

Developing	a	Reliable	and	Economical	Web	Portal	for	Meals	on	Wheels	
		

		
		

A	Technical	Report	submitted	to	the	Department	of	Computer	Science	
			

Presented	to	the	Faculty	of	the	School	of	Engineering	and	Applied	Science	
University	of	Virginia	•	Charlottesville,	Virginia	

		
In	Partial	Fulfillment	of	the	Requirements	for	the	Degree	

Bachelor	of	Science,	School	of	Engineering	
		
		

Maxwell	Patek	
Spring,	2020.	

		
		

Technical	Project	Team	Members	
Michael	Benos	
Alexander	Hicks	
Kyle	Leisure	
Kevin	Naddoni	
Joshua	Santana	

Nathanael	Strawser	
		

		

On	my	honor	as	a	University	Student,	I	have	neither	given	nor	received	unauthorized	aid	on	
this	assignment	as	defined	by	the	Honor	Guidelines	for	Thesis-Related	Assignments	

		
																	Dr.	Ahmed	Ibrahim,	Department	of	Computer	Science	

	
	
 	

2

Table	of	Contents	

Abstract	 3	

List	of	Figures	 4	

1.	Introduction	 4	
1.1	Problem	Statement	 4	
1.2	Contributions	 6	

2.	Related	Work	 6	

3.	System	Design	 7	
3.1	System	Requirements	 8	
3.2	Wireframes	 11	
3.3	Sample	Code	 12	
3.4	Sample	Tests	 18	
3.5	Code	Coverage	 20	
3.6	Installation	Instructions	 23	

4.	Results	 25	

5.	Conclusions	 27	

6.	Future	Work	 28	

7.	References	 29	
	
	

	

	

	

	

	

3

Abstract	

During	the	2019-2020	school	year,	our	capstone	team	developed	a	new	web	

application	to	replace	the	existing	portal	for	Meals	On	Wheels’	(MOW)	Charlottesville	

office.	Over	eight	months,	we	worked	collaboratively	with	each	other,	our	customer,	and	

our	professors/evaluators	to	iteratively	develop	an	application	that	allowed	Meals	On	

Wheels	to	plan,	track,	assign,	and	deliver	meals	to	its	clients	in	the	greater	Charlottesville	

area.	In	the	early	stages	of	our	project,	we	spent	several	meeting	sessions	with	MOW	staff	

to	gather	requirements	and	observe	the	existing	portal.	In	doing	so,	we	discovered	several	

organizational	flaws	and	inefficiencies	in	the	existing	portal,	prompting	a	complete	rebuild.		

We	iteratively	developed	a	new	web	portal	in	twelve	sprints,	each	lasting	two	

weeks.	Using	GitHub	projects,	we	transformed	our	customer	requirements	into	actionable	

issues	of	varying	story	point	values,	which	were	assigned	to	team	members	at	each	sprint	

planning	meeting.	Some	of	such	issues	were	broken	down	into	smaller	items	when	needed	

and	assigned	to	subsets	of	our	team.	Every	other	Friday,	we	met	with	MOW	staff	to	show	

our	progress	and	acquire	feedback	about	our	design	choices.	By	doing	so,	we	were	able	to	

develop	an	application	that	was	significantly	faster,	better	organized,	and	highly	intuitive.		

Our	web	application	is	highly	maintainable	and	built	with	modern	frameworks	and	

dependencies.	The	system	serves	both	staff	and	volunteers	in	the	day-to-day	details	of	job	

assignment,	meal	packing,	and	route	delivery.	Staff	are	enabled	to	assign	volunteers	to	

specific	jobs,	update	client	information,	and	generate	statistical	counts	and	billing	reports.	

Volunteers	can	view	their	assigned	jobs	and	delivery	routes	as	well	as	request	and	fill	

substitutions.	Our	web	application	allows	for	improved	workflow	for	MOW	coordinators	by	

enabling	them	to	better	plan	and	distribute	meals	to	a	large	number	of	clients.	In	creating	

4

this	portal,	we	are	contributing	to	mitigating	nutritional	scarcity	and	hunger	in	America’s	

population,	and	we	believe	that	our	application	will	robustly	serve	the	local	Charlottesville	

community	for	the	next	several	years.	

List	of	Figures	

	

Figure	1	 	Screenshot	of	“Manage	Jobs”	
page	

Page	8	

Figure	2	 Screenshot	of	“Manage	
Assignments”	page	

Page	8	

Figure	3	 Screenshot	of	“Monthly	
Billing”	report	

Page	27	

Figure	4	 High-fidelity	wireframe	 Page	11	

Figure	5	 Interactive	demo	presented	
to	the	customer	

Page	12	

	
	

1.	Introduction	

1.1	Problem	Statement	

Despite	America	being	one	of	the	richest	countries	in	the	world,	an	estimated	eight	

million	of	its	aging	citizens	face	the	threat	of	hunger	(World	Bank,	2019;	NCOA,	2015).	

Meals	on	Wheels	is	America’s	oldest	and	largest	organization	dedicated	to	mitigating	this	

issue	through	community	chapters	(MOWA,	2019).	The	non-profit’s	local	chapter	delivers	

meals	to	disabled	or	elderly	people	in	the	Charlottesville-Albemarle	area	who	cannot	cook	

or	buy	food	themselves.	With	the	help	of	volunteers,	the	organization	packs,	labels,	and	

5

distributes	meals	to	customers	via	various	delivery	routes.	In	addition,	volunteers	drive	a	

few	shuttle	routes	to	deliver	meals	to	locations	outside	of	the	Charlottesville-Albemarle	

area	(A.	Dudley,	personal	communication,	September	27,	2019).	

While	the	greater	U.S.	Meals	on	Wheels	organization	sells	professional	software	to	

help	staff	manage	the	complexity	of	their	tasks,	the	Charlottesville	office	cannot	afford	it	(A.	

Dudley,	personal	communication,	October	11,	2019).	Thus,	staff	managed	volunteers,	

customers,	and	routes	by	hand	until	approximately	three	years	ago,	when	a	University	of	

Virginia	computer	science	capstone	team	created	a	web	portal	for	them.	Adopting	that	web	

portal	gave	Meals	on	Wheels’	staff	more	time	to	focus	on	essential	management	by	

automating	physical	reports	and	tedious	manual	tasks,	which	include:	managing	delivery	

routes,	maintaining	current	and	prospective	customer	information,	and	ensuring	that	all	

daily	jobs	are	filled	by	at	least	one	volunteer,	can	get	rather	complex	due	to	a	combination	

of	daily,	weekly,	biweekly,	monthly,	and	one-time	volunteer	shifts	and	customer	needs	(S.	

Bayker,	personal	communication,	September	13,	2019).		

	 Unfortunately,	there	were	several	issues	with	the	existing	portal.	First,	staff	

complained	that	the	web	application	had	become	increasingly	slow	over	time.	After	

examining	the	existing	codebase,	we	believed	this	slowness	was	likely	due	to	its	cluttered,	

unclear	data	storage	and	the	use	of	a	cheap,	inefficient	hosting	solution.	Second,	staff	

identified	several	organizational	oddities	within	the	app	layout,	making	some	tasks	take	

longer	than	required,	sometimes	necessitating	twice	the	number	of	clicks	and	screens.	

Finally,	staff	requested	the	addition	of	new	features,	including	historical	report	generation	

and	general	search	functionality.	It	was	clear	that	the	system	needed	an	update;	however,	

6

the	technical	debt	accumulated	by	the	separate	capstone	teams	developing	features	over	a	

two-year	period	necessitated	a	rewrite	(Allman,	2012).	

	

1.2	Contributions	

In	the	end,	we	were	able	to	successfully	deliver	an	freshly-built,	improved	web	

application	to	increase	the	efficiency	and	effectiveness	of	meal	planning,	volunteer	delivery,	

and	job	filling.		

The	new	application	satisfies	Meals	on	Wheels’	needs	and	has	a	more	reasonable	

and	maintainable	backend	for	long-term	deployment,	including	state-of-the-art	modularity	

via	Docker,	normalized	database	models,	and	cost-effective	cloud	deployment	via	Amazon	

Web	Services	(Microsoft,	2017).	By	redesigning	and	modernizing	from	the	ground	up,	our	

project	enables	Meals	on	Wheels	to	operate	at	lower	costs	and	function	more	quickly;	the	

organization	should	have	more	time	and	money	to	help	customers	in	need.	The	new	web	

application	was	released	on	March	27th,	2020	and	includes	numerous	critical	features,	

such	as	client	management,	volunteer	assignment,	and	route	delivery.	

	

2.	Related	Work	

	 Meals	on	Wheels	of	Charlottesville	has	been	using	a	custom	software	solution	to	

assist	in	daily	operations	for	years.	The	national	chapter	of	Meals	on	Wheels	partners	with	

software	company	Accessible	Solutions,	Inc.	to	offer	licensing	options	of	a	software	called	

ServTracker;	although	this	software	would	fulfill	the	Charlottesville	chapter’s	needs,	this	

solution	is	not	affordable	given	the	Charlottesville	chapter’s	budget	(Accessible	Solutions,	

7

Inc.,	2018;	A.	Dudley,	personal	communication,	October	11,	2019).	For	this	reason,	a	prior	

capstone	team	was	recruited	to	provide	a	pro	bono	solution.	Over	time,	this	custom	

solution	became	ineffective	for	a	variety	of	reasons,	including	overall	slow	speed	of	some	

features,	unpredictable	system	crashes	and	some	features	becoming	obsolete	altogether.		

Our	task	involved	rewriting	the	custom	application	in	use,	prioritizing	usability	and	

stability	while	introducing	new	functionality	so	that	Meals	on	Wheels	of	Charlottesville	

could	be	more	productive.	Two	notable	features	we	added	that	did	not	exist	in	the	previous	

portal	include:	the	“Manage	Jobs”	page	(Fig.	1)	and	the	“Open	in	Google	Maps”	button.	

“Manage	Jobs”	allows	staff	to	view	who	is	working	on	a	particular	day	without	generating	

reports	and	“Open	in	Google	Maps”	allows	users	to	export	route	directions	directly	into	

Google	Maps	from	the	portal.		

	

Fig	1.	Screenshot	of	“Manage	Jobs”	page	

3.	System	Design	

At	a	high	level,	our	application	has	two	sets	of	users:	the	MOW	staff	and	volunteers.	

The	staff	has	the	ability	to	manage	jobs,	customers,	volunteers,	assignments,	routes,	

8

announcements,	and	substitutions.	They	can	also	view	historical	reports	for	billing	and	

jobs.	The	volunteers	have	the	ability	to	view	the	jobs	they	have	signed	up	for,	request	a	

substitute	for	their	assigned	jobs,	and	take	open	substitutions.		

	

Fig	2.	Screenshot	of	“Manage	Assignments”	page	

This	application	is	a	rewrite	of	a	previous	capstone	project.	For	this	reason,	we	

continued	to	use	the	GPL-3.0	license	so	that	we	could	utilize	the	previous	code.	We	decided	

to	develop	our	application	using	Django,	a	python	web	framework,	because	it	was	used	for	

the	previous	capstone	project	and	because	we	all	had	prior	experience	with	it.	

3.1	System	Requirements	

By	communicating	with	the	MOW	staff,	we	are	able	to	gather	system	requirements	

and	co-align	our	vision	with	their	needs.	Because	we	focused	on	consistent	customer	

collaboration,	we	were	able	to	make	healthy	design	decisions	early	on	that	improved	our	

development	speed		later	on.	Furthermore,	we	spent	less	time	rewriting	features	and	more	

time	robustly	building	out	the	rest	of	the	application	

	

9

Requirements	for	a	Minimum	Viable	Product	

● All	Users	
○ As	a	user,	I	should	be	able	to	create	my	own	account	(including	custom	

username),	so	I	can	log	in	and	see	personalized	information.	
○ As	a	user,	I	should	be	able	to	request	to	change	my	password	in	case	I	forget	

it.	
● Volunteers	

○ As	a	volunteer,	I	should	be	able	to	release	my	route	on	a	day,	so	someone	else	
can	substitute	for	that	job.	

○ As	a	volunteer,	I	should	be	able	to	pick	up	a	released	route	on	a	particular	
day,	so	no	routes	go	without	a	volunteer.	

○ As	a	volunteer,	I	should	be	able	to	pick	up	a	new	route	that	has	not	been	
assigned	to	any	volunteer,	so	I	can	plan	my	hours	in	advance.	

● Staff	
○ As	staff,	I	should	be	able	to	create	clients,	so	I	can	accommodate	a	growing	

client	base.	
○ As	staff,	I	should	be	able	to	generate	reports,	so	I	can	prepare	daily	

operations.	
○ As	staff,	I	should	be	able	to	manually	create	delivery	routes,	so	I	can	

customize	the	volunteer's	tasks.	
○ As	staff,	I	should	be	able	to	manually	delete	delivery	routes,	so	I	can	avoid	

cluttering	the	portal	with	unused	routes.	
○ As	staff,	I	should	be	able	to	assign	volunteers	to	recurring	routes,	so	I	can	

plan	delivery.	
○ As	staff,	I	should	be	able	to	substitute	one-time	volunteers	for	jobs,	so	I	can	

ensure	that	all	necessary	jobs	are	filled.	
○ As	staff,	I	should	be	able	to	release	volunteers	from	their	recurring	routes,	so	

I	can	assign	another	volunteer	to	the	recurring	route.	
○ As	staff,	I	should	be	able	to	one-time	release	volunteers	from	their	routes,	so	I	

can	allow	other	volunteers	to	substitute.	
○ As	staff,	I	should	be	able	to	print	reports	that	have	been	generated	by	any	

staff,	so	can	have	physical	report	copies.	
○ As	staff,	I	should	be	able	to	see	who	is	volunteering	on	a	particular	day,	so	I	

can	stay	organized	and	communicate	as	necessary.	

Desired	Requirements	

● All	Users	
○ As	a	user,	I	should	be	able	to	access	the	site	from	mobile	platforms,	so	I	can	

access	the	portal	from	my	cell	phone.	

10

○ As	a	user,	I	should	be	able	to	navigate	to	each	feature	within	5	clicks,	so	that	
it	is	not	too	complicated	to	use.	

○ As	a	user,	I	should	be	able	to	get	familiar	with	the	portal	quickly,	so	I	don't	
have	to	spend	a	lot	of	time	learning	how	to	navigate	it.	

○ As	a	user,	I	should	be	able	to	use	the	portal	without	it	being	slow	so	I	can	get	
things	done	efficiently.	

● Staff	
○ As	staff,	I	should	be	able	to	sort	volunteer	schedules	by	the	day	of	the	week,	

so	I	can	see	who	is	scheduled	for	which	routes	each	day.	
○ As	staff,	I	should	be	able	to	automatically	email	new	volunteers	through	the	

portal,	so	I	can	welcome	new	volunteers	to	the	portal.	
○ As	staff,	I	should	be	able	to	email	volunteers	scheduled	for	a	given	day,	so	I	

can	have	better	day-to-day	communication	with	the	volunteers.	
○ As	staff,	I	should	be	able	to	store	day-to-day	statistics	for	meals	for	3	months,	

so	I	can	analyze	substitutions	and	new	volunteer	counts.	
○ As	staff,	I	should	be	able	to	compile	yearly	reports,	so	I	can	submit	them	to	

the	Board.	
○ As	staff,	I	should	be	able	to	access	reports	for	at	least	a	year,	so	I	can	refer	

back	to	past	data	if	needed.	
○ As	admin-staff,	I	should	be	able	to	reset	passwords	for	staff	and	volunteer	

accounts,	so	I	can	manage	everyone's	accounts	if	needed	(lock-out,	security,	
...)	

○ As	staff,	I	should	be	able	to	remove	clients,	so	I	can	eliminate	confusion	in	
meal	planning	

○ As	staff,	I	should	be	able	to	update	client	data	so	I	can	accommodate	any	
changes	in	their	diet/address/...	

	
	

11

3.2	Wireframes	

	

Fig.	4:	High-fidelity	wireframe	

Wireframes	are	important	to	allow	the	customer	to	visualize	the	features	proposed	

by	the	development	team.	Our	team	developed	a	series	of	wireframes	to	accomplish	this,	

beginning	with	low-fidelity	sketches.	We	used	these	sketches	to	develop	higher	fidelity	

wireframes,	as	shown	in	Figure	4.	From	this,	we	created	an	interactive	prototype	demo,	as	

shown	in	Figure	5.	Since	our	project	involved	maintaining	the	styling	and	much	of	the	

functionality	of	the	legacy	system,	the	demo	focused	on	the	changes	that	we	were	thinking	

to	implement.	The	wireframes	created	before	the	interactive	demo	were	useful	for	the	

development	team	to	iterate	on	the	proposed	functionality,	while	the	interactive	demo	

itself	was	useful	in	conveying	design	decisions	to	the	customer.	

12

	

Fig.	5:	Interactive	demo	presented	to	the	customer	

3.3	Sample	Code	

In	this	section	are	three	sample	views,	three	sample	models,	and	three	sample	

templates	from	our	application.		

	

This	is	the	code	for	the	view	route	on	day	functionality	of	the	application.	We	have	a	more	
complex	view	for	viewing	and	managing	the	general	route,	but	this	view	is	designed	for	
the	volunteer	to	be	able	to	see	all	the	necessary	information	for	them	to	deliver	to	their	
route,	including	a	google	maps	render	of	the	route	as	well	as	instructions	broken	down	
by	location.		To	do	this,	this	view	gets	the	route	and	the	day.	If	the	day	is	in	a	bad	format,	
it	will	return	volunteers	to	a	404	because	there	is	nothing	else	for	them	to	see,	and	it	will	
return	staff	to	the	route	management	page.			
	
@login_required	
def	view_route_day(request,	route_number,	date):	
				"""	
				view	route	on	a	specific	date	
				"""	
				#	get	the	route	instance	
				route	=	get_object_or_404(Route,	number=route_number)	
				is_staff	=	request.user.is_staff	
				#	convert	the	url	to	a	datetime,	if	exception	redirect	based	on	auth	
				try:	
								date	=	datetime.datetime.strptime(date,	"%m-%d-%Y")	
				except	ValueError:	
								if	is_staff:	
												#	go	the	the	no	specific	day	view	if	staff	
												return	HttpResponseRedirect(reverse("routes:view_route",	args=[route.number]))	

13

								else:	
												#	just	404	for	the	volunteers	
												raise	Http404	
	
				navbar	=	"navbar_staff.html"	if	is_staff	else	"navbar_volunteer.html"	
				customers	=	get_customers(route,	date)	
	
				return	render(
								request,	
								"route-on-day.html",	
								{	
												"customers":	get_customers(route,	date),	
												"route_name":	route.name,	
												"route_num":	route_number,	
												"date_picker_date":	date.strftime("%Y-%m-%d"),	
												"navbar":	navbar,	
												"MOW_LAT":	MOW_LAT,	
												"MOW_LON":	MOW_LON,	
								},	
)	
	

This	view	is	the	take	substitution	view	that	allows	volunteers	to	fill	a	substitution	that	
has	been	opened	by	another	volunteer	or	staff	member.		This	view	posts	the	request	from	
the	volunteer,	making	sure	that	the	substitution	has	been	requested	before	assigning	the	
new	volunteer	to	the	job.			
	

14

@login_required	
def	take_substitution(request):	
				"""	
				This	function	assigns	a	volunteer	to	a	given	job.	
				"""	
				if	request.method	==	"POST":	
								try:	
												sub	=	get_object_or_404(Substitution,	pk=request.POST.get("pk"))	
								except:	
												log.error("Attempting	to	take	substitution	that	does	not	exist.")	
								if	sub.assignment.volunteer	==	request.user.volunteer:	
												#	might	as	well	say	it	is	not	via	substitutions	in	this	case	
												sub.delete()	
								else:	
												sub.volunteer	=	request.user.volunteer	
												sub.save()	
								return	HttpResponseRedirect(reverse("volunteers:open_jobs"))	
	
				else:	
								log.info(
												"Attempting	to	take	substitution	with	{}	method.	Only	POST	allowed.".format(
																request.method	
)	
)	
								return	HttpResponseRedirect(reverse("volunteers:my_jobs"))	

	

This	view	gathers	all	volunteers	and	renders	a	PDF	of	them	ordered	by	the	date	they	
joined	MOW.	The	to_pdf	method	takes	in	HTML	and	returns	a	FileResponse,	making	
report	generation	simple.	
	
@staff_member_required	
def	volunteer_join_date_report(request):	
				"""	
				Generates	a	pdf	list	of	volunteer	join	dates	
				"""	
	
				#	order	clients	by	join	date,	then	by	name	
				join_dates	=	Volunteer.objects.all().order_by("join_date",	"user")	
				template	=	get_template("pdfs/volunteer-join-date-report.html")	
	
				return	to_pdf(
								template.render({"join_dates":	join_dates,	"today":	datetime.datetime.now(),})	
)	

	

15

	

This	model	maintains	all	necessary	data	for	the	volunteers	of	MOW.	
	
class	Volunteer(models.Model):	
				"""	
				Model	for	meals	volunteers	
				"""	
	
				user	=	models.OneToOneField(User,	on_delete=models.CASCADE)	
				organization	=	models.CharField(max_length=100,	default="",	blank=True)	
				address	=	AddressField(null=True,	blank=True,	on_delete=models.PROTECT)	
				home_phone	=	models.CharField(max_length=50,	default="",	blank=True)		#	Home	Phone	
				cell_phone	=	models.CharField(max_length=50,	default="",	blank=True)	
				work_phone	=	models.CharField(max_length=50,	default="",	blank=True)	
				birth_date	=	models.DateField(null=True,	blank=True)	
				notes	=	models.TextField(default="",	blank=True)	
				join_date	=	models.DateField(default=date.today)	
				number_of_people	=	models.IntegerField(default=1)	
				dont_email	=	models.BooleanField(default=False)	
	
				def	__str__(self):	
								return	f"{self.user.first_name}	{self.user.last_name}"	
	
				class	Meta:	
								ordering	=	["user__last_name",	"user__first_name"]	
	

This	model	is	for	announcements	that	staff	members	post	to	the	application.	It	keeps	
track	of	which	user	made	it,	as	well	as	when	it	should	stop	being	displayed	in	addition	to	
the	actual	content.		
	
class	ManagerAnnouncement(models.Model):	
				created_by	=	models.ForeignKey(Volunteer,	on_delete=models.PROTECT,	null=True)	
				display_until	=	models.DateField(null=True,	blank=False)	
				date_created	=	models.DateField(
								default=date.today,	editable=False,	blank=False,	null=False	
)	
				announcement	=	models.TextField(default="",	blank=False)	
	
				def	__str__(self):	
								return	self.announcement	
	

This	model	maintains	historical	records	for	volunteer	data.	A	cron	job	that	runs	daily	

16

saves	instances	of	this	model	to	keep	track	of	the	volunteer,	date,	and	job	so	that	
historical	reports	can	be	generated.	
	
class	VolunteerRecord(models.Model):	
				"""	
				This	serves	to	record-keep	volunteers	and	what	jobs	they	actually	did	
				"""	
	
				volunteer	=	models.ForeignKey(
								Volunteer,	related_name="record",	on_delete=models.SET_NULL,	default=None,	null=True	
)	
				job	=	models.ForeignKey(Job,	on_delete=models.SET_NULL,	default=None,	null=True)	
				date	=	models.DateField(default=date.today)	
				original	=	models.ForeignKey(Volunteer,	on_delete=models.SET_NULL,	default=None,	null=True)	
				is_substitution	=	models.BooleanField()	
	
				class	Meta:	
								unique_together	=	["volunteer",	"job",	"date"]	
	

	

	

This	template	is	for	the	“My	Jobs”	page.	It	renders	all	the	jobs	for	a	given	month	based	on	
a	URL	parameter	and	lists	those	jobs,	along	with	a	link	to	their	detail	page	if	the	job	is	
also	a	route.	Buttons	at	the	top	allow	the	user	to	toggle	to	different	months.	
	

<div	class="container"	style="padding-bottom:	5%;">	
		<div	align="right">	
						{%	if	request.GET.month	%}	
								{%	if	request.GET.month	!=	"0"	%}	
										<button	
type="button"	class="btn	btn-default">Previous	month</button>	
								{%	endif	%}	
										<button	
type="button"	class="btn	btn-default">Next	month</button>	
								{%	else	%}	
						<button	type="button"	class="btn	btn-
default">Next	month</button>	
	
						{%	endif	%}	
				</div>	
				<center><h1>	My	Jobs	for	{{month}},	{{year}}</h1></center>	
	

17

				</br></br>	
								<table	class="table"	style="width:100%;	font-size:medium">	
						<tr>	
								<th>Job</th>	
								<th>Type</th>	
								<th>Date</th>	
								<th>	</th>	
						</tr>	
						{%	for	job,	date,	date_url,	is_sub,	is_route,	sub_or_assignment_pk	in	my_jobs	%}	
										<tr>	
												<td>	
												{%	if	is_route	%}	
														<a	href="{%	url	'routes:view_route_day'	route_number=job.job.route.number	
date=date_url%}">{{job.job}}	
												{%	else	%}	
														{{job.job}}	
												{%	endif	%}	
	
												{%	if	is_sub	%}	
														<td>Substitution</td>	
												{%	else	%}	
														<td>Recurring</td>	
	
												{%	endif	%}	
												<td>{{date}}</td>	
												<td><button	type="button"	class="btn	btn-default"	
onclick="post_substitute_request({{sub_or_assignment_pk}},	'{{date}}',	'{{is_sub}}');">Request	
Substitute</button></td>	
										</tr>	
						{%	empty	%}	
										<td>There	are	no	jobs	to	display.</td><td></td><td></td><td></td>	
						{%	endfor	%}	
				</table>	
</div>	
{%	endblock	%}	
	

This	is	the	template	rendered	to	create	an	announcement	which	simply	displays	a	form.	
	

<div	class="container"	style="padding-bottom:	5%;">	
				<h1>Create	an	Announcement</h1>	
				</br>	
	
				<form	method="post"	class="post-form">	
				{%	csrf_token	%}	
				{{form.media}}	

18

				<div	class="form-row">	
								<p>	
										{{	form.display_until|as_crispy_field	}}	
								</p>	
					
				<div	class="form-row">	
								<p>	
										{{	form.announcement|as_crispy_field	}}	
								</p>	
				</div>	
									
						<div	class	="form-row">	
										<button	type="submit"	class="btn	btn-primary">Create</button>	
						</div>	
		</form>	
</div>	
	
	

3.4	Sample	Tests	

Testing	is	necessary	to	ensure	that	all	written	code	functions	as	intended	and	to	

ensure	that	no	new	code	breaks	previous	functionality.	In	this	project,	we	use	Django’s	unit	

test	framework	to	accomplish	this	task.	Unit	tests	are	intended	to	isolate	a	specific	

subroutine.	By	doing	so,	it	becomes	clear	what	functionality	breaks	if	these	tests	begin	to	

fail.	

The	test	below	is	found	in	the	volunteer	section	of	our	application.	Volunteers	are	

assigned	jobs,	and	they	can	find	a	list	of	these	upcoming	jobs	in	the	portal.	This	test	creates	

a	new	job,	assigns	it	to	the	test	volunteer	as	a	recurring	assignment,	and	then	ensures	that	

the	response	returned	from	viewing	the	“My	Jobs”	page	contains	the	name	of	the	job	just	

created.	

def	test_displays_correct_job_name(self):	
								job_type	=	JobType.objects.create(name="test_type")	

19

								job	=	Job.objects.create(
												name="TEST	NAME	OF	JOB",	num_vols_required=1,	job_type=job_type	
)	
								job.save()	
								recurring	=	Assignment(
												volunteer=self.test_volunteer.volunteer,	
												job_id=job.pk,	
								day_of_week=date_to_day_of_month(datetime.date.today()).day_of_week,	
												week_of_month=date_to_day_of_month(datetime.date.today()).week_of_month,	
)	
								recurring.save()	
								response	=	self.client.get("/volunteer/my_jobs/")	
								self.assertContains(response,	"TEST	NAME	OF	JOB")	
	

	

On	the	“My	Jobs”	page	for	volunteers	to	view,	both	routes	and	packer	jobs	are	listed.	

The	application	should	recognize	which	jobs	are	routes	and	display	links	to	their	

corresponding	pages.	This	test	verifies	that	functionality.		

def	test_route_link_shown(self):	
								"""	
								This	test	ensures	the	correct	route	link	is	shown	on	the	my_jobs	page.	
								"""	
								job_type	=	JobType.objects.create(name="test_type")	
								job	=	Route.objects.create(name="Test	Route",	number=1,	job_type=job_type)	
								job.save()	
								recurring	=	Assignment(
												volunteer=self.test_volunteer.volunteer,	
												job_id=job.pk,	
												day_of_week=date_to_day_of_month(datetime.date.today()).day_of_week,	
												week_of_month=date_to_day_of_month(datetime.date.today()).week_of_month,	
)	
								recurring.save()	
								response	=	self.client.get("/volunteer/my_jobs/")	
								self.assertContains(response,	f"/routes/{job.number}/")	

	

20

The	following	test	ensures	that	attempting	to	manage	a	job	for	an	invalid	date	will	redirect	

to	the	current	day’s	manage	jobs	page.	

@freeze_time("2020-03-13")	
def	test_manage_open_job_date_not_valid(self):	
								"""	
								make	sure	it	handles	the	case	with	a	bad	date	
								"""	
								day	=	datetime.date.today()	
								week_of_month	=	(day.day	-	1)	//	7	+	1	
								#	need	this	stuff	to	create	a	substitution	
								job_type	=	JobType.objects.get_or_create(name="test_type")[0]	
								job	=	Job.objects.get_or_create(
												name="new-job",	num_vols_required=1,	job_type=job_type)[0]	
								assignment	=	Assignment.objects.get_or_create(
												volunteer=None,	job=job,	day_of_week=day.isoweekday(),	
week_of_month=week_of_month,)[0]	
								response	=	self.client.get(
												"/staff/manage-open-job/{}/{}/".format(assignment.id,	"02-30-2019"))	#	date	does	not	
exist	
								self.assertRedirects(
												response,	"/staff/manage-jobs/{}/".format(day.strftime("%m-%d-%Y")))	
	
	

	

3.5	Code	Coverage	

We	use	coverage.py	in	our	application,	which	can	be	installed	via:	“pip	install	

coverage.”	Since	our	project	is	dockerized,	adding	“coverage”	to	our	requirements.txt	file	

was	sufficient;	all	requirements	are	installed	at	start-up.	We	created	a	Makefile	target	that	

starts	the	application,	runs	the	code	coverage	tool,	and	outputs	this	information.	The	result	

can	be	found	below.		

	

Coverage	report:	93%	

21

	
Module	 statements	 missing	excluded	 coverage	
Total	 5040	 367	 0	 93%	
accounts/__init__.py	 0	 0	 0	 100%	
accounts/admin.py	 0	 0	 0	 100%	
accounts/forms.py	 50	 5	 0	 90%	
accounts/migrations/__init__.py	 0	 0	 0	 100%	
accounts/tests.py	 73	 0	 0	 100%	
accounts/urls.py	 4	 0	 0	 100%	
accounts/views.py	 55	 23	 0	 58%	
config/config.py	7	 0	 0	 100%	
interfaces/__init__.py	 0	 0	 0	 100%	
interfaces/address_lookup.py	 20	 1	 0	 95%	
interfaces/recurrence.py	93	 1	 0	 99%	
interfaces/tests/__init__.py	 0	 0	 0	 100%	
interfaces/tests/test_recurrence.py	 112	 2	 0	 98%	
legacy/__init__.py	 0	 0	 0	 100%	
legacy/admin.py	7	 0	 0	 100%	
legacy/management/commands/importlegacy.py	62	 15	 0	 76%	
legacy/migrations/0001_initial.py	 7	 0	 0	 100%	
legacy/migrations/__init__.py	 0	 0	 0	 100%	
legacy/models.py	 408	 40	 0	 90%	
legacy/tests.py	 264	 0	 0	 100%	
manage.py	 9	 2	 0	 78%	
meals/__init__.py	0	 0	 0	 100%	
meals/constants.py	 17	 0	 0	 100%	
meals/settings.py	 42	 1	 0	 98%	
meals/urls.py	 8	 0	 0	 100%	
models/__init__.py	 0	 0	 0	 100%	
models/admin.py	 7	 0	 0	 100%	
models/migrations/0001_initial.py	 10	 0	 0	 100%	
models/migrations/0002_auto_20200128_1619.py	 4	 0	 0	 100%	
models/migrations/0003_auto_20200128_1636.py	 4	 0	 0	 100%	
models/migrations/0004_remove_customer_route_order.py	 4	 0	 0	 100%	
models/migrations/0005_auto_20200206_1756.py	 5	 0	 0	 100%	
models/migrations/0005_customer_historical_route.py	 4	 0	 0	 100%	
models/migrations/0006_auto_20200207_2047.py	 4	 0	 0	 100%	
models/migrations/0006_volunteer_dont_email.py	 4	 0	 0	 100%	
models/migrations/0007_auto_20200209_1730.py	 4	 0	 0	 100%	
models/migrations/0008_merge_20200212_1354.py	 4	 0	 0	 100%	
models/migrations/0009_auto_20200225_2248.py	 4	 0	 0	 100%	
models/migrations/0009_auto_20200226_1738.py	 4	 0	 0	 100%	
models/migrations/0010_auto_20200225_2304.py	 4	 0	 0	 100%	
models/migrations/0010_volunteerrecord.py	 6	 0	 0	 100%	
models/migrations/0011_auto_20200226_1000.py	 4	 0	 0	 100%	
models/migrations/0011_auto_20200301_0007.py	 4	 0	 0	 100%	
models/migrations/0012_auto_20200301_0116.py	 5	 0	 0	 100%	
models/migrations/0013_remove_volunteerrecord_is_substitution.py	 4	 0	 0	 100%	
models/migrations/0014_auto_20200304_0944.py	 5	 0	 0	 100%	
models/migrations/0015_auto_20200304_0947.py	 5	 0	 0	 100%	
models/migrations/0016_volunteerrecord_is_substitution.py	 4	 0	 0	 100%	
models/migrations/0017_auto_20200305_1620.py	 4	 0	 0	 100%	
models/migrations/0018_auto_20200316_2125.py	 4	 0	 0	 100%	
models/migrations/0018_merge_20200315_1707.py	 4	 0	 0	 100%	

22

models/migrations/0019_auto_20200316_2302.py	 4	 0	 0	 100%	
models/migrations/0020_merge_20200317_0900.py	 4	 0	 0	 100%	
models/migrations/__init__.py	 0	 0	 0	 100%	
models/models.py	 293	 14	 0	 95%	
models/tests.py	238	 0	 0	 100%	
pdfs/__init__.py	 0	 0	 0	 100%	
pdfs/admin.py	 1	 0	 0	 100%	
pdfs/cron.py	 72	 2	 0	 97%	
pdfs/migrations/__init__.py	 0	 0	 0	 100%	
pdfs/templatetags/route_extras.py	 26	 4	 0	 85%	
pdfs/tests/__init__.py	 0	 0	 0	 100%	
pdfs/tests/test_cron.py	 174	 5	 0	 97%	
pdfs/tests/test_views.py	233	 0	 0	 100%	
pdfs/urls.py	 4	 0	 0	 100%	
pdfs/views.py	 142	 7	 0	 95%	
routes/__init__.py	 0	 0	 0	 100%	
routes/admin.py	 1	 0	 0	 100%	
routes/forms.py	27	 0	 0	 100%	
routes/migrations/__init__.py	 0	 0	 0	 100%	
routes/models.py	 1	 0	 0	 100%	
routes/tests.py	 286	 0	 0	 100%	
routes/urls.py	 4	 0	 0	 100%	
routes/utility.py	15	 0	 0	 100%	
routes/views.py	93	 3	 0	 97%	
staff/__init__.py	 0	 0	 0	 100%	
staff/admin.py	 1	 0	 0	 100%	
staff/all_views.py	 15	 0	 0	 100%	
staff/forms.py	 206	 18	 0	 91%	
staff/migrations/__init__.py	 0	 0	 0	 100%	
staff/tests/__init__.py	 0	 0	 0	 100%	
staff/tests/test_announcements.py	 0	 0	 0	 100%	
staff/tests/test_assignment_management.py	 306	 0	 0	 100%	
staff/tests/test_autocompleter.py	36	 0	 0	 100%	
staff/tests/test_customer_management.py	 56	 0	 0	 100%	
staff/tests/test_email.py	17	 0	 0	 100%	
staff/tests/test_index.py	49	 0	 0	 100%	
staff/tests/test_job_management.py	 109	 0	 0	 100%	
staff/tests/test_othermodels_deletions.py	0	 0	 0	 100%	
staff/tests/test_reports.py	 24	 0	 0	 100%	
staff/tests/test_substitution_management.py	 223	 2	 0	 99%	
staff/tests/test_volunteer_management.py	 0	 0	 0	 100%	
staff/urls.py	 20	 0	 0	 100%	
staff/views/announcements.py	 22	 12	 0	 45%	
staff/views/assignment_management.py	 127	 0	 0	 100%	
staff/views/autocompleter.py	 33	 17	 0	 48%	
staff/views/customer_management.py	 67	 25	 0	 63%	
staff/views/email.py	 10	 0	 0	 100%	
staff/views/index.py	 24	 0	 0	 100%	
staff/views/job_management.py	 202	 42	 0	 79%	
staff/views/othermodels_deletions.py	 26	 12	 0	 54%	
staff/views/reports.py	 70	 53	 0	 24%	
staff/views/substitution_management.py	82	 0	 0	 100%	
staff/views/volunteer_management.py	 65	 45	 0	 31%	
volunteers/__init__.py	 0	 0	 0	 100%	

23

volunteers/admin.py	 1	 0	 0	 100%	
volunteers/migrations/__init__.py	0	 0	 0	 100%	
volunteers/models.py	 1	 0	 0	 100%	
volunteers/tests.py	 182	 0	 0	 100%	
volunteers/urls.py	 5	 0	 0	 100%	
volunteers/views.py	 90	 16	 0	 82%	
No	items	found	using	the	specified	filter.	
	
coverage.py	v5.0.4,	created	at	2020-03-29	23:52	
	

	

3.6	Installation	Instructions	

The	installation	instructions	for	the	Meals	on	Wheels	management	system	are	below	

and	are	broken	down	into	three	parts:	provision	an	AWS	instance,	install	Docker,	Docker	

Compose,	and	Make,	install	the	application.	

	

Provision	an	AWS	instance	

First,	register	or	login	to	an	account	on	AWS	and	log	in	to	the	EC2	console	in	order	

to	provision	an	instance.	We	recommend	using	"Ubuntu	Server	18.04	LTS	(HVM),	SSD	

Volume	Type"	as	the	AMI.	Next	we	recommend	using	at	least	a	T2-small	instance	with	

protection	for	accidental	termination	(termination	protection	located	on	next	page).	We	

also	recommend	for	storage	a	General	Purpose	SSD	of	20	GB.	There	are	no	tags	that	need	to	

be	added,	but	in	the	configure	security	group	page,	add	the	default	rules	for	HTTP	and	

HTTPS	from	the	Add	Rule	button	in	addition	for	the	default	rule	for	SSH.	(If	testing	in	a	

non-production	environment,	also	allow	port	8000).	When	prompted,	create	a	new	key	

pair	and	save	the	key	somewhere	safe	and	accessible.	

	

24

Install	Docker,	Docker	Compose,	and	Make	

First,	connect	to	your	instance	by	right	clicking	on	it	in	the	dashboard	and	selecting	

Connect.	Once	connected,	run	the	following	commands	

curl	-fsSL	https://get.docker.com	-o	get-docker.sh	
sudo	sh	get-docker.sh	
sudo	usermod	-aG	docker	$USER	
sudo	curl	-L	https://github.com/docker/compose/releases/download/1.25.4/docker-compose-`uname	-
s`-`uname	-m`	-o	/usr/local/bin/docker-compose	
sudo	chmod	+x	/usr/local/bin/docker-compose	
sudo	apt	update	
sudo	apt	install	make	
sudo	reboot	
	

Now	we	let	the	app	reboot	before	right	clicking	and	connecting	again.	

	

Install	the	Application	

To	download	the	code	and	run	the	application	run	the	following	commands.	

curl	-fsSL	http://cs.virginia.edu/~awh4kc/githubkey.gpg	-o	~/.ssh/githubkey.gpg	
cd	~/.ssh	
gpg	githubkey.gpg	

Use	password:	M#gh7fRH06nD	
eval	"$(ssh-agent	-s)"	
chmod	600	~/.ssh/githubkey	
ssh-add	~/.ssh/githubkey	
cd	~	
git	clone	git@github.com:uva-cp-1920/Meals-on-Wheels.git	

type	yes	when	prompted	
cd	~/Meals-on-Wheels/src	
make	env=prod	deploy	

Now	you	can	verify	the	app	is	running	by	going	to	portal.cvillemeals.org	in	a	browser.	

	

25

4.	Results	

After	spending	nearly	seven	months	iteratively	developing	the	portal,	we	

successfully	deployed	the	application	to	production.	The	application	meets	all	of	the	

requirements	mentioned	in	Section	3.1,	thus	solving	our	customer’s	issues.	There	are	two	

main	stakeholders	that	use	the	system,	staff	members	and	volunteers;	the	portal	is	

designed	to	designate	appropriate	privileges	and	responsibilities	to	each	account	holder	

based	upon	stakeholder	status.	

	 Our	customer,	MOW	administration,	is	in	charge	of	the	staff	side	responsibilities	of	

the	portal.	To	use	the	portal,	staff	log	in	and	are	redirected	to	the	“Announcements”	landing	

page,	where	they	can	quickly	see	any	open	substitution	requests.	As	staff,	they	have	access	

to	all	of	the	management	aspects	of	meal	delivery;	therefore,	in	the	menu	ribbon	at	the	top	

of	the	page,	they	can	manage	jobs,	customers,	volunteers,	assignments,	and	substitutions.	

The	customer	and	volunteer	management	pages	allow	staff	members	to	edit	user	

information,	including	their	meal	recurrences	and	delivery	availability.	The	“Manage	Jobs”	

page	provides	staff	an	interface	to	view	all	of	the	daily	jobs	and	assigned	volunteers,	

including	the	ability	to	adjust	the	routes	directly,	generate	the	route	delivery	sheets	for	

drivers,	and	open/fill	substitution	requests.	The	assignment	and	substitution	management	

pages	enable	staff	to	view,	edit,	and	create	such	data.	Finally,	staff	can	generate	a	variety	of	

reports	to	count	and	summarize	meal	delivery,	jobs,	and	substitutions	over	a	specific	time	

range	via	the	reports	dropdown.	

	 MOW	carries	out	its	mission	with	a	number	of	volunteers,	the	other	type	of	primary	

stakeholder	in	the	system.	The	portal	interface	for	volunteers	is	simpler	because	volunteers	

only	need	minimal	information	about	their	specific	role	in	meal	delivery.	On	the	volunteer-

26

side,	users	can	see	a	list	of	their	monthly	upcoming	jobs,	along	with	a	map	of	how	to	deliver	

meals	for	each	route.	Furthermore,	the	menu	ribbon	allows	volunteers	to	view	open	

substitution	requests	and	fill	them	if	they	want	to	volunteer	for	an	extra	job.	Finally,	the	

last	ribbon	option	is	for	volunteers	to	view	their	own	profile	information.	By	having	a	

simple	interface	for	volunteers,	we	have	designed	an	intuitive	system	allowing	them	to	

focus	exclusively	on	their	meal	delivery	job.	

	 Comparing	our	new	system	to	the	old	portal	reveals	a	number	of	concrete	

improvements	to	speed	and	ease	of	use.	While	many	of	our	optimizations	consisted	of	

backend	organization	or	improvements	to	UI,	they	are	most	clearly	reflected	in	the	reports.	

The	MOW	staff	rely	on	the	reports	to	provide	drivers	with	accurate	information	for	their	

routes,	for	billing	purposes,	and	for	a	variety	of	other	mission	critical	tasks.	By	

consolidating/restructuring	the	existing	Django	models,	we	were	able	to	cut	the	number	of	

reports	needed	to	encapsulate	the	same	data	from	16	on	the	old	site	to	7	on	ours.	For	

example,	the	job	overview	report	now	generates	the	data	from	what	used	to	be	three	

separate	reports	into	one	larger	one.	Reducing	the	number	of	required	reports	allows	the	

MOW	staff	to	more	efficiently	collect	the	information	they	need	to	operate	on	a	day	to	day	

basis.		

Perhaps	the	most	significant	improvement	to	the	reports	is	the	speed	in	which	they	

are	generated.	One	of	MOW	staff’s	biggest	complaints	about	the	existing	portal	was	how	

long	it	took	for	it	to	create	and	display	the	printable	pdf	reports.	If	the	aforementioned	job	

overview	report	generated	at	all	without	a	timeout	error,	it	would	take	on	the	order	of	

minutes.	It	now	takes	approximately	10	seconds	to	generate	data	for	an	entire	month	

because	of	how	we	cleaned	up	the	data	storage	and	management	on	the	backend.	Other	

27

reports,	like	the	billing	report	(Fig.	3),	used	to	take	about	10	seconds	to	load;	they	are	now	

more	or	less	instantaneous.	Finally,	there	were	some	reports,	such	as	the	Daily	Count	sheet,	

that	simply	yielded	incorrect	data.	In	this	particular	case,	the	report	would	always	show	a	

count	of	0	for	meals	for	a	day;	this	issue	has	been	solved	in	our	system.	

	

Fig	3.	Screenshot	of	“Monthly	Billing”	report	

5.	Conclusions	

As	we	have	developed	together	over	the	course	of	the	year,	our	team	feels	as	though	

we	have	learned	a	lot	in	both	the	technical	aspect	and	team	portion	of	the	capstone	project.	

By	working	on	a	project	that	directly	impacted	real-world	customers,	we	felt	motivated	and	

obligated	to	provide	the	best	product	to	improve	the	lives	of	so	many	people.	At	the	

beginning	of	this	project,	we	underestimated	the	complexity	and	depth	that	would	be	

required	in	designing	an	application	of	this	type	from	scratch.	However,	as	we	learned	and	

communicated	more	with	our	customer,	we	realized	the	initial	shortcomings	in	previous	

iterations	of	this	app.	Once	we	understood	that	these	shortcomings	were	the	real	problems	

28

with	the	portal,	we	strove	to	design,	code,	and	test	extensively	to	ensure	that	every	feature	

was	intuitive,	tested,	and	efficient.	

In	summary,	we	have	proudly	built	an	application	that	serves	the	local	

Charlottesville	community.	In	doing	so,	we	have	become	better	developers,	communicators,	

team	members,	and	are	eager	to	apply	and	improve	our	skills	to	serve	society	further	in	the	

future.	

	

6.	Future	Work	

	 The	web	application	will	likely	require	maintenance	in	the	future	as	packages	

become	outdated	and/or	Meal	on	Wheels’	needs	change.	Changes	in	these	needs	are	

difficult	to	predict;	though,	they	may	entail	improving	the	application’s	design	to	allow	for	

better	scaling	or	adjusting	the	time	the	application	retains	data.	Aside	from	maintenance,	

further	work	could	include	acquiring	volunteer	input	about	their	side	of	the	web	

application.	This	side	of	the	application	has	limited	functionality	and	use,	but	substantial	

feedback	about	its	user	interface	could	be	valuable	as	we	will	likely	not	have	easy	access	to	

it	due	to	Meals	on	Wheels’	temporary	COVID-19	closure	around	our	deployment	date.		

 	

29

7.	References	

Accessible	Solutions,	Inc.	(2018,	June,	13).	Accessible	Solutions,	Inc.	Announces	Meals	
On	Wheels	America®	Partnership.	https://accessiblesolutions.com/news/news-
2/accessible-solutions-inc-announces-meals-on-wheels-america-partnership	
	
Allman,	E.	(2012).	Managing	technical	debt.	Communications	of	the	ACM,	55(5),	50.	
https://doi.org/10.1145/2160718.2160733	
	
Meal	Provider	Software	-	ServTracker:	Meals	on	Wheels:	Senior	Nutrition.	(n.d.).	
Retrieved	from	https://accessiblesolutions.com/meal-delivery-software	
	
Microsoft	(2017).	Description	of	the	database	normalization	basics.	
https://support.microsoft.com/en-us/help/283878/description-of-the-database-
normalization-basics.	
	

MOWA.	(2019).	Meals	on	Wheels	America.	National	Office.		
https://www.mealsonwheelsamerica.org/learn-more/national	
	

NCOA.	(2015,	June	4).	National	Council	On	Aging.	Facts	About	Senior	Hunger.		
https://www.ncoa.org/news/resources-for-reporters/get-the-facts/senior-hunger-

facts/	
	

World	Bank	(2019).	GDP	per	capita.	https://data.worldbank.org/indicator/ny.gdp.pcap.cd	

