Sous, an Ingredient Substitution and Task Scheduling Tool

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia ¢ Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

William Tonks

Spring, 2020.

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Nathan Brunelle, Department of Computer Science

David Evans, Department of Computer Science

April, 2021, Charlottesville, VA USA

Tonks

Sous, an Ingredient Substitution and Task Scheduling Tool

A Proposal for a new Technical Tool for Home Chefs

William Tonks
University of Virginia

wrtbaf@virginia.edu

ABSTRACT

Even after finding the right recipe, new home cooks face
several major hurdles when it comes to undertaking more
complicated or time-intensive meals. Having to make
recipe alterations due to missing ingredients can be
daunting, especially for chefs experimenting with new
flavors or techniques. Secondly, time management within
the kitchen is an issue on multiple fronts, whether in having
to make rapid decisions about what to do next when
preparing multiple dishes at once or having to structure a
day around a longer task such as barbecuing. This project
proposal details a new web tool to be built in Django called
Sous which seeks to address these two issues by providing
both automatic adjustment to recipes for missing
ingredients with common substitutes and scaling ingredient
quantities and by providing a task scheduler that structures
a cook's time in the kitchen. The initial recipes listed on the
site will be populated by scraped recipes off of the website
Epicurious using a pre-built web scraping tool, and the
initial substitutions listed will be pulled from an open-use
spreadsheet of common substitutions put together by
amateur enthusiasts on Allrecipes. This report introduces
the current state of the art in cooking technology solutions,
details how Sous would meet currently unmet user needs,
system design for the tool, inherent challenges in
implementation for the tool, design decisions made in
developing a prototype implementation of the substitution
and scaling service, and opportunities for future work.

INTRODUCTION

When a home chef decides to start making a meal, they
have a lot of factors they need to consider both before and
while they are cooking. They have to first decide on a
recipe that meets their dietary and family needs, determine
if they have the ingredients necessary to make it, figure out
what order to prepare different main and side dishes, and
then get everything on the table at the appropriate
temperature and at the right time for a meal. All of these
factors combined can make the prospect of preparing

dinner a daunting task even for a relatively seasoned home
cook. Some cooks might try to solve this problem by
planning out a week's meal in advance or making more
frequent visits to the grocery store, but these solutions
require additional time out of the user's day. Americans are
eating more at home than ever according to a survey
conducted by ReportLinker; this change is driven by the
rising costs of dining out and a desire to eat healthy [5].
However, home cooks describe the cooking process as
frequently too time intensive, with 77 percent of cooks
wanting to spend less than an hour preparing a meal.
Because of this desire to minimize time spent planning for
meals and the hassle of finding recipes with ingredients on
hand, cooks can find themselves reticent to explore and
experiment with new recipes. Sous seeks to address these
issues and make experimentation in the kitchen more
accessible to less experienced cooks. The key issues Sous
will address are providing support to cooks who need to
alter parts of a recipe because of allergens or missing
ingredients, provide easy recipe scaling to alter portion
number, and aid in time management to help cooks
maximize results while minimizing time spent in the
kitchen.

BACKGROUND AND RELATED WORK

1 Existing Commercial Solutions

Addressing the needs of home chefs through technology
solutions is certainly not a new concept. There are already
robust online forums and publications dedicated to
providing access to hundreds of thousands of recipes such
as Allrecipes and Epicurious. In conjunction with these
sites are numerous blogs, Youtube channels, and standalone
sites that provide cooking instructional content about
techniques and cuisines. However, the majority of these
sites are lacking in the support they provide to chefs in
addressing ingredient substitution and time management.
Yummly, an American mobile app and website, provides
recipe recommendations based on either learned user
personal preferences (such as allergies, diets, and

mailto:email@email.com

April, 2021, Charlottesville, VA USA

experience level) or listed current pantry ingredients
coupled with in-built food delivery service. Another similar
tool is called SuperCook, which sorts its recipe search over
a scraped recipe database by prioritizing recipes that utilize
ingredients in the users pantry. Both of these tools allow for
users to find recipes that utilize ingredients they already
have, but neither enable users to adapt a desired recipe with
available ingredients. One iPhone app, called Substitutions,
provides users with a list of common substitutions;
however, the list is not searchable and does not dynamically
apply to recipes, which means users have to manually find
ingredients. Solutions that exist for cooking scheduling
problems are mostly just modified mobile timer apps that
allow for users to set several timers at once, but none
attempt to intelligently pipeline tasks to save time.
2 Techniques for Ingredient Substitution

Most commercial cooking apps perform very
limited adjustment or analysis of recipes beyond keyword
recognition for search because moving beyond this level
requires either detailed annotations about a specific recipe
or ingredient (which is typically infeasible considering
these sites draw their information from user generated
content) or requires advanced natural language processing
techniques to produce this robust and structured data.
While building out their recipe recommendation algorithm
based on building relational networks of ingredients and
substitutions, Teng et. al [7] found the problem of
accurately identifying frequently used ingredients to be a
challenging problem because of variation between
ingredient lines and descriptions. They note that their
approach of using regular expressions to remove weight
quantifiers and filler text had limitations with highly
specific ingredients, misspelled ingredients, or included
Brand names (such as the difference between “Bush’s
Baked Beans” and “baked beans”) [7]. Pesce [1] also
originally attempted a regular expression based approach
when attempting to identify recipes in news stories and
quickly identified similar issues: either the written text
needed to be stringently formatted to be parsable by string
formatting or regular expressions or they needed to utilize
natural language processing. Using Python’s NLTK and an
entropy classifier for training a model, Pesce noted better
success in identifying full text recipes but that moving
beyond simple classification into interpretation required a
very advanced understanding of the surrounding grammar
for ingredients. For instance, “fry” could be either a
direction or an ingredient dependent on the surrounding
grammar.

Tonks

Ingredient substitution is an archetypical problem
for researchers attempting to further contextual language
analysis, as ingredients have many uses and their properties
within a particular recipe are context dependent.
Substitution of one ingredient for another may be usually
appropriate, but there may be recipes where that
substitution is unacceptable. For instance, honey is
commonly used as a substitute for white sugar, however, if
a chef is told to cream together butter and sugar for a
custard recipe, they will be sorely disappointed if they
attempt using honey[3]. Identifying the most accurate
substitution for a given recipe requires robust
understanding of the properties of an ingredient and which
of these properties are most important for a given recipe.
Gaillard et. al [4] improved substitution accuracy by
utilizing a technique called formal concept analysis where
formal concepts are represented by pairs of / (a set of
properties) and E (a set of objects that share those
properties). These concepts can be structured into a concept
lattice, which provides a hierarchy of properties and allows
for identifying similar ingredients based on their use across
recipes to develop explicit substitution rules. This strategy
makes intuitive sense, for instance both lemon juice and
vinegar are utilized as acidic and emulsifying components
in recipes and structuring ingredients into a concept lattice
would show the importance of these shared properties.
Shirai et al. [3] criticize Gaillard’s approach as non-scalable
as their concept lattice requires detailed notes about the
relative properties about ingredients and recommends a
Knowledge-Graph based approach with a substitutability
heuristic (DIISH) driven by semantic information about
frequency in similar recipes and co-occurrence of other
ingredients across recipes containing target ingredients.
This graph structured model outperformed explicit rule
based substitution such as the TAABLE method used by
Gaillard et. al [3] [4]. Another group that attempted to solve
this substitution problem was Pan et. al which utilized
Python’s word2vec, which is a Skip-gram model for NLP,
in order to guess the surrounding context (recipe) for a
central ingredient [2]. Their experiment demonstrated how
easy it is for a processing algorithm to misidentify good
ingredient substitutes if incorrect criteria is chosen as a
heuristic. Their intuition was to assign substitutes based on
ingredients appearing frequently together in recipes.
However, this approach led to ingredients that are
frequently used together (such as olive oil and garlic or
carrots and squid) being considered as good substitutes,
which is clearly incorrect in terms of their properties as
ingredients.

Sous, an Ingredient and Task Scheduling Tool

3 Scaling Ingredient Quantities

Substitutions also have an issue in identifying the
amount of a substituted ingredient to replace the original.
While there are some substitutions with commonly
understood ratios, there are issues wherever substitutes
have different flavor and textural properties from the
original ingredient. Gaillard et al. attempted to solve this
problem by creating a series of heuristics for a recipe (such
as weight, flavor balance, volume, alcohol content),
calculating the values for these across the original recipe,
and then attempting to conserve these values (calculated
with Manhattan distance) in the new recipe by adjusting the
quantity of the new ingredients [4]. They make special
mention that if every ingredient variable is continuous, then
this optimization problem poses an NP-Hard problem.

Even scaling non-substituted recipes to
increase/decrease servings also poses some unique
challenges. A naive approach to this problem simply scales
all ingredients used in a recipe proportionally to the
adjustment of servings; however, while this approach
generally works, it has limitations. For instance, there is
usually no need to scale proportionally the amount of fat
used for searing if searing greater amounts of meat or there
are many spices and aromatics that if proportionally
increased will quickly overpower all other flavor
components in a recipe.

SYSTEM DESIGN

1 Sous Web Service

Sous is proposed as a web service rather than as a
mobile application primarily to allow users without mobile
devices to utilize its services; however, it would be built
with both desktop and mobile flavors in mind. Sous would
be built using the Django development framework for
several reasons. Primarily, Django is Python-based and
Python has several packages that could be incredibly useful
to a more robust Sous service that utilized language
processing for analyzing the context of ingredients, namely
the Natural Language Toolkit [6]. Other benefits of
utilizing Django are that its templates for forms and forums
which would simplify the front-end development
significantly, and Django’s Object-Relational Management
tool, which allows for interacting with SQL databases in a
Pythonic way rather than having to specifically write SQL
queries for manipulating information in the database [6].
Django also offers extensive security benefits, such as
automatically disguising source code and having easy to
deploy user authentication through third parties like Gmail.

April, 2021, Charlottesville, VA USA

The Sous service would include a central feed of
recipes after a user searches for recipes including certain
keywords, forms for submitting recommendations for
recipe substitutions and assigning times to recipe steps, and
forums for discussing recipe content.

2 Substitution and Recipe Scaler
2.1 Data Collection and Preprocessing

A dataset of recipes collected from Epicurious was
found available for free public use and was adapted for a
prototype implementation of Sous’ substitution and recipe
scaling service. The dataset contained over twenty five
thousand non-duplicate user generated recipes formatted
into a JSON file with associated ingredients, recipe steps,
and title for each key. The list of unidirectional
substitutions (87 in total) was collected from an article
posted on Allrecipes.com, manually entered into a CSV
file, and then read into the program. The information from
each of these files was used to create python dictionaries of
object hierarchies (recipe objects with ingredient
child-objects and a substitution list for a given ingredient
with component child-objects).

Parsing the recipe and substitution datasets posed
a particular challenge, as the content was user generated
and had inconsistent formatting and grammar across the
board. For instance quantities could be listed with ranges of
acceptable amounts (“4-6 tablespoons”, be non-standard
units (such as “3 lemons” or “ 2 cubes”), and many other
variations that had to be accounted for in preprocessing.
Interpreting fractional amounts also took additional logic,
but was simplified because all quantities had formatting
similarities that were exploitable. Lines that contained
multiple measurements were broken up into components
when recognizable. Substitutions were considered to be
unidirectional, meaning that even if an ingredient like
applesauce was listed as a substitution for vegetable oil,
vegetable oil would not be considered a substitute for
applesauce.

When storing quantities for both substitution ratios
and ingredients in recipes, quantities would be converted
from standard American volumes/masses to metric values
for ease of calculation for substitutions and recipe scaling.
2.2 Substitution and Scaling User Flow

Users are able to select a recipe from the recipe
database by entering its exact title. In an optimal Sous
implementation, this would be replaced with a keyword
search algorithm that prioritizes recipes based on similarity
or filter criteria. After selecting a recipe, Sous presents the
user with all listed ingredients from that recipe along with
the number of servings. Due to limitations from the dataset

April, 2021, Charlottesville, VA USA

found, the serving size was set to 4 for all entries to
demonstrate the scaling aspects of the tool. Users are then
able to select ingredients they do not have or indicate if
they want to scale the overall servings produced. If an
ingredient is not available, Sous searches its internal list of
explicit substitution rules and determines if it has a
substitution exactly matching or close to what the user
entered. If Sous has matching substitutions, it lists them
and allows the user to pick which substitution they would
prefer. After selecting a substitution, the recipe is updated
to reflect the ingredients and quantities. If the user indicates
they would like to scale the recipe (which can be done
before or after replacing recipe components with
substitutes), Sous takes in their desired serving amounts
and scales the entire recipe using the naive proportional
approach described earlier. No dataset was found that
described scaling rules based on ingredient properties,
which left the naive approach.

To better meet the needs of real life cooks, after
quantities had been scaled or adjusted based on substitution
ratios, they were formatted into American standard
volumes/masses to be usable in the kitchen by the average
home chef. Converting decimal metric measurements into
fractional values posed an interesting challenge in
implementation, as the prototype needed to deliver
measurements that were actually usable in a kitchen setting.
For instance, informing a cook that they need to utilize 2
33/ 71 tablespoons of butter in a kitchen would be fairly
unhelpful and require the user to approximate this value.
Instead, this prototype does this approximation for the user
and delivers approximate fractions for new ingredient
quantities.

The code and datasets used for this prototype are
found at https:/github.com/williamtonks/Sous . Below is a
recipe before and after it had substitutions and scaling
applied. There are some obvious errors in this output, such
as how 23 tablespoons of butter is called two sticks;
however, removing these inconsistencies would require
extensive language processing capabilities.

Tonks

Chocolate Roll-Out Cookies

Serves: 4

Ingredients:

1. 2 1/2 cups all purpose flour

2. 1/4 cup unsweetened cocoa powder

3. 1/2 teaspoon baking powder

4. 1/2 teaspoon salt

5. 1/4 teaspoon baking soda

6. 1/2 teaspoon ground cinnamon (optional)
7. 3 ounces bittersweet chocolate, chopped
8. 1 cup (2 sticks) butter, room temperature
9. 1 1/3 cups sugar

18. 1 large egg

11. 1/2 teaspoon vanilla extract

12. Sprinkles or other sugar decorations (optional)
13. Royal Icing (optional)

Figure 1: Original recipe for Chocolate Roll-Out Cookies

Chocolate Roll-Out Cookies

. 2 7/8 cups all purpose flour
. 5 tablespoons, 3 teaspoon unsweetened cocoa powder
. 3/4 teaspoons salt
. 3/8 teaspoons baking soda
. 3/4 teaspoons ground cinnamon (optional)
. 4 1/2 ounces bittersweet chocolate, chopped
. 23 tablespoons, 3 teaspoon (2 sticks) butter, room temperature
. 1 cup, 1 tablespeoon, 15/16 teaspoons sugar
. 3/4 teaspoons vanilla extract
. Sprinkles or other sugar decorations (optional)
. Royal Icing (optional)
. 3/16 teaspoons baking soda
. 3/8 teaspoons cream of tartar
. 3/16 teaspoons of powdered egg substitute
. 3/16 teaspoons water

Figure 2: Recipe after replacing two ingredients and
scaling to six servings

3 Kitchen Task Scheduler

Sous’s task scheduler would be intended to help
cooks who are cooking multiple recipes at once, such as
creating a main dish with several sides for a dinner or even
more elaborate meals for festivities and events. At its core,
this task scheduler can be viewed as a pipelining algorithm
with a few adjustments to account and optimize for the
realities of cooking. Each recipe can be viewed as a series
of steps that need to be performed in a certain order within
a recipe, but the cook can switch between tasks associated
with different recipes. In addition, the scheduler could add
in additional cooks and just treat them as additional threads
working on the same problem. Sous’ scheduler will take in
all the steps associated with the recipes selected and then
create an ordering for these steps to minimize time spent

https://github.com/williamtonks/Sous

Sous, an Ingredient and Task Scheduling Tool

and improve results in the kitchen, primarily by pipelining
steps that could be considered “hands off” with “hands on”
tasks and maximizing efficiency with kitchen appliances
like stand mixers, stove burners, and ovens.

Before discussing the data needs for this scheduler
to work effectively, it is necessary to describe what
“maximizing results” in the kitchen will be considered. The
key factor for determining success will be that each recipe
is finished within a certain margin of the “meal time”, or
the time when the last recipe is finished. The intuition
behind this decision is that every dish has a certain range of
times after it is cooked that it could be considered at its
best, such as how pizza or roasted vegetables are at their
best immediately after they come out of the oven. This is
considered to be a range of times for two reasons. There are
some dishes, such as bread, roasted meats, or a custard, that
need to rest/chill for a certain time before being served. So,
the data representation of each recipes’ “life expectancies”
will be as follows [minimal time before serving, optimal
time to serve, maximum time after completion to serve].
Each of these will be a numerical value measured from the
end of cooking for a certain recipe. The first and third
variables represent the outer bounds for a particular dish's
serving times, while the second provides the ideal serving
time. When actually making decisions, the scheduler will
consider the first and third as hard requirements, and then
try to optimize completion times to get time to serve as
close to the optimal time as possible by calculating absolute
difference across all recipes being prepared. Below is the
ideal data requirements for both recipes as a whole and
individual steps in recipes to demonstrate how the task
scheduler could effectively pipeline.

3.1 Ideal Data for Recipes

a. Alist of steps for the recipe

b. Time to serve in the format of [minimal time
before serving, optimal time to serve, maximum
time after completion)

c. Flag - Reheatable? - some dishes can be reheated
before being served. This flag will include an
optional step that can be taken to reheat a dish if
the scheduler has to place its completion earlier in
the task order.

d. Serving Temperature: Indicates a cold or hot dish

e. Main: A boolean symbolizing a main dish versus a
side dish. To be used for prioritization between
dishes when there is no acceptable schedule to
serve all dishes in their absolute ranges. Intuition
is that cooks care more that their main dish is
served at the appropriate temperature.

April, 2021, Charlottesville, VA USA

f. Interchangeable Step Ranges: Some dishes require
steps to be performed in a very specific order, but
others are recipes composed of different
components (such as a meat with a sauce) and
these components can be made in any order. If the
scheduler has to account that a particular appliance
is being used for another step, the scheduler could
use this flexibility for reordering.

3.2 Ideal Data for Steps
a. User interpretable description of the step
b. Step Duration in minutes
c. Engagement Level - This is what allows for step
pipelining. Some aspects of cooking require full
attention such as chopping ingredients, while other
steps are completely hands off such as baking or
stewing. Steps will be categorized as -either
“Hands On” (not able to be pipelined), “Hands
Off” (able to be pipelined with other steps), or
“Interval” (can be pipelined but requires attention
at a certain time increment, such as needing to stir
a sauce or flip a burger while searing). Interval
values will be associated with descriptive text and
time intervals for completion.
d. Appliance(s) used - Another factor for the
scheduler to consider is that steps cannot be
pipelined if they require the same appliance,
unless it is an oven. Users will be able to input
their kitchen appliances (number of stove tops,
oven, blender, etc.).
e. Oven Temperature - for steps involving an oven
f. Oven Splitting Flag. Oven splitting is a common
cooking method for allowing multiple dishes to
use the oven at once; however, certain dishes
(such as souffles) are very temperamental and
cannot be oven split. If two steps require an oven
and can be oven split, the average temperature will
be used and times proportionally adjusted for the
steps in the task order, with additional steps added
to the task order for checking these dish’s
progress.
3.3 Scheduler Decision Structure

Asymptotic run time for this scheduling algorithm
is not a particularly important consideration for two
reasons: most users will only be uploading at most 5 or 6
recipes into the scheduler and recipe steps have to typically
be performed in a specific order (unless the recipe has
interchangeable components like an entree and a separate
sauce but this is generally limited as a concern). The
scheduler can take advantage of both of these real world

April, 2021, Charlottesville, VA USA

limitations to input size and just create every possible task
order and see which one minimizes time in the kitchen
while having each dish as close to their optimal time to
serve as possible. While creating these task orders, the
scheduler can take advantage of oven splitting, pipelining
different series of tasks, and other real world optimizations.
The specific weight given to both of these heuristics would
be something the user could specify in their preferences for
Sous.

The schedule would start by building out the task
order from each recipe's last step, and slowly adding on
steps until every step is in the task order. The scheduler
would then determine which order performs best in terms
of the heuristics and then display to the user. There is a
potential algorithmic optimization for the scheduler by
dynamically storing solutions to subproblems within the
task order so that if other threads ever reach having the
same tasks left to schedule, they could access the optimum
ordering for these tasks rather than recalculating. Tasks
would be given unique labels, and the scheduler would
check to see if a remaining pool of tasks has already been
solved. This does hit a problem with that some tasks need
to be completed within a certain time period of the task
preceding/after themselves, which would mean that
subproblems wouldn’t be considered shared. However, this
can be solved by tasks that have to be completed within a
certain time window of each other within a recipe being
abstracted to being sub-tasks within a larger task that is
considered by the scheduler.

4 Limitations

The primary limitation for both the substitution
and scheduling services are that they require heavily
formatted and robust data in order to function with any
success. The substitution service requires ingredients to
have relatively consistent formatting to accurately identify
different ingredients and quantities, and the scaling service
prototyped was only able to scale recipes proportionally as
no rules list was found for how to best scale individual
ingredients as this is likely different from recipe to recipe.
The scheduling service requires an immense amount of
metadata for individual recipe steps and the recipes
themselves. This scheduler was not prototyped because no
dataset could be found with recipes that have steps with
associated time durations, which is the core requirement for
the scheduler.

Tonks

CONCLUSIONS

The goal of this project was to demonstrate the
need and feasibility of creating a tool for home chefs based
on ingredient substitution and scaling. We demonstrated
how existing cooking technology solutions fail to meet this
need and described research attempts at solving the
problem of ingredient substitution and recipe scaling. These
studies demonstrate that language processing models for
analyzing ingredient context have a ways to go before they
would create a commercially viable service for substitution
and scaling. A partial implementation for a recipe
substitution and scaling service based on explicit rules and
proportional scaling was successfully built, and the data
requirements , decision logic, and limitations for a kitchen
task scheduler were enumerated.

FUTURE WORK

Sous’s range of viable substitutions could be
improved in two distinct ways. The first would be
developing a language processing model similar to those
discussed in the background section that is able to compare
massive numbers of recipes, either analyzing context to
develop an understanding of ingredient properties or to
create trees of closest substitutes, and then generate unique
ingredient substitution rules for each recipe based on this
understanding. The second route would come from fully
building out Sous’ web presence and web forum to begin
collecting user recommendations for substitute ingredients.
As user suggestions are aggregated, more recipe/context
specific substitution rules and restriction on rules could be
developed.

The scheduling tool would be continuously
improved as users submit information about how long steps
in recipes take them to complete. One of the major
limitations for prototyping in this paper was that no dataset
could be found with recipes that have time allotments to
different steps in the recipe. As users submit information
about how long steps take them, Sous could aggregate these
submissions and determine generalized rules for how long
certain cooking tasks take and apply them to recipes
without that information.

ACKNOWLEDGMENTS

Thanks to Allrecipes for providing the common ingredient
substitutions for the service prototype, found at
https://www.allrecipes.com/article/common-ingredient-subs
titutions/. Thanks to Ryan Lee and his site Eight Portions
for providing scraped recipes from Epicurious for the

https://www.allrecipes.com/article/common-ingredient-substitutions/
https://www.allrecipes.com/article/common-ingredient-substitutions/

Sous, an Ingredient and Task Scheduling Tool

recipe database for the substitution service, found at
https://github.com/rtlee9/recipe-box .

REFERENCES

[1] Pesce, Anthony, 2013. Natural Language Processing in
the Kitchen. Los Angeles Times, Los Angeles, USA.
http://datadesk.latimes.com/posts/2013/12/natural-langu
age-processing-in-the-kitchen/

[2] Y. Pan, Q. Xu and Y. Li, 2020. Food Recipe Alternation
and Generation with Natural Language Processing
Techniques," 2020 IEEE 36th International Conference
on Data Engineering Workshops (ICDEW), 2020, pp.
94-97, doi: 10.1109/ICDEW49219.2020.000-1.

[3] Shirai Sola S., Seneviratne Oshani, Gordon Minor E.,
Chen Ching-Hua, McGuinness Deborah L, 2021.
Identifying Ingredient Substitutions Using a Knowledge
Graph of Food. Frontiers in Artificial Intelligence, 3,
2021. doi: 10.3389/rai.2020.621766

[4] Emmanuelle Gaillard, Jean Lieber, Emmanuel Nauer.
Improving Ingredient Substitution using Formal
Concept Analysis and Adaptation of Ingredient
Quantities with Mixed Linear Optimization, 2015.
Computer Cooking Contest Workshop, Sep 2015,
Frankfort, Germany. ffhal-01240383f.

[5] “Julia Child Would Be Thrilled: Most Americans Prefer
to Cook at Home.” ReportLinker, 2020. Retrieved from
https://www.reportlinker.com/insight/americans-cookin
g-habits.html

[6] Vladimir Sidorenko, 2017. “The Advantages And
Disadvantages of Using Django. ” Datafloq

[7] Chun-Yuen Teng, Yu-Ru Lin, Lada A. Adamic, 2012.
“Recipe Recommendation using Ingredient Networks”.
WebSci '12: Proceedings of the 4th Annual ACM Web
Science Conference, June 2021, 298-307, doi:
https://doi.org/10.1145/2380718.2380757

April, 2021, Charlottesville, VA USA

https://github.com/rtlee9/recipe-box
http://datadesk.latimes.com/posts/2013/12/natural-language-processing-in-the-kitchen/
http://datadesk.latimes.com/posts/2013/12/natural-language-processing-in-the-kitchen/
https://www.reportlinker.com/insight/americans-cooking-habits.html
https://www.reportlinker.com/insight/americans-cooking-habits.html

