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Abstract

The growing adoption of electric scooters (e-scooters) in urban environments has corresponded

with a notable increase in traffic accidents and injuries. Due to their smaller wheels, lack of

suspension system, and significant variances in the system center of gravity among different riders,

e-scooters are more susceptible to the negative effects of uneven surfaces.

While deep learning-based object detection has been successfully applied to improve automobile

safety, its potential for obstacle detection especially for e-scooters remains unexplored. This study

introduces a novel ground obstacle detection system for e-scooters, integrating an RGB camera,

and a depth camera to enhance real-time road hazard detection. Additionally, the Inertial Mea-

surement Unit (IMU) measures linear vertical acceleration to identify surface vibrations, guiding

the selection of six obstacle categories: tree branches, manhole covers, potholes, pine cones, non-

directional cracks, and truncated domes. All sensors, including the RGB camera, depth camera,

and IMU, are integrated within the Intel RealSense Camera D435i. A deep learning model pow-

ered by YOLO (You Only Look Once) detects road hazards and utilizes depth data to estimate

obstacle proximity. Evaluated on the seven hours of naturalistic riding dataset, the system achieves

a high mean average precision (mAP) of 0.827 and demonstrates excellent real-time performance.

This approach provides an effective solution to enhance e-scooter safety through advanced com-

puter vision and data fusion. This system enhances e-scooter rider safety by detecting road infras-

tructure hazards, leveraging advanced computer vision, and data fusion to provide real-time hazard

awareness.
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Executive summary

With increasing adoption of electric scooters (e-scooters) in urban environments, the number of

related traffic accidents and injuries has risen significantly. Because of their small wheels, lack

of suspension systems, and variations in riders’ centers of gravity, e-scooters are more vulnerable

to uneven surfaces, which increases the risk of accidents. Researchers have successfully applied

deep learning to object detection in autonomous vehicles, but its potential for e-scooter obstacle

detection remains largely unexplored.

This study develops a real-time infrastructure obstacle detection system to enhance e-scooter rider

safety. Its objectives are as follows:

1. Reviewing related work identifies gaps in e-scooter safety research.

2. Construct a dedicated obstacle dataset for e-scooters, focusing on obstacle categories that

affect ride stability.

3. Evaluate and select an object detection model that balances real-time performance and accu-

racy when identifying road obstacles relevant to e-scooters.

4. Develop a real-time obstacle detection system that integrates an RGB camera and a depth

camera for obstacle distance estimation.

This study employs the Intel RealSense D435i as the main sensor, which includes an RGB camera,

a depth camera, and an IMU for data collection. The dataset features six types of infrastructure
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obstacles (tree branches, manhole covers, potholes, pine cones, non-directional cracks, and trun-

cated domes). These obstacles were chosen based on the IMU’s measurement of linear vertical

acceleration, which helps assess vibrations caused by different obstacles. The method compares

multiple efficient YOLO models to identify the most suitable model for low-power computing de-

vices. The system uses YOLO object detection for real-time hazard identification and incorporates

depth information for obstacle distance estimation.

Experimental results show strong performance in detecting e-scooter road obstacles:

• Object Detection Performance: YOLOv5s offers the best trade-off between speed and

accuracy, achieving a mean Average Precision (mAP50) of 0.827 on the test dataset with 15.8

GFLOPs. Among the obstacle categories, manhole covers (mAP50: 0.917) and truncated

domes (mAP50: 0.985) reached the highest detection accuracy, whereas non-directional

cracks (mAP50: 0.649) and potholes (mAP50: 0.725) performed less effectively.

• Real-time Processing: On a personal laptop equipped with an NVIDIA GeForce RTX 3050

(6GB) GPU, the system maintained an inference speed exceeding 100 FPS, requiring under

10 ms per frame on average.

• Obstacle Distance Estimation: Depth data integration enabled accurate distance estimation

for obstacles within 10 meters.

This study introduces the first real-time infrastructure obstacle detection system specifically tai-

lored for e-scooters, demonstrating effective detection accuracy and real-time performance. Future

research directions include:

1. Dataset Expansion: Incorporate more obstacle categories (e.g., stones, broken glass) and

diverse environmental conditions (e.g., lighting, weather) to improve model generaliza-

tion. Collaborate with other universities to gather additional data and further strengthen

the dataset’s robustness.
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2. Model Optimization: Explore additional models to enhance accuracy and reduce computa-

tional costs.

3. Deployment on Embedded Devices: Implement the model on platforms such as the NVIDIA

Jetson Orin Nano or similar low-power AI boards suitable for e-scooters.

4. Warning Systems: Provide more intuitive rider alerts through audio signals, haptic feedback

(e.g., vibrating handlebars), or augmented reality (AR) interfaces.

This research offers a practical solution for e-scooter infrastructure obstacle detection, enhances

rider safety, and lays the foundation for future intelligent micro-mobility systems.
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Chapter 1

Introduction

1.1 Motivation and problem statement

E-scooters have emerged as a popular and convenient mode of short-distance transportation. Ac-

cording to a market analysis report [1], the global electric scooter market is valued at USD 4.3

billion in 2024, with projections estimating growth to USD 12.4 billion by 2030, at a compound

annual growth rate (CAGR) of 18.9%. Figure 1.1 illustrates historical trends and projected growth

in the global e-scooter market from 2018 to 2030, with projections beginning in 2024.

Figure 1.1: Global E-Scooter Market Growth and Projections (2018–2030) [1]
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Despite their growing popularity, the number of e-scooter-related accidents has risen significantly

in recent years. In the United States, e-scooter injuries increased dramatically from 8,566 in 2017

to 56,847 in 2022, with hospitalizations from these injuries showing a consistent upward trend [2].

Figure 1.2 presents the increase in e-scooter-related injuries in the United States from 2017 to

2022. The Injury means those resulting in hospitalization.

Figure 1.2: Trends in E-Scooter-Related Injuries in the United States (2017–2022) [2]

Several factors contribute to the high incidence of e-scooter-related injuries. The current design

of small-wheeled electric scooters often overlooks the complex relationship between wheel size

and stability, resulting in improper steering geometries [3]. As a consequence, these scooters re-

quire higher speeds to achieve self-stability and demand greater rider control to maintain balance

at lower speeds. Infrastructure inadequacies exacerbate these challenges, as road obstacles such

as potholes and manholes pose significant hazards for e-scooter users. Among various obstacles,

riders have identified potholes and rough road conditions as their primary concerns [4]. Figure 1.3

illustrates the responses of 309 e-scooter riders regarding their concerns about encountering differ-

ent obstacles.
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Figure 1.3: E-Scooter Riders’ Concerns About Road Obstacles [4]

Additionally, smaller obstacles like pinecones along roadways have been shown to increase rid-

ers’ visual attention and cognitive load as they navigate to avoid them [5]. Moreover, high speeds

(>15km/h) greatly increase e-scooter vibrations, which negatively impacts comfort and stabil-

ity [6]. The center of gravity and mass play critical roles in maintaining the e-scooter’s stability.

Furthermore, a rider’s position can shift the system center of gravity, indirectly influencing con-

trol stability and introducing uncertainty. Compounding these issues, most e-scooters lack shock

absorbers that could alleviate severe vibrations. Consequently, electric scooters experience higher

vibration frequencies and provide lower comfort levels compared to bicycles [7].

Deep learning has gained significant attention across various disciplines, particularly in transporta-

tion safety-related research. One prominent application is object detection in Advanced Driver

Assistance Systems (ADAS), which play a critical role in enhancing the safety of Autonomous

Vehicles (AVs) [8]. ADAS leverage object detection algorithms to efficiently identify objects such

as vehicles, micromobility devices, and road obstacles in real time, while LiDAR sensors mea-

sure the distances to nearby objects. Despite the extensive study of object detection in the context

of autonomous vehicles, its application to micromobility, particularly e-scooters, remains largely

unexplored. Recently, YOLO object detectors have gained significant attention due to continuous

advancements, making them highly suitable for real-time detection tasks. In Redmon et al. [9],

YOLO has also proven to be a practical approach for computer vision-based object detection in
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e-scooter applications.

In conclusion, detecting infrastructure obstacles, such as potholes and manhole covers, in front of

e-scooters is crucial for enhancing rider safety. To the best of our knowledge, no prior study has

specifically addressed ground obstacle detection for e-scooters. This research utilizes YOLO object

detectors to identify roadway obstacles in real-time, focusing on six obstacle classes selected based

on the significant vibrations they cause to riders, as measured by an IMU sensor. Furthermore, by

integrating object detection results with depth data from the depth camera, the system is able to

calculate the distance between the e-scooter and detected obstacles.

1.2 Research goal

Enhance the safety of e-scooter riders through automated object detection of infrastructure obsta-

cles.

1.3 Research objectives and questions

1.3.1 Related work

Research questions:

1. What infrastructure obstacle datasets are available?

2. What are current object detection algorithms?

3. What are the gaps in knowledge about e-scooter safety?
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1.3.2 Create a ground obstacle dataset tailored to e-scooters

Research questions:

1. How can we classify infrastructure obstacles that affect e-scooters?

2. How much data is needed to be collected for the dataset?

1.3.3 Identify object detection model for e-scooter road obstacle dataset

Research questions:

1. What is the suitable object detection model?

2. What are evaluation metrics?

1.3.4 Develop a real-time ground obstacle detection system for e-scooters

Research questions:

1. What is the real-time evaluation metric for this system?

2. What is the system’s detection distance?

1.4 Research contributions

This study introduces a novel real-time infrastructure obstacle detection system for e-scooters.

Six categories of infrastructure obstacles that generate strong vibrations, as measured by an IMU,

are selected. The e-scooter infrastructure obstacle dataset is constructed from several hours of

natural riding. The system employs the YOLO object detection module to identify obstacles in
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RGB images. Additionally, by fusing depth and RGB data, it calculates the distance between the

e-scooter and detected obstacles.
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Related Work

2.1 Infrastructure obstacle datasets

Pinggera et al. introduced the Lost and Found dataset, designed to identify small hazards and

lost cargo on roads for autonomous vehicles [10]. This dataset comprises 2,104 annotated frames

extracted from over 100 videos, featuring various objects, including a bobby car, a front bumper,

a cardboard box, a tire, and square timber. Figure 2.1 illustrates the object classes in the Lost and

Found dataset.

Figure 2.1: Collected Objects in the Lost and Found dataset [10]
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Arya et al. developed the Road Damage Dataset (RDD2022) [11], an extension of RDD2018 [12],

with incremental expansions in RDD2019 [13], RDD2020 [14], and RDD2022 [11]. Figure 2.2

illustrates the dataset’s progression from RDD2018 to RDD2022. It comprises 47,420 images

captured using smartphones, cameras, and Google Street View. Data collection involved vehicles

such as cars, motorbikes, and drones. This dataset includes roads from multiple countries, includ-

ing Japan, India, the Czech Republic, Norway, the United States, and China. It categorizes road

damage into eight classes: longitudinal crack, lateral crack, alligator crack, rutting, bump, pothole,

separation, crosswalk blur, and white line blur.

Figure 2.2: Development Progress of RDD from RDD2018 to RDD2022 [11]

Ren et al. developed the Street View Image Dataset for Automated Road Damage Detection

(SVRDD) [15], consisting of 8,000 street-view images from Beijing’s five administrative districts,

sourced from Baidu Maps, with over 20,000 annotated instances. This dataset defines seven dam-

age classes: longitudinal crack, transverse crack, alligator crack, pothole, manhole cover, longi-
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tudinal patch, and transverse patch. Figure 2.3 presents the distribution of instances across these

categories.

Figure 2.3: Distribution of Instances in the SVRDD Dataset [15]

The Lost and Found dataset, RDD2022, and SVRDD provide available infrastructure obstacle

datasets, addressing the research question: What infrastructure obstacle datasets are available?

2.2 Object detection models

Object detection plays a crucial role in computer vision by simultaneously identifying and local-

izing objects within an image. Unlike image classification, which only determines the presence of

an object, object detection provides its precise location. Additionally, compared to instance seg-

mentation, object detection generally offers superior real-time performance. This technique strikes

a balance between localization accuracy and computational efficiency, making it a practical choice

for various applications.
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Advancements in deep learning have significantly improved object detection. Object detection

algorithms are generally categorized into two types: one-stage and two-stage detectors. Figure 2.4

illustrates the structures of both detector types.

Figure 2.4: Two-Stage and One-Stage Object Detectors

In a two-stage detector, the input image undergoes feature extraction, producing a feature map.

Based on this feature map, the detector generates multiple regions of interest (ROIs). Subsequently,

it predicts the category of each ROI, such as a car, pedestrian, or stop sign, while refining the

location and size using bounding box regression. A well-known example of a two-stage detector is

Faster R-CNN [16], which integrates object detection into a unified network. The Region Proposal

Network (RPN) enhances detection by focusing on relevant regions. Figure 2.5 illustrates the

structure of Faster R-CNN.



Chapter 2. Related Work 12

Figure 2.5: Structure of Faster R-CNN [16]

The one-stage detector processes an input image by extracting features and generating a feature

map. Unlike a two-stage detector, which extracts object proposals, a one-stage detector directly

predicts object categories and bounding box coordinates from the feature map. The YOLO (You

Only Look Once) family represents a widely used one-stage detection approach, originally intro-

duced by Redmon et al [9]. Figure 2.6 illustrates the YOLO detection system proposed by Redmon

et al. The YOLO family has since expanded to include multiple versions, such as YOLOv3 [17],

YOLOv5 [18], YOLOv6 [19], YOLOv7 [20], YOLOv8 [21], YOLOv9 [22], YOLOv10 [23], and

YOLOv11 [24].

Figure 2.6: The YOLO Detection System [9]

Two-stage detectors achieve high accuracy due to their object proposal extraction but have lower
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real-time performance than one-stage detectors. In contrast, one-stage detectors offer faster infer-

ence but at the cost of reduced detection accuracy compared to two-stage detectors.

Two-stage and one-stage detectors represent the main categories of object detection models, ad-

dressing the research question: What are the current object detection algorithms?

2.3 The absence of an infrastructure obstacle dataset and a rel-

evant detection system for e-scooters

Wenzelburger et al. [25] proposed a self-balancing mechanism for standard e-scooters. They mod-

eled a combined system of an electric scooter and flywheel using reaction wheels to generate torque

and designed a cascade-like controller to enable the scooter to remain upright and withstand mi-

nor disturbances. Tests demonstrated that the electric scooter equipped with this self-balancing

mechanism could maintain balance, operate, and resist push pressure on the handle. In a related

study, Soloperto et al. proposed a control framework for autonomous electric scooters [26]. The

framework utilized a reaction wheel and braking mechanism to achieve self-balancing of the elec-

tric scooter. An RGB-Depth camera combined with the Random Sample Consensus (RANSAC)

algorithm detected the surrounding environment. A vector field approach determined the scooter’s

movement direction to avoid obstacles. The control framework enabled the electric scooter to

maintain self-stabilization, detect obstacles, and avoid collisions.

An intelligent multi-wheeled scooter was designed by Lin et al. [27]. The image sensor captures

image data, and the antenna’s elevation is controlled to adjust the image to the optimal viewing

angle using Web Input Output Pi (WebIOPi) to adjust general-purpose input/output (GPIO) pins.

The user’s health status is monitored via a smartwatch, and their current location is tracked using

GPS. A Raspberry Pi 2 and a wireless network card were used to construct the server and estab-

lish network connectivity, creating a smart electric scooter network for monitoring environmental

information, health status, and location. Experimental results demonstrated that the system is both
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practical and accurate, making it suitable for remote monitoring of multi-wheeled scooter users’

safety. Alai et al. [28] proposed an active perception and rear vehicle tracking collision avoidance

system for electric scooters. The system employs a low-cost single-beam laser sensor with active

directional control via a stepper motor to detect and track rear vehicles. A density-based spatial

clustering (DBSCAN) algorithm is used for vehicle detection, and a nonlinear bicycle model is em-

ployed for vehicle motion modeling. A nonlinear observer is designed to estimate vehicle states,

while a receding horizon controller dynamically adjusts the laser sensor’s direction to continuously

track the vehicle. To track the trajectory of target vehicles, specifically e-scooters, Alai et al. [29]

proposed a multi-stage estimation algorithm. They transformed the kinematic model of a non-ego

vehicle’s motion into three separate models addressing velocity, direction, and position, and de-

signed an observer for each model. The estimation algorithm outperformed previous observers

in both simulations and experiments, demonstrating stability and robustness to uncertainty while

maintaining low computational resource requirements. This algorithm is valuable for low-cost,

sensor-based collision prediction and avoidance applications. Alai et al. [30] developed an active

sensing and assessment system designed to protect electric scooter riders from collisions with cars

and other scooters. The system utilized a low-cost single-beam laser sensor mounted on a stepper

motor to detect vehicles behind the scooter. When a rear vehicle was detected, a nonlinear vehicle

model and observer estimated the trajectory variables of the tracked vehicle. Based on these esti-

mates, a recursive controller adjusted the laser sensor’s real-time position to track the rear vehicle

continuously. The entire system is integrated into a prototype electric scooter, with a Teensy micro-

processor implementing all algorithms. Extensive conventional and specialized traffic experiments

were conducted, confirming the system’s reliability in accurately tracking the trajectory of the rear

vehicle across all tested scenarios. However, the system tracks only one rear vehicle at a time

without considering multiple vehicle tracking. Yousuf et al. [31] developed a self-driving scooter

designed to alleviate traffic congestion on campus. The scooter is equipped with an NVIDIA Jet-

son, Arduino, LiDAR, motor driver, battery, LED touchscreen, GPS, and an Anker mobile power

supply. Additionally, an app was created to facilitate user access to the scooter. A survey was

conducted among students and the general public to better understand user needs. The system
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demonstrated an average error of 4.8% in reaching the final destination while achieving 100% ac-

curacy in obstacle detection. Strässer et al. [32] proposed a collision avoidance safety filter for

autonomous electric scooters. The filter is designed to mitigate the effects of noise and occasional

missing distance measurements when using low-cost ultrasonic sensors to detect obstacles ahead.

Additionally, a gain scheduling controller was developed to reduce the scooter’s speed and prevent

collisions when an imminent threat is detected based on the distance between the scooter and the

obstacle. Three types of experiments were conducted: straight travel and turning with static ob-

stacles and straight travel with dynamic obstacles. The results demonstrated that the safety filter

effectively prevents collisions. Yan et al. [33] introduced a novel collision avoidance system for

electric scooters. The system employs a pedestrian trajectory prediction model that integrates a

Long Short-Term Memory (LSTM) network with a State Refinement (SR) Module and a motion

planner based on gradient descent algorithms, incorporating artificial potential fields and energy

surfaces. The pedestrian trajectory prediction model accounts for human interactions by analyz-

ing past pedestrian locations and the behavior and positions of surrounding individuals to predict

future trajectories. Using these predicted trajectories, the motion planner designs a collision-free

path for the electric scooter. The pedestrian trajectory prediction model was validated on two

public datasets, ETH and UCY, achieving low mean average displacement (MAD) and final av-

erage displacement (FAD) errors of 0.71 m and 1.46 m, respectively. Experimental testing of the

collision avoidance system in two representative scenarios—parallel and cross-pedestrian move-

ment—demonstrated its effectiveness in reducing potential collisions between electric scooters and

pedestrians.

Several studies have explored object detection for e-scooters. Chen et al. [34] established a compre-

hensive benchmark evaluating 22 selected YOLO object detectors designed for e-scooter-based ap-

plications. They constructed a traffic scene dataset specifically for e-scooters and assessed YOLO

models ranging from YOLOv5 to YOLOv8. The evaluation considered detection accuracy, model

complexity, and inference time. The results indicated that YOLOv5s provides the best balance be-

tween efficiency and effectiveness. Furthermore, Li [35] proposed an algorithm combining depth

estimates from a single camera with detection results from the YOLOv3 model to identify ob-
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stacles around the scooter. The system issues corresponding prompts based on obstacle distance,

achieving a detection accuracy of approximately 70%.

Existing studies on e-scooter safety focus on stability and self-balancing, collision prevention,

object detection and perception, and autonomous operation. However, no research specifically

addresses infrastructure obstacle detection for e-scooters. This gap in the literature highlights the

research question: What are the unresolved challenges in e-scooter safety?
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E-scooters infrastructure obstacle dataset

3.1 Linear vertical acceleration

The Intel RealSense Camera D435i features an RGB camera, a depth camera, and an IMU, which

was mounted on the e-scooter. The mount’s angle was adjusted prior to data collection. Figure 3.1

illustrates the installation of the camera on the Ninebot KickScooter MAX G30LP e-scooter.

Figure 3.1: Camera Mounted on the E-Scooter

17
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The selection of roadway obstacle classes draws on findings from prior naturalistic e-scooter riding

studies [5] and survey-based research highlighted ground conditions as a significant risk factor

for riders [4, 36]. Moreover, the e-scooter’s road vibrations are correlated with linear vertical

acceleration, which is measured using an accelerometer in IMU [37]. Linear vertical acceleration

effectively reflects road surface quality. The accelerometer first collects three-axis acceleration

data, including components along the X, Y, and Z axes. Figure 3.2 illustrates the three axes of the

accelerometer within the camera mounted on the e-scooter. Since gravity primarily affects the Y

and Z axes, a first-order low-pass filter suppresses high-frequency fluctuations caused by motion,

enabling the estimation of gravity components along these axes. The system then subtracts the

estimated gravity components from the measured acceleration values to determine the scooter’s

linear acceleration in the Y and Z directions. To quantify the motion intensity in these directions,

the Euclidean norm of the linear acceleration in the Y- Z plane is calculated, representing the

scooter’s vertical linear acceleration. Equation 3.1 shows the calculation of the linear vertical

acceleration.

Linear vertical accel =
√

Linear accel2y + Linear accel2z (3.1)

Figure 3.2: Three Axes of the Accelerometer Within the Camera Mounted on the E-Scooter
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Experiments were conducted to focus on selecting road hazard classes based on the linear vertical

acceleration data from the IMU. Classes that do not cause significant vibrations for e-scooters,

such as weeds, were excluded. Figure 3.3 present one example of a non-directional crack and cor-

responding vibration. Figure 3.4 illustrates one example of a directional crack and corresponding

vibration.

Figure 3.3: One Example of a Non-Directional Crack and the Corresponding Vibration of the E-

Scooter

Figure 3.4: One Example of a Directional Crack and the Corresponding Vibration of the E- Scooter

Finally, the classes selected include manhole covers, non-directional cracks, pinecones, potholes,

tree branches, and truncated domes. Figure 3.5 provides examples of each class.
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Figure 3.5: Examples of Six Classes of Infrastructure Obstacles

Linear vertical acceleration data quantifies e-scooter vibrations on various surfaces, aiding in the

classification of infrastructure obstacles that negatively impact e-scooter performance. This anal-

ysis addresses the research question: How can we classify infrastructure obstacles that affect e-

scooters?

3.2 Data collection

Data collection occurred during natural riding sessions at various daytime hours near the Univer-

sity of Virginia, constrained by the e-scooter’s limited mobility, resulting in over seven hours of

recorded video footage. The videos were converted into images, and relevant frames were ex-

tracted based on classes. Label Studio (Tkachenko et al. 2020) was used to annotate bounding

boxes for each class. The resulting dataset comprises 3,427 images categorized into six classes.

These road hazards are characterized by highly visible objects rather than less noticeable ones.

The dataset includes a total of 8,864 bounding box annotations, categorized as follows: manhole

covers (1,050), non-directional cracks (1,310), pinecones (2,866), potholes (1,069), tree branches
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(1,814), and truncated domes (755). Figure 3.6 presents the frequency of bounding box annotations

by obstacle type, while Figure 3.7 depicts their proportion.

The e-scooter’s limited mobility restricts the dataset to 3,427 images and 8,864 bounding box

annotations. This scope answers the research question: How much data is needed to be collected

for the dataset?

Figure 3.6: The Frequency of Bounding Box Annotations by Infrastructure Obstacle Type

Figure 3.7: The Proportion of Bounding Box Annotations by Infrastructure Obstacle Type
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Object detection model for e-scooter

infrastructure obstacle dataset

4.1 YOLO detectors

Due to the limited computational resources of embedded devices in e-scooters, a one-stage detec-

tor is a more suitable choice [34]. Among such detectors, the YOLO family is the most widely

adopted. Since its introduction by Redmon et al., YOLO has undergone continuous develop-

ment, resulting in successive versions, including YOLOv3 [17], YOLOv5 [18], YOLOv6 [19],

YOLOv7 [20], YOLOv8 [21], YOLOv9 [22], YOLOv10 [23], and YOLOv11 [24]. From YOLOv3

onward, the YOLO family adopts a modular Backbone-Neck-Head architecture, as illustrated in

Figure 4.1.

Figure 4.1: High-Level Architecture of YOLO Family
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The YOLO architecture consists of three modules: the backbone, the neck, and the head, each

with a distinct role. The backbone extracts features from the input image and generates a feature

map. The neck enhances this feature map by integrating multi-scale features before passing it to

the head. The head performs object detection by predicting bounding boxes, confidence scores,

and category classifications.

Prior research by [34] established that YOLOv5s achieves optimal performance for e-scooter ap-

plications. Additionally, comparisons of newer efficient YOLO models, similar in size and com-

plexity to YOLOv5s, are presented in the results and discussion section. This part introduces the

architecture of YOLOv5s. Figure 4.2 presents the structure of the YOLOv5s network model. The

Backbone forms the foundational component of the network, extracting essential features from

input images. The Neck upsamples high-level feature maps and fuses them with low-level feature

maps, enhancing semantic richness and capturing small object details. Additionally, low-level fea-

ture maps are down-sampled and merged with high-level feature maps, refining detailed informa-

tion. This bidirectional feature fusion strengthens the network’s capability to detect objects across

different scales. Finally, the Head processes feature maps of high, medium, and low resolutions

from the Neck, enabling the detection of small, medium, and large objects, respectively.

Figure 4.2: The Structure of YOLOv5s
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YOLO detectors address the research question: What is the most suitable object detection model?

4.2 Precision, Recall, mAP50, Model Size, and GFLOPs

Precision (P) measures the proportion of true positives among all detected ground obstacles. Recall

(R) reflects the model’s ability to identify all target classes in the image. The equations for precision

and recall are given in Equations 4.1 and 4.2, respectively.

P =
TP

TP + FP
(4.1)

R =
TP

TP + FN
(4.2)

Here, True Positives (TP ) refer to correctly detected targets, False Positives (FP ) represent incor-

rect detections, and False Negatives (FN ) indicate missed detections.

A higher precision (P ) signifies a greater proportion of correctly identified targets with fewer false

positives, while a higher recall (R) indicates a higher detection rate with fewer missed targets.

The mean Average Precision at IoU 0.5 (mAP 50) quantifies the average precision when the

intersection-over-union (IoU) threshold is set to 0.50. The IoU measures the ratio of the inter-

section to the union between the predicted and labeled bounding boxes. Figure 4.3 illustrates this

concept.
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Figure 4.3: Visualization of Intersection over Union (IoU) in Object Detection

The mAP 0.5:0.95 (mAP50-95) calculates the average precision across varying IoU thresholds,

from 0.50 to 0.95. These metrics range from 0 to 1, with values closer to 1 indicating superior

performance. Compared to mAP50-95, mAP50 is more practical as it focuses more on detecting

target objects [38]. Furthermore, mAP50 thoroughly evaluates a model’s performance by integrat-

ing both P and R.

Model size measures the number of parameters in a model; a smaller model size requires less

storage. Giga Floating-point Operations (GFLOPs) serve as a critical metric for evaluating the

computational resources required by YOLO models. Lower GFLOPs count signifies reduced com-

putational demands and improved real-time performance.

Precision, recall, mAP50, model size, and GFLOPs define the evaluation metrics, addressing the

research question: What are the evaluation metrics?
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Real-time infrastructure obstacle detection

system for e-scooters

Figure 5.1 illustrates the complete framework of the infrastructure obstacle detection system for

e-scooters. The system utilizes the YOLOv5s model to detect ground obstacles and combines

RGB and depth images from the Intel RealSense Camera D435i to estimate obstacle distances in

real-time.

Figure 5.1: Framework of infrastructure obstacle detection system for e-scooters

RGB and depth images are initially aligned using coordinate transformations to ensure that color

and depth information for each pixel resides in the same coordinate space. This alignment ensures
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precise mapping of object depth values to their corresponding color data. After performing target

detection on the aligned RGB image using YOLOv5s, the system extracts the bounding box and

category information of the detected object. The bounding box provides the coordinates of the

object’s center point. Due to the presence of noise in the depth data, the system performs random

multipoint sampling around the center point to obtain multiple depth values. These values are

sorted, and the middle section is selected to calculate the average depth value. This average depth

value is then integrated into the detection result, which includes the object category and confidence

level. The system demonstrates its ability to notify the rider by using this distance to display

real-time warning texts on the detection image. The system outputs a warning text signal on the

detection result when the distance falls to 4 meters or less, accounting for the e-scooter’s speed and

the camera’s position on the e-scooter.

5.1 Inference time

Inference time is a critical metric for evaluating the real-time performance of this system. Multiple

factors influence inference time, including camera data acquisition, YOLOv5s model inference,

and data fusion. Among these, YOLOv5s model inference is significant, as it demands substantial

computational resources.

Inference time addresses the research question: what is the real-time evaluation metric for this

system?

5.2 Capable of detecting objects within 10 meters

The Intel RealSense D435i depth camera has a maximum detection range of 10 meters. Given

a camera angle of approximately 30°, the effective detection range of the system is about 8.66

meters. Figure 5.2 illustrates this maximum detection distance.
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Figure 5.2: Illustration of the Maximum Detection Distance of the Intel RealSense D435i Camera

Detecting infrastructure obstacles within a 10-meter range addresses the research question: What

is the system’s detection distance?
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Result

To train the YOLOv5s model using the collected data, the input image resolution is set to 1280x1280,

batch size is set to 64, and the model is trained for 100 epochs. The dataset was split into training,

validation, and test sets in a 7:2:1 ratio. Training took place on a multi-GPU server provided by the

University of Virginia Research Computing. The batch size and number of epochs are dynamically

adjusted if GPU memory constraints arise. The same trajectory is used to train same-level models

from YOLOv6 to YOLOv11 to compare the performance and efficiency.

Figure 6.1 presents the YOLOv5s loss function curves for training and validation phases, along-

side the performance metrics on the validation dataset across successive training epochs, adhering

to the page limit. Box loss (box loss) quantifies the disparity between the predicted and actual

bounding boxes. Object loss (obj loss) measures how well the predicted bounding box overlaps

the target object. Classification loss (cls loss) evaluates the model’s accuracy in recognizing target

classes within the image. The lower value of these losses indicates better performance. The loss

curves demonstrate an overall downward trend for the training and validation datasets, while the

performance metrics for the validation dataset show steady improvement throughout the training

period.
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Figure 6.1: Training and validation results of YOLOv5s

Table 6.1 compares the performance metrics, model sizes, and GFLOPs of various YOLO models

at the same level on the testing dataset. Model size measures the number of parameters in a model;

a smaller model size requires less storage. Giga Floating-point Operations (GFLOPs) serve as

a critical metric for evaluating the computational resources required by YOLO models. Lower

GFLOPs count signifies reduced computational demands and improved real-time performance.

Table 1 shows that the YOLO models demonstrate comparable performance. YOLOv11s achieves

the highest precision (P) of 0.838, YOLOv5s records the highest recall (R) of 0.799, and YOLOv9s

attains the highest mAP50 of 0.84. Additionally, YOLOv5s has the smallest model size (14 MB)

and the lowest computational requirement at 15.8 GFLOPs, which is approximately 74% of the

second-lowest model (YOLOv11s) and only 8% of the highest (YOLOv7x).

Table 6.2 highlights the performance of each class detected by the YOLOv5s model on the testing

dataset. The truncated dome achieves the highest metrics (P: 0.952, R: 0.983, and mAP50: 0.985).

In contrast, the tree branch records the lowest P (0.732), while the non-directional crack exhibits

the lowest R (0.556) and mAP50 (0.649).
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Table 6.1: Performance comparison of different YOLO models

YOLO models P R mAP50 Model size (MB) GFLOPs

YOLOv5s 0.834 0.799 0.827 14 15.8

YOLOv6s 0.835 0.756 0.816 38.8 45.3

YOLOv7x 0.809 0.778 0.807 136 188.1

YOLOv8s 0.819 0.771 0.820 21.5 28.4

YOLOv9s 0.834 0.788 0.840 14.6 26.7

YOLOv10s 0.817 0.776 0.826 15.8 24.5

YOLOv11s 0.838 0.781 0.831 18.4 21.3

Table 6.2: Performance by class of YOLOv5s on the testing Dataset

Class Images Instances P R mAP50

All 343 831 0.834 0.799 0.827

Manhole cover 99 119 0.891 0.866 0.917

Non-directional crack 69 143 0.776 0.556 0.649

Pine cone 65 220 0.837 0.884 0.894

Pothole 70 124 0.816 0.694 0.725

Tree branch 93 165 0.732 0.812 0.792

Truncated dome 52 60 0.952 0.983 0.985

A personal laptop with an Intel i5-13500H processor, NVIDIA GeForce RTX 3050 GPU (6GB),

16GB of RAM, and Windows 11 serves as the test device. Inference size is configured to 640×480

to better focus on the road ahead of e-scooters. Real-world experiments show that YOLOv5s

achieves an inference time between 9ms and 10 ms. The total inference time of the system is

between 10 to 20 ms. In comparison, human drivers require approximately 1600–2300 ms to avoid

obstacles [39]. Figure 6.2 shows the system’s detection results for ground obstacles positioned

beyond and within 4 meters of the electric scooter.
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Figure 6.2: Examples of the system detection results
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Discussion

Compared to other same-level YOLO models, YOLOv5s achieves superior computational and

storage efficiency while maintaining similar performance. These results show that YOLOv5s is

better suited for e-scooters, which are devices with limited computing resources. In the future,

deploying the trained YOLOv5s model on an embedded device in e-scooters will be both feasible

and efficient.

A comprehensive analysis of YOLOv5s metrics for each category on the test dataset reveals no-

table performance variations. The manhole covers and truncated dome categories achieve excellent

mAP50 scores of 0.917 and 0.985, respectively, likely due to their large sizes and distinctive fea-

tures, which make them easily recognizable. The pinecone and tree branch categories contain more

instances than others, as the dataset emphasizes collecting smaller target objects. However, the tree

branch’s mAP50 (0.792) is significantly lower than that of the pinecone (0.894). The pothole cat-

egory records a mAP50 of 0.725, while the non-directional crack has the lowest mAP50 of 0.649.

For the tree branch, pothole, and non-directional crack categories, the low mAP50 values are likely

due to varying shadows and light reflections, which make them harder to recognize [40]. Improv-

ing detection performance may involve collecting more diverse samples of these categories and

refining the training methodology to address these challenges effectively. Additionally, expanding

the dataset to include other categories, such as stones, could further benefit e-scooter riders.
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The system demonstrates a robust ability to measure distances to detected objects and explores its

potential to warn e-scooter riders by displaying real-time warning messages on data fusion images.

It lays the groundwork for future studies on delivering alerts to e-scooter riders.
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Future Work

Collecting additional obstacle categories and incorporating diverse environmental conditions, par-

ticularly nighttime scenarios, is essential for improving model generalization. Collaboration with

other universities can enhance data collection and further strengthen the dataset’s robustness.

The system’s infrastructure obstacle detection accuracy primarily depends on the YOLOv5s model,

which achieves a mAP50 of 0.827. Although the system demonstrates high accuracy, further

improvements are possible through model enhancement, advanced data augmentation, or the de-

velopment of a new model. However, maintaining real-time performance remains crucial when

optimizing detection accuracy.

Currently, the system runs on a personal desktop, making it impractical for deployment on an

e-scooter. To enable real-world application, the model should be deployed on an AI-embedded

board, such as the NVIDIA Jetson Orin Nano Developer Kit. Given the resource limitations of

e-scooters, an embedded board provides a more suitable solution.

Enhancing this system also requires improving user alerts through multiple methods, such as au-

ditory cues, smart augmented reality (AR) glasses, and haptic feedback. For instance, an auditory

alert, such as a beeping sound, can notify users of detected obstacles. When using smart AR

glasses, users can receive visual alerts about detected infrastructure obstacles within their field of
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view. However, these enhancements must balance effectiveness with user experience, as frequent

alerts in real traffic conditions may cause discomfort or distraction.
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Conclusion

The increasing adoption of e-scooters in urban environments has led to a rise in e-scooter-related

crashes and injuries. Due to design limitations, e-scooters are particularly susceptible to vibrations

caused by road hazards, making rider safety on uneven roadways a pressing concern. To address

this issue, this paper proposes a real-time ground obstacle detection system for e-scooters. The

system integrates an RGB camera and a depth camera to accurately and efficiently detect six types

of road obstacles, achieving an overall high mAP50 of 0.827 while maintaining computational

cost-efficiency. The IMU measures vibrations through linear vertical acceleration, which informs

the selection of these six obstacle types. These obstacles include manhole covers, non-directional

cracks, and potholes, identified using YOLO object detection models. By fusing RGB data and

depth data, the system facilitates precise distance estimation. However, further inclusion of addi-

tional road obstacle classes harmful to e-scooters is necessary, and the system’s performance still

has room for improvement. Future work could focus on deploying the system on embedded de-

vices with real-time notification systems, such as voice alerts or dashboard displays. This research

presents an effective real-time solution for detecting ground obstacles encountered by e-scooters,

paving the way for advancements in smart e-scooter safety and contributing to the broader devel-

opment of smart mobility.
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Appendix A

Structure of YOLOv6 to YOLOv11

Figure A.1: (a) The neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced

with CSPStackRep. (b) The structure of a BiC module. (c) A SimCSPSPPF block [19].

Figure A.2: The structure of YOLOv7 [41]
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Figure A.3: The structure of YOLOv8 [42]
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Figure A.4: The structure of YOLOv9 [22]



Structure of YOLOv6 to YOLOv11 41

Figure A.5: The structure of YOLOv10 [43]
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Figure A.6: The structure of YOLOv11



Glossary

Acronyms and Abbreviations

CAGR Compound Annual Growth Rate

ADAS Advanced Driver Assistance System

LiDAR Light Detection and Ranging

YOLO You Only Look Once

IMU Inertial Measurement Unit

RGB Red, Green, Blue

RDD Road Damage Dataset

SVRDD Street View Image Dataset for Automated Road Damage Detection

ROIs Regions of Interest

RPN Region Proposal Network

RANSAC Random Sample Consensus

WebIOPi Web Input Output Pi

GPIO General Purpose Input/Output

GPS Global Positioning System

DBSCAN Density-Based Spatial Clustering of Applications with Noise

LED Light Emitting Diode

LSTM Long Short-Term Memory

SR State Refinement

ETH Federal Institute of Technology
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UCY University of Cyprus

MAD Mean Average Displacement

FAD Final Average Displacement

TP True Positives

FP False Positives

FN False Negatives

P Precision

R Recall

IoU Intersection over Union

GFLOPs Giga Floating-point Operations

GPU Graphics Processing Unit

UVA University of Virginia
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“Collision Avoidance Safety Filter for an Autonomous E-Scooter using Ultrasonic Sensors,”

May 2024, arXiv:2403.15116. [Online]. Available: http://arxiv.org/abs/2403.15116

[33] X. Yan and D. Shen, “Active Collision Avoidance System for E-Scooters in Pedestrian

Environment,” Nov. 2023, arXiv:2311.04383. [Online]. Available: http://arxiv.org/abs/2311.

04383

[34] D. Chen, A. Hosseini, A. Smith, A. F. Nikkhah, A. Heydarian, O. Shoghli, and B. Campbell,

“Performance Evaluation of Real-Time Object Detection for Electric Scooters,” May 2024,

arXiv:2405.03039 [cs]. [Online]. Available: http://arxiv.org/abs/2405.03039

https://ieeexplore.ieee.org/document/10156621/
https://ieeexplore.ieee.org/document/10230854/?arnumber=10230854
https://ieeexplore.ieee.org/document/10230854/?arnumber=10230854
https://linkinghub.elsevier.com/retrieve/pii/S0888327024006848
https://ieeexplore.ieee.org/document/10323714/?arnumber=10323714
http://arxiv.org/abs/2403.15116
http://arxiv.org/abs/2311.04383
http://arxiv.org/abs/2311.04383
http://arxiv.org/abs/2405.03039


Bibliography 50

[35] A. Li, “Finding a safety feature algorithm for electric-scooter by detecting the closest obsta-

cles.”

[36] D. Tian, A. D. Ryan, C. M. Craig, K. Sievert, and N. L. Morris, “Characteristics and Risk

Factors for Electric Scooter-Related Crashes and Injury Crashes among Scooter Riders: A

Two-Phase Survey Study,” International Journal of Environmental Research and Public

Health, vol. 19, no. 16, p. 10129, Jan. 2022, number: 16 Publisher: Multidisciplinary Digital

Publishing Institute. [Online]. Available: https://www.mdpi.com/1660-4601/19/16/10129

[37] M. Trefzger, W. Titov, and T. Schlegel, “Analysis and Comparison of the Gaze Behavior of

E-Scooter Drivers and Cyclists.” Gesellschaft für Informatik, Bonn, 2021, pp. 1163–1180.

[Online]. Available: https://dl.gi.de/handle/20.500.12116/34696

[38] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance Metrics for

Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and

Image Processing (IWSSIP), Jul. 2020, pp. 237–242, iSSN: 2157-8702. [Online]. Available:

https://ieeexplore.ieee.org/document/9145130/?arnumber=9145130

[39] D. V. McGehee, E. N. Mazzae, and G. S. Baldwin, “Driver Reaction Time in Crash

Avoidance Research: Validation of a Driving Simulator Study on a Test Track,” Proceedings

of the Human Factors and Ergonomics Society Annual Meeting, vol. 44, no. 20, pp. 3–320,

Jul. 2000, num Pages: 3-323 Publisher: SAGE Publications Inc. [Online]. Available:

https://doi.org/10.1177/154193120004402026

[40] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using YOLO:

challenges, architectural successors, datasets and applications,” Multimedia Tools

and Applications, vol. 82, no. 6, pp. 9243–9275, Mar. 2023. [Online]. Available:

https://doi.org/10.1007/s11042-022-13644-y

[41] D. Yang, C. Miao, X. Li, Y. Liu, Y. Wang, and Y. Zheng, “Improved YOLOv7 Network

Model for Gangue Selection Robot for Gangue and Foreign Matter Detection in Coal,”

https://www.mdpi.com/1660-4601/19/16/10129
https://dl.gi.de/handle/20.500.12116/34696
https://ieeexplore.ieee.org/document/9145130/?arnumber=9145130
https://doi.org/10.1177/154193120004402026
https://doi.org/10.1007/s11042-022-13644-y


Bibliography 51

Sensors, vol. 23, no. 11, p. 5140, Jan. 2023, number: 11 Publisher: Multidisciplinary Digital

Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/23/11/5140

[42] “Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics.” [Online].

Available: https://github.com/ultralytics/ultralytics/issues/189

[43] P. Hidayatullah, N. Syakrani, M. R. Sholahuddin, T. Gelar, and R. Tubagus, “YOLOv8

to YOLO11: A Comprehensive Architecture In-depth Comparative Review,” Jan. 2025,

arXiv:2501.13400 [cs]. [Online]. Available: http://arxiv.org/abs/2501.13400

https://www.mdpi.com/1424-8220/23/11/5140
https://github.com/ultralytics/ultralytics/issues/189
http://arxiv.org/abs/2501.13400

	Abstract
	Acknowledgments
	Executive summary
	Introduction
	Motivation and problem statement 
	Research goal
	Research objectives and questions 
	Related work
	Create a ground obstacle dataset tailored to e-scooters
	Identify object detection model for e-scooter road obstacle dataset
	Develop a real-time ground obstacle detection system for e-scooters

	Research contributions

	Related Work
	Infrastructure obstacle datasets 
	Object detection models
	The absence of an infrastructure obstacle dataset and a relevant detection system for e-scooters

	E-scooters infrastructure obstacle dataset
	Linear vertical acceleration
	Data collection

	Object detection model for e-scooter infrastructure obstacle dataset
	YOLO detectors
	Precision, Recall, mAP50, Model Size, and GFLOPs

	Real-time infrastructure obstacle detection system for e-scooters
	Inference time
	Capable of detecting objects within 10 meters

	Result
	Discussion
	Future Work
	Conclusion
	Structure of YOLOv6 to YOLOv11
	Glossary
	Bibliography

