells in the granule cell layer of the
olfactory bulb (<0.1% of tdTomato positive cells), which likely results from rare ectopic
recombination in granule cells. However, given that the efficiency of generating SCNT-ES
lines is 1-10%, this minor population is highly unlikely to be the source of more than one
SCNT-ES cell line.

To determine whether the genomes of mature post-mitotic MT neurons are sufficiently
intact to re-enter the cell cycle and direct pre-implantation development, we performed
SCNT using dissociated tdTomato positive MT neurons from adult mice (aged 3 weeks to 6
months). We harvested MT neurons from adult olfactory bulbs using an optimized method
that preserves neuronal viability and morphology (Figure 5.2a). To improve cloning
efficiency we included the histone deacetylase inhibitor Trichostatin A (Kishigami et al,,
2006a). We performed 624 nuclear transfers, resulting in 35 morula/blastocyst stage
embryos and seven SCNT-ES cell lines (Figure 5.2b-c, Table 5.1). These MCNT-ES cell lines
morphologically resemble ES cells and express appropriate markers of pluripotency based
on immunostaining (Figure 5.3). The efficiency of reprogramming MT neurons (~1%) is
similar to the efficiencies reported for other terminally differentiated cell types such as tail
tip fibroblasts (Wakayama et al., 2005), olfactory sensory neurons (Eggan et al., 2004), and
B and T lymphocytes (Hochedlinger and Jaenisch, 2002). This suggests that mature neurons,
which have exited the cell cycle and maintained their genomes without cell division, retain
epigenetic plasticity that is similar to that of other differentiated cell types.

To establish the developmental potential of these lines we performed tetraploid embryo
complementation (TEC) assays. In TEC only fully pluripotent cells can produce a viable
mouse (Nagy et al., 1990; Nagy et al, 1993). Three MCNT-ES cell lines exhibited full
pluripotency based on the production of fertile adult mice, while another line produced full
term pups that died shortly after birth (Figure 5.2d-f, Table 5.2). The remaining two lines
produced embryos that died in early or mid-gestation. To confirm that these MCNT-mice
were derived entirely from the injected MCNT-ES cell lines, we performed
immunofluorescence analyses of multiple tissues and showed that they were uniformly
tdTomato positive (Figure 5.2g). In addition, to rule out minor contribution of tetraploid
blastocyst cells we used PCR assays for differences in microsatellite DNA lengths that vary
between the MCNT-ES cell lines and the tetraploid host cells, as described previously
(Boland et al., 2009) (Figure 5.2h, Figure 5.4). These data demonstrate that MT neurons
that have been post-mitotic and undergone terminal differentiation, synaptic refinement,
and persistent activity for up to 4.5 months can maintain sufficient epigenetic plasticity to
produce all tissues required for survival to adulthood and reproduction.

5.2.2 Identifying mutations in MT neurons

Next, to generate a high-resolution picture of the somatic mutations occurring in neuronal
genomes, we performed whole genome sequencing (WGS) on MCNT-ES cell lines and
control tissue (thymus or spleen) from each donor animal (Figure 5.5a). WGS was
performed using Illumina paired-end sequencing to a mean coverage of 32X-59X (Table
5.3). To identify mutations, we performed sensitive read alignment with Novoalign (Hercus,
2009) and YAHA (Faust and Hall, 2012), and employed a suite of variant detection pipelines.
We used GATK (DePristo et al.,, 2011; McKenna et al., 2010) to detect SNVs and indels and
assign them to high and low confidence categories, followed by filtering to identify somatic
mutations using a similar strategy as in Kong et al. (Kong et al, 2012). We mapped
structural variation (SV) using a sensitive pipeline which utilizes multiple tools including
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Novoalign for paired-end mapping, YAHA for split-read mapping of unmapped and clipped
reads, and LUMPY (Layer et al., 2014) to integrate read-pair and split-read analysis to
detect SV breakpoints at high resolution (Figure 5.6); a read-depth analysis pipeline that
detects relatively large (>15Kbp) CNVs (Malhotra et al.,, 2013; Quinlan et al., 2010; Quinlan
and Hall, 2012); and an improved custom MEI detection pipeline that maps SINE, LINE and
LTR insertions using an approach similar to Lee et al. (Lee et al., 2012a) (Figure 5.7,
Appendix 1, Table S1). For each class, we estimated variant detection sensitivity via
comparison to the Mouse Genomes Project (Keane et al, 2011; Yalcin et al, 2012)
(Appendix 1, Table S2).

MCNT-ES cell genomes may contain variation from several sources: "germline variants” that
differ among donor mice due to mouse strain variation or recent de novo germline
mutations; "culture mutations" incurred during reprogramming or expansion; and true
"somatic mutations" that arose in neurons during development or aging. Germline variants
were excluded by comparing MCNT-ES cell lines to donor mouse control tissues (thymus or
spleen) and to a database of mouse strain polymorphisms (Keane et al., 2011). We note that
thymus and spleen are strong controls because the majority of their cells derive from the
endodermal and mesodermal embryonic germ layers, while MT neurons derive from
ectoderm. Therefore, variants shared between MT neurons and thymus/spleen represent
germline variants or potentially somatic mutations that arose prior to gastrulation. For each
variant class, we estimated detection accuracy by validating a subset of calls by PCR and
capillary sequencing (Table S3).

To distinguish somatic mutations from culture associated mutations, we reasoned that
somatic mutations should be heterozygous, present in 100% of cells in an MCNT-ES line,
and exhibit a variant allele frequency (VAF) of ~50%, while culture associated mutations
will be mosaic in the line resulting in lower VAFs. Therefore for SNVs and indels, we used
alignment-based VAF estimates of >30% to define candidate somatic mutations (Figure
5.8). For SVs, whose VAFs are difficult to estimate directly from sequencing data, we
generated single cell subclones from each line and assessed whether SVs were present in all
subclones, indicating a somatic origin. SVs present in only subsets of subclones were
deemed culture associated and eliminated from further analyses (Figure 5.5b). The only
class of culture associated mutation that we could not exclude are mutations that were
acquired on both strands of the neuronal genome prior to the first S-phase following
nuclear transfer (Figure 5.9), which are expected to be exceedingly rare (Li et al., 2014; Ma
etal, 2014).

5.2.3 The landscape of genome variation in MT neurons

These analyses identified 87 (68-139) somatic mutations per genome, comprising 69 (50-
112) SNVs, 17 (9-24) indels, 1.5 (0-3) SVs, 0.7 (0-2) MEIs (Tables S4-7). Taking variant
detection sensitivity into account, these data predict a true mutational burden of 112 (89-
181) mutations per genome comprising 86 (62-142) SNVs, 23 (12-34) indels, 1.7 (0-4) SVs,
and 1.3 (0-4) MEIs (Table 5.4, Table S8). While every neuron harbors a unique and
significant number of mutations, the mutational load per neuron can vary considerably
(Figure 5.5c-d). For example, two neurons from 3-week-old mice differed in their
mutational burden by a factor of ~2 (89 vs. 181), despite having nearly identical sequencing
depth and variant detection sensitivity (Table 5.4). These data are consistent with the
extreme variability in mutational burden previously observed for large-scale CNVs (>5Mbp)
using single neuron genome sequencing (Cai et al., 2014; Gole et al.; McConnell et al., 2013).
In addition, we detected no aneuploidy, which given our sample size is also consistent with
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the relatively low ~5-10% prevalence of aneuploidy found in these studies in post-natal
neurons. However, in contrast to these studies, we did not observe any highly aberrant
neuronal genomes marked by multiple large CNVs. It is not clear what accounts for this
discrepancy. Estimates for the prevalence of large scale CNVs found in neurons by the
previous SCS studies range widely from 16% to over 60%. In addition, these SCS studies
have a hard time validating their mutational calls, and might be subject to higher than
expected false positive rates. However, it is also possible that our experimental design that
obtains samples from SCNT-based cloning may preclude isolation of MCNT-ES lines from
neurons harboring numerous large-scale mutations, thereby introducing an ascertainment
bias. Further work will be required to address this question.

To gain insight into the mutational processes that shape neuronal genomes, we assessed
their SNV base conversion profiles. The SNV spectrum in neurons closely resembles those
described in induced pluripotent stem cell lines derived from mouse fibroblasts (Young et
al, 2012), and broadly resembles those reported for human blood stem cell progenitors
(Welch et al.,, 2012), but differs from the human germline (Kong et al., 2012) and clonal
organoids formed from mouse endodermal cell types (stomach, intestine and prostate)
(Behjati et al.,, 2014) (Figure 5.10a). These results suggest the genomes of different cell
types may be shaped by different molecular processes or by differential exposure to
mutagens. We examined the prevalence of loss of heterozygosity as an indication of mitotic
crossover events by looking for unexpected regions of homozygous SNPs, but found no
evidence of any such events anywhere in MT neuron genomes. We did detect three clusters
of 2-3 SNVs; two were multiple nucleotide polymorphisms affecting adjacent nucleotides,
and may have been caused by error prone polymerases used during base excision repair (Di
Noia and Neuberger, 2007), while the third impacted three nucleotides spanning 249bp in
the Atxn711 gene, suggesting a mutational event similar to kataegis (Nik-Zainal et al., 2012).

Interestingly, we found a significant enrichment of C—T conversions that appear in a
TpCpN context; ~44% for somatic mutations versus ~25% for germline SNPs (p<0.0001,
Fisher's Exact) (Figure 5.10b). To our knowledge, the only mutational process that favors
this sequence context is cytosine deamination by members of the APOBEC family (Beale et
al, 2004; Lawrence et al.). Curiously, we also found that C—T conversions preferentially
occur on the transcribed strand in genes highly expressed in MT neurons, and on the
untranscribed strand in genes with no or low expression in MT neurons (p=0.0046, Fisher’s
Exact). The reason for this is not clear. Transcription coupled repair (TCR) and C—T
conversion by APOBEC deaminases often result in a strand bias in expressed genes
(Alexandrov et al.; Pleasance et al., 2010a). But the strand bias in unexpressed genes is hard
to explain unless it occurred during a different gene expression environment before
neuronal differentiation.

Structural variants are of special interest in neurons due to their potential to cause large
phenotypic effects, and because several lines of evidence have suggested that neurons may
be especially prone to double-strand breaks (Frank et al., 1998; Gao et al., 1998; Suberbielle
et al,, 2013). We identified nine SVs among the six neuronal genomes, with a range of 0-3
per cell (Figure 5.5d). Remarkably, three of the nine SVs that we identified in neurons were
complex rearrangements involving multiple breakpoints. One is a 21Kbp deletion with an
additional 17bp inversion at the breakpoint junction, and a second comprises two adjacent
deletions (1.7Kbp and 1.2Kbp) affecting the Pkd212 gene, one of which deletes an entire
exon (Figure 5.11b-c). The third event is a remarkably complex rearrangement (Figure
5.11a) that resulted in the non-duplicative transposition of a 7.3Kbp segment to a location
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10.4Mbp downstream, inversion of a 1.4Mbp segment (disrupting the Aven gene), and
deletions of 3.7Kbp, 78bp, 41bp, 16bp and 10bp. Strikingly, each of the small deletions
arose at the junction of a larger rearrangement, and none of the breakpoints show more
than 1bp of microhomology. Thus, this variant was likely caused by simultaneous formation
of 6-10 double strand breaks within a 10.4Mbp region, and is best explained by a
mechanism similar to chromothripsis involving DNA breakage and error prone NHE]
(Quinlan and Hall, 2012). These data represent the first observation of a chromothripsis-
like complex genomic rearrangement in non-cancer somatic cell genome, and suggest that
complex rearrangements may play an unanticipated role in neuronal genome
diversification.

5.2.4 Neuronal genomes contain few de novo mobile element insertions

The extent to which somatically acquired mobile element insertions contribute to neuronal
genome diversity is a major unresolved question in the field. Our whole genome sequencing
data provides a unique opportunity to measure the MEI landscape in single neurons at high
sensitivity and accuracy. In total, we predicted five MElIs, of which four were validated by
PCR. Individual neurons carried 0-2 MEIs (Figure 5.5d). Our most conservative estimate for
MEI detection sensitivity is 52% (Table S2), which predicts an average of at most 1.3 new
MEI insertions per neuronal genome. Thus, our results are most consistent with recent
single cell sequencing experiments (Evrony et al.,, 2012; Evrony et al,, 2015), and suggest
that most MT neurons have a relatively low MEI burden.

5.2.5 Each MT neuron has a unique genome without recurrent genomic changes
Mutations can be private to a single neuron or can be shared with other neurons from the
same individual due to early arising mutations, mutational hotspots, or programmed
rearrangements (Evrony et al.,, 2015). Here, we have analyzed three MCNT-ES lines from
one donor mouse (B) and two from another (C), although we note one of the latter datasets
was excluded from other analyses due to culture-derived aneuploidy and a known
population bottleneck. None of the mutations we detected were shared, suggesting they
arose late in development, possibly even after neuronal differentiation. Although the sample
size is limited, these results are consistent with two prior single cell studies in which the
vast majority (>99%) of mutations were detected in a single cell (Cai et al., 2014; McConnell
et al,, 2013), and with the observation that only 0.54% of mutations discovered in mouse
organoid cell lines arose during early development (Behjati et al., 2014).

One longstanding hypothesis is that neurons may exploit programmed DNA
rearrangements such as those seen in the immune system to generate diversity in gene
expression. None of our high confidence somatic mutations were shared by any subset of
neurons, and attempts to validate 17 low confidence shared SV and MEI calls were
unsuccessful (Table S3). Further, none of the SVs we detected in individual MCNT-ES cell
lines bear hallmarks of programmed rearrangement, such as joining of alternative exons, or
the generation of novel open reading frames. We also visually inspected WGS data covering
the protocadherin gene clusters, which have been proposed as candidate loci for
programmed rearrangements in neuronal genomes (Yagi, 2003), and found no evidence of
rearrangements. Therefore, 100% of the validated somatic mutations identified in this
study were restricted to a single neuron. Taken together, these results strongly argue that
MT neurons do not require DNA rearrangements at defined loci for their function or
maturation. However, they do not exclude the possibility that other neuronal subtypes may
exploit this strategy.
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5.2.6 Functional consequences of somatic variation in neurons

We discovered 10 somatic mutations that alter the coding sequence of known genes (Table
5.5). These include missense mutations in Cdc40, Tas2r113, KIf16, Dhx37, and Tekt5, a
single codon deletion in Gpr44, an exon deletion in Pkd2l2 (Figure 5.11b), an exon
duplication in Atp10b, a deletion encompassing the Zicl and Zic4 genes, and disruption of
the Aven gene (Figure 5.11a). These results demonstrate for the first time that individual
neuronal genomes often carry one or more newly mutated genes. We next compared the
distribution of the 395 high confidence autosomal somatic SNVs to various genome
annotations. Intriguingly, while somatic mutations are distributed randomly with respect to
most genomic features (Table $9), they show a significant enrichment in evolutionarily
conserved elements (1.6-fold, p=0.01 by Monte Carlo simulation, Figure 5.10c). However,
our power to discern subtle effects is limited by the relatively small number of mutations
discovered in this study.

To determine whether MT neurons exhibit mutational distributions that could depend on
their cell type or post mitotic status, we compared our data to a recent study that identified
somatic mutations arising in individual cells from mouse endodermal cell types (Behjati et
al, 2014). This analysis reveals that neuronal SNVs are 1.22 fold more prevalent in genic
regions than SNVs from endodermal cell types (p=0.0039, Fisher’s Exact, Figure 5.10d).
This suggests that neurons differ from stomach, intestine, and prostate cells in the means by
which they acquire or repair DNA damage.

Next, we assessed whether MT neuronal mutations were enriched in genes that could
impact neuronal function. DAVID analysis (Huang da et al., 2009b), which assays for
functional enrichment within lists of genes, showed that somatic mutations in neurons are
often found in genes with neuronal function, with the top six and 19% of all enriched gene
ontology (GO) terms related to neurobiology (Figure 5.10e, Table S10). In contrast, DAVID
analysis of intestine-derived somatic mutations identified zero neuron-related enriched GO
terms among the top ten, the top neuron-related term occurring 14t on the list, and only
11% of all enriched GO terms related to neurobiology (Figure 5.10e, Table S11).

Finally, to more directly assess the likelihood that somatic mutations impact MT neuronal
function, we performed RNA-Seq on flow sorted MT neurons from the Pcdh21-Cre/Ai9
mouse strain. We find that MT neuron-derived SNVs are enriched in genes that are highly
expressed (top 50%) in MT neurons compared to endodermal cell SNVs (Behjati et al,,
2014) (p=0.025 by Fisher's Exact Test, Figure 5.10f). To ask how this compares to
mutations in endodermal cell types, we used a recently published RNA-Seq data set for Lrg5
expressing small intestine stem cells (Sheaffer et al., 2014), the same stem cells used to
generate small intestine derived organoids sequenced by Behjati et al. (Behjati et al., 2014)
In contrast to MT neuron derived SNVs, mutations from the small intestine are depleted in
genes highly expressed in small intestine compared to MT neuron SNVs (Behjati et al,,
2014) (p=7.06 x 104 by Fisher's Exact Test, Figure 5.10g).

Here we provide several independent lines of evidence suggesting that mutations in MT
neurons may preferentially accumulate in functionally relevant genomic regions. These
include evolutionarily conserved elements, genic regions, genes with neuronal function and,
intriguingly, genes that are highly expressed in MT neurons themselves. This is surprising
given that cancer genomes, and indeed small intestinal stem cells (Figure 5.10g), exhibit a
relative depletion of mutations in expressed genes, which in cancer genomes has been
attributed to transcription coupled repair (Alexandrov et al., 2013; Lawrence et al., 2013).
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One possible explanation for the bias we detect is that neurons enact less efficient
transcription coupled repair than other cell types. Alternatively, neurons could have an
increased mutation rate at actively transcribed loci, either due to the transcription process
itself, increased reactive oxygen species exposure resulting from the high metabolic rate of
neurons, or to chromatin alterations that accompany gene activation. L1 insertions in
neurons have also been observed to occur preferentially in neuronally active gene
transcripts further suggesting increased mutation rates in euchromatin (Baillie et al.; Upton
et al.). Future work will be necessary to resolve this question.

5.3 Discussion

Neurons are diverse and irreversibly post-mitotic. As such, information on neuronal
genomes has been limited to studies of bulk samples of mixed cell types or to relatively low
resolution single cell studies. Here, we amplified genomes of single neurons using SCNT and
applied whole genome sequencing to assess their genomic plasticity and mutational burden.
By cloning mice from adult post-mitotic neurons we showed that at least half of the neurons
amenable to reprogramming also maintain sufficient genomic plasticity and integrity to
serve as a template for all tissues required to generate a fertile adult mouse. However,
despite their developmental potency, neurons exhibit striking levels of genomic
individuality. On average, MT neurons harbor more than 100 unique mutations of multiple
classes. Of these, relatively few are SVs and MEIs (0-3), but several SVs exhibit unusual
complexity and impact genes expressed in MT neurons. The neuronal burden of the most
abundant mutational class, SNVs (~86), is lower than mouse fibroblasts (190-698) (Young
et al, 2012) and endodermal cell types (274-916) (Behjati et al., 2014). However, it is more
similar to male germline cells (~55 per haploid genome) (Kong et al., 2012), than to oocytes
(~14 per haploid genome) (Kong et al., 2012). This result is somewhat surprising given that
neurons and oocytes exit mitosis at similar times in embryonic development and are
maintained without cell division for many years, while male germline cells divide
throughout the lifetime of an individual. Yet there is some evidence that oocytes can harbor
more mutations than previously thought (Conrad et al., 2011).

Closer inspection of these SNVs reveals another difference between neuronal mutations and
those of other cell types. Neuronal SNVs appear to be biased towards genomic regions likely
to have functional significance to MT neurons as compared to SNVs derived from
endodermal cells. However, the different sequencing approaches and bioinformatic
methods employed by various studies may account for some of these differences between
cell types. Future studies with larger sample sizes and additional cell types will more
precisely establish the magnitude of our initial finding and whether the bias toward
expressed genes we observe in MT neurons is unique, or a feature shared with other
neuronal subtypes or post-mitotic cells in general. Nevertheless, these preliminary findings
underscore the importance of examining somatic mutation with single cell resolution in
different cell types and raise intriguing questions regarding the source and impact of
neuronal genome diversity.

A key question regarding neuronal mutations is when do they arise? One possibility is that
most mutations arise early in development, in the dividing precursors of the neurons. While
the precise number of cell divisions that precede MT neurons has not been reported, MT
neuron production peaks around embryonic day 11.5 (e11.5) (Imamura et al., 2011), a time
at which MT precursors would be predicted to have undergone ~22 cell divisions based on
embryologic studies (Imamura et al., 2011). However, we required that putative neuronal
mutations be absent from thymus or spleen, which segregate from ectoderm at gastrulation



67

(e6.5) or slightly before (e4.5) (Figure 5.12). A conservative estimate of the number of
divisions between e4.5 and e11.5 is 14 (~2 per day). For the range of SNVs we detect ~86
(62-142), these calculations predict a mutation rate of ~6 (4.4-10) SNVs per somatic cell
division, somewhat higher than 1.1 SNVs per somatic division reported for mouse organoid
cell lines (Behjati et al., 2014), a mean of 2.3 SNVs per somatic division reported by several
prior single gene studies in human (Lynch, 2010), and ~3 to ~5 per somatic cell division
reported for hematopoietic stem cells in humans (Holstege et al., 2014; Welch et al., 2012).

However, neurons spend the vast majority of their “lifespan” in a non-dividing state.
Therefore, it is tempting to speculate that this apparently high per division mutation rate
and the discrepancy between oocyte and MT neuron mutational burden noted above
instead reflects post-mitotic mutation. The fact that we observe no shared mutations among
pairs or trios of neurons from the same animal is also consistent with this model. If we
assume that neuronal SNVs arise at the lowest levels reported for other cell types during
development (~1 per cell division) (Behjati et al.,, 2014), MT neurons should harbor ~14
SNVs. Subtracting this from the observed number of SNVs in neurons would result in a
maximum average of ~72 (48-128) SNVs that could be attributed to post-mitotic mutation.
Dividing the ~72 SNVs by the ages of the donor neuron (~30-190 days) predicts a
remarkably high post-mitotic mutation rate of 0.38-2.4 SNVs per day. Continuing this logic,
if human neurons parallel mouse neurons and accumulate ~1 SNV mutation per day, a 50-
year-old brain would harbor neurons with ~18,000 SNVs. This mutational load is on par
with highly mutated cancer genomes, which might impact neuronal function broadly
throughout the brain. In addition, if aging associated mutations preferentially accumulate in
expressed genes, their potential impact on neuronal function could be significant, leading to
altered function or degeneration. Such high post-mitotic mutation rates would surely have
functional relevance, particularly in aged individuals.

An alternative explanation for the apparently high somatic SNV burden is an "early burst”
model in which many mutations arise near the time of neuronal cell cycle exit and terminal
differentiation and then taper off. This model is also consistent with a higher mutation
burden in neurons and the lack of shared mutations between neurons from the same
mouse. It is additionally supported by the fact that we do not observe a consistent increase
of mutational load with neuronal age predicted by the hypothesis of post-mitotic
accumulation of mutations. The SNV burst model parallels the observed burst of L1 activity
during neurogenesis caused by repression of Sox2 and other factors (Kuwabara et al., 2009;
Muotri et al., 2005; Richardson et al., 2014). However it is unclear what would cause such a
burst of SNVs, although it has been suggested that mutation prone mechanisms may be
involved in the changing of cytosine methylation states observed during neuronal
differentiation (Guo et al.,, 2014; Guo et al., 2011).

How might somatic mutation in neurons impact brain function? Somatic mutations that
arise early in development have been found broadly distributed in particular brain regions
(Evrony et al., 2012; Evrony et al., 2015) and have been shown to impact brain function in a
number of human diseases (Jamuar et al., 2014; Lee et al., 2012b; Poduri et al., 2012; Riviere
et al,, 2012). Burst-model and post-mitotic mutations, in contrast, would be predicted to
impact only one neuron. The relative contribution of these mechanisms may differ by
individual or even by neuron, perhaps explaining some of the variability of onset and
severity of age-related neurological conditions. At present our sample size is too small to
distinguish between the contributions of these various models (Table 5.4), and more study
is needed particularly with neurons from older mice.
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Finally, it is important to note that our study is specifically designed to provide a "best-case
scenario” estimate of genomic mosaicism in neurons. Cloning from neurons using SCNT may
select against the most highly mutated neurons, leading us to underestimate the true scope
of neuronal mutation. Furthermore, MT neurons are exposed to limited environmental
stressors relative to sensory and peripheral neurons. Differences in other physiological
properties such as the metabolic demands dictated by individual synaptic firing rates, as
well as the dynamics of chromatin remodeling established by differences in gene
expression, may also influence somatic mutation in a neuronal subtype specific manner.
Therefore, we believe these studies underscore the importance of using comprehensive
genome-wide approaches to evaluate somatic mutation in neurons of diverse subtypes and
ages, as well as in the context of neurodegenerative disease.

Methods Summary:
All methods are detailed in Appendix 1.
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Table 5.1. Efficiency of SCNT using MT neuron nuclei.
Results of 13 SCNT experiments in which individual MT neuron nuclei were transferred into
enucleated oocytes, allowed to develop to the blastocyst stage and then used to produce

SCNT-ES cells.

Oocytes 2-cell embryos Morula/blastocysts MCNT-ES cell lines Independent

Donor age
g activated (% oocytes activated) (% oocytes activated) (% oocytes activated) experiments

3 wks 297 137 (46%) 20 (7%) 3 (1%) 7

45-6mos 327 253 (77%) 15 (5%) 4 (2%) 6
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Table 5.2. MCNT-ES cell development in the TEC assay.

Perinatal pups, juvenile, and adult animal are defined as those which survived to post natal
day four, weaning, and two months of age respectively. The single pup generated from
MCNT-ES cell line D4 that was able to survive to perinatal stages was moribund and
euthanized at postnatal day 4. This pup was later determined to have high contribution of
tetraploid blastocyst host DNA (Figure 5.4€), and was likely a diploid chimera, which can
result from rare failed fusion events during tetraploid blastocyst generation.

WIS ot LT aveatio D Pt e
cellline  donor =y, socteq  (YoIniected) o s iected) (% injected) (% injected) (% injected)
c1 3 wks 152 15 (10%) 10 (7%) 8 (5%) 8 (5%) 8 (5%)
cs 3 wks 140 8 (6%) 5 (4%) 3 (2%) 2 (1%) 2 (1%)

D4 3 wks 214 15 (7%) 6 (3%) 1 (0.5%) 0 0
B2  45mos 140 32 (23%) 26 (19%)  20(14%) 19 (14%) 19 (14%)

B3  45mos 140 0 0 0 0 0
B4  45mos 150 0 0 0 0 0
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Table 5.3. Cell line sequencing statistics.

Table showing information about the four mice used in this study, along with the tissue
source of the control sample, passage number of MCNT-ES cells at the time of Whole
Genome Sequencing (WGS), and statistics concerning the WGS runs associated with each
sample. The WGS [llumina paired-end sequencing resulted in two paired reads ~100bp in
length, encompassing an outer template length of ~474bp. The Median Genome Coverage is
a measure of the median number of 100bp reads covering each base in the genome, while
the Median Physical Coverage also includes those bases in the insert between the two
100bp reads.

Passage Median Median Median Outer

Sample Source Number Genome Coverage Template Length Span Physical
Coverage
C Mouse: 3 week old female
[ c0 Spleen nfa 32 471178 ]
C1 SCNT 21 34 464 81
C5 SCNT 7 32 479 81
D Mouse: 3 week old male
""" DO Spleen  n/a 34 481 8 |
D4 SCNT 7 33 486 85
B Mouse: 4.5 month old male
""" Bl  Thymus  n/a 38 465 90 |
B2 SCNT 4 59 477 146
B3 SCNT 4 59 464 143
B4 SCNT 4 58 470 149
E Mouse: 6 month old female
""" EO  Thymus  n/a 34 469 83 |
El SCNT 7 36 484 88
Range for all samples
""" Min 4 34 a4 8 |

Max 7 59 484 149
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Table 5.4. Somatic mutation discovery statistics.

Summarizes mutations predicted by variant detection pipelines (mutation calls), the results
of subsequent validation experiments, and an estimate of the true number of mutations
present in neuronal genomes. Note that mutation calls and false discovery rate (FDR) are
omitted for SV and MEIs because all mutation calls were tested by PCR and definitively
determined to be valid or invalid. For SNVs and indels, the false discovery rate (FDR) was
estimated by PCR validation of a subset of calls. 69 of 69 SNVs and 22 of 23 indels validated
(Table S3). Estimated mutation counts take into account the FDR for SNVs and indels, and
the false negative rate (FNR) for all mutations (Table S2-3, Appendix 1). See also Tables
$5-S8.

C5 D4 B2 B3 B4 E1 Mean
Mutation Calls 112 50 50 68 70 61 68.5
2 %PFDR (n = 69) 0.0 0.0 0.0 0.0 0.0 0.0 --
& %FNR | 214 20.8 19.0 18.9 19.2 22.8 -
Estimated Mutations 142 63 62 84 87 79 86.2
Mutation Calls 25 19 16 9 17 18 17.3
% %PFDR (n = 23) 4.3 4.3 4.3 4.3 4.3 4.3 --
E %FNR | 28.7 25.2 24.2 24.0 24.7 28.5 --
Estimated Mutations 34 24 20 12 21 24 22.5
Validated Breakpoints 3 0 7 1 0 3 2.3
@ Validated Events 2 0 3 1 0 3 1.5
g %FNR | 135 12.4 13.1 8.6 8.4 13.4 --
Estimated Breakpoints 3 0 8 1 0 3 2.5
" Validated Mutations 1 1 0 2 0 0 0.7
= %FNR | 48.2 45.8 47.6 48.3 47.7 47.0 --
= Estimated Mutations 2 2 0 4 0 0 1.3
Total Estimated Mutations 181 89 90 101 108 106 112.5
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Table 5.5. Genes effected by known mutations.

Genomic location and coding changes associated with all known validated somatic
mutations in MCNT-ES cell lines, as well as the developmental potential of the associated
mouse. Mutations shown in red are in genes expressed in MT neurons. Note there are many
other known somatic mutations that fall within non-exonic regions of gene transcripts
(Tables S4-7). These may also have effects on gene expression.

Type Chrom Start End Line Potency Gene Effect Gene(s)
SNV chr10 40577358 40577359 B4 early gest/0 MisSense:Thr->Ala Cdc40
SNV chr6 132843921 132843922 D4 term MisSense:Phe->Leu Tas2r113
SNV chr10 80031966 80031967 D4 term MisSense:Gly->Val Kif16
SNV chr5 125909673 125909674 E1 nd MisSense:Arg->Trp Dhx37
SNV chri6 10358345 10358346 C5 full MisSense:Phe->Tyr Tekt5
INDEL  chr19 11015537 11015541 C5 full CodonDeletion:Leu Gpr44
CGR chr2 107930138 118338090 B2 full 1Exon(2)Deletion Aven
CGR chr2 107930138 118338090 B2 full MultiExonInversion Aven
Deletion chr18 34573248 34574435 C5 full 1Exon(4)Deletion Pkd212
Duplication chrll 42981066 42998077 E1 nd 1Exon(4)Duplication Atp10b
Deletion chr9 91183064 91411016 E1 nd 2GeneDeletion Zicl,Zic4
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Figure 5.1. Genetic labeling of mitral and tufted (MT) neurons.

a, Donor animals carry one Pcdh21/Cre allele (top) and one copy of the Ai9 Cre reporter
transgene (middle). Cre expression in MT neurons excises the STOP cassette within the Ai9
transgene, resulting in specific tdTomato expression and genetic labeling of MT neurons
(bottom). b, Schematic representation of the MT neuron localization and morphology within
the olfactory bulb. Mitral and tufted cells in the mitral and tufted cell layer, as well as
external tufted cells send their dendrites into spherical structures known as glomeruli,
where they synapse with olfactory sensory neurons. c-g, Immunostaining of Pcdh21/Cre-
Ai9 mouse olfactory bulb sections for markers of MT neurons, glia and dividing cells. Blue,
DAPI nuclear stain; red, endogenous tdTomato fluorescence; green, antibody staining for
MT neuron marker Tbr2. d, Dividing cell marker Ki67. e, Microglia marker Ibal. f,
Oligodendrocyte marker Olig2. g, Astrocyte and olfactory ensheathing cell marker S100b. h-
Kk, Quantification of the absence of co-expression of tdTomato with glial and dividing cell
markers. DP: double positive for tdTomato and glial/dividing cell maker. Scale bar in c, 15 p.
Scale bars in d-g 100 p.
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Figure 5.2. ES cells and mice derived from MT neurons.

a, Representative dissociated MT neuron used as nuclear donor in SCNT experiments,
shown with SCNT injection pipette. b, tdTomato positive blastocysts generated from MT
neurons. ¢, tdTomato positive MCNT-ES cells derived from MT neurons. d, Newborn and e,
adult clones generated from MCNT-ES cells. f, standard and g, fluorescence images of
offspring of MCNT-mice. Transmission of the tdTomato transgene demonstrates MCNT-ES
cell derived cells are able to differentiated into functional germ cells. h, Alternating
standard and fluorescent images of brain, kidney, and heart dissected from Pcdh21/Cre-Ai9
control mice (top row) and MCNT-mice (bottom row). Organs from MCNT-mice
demonstrate uniform tdTomato expression. i, Sample microsatellite PCR assay for
tetraploid host blastocyst contribution to MCNT-mice. Band size distinguishes cells derived
from MCNT-ES cell line B2 from the tetraploid host strains C57 (C57BL/6]-Tyrc-2] ) and Blb
(Balb/cBy]). DNA titration curve demonstrates 5% detection limit. Analysis of DNA from B2
clone tissues demonstrates no detectable tetraploid host DNA. See Figure 5.4 for analysis of
mice from other MCNT-ES cell lines. M, molecular weight; E, B2 ES cell DNA; Br, brain; K,
kidney; S, spleen.
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Figure 5.3. Pluripotency marker staining in MCNT-ES cells.

MCNT-ES cells display endogenous tdTomato fluorescence (red) and stain positively for the
pluripotency genes Oct4, Sox2, Nanog, and SSEA-1 (green). Nuclei are counter stained with
DAPI (blue).
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Figure 5.4. Microsatellite PCR assay

This assay demonstrating lack of TEC host blastocyst contribution in MCNT-mice.

a,

Diagnostic microsatellites used to distinguish MCNT-ES cell DNA from tetraploid host
strains Balb/cBy] (Blb) and C57BL/6]-Tyrc-2] (C57). Primary data for mice derived from
MCNT-ES cell lines B2 (b), C1 and C5 (c-d), and D4 (e). For each line, analysis was
performed on various organs from a newborn animal and on tails from several different
adult animals, with the exception of D4, which only produced a single perinatal animal. This
single D4 perinatal animal was the only MCNT-mouse to show detectable tetraploid host
strain contribution (e), which may explain why it was able to survive longer than
littermates displaying no tetraploid host contribution. For all primer pairs, DNA titration
curves demonstrate a 5-10% detection limit. M, molecular weight; B, Blb; C, C57; Egy, Ec1,
Ecs, Eps, DNA from B2, C1, C5, and D4 MCNT ES cells respectively; Br, brain; K, kidney; S,

spleen; T, tail.
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Figure 5.5. Whole genome sequencing of MCNT-ES cells.

a, Schematic overview of Pcdh21/Cre-Ai9 donor animals and the MCNT-ES cell lines and
control tissues sequenced from each animal. b, Representative PCR subclone validation for
two structural variants (SVs). PCR primers flank the SV breakpoint, and are diagnostic for
the presence of the SV mutation. One SV is predicted to be somatic by its presence in all
early passage subclones (top). The other SV arose during culture or reprogramming, as it is
present in only some subclones (bottom). Images are cropped to the region of diagnostic
band size. M, molecular weight. +, positive control for diagnostic band, which was B2 (top)
or B4 (bottom) MCNT-ES cell DNA of similar passage to DNA used in WGS. -, negative
control for diagnostic band, which was thymus DNA from the original Pcdh21/Cre-Ai9
donor animal. ¢ and d, Observed mutations (black/red bars) and estimated true mutational
burden based on the false negative rate (FNR; colored plus white bars). For SVs, the FNR is
calculated for breakpoints, rather than for mutational events, which may contain multiple
breakpoints. Therefore, observed and predicted values for breakpoints are plotted above.
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Figure 5.6. Schematic overview of Structural Variant calling pipeline

We use a custom pipeline for SV detection. Novoalign is used for initial paired-end
mapping of the sequencing data. YAHA is then used to realign all unmapped and
clipped reads to find possible split-read mappings. Discordant read-pairs and split-
read mapping are fed to LUMPY to make initial SV calls. Custom scripts then filter
those calls to find one that are putative de novo somatic calls. See Appendix 1 for
details.
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Figure 5.7b adapted from Lee et al. (Lee et al., 2012a).

Figure 5.7. Schematic overview of MEI calling pipeline.

a, Flowchart depicting processing steps in MEI calling pipeline. b, Schematic depiction of
the structure of a ME insertion event. The ends of paired-end reads that fall within the ME
insertion (red) are difficult to map to the reference genome. Therefore, all discordant,
unmapped and clipped reads are first aligned to a ME library (Table S1). The mates of reads
that map well to the ME library (1,2,3 and 4) are clustered by their reference coordinates.
Left/right clusters that form properly oriented pairs define a possible MEI event. Further
supporting evidence for the call is gathered from split-reads in which one end of the read
maps well to the reference adjoining an insertion point, while the other maps well to the ME
library, thereby spanning an insertion breakpoint (5 and 6). In addition, we determine if a
Target Site Duplication (TSD) has occurred by checking if the right insertion point falls
before the left insertion point on the reference. Such a TSD is further confirming evidence
for a MEI event. See Appendix 1 for details.
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Figure 5.8. VAF distribution of autosomal SNV mutations.

The distribution of Variant Allele Frequency (VAF), defined as the number of reads
containing the alternate allele divided by total read depth, for three different categories of
single nucleotide mutations. Note that, as expected, heterozygous autosomal SNPs have a
VAF distribution that is roughly normal with a mean of 50%. This distribution is very
closely matched by the high confidence (HC) SNVs (as defined by GATK) that have an
estimated FDR of 0% based on our PCR validation experiments. In contrast, low confidence
(LC) SNVs have a much lower mean VAF and the distribution is heavily skewed to the left.
This is an indication of possible mutations that arose during clonal expansion, or other
contamination, and not from the original neuron used during SCNT. The vertical line at 30%
VAF demarcates the threshold we applied to putative SNVs above which they were
considered candidate neuronal somatic mutations. This threshold is just over two standard
deviations from the SNP and HC SNV 50% mean, and as can be seen from the graph
eliminates almost no HC calls, but most of the LC calls.
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Figure 5.9. Sources of mutations in MCNT-ES cell.

Neuron derived mutations are present in all MCNT-ES cells and one of two homologous
chromosomes. As a result, neuron derived mutations have an expected VAF of ~50% and
appear in all subclones (top panel). Single-strand mutations occurring during early
reprogramming, and all mutations occurring in culture are present in half or fewer cells and
in one quarter or fewer of homologous chromosomes (bottom two panels). Therefore, for
SNVs and indels, reprogramming and culture derived mutations are eliminated by requiring
putative somatic mutations to have a variant allele frequency (VAF) of at least 30% (Figure
5.8). For SVs and MEIs reprogramming and culture derived mutations are eliminated by
subclone analyses (Figure 5.5b). The only non-neuronal mutational category that can pass
our calling filters and validation methods are mutations acquired on both strands before the
first S-phase following SCNT (second panel). Such mutations are expected to be extremely
rare.
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Figure 5.10. Features of SNVs in MT neurons and their genomic enrichment

a Stacked plot of SNV substitutions for MT neurons and other cell types. b, Bar chart
comparing the percent of C—T conversions in MT neuron SNVs that appear in each 3bp
context vs. germline SNPs. The MT neuron SNVs occur significantly more often in the TpCpN
context (~44% vs. ~25%, p<0.0001, Fisher’s Exact). ¢, The number of MT neuron SNVs
appearing in evolutionarily conserved regions of the genome is significantly higher than
expected by chance (27 actual vs. ~17 simulated with standard deviation = ~4, p=0.010,
Monte Carlo). d, Percent of total genic MT neuron SNVs compared with SNVs from
endodermal cell types. The dashed line indicates the percentage of the genome that falls
into genes. MT neuron SNVs are enriched in genes relative to endodermal cell type SNVs
(p=0.004, Fisher’s Exact). e, Functional enrichment analysis of genes containing SNVs in MT
neurons and in endodermal cell types by DAVID shows enrichment in a number of GO
categories. The percentages of total GO categories related to neuronal function for each
dataset are shown. f, RNA-Seq data from MT neurons allows us to define a set of expressed
genes (top 50%). SNVs found in MT neurons are enriched in these genes compared to SNVs
found in endodermal cell types. (p=0.025, Fisher’s Exact). g, RNA-Seq data from Lgr5+ small
intestine stem cells allows us to ask a similar question for SNVs detected in small intestine
organoids. In contrast to MT neuron SNVs, small intestine mutations are depleted in highly
expressed genes relative to SNVs found in MT neurons (p=7.06 x 104, Fisher’s Exact).
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Figure 5.11. Structure of complex genomic rearrangements.

Several somatic structural variants in MT neurons exhibit notable complexity. a,
Chromothripsis-like complex genomic rearrangement observed in MCNT-ES cell line B2 as
the result of 6-10 double strand breaks. Bottom bar represents the wild type configuration,
top bar represent the rearranged configuration in B2. Fragment C is transposed in a non-
duplicative fashion 10.4Mbp downstream, between fragments I and K. Fragment F is
deleted, which removes an exon from the Aven gene, and the inversion of Fragment G
affects many of the remaining Aven exons. b, A complex variant on chromosome 18 in the
C5 MCNT-ES cell line involves two deletions within 3Kbp. One deletes exon 4 of the pkd212
gene. The breakpoints show 4bp and Obp of microhomology respectively. c, A single 21Kbp
deletion on chromosome 12 in the B2 cell line. The 20bp region where the breakpoint
occurs is comprised of Fragment B, a 17bp inversion with 2bp of microhomology with
Fragment A, next to 5bp of DNA of unknown origin.
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Figure 5.12. Developmental time periods when MT neuron mutations are acquired.
MT neuron production occurs between embryonic day 9 (e9) and e18, and peaks around
el1l.5. We therefore approximate MT neuron progenitor cell cycle exit at el11.5. The
beginning of our mutation detection window is defined by our filtering criteria designed to
eliminate “germline mutations” (see text), which requires that putative MT neuron
mutations be present in MCNT-ES cells, but absent from thymus/spleen control tissues.
Most mutations acquired prior to gastrulation (e6.5) will be shared between MT neurons
and thymus/spleen samples, and are therefore eliminated from our somatic mutation
dataset. However, we conservatively extend our mutation detection window a few days
before gastrulation (e4.5) as the small number of cells present in the early embryo can
result in uneven distribution of early embryonic cells between germ layers. Therefore, some
mutations arising prior to germ layer specification will be present at undetectable levels in
the thymus/spleen. Assuming approximately 2 cell divisions per day over the 7 days
between e4.5 and e11.5, leads up to predict that mitosis-associated mutations occur over 14
cell divisions. Post mitotically acquired mutations would start accumulating in the 9
embryonic days between e11.5 and birth, and end at the time of harvest for SCNT (between
3 weeks and 6 months of age).
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Appendix 1 Supplemental Methods for Chapter 5

All methods and procedures in this chapter were performed by the author unless indicated
otherwise in the section heading by appendage of “Scripps”. In this latter case, the
procedures were performed and the text written at the The Scripps Research Institute, La
Jolla CA by Jen Hazen or other members of the lab of Kristin Baldwin in the Department of
Molecular and Cellular Neuroscience, or in Scripps core facilities under their direction. In
addition, SV and MEI PCR validations and subclone tests were performed in the Ira Hall Lab
by research staff.

All animal procedures were approved by TSRI Institutional Animal Care and Use
Committee.

Al.1 Immunohistochemistry and immunocytochemistry - Scripps

Newborn tissues were fixed at 4°C overnight in PBS buffered 4% paraformaldehyde
(PFA/PBS). Adult tissues were perfused with PFA/PBS, dissected, and fixed in PFA/PBS for
30 minutes on ice. After fixation, all tissues were sucrose protected in 30% sucrose at 4°C
overnight. Tissues were embedded in OCT and cryosectioned into 15 p sections using a
Leica CM3050S Cryostat. Sections were air-dried on superfrost slides for 40 minutes and
fixed in PFA/PBS for 8 minutes. They were stained with primary antibodies against Ibal
(Wako, 019-19741, 1:1000), Ki67 (Acris, DRM004, 1:200), Olig2 (gift of Dr. Charles Stiles,
Harvard Medical Center, 1:20,000), S100b (Abcam, ab868, 1:500), Sp8 (Santa Cruz, sc-
104661, 1:500), and Tbr2 (Abcam, ab23345, 1:500). ES cells were stained as in Boland et. al.
(Boland et al., 2009) MT neuron cell preparations for nuclear transfer (see below) were
attached to glass slides using a cytospin cytocentrifuge and analyzed by
immunocytochemistry. For cytospin, filters were wet by pre-spinning with 500 pL of PBS (6
minutes, 1,000 r.p.m.) followed by cellular attachment (6 minutes, 1,000 r.p.m.). The
resulting “button” was fixed with room temperature PFA/PBS for 20 minutes and
immunostained with Ibal, Ki67, Olig2, and S100b antibodies at the dilutions described
above. Images were collected on a Nikon C2 or Nikon A1l confocal microscope and analyzed
in Adobe Photoshop.

Al1.2 Isolation of MT neurons for nuclear transfer - Scripps

MT neurons were dissociated and purified as in Brewer and Torricelli (Brewer and
Torricelli, 2007) with the following modifications. We found it unnecessary to siliconize
Pasteur pipettes to prevent cell loss and chopped olfactory bulbs using a scalpel rather than
with a tissue slicer. We also used papain containing L-cysteine (Worthington Biochemical,
PAP2 10 units/ml) as it has higher activity and allows shorter dissociation times (10
minutes total). We found it essential to add small amounts of DNase I (6.25 pg, Roche
10104159001) during papain treatment to prevent DNA related cell aggregation. After
density gradient centrifugation, we found most MT neurons in the cell pellet fraction and a
significant number in the 2 ml fraction immediately above the pellet. Cells from both
fractions were combined and washed once in 10 mls of HAGB (Hibernate-A (Gibco
A1247501), 1X B-27 supplement (Gibco 12587010), 500 uM GlutaMAX (Gibco 35050061)).
After pelleting, cells were resuspended in 1 ml HAGB, transferred to a 1.5 ml centrifuge
tube, pelleted again, resuspended in ~30 pls HAGB media, and stored on ice until nuclear
transfer.
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A1.3 Somatic cell nuclear transfer - Scripps

SCNT was performed as in Kishigami et al. (Kishigami et al.,, 2006b), except we extended the
length of treatment with 5 nM Trichostatin A to 16 hours (6 hours during activation, 10
hours overnight) to improve efficiency of blastocyst and NT-ES cell generation (Kang and
Roh, 2011).

A1.4 Derivation of MCNT-ES cell lines and MCNT-mice - Scripps

Embryos resulting from NT were cultured to blastocyst stage, then zonae pellucida were
removed using a piezo-actuated drill needle (Nakayama et al.,, 1998). ES-cell lines were
derived essentially as described in (Meissner et al., 2011), with some modifications in media
composition. Briefly, zona-free embryos were cultured for 7-9 days on MEF feeder layer in
ES-cell derivation medium (500 mls Knockout DMEM (Gibco 10829-018), 80 mls Knockout
Serum Replacement (Gibco 10828-028), 6 mls MEM non-essential amino acids
(Gibco11140-050), 6 mls Glutamax (Gibco 35050-079), 6 mls Pen/Step (Gibco 15140-122),
6ul B-Mercaptoethanol (Sigma M7522), 50 um final concentration MEK1 Inhibitor PD98059
(Cell Signaling Technology 9900) and 2000 Units/ml LIF (Chemicon ESG1107)).
Outgrowths of inner cell mass were picked and dissociated with 0.25% trypsin-EDTA (Gibco
25200-056). Cells were then expanded on a MEF feeder layer in ES-cell maintenance
medium (500 mls Knockout DMEM (Gibco 10829-018), 80 mls Knockout Serum
Replacement (Gibco 10828-028), 6 mls MEM non-essential amino acids (Gibco 11140-050),
6mls Glutamax (Gibco 35050-079), 6 mls Pen/Step (Gibco 15140-122), 6ul B-
Mercaptoethanol (Sigma M7522) and 1000 Units/ml LIF (Chemicon ESG1107)). Tetraploid
embryo complementation was performed as in our previous work (Boland et al., 2009).

A1.5 Microsatellite PCR assay to rule out host blastocyst contribution - Scripps

This assay was described by us previously (Boland et al., 2009), and relies on the detection
of microsatellites that vary in length between MCNT-ES cells and tetraploid embryo cells. In
these experiments, tetraploid embryos were F2 (BALB/cBy] X C57BL/6]-Tyre2i). Therefore,
to rule out trace contribution of tetraploid cells to MCNT-mice, we assayed for differences in
microsatellite length diagnostic of both BALB/cByJ and C57BL/6]-Tyre2 strains. Genomic
PCR was performed on DNA isolated from tissues of newborn and adult MCNT-mice for
each TEC competent MCNT-ES cell line. Microsatellites assayed for each MCNT-ES cell line
are listed in Figure 5.4. The following primers were used:

Microsatellite Forward Primer Reverse Primer

D17Mit133 TCTGCTGTGTTCACAGGTGA GCCCCTGCTAGATCTGACAG
D6Mit102 CCATGTGGATATCTTCCCTTG | GTATACCCAGTTGTAAATCTTGTGTG
D6Mit15 CACTGACCCTAGCACAGCAG TCCTGGCTTCCACAGGTACT

A1.6 Whole genome sequencing

Prior to sequencing, early passage MCNT-ES cells were separated from feeders by serial
pre-plating on gelatin coated tissue culture dishes. DNA was isolated from MCNT-ES cells
and thymus or spleen using standard phenol chloroform extraction and ethanol
precipitation. Contaminating RNA was removed by RNase A digestion. Samples were
sequenced by BGI (http://www.genomics.cn/en/index) using standard library prep for an
[llumina Hi-Seq 2000. The target template length of approximately 500bp was chosen to
give increased physical coverage to aid in accurate structural variant discovery. Each end of
the paired-end data was 100bp in length. Quality control was performed on the output of

» o«

the sequence run to eliminate reads with low base quality (<5 (“A”-“E”)) over at least 50%



88

of their length as well as reads with unknown nucleotides (“N”) over at least 10% of their
length.

A1.7 Initial alignment and post-processing

In these studies, default parameters were used for all bioinformatics software except as
explicitly noted. We refer to an index with word length L and skip distance S as a L/S index.
Mouse MCNT-ES cells and thymus/spleen control samples were sequenced using Illumina
next-generation whole genome shotgun paired-end sequencing in which each read in the
pair was approximately 100bp in length with a template length of approximately 475bp.
Each sequencing lane was then separately aligned to the mm9 reference genome (July 2007
NCBI Build 37) using Novoalign v2.08.02 (Hercus, 2009) using a 14/1 index (-k 14, -s 1).
Repetitive alignments were resolved using the random selection method (-r random).

GATK (DePristo et al., 2011; McKenna et al., 2010) (v2.5-2-gf57256b) and Picard Tools
(Broad Institute) (v1.92) were used to further process alignments. Read group, library,
platform, platform unit, and sample name information was added to the above alignments
using Picard AddOrReplaceReadGroups. The BAM files for the various sequencing lanes for
each cell line were then position sorted and merged using Picard ReorderSam and
MergeSamFiles respectively. Duplicates were marked using Picard MarkDuplicates and
removed with samtools view (Li et al, 2009a) (-F 0x400), resulting in a non-duplicate
median per sample read-depth of approximately 32x-39x (Table 5.3).

A1.8 SNV and indel Detection

GATK and Picard Tools were further used for single nucleotide variant (SNV) and indel
calling following the recommended best practices pipeline for GATK v2.0 (Van der Auwera
etal, 2002). Here “indel” refers to any insertion or deletion of consecutive bases of less than
50bp in length. The GATK IndelRealigner was used to realign indel regions identified by
RealignTargetCreator. Mate-pair information was cleaned by Picard FixMatelnformation.
We then used GATK BaseRecalibrator and PrintReads to recalibrate base quality scores.
This step takes as input a set of known sites, which we created by selecting those single
nucleotide polymorphisms (SNPs) marked as "High Confidence" by the Mouse Genomes
Project (MGP) in the 12951 mouse strain (Keane et al., 2011). The GATK UnifiedGenotyper
was then run on all samples combined, calling indels and SNPs together, using per sample
read-depth downsampling to a maximum read-depth of 500 (-glm BOTH -dt BY_SAMPLE -
dcov 500).

GATK VariantRecalibrator and ApplyRecalibration steps were then run first on SNPs (--
mode SNP), then on indels (--mode INDEL), to assign our calls into one of four sensitivity
tranches. These steps require SNP and indel “truth” sets that were created as follows. For
SNPs, we again started with the high confidence 12951 SNP calls from the MGP, intersected
these with our own autosomal GATK SNP calls from above, and selected the top 1 million
such calls as ranked by the MGP variant quality score. For indel variant recalibration, we
used all 129S1 indel calls from the MGP.

We then identified putative de novo somatic SNV and indel variants private to MCNT-ES
cells lines using custom scripts that implement a modified version of the approach used by
Kong et al. (Kong et al., 2012) Although we called variants in each donor mouse separately,
we used information from the same locus across all samples to help reduce false positives.
For a given mouse, the samples were partitioned into three sets; (1) the “control” sample of
the thymus/spleen for that mouse, (2) the “MCNT-ES” cell line(s) for that mouse, and (3) the
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“other” samples, comprised of all samples from the other mice. In what follows, “RR”, “AR”
and “AA” will refer to the genotype of a locus as homozygous for the reference allele (R),
heterozygous, or homozygous for the alternate allele (A) respectively. The alternate allele
genotype (AAG) of interest for the calling process depends on the chromosome and sex of
the mouse. We used AR for all autosomes and for the X chromosome of female mice, and AA
for the X/Y chromosomes of male mice. The variant allele frequency (VAF) is defined as the
(alternate allele read-depth)/(reference allele read-depth + alternate allele read-depth).
Phred likelihood scores for genotypes and per allele read-depth information are provided
by GATK in the VCF output file.

To be called a putative somatic SNV in a particular MCNT-ES cell line, a SNV locus/allele pair
was required to meet all of the following criteria:

1. The alternate allele is not reported as a variant at the same locus in any inbred
mouse strain by the MGP at either high or low confidence.

2. The call appears in one of the 19 autosomes or the X or Y chromosome. No calls are
made in “random” or “unknown” scaffolds. Mitochondrial variant calls were also
excluded from the analysis because mitochondria in MCNT-ES cell lines are
expected to originate from the oocyte used in nuclear transfer, not from the original
neuron.

3. The control sample and the MCNT-ES cell line(s) from the mouse of interest each
have a total read-depth between 10 and 250.

4. A control RR/AAG ratio of phred likelihood scores 2105, and a control VAF of at
most 5%.

5. An MCNT cell line AAG/RR ratio of phred likelihood scores 21019, and VAF of at least
30% (95% for X/Y chromosomes in male mice).

6. A RR/AAG ratio of phred likelihood scores =1, and a VAF of at most 5% for all
“other” samples.

Indel calling strategies are known to have higher false positive rates than SNV calling
strategies. Therefore, we slightly modified the filtering criteria for indels to be more
conservative as follows. In step 1, the variant is eliminated as a somatic call if it overlaps any
indel reported by the MGP in an inbred mouse strain regardless of the type and size of the
indel. In steps 4 and 6, the VAF for both the control sample and all samples from other mice
are held to the stricter criteria that it be equal to zero.

We further categorized our SNV and Indel calls by the GATK VariantRecalibration assigned
tranche annotation as high confidence (HC) if they fall into the two lowest sensitivity
(highest specificity) tranches with an implied false discovery rate (FDR) threshold for the
corresponding truth set of 1%. The remaining calls are categorized as low confidence (LC).
As discussed below, our validation rates are markedly higher for the HC calls than for the LC
calls. The resulting somatic SNV and Indel calls are in Tables S$4-5.

A1.9 Structural variation breakpoint detection

We used a custom pipeline including Novoalign, YAHA, LUMPY and custom scripts to detect
structural variant breakpoints (Figure 5.6). Here we define a structural variant (SV) as an
apparent deletion, tandem duplication or inversion (as defined by relative read-pair
orientation) of greater than 50bp in length, or an unexpected juxtaposition in the sample
genome of two loci that appear far away from each other (>1Mbp) on the same or different
chromosome(s) in the reference genome (which we refer to as "distant" rearrangements).
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Insertions are not directly detected by LUMPY, but will instead be composed of two of the
above event types (one for each of the two insertion breakpoints).

LUMPY can map SV breakpoints using evidence from both discordant paired-end reads
("read-pairs") and split-read mappings from multiple samples to find SVs (Layer et al,,
2014). Informative discordant read-pairs were extracted from each BAM file as those read-
pairs in which both reads were mapped, the mappings were either 1) on different
chromosomes, 2) had improper strand orientation, or 3) had a template length that fell
outside the mean length +5 standard deviations (STDs). The insert size mean and STD was
calculated for each dataset using custom scripts using properly paired alignments (samtools
view -F 0x400 -f 0x2). In order to reduce the probability of false positive SV calls, we
further filtered the set of input discordant read-pairs as follows. We first located collections
of nearly duplicate pairs in which the corresponding mates of each pair mapped to the
reference genome within #3bp of each other. From such collections, we eliminated all but
the pair aligned with the least edit distance from the reference genome. Discordant reads
were converted to bedpe format using bedtools V2.16.2 (Quinlan and Hall, 2010) bamToBed
and  pairBedToBedpe, and  additional  duplicates were removed  using
dedupDiscordantsMultiPass.py (-s 3).

Separately, we extracted putative split-read alignments that were either unmapped or had a
clipped region of 220bp on either end of the alignment. These were then realigned using
YAHA version 0.1.78 (Faust and Hall, 2012) with an 13/1 index (-L 15 -S 1), and default
alignment parameters except for maxHits of 2000, and minMatch of 15 (-H 2000 -M 15).
From the resulting alignments, we selected for input to LUMPY reads that had a single split
alignment (two mappings) in which each aligned portion involved =20bp of query sequence
that was not included as part of the other aligned portion. We also required that split-read
alignments suggesting a deletion variant had an implied deletion size 250bp (our definition
of SV).

LUMPY was run on the above-described discordant read-pairs and split-read mappings
from all eleven samples, requiring at least 4 confirming reads across 11 samples for a call,
and a trimThreshold of 10-3 (-mw 4 -tt 1e-3), using a minimum alignment mapping quality
of 10, and excluding all genomic regions in which any cell line had an aligned read-depth
>500.

The resulting SV calls were filtered to find putative de novo somatic variants that appear in a
single MCNT-ES cell line. We required such a call to meet all of the following criteria:

1. The SV call had at least 5 supporting discordant read-pairs and/or split-reads from
one MCNT-ES cell line, and no supporting reads in any other MCNT-ES or control
sample from any mouse.

2. The SV call was not previously reported as a germline polymorphism by MGP for
any mouse strain. A LUMPY call was judged to correspond to an MGP call if the two
were of the same variant type (e.g.,. deletion) and were at the same genomic
location, as defined by 50% reciprocal overlap (bedtools intersect -r -f 0.5). Distant
rearrangement involving >1Mbp of genomic sequence, or spanning multiple
chromosomes, were not filtered in this manner since such variants were not
reported by MGP.

3. The call appears in one of the 19 autosomes or the X or Y chromosome. No calls
were made in unmapped contigs or in mitochondrial DNA.
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A1.10 Mobile element insertion detection

Mobile element insertions (MEIs) pose a challenge for SV calling algorithms due to several
factors including the fact that the mobile element (ME), or "transposon”, is itself composed
of repetitive sequence. Therefore, we have developed our own MEI calling pipeline based on
the strategy used by Lee et al to study somatic retrotransposition in human cancers (Lee et
al, 2012a).

The general approach is to start with all the reads that the aligner had difficulty aligning to
the reference genome, and re-align them to a custom-built library of mobile element
sequences. The mates to the reads that map well to this ME library are then used to identify
regions of the sample genome in which to search for MEIls. In addition, we look for
confirming evidence of MEIs using split-read mappings in which one side of the split maps
to the ME library, and the other side to the reference genome next to the predicted ME
insertion point (Figure 5.7).

The ME library is formed using both canonical sequences from version 18.02 of RepBase
(Jurka et al., 2005) and their variants predicted to appear in the mm9 reference genome by
RepeatMasker (Smit et al, 1996-2010) and included in the mm9 UCSC RepeatMasker
annotation track (downloaded from http://genome.ucsc.edu/cgi-bin/hgTables/). From
RepBase RepeatMaskerLib.embl and mousub.ref (downloaded from
http://www.girinst.org/server/RepBase/) we found 120 LTR sequences labeled with
“Species: Mus_musculus” and 6 SINE sequences, respectively. From the mm9 RepeatMasker
annotation track we selected the genomic regions for all LINEs, SINEs, and LTRs with low
sequence divergence (<30 millidev) and length of at least 100bp, then extracted the
corresponding DNA sequences from the reference genome using bedtools getfasta. We then
removed duplicate sequences from the above, and appended multiple “N” bases to the ends
of each sequence to aid in alignment. The final ME library contains 51,413 unique
sequences. Detailed information about the composition of the ME library can be found in
Table S1.

We selected reads to align to the ME library that met any of the following criteria:

1. It was the unmapped read of a pair in which one read is mapped and the other
unmapped.

2. Itwas either read of a discordant read-pair in which either the reads were aligned to
separate chromosomes, or the reads were aligned at least 100Kbp apart from each
other.

3. Any mapped read not in the above two categories whose alignment was clipped by
at least 20bp.

The above reads were then aligned to the ME library using YAHA. Since the ME library is
highly repetitive, we used very sensitive alignment parameters: an 11/1 index, maxHits of
9000, minMatch of 15, and a maxGap of 20 (-H 9000 -M 15 -G 20).

We then formed clusters separately for each ME subtype as follows. From the ME library
alignments, we selected ones matching the current ME type and subtype that were from a
discordant or unmapped read and had a good alignment to the ME library, defined as at
least 50bp in length and clipped by no more than 3bp on at least on end. We then extracted
the aligned coordinates for their mate in the reference genome, and formed clusters from
those reads that were aligned to the same strand and fell within the inter-read distance
from each other. The inter-read distance is calculated separately for each sample as | (ETL -
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RL) x 2 / 3] where ETL is the extended template length (median template length + 3 STDs)
and RL is the read length (100). We then found potential ME insertion points as a pair of
such clusters from the same ME type and subtype such that the reference coordinates of a
plus strand cluster were 5’ of a minus strand cluster within twice the inter-read distance,
and had at most 20bp of overlap. In addition, the cluster pairs had to have at least 6
combined supporting reads from the two clusters. These pairs were then filtered to exclude
those with at least 25% of their length overlapping an ME of the same type and subtype
annotated in the reference genome as defined by the UCSC repeat masker tract ME
(bedtools intersect -f 0.25).

Confirming split-read mappings for remaining pairs were found as follows. All unmapped
alignments, and any clipped alignments overlapping a pair region were aligned to the
reference genome with YAHA using the same parameters as above; an 11/1 index on the
mm9 reference genome, and these alignment parameters: (-H 9000 -M 15 -G 20). We then
counted as a confirming split-read mapping one in which the type and subtype of the ME
matched the one from the cluster pair, the portion of the read aligned to the reference fell
within exactly one of the pair clusters, and the two split-read alignments together cover
almost the entire read length with at most a few unmapped bps (the alignment mapped to
the reference and the alignment mapped to the ME library ended within 3bp of opposite
ends of the read, and there was a maximum of 4bp of unaligned sequence between them).
We added the count of such split mappings to the total read count of the associated cluster,
and kept a list of all of the reference loci for their reference aligned portion nearest to the
implied insertion breakpoint to more precisely define where the breakpoint occurred
(Figure 5.7).

We then filtered the cluster pairs formed above to find putative de novo somatic MElIs in a
single MCNT-ES cell line using a similar strategy we used to identify de novo somatic SV
events. We first eliminated cluster pairs that had fewer than 10 confirming reads. We then
eliminated cluster pairs with evidence in other samples as follows. We separately
intersected the genomic region of each cluster of a pair with clusters from all other samples
that had the same ME type (disregarding subtype) and were on the same strand. We then
eliminated all cluster pairs that had any confirming reads from such a matching cluster.
Finally, we further filtered the remaining pairs to eliminate any pair that had any overlap
with any MGP MEI call from any mouse strain regardless of ME type or subtype.

Al1.11 Copy number variation detection by read-depth analysis

To detect copy number variation (CNV), we used a read-depth strategy very similar to the
one described by Malhotra et al. (Malhotra et al.,, 2013) Assuming that [llumina genome
sequencing uniformly samples the source DNA, the DNA copy number within a given
genomic region should be directly proportional to the number of sequence reads mapped to
the region relative to other regions. However, local read-depth is subject to two major
sources of bias that must be overcome to make these calculations more accurate. First,
[llumina sequencing exhibits significant GC bias such that local coverage depth falls off at GC
content extremes, especially in regions with high GC percentages (Aird et al.,, 2011). To
counteract this bias, we normalize the coverage data within small genomic regions by their
percent GC content. The strategy used to do this normalization is based on the observation
that the read-depth in regions of similar GC content approximates a normal distribution.
Second, repetitive sequences are known to pose difficulties in sequence alignment and
assembly, causing potentially large fluctuations in local read-depth mapping to the
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reference genome. To counteract this bias, we base all of our calculations on read-depth in
unique genomic regions.

We therefore start by breaking the reference genome up into regions (“windows”)
containing 5Kbp of unique sequence as defined by a mappability value equal to 1 in the
UCSC 100mer mappability track (crgMappabilityAlign100mer). This results in 458,040
windows with a mean and median size of 5796 and 5030 bp, respectively.

We then process each of our cell samples separately as follows. We first count the number
of reads mapped to the unique portion of each such 5Kbp window, then consider as a group
those regions with the same percent GC content in 1-3% increments, e.g. (45.0-47.0%] GC.
We then use the autosomal windows in each group to calculate the median and median
absolute deviation (MAD) of read-depth for the group, and estimate its normal distribution
using the MATLAB “normfit” function using all windows in each group that are within +4
MADs from the median read-depth for the group. This yields a mean and standard deviation
(STD) for each group as a whole. For each window within the group we then calculate the
normalized read-depth as the raw read-depth for the window divided by the median read-
depth for the group and multiply by two (assuming a diploid genome). Similarly we
calculate a Z-score for each window as the raw read-depth for the window minus the mean
read-depth for the group divided by the STD.

We next combine consecutive windows with similar Z-scores into copy number segments as
described in (Malhotra et al., 2013) using the circular binary segmentation function in the
DNAcopy package in R (http://cran.r-project.org/) with the following parameters:
(undo.splits="sdundo”, undo.SD=1 and alpha=0.001). For each segment we keep track of the
count, mean, STD, median, and MAD of the read-depth values for windows it contains. In
addition, for each SCNT-ESC cell line, we performed the same segmentation as above based
on the log; of the ratio of the normalized cell line read-depth divided by the corresponding
thymus/spleen control sample read-depth. Such a division is useful for determining somatic
CNVs as described below. We also calculated the total dataset median and MAD for each cell
line and log; ratio dataset separately for autosomes and the X chromosome to account for
the expected difference in copy number on the X/Y chromosomes in males.

Finally, we called the somatic CNVs as follows. As CNV calling is fairly error-prone, we chose
to use conservative filters that result in a low false positive rate, but potentially lower
sensitivity. We find all segments in the log, ratio datasets for the MCNT-ES cell lines that are
formed from at least 3 windows and have a normalized segment median read-depth that is
plus/minus at least 6 MADs above/below the full dataset median normalized read-depth for
the corresponding chromosome set (autosomes or chrX as appropriate). From these, we
remove any segment(s) that overlap with a segment in any of the 4 control samples with a
normalized segment median read-depth that is plus/minus at least 6 MADs above/below
the full dataset normalized read median read-depth. Together, these filters require a strong
signal in one or more of the MCNT-ES cell lines in a genomic region that has no such signal
in any control line, indicating a de novo somatic variant. Interestingly, this filter criteria
results in putative CNV duplication calls in T-cell receptor alpha and/or gamma sites for all
MCNT-ES cell lines using thymus as the control sample (B2, B3, B4, and E1). These are
actually an artifact of the deletions in these regions in the thymus samples due to V(D)]
recombination, and act as a positive control for the calling pipeline. Removing these
spurious calls leaves us with four CNV calls all of which are also LUMPY SV breakpoint calls
as shown in Table S3. Note that the above calling strategy requires segments of at least
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three adjacent 5Kbp windows and is insensitive to any CNV below ~15Kbp in size. We have
only five validated LUMPY breakpoint calls that are unbalanced variants of this length. Four
of them are found as CNVs by read-depth analysis, and the fifth duplication call falls just
below our detection thresholds in a segment three windows in length with a normalized
copy number that is 4.7 MADs above the median.

A1.12 Somatic variant false negative rate estimations

To gauge the sensitivity of our somatic variant calling strategies in the absence of a known
set of true positives, we estimate the false negative rate (FNR), and calculate the sensitivity
as 1-FNR. The general strategy is to find a set of high confidence germline variants of the
variant category of interest, called the gold standard set (GSS), and then count how many of
these were detected in our analysis and would pass all relevant MCNT somatic call filters.
To eliminate issues regarding sex chromosome differences across datasets from both male
and female mice, all of our FNR estimates are based solely on autosomal variants. The
detailed calculations of FNR estimates are shown in Table S2.

A1.13 Single nucleotide variant and indel false negative rate estimation

The GSS set for SNV calls was found on a per mouse basis as follows. We started with the set
of all GATK autosomal SNP calls for a given donor mouse, and selected the subset of such
calls that were also found as high confidence calls by the Mouse Genomes Project (MGP) in
any inbred mouse strain. From this set, we further selected those that were called
heterozygous in our data by GATK in at least one sample from the mouse in question. This is
an important step, as we expect that, barring some rare event that causes loss of
heterozygosity, all de novo somatic autosomal variants should be heterozygous. We
therefore use solely heterozygous calls in our GSS as they should display similar patterns of
variant allele frequencies and associated genotype phred likelihood scores as our sought-
after somatic variants.

We then applied all of our MCNT-ES cell line filtering criteria except the “control” and
“other” sample filters (filters 4 and 6 from above), and counted the percentage of the GSS
calls that are eliminated in each MCNT-ES cell line. We take this as our estimate of overall
FNR for that cell line. We then calculated the overall FNR rate for each mouse as the average
of the FNRs of the (one or more) MCNT-ES cell line(s) from that mouse. The resulting per-
mouse overall FNR estimates for all SNV calls range from 6.7% to 11.1%, and for our high
confidence SNV calls from 19.0% to 22.8%.

We estimate the FNR rates for the indels in a similar fashion with one difference. The MGP
does not report confidence levels for indels. Therefore, we intersected our per-mouse GATK
heterozygous autosomal indels calls with all MGP inbred indel calls to find the per-mouse
GSS set. The resulting per-mouse overall FNR estimates range from 22.5% to 27.0%, and for
our high confidence calls from 24.3% to 28.6%. Note that the FNR estimates for our high
confidence SNV and indel calls are quite similar, while those for all indel calls are
significantly higher than for all SNV calls. This is not surprising given the increased difficulty
in calling indels vs. SNP and the lower quality “truth” set we had available as input to the
GATK tranche calculations, which resulted in GATK placing almost all of the indel calls in the
high confidence tranches. See Table S5 for details.

A1.14 Structural variant and mobile element insertion false negative rate estimation
For our SV and MEI FNR estimates, we also calculate a gold standard set (GSS) on a per
mouse basis. To find our GSS set, we started with MGP calls from the 129S1 mouse strain,
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and found the subset of these that are located in genomic regions that we predict to be in a
haplotype block inherited from the 129 strain lineage in the mouse of interest. This is
necessary because the different donor mice are mixed 129/Blacké genetic background, but
due to their breeding history have inherited distinct 129 haplotype blocks. To find these
haplotype regions, we first determined the set of germline SNPs called by GATK in each
mouse that are also called by the MGP in the 129S1 mouse strain. We call these the 12951-
SNPs for that mouse.

Deletions are the most numerous and easiest to detect structural variants. We therefore
have highest confidence in the deletion call annotations in the MGP. To estimate the FNR of
our LUMPY SV breakpoint calls, we restricted our GSS to MGP deletions found in the 12951
mouse strain. We further restricted the GSS to those calls that have two 129S1-SNPs within
250bp of both sides of the outer span of the call region. This results in per-mouse GSSs with
~2200 calls each. For initial FNR estimates, we counted the percentage of the GSS calls that
do not have 50% reciprocal overlap with a LUMPY deletion call in the cell line of interest.
The resulting per-mouse FNR estimates range from 38% to 42%. However, this
dramatically overestimates the true FNR. Approximately half of the calls in each GSS are
small (less than 500 bp). For these deletions, the uncertainty in the breakpoint location
calculated by LUMPY is large relative to the size of the call. As a result, approximately 75%
of these small calls failed the above test compared to only 6% to 9% for larger deletions.
Therefore, for more accurate FNR estimates, we required 25% and 50% reciprocal overlap
for the small and large calls respectively, then formed a weighted average of the resulting
FNR estimates leading to final per-mouse FNR estimates ranging from 10.2% to 13.5%.

For our MEI calls, we formed an initial GSS in a similar fashion to the deletion calls. We
chose those MGP MEI calls from the 129S1 mouse strain that have two 12951-SNPs within
250bp on both sides of the insertion point, estimated as the midpoint of the insertion call
region. We then counted the percentage of these calls that do not intersect the insertion
region of any of our MEI calls of the same ME type in the cell line of interest. This results in
initial per-mouse FNR estimates ranging from 45.8% to 48.2%. However, it is likely that this
is an overestimate of FNR due to false positive MEI calls in the MGP. Therefore, we formed a
stricter GSS for each mouse by adding the requirement that we have at least weak evidence
for the insertion in our data. Specifically, we required there be at least two reads from any
of our clusters from the same ME type that overlap the insertion region of the GSS call. We
then again count the percentage of these restricted call set that do not intersect the
insertion region of any of our MEI calls of the same ME type. The resulting per-mouse FNR
estimates range from 19.4% to 15.5%. These probably underestimate the true FNR rate
because we have pre-selected MGP calls that we are likely to find. The real FNR rate
probably lies between these two extremes. See Table S2 for details.

A1.15 Somatic variant validation strategy

To validate putative de novo somatic mutations, we performed PCR amplification of the
genomic region containing the putative mutation using DNA from both the MCNT-ES cell
line of interest and its associated control thymus or spleen sample from the same donor
animal. The products were Sanger sequenced to verify that the mutation was present in the
MCNT-ES cell line but not in the control sample. For SNVs and indels, a random subset of
calls was tested. For SVs and MElIs, all calls were tested and we also performed additional
tests to eliminate the potential for the mutation to have arisen during clonal expansion or
reprogramming using subclone analyses. The number of mutations tested for each mutation
category and the resulting false discovery rates are given in Table S3.
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Bulk DNA for validation PCR reactions was prepared by standard methods. PCR reactions
were composed of 7.55uL 16 of 2x Phusion High-Fidelity Master Mix (New England
Biolabs), 0.5uL each the left and right primers at 10uM concentration, ~20 ng of DNA, and
filled to 15uL with distilled water. PCR reactions were run in a Bio-Rad DNA Engine Dyad
Peltier Thermal Cycler with annealing temperatures of both 60°C or 65°C with the following
program: 1) 98°C for 30 seconds; 2) 98°C for 10 seconds; 3) 60°C or 65°C for 30 seconds; 4)
72°C for 1 minute; 5) go to step 2 25-30 times (depending on the locus); 6) 72°C for 5
minutes. Reactions were electrophoresed on 1.5-2% agarose gels made with 1X TAE buffer
and containing 0.2pug/ml ethidium bromide, and visualized under UV light.

A1.16 Validation of putative somatic SNVs - Scripps

To test SNV calls, we designed PCR primers to amplify the region of genome containing the
predicted SNV. PCR was performed on genomic DNA from MCNT-ES cells and from thymus
or spleen of the original donor animal. The resulting PCR product was sequenced by Sanger
sequencing, either directly, or after gel extraction if greater than one PCR product was
amplified. Most PCR products were sequenced using either the forward or reverse primer
from amplification. Any additional internal sequencing primers required are listed in Table
S$4. Sequencing results were aligned to the mouse genome to confirm the intended region
was amplified before specifically looking for the presence or absence of the predicted SNV.
If the predicted mutation was present in the predicted MCNT-ES cell sample and not in
control donor tissue, the SNV was judged to be validated.

A1.17 Validation of putative somatic indels - Scripps

Indel validation was essentially identical to SNV validation. However, in SNV detection,
single base polymorphisms are visible directly in the sequencing data. In indel validation,
longer heterozygous sequences result in a decay of the quality of the sequencing data
starting with the first base that differs between the reference and mutant alleles. So, the
presence, bounds, and in most cases the actual sequence of the indel were confirmed by
Sanger sequencing from both upstream and downstream of the predicted indel. PCR
primers are listed in Table S5.

A1.18 Validation of putative somatic structural variants and MEls

To validate putative de novo somatic SV and MEI breakpoints, PCR was performed on
genomic DNA from MCNT-ES cells and donor animal thymus or spleen as control. Primers
were designed to flank a putative SV breakpoint to produce a 200-800 bp product for the
variant allele, and to produce either no product or a product of significantly different size
for the reference allele. Primers were designed to be 18-25 bp in length, with a 57°C-63°C
Tm, and 40%-60% GC content. All validating primers are listed with their corresponding
variant call descriptions in Tables S6-7. CNV calls were not separately validated, as all
somatic CNV calls were redundant with a validated SV call.

If a unique amplified product was present in the predicted MCNT-ES cell line(s) but not the
control, the breakpoint was considered validated. If the same product(s) were present in
both the predicted MCNT-ES cell line(s) and control DNA, the breakpoint was judged to be a
germline variant. If amplified products were absent in all lines, or if the primers were non-
specific (i.e. yielded multiple products) a second pair of primers were made. If the second
pair of primers also failed to yield specific product(s) then the variant was judged to be a
false positive. We note that this could result in a small number of false negatives due to off
target amplification at loci that are difficult to amplify cleanly. The unique band produced
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by validating primers was cut from the gel and sent to GENEWIZ
(http://www.genewiz.com) for capillary sequencing of both strands.

To further determine that validated SV calls were present in the original donor neuron and
did not arise either in culture or during reprogramming, PCR was performed with the
validating primers on subclones from the relevant MCNT-ES cell line. DNA from MCNT-ES
cell subclones was purified in 96-well format using the following protocol. MCNT-ES cell
subclones were grown to confluency on MEF feeder cells. They were then washed with PBS
and incubated in 50 uls lysis buffer (100 mM Tris pH8.0, 5mM EDTA, 0.2% SDS, 200mM
NacCl, 100 ug/ml proteinase K) for 16 hours at 55°C. To precipitate DNA, lysed cells were
incubated in 100 uls of cold 100% ethanol for 30 minutes on an orbital shaker. Supernatant
was removed, and precipitated DNA was washed twice with 70% ethanol and air dried for
20 minutes. The resulting DNA was resuspended in 35 pl of TE by incubating overnight at
37 °C. PCR was then performed on 1ul of DNA from subclones using the same primers and
procedures described previously.

A1.19 Structural variant and MEI breakpoint determination

SV and MEI call breakpoints were determined to single base pair resolution primarily by
split-read mapping of the capillary sequence data of the unique PCR product validating the
call. Split-read mapping was done using YAHA with sensitive parameters and a breakpoint
penalty neutral to variant length (a 11/1 index, -M 12 -BP 20 -MGDP 1 and -H 2000 for SVs
and -H 65525 for MEIs). However, all of the four validated MEI LINE insertions had PCR
validation of only 5’ breakpoint due to the difficulty in finding usable primers in poly-a tails.
Therefore, MEI breakpoints were determined by visual inspection of clipped alignments
using the Integrative Genomics Viewer (https://www.broadinstitute.org/igv/home). Once
the breakpoint locations were determined, we calculated additional breakpoint features by
looking for additional features of the split-read mappings. Microhomology for SV
breakpoints manifests as overlap of the two split-read alignments on the query, and target-
site duplication for MElIs as the distance between the insertion breakpoints on the reference
(Figure 5.7). The details of the breakpoint architectures of SVs and MEI are provided for
each validated call in Tables S6-7. In addition, about half of the SV breakpoints were caused
by complex genomic rearrangements as shown in Figure 5.11.

A1.20 Detection and validation of shared mutations.

We sought to identify somatic mutations that are shared among multiple MCNT-ES cell
lines. Somatic variants that are shared among cell lines derived from a single donor mouse
could exist due to clonal mutations that arose early in development, whereas variants that
are shared among lines from different donor mice could exist due to recurrent mutation at
hotspots, or conceivably due to programmed rearrangement (as in the immune system).
Since it has long been hypothesized that recurrent structural mutations might be involved
in generating neuronal diversity, we focused our search for mutations shared across
different donor mice to SVs and MEIs. We restricted our search for shared SNVs to within-
mouse mutations.

Within-mouse shared SNVs are naturally detected by our primary SNV calling procedures
outlined above. We identified 13 such SNV calls in the B mouse and 8 in the C mouse
(bottom of Table S4). Shared SVs were identified from the primary LUMPY run as before,
except that we modified criteria 1 to require at least 5 supporting reads in each of two or
more MCNT-ES cell lines. These criteria identified 73 shared SV calls of which 13 well-
supported candidates were tested; 10 were shared between two mice, and 3 were shared
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among MCNT-ES cell lines from the same mouse. Shared MEIs were identified as before
except that we selected pairs that had at least 6 overlapping cluster reads in at least one
other MCNT-ES cell line. These criteria identified only three shared MEI calls; two within
the B mouse, and one shared between two mice. No CNV calls made by read-depth analysis
were shared among multiple cell lines.

We attempted to validate putative shared mutation calls using the same methods described
above, except that we included all relevant MCNT-ES and control samples during PCR
validation and subsequent Sanger sequencing. We were able to successfully make primers
that yielded a product that could be sequenced for 10 of the shared SNV calls, all of which
showed that the putative mutation was also in the control sample, and thus a germline SNP.
[t is also worth noting that all of the 21 putative shared SNVs were low confidence SNV calls
that are known to have a low validation rate. Thus, our detection of zero high confidence
SNVs that are shared among multiple neurons from the same mouse is by itself strong
evidence that early-arising clonal mutations are extremely rare. For the 13 shared SV calls
and 3 shared MEI calls, all failed validation either because the mutation was discovered in
one or more of the control samples, or because we failed twice to successfully make usable
primers (Table S3). Overall, we identified no bona-fide shared mutations either among
MCNT-ES cell lines within a single mouse, or within different mice.

A1.21 Analysis of predicted functional consequences of somatic mutations

We first determined how many of the mutations have gene-coding effects. For SNVs and
Indels, we used SnpEff (Cingolani et al., 2012) version 3.1m and filter for effects in codons.
For SVs and MEIs we determined the coding effects using a combination of feature
intersection (bedtools intersect) with RefSeq exome, as well as visual inspection. We
identified five SNVs, one indel, and four SVs that disrupt exons in 11 different genes with
various levels of predicted severity. Four of the genes involved are highly expressed in MT
neurons as determined by our RNA-Seq data (Table 5.5). Many of the remaining tests focus
on our high confidence SNV calls, as they are the most numerous and have been identified
with high accuracy.

We compared our SNV base conversion profiles to those reported in other studies (Behjati
et al.,, 2014; Kong et al,, 2012; Welch et al., 2012; Young et al., 2012) by strand normalizing
the base conversion and counting the number of mutations in each of the 6 possible
categories (Figure 5.10a). As is common, we have more C—T conversions than any other
base conversions. We compared the 3-base context in which these occur to our germline
SNPs as a possible indicator of mutational process. The germline SNPs were determined for
each mouse separately by using the same criteria used to identify somatic SNVs except that
all MCNT-ES cell lines and the control sample from the same mouse were all used as sample
lines, and no parent or other lines were used. As almost all of the calls occur in all mice, the
final germline call set was determined by taking the union of the calls in each mouse. The
strand corrected 3-base contexts were identified using bedtools getfasta. We find that the
somatic SNVs in MT neurons are enriched in C—T conversions taking place in TpCpN
contexts, as compared to germline SNPs using Fisher’s Exact Test (P<0.0001) (Figure
5.10b).

We next sought to determine if our somatic SNV calls occur randomly throughout the
genome, or instead co-locate more or less frequently than chance in certain genomic
features. We restricted this study to autosomes to eliminate any issues with the fact that we
have both male and female mice in this study. We chose to use nine genomic features that
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were broadly diverse, of potential functional interest, and that were common enough to
have more than 5 somatic SNVs fall within them. The chosen features were 100mer-
uniquely-mappable regions, 100mer-unmappable regions, segmental duplications, elements
conserved across placental mammals, simple repeats, LINEs, RefSeq exons, RefSeq
transcripts, and RefSeq transcripts that are highly expressed in MT neurons. Almost all of
these feature tracks were either directly downloaded from the UCSC table browser
(/hgdownload.cse.ucsc.edu/goldenPath/mm9/database/) or readily derived from such a
download. See Table S9 for details.

We then calculated SNV enrichment relative to chance using two different strategies. First,
we separately ran a 10,000 trial Monte Carlo simulation for each genomic feature. The 395
autosomal high confidence SNVs were distributed randomly throughout the autosomes
using bedtools shuffle while excluding all reference genome assembly gaps and regions in
which the read-depth in any sample was less than 10 or greater than 250. These latter
regions were excluded from the simulations as they were also excluded by our SNV calling
strategy. From the simulations, we captured the mean and standard deviation of the
number of SNVs that fell in the feature, and the number of trials in which the number of
SNVs in the feature was greater than or less than the actual count of the number of somatic
SNV calls that fell in the feature. This latter provides an estimate of the p-value of an
enrichment or depletion of our SNVs vs. random chance. Second, we calculated the expected
value of the number of SNVs that should randomly fall in each feature based on the length of
the feature vs. the accessible genome. We then also derived a p-value for the likelihood that
our SNV count in the feature falls within the 95% confidence interval given the feature
length using the Poisson Test. The simulation means and the expected values based on
feature length are in very close agreement. All results are summarized in Table S9.

The mappable and unmappable regions were chosen as controls, as it is easier to correctly
align reads and make mutation calls within unique regions of the genome. As expected, our
SNV calls are significantly enriched in the mappable regions and depleted in unmappable
regions. Also, our SNV calls are significantly depleted in segmental duplications. We
estimate that at least half of this effect is due to the fact that only 38% of the segmental
duplicates track falls within mappable regions, and 7 of our 9 SNV calls fall within that 38%.
Similarly, our SNV calls are mildly depleted in simple repeats (not statistically significant).
Interestingly, our MT neuron SNVs are significantly enriched in elements conserved across
placental mammals where one might expect the opposite due to cellular selection pressure.
Similarly, our SNVs are enriched in the RefSeq exome, transcripts, and transcripts highly
expressed in MT neurons, but these enrichments do not quite reach statistical significance.
However, we find this suggestive, and note that our statistical power to make such
discriminations is limited by the relatively small number of SNVs found in this study.

Therefore, to further explore the enrichment of MT neuron SNVs in genes, we compared our
SNVs to those found in a recent study of clonal organoids formed from mouse prostate,
stomach, small intestine and bowel (Behjati et al., 2014). We find that the MT neuron SNVs
are enriched in genes (p=0.0039, Fisher’s Exact, Figure 5.10d) and genes highly expressed
in MT neurons (p=0.025, Fisher’s Exact, Figure 5.10f) when compared to those found in the
mouse organoid study. We further found that the SNVs from small intestine organoids are
depleted in genes highly expressed in Lgr5 positive small intestine stem cells relative to MT
neuron SNVs (p=7.06 x 104, Fisher’s Exact, Figure 5.10g).
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We assessed whether MT neuron derived SNVs were enriched in genes that could impact
neuronal function as defined by GO terms. We composed a list of gene names for the 164
autosomal high confidence MT neuron SNVs that fall in refSeq transcripts, and submitted it
to DAVID (Huang da et al., 2009a, b) (http://david.abcc.ncifcrf.gov/). We then specified the
Mus musculus background, de-selected all annotations except for the three default GO
annotation categories (GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT) and created
a Functional Annotation Chart that was then downloaded and inserted into Table $10. We
followed the same procedure for the 2250 mouse organoid SNVs and inserted the resulting
GO terms into Table S11. For the MT neuron SNVs, the top 6 GO terms, and 11 of 59 or 19%
of all GO terms are neuronal. In contrast, the 2,250 mouse organoid SNVs fall into genes in
which only 51 of 488 or 11% of all associated GO terms are neuronal, with the highest
ranking neuronal GO term 14t on the list (Figure 5.10e).

Finally, we examined whether our high confidence SNVs were occurring in clusters to
determine hotspots, or evidence for other mutational processes that might create multiple
SNVs at once such as kataegis or base excision repair. Clusters were identified using
bedtools closest (-N -d -t first). There is one cluster of two adjoining SNVs, one with 1bp
between them, and one with three SNVs separated by 49bp and 199bp. The next closest pair
of SNVs are more than 40Kbp apart. To assess whether these SNVs were likely created
simultaneously by a single process, we determined if the SNVs in each cluster appear on the
same parental chromosome, (i.e., haplotype). For the first two clusters, as well as the two
SNVs in the third cluster that are 49bp apart, we were able to establish that they occur on
the same parental chromosome by visual inspection of the reads containing them. In all
cases, a read that spanned the region of the two SNVs contained either both SNVs or neither,
indicating that they are indeed on the same parental chromosome.

A1.22 Haplotype Determination by Amplicon Cloning - Scripps

The two SNVs separated by 199bp were too far apart to use this technique. Therefore, we
designed PCR primers to generate a single amplicon containing all three mutations,
(forward primer: AGAAACAAATGCTTAGGGTTGGGTTC, reverse primer:
GACTGTGTTCTGGGAGTTCATCTACAAAC) and cloned the resulting PCR product into pCRT™-
Blunt II-TOPO® vector using the Zero Blunt® TOPO® PCR Cloning Kit. We performed Sanger
sequencing on 30 independent TOPO clones and found that 16 clones contained all three
mutations and 13 clones contained no mutations. A final clone contained two of three
mutations that likely resulted from a rare template-switching event which are observed
during PCR amplification (Odelberg et al., 1995).

A1.23 MT Neuron RNA-Seq Sample Preparation - Scripps

Mitral and tufted cells were dissociated from Pcdh21/Cre-Ai9 mice as for nuclear transfer
(see above) and flow sorted using the MoFlo® Astrios™ (Beckman Coulter). Ten minutes
prior to sorting, DAPI (1 uM) and DRAQ5 (BioStatus DR50050, 1 pM) were added to the cell
suspension. Dead cells and debris were first gated out using side and forward scatter.
Objects were identified as cells by positive staining for DRAQ5, and as live cells by the
absence of DAPI staining. From this population, MT neurons were identified by TdTomato
expression, and sorted directly into TRIzol® LS Reagent (Life Technologies). The following
lasers were used: DRAQ5 (642nm laser), DAPI (405nm laser), TdTomato (561nm laser).
Three biological replicates were collected on independent days using this method.

Prior to RNA extraction, all samples were adjusted to 1.75 mL TRIzol® LS and 1 ug of linear
acrylamide (Ambion AM9520) was added. RNA was extracted using Direct-zol™ RNA
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MiniPrep (Zymo Research) using their Zymo-Spin™ IC columns for low amounts of RNA. The
optional in-column DNase treatment was included. RNA was eluted in 10ul of water and
RNA quality was assessed using Agilent RNA 6000 Pico Kit. All RNA samples had RIN scores
>7.5.

Prior to sequencing, 10ng of RNA from each biological replicate was amplified using
SMARTer® Ultra™ Low Input RNA for [llumina® Sequencing - HV (Clontech Laboratories,
Inc.). Amplified cDNA was checked for quality using High Sensitivity DNA Kit (Agilent
Technologies) and acoustically sheared using the Covaris system. Sequencing libraries were
prepped from sheared cDNA using NEBNext® Ultra™ DNA Library Prep Kit for [llumina®
and sequenced on an [llumina HiSeq.

A1.24 RNA-Seq Analyses

We analyzed the RNA-Seq data using TopHat (Kim et al., 2013) v2.0.10 and Cufflinks
(Trapnell et al., 2010) v2.0.2 from the Tuxedo suite. We first created the genome and
annotation indexes by downloading the mm9 annotation data
(mm9/Mus_musculus_UCSC_mm9.tar.gz) from (ftp://igenome:G3nom3s4u@ussd-
ftp.illumina.com) and using gtf _to_fasta. Each of the three MT neuron samples were then
aligned separately using bowtie through the tophat interface (-r 160 -libarary-type fr-
unstranded -coverage-search -b2-sensitive). The BAM files for the reads from the three MT
neuron samples were then merged using samtools merge. We then assembled the reads and
determined expression levels for the combined MT neuron samples using cufflinks (--
library-type fr-unstranded --multi-read-correct -max-intron-length 500000). The resulting
“genes.fpkm_tracking” file was converted to bed format for further processing. Finally, we
considered those genes with greater than the median expression level of ~0.78 to be “highly
expressed”.

RNA-Seq datasets from 3 Lgr5+ small intestine stem cells with accession ids ERX421326,
ERX421327 and ERX421329 were downloaded from (http://www.ncbi.nlm.nih.gov/sra/)
in SRA format. From these files, fastq files of the RNA-Seq reads were extracted using fastq-
dump v2.1.18 (--gzip) from the SRA Toolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/).
The reads were processed as above, with a resulting median expression level of ~0.69.
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