




Abstract

Modern industrial high-speed machinery often operates above multiple shaft

critical speeds and requires in-depth rotordynamic modeling and analysis.

Active Magnetic Bearings (AMBs) have proven to be a compelling alternative

to traditional bearings for many such high-speed, high-performance applica-

tions. AMBs apply attractive magnetic forces to support and center a rotor

shaft within the machine clearance. They can maintain contactless operation

and handle the varying dynamic unbalance forces that are generated through-

out the machine’s operating range. However, the practical implementation

of AMBs is more complex than for traditional bearings because AMBs are

inherently open-loop unstable and require stabilizing feedback.

This research presents the design and practical construction of the Honey-

well Magnetic Bearing Test Rig (HMBTR), a scaled version of an industrial

high-speed vertical shaft spin test rig that is supported by magnetic bearings.

State-space models for the rotor and supporting electromagnetic hardware are

developed and experimentally validated. Two control designs are implemented:

independent-axis SISO PID control and Modal PID control. Ultimately, the

main goal of this project is to predict and successfully demonstrate the capa-

bility of AMBs for use in high-speed machinery applications. The HMBTR

itself is delivered as a general platform for future learning and experimentation

with AMBs.
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1 Introduction

Higher operating speeds and power densities are continually sought after in

the rotating machinery industry. As operating speed is increased, additional

vibrational resonances of the shaft are excited and will cause a variety of

performance and stability issues. Active Magnetic Bearings (AMBs) enable

efficient, high-speed, non contact rotor operation and are a compelling solution

to this problem. However, AMB’s intrinsically introduce additional system

complexity when compared to standard mechanical bearings because they are

inherently unstable and require implementation of a feedback controller.

Figure 1: Magnetic Suspension Example, from Larsonneur [11]

In its most simple configuration, a magnetic bearing system relies on

a position sensor, power amplifier, controller, and an electromagnet. As

shown in Figure 1, a feedback loop is formed where the controller produces

a command voltage based on the position of the rotor. In turn, the power

amplifier supplies a controlled current to the electromagnet, generating a

force that levitates the rotor within the air gap.

The choice of algorithm that is implemented on the controller will de-
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termine the full system’s stability and performance. PID control is often

utilized, but can struggle to deliver robust performance on systems with com-

plex dynamics [1]. The overhung disc systems utilized in modern high-speed

machinery often operate above multiple shaft critical speeds that can induce

instability. A model-based control design that takes these dynamics into

account is required for full-speed operation.

This thesis presents the development of the Honeywell High-Speed Mag-

netic Bearing Test Rig (HMBTR) - a reduced scale vertical shaft spin test rig

based on the industrial rig shown in Figure 2. The HMBTR enables explo-

ration of AMB control algorithms that solve some of the common challenges

seen in modern high-speed machinery.

Figure 2: Industrial Overhung Spin Test Rig, from Honeywell FM&T

1.1 Literature Review

In-depth rotordynamic modeling and analysis is required to enable develop-

ment of a high-performance control algorithm for the HMBTR. Rotordynamic
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theory began with the introduction of the Jeffcott rotor in 1919 that intro-

duced a simple flexible rotor model and gave a framework for understanding

basic rotordynamic principles [9]. Afterwards, the development of computers

allowed for more complexity in analysis and a number of rotordynamic mod-

eling techniques were established, most notably the finite element method

(FEM). As early as 1970, Ruhl applied the FEM in a basic capacity to a rotor

system [17]. With higher system speeds and the introduction of gyroscopic

effects, higher order models became necessary to capture the full system

dynamics containing multiple flexible modes. D.F. Li et al. implemented the

transfer matrix method for construction of a flexible rotor-bearing system

model [14].

Furthermore, the Rotating Machinery and Controls Laboratory (ROMAC)

at the University of Virginia has contributed a base of prior work that is

specifically applicable to this project. The HMBTR is a high-speed overhung

disk system that exhibits the gyroscopic behavior associated with a large

disc and thin shaft. Benson and Gunter developed an early model for a high-

speed overhung rotor system that accounts for gyroscopic effects on system

dynamics [4]. Wilson showed that the stiffness and damping of the distal

bearing has the greatest impact on the overall rotor damping characteristic

in these types of systems [20].

Control is required in both the axial and radial directions. Progress

in control of axial shaft vibrations through use of magnetic bearings was

documented by Lewis et al. in 1987 [18]. For the radial directions, Kelm et al.

details the development of a magnetic bearing control system for a flexible

rotor [10]. Dimond, et al. achieved higher performance control of a similar

3



system using a Modal Tilt/Translate control method [6].

1.2 Scope of Thesis

This work is focused on the development of the HMBTR. Chapter 2

introduces the requirements on the rig and the design choices that were made

to satisfy them. Chapter 3 covers the development of a mathematical model

of the HMBTR and its validation on the hardware. Chapter 4 details the

development of both a standard PID control design and a ‘modal’ design for the

HMBTR’s radial axis. A high-bandwidth and a low-bandwidth PID controller

are designed for the thrust axis as well. Theoretical comparisons of all control

designs are made and experimental results obtained for each controller are

compared with the corresponding theoretical predictions. Finally, Chapter 5

gives some overall conclusions and makes suggestions for future work.
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2 System Design and Analysis

System design choices were made based on the set of system requirements

provided by Honeywell. Most importantly, these requirements specify that

the rotor shall operate above the first flexural critical speed. Furthermore,

the shaft shall be in the vertical position and will carry an operating load

from 5 lbf to 10 lbf. The rotor system shall be an overhung rotor design that

includes a large disc at the distal end of the shaft. There shall be an additional

AMB located at the shaft midspan which can be used to apply arbitrary

external loads to the system. Finally, the system is to have a motor, bearing

controls, and the instrumentation for basic rotor operation characterization.

2.1 Rotor Design

The requirement with the largest impact on system design was that the

rig must operate through the first flexural critical speed. To ensure this

requirement was met, an iterative rotor design process was followed where

the dynamic characteristics of a potential rotor design were estimated using

the ROMAC RotorLab software. Major design parameters such as rotor

length and diameter were varied and the resulting modes compared until a

satisfactory design emerged.

The system critical speeds for the final rotor design are included in Table 1.

The detailed design parameters necessary for this critical speed calculation

are included in Appendix-A. These were computed with a ‘low’ AMB stiffness

value of 1000 lb/in as well as with a ‘high’ stiffness value of 5000 lb/in. A

nominal stiffness for the motor-rotor coupling of 1827 lb/in was factored in as
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well. The relevant manufacturer specifications for the coupling are included

in Appendix-E.

Mode Type Low AMB Stiffness High AMB Stiffness
Test Article 1730 rpm 2920 rpm
Coupling End 5550 rpm 8650 rpm
Rotor Midspan 10 760 rpm 12 320 rpm

Table 1: Rotor Mode Speeds, from RotorSol

Three distinct modes are produced from 1730 rpm to 12 470 rpm for either

AMB stiffness. The first two modes are essentially extensions of the rotor’s

rigid body modes. The third mode is a vibration about the rotor’s mid-span

and corresponds to the first flexural mode. This places the first flexural

critical speed well within the motor’s capability of 15 000 rpm (See Section

2.3).

This conceptual rotor design satisfies rig requirements and was refined and

developed into a detailed system model for manufacture. The resulting system

model is shown in Figure 3 with the important sub-components labeled.

When fully assembled, the rotor is 19.125 in long and weighs 9.3 lbm.

The shaft is nominally 0.5 in in diameter. Three laminated rotor stacks are

mounted by interference fit onto the drive-end (DE), non-drive-end (NDE),

and middle of the shaft to match radial support AMBs and an exciter AMB.

The test article is attached at the non-drive end of the shaft. The thrust disk

is attached at the drive end of the shaft and will allow for control of axial

loads. Ball bearings are mounted at both the DE and NDE ends of the shaft

to serve as backup bearings. The rotor is connected to the drive shaft with a

flexible coupling.
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Figure 3: Rotor Solid Model, from Robert Rockwell

Item Length in OD in Mass lbf
BKL-10 Coupling 1.575 0.13 0.512

Thrust Disk 3.5 1.33 0.5
Test Article 4.5 1.0 4.45

Table 2: Physical Parameters, Shaft Attachments
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2.2 Motor Drive System

The Motor Drive System consists of a DC motor with an associated motor

controller and dedicated power supply. The motor is connected directly to the

shaft with a flexible coupling. Both speed and torque requirements inform

the choice of motor. The motor must reach a maximum speed that is high

enough to excite three rotor bending modes (15 000 rpm). In tandem, motor

torque needs to exceed the windage loss at that speed and with the attached

load.

Windage loss is calculated separately for each rotor component. The

Thrust Disk, Test Article, and Coupling are modeled as disks. The Bearings

and Shaft are modeled as annuli. Windage losses are based on a drag coefficient

(Cd), shaft rotating speed (Ω), outer shaft radius (r0), and axial length (L):

WindageLoss(Annulus) = πCdρr0
4Ω3L (1)

WindageLoss(Disk) = πCdρr0
5Ω3 (2)

Re = r0g0Ω
υ

(3)

1√
Cd

= 2.04 + 1.768 ln(Re
√

(Cd)) (4)

Windage calculations by component are recorded in Appendix-A. In total,

windage loss is 4.37 in-oz at an operating speed of 15 000 rpm. The MOOG

BN-34HS Brushless DC electric motor (BLDC) is specified to have a Rated
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Torque of 34.0 in-oz and is more than up to the task. This motor is paired

with the MOOG BDO-Q2-50-40 Silencer Series Motor Drive. The motor drive

allows speed control by voltage command signal. This subsystem is powered

by a PowerVolt 24 V DC Power Supply. Further specifications are recorded

in Table 3.

No Load Speed 16 707 rpm
Rated Speed 14 011 rpm
Maximum Continuous Stall Torque 48.0 in-oz
Rated Torque 34.0 in-oz
Operating Voltage 24 V

Table 3: Motor Drive System Specifications

2.3 Magnetic Bearing Control System

A magnetic bearing system is used to support the rotor in both its radial

and axial (thrust) directions. This system includes position sensors, amplifiers,

actuators, and a controller that work together to perform feedback control

for the AMB system. Datasheets for each hardware item are in Appendix-E.

Three radial and two thrust actuators were acquired from a test rig that

was previously built in the ROMAC lab by Daniel Baun [3]. Baun recorded

the design and experimental characterization of these actuators in his PhD

dissertation. Design parameters of the radial actuators are recorded in Table 4

and for the thrust actuators in Table 5. The radial actuators were designed

to have an RMS load capacity of 8 lbf and the thrust actuator to have a

maximum thrust load of 42 lbf. This puts both actuators well within this

project’s requirement that it must carry an operating load from 5 lbf to 10 lbf.
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Bias Current, ib 1.2 A
Peak Current, ip 3.75 A
Coil Winding, N 218
Wire Gage 24 AWG
Laminate Thickness 0.014 in
Saturation Flux Density, Bs 20 600 G
Relative Permeability, µr 1000
Coercive Force, Hc 0.7 Oe
RMS Load Capacity 8 lbf
Peak Load Capacity 20 lbf

Table 4: Radial Actuator Design Parameters

Bias Current, ib 1.75 A
Peak Current, ip 2.55 A
Coil Winding, N 300
Wire Gage 22 AWG
Relative Permeability, µr 139
Coercive Force, Hc 4.94 Oe
Peak Load Capacity 42 lbf

Table 5: Thrust Actuator Design Parameters
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2.3.1 Amplifiers

The amplifiers used for this test rig are Copley Controls JSP-090-10. They

deliver a desired current to the AMB coils based on a control voltage input.

Power is supplied by the PST-075-10 DC Power Supply that is also made

by Copley Controls. In total, there are 14 DC servo amplifiers that are each

rated for 10 A of peak power or 5 A of continuous power at 90 V. This exceeds

the current requirements of both the radial and thrust actuators.

2.3.2 Sensors

System requirements dictate that the sensors must be non-contacting,

high bandwidth, and linear. Satisfying this, Lion Precision U5B eddy current

sensors are used for rotor position sensing. Sensor pairs are located near the

DE and NDE actuator locations. Another pair is located near the exciter

AMB that is used for monitoring purposes only. A final sensor pair is located

between the DE AMB and the Exciter AMB that provides an alternate

sensor location for control of the DE AMB. This sensor pair is only used

for monitoring purposes throughout this work, but its location does enable

future experimentation with sensor-AMB non-collocation issues. A final

sensor measures the axial movement of the test article. The sensors arrived

pre-calibrated by the manufacturer. The Lion Precision ECL 150 electronics

system manages the set of eddy current sensors and delivers feedback sensor

signals to the digital controller.
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2.3.3 Digital Controller

Control algorithms are implemented on the dSpace MicroLabBox. The

MicroLabBox runs on a 2 GHz Dual-Core Real-Time processor. It has built-

in analog I/O channels with A/D and D/A converters and an Ethernet

interface. Conveniently, it is programmed using a Matlab-Simulink interface

which allows for quick control design development with code generation and

download to processor.

2.4 Structure Design

To finish, a square tower support structure was designed to house the

assembled system. The fully assembled rig is pictured in Figure 4. The rig

has a height of 25.55 in and a base of 6 in by 6 in.
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Figure 4: Honeywell High-Speed Magnetic Bearing Test Rig

13



3 System Modeling and Validation

An accurate mathematical model of the HMBTR is required to enable

development of a high performance control design. Models for each of the

individual components were developed from theory and validated with exper-

imental data.

3.1 Rotor Dynamics Model

Figure 5: Rigid Rotor Free Body Diagram, from [6]

The free body diagram for a rigid rotor is shown in Figure 5. State

variables are taken to be the lateral and angular displacements of the mass

center in the horizontal (x) and vertical (y) directions: [xG, yG, θxG, θyG]. This

amounts to 4 total physical degrees of freedom. It can move laterally in the
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x or y direction, or it can rotate about either the x-axis or the y-axis. Jp

and Jt represent the polar and transverse moments of inertia. With this, the

summations of forces and torques generated on the rotor about the mass

center point are written:

mẍG + (k1 + k2)xG + (−k1a+ k2b)θyG = 0 (5)

mÿG + (k1 + k2)yG + (−k1a+ k2b)θxG = 0

Jtθ̈xG + JpΩθ̇yG + (−k1a+ k2b)yG + (k1a
2 + k2b

2)θxG = 0

Jtθ̈yG − JpΩθ̇xG + (−k1a+ k2b)xG + (k1a
2 + k2b

2)θyG = 0

These equations are combined and rewritten into matrix form to establish

a general equation of motion for a rigid rotor:

Mq̈ + ΩGq̇ +Kq = 0 (6)

M is the rotor mass matrix and K is the bearing stiffness matrix. q is the

state vector of displacements about the mass center point. G is the gyroscopic

matrix that describes how the system dynamics change with rotating speed.

This approximation is valid when the rotor is operated well below its first

bending speed.
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M =



m 0 0 0

0 m 0 0

0 0 Jt 0

0 0 0 Jt


(7)

K =



k1 + k2 0 0 −k1a+ k2b

0 k1 + k2 −k1a+ k2b 0

0 −k1a+ k2b k1a
2 + k2b

2 0

−k1a+ k2b 0 0 k1a
2 + k2b

2


(8)

G =



m 0 0 0

0 m 0 0

0 0 0 Jp

0 0 −Jp 0


(9)

q =



xG

yG

θxG

θyG


(10)

3.1.1 Finite Element Model

The rotor system is more complicated when the driving speed approaches

the first shaft bending speed, and the rotor must be regarded as flexible. In

this case, a more detailed model is required in order to capture the shaft’s

flexibility and multiple vibrational natural frequencies. It is standard practice

to employ the finite element modeling approach to define this model.
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Figure 6: Finite Element Rotor Model

Figure 7: Finite Element

In this approach, the rotor is partitioned along its z axis into a set of

segments. Each segment, or element, is modeled as a flexible beam having

specific mass and elastic properties. The connection points between elements,

or nodes, have 4 degrees of freedom: translations in the x and y directions

and rotations about the x and y axes. Figure 6 shows the finite element

model of the HMBTR and an example beam element is shown in Figure 7.

Conservation of energy is used to define equations of motion for each finite

element. Define T as the total kinetic energy, V as the total potential energy,

ζi as the generalized coordinates, and Ξ as the external forces. In its most

general form, Lagrange’s equation is written:

d

dt
(∂T
∂ζ̇

)− ∂T

∂ζ
+ ∂V

∂ζ
= Ξ (11)
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Solving the coupled Lagrange equations yields lateral equations of motion

for each beam element that are rewritten into the matrix form:

Meq̈e + ΩGeq̇e +Keqe = Fe (12)

Where Ke is the element stiffness matrix, Me is the element mass matrix,

Ge is the element gyroscopic matrix, qe is the element state vector, and Fe is

the force on that element.

These element matrices are combined to form global matrices (Mf , Gf , Kf )

that capture the dynamics of the full flexible rotor. Complete details of this

process are discussed by Chaudhry [5]. The new system state vector qf

contains the lateral translations and rotations at every node. With this, a

new equation of motion is formed:

Mf q̈f + ΩGf q̇f +Kfqf = 0 (13)

3.1.2 State Space Model

The finite element model of the HMBTR was analyzed with the custom

software package MODAL [16]. MODAL applies the transfer-matrix method

to generate a standard state-space model that is defined by (14) and (15).

The details on this process are well documented by Gunter [13].

d

dt


ωx

ωy

 =

 A −ΩG

ΩG A



ωx

ωy

 +

B 0

0 B



f
x

f
y

 (14)
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rx

ry

 =

C 0

0 C



ωx

ωy

 (15)

The system inputs are forces applied at specific locations on the rotor

(f
x
, f

y
). System outputs are similarly designated displacements (rx, ry). The

system state vector (ωx, ωy) is a modally reduced representation of the rotor

state that retains 2 rigid body modes and multiple flexible modes (3 flexible

modes in this example) for each radial direction (x, y).

When simplified to a single radial direction, inputs to the rotor are forces

applied the rotor at the AMB locations (FDE, FNDE). The outputs are

rotor displacements at the sensor locations (XS,DE, XS,NDE) and at AMB

locations (XDE, XNDE). The generated A, B, C, and G matrices related to

this simplified rotor model are reported in Appendix-B.

Analysis of the Amatrix from 14 yields a set of eigenvalues and eigenvectors

that characterize the rotor dynamics at stand-still. This calculation was

completed with the built-in Matlab tool eig. The eigenvalues are the critical

operating speeds that must be taken into account when determining a control

design. They are listed in Table 6. Note that all of the free-free eigenvalues

have negative real components, indicating that vibrations will always die out

over time, as expected. The eigenvectors are the characteristic free-free mode

shapes and are shown in Figure 8.

3.2 Rotor Model Validation

Experimental impact testing was performed in order to confirm that the

frequency response of the rotor model matches the actual rotor. Frequency

19



−7.0± 703.0i
−30.0± 3002.5i
−15.4± 1537.4i

0± 0i
0± 0i

Table 6: Rotor Eigenvalues

Figure 8: Rotor Free-Free Mode Shapes
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Figure 9: Experimental Impact Testing Input-Output Locations

response functions (FRF) were computed for the set of I/O locations: (Drive-

End AMB, Exciter, Test Article). To generate each FRF, an instrumented

modal impact hammer (PCB Piezotronics model 086A05) was used to deliver

force and the corresponding rotor response was measured with an accelerome-

ter (PCB Piezotronics model 321A). This was performed at the set of locations

given in Figure 9. FRFs were generated using a Stanford Research Systems

SR-785 dual-channel dynamic signal analyzer (DSA) and five averages were

taken per calculation.

First, the rotor model frequency response was compared to experimental

impact test data for the bare machined rotor. The DE AMB to Exciter (Input

A to Output B) result is shown in Figure 10 and all other FRFs are included

in Appendix-C.

Mode frequency locations and their associated peaks are well captured for

most FRFs. However, each FRF with its displacement measured at the Test

Article shows lower natural frequencies than predicted by the model. Because

the test article end of the rotor is very thin and some modes generate a lot of

motion at that location, these FRFs are more sensitive to differences between
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Figure 10: Input A to Output B: Experimental Data (Red) vs. Model (Blue)

the model and the actual system. Therefore, the weight of the accelerometer

can not be considered negligible and will influence the system response when

measured at the test article location. This additional mass shifts the natural

frequency to the lower value shown by the experimental data.

For comparison, the mass of the accelerometer was included in the rotor

model and this modified model was compared with experimental data for the

DE AMB to Test Article FRF (Figure 11). Clearly any discrepancy can be

attributed to accelerometer mass and otherwise each FRF matches the model

up to 1 kHz. It was concluded that no changes to the bare rotor model were

necessary.

With the bare rotor verified, the test article and thrust disc were installed

and the rotor model was modified correspondingly. The same set of impact

tests was conducted on the fully assembled rotor twice: once with the same

nylon impact hammer tip as used for the bare rotor, and then a second
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Figure 11: Bare Rotor: DE AMB to Test Article FRF

time with a harder tip. The softer impact hammer tip helped to isolate low

frequency data, but a harder tip better resolved higher frequency modes.

Data from the soft tip hammer is included in Appendix-C, and data from the

hard tip is included in figs. 12 to 17.

Again, mode frequency locations and their associated peaks were well

captured for most FRFs. The impact tests using the soft tip impact hammer

are able to resolve them to around 600 Hz, and the hard tip to around 2000

Hz. However, some FRFs show a local minima at the second mode natural

frequency. This can be explained by uncertainty in the effective stiffness of

the AMB lamination stacks and the fact that the second mode has a node

near the sensor location.

Many system zeros are not well matched, however these are known to be

very sensitive to experimental error so these differences can be overlooked and

should not impact the control design and overall behavior and performance of
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Figure 12: Input A to Output C: Experimental Data (Red) vs. Model (Blue)

Figure 13: Input A to Output B: Experimental Data (Red) vs. Model (Blue)
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Figure 14: Input B to Output A: Experimental Data (Red) vs. Model (Blue)

Figure 15: Input B to Output C: Experimental Data (Red) vs. Model (Blue)
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Figure 16: Input C to Output A: Experimental Data (Red) vs. Model (Blue)

Figure 17: Input C to Output B: Experimental Data (Red) vs. Model (Blue)
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the actual system. Finally, similar errors in low frequency gain are often seen

in this type of impact testing with a hard-tip impact hammer. This effect is

not observed in the soft-tip impact hammer results. With these validation

steps complete, the rotor model was deemed to be accurate for the purposes

of this work.

3.3 Amplifier-Actuator Model

A magnetic bearing can be abstracted on a basic level as a simple horseshoe

shaped actuator that applies electromagnetic force directly to the rotor when

an electrical current moves through its wire coils. Figure 18 shows a diagram

of this type of simplified actuator.

Figure 18: Linearized Actuator, from [15]

The single-sided force output of this actuator is written as a function of

its physical parameters: number of coil windings (N), pole face area (Ag), air
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gap (g), relative permeability (µr), and mean magnetic path length (l). Also

relevant are the actuator current (i), and the Permeability of Free Space (µ0).

This force equation is written:

F = µ0N
2i2Ag

(2g + l
µr

)2 (16)

Because electromagnets can only apply attractive forces, these actuators

are often paired together to enable bi-directional control. The actuators

used for the HMBTR are constructed in this way. The currents applied to

each actuator pair (i1, i2) are characterized by a bias (ib) and a perturbation

amount (ip). Similarly, the air gaps as measured from each actuator (g1, g2)

are written using a nominal gap (g0) and a rotor displacement (x):

i1 = ib + ip

i2 = ib − ip

g1 = g0 − x

g2 = g0 + x

With this construction, a two-sided force equation is written:

F = µ0N
2Ag(

ib + 2ibip + ip
2

(2g1 + l
µr

)2 − ib − 2ibip + ip
2

(2g2 + l
µr

)2 ) (17)

This equation is simplified for controls analysis by linearizing around

the nominal gap (g0). Then, actuator force is only dependent on its input

current and the rotor position. (18) is formed by defining the Actuator
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Current Gain (ki) and the Actuator Open Loop Stiffness (kx). Of course,

there are some system inefficiencies such as fringing and magnetic leakage

losses. These losses are typically accounted for with a correction coefficient

η. Baun experimentally determined ki and kx values for these actuators and

they perform as expected when accounting for a standard η coefficients of 0.9

for the thrust bearing and 0.8 for the radial bearing.

F = kiip − kxx (18)

ki = 4µ0N
2Aib

(2g0 + l
µr

)2 (19)

kx = − 8µ0N
2Aib

2

(2g0 + l
µr

)3 (20)

Lower AMB bias currents were used for the initial control designs that were

developed and used for system identification. Also, a much larger gap size was

implemented on the thrust axis. These parameter changes are documented

in Table 7. The ki and kx values that were predicted and experimentally

determined previously were scaled based on these parameter changes and

recorded in Table 8.

ib−radial A ib−thrust A g0−thrust in
Specified: 1.2 1.75 0.03

Implemented: 0.5 1.0 0.06

Table 7: AMB Design Changes
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ki−th lbf/A kx−th lbf/in ki−exp lbf/A kx−exp lbf/in
Radial: 0.57 -9.03 0.59 -2.6
Thrust: 0.53 -1.31 0.39 -0.85

Table 8: ki and kx, Thrust and Radial Actuators

3.3.1 Amplifier Dynamics

The amplifier is inherently coupled to the actuator. The actuator requires

a driving electrical power source and the amplifier cannot function without a

load. This system is described by the block diagram shown in Figure 19.

Tamp(s)

Tamp(s)

ki

kx

+
−

vc

z

Fi

Figure 19: Amplifier-Actuator System Block Diagram

An experimental procedure was conducted to make an estimate of the

amplifier dynamics (Tamp(s)). A swept sine wave control voltage signal was

applied to the amplifier and the resulting current through the actuator was

recorded, giving the frequency response shown in Figure 20 for the radial

bearing and Figure 21 for the thrust bearing. First order transfer functions

were chosen for both amplifiers to best match the experimental data:

Tamp−radial(s) = 1.0
1

(2π)1350s+ 1 (21)
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Tamp−thrust(s) = 1.0
1

(2π)850s+ 1 (22)

The thrust bearing has a lower bandwidth than the radial bearing, but

there is a much smaller bandwidth difference between the two than is usually

expected. This indicates that eddy current effects minimally affect the

bandwidth of the thrust bearing in this case. Thrust bearings are often

un-laminated due to their geometry, and as a result significant eddy currents

are generated during their operation. The effect is to counteract magnetic

flux induction at high frequencies and therefore effectively limit controller

bandwidth. A detailed discussion of eddy current dynamics is found in [19].

This thrust bearing was manufactured using an innovative powder metal

manufacturing method intended to minimize eddy current losses (See [3]),

resulting in improved performance.

Figure 20: Radial Amplifier Frequency Response: Experimental Data (Red)
vs. Model (Blue)

31



Figure 21: Thrust Amplifier Frequency Response: Experimental Data (Red)
vs. Model (Blue)

The amplifiers that were used for the HMBTR allowed choice of gain (ka)

and a value of 0.6 A V−1 was implemented. With these parameters established,

the amplifier-actuator dynamics of the MIMO radial AMB system are given

by the transfer function matrices (TFMs):

Ki =

kakiTamp(s) 0

0 kakiTamp(s)

 (23)

Kx =

kxTamp(s) 0

0 kxTamp(s)

 (24)

3.4 Sensor Model

The position sensor was modeled as an 8000 V m−1 simple gain as defined

by its supplier documentation. The sensor bandwidth is 10 kHz and is well
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over the system bandwidth. So, sensor dynamics will not meaningfully affect

the system and they can be neglected in the model. This gives the transfer

function matrix:

Ks =

8000 0

0 8000

 (25)

3.5 Digital Controller

Digital control systems operate on a per-sample basis, meaning that

system outputs are only updated at discrete timesteps that are dictated

by the sampling rate (Ts). Problems with signal aliasing will emerge if the

sampling rate is not far above the frequency of operation. Per the Nyquist

Sampling Theorem, there will be data lost for all frequencies greater than 1/2

of the sampling frequency. In practical use, the sampling rate should be at

least 5 times that highest frequency of interest. However, the DSP must also

be fast enough to execute the control algorithm within the sampling time.

Balancing these constraints, a sampling rate of 5 kHz was implemented.

This sampling process will physically present as a delay or phase lag.

However, in this case, the controllers that were implemented roll off at a much

lower frequency than the sampling frequency. Therefore, sampling delay can

be ignored in the system model. To confirm this, the frequency response

of this transfer function approximation and the experimental response for a

PID control algorithm are shown in Figure 22. There is an excellent match

through the relevant frequency range.
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Figure 22: Digital Controller: Experimental Data (Red) vs. Model (Blue)

3.6 Closed Loop System Model

Finally, the full closed loop model for the radial direction is formed as

shown in Figure 23 where Gcntr models the implemented control design. Rotor

model input-output relations are defined in Table 9.

Rotor
A

B

C

D

E

F

+
−

+
−

Ki

Ks

Kx

Gcntr

Figure 23: Radial System Block Diagram

The axial system is described by the block diagram given in Figure 24. In

this case, the rotor is modeled as just a simple mass (m) with the transfer

function given by (26) and controller GTh.
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A FDE
B FNDE
C XS,DE

D XS,NDE

E XDE

F XNDE

Table 9: Rotor Model IO

Rotor = 1
ms2 (26)

Rotor+
−

ki ks

kx

GTh
VC F XS

XAMB

Figure 24: Axial System Block Diagram

3.7 Closed Loop System Model Validation

Gahler et. al. defined an on-line MIMO system identification approach

that was particularly useful for validation of this plant model [7]. After

levitating the rotor with a nominal PID control scheme, precise perturbation

signals were applied to each AMB and the responses at each sensor were

recorded. As such, a ‘Sine Sweep’ system identification method was performed.

In this, the system was excited at a single frequency at a time, and the response

was measured at each individual frequency to form a frequency response plot.

Notably, this procedure results in much smoother response plots compared

to the impact hammer method. Experimental data is compared to the
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corresponding model frequency responses in figs. 25 to 29.

Figure 25: Thrust AMB Input to Thrust Sensor Output: Experimental Data
(Red) vs. Model (Blue)

Starting with the axial direction, the system model matches the experimen-

tal data quite well up to approximately 500 Hz (well beyond the closed-loop

system bandwidth). However, there is an unmodeled mode at around 150 Hz

that will require additional investigation.

System level validation testing was also performed for the closed loop

lateral system using a preliminary PID control design and a similar testing

method to that used for the thrust axis. The radial experimental results

demonstrate the importance of accurate system modeling and present some

important takeaways. First, resonance peak mismatches are observed through-

out the data and can be attributed to modeling errors in Ki and Kx as there

is relatively high uncertainty in those parameters.

An additional resonance is observed in all datasets at around 30 Hz and
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Figure 26: DE-AMB Input to DE-Sensor Output: Experimental Data (Red)
vs. Model (Blue)

Figure 27: DE-AMB Input to NDE-Sensor Output: Experimental Data
(Red) vs. Model (Blue)
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Figure 28: NDE-AMB Input to DE-Sensor Output: Experimental Data
(Red) vs. Model (Blue)

Figure 29: NDE-AMB Input to NDE-Sensor Output: Experimental Data
(Red) vs. Model (Blue)
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Figure 30: Test Rig Structure Frequency Response

the resonance that is predicted at approximately 100 Hz exhibits a double

peak instead of the predicted single peak. To investigate this, an impact

hammer test was performed on the test rig housing in the lateral direction

(Figure 30). These results indicate that there are substructure modes at

approximately 30 Hz and 150 Hz. Thus, substructure dynamics can explain

the un-modeled low-frequency resonance and double resonant peak observed

in the closed loop frequency response data.

Despite these discrepancies, the closed loop model was deemed satisfactory

through 500 Hz such that a more detailed controller synthesis and analysis

could begin.
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4 HMBTR - Control Design

With a suitably accurate closed loop system model validated, attention

turned to controller design. The high expected operational speed combined

with the flexibility of the rotor established constraints on stability and per-

formance. The rig passes through the first rotor bending mode in normal

operation, causing the potential for excessive vibrations and instability. With

this in mind, minimization of displacement due to unbalance force and ro-

bustness to variation in system properties were established as performance

objectives. Both of these performance objectives were evaluated and compared

to the standards established in ISO-14839 [8].

4.1 Performance Goal

Performance measures for the closed loop system were defined with respect

to the simplified block diagram given in Figure 31. The effects of input

disturbance (Fd) and sensor noise (n) on the measured output rotor position

(xsense) was considered.

Figure 31: Simplified Closed Loop System Block Diagram
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Compliance is defined as the response of the closed loop system to external

disturbance. The primary control objective is to minimize the displacement

measured at each AMB location (xsense) that results from an input force

applied at the test article (Fd). Furthermore, the main driver of this input

force is rotordynamic unbalance. A standard unbalance of 0.03 oz− in results

in a frequency-dependent unbalance force:

Funb = 0.03ω2 (27)

The maximum vibration level in response to unbalance is required to be

less than 30% of the minimum clearance (Cmin) between the rotor and stator:

xmax < 0.3Cmin (28)

For the HMBTR, Cmin is the clearance at the mechanical back-up bearings

(Nominally 0.015 in).

Additionally, limitations on AMB load capacity were considered. Magnetic

saturation constrains actuator performance to a Peak Load Capacity of 20 lbf

(From Table 4). Unbalance force (Funb) must not exceed the load capacity

for any frequency in the operating range.

The other key metric for this system is its robustness to variation in

system properties. The goal is for the system output to be minimally sensitive

to process variation. This is quantified by the Sensitivity Function (Ms): the

closed loop system response between a disturbance input at the sensor output

and the associated control output signal:
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Ms = Vs
n

(29)

If Ms is greater than 1 at a certain frequency, then the disturbance signal

will be amplified. The goal is to minimize the peak Ms value. Lower overall

sensitivity indicates that the system is more robust to disturbances and

modeling errors. For more information on the sensitivity functions, see [2].

The ISO-14839 Standard specifies a set of Stability Zones of AMB sup-

ported machines. New machines are expected to conform to Stability Zone

A. Zone B is acceptable for long term operation. Zone C indicates that the

machine needs attention soon. A maximum peak Ms value is specified for

each Stability Zone.

4.2 Thrust Bearing PID Control Design

Two different PID controllers were designed for the thrust bearing and

tuned experimentally. First, a low gain, low bandwidth controller was imple-

mented. The controller is expressed by:

GPID = Kp + Ki

s
+ Kds

Tfs+ 1 (30)

The controller parameters are given in Table 10. A first-order low pass

filter with a 200 Hz cutoff frequency was added in-series in order to help with

noise attenuation for initial system levitation and operation.

A second, higher-bandwidth PID controller was implemented as well

(See Table 11). In this case, a third-order low pass filter with 500 Hz cutoff

frequency was included.
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Proportional Gain Kp 20
Derivative Gain Kd 0.1
Integral Gain Ki 5
Time Constant Tf 7.96× 10−4

Table 10: Initial Thrust Controller Parameters

Proportional Gain Kp 20
Derivative Gain Kd 0.005
Integral Gain Ki 5
Time Constant Tf 3.18× 10−4

Table 11: Higher-Bandwidth Thrust Controller Parameters

The frequency responses of both control designs are shown in Figure 32.

Figure 32: Thrust Axis PID Controller Transfer Functions

4.3 Radial Bearing PID Control Design

Radial control was performed by two independent SISO PID controllers

for the DE and NDE AMBs with the controller terms given in Table 12.
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An integrator was applied to just the NDE controller in order to improve

low frequency performance and remove steady state error. A second-order

low pass filter with a 600 Hz cutoff frequency was added in-series with each

controller input in order to help attenuate noise for initial system levitation

and operation.

DE Proportional Gain Kp 5
DE Derivative Gain Kd 0.06
DE Integral Gain Ki 0.0
DE Time Constant Tf 2.65× 10−4

NDE Proportional Gain Kp 5
NDE Derivative Gain Kd 0.06
NDE Integral Gain Ki 0.5
NDE Time Constant Tf 2.65× 10−4

Table 12: Radial Controller Parameters

The flexible nature of the rotor with multiple relatively low frequency

bending modes required further gain stabilization just to achieve nominal

stability. Specifically, during initial testing it was discovered that both the

first and third bending modes required additional attenuation. A Notch filter

applies gain compensation to a narrow band of frequencies and can be used to

attenuate particularly problematic modes. The transfer function for a notch

filter is given by 31. Notch frequency (ωn) and notch depth (ζ1) parameters

determine the shape of the notch. For this, the notch filter frequencies (112

and 480) were chosen by placing the notch directly on the bending modes

to be stabilized. The frequency response for the resulting control design is

shown in Figure 33.
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Gn = s2 + 2ζ1ωns+ ωn
2

s2 + 2ζ2ωns+ ωn2 (31)

Figure 33: Radial Axis PID Controller Transfer Function

4.4 Modal PID Control Design

The PID controllers that have been developed so far are entirely SISO:

displacements at the DE sensor do not affect the control commands that are

sent to the NDE AMB and vice-versa. It has been shown [6] that improved

performance of lateral AMB supported rotors can be achieved using a Modal

Multi-Input Multi-Output control design technique. With this in mind, the

T and Ts transformation matrices are defined from rotor dimensions given

by Figure 34. These transformation matrices convert the I/O of the original

plant model from physical coordinates to the rotation and translation of the

rotor’s center of mass (θ, xc). This transformation is given by (34) where GP

is the original plant model and GPM is the new modal coordinate model.
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Figure 34: Modal Transformation System Diagram

T =

1 −LAMB−DE

1 LAMB−NDE

 (32)

Ts =

1 −LSens−DE

1 LSens−NDE

 (33)

GPM(s) = T−TGPT
−1
S (34)

This transformation results in new plant dynamics and a decoupling of

the system. To show this, the frequency responses of the modal coordinate

model are compared with the physical coordinate model in figs. 35 to 38. At

least at low frequencies, the magnitudes of the off-diagonal transfer functions

have decreased by a significant factor, indicating that the control of each

degree of freedom (DOF) is now largely independent of the other.
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Figure 35: Frequency Response: GPM(1, 1) (Blue) vs. GP (1, 1) (Red)

Figure 36: Frequency Response: GPM(2, 2) (Blue) vs. GP (2, 2) (Red)
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Figure 37: Frequency Response: GPM(2, 1) (Blue) vs. GP (2, 1) (Red)

Figure 38: Frequency Response: GPM(1, 2) (Blue) vs. GP (1, 2) (Red)
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4.4.1 Closed Loop System Stabilization

Next, lead-lag compensators were designed separately for each decoupled

DOF:

Gθ = 0.5
1
80s+ 1
1

2π600s+ 1 (35)

Gxc = 5
1
80s+ 1
1

2π500s+ 1 (36)

GM =

Gθ 0

0 Gxc

 (37)

The system response at the rotor’s bending frequencies must also be

attenuated to ensure closed loop stability. The Nyquist Plot is used to help

determine a filter design that will attenuate these modes without disturbing

the lower frequency phase lead compensation. By the Nyquist Stability

Criterion, the CL system is stable if the number of encirclements of the -1

point on the Nyquist plot is equal to the number of unstable poles of the

OL transfer function. The transfer functions corresponding to each DOF

each have one pole in the RH plane. Therefore, each Nyquist plot must

have one CCW encirclement to ensure closed-loop stability. With this in

mind, a 478 Hz notch filter at the third bending frequency was added to both

controllers. Nyquist plots for the resulting system are shown in Figure 39 and

Figure 40 and they indicate that the system as designed meets the Nyquist

Stability Criterion and is therefore nominally stable. Note that an arrowed

plot-line indicates that the encirclement completes outside of the plotted area.
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Figure 39: Nyquist Plot: Translational DOF

Figure 40: Nyquist Plot: Rotational DOF
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4.4.2 Rotor Asymmetry Kx Compensation

This modal transformation works well for symmetric rotors, but there is

additional complication for the HMBTR (discussed in detail in [12]). The

rotor is asymmetric and the mass center does not sit at its geometric center.

Therefore, the distance from the center of gravity to each radial bearing is

different. Each bearing will exert a different torque about the COG for the

same force input, resulting in a different effective negative stiffness (Ksx).

Ksx = kx

 L2
AMB−DE + L2

AMB−NDE −LAMB−DE + LAMB−NDE

−LAMB−DE + LAMB−NDE kx

 (38)

This negative stiffness term and the modal controller are converted back

to physical coordinates and together form a physical-coordinate controller

that can be implemented on the hardware:

GC = T−1
S GMT

−T − 1
ks
TsKsxT

1
kaki

(39)

The set of frequency responses for this controller are plotted in Figure 41.

4.5 Theoretical Comparisons

4.5.1 Thrust Bearing Control Designs

The theoretically predicted performance of the two thrust controllers was

compared. Figure 42 depicts the compliance of both controllers. As expected,

the higher bandwidth controller predicts a higher compliance peak and higher

51



Figure 41: Modal Controller Frequency Response

frequency roll-off.

The sensitivity functions for both controllers were computed and are

plotted in Figure 43. Both control designs achieve ISO Zone A stability. The

lower bandwidth controller exhibits a 33% reduction in peak sensitivity.

4.5.2 Radial Bearing Control Designs

The predicted performance of the modal control design was compared

to the original SISO PID controller. The theoretical compliance of each

system was evaluated as the displacement measured at the DE AMB and the

NDE AMB to a force applied at the test article. These results are given in

Figure 44.

As expected, there is greater compliance at the NDE bearing for both

controllers. The modal controller shows a 60% reduction in peak compliance

compared to the SISO controller. Peak DE compliance is greater for the
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Figure 42: Thrust Controller Compliance: Low Bandwidth (Blue), High
Bandwidth (Red)

Figure 43: Thrust Controller Sensitivity: Low Bandwidth (Blue), High
Bandwidth (Red)
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Figure 44: System Compliance Comparison

modal controller than the SISO controller. Above 100 Hz, the two designs

predict very similar results.

Displacement due to unbalance force as a function of frequency was

computed over the intended operating range and is plotted in Figure 45 for

the SISO system and Figure 46 for modal. The maximum specified vibration

level and operating frequency are included as well. Both controllers satisfy

this requirement, but the modal controller predicts a significant improvement

over siso control in this measure: it shows a 43% reduction in displacement

at the first bending frequency.

The frequency response of the sensitivity function for the closed loop

system with SISO control is depicted in Figure 47 and for modal control

in Figure 48. A peak sensitivity value of 4.06 is predicted for the SISO

controller, and 1.65 for modal control. The SISO controller exceeds the Zone

B sensitivity limit, but the modal controller remains within specification for
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Figure 45: Unbalance Displacement: PID Controller

Figure 46: Unbalance Displacement: Modal Controller
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all frequencies. Clearly significant stability improvements are possible with

modal control.

Figure 47: Closed Loop Sensitivity, PID Control

Actuator load capacity was computed over the intended operating range

and is plotted in Figure 49 for the SISO system and Figure 50 for modal.

The speed-dependent unbalance force is included as well for comparison.

Both controllers have load capacities exceeding the unbalance force, but the

modal controller shows a slight improvement over PID at the second bending

frequency (10%).

4.6 Experimental Results

The control designs for both the thrust and radial axis controllers were

implemented on the MicroLabBox hardware. The relevant Simulink block

diagrams are reported in Appendix-D. System data was viewed in real-time

with the dSpace ControlDesk software. With this set up, experimental impact
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Figure 48: Closed Loop Sensitivity, Modal Control

Figure 49: Load Capacity: PID Controller
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Figure 50: Load Capacity: Modal Controller

tests were conducted on the HMBTR and the results compared with the

predicted compliances.

4.6.1 Thrust Bearing Experimental Compliance

Beginning with the thrust axis, the experimental compliance is plotted in

figs. 51 and 52. For both controllers, the experimental compliance exceeds

theoretical predictions for frequencies below 10 Hz. At higher frequencies

(Above 100 Hz) the experimental compliance matches the theoretical predic-

tion well. Between these frequencies, the experimental data matches the

bandwidth roll-off predicted by theory, however there are sections where the

theory over-predicts and under-predicts the experimental results.
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Figure 51: Thrust Axis Compliance Low Bandwidth PID: Experimental
Data (Red) vs. Model (Blue)

Figure 52: Thrust Axis Compliance High Bandwidth PID: Experimental
Data (Red) vs. Model (Blue)
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4.6.2 Radial Bearing Experimental Compliance

The experimental compliance obtained for the radial axis controllers was

compared to its predicted values. The results for the SISO controller are

depicted in figs. 53 and 54 and the modal controller results are depicted in

figs. 55 and 56. Although there are certainly mismatches, the experimental

data tracks the theory fairly well. Most importantly, the experimental results

demonstrate the compliance improvements that were predicted for the modal

controller over the SISO controller - a 65% decrease.

Figure 53: Radial Axis SISO PID Compliance DE: Experimental Data (Red)
vs. Model (Blue)
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Figure 54: Radial Axis SISO PID Compliance NDE: Experimental Data
(Red) vs. Model (Blue)

Figure 55: Radial Axis Modal PID Compliance DE: (Red) vs. Model (Blue)
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Figure 56: Radial Axis Modal PID Compliance NDE: (Red) vs. Model (Blue)
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5 Conclusions and Future Work

5.1 Conclusions

This thesis has presented the mechanical design work undertaken for

the buildup of the HMBTR. System requirements were given and a design

was developed to meet these requirements. The test rig was assembled and

the rotor levitated. A mathematical model for the system was constructed

and validated experimentally. Two control designs were synthesized and

implemented on the hardware: independent-axis SISO PID control and Modal

PID control. The performance of these controllers was predicted and measured

experimentally. Several general conclusions can be drawn:

• Experimental data correlated well enough with the theoretical prediction

to complete an initial control design. However, additional examination

will be necessary to identify a low-frequency substructure resonance

observed in the frequency response data.

• Significant performance and stability gains were predicted and realized

with modal control. A 70% reduction in unbalance response at the

first critical frequency was predicted. 30% low frequency and 15% first

bending mode compliance improvements were measured.

• Further controller stability and performance optimization is certainly

possible, but a few difficulties hindered the control design process.

Increased sampling rates and higher anti-aliasing filter cut-off frequencies

would allow for higher control gains and performance improvements.

However, cut-off frequencies and derivative gains had to be set fairly
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low in order to fully attenuate electrical noise. The relatively low

frequency first bending mode constrained the control effort as well. An

accurate system model certainly helps in choosing controller parameters

to optimally balance these constraints.

5.2 Future Work

This thesis documents the design and modeling of the HMBTR. However,

just the beginnings of its development were presented. A major next step is

the installation and alignment of the drive coupling and spin-up to operating

speed. The unbalance analysis and experimental compliance measurements

conducted for the modal control design indicate that it can support the rig

through the first critical speed. Closed-loop frequency response data can then

be taken with the coupling attached and used to establish a coupling model

with stiffness and damping values such that the closed loop model matches

the experimental data. Then, a new control design can be implemented and

at-speed testing conducted.
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A Test Rig Physical Design Parameters

Credit goes to Robert Rockwell for completing the majority of the mechan-

ical design work for the HMBTR. He drafted CAD models of the complete rig,

giving a full picture of its geometric properties as well as facilitating assembly

planning.

Figure 57: Rotor Mechanical Design, 2D View

Section Length in OD in Section Length in OD in
1 0.55 0.3937 11 0.9 1.15
2 1.25 0.444 12 1 1.2
3 0.55 0.5 13 1.88 0.5
4 0.6 0.95 14 0.3 1.1
5 0.9 0.5 15 0.9 1
6 1 0.95 16 1 0.95
7 0.9 1 17 0.580 0.64
8 1 1.1 18 1.78 0.5
9 2.42 0.5 19 0.35 0.4724
10 0.3 1.1 20 0.965 0.3149

Table 13: Rotor Section Length and Diameter Parameters
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Power Loss Torque
Gap Size in Total Length in W ft-lb/s Hp Nm oz-in

Laminations radial: 0.03 3 x 0.070 1.1162 0.8232 0.0015 0.0007 0.1006
Shaft (0.5 in. OD) radial: 1.0 6.572 0.0187 0.0138 0.0000 0.0000 0.0017
Shaft (0.75 in. OD) radial: 1.0 2.108 0.0279 0.0206 0.0000 0.0000 0.0025
Shaft (1.05 in. OD) radial: 1.0 5.208 0.2468 0.1820 0.0003 0.0002 0.0223
Coupling axial: 0.05 0.512 1.6961 1.2509 0.0023 0.0011 0.1529
Thrust Disk axial: 0.03 0.500 17.3044 12.7631 0.0232 0.0110 1.5600
Test Article axial: 0.85 1.000 28.0636 20.6986 0.0376 0.0179 2.5300
Total 18.000 48.4737 35.7523 0.0650 0.0309 4.3700

Table 14: Windage Calculations

Figure 58: Thrust Actuator, from Baun [3]
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Air Gap g0 0.03 in
Rotor Inner Diameter D1 1.75 in
Coil Inner Diameter D2 2.4 in
Coil Outer Diameter D3 3.09 in
Actuator Outer Diameter D4 3.5 in
Back Iron Length Lb 0.28 in
Stator Length Lt 0.76 in
Thrust Collar Length Lr 0.56 in
Mean Magnetic Path Length Lm 3.3 in

Table 15: Thrust Actuator Dimensions

Figure 59: Radial Actuator Cross-Section, from Baun [3]
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Figure 60: Radial Actuator Side View, from Baun [3]

Radial Air Gap g0 0.03 in
Rotor Inner Diameter D1 1.0 in
Rotor Outer Diameter D2 1.599 in
Stator Back Iron Inner Diameter D3 2.993 in
Stator Back Iron Outer Diameter D4 3.595 in
Stator Length Ls 0.616 in
Rotor Length Lr 0.70 in
Leg Width Lw 0.30 in

Table 16: Radial Actuator Dimensions
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B Rotor Model Matrices

A =



0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −4.9e5 0.0 0.0 0.0 0.0 −14.1 0.0 0.0

0.0 0.0 0.0 −2.4e6 0.0 0.0 0.0 0.0 −30.7 0.0

0.0 0.0 0.0 0.0 −9.0e6 0.0 0.0 0.0 0.0 −60.1



.

B =



0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

6.4 6.4

−6.9 1.4

−3.3 −8.0

−5.4 1.0

−9.0 11.2



.
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C =



6.4 −7.9 −0.6 −3.5 −8.5 0.0 0.0 0.0 0.0 0.0

6.4 −6.9 −3.3 −5.4 −9.0 0.0 0.0 0.0 0.0 0.0

6.4 1.4 −8.0 1.0 11.2 0.0 0.0 0.0 0.0 0.0

6.4 2.3 −6.1 2.7 8.3 0.0 0.0 0.0 0.0 0.0


.

G =



0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 −0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 −0.6 0.3

0.0 0.0 0.0 0.0 0.0 0.0 −0.2 −0.6 1.3 −0.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 −0.3 0.4



.
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C Rotor Identification Plots

C.1 Bare Rotor

Figure 61: Input A to Output C: Experimental Data (Red) vs. Model (Blue)
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Figure 62: Input A to Output B: Experimental Data (Red) vs. Model (Blue)

Figure 63: Input B to Output A: Experimental Data (Red) vs. Model (Blue)
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Figure 64: Input B to Output C: Experimental Data (Red) vs. Model (Blue)

Figure 65: Input C to Output A: Experimental Data (Red) vs. Model (Blue)
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Figure 66: Input C to Output B: Experimental Data (Red) vs. Model (Blue)
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C.2 Full Rotor - Soft Tip Impact Hammer

Figure 67: Input A to Output C: Experimental Data (Red) vs. Model (Blue)
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Figure 68: Input A to Output B: Experimental Data (Red) vs. Model (Blue)

Figure 69: Input B to Output A: Experimental Data (Red) vs. Model (Blue)
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Figure 70: Input B to Output C: Experimental Data (Red) vs. Model (Blue)

Figure 71: Input C to Output A: Experimental Data (Red) vs. Model (Blue)
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Figure 72: Input C to Output B: Experimental Data (Red) vs. Model (Blue)
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D Simulink Models

Figure 73: Top-Level Model
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Figure 74: Radial Subsystem
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Figure 75: Controller Subsystem
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Figure 76: Amplifier Subsystem
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E Hardware Datasheets

Figure 77: Motor: MOOG BN34HS, Derived Parameters
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Figure 78: Motor: Moog BN34HS, Physical Parameters
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Figure 79: Amplifier: Copley Controls JSP-090-10
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Figure 80: Controller: dSpace MicroLabBox
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Figure 81: Motor Controller: MOOG Silencer Series
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Figure 82: Displacement Sensor: Lion Precision U5
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Figure 83: Coupling, R+W BKL-10
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F Mechanical Assembly Details

Figure 84: NDE Backup Bearing Assembly
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Figure 85: Assembly Drawing, Rotor
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Figure 86: Assembly Drawing, Motor

Figure 87: Radial AMB / Exciter Assembly
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Figure 88: Sensor Assembly

Figure 89: Thrust AMB / DE Backup Bearing Assembly
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Figure 90: DE Backup Bearings: Double Row Deep Groove Ball Bearings
(2x 6001)
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Figure 91: NDE Backup Bearings: Double Row Angular Contact Ball
Bearings, Face-to-Face Arrangement, (2 x S 61903 C TA)
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