
Development of a Data Pipeline for Real-Time Network Analytics
Internship Experience

CS4991 Capstone Report, 2021

FirstName Surname†
 Department Name

 Institution/University Name
 City State Country
 email@email.com

Derek Johnson
 Department of Computer Science

 University of Virginia
Charlottesville Virginia USA

Dej3tc@virginia.edu

ABSTRACT

My summer internship centered around creating a system for
analyzing network logs with machine learning to determine
outages and automate fixes. I developed a pipeline that would
consume data from a variety of sources, analyze said data using
models created by data scientists, and relay the results to a final
data sink. I used Kafka stream processing to make the pipeline
distributed and fault-tolerant. Additionally, I developed a batching
service capable of formatting incoming data to the specifications
of the models. Although I was not able to complete the project,
my contributions provided a robust and scalable solution for
deploying machine learning models. As more models are added to
the system, this data pipeline will need to become easily
configurable and deployable. This will allow for rapid integration
of new features.

1 INTRODUCTION/BACKGROUND

Traditionally, managing networks has been the responsibility of
system administrators and IT professionals. Once they reach a
certain size, they require round-the-clock supervision to prevent
failure. Most network outages are caused by human error or
machine failure. Network usage increases proportionally with the
size and complexity of an organization. Network outages can lead
to financial losses as well as loss of trust from users. New tools
for preventing these outages have the potential to help companies
avoid these negative repercussions.

Machine learning (ML) is a general term to describe techniques
that use computers to identify patterns in training data. It is most
effective with regular, well-structured data [1]. Various network
devices, such as routers and switches, log data about the
connections they make in order to enable humans to detect
network problems. On the surface, network logs seem like a
perfect application for ML. Some challenges, however, have
prevented ML from fully mastering this domain. Each network is
unique and constantly evolving. It is also difficult to establish
ground truth for network data. If a machine learning system is to
provide useful insight to a network administrator, it must be

trained on the network where it will be deployed, and it will need
a large amount of training data.

Processing a large amount of data in real time is an issue that has
received a lot of attention in recent years. The stream processing
system has risen to solve this issue. At its core, stream processing
is a programming paradigm that allows for simple parallel
processing. Computation on data occurs in a pipeline. This is
essentially a series of connected data processing steps. There are
several popular frameworks that abstract some of the complexity
of building a stream processing system. These include Spark,
Fink, and Kafka[2].

2 RELATED WORKS

Currently, much of the tooling available for network
administrators is based around providing useful metrics about the
performance of the network. Some of the products that are
available currently include SolarWinds and Splunk. Both tools
can be integrated into existing networks and can provide insights
into the performance and health of a network. Additionally, they
both market machine learning capabilities for diagnosing
problems in a system. It is not clear what types of models are
deployed for this detection. There are many other smaller
companies entering the network tooling space. This seems to be in
response to growing excitement about the field of AI/ML.

Despite the growing number of companies offering AI analysis on
network data, there are some who are skeptical of how novel these
products truly are. Jagjeet Gill, principal in Deloitte’s strategy
practices said “We’re probably overusing the term AI, because
some of these things, like predictive maintenance, have been in
the field for a while now,”[3]. An issue facing ML systems is
vendor lock in. Cisco and other network device manufacturers
offer ML analysis tools. This will work well if a network is made
up entirely of Cisco products, however, it can become a problem
in multi-vendor environments[3].

One area of interest in the ML network space is traffic prediction.
It is essentially forecasting future traffic in and out of a network.
This problem, if solved, would allow traffic to be routed more
efficiently through a network, resulting in quicker response times,

October 2021, Charlottesville, Virginia USA D. Johnson

due to routing optimization. Supervised neural networks have
shown high prediction accuracy on low complexity networks. The
difficulty in applying this to more complicated, high-speed
networks is due to an inability to accurately measure traffic.

3 PROJECT DESIGN

My summer internship revolved around creating a data pipeline to
run machine learning models on network log messages. I was not
responsible for creating the models, only for supplying them with
data and collecting the results.

3.1 Requirements
• The system must be able to pull data from multiple

types of databases.
• The system should be able to run data on multiple ml

models concurrently
• The system should be able to run on both streaming

models and batch models.
• Results from the models should be collected and placed

in a data sink for further analysis.

3.2 System Architecture
Data Source: The pipeline consumes data from an Elasticsearch
database. Elasticsearch is a NoSQL database that provides a
highly efficient search engine.
Stream Processing: Kafka was chosen as the stream processing
platform. Kafka allows data to be written to and read from streams
of events called topics. Additionally, it has an API to process
events in a stream as they occur [6].
Model Deployment: The machine learning models would be run
as docker containers on EC2 instances.
Development: The data pipeline was written in Python. The
confluent_kafka API was used for producing to and consuming
from Kafka topics [7]. The faust library was used to develop
stream processing services.

3.3 System Design
The design of the system can be thought of as a data wrapper
around the ML model. This data wrapper consumes network logs
from elasticsearch using a time query. When enough new logs are
present, they are ingested into a Kafka topic using the Consumer
API [8]. While the data wrapper was being developed, all the
models required batched data. Thus, items that are added to the
ingest topic are grouped for batch processing. When a new batch
was prepared, it was sent to a batch ingest topic. When batches
were written to this topic, it would trigger the model to run on that
batch of data.

Communication between the data wrapper and the models was
done using a REST API. Each model had an API endpoint and
would be triggered to start running by a call to that endpoint. The
data to run on the model was passed in the body of a JSON
request. When the model was finished running, it would return a
status code and the results of the run in the JSON response.
Creating these API calls and waiting for their responses was
handled by a stream processor. Finally, this stream processor

would send the response data to a “sink” Kafka topic. This “sink”
topic would be subscribed to by any user of the system who
wanted to process these results.

Figure 1: System Design for the data pipeline.

Figure 1 displays this system design. On the left are the two
sources of log data: Kafka and Elasticsearch. In the center is a box
representing the data wrapper. Arrows represent communication
between two pieces of the architecture. Tubes represent Kafka
topics.

3.4 Challenges
The biggest design challenge was trying to marry the streaming
system that I was supposed to deliver with the existing
changepoint detection models. The models deployed on the
system would scan a time window of logs and try to identify
regions of rapid change. This change would often signal a failure
in the system or anomalous behavior by some user. For the
models to work they needed to receive batches of logs. This
caused issues because the streaming model is designed to perform
analytics on individual messages.

To get around this challenge, I developed and deployed a
streaming batch creation process. This process would listen for
logs and batch them together to be processed. Faust was used to
listen to topics receiving logs, order them by timestamp, create a
batch, and produce them to a Kafka topic.

4 RESULTS/FUTURE WORK

At the conclusion of my internship, the pipeline was set up and
data could run through every step of the process. The Kafka topics
were deployed to servers and could be remotely configured.
Although I will not be involved with the project going forward,
other members of the team will continue the work outlined in this
paper. There are several important next steps in the deployment
process for this project. This first is to deploy the stream
processing code. When I left the team, this section of the pipeline
was run on local machines. In my last week I began working on
deploying my code on a container. This container would run on
the same network as the model API and the Kafka topics.

Another important step in this project will be to create detection
models that can identify changepoints in real time. This will
require a more adaptive model that can constantly be retraining.
Once this is deployed, it will remove the need for a buffer. This

October 2021, Charlottesville, Virginia USA D. Johnson WOODSTOCK’18, June, 2018, El Paso, Texas USA

was identified as an area of focus for the future as the goal of the
project is to deliver real time analytics. By deploying a model that
relies on batches of data, the project will not be able to deliver on
this goal.

5 CONCLUSIONS
During my internship, I played a role in developing a data pipeline
that could analyze network logs and deliver insights into changes
in network activity and performance. The data pipeline that I
created will be able to be used as a reference for others working
on the project who are trying to deliver data to and receive data
from machine learning models. The implementation that I
developed is both efficient and fault tolerant. Additionally, it is
designed to be modular. Adding additional data sources can easily
be accomplished by reading data from the data source and writing
it to the input Kafka topic. The system can also accommodate data
coming in from many different sources at the same time.

Networks will only become more complex in the coming years. It
will be important to arm network administrators with the tools to
identify issues in real time. Recent advancements in machine
learning and event streaming architectures allow for tools that can
adapt to individual networks and identify issues as they happen.

6 UVA COMPUTER SCIENCE EVALUATION

All the classes that I have taken at UVA prepared me for my
internship. However, there are three that I have identified as being
especially beneficial.

The first is Software Development Methods with Professor Mark
Sherriff. This class introduced me to the git workflow. As a new
software developer, I was familiar with GitHub as a place to store
code, but I knew little about how to use it to collaborate with other
developers. This class forced me to work with older students who
had more experience coding collaboratively. Through this
experience I learned about the power of feature branches and agile
development. This made the transition to working in a
professional development role smoother. I learned that building
software involves being able to communicate your ideas to others.
Getting in the habit of working on a codebase with others shows
the importance of writing maintainable code.

The second class that helped me in my summer internship is
Operating Systems with Professor Charles Reiss. During this class
I learned how to design for parallel processing and safety. These
concepts were reinforced in the assignments given, specifically
the twophase and pool homework. In working on the twophase
assignment I was asked to design for fault tolerance. I had never
written software that had to anticipate hardware failure. This
experience was incredibly helpful when designing my data
pipeline. The pool assignment forced me to write asynchronous
code. The Kafka stream processing API is essentially a series of
asynchronous function calls. The transition to writing code for
Kafka would have been more difficult without this class
introducing me to the fundamentals of asynchrony.

The last class I would like to identify as being especially helpful
was Compilers with Professor Matthew Dwyer. Although the

information covered in the class had nothing to do with my
project this summer, I improved greatly as a developer. When I
started the class, I had no experience working on a large codebase.
The only code I had interacted with was code that I had written
myself. The central assignment for this class was to extend the
feature set of an existing compiler. This necessitated exploring
documentation and spending time reading other people’s code.
This proved to be a valuable learning experience. The first two
weeks of my internship were primarily getting familiar with the
codebase I would be working with. Becoming adjusted to working
in a new codebase would have been more daunting if I had not
already had the experience gained in Compilers.

This leads me to some areas I think the computer science
curriculum could be improved upon. During my internship I
improved my coding style. While this was partially due to writing
a large volume of code, what really forced me to be better were
the code reviews I took part in and the linting tool built into our
deployment pipeline.

Working with a more experienced developer opened my eyes to
mistakes I did not know I was making. Integrating the code
review concept into lower-level computer science courses would
have helped me to avoid some bad habits that I picked up as a new
computer science student. It has been demonstrated that groups of
three to four students working with a trained moderator to check
each other's code see an improvement in code quality [4]. This
concept could easily be incorporated into CS 1110. The major
limiting factor would be the number of TAs required to run these
small groups.

In my internship, before committing any code to the master
branch, my code had to pass a set of linting rules. A linter is a tool
that checks code for programmatic and style issues [5]. Although
they do not find bugs in code, they help to ensure that
programmers avoid common antipatterns which can lead to more
maintainable code. It may be hard for students in the introductory
CS classes to understand the importance of linting. However, by
the 2000 level courses, students are proficient enough to think
about how to write their code, not just what their code will
accomplish. The automated grading servers could incorporate a
linting check when they are scanning submissions. If code style
was worth five to ten percent of a homework grade, it would
encourage students to stop using bad practices in their
assignments. By introducing linting tools early in the computer
science curriculum, students would be forced to write code with
better style.

REFERENCES

[1] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi,
Nashid Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. 2018. A
comprehensive survey on machine learning for networking: evolution,
applications and research opportunities. J. Internet Serv. Appl. 9, 1 (June
2018), 16. DOI:https://doi.org/10.1186/s13174-018-0087-2

[2] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios
Katsifodimos. 2020. Beyond Analytics: The Evolution of Stream Processing
Systems. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’20), Association for Computing

October 2021, Charlottesville, Virginia USA D. Johnson

Machinery, New York, NY, USA, 2651–2658.
DOI:https://doi.org/10.1145/3318464.3383131

[3] Jon Gold. 2020. Machine learning in network management has promise,
challenges. Network World. Retrieved October 26, 2021 from
https://www.networkworld.com/article/3587131/machine-learning-in-
network-management-has-promise-challenges.html

[4] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2009. Integrating pedagogical code reviews into a CS 1 course: an
empirical study. ACM SIGCSE Bull. 41, 1 (March 2009), 291–295.
DOI:https://doi.org/10.1145/1539024.1508972

[5] Florian Obermüller, Lena Bloch, Luisa Greifenstein, Ute Heuer, and Gordon
Fraser. 2021. Code Perfumes: Reporting Good Code to Encourage Learners.
In The 16th Workshop in Primary and Secondary Computing Education
(WiPSCE ’21), Association for Computing Machinery, New York, NY, USA,
1–10. DOI:https://doi.org/10.1145/3481312.3481346

[6] Apache Kafka. Apache Kafka. Retrieved October 23, 2021 from
https://kafka.apache.org/intro

[7] confluent_kafka API — confluent-kafka 1.7.0 documentation. Retrieved
October 24, 2021 from
https://docs.confluent.io/platform/current/clients/confluent-kafka-
python/html/index.html

[8] KafkaConsumer (kafka 2.6.0 API). Retrieved October 23, 2021 from
https://kafka.apache.org/26/javadoc/index.html?org/apache/kafka/clients/cons
umer/KafkaConsumer.html

