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ABSTRACT 

My summer internship centered around creating a system for 
analyzing network logs with machine learning to determine 
outages and automate fixes. I developed a pipeline that would 
consume data from a variety of sources, analyze said data using 
models created by data scientists, and relay the results to a final 
data sink. I used Kafka stream processing to make the pipeline 
distributed and fault-tolerant. Additionally, I developed a batching 
service capable of formatting incoming data to the specifications 
of the models. Although I was not able to complete the project, 
my contributions provided a robust and scalable solution for 
deploying machine learning models. As more models are added to 
the system, this data pipeline will need to become easily 
configurable and deployable. This will allow for rapid integration 
of new features. 

1   INTRODUCTION/BACKGROUND 

Traditionally, managing networks has been the responsibility of 
system administrators and IT professionals. Once they reach a 
certain size, they require round-the-clock supervision to prevent 
failure. Most network outages are caused by human error or 
machine failure. Network usage increases proportionally with the 
size and complexity of an organization. Network outages can lead 
to financial losses as well as loss of trust from users. New tools 
for preventing these outages have the potential to help companies 
avoid these negative repercussions. 

Machine learning (ML) is a general term to describe techniques 
that use computers to identify patterns in training data. It is most 
effective with regular, well-structured data [1]. Various network 
devices, such as routers and switches, log data about the 
connections they make in order to enable humans to detect 
network problems. On the surface, network logs seem like a 
perfect application for ML. Some challenges, however, have 
prevented ML from fully mastering this domain. Each network is 
unique and constantly evolving. It is also difficult to establish 
ground truth for network data. If a machine learning system is to 
provide useful insight to a network administrator, it must be 

trained on the network where it will be deployed, and it will need 
a large amount of training data. 

Processing a large amount of data in real time is an issue that has 
received a lot of attention in recent years. The stream processing 
system has risen to solve this issue. At its core, stream processing 
is a programming paradigm that allows for simple parallel 
processing. Computation on data occurs in a pipeline. This is 
essentially a series of connected data processing steps. There are 
several popular frameworks that abstract some of the complexity 
of building a stream processing system. These include Spark, 
Fink, and Kafka[2]. 

2   RELATED WORKS 

Currently, much of the tooling available for network 
administrators is based around providing useful metrics about the 
performance of the network. Some of the products that are 
available currently include SolarWinds and Splunk. Both tools 
can be integrated into existing networks and can provide insights 
into the performance and health of a network. Additionally, they 
both market machine learning capabilities for diagnosing 
problems in a system. It is not clear what types of models are 
deployed for this detection. There are many other smaller 
companies entering the network tooling space. This seems to be in 
response to growing excitement about the field of AI/ML.  

Despite the growing number of companies offering AI analysis on 
network data, there are some who are skeptical of how novel these 
products truly are. Jagjeet Gill, principal in Deloitte’s strategy 
practices said “We’re probably overusing the term AI, because 
some of these things, like predictive maintenance, have been in 
the field for a while now,”[3]. An issue facing ML systems is 
vendor lock in. Cisco and other network device manufacturers 
offer ML analysis tools. This will work well if a network is made 
up entirely of Cisco products, however, it can become a problem 
in multi-vendor environments[3]. 

One area of interest in the ML network space is traffic prediction. 
It is essentially forecasting future traffic in and out of a network. 
This problem, if solved, would allow traffic to be routed more 
efficiently through a network, resulting in quicker response times, 
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due to routing optimization. Supervised neural networks have 
shown high prediction accuracy on low complexity networks. The 
difficulty in applying this to more complicated, high-speed 
networks is due to an inability to accurately measure traffic. 

3   PROJECT DESIGN 

My summer internship revolved around creating a data pipeline to 
run machine learning models on network log messages. I was not 
responsible for creating the models, only for supplying them with 
data and collecting the results. 

3.1 Requirements 
• The system must be able to pull data from multiple 

types of databases. 
• The system should be able to run data on multiple ml 

models concurrently 
• The system should be able to run on both streaming 

models and batch models. 
• Results from the models should be collected and placed 

in a data sink for further analysis. 

3.2 System Architecture 
Data Source: The pipeline consumes data from an Elasticsearch 
database.  Elasticsearch is a NoSQL database that provides a 
highly efficient search engine. 
Stream Processing: Kafka was chosen as the stream processing 
platform. Kafka allows data to be written to and read from streams 
of events called topics. Additionally, it has an API to process 
events in a stream as they occur [6]. 
Model Deployment: The machine learning models would be run 
as docker containers on EC2 instances. 
Development: The data pipeline was written in Python. The 
confluent_kafka API was used for producing to and consuming 
from Kafka topics [7]. The faust library was used to develop 
stream processing services. 
 
3.3 System Design 
The design of the system can be thought of as a data wrapper 
around the ML model. This data wrapper consumes network logs 
from elasticsearch using a time query. When enough new logs are 
present, they are ingested into a Kafka topic using the Consumer 
API [8]. While the data wrapper was being developed, all the 
models required batched data. Thus, items that are added to the 
ingest topic are grouped for batch processing. When a new batch 
was prepared, it was sent to a batch ingest topic. When batches 
were written to this topic, it would trigger the model to run on that 
batch of data. 

Communication between the data wrapper and the models was 
done using a REST API. Each model had an API endpoint and 
would be triggered to start running by a call to that endpoint. The 
data to run on the model was passed in the body of a JSON 
request. When the model was finished running, it would return a 
status code and the results of the run in the JSON response. 
Creating these API calls and waiting for their responses was 
handled by a stream processor. Finally, this stream processor 

would send the response data to a “sink” Kafka topic. This “sink” 
topic would be subscribed to by any user of the system who 
wanted to process these results. 

 

Figure 1: System Design for the data pipeline.  

Figure 1 displays this system design. On the left are the two 
sources of log data: Kafka and Elasticsearch. In the center is a box 
representing the data wrapper. Arrows represent communication 
between two pieces of the architecture.  Tubes represent Kafka 
topics. 

3.4 Challenges 
The biggest design challenge was trying to marry the streaming 
system that I was supposed to deliver with the existing 
changepoint detection models. The models deployed on the 
system would scan a time window of logs and try to identify 
regions of rapid change. This change would often signal a failure 
in the system or anomalous behavior by some user. For the 
models to work they needed to receive batches of logs. This 
caused issues because the streaming model is designed to perform 
analytics on individual messages.  
 
To get around this challenge, I developed and deployed a 
streaming batch creation process. This process would listen for 
logs and batch them together to be processed. Faust was used to 
listen to topics receiving logs, order them by timestamp, create a 
batch, and produce them to a Kafka topic. 

4   RESULTS/FUTURE WORK 

At the conclusion of my internship, the pipeline was set up and 
data could run through every step of the process. The Kafka topics 
were deployed to servers and could be remotely configured. 
Although I will not be involved with the project going forward, 
other members of the team will continue the work outlined in this 
paper. There are several important next steps in the deployment 
process for this project. This first is to deploy the stream 
processing code. When I left the team, this section of the pipeline 
was run on local machines. In my last week I began working on 
deploying my code on a container. This container would run on 
the same network as the model API and the Kafka topics.  

Another important step in this project will be to create detection 
models that can identify changepoints in real time. This will 
require a more adaptive model that can constantly be retraining. 
Once this is deployed, it will remove the need for a buffer. This 
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was identified as an area of focus for the future as the goal of the 
project is to deliver real time analytics. By deploying a model that 
relies on batches of data, the project will not be able to deliver on 
this goal. 

5   CONCLUSIONS 
During my internship, I played a role in developing a data pipeline 
that could analyze network logs and deliver insights into changes 
in network activity and performance. The data pipeline that I 
created will be able to be used as a reference for others working 
on the project who are trying to deliver data to and receive data 
from machine learning models. The implementation that I 
developed is both efficient and fault tolerant. Additionally, it is 
designed to be modular. Adding additional data sources can easily 
be accomplished by reading data from the data source and writing 
it to the input Kafka topic. The system can also accommodate data 
coming in from many different sources at the same time.  
 
Networks will only become more complex in the coming years. It 
will be important to arm network administrators with the tools to 
identify issues in real time. Recent advancements in machine 
learning and event streaming architectures allow for tools that can 
adapt to individual networks and identify issues as they happen. 

6   UVA COMPUTER SCIENCE EVALUATION 

All the classes that I have taken at UVA prepared me for my 
internship. However, there are three that I have identified as being 
especially beneficial.  

The first is Software Development Methods with Professor Mark 
Sherriff. This class introduced me to the git workflow. As a new 
software developer, I was familiar with GitHub as a place to store 
code, but I knew little about how to use it to collaborate with other 
developers. This class forced me to work with older students who 
had more experience coding collaboratively. Through this 
experience I learned about the power of feature branches and agile 
development. This made the transition to working in a 
professional development role smoother. I learned that building 
software involves being able to communicate your ideas to others. 
Getting in the habit of working on a codebase with others shows 
the importance of writing maintainable code.  

The second class that helped me in my summer internship is 
Operating Systems with Professor Charles Reiss. During this class 
I learned how to design for parallel processing and safety. These 
concepts were reinforced in the assignments given, specifically 
the twophase and pool homework. In working on the twophase 
assignment I was asked to design for fault tolerance. I had never 
written software that had to anticipate hardware failure. This 
experience was incredibly helpful when designing my data 
pipeline. The pool assignment forced me to write asynchronous 
code. The Kafka stream processing API is essentially a series of 
asynchronous function calls. The transition to writing code for 
Kafka would have been more difficult without this class 
introducing me to the fundamentals of asynchrony. 

The last class I would like to identify as being especially helpful 
was Compilers with Professor Matthew Dwyer. Although the 

information covered in the class had nothing to do with my 
project this summer, I improved greatly as a developer. When I 
started the class, I had no experience working on a large codebase. 
The only code I had interacted with was code that I had written 
myself. The central assignment for this class was to extend the 
feature set of an existing compiler. This necessitated exploring 
documentation and spending time reading other people’s code. 
This proved to be a valuable learning experience. The first two 
weeks of my internship were primarily getting familiar with the 
codebase I would be working with. Becoming adjusted to working 
in a new codebase would have been more daunting if I had not 
already had the experience gained in Compilers. 

This leads me to some areas I think the computer science 
curriculum could be improved upon. During my internship I 
improved my coding style. While this was partially due to writing 
a large volume of code, what really forced me to be better were 
the code reviews I took part in and the linting tool built into our 
deployment pipeline.  

Working with a more experienced developer opened my eyes to 
mistakes I did not know I was making. Integrating the code 
review concept into lower-level computer science courses would 
have helped me to avoid some bad habits that I picked up as a new 
computer science student. It has been demonstrated that groups of 
three to four students working with a trained moderator to check 
each other's code see an improvement in code quality [4]. This 
concept could easily be incorporated into CS 1110. The major 
limiting factor would be the number of TAs required to run these 
small groups.  

In my internship, before committing any code to the master 
branch, my code had to pass a set of linting rules. A linter is a tool 
that checks code for programmatic and style issues [5]. Although 
they do not find bugs in code, they help to ensure that 
programmers avoid common antipatterns which can lead to more 
maintainable code. It may be hard for students in the introductory 
CS classes to understand the importance of linting. However, by 
the 2000 level courses, students are proficient enough to think 
about how to write their code, not just what their code will 
accomplish. The automated grading servers could incorporate a 
linting check when they are scanning submissions. If code style 
was worth five to ten percent of a homework grade, it would 
encourage students to stop using bad practices in their 
assignments. By introducing linting tools early in the computer 
science curriculum, students would be forced to write code with 
better style. 
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