
A

Presented to
the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

by

APPROVAL SHEET

This

is submitted in partial fulfillment of the requirements
for the degree of

Author:

Advisor:

Advisor:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, School of Engineering and Applied Science

To my parents Zhigang and Wenli

and my family Yuxin

Acknowledgements

I would like to express my deepest gratitude to my advisor Shangtong

Zhang, whose insightful guidance and continuous encouragement have been

instrumental throughout my doctoral study. Shangtong’s mentorship has

profoundly shaped my thinking, and his thoughtful advice and support

beyond academia have greatly enriched my growth as a researcher and

individual. I would also like to thank my committee members for their

feedback and appraisal of my work: Aidong Zhang, Cong Shen, Lu Feng,

and Chen-Yu Wei. Their advice and encouragement have been instrumental

in shaping both the technical depth and clarity of this thesis. I am

deeply grateful to my coauthors, Haifeng Xu, Shuhang Chen, and Weiran

Shen for their invaluable collaboration. Their collective efforts, insightful

discussions, and dedicated feedback have significantly strengthened our

research and made this journey a rewarding experience. I also thank my

colleagues in Sequential Intelligence Lab for fostering an environment of

intellectual curiosity and collaboration. Their openness in sharing ideas and

resources made my research experience both productive and enjoyable. My

heartfelt thanks go to my parents, Zhigang and Wenli, whose unwavering

support and encouragement have been invaluable to me throughout the

way. I am especially grateful to Yuxin for her deepest love, support, and

understanding, which have been a constant source of strength throughout

my journey. I look forward to sharing a joyful and fulfilling life together,

filled with growth and companionship.

Abstract

Evaluating the quality of a policy (i.e, a decision making rule that an

agent adopts to interact with the environment) is central to reinforcement

learning (RL). The conventional approach requires repeatedly executing the

policy and averaging its outcome. However, due to high evaluation variance,

this method demands massive active interactions with the environment

to obtain data, which is both expensive and slow. At the same time, the

stability of many RL algorithms remains an open question, as existing

analyses often rely on assumptions that fail to hold in practice. This

thesis addresses both challenges by proposing algorithms that enhance the

efficiency and robustness of policy evaluation, and by providing a stability

analysis of RL algorithms under realistic conditions.

The first part of the thesis focuses on algorithmic innovations reducing the

amount of data needed for accurate evaluation. We begin by introducing an

optimal data collecting policy that significantly lowers evaluation variance

compared to traditional approaches. In settings where multiple policies

must be evaluated at once, we propose a shared data-collecting policy that

reduces evaluation variance across all interested policies simultaneously.

Taking a step further, we develop a doubly-optimal policy evaluation

method that optimizes both data collection and processing stages, achieving

state-of-the-art variance reduction. To enhance robustness and safety, we

also design methods that account for uncertainty in the environment

and enforce safety constraints during data collection. Together, these

contributions offer a framework for reliable and sample-efficient policy

evaluation.

In the second part of the thesis, we focus on the theoretical analysis of RL

algorithms. We study the stability of stochastic approximation methods

(i.e., iterative methods that update estimates using noisy observations of

a target quantity) under Markovian noise (i.e., when the randomness in

updates comes from data generated by a Markov process, so that samples

are correlated rather than independent). Our framework provides almost

sure convergence guarantees under practical conditions and applies to a

broader class of RL algorithms than previous results.

Collectively, this thesis advances both the algorithmic and theoretical

foundations of policy evaluation, offering tools that are efficient, reliable,

and applicable to real-world RL systems.

5

Preface

This proposal is based on several papers I authored. In particular, Chap-

ter 4 is based on Liu and Zhang (2024); Chapter 5 is based on Liu et al.

(2025c); Chapter 6 is based on Liu et al. (2025a); Chapter 7 is based on my

equally-contributed first-authored paper Chen et al. (2025), and Chapter 9

is based on Liu et al. (2025b). Besides, Chapter 8 focuses on my proposed

method.

1. Liu, S. and Zhang, S. (2024). Efficient policy evaluation with of-

fline data informed behavior policy design. In Proceedings of the

International Conference on Machine Learning.

2. Liu, S., Chen, C., and Zhang, S. (2025a). Doubly optimal policy eval-

uation for reinforcement learning. In Proceedings of the International

Conference on Learning Representations.

3. Liu, S., Chen, Y., and Zhang, S. (2025c). Efficient multi-policy

evaluation for reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence (Oral Presentation Honor).

4. Chen, C., Liu, S., and Zhang, S. (2025). Efficient policy evaluation

with safety constraint for reinforcement learning. In Proceedings of

the International Conference on Learning Representations.

5. Liu, S., Chen, S., and Zhang, S. (2025b). The ode method for

stochastic approximation and reinforcement learning with markovian

noise. Journal of Machine Learning Research.

Apart from the above papers on reinforcement learning, I also have the

following paper during my PhD study.

1. Liu, S., Shen, W., and Xu, H. (2021a). Optimal pricing of infor-

mation. In Proceedings of the ACM Conference on Economics and

Computation.

Contents

1 Introduction 1

2 Background 4

2.1 Finite Markov Decision Process . 4

2.2 Discounted Markov Decision Process 5

2.3 Constrained Markov Decision Process 5

2.4 Off-Policy Evaluation . 6

2.5 Importance Sampling for Off-Policy Evaluation 7

2.6 Fitted Q Evaluation . 9

2.7 Policy Gradient . 9

2.8 Linear Function Approximation . 10

2.9 Off-policy Temporal Difference Learning 11

2.10 Gradient Temporal Difference Learning 12

2.11 Emphatic Temporal Difference Learning 13

3 Related Work 14

3.1 Variance Reduction in Policy Evaluation 14

3.2 Multi-Policy Evaluation . 15

3.2.1 Multiple target policies . 15

3.2.2 Multiple logging policies . 16

3.3 Safe Reinforcement Learning . 16

3.4 Robust Reinforcement Learning . 17

3.5 Stability of Reinforcement Learning Algorithms 18

4 Efficient Policy Evaluation with Offline Data Informed Behavior

Policy Design 19

4.1 Preliminaries . 19

4.2 Variance Reduction in Statistics . 20

4.3 Variance Reduction in Reinforcement Learning 23

i

4.4 Learning Closed-Form Behavior Policies 27

4.5 Empirical Results . 29

4.6 Discussion . 32

5 Efficient Multi-Policy Evaluation for Reinforcement Learning 33

5.1 Preliminaries . 33

5.2 Variance Reduction in Statistics . 35

5.3 Variance Reduction in Reinforcement Learning 39

5.4 Empirical Results . 44

5.5 Discussion . 46

6 Doubly Optimal Policy Evaluation 47

6.1 Preliminaries . 47

6.2 Variance Reduction in Reinforcement Learning 48

6.3 Variance Comparison . 53

6.4 Learning Closed-Form Behavior Policies 55

6.5 Empirical Results . 56

6.6 Discussion . 58

7 Efficient Off-Policy Evaluation with Safety Constraint for Reinforce-

ment Learning 59

7.1 Preliminaries . 59

7.2 Constrained Variance Minimization for Contextual Bandits 60

7.3 Constrained Variance Minimization for Sequential Reinforcement Learning 64

7.4 Learning the Optimal Behavior Policy 66

7.5 Empirical Results . 68

7.6 Discussion . 71

8 Efficient and Robust Policy Evaluation for Reinforcement Learning

through Transition Gradient 72

8.1 Preliminaries . 72

8.2 Adversarial Off-Policy Evaluation . 73

8.3 Solving the Inner Loop . 74

8.3.1 On-Transition Gradient of the Variance 74

8.3.2 Off-Transition Gradient of the Variance 76

8.4 Solving the Outer Loop . 78

8.5 Empirical Results . 78

ii

9 The ODE Method for Stochastic Approximation and Reinforcement

Learning with Markovian Noise 80

9.1 Preliminaries . 80

9.2 Main Results . 83

9.3 Prior Work . 87

9.4 Main Proof . 90

9.4.1 Diminishing Asymptotic Rate of Change 90

9.4.2 Equicontinuity of Scaled Iterates 92

9.4.3 A Convergent Subsequence . 94

9.4.4 Diminishing Discretization Error 96

9.4.5 Identifying Contradiction and Completing Proof 98

9.5 Applications in Reinforcement Learning 99

9.5.1 Eligibility Trace . 101

9.5.2 The Deadly Triad . 102

9.5.3 Gradient Temporal Difference Learning 104

9.5.4 Emphatic Temporal Difference Learning 106

9.6 Discussion . 109

10 Conclusion 110

Bibliography 111

A Appendix for Chapter 4 127

A.1 Proofs . 127

A.1.1 Proof of Lemma 1 . 127

A.1.2 Proof of Lemma 2 . 127

A.1.3 Proof of Lemma 3 . 129

A.1.4 Proof of Theorem 1 . 130

A.1.5 Proof of Theorem 2 . 131

A.1.6 Proof of Theorem 3 . 134

A.1.7 Proof of Theorem 4 . 138

A.1.8 Proof of Theorem 5 . 139

A.2 Experiment Details . 141

A.2.1 GridWorld . 141

A.2.2 MuJoCo . 141

iii

B Appendix for Chapter 6 144

B.1 Proofs . 144

B.1.1 Proof of Lemma 8 . 144

B.1.2 Proof of Lemma 9 . 144

B.1.3 Proof of Theorem 10 . 146

B.1.4 Proof of Theorem 11 . 152

B.1.5 Proof of Theorem 13 . 155

B.1.6 Proof of Theorem 14 . 159

B.1.7 Proof of Theorem 15 . 161

B.1.8 Proof of Lemma 10 . 163

B.2 Experiment Details . 163

B.2.1 GridWorld . 164

B.2.2 MuJoCo . 165

C Appendix for Chapter 5 167

C.1 Proofs . 167

C.1.1 Proof of Lemma 4 . 167

C.1.2 Proof of Lemma 5 . 167

C.1.3 Proof of Lemma 6 . 170

C.1.4 Proof of Lemma 7 . 172

C.1.5 Proof of Theorem 6 . 173

C.1.6 Proof of Theorem 7 . 174

C.1.7 Proof of Theorem 8 . 177

C.1.8 Proof of Theorem 9 . 184

C.2 Experiment Details . 185

C.2.1 Learning Closed-Form Behavior Policy 185

C.2.2 GridWorld . 187

C.2.3 MuJoCo . 189

D Appendix for Chapter 7 191

D.1 Proofs . 191

D.1.1 Proof of Lemma 11 . 191

D.1.2 Proof of Lemma 12 . 191

D.1.3 Proof of Lemma 1 . 193

D.1.4 Proof of Theorem 16 . 194

D.1.5 Proof of Theorem 17 . 196

D.1.6 Proof of Theorem 18 . 198

iv

D.1.7 Proof of Lemma 15 . 200

D.2 Experiment Details . 201

D.2.1 GridWorld . 201

D.2.2 MuJoCo . 202

E Appendix for Chapter 8 205

E.1 Proof . 205

E.1.1 Proof of Lemma 16 . 205

E.1.2 Proof of Lemma 17 . 207

E.1.3 Proof of Lemma 18 . 212

E.1.4 Proof of Lemma 19 . 214

E.1.5 Proof of Lemma 20 . 216

F Appendix for Chapter 9 218

F.1 Mathematical Background . 218

F.2 Technical Proofs . 222

F.2.1 Proof of Lemma 23 . 222

F.2.2 Proof of Lemma 24 . 223

F.2.3 Proof of Lemma 25 . 226

F.2.4 Proof of Lemma 26 . 228

F.2.5 Proof of Lemma 28 . 229

F.2.6 Proof of Lemma 29 . 230

F.2.7 Proof of Lemma 30 . 231

F.2.8 Proof of Lemma 31 . 233

F.2.9 Proof of Corollary 1 . 233

F.2.10 Proof of Theorem 20 . 237

F.3 Auxiliary Lemmas . 239

F.4 Proofs for Completeness . 255

F.4.1 Proof of Lemma 22 . 255

F.4.2 Proof of Lemma 27 . 259

F.4.3 Proof of Lemma 67 . 260

F.4.4 Proof of Lemma 68 . 261

F.4.5 Proof of Lemma 69 . 264

v

List of Figures

4.1 Results on Gridworld. The curves are averaged over 900 trials (30

target policies, each having 30 independent runs). The shaded regions

denote standard errors and are invisible for some curves because they

are too small. 31

4.2 Results on Mujoco environments. Each curve is averaged over 900 trials

(30 target policies, each having 30 independent runs). The shaded

regions denote standard errors and are invisible for some curves because

they are too small. 31

5.2 Results on MuJoCo. Each curve is averaged over 900 runs (30 groups

of target policies, each having 30 independent runs). Shaded regions

denote standard errors and are invisible for some curves because they

are too small. 43

5.1 Results on Gridworld. Each curve is averaged over 900 runs (30 groups

of policies, each having 30 independent runs). Shaded regions denote

standard errors and are invisible for some curves because they are too

small. 43

6.1 Results on Gridworld. Each curve is averaged over 900 runs (30 target

policies, each having 30 independent runs). Shaded regions denote

standard errors and are invisible for some curves because they are too

small. 56

6.2 Results on MuJoCo. Each curve is averaged over 900 independent runs

(30 target policies, each having 30 independent runs). Shaded regions

denote standard errors and are invisible for some curves because they

are too small. 57

vi

7.1 Results on Gridworld with episodes as x-axis. Each curve is averaged

over 900 runs (30 target policies, each having 30 independent runs).

Shaded regions denote standard errors and are invisible for some curves

as they are too small. 68

7.2 Results on Gridworld with cost budget as x-axis. Cost budget is the

total cost of execution. Each curve is averaged over 900 runs (30 target

policies, each having 30 independent runs). Shaded regions denote

standard errors. 68

7.3 Results on MuJoCo. Cost budget on the x-axis is the total cost of

execution. Each curve is averaged over 900 runs (30 of target policies,

each having 30 independent runs). Shaded regions denote standard

errors and are invisible for some curves because they are too small.

Results with a larger x-axis range are in the appendix. 70

8.1 Results on Gridworld. Each curve is averaged over 30 training trajecto-

ries of transition probability. Shaded regions denote standard errors.

. 79

A.1 MuJoCo (Todorov et al., 2012) robot simulation tasks. MuJoCo is a

physics engine for robotics simulation and contains various stochastic

environments. The goal in each environment is to control a robot to

achieve different behaviors such as walking, jumping, and balancing.

Environments from the left to the right are Ant, Hopper, InvertedDou-

blePendulum, InvertedPendulum, and Walker. We conducted experi-

ments on those five environments with results reported in Section 4.5.

. 142

A.2 MuJoCo results using steps as the x-axis. We draw each curve from

step 100 because some policies need more than 100 steps to finish the

first episode. All curves are averaged over 900 trials (30 target policies,

each having 30 independent runs). The shaded regions denote standard

errors and are invisible because they are too small. 143

B.1 MuJoCo robot simulation tasks (Todorov et al., 2012). The pictures are

adapted from (Liu and Zhang, 2024). Environments from the left to the

right are Ant, Hopper, InvertedDoublePendulum, InvertedPendulum,

and Walker. 164

vii

C.1 Results on Gridworld. Each curve is averaged over 900 runs (the corre-

sponding target policies from 30 groups, each having 30 independent

runs). Shaded regions denote standard errors and are invisible for some

curves because they are too small. 188

C.2 Results on Gridworld. Each curve is averaged over 900 runs (the corre-

sponding target policies from 30 groups, each having 30 independent

runs). Shaded regions denote standard errors and are invisible for some

curves because they are too small. 188

C.3 MuJoCo robot simulation tasks (Todorov et al., 2012). Pictures are

adapted from (Liu and Zhang, 2024). Environments from the left to the

right are Ant, Hopper, InvertedDoublePendulum, InvertedPendulum,

and Walker. 189

D.1 MuJoCo robot simulation tasks (Todorov et al., 2012). Pictures are

adapted from (Liu and Zhang, 2024). Environments from the left to the

right are Ant, Hopper, InvertedDoublePendulum, InvertedPendulum,

and Walker. 202

D.2 Results on MuJoCo with log-scale y-axis to show the error does not

converge. Each curve is averaged over 900 runs (30 target policies, each

having 30 independent runs). Shaded regions denote standard errors

and are invisible for some curves because they are too small. 203

viii

Chapter 1

Introduction

Reinforcement learning (RL, Sutton and Barto (2018)) has achieved remarkable success

in various sequential decision-making problems. For example, RL algorithms have

reduced energy consumption for Google data centers’ cooling by 40% (Chervonyi et al.,

2022), predicted protein structures with competitive accuracy (Jumper et al., 2021),

and discovered faster matrix multiplication algorithms (Fawzi et al., 2022). When

applying RL algorithms, policy evaluation plays a critical role to allow practitioners to

estimate the performance of a policy before committing to its full deployment and test

different algorithmic choices. A commonly used approach among RL practitioners for

policy evaluation is the on-policy Monte Carlo method, where a policy (i.e., the target

policy) is evaluated by directly executing itself. However, using the target policy itself

as the behavior policy is not optimal (Liu and Zhang, 2024), leading to evaluation

with high variance. This suboptimality of on-policy evaluation results in extensive

needs for collecting online samples to achieve a desired level of accuracy.

In many scenarios, heavily relying on online data is not preferable, since collecting

massive online data through real-world interaction is both expensive and slow (Li,

2019; Zhang, 2023). Even with a well-developed simulator, complex tasks like data

center cooling take 10 seconds per step (Chervonyi et al., 2022), making the evaluation

of a policy requiring millions of steps prohibitively expensive. To address the expensive

nature of online data, offline RL is proposed to mitigate the dependency on online data.

However, there are often mismatches between the offline data distribution and the data

distribution induced by the target policy, leading to uncontrolled and ineliminable bias

(Jiang and Li, 2016; Farahmand and Szepesvári, 2011; Marivate, 2015). As a result, a

policy with high performance on offline data may actually perform very poorly in real

deployment (Levine, 2018). Consequently, both online and offline RL practitioners

still heavily rely on online policy evaluation methods (Kalashnikov et al., 2018; Vinyals

et al., 2019).

1

To improve the online sample efficiency for policy evaluation, existing methods

utilize the off-policy evaluation (OPE) strategy, designing different data-collecting

behavior policies to reduce the evaluation variance (Hanna et al., 2017; Zhong et al.,

2022; Liu and Zhang, 2024; Liu et al., 2025a). Under this regime, our prior work (Liu

and Zhang, 2024) designs a closed-formed optimal behavior policies that minimize

estimation variance by leveraging existing offline data. This approach significantly

reduces the variance compared to traditional on-policy methods, as confirmed by

empirical studies across multiple benchmarks.

In many reinforcement learning applications such as hyperparameter tuning and

model selection, evaluating multiple target policies simultaneously is a common

need. Traditional methods typically require separate data collections for each policy

evaluation, which leads to high inefficiency. To tackle this problem, we develop a shared

variance-reducing behavior policy for multiple target policies (Liu et al., 2025c). Our

method gives unbiased estimation and reduce evaluation variance for multiple target

policies at the same time. It significantly reduces the total number of online samples

needed and empirically outperforms existing multi-policy evaluation techniques.

Building on these insights, we further design a doubly optimal policy evaluation

framework that simultaneously optimizes both data collection and data processing

phases (Liu et al., 2025a). This doubly optimal estimator is obtained from a bi-

level optimization problem, incorporating the optimal data-collecting policy with the

optimal data-processing baselines. Our method achieves state-of-the-art performance

in reducing variance. Theoretically, we prove the estimator’s unbiasedness and variance

reduction properties compared to previous best-performing methods. Empirically, Liu

et al. (2025a) saves substantial amount of online data across various environments,

demonstrating state-of-the-art performance.

In many real-world applications, ensuring safety during policy execution is as

crucial as achieving sample efficiency. Considering the safety concern in running

the behavior policy, we introduce a safety-constrained off-policy evaluation method

(Chen et al., 2025). This method incorporates safety constraints directly into the

behavior policy design, ensuring that policy evaluations maintain rigorous safety

standards without compromising efficiency. Our theoretical results guarantee variance

reduction and safety constraint satisfaction simultaneously, with empirical experiments

demonstrating superior performance compared to existing methods.

While these methods effectively reduce variance, a critical limitation persists:

existing OPE approaches typically assume fixed transition dynamics between training

2

and deployment environments. However, transition dynamics often change in real-

world scenarios due to factors such as system drift or unforeseen perturbations,

leading to unreliable evaluations (Wang et al., 2023). To tackle this problem, we

further propose an efficient and robust off-policy evaluation method, which explicitly

models uncertainty in transition dynamics through transition gradient optimization.

Our approach formulates policy evaluation as a minimax optimization problem to

identify and handle worst-case transition scenarios systematically. This ensures robust

evaluations even under significant environmental shifts. Analytical derivations and

empirical tests highlight the effectiveness and robustness of this method in handling

dynamic transition uncertainties.

In addition to improving empirical performance and robustness in policy evaluation,

we also contribute theoretical foundations that enhance the understanding of stability

in reinforcement learning algorithms. Stochastic approximation forms the backbone of

many RL algorithms, which iteratively update estimates based on noisy samples from

the environment. This framework underlies widely used methods such as temporal

difference learning (Sutton, 1988). Analyzing the convergence of these algorithms

typically requires strong assumptions on the noise process, such as i.i.d. or martingale

difference noise. However, in RL, the noise is often Markovian and potentially un-

bounded, particularly when eligibility traces and function approximation are involved.

To address this, we develop a new ordinary differential equation (ODE) framework

that extends the classical Borkar-Meyn theorem to the Markovian noise setting under

verifiable and broadly applicable assumptions (Liu et al., 2025b). This framework

guarantees almost sure stability and convergence of stochastic approximation iterates

and provides a general-purpose theoretical tool for analyzing the dynamics of RL

algorithms under realistic conditions.

This thesis explores a series of advanced strategies for efficient, robust, and

safe policy evaluation, addressing key challenges such as variance reduction, multi-

policy evaluation, safety constraints, and transition uncertainty. Beyond empirical

advancements, we also provide a general theoretical framework that strengthens the

stability guarantees for a wide class of reinforcement learning algorithms modeled as

stochastic approximation. Together, these contributions offer both practical tools for

high-stakes RL deployments and foundational insights for the design and analysis of

RL algorithms in complex, dynamic environments.

3

Chapter 2

Background

2.1 Finite Markov Decision Process

A finite-horizon Markov Decision Process (MDP) is defined by a tuple (S,A, p, r, p0, T),

where S and A are finite state and action spaces, respectively. The transition dynamics

are characterized by a probability distribution p : S ×A×S → [0, 1], where p(s′ | s, a)

denotes the probability of transitioning to state s′ upon taking action a in state s.

The reward function is defined as r : S × A → R, assigning a scalar reward to each

state-action pair. The initial state distribution is denoted by p0 : S → [0, 1], and the

horizon length T specifies the finite length of an episode.

In reinforcement learning, the agent interacts with the MDP sequentially over

time steps t ∈ {0, 1, . . . , T − 1}. At each time step t, the agent observes a state

St ∈ S, selects an action At ∈ A according to a policy πt(a | s), receives a reward

Rt+1 = r(St, At), and transitions to the next state St+1 drawn from p(· | St, At). We

denote the generated trajectory in a finite MDP as τ = (S0, A0, R1, . . . , ST). We also

use abbreviations πi:j
.
= {πi, πi+1, . . . , πj} and π

.
= π0:T−1.

The return at time step t is defined as the cumulative sum of future rewards:

Gt
.
=

T∑
i=t+1

Ri.

Correspondingly, the state-value function and action-value function of policy π at

time step t are defined as

vπ,t(s)
.
= Eπ [Gt | St = s] , qπ,t(s, a)

.
= Eπ [Gt | St = s, At = a] .

The overall performance of a policy π is measured by the expected total return

over the initial state distribution:

J(π)
.
=
∑
s∈S

p0(s)vπ,0(s).

4

In this thesis, we are interested in the evaluation of policies in this finite-horizon

MDP framework, which serves as the foundation for the subsequent chapters.

2.2 Discounted Markov Decision Process

In addition to the finite-horizon setting, reinforcement learning is also studied in

the context of an infinite-horizon Markov Decision Process (MDP) with discounted

rewards. A discounted MDP is defined by a tuple (S,A, p, r, p0, γ), where S and A
are finite state and action spaces, p : S ×A× S → [0, 1] is the transition probability

function, r : S ×A → R is the reward function, p0 is the initial state distribution, and

γ ∈ (0, 1) is the discount factor.

The agent interacts with the environment over an infinite sequence of time steps.

At each time step t, the agent observes a state St ∈ S, selects an action At ∈ A
according to a stationary policy π(a | s), receives a reward Rt+1 = r(St, At), and

transitions to a successor state St+1 sampled from p(· | St, At).

The discounted return at time step t is defined as:

Gt
.
=

∞∑
i=t+1

γi−t−1Ri.

The state-value function vπ,t(s), state-action-value function qπ,t(s, a), and the

expected total return J(π) follow the same definitions as in the finite-horizon MDP.

The discount factor γ serves to weigh immediate rewards more heavily than distant

future rewards and ensures the convergence of the infinite sum defining the return.

The discounted infinite-horizon MDP setting is widely used due to its analytical

convenience and relevance to long-term sequential decision-making problems.

2.3 Constrained Markov Decision Process

In addition to the standard MDP framework, we also consider a Constrained Markov

Decision Process (CMDP), which incorporates an additional cost signal to model

safety-critical scenarios. A (finite) CMDP is defined by a tuple (S,A, p, r, c, p0, T),

where S and A are finite state and action spaces, p : S×A×S → [0, 1] is the transition

probability function, r : S ×A → R is the reward function, c : S ×A → R is the cost

function, p0 is the initial state distribution, and T is the finite horizon length.

The CMDP process starts at time step 0 by sampling an initial state S0 from p0.

At each time step t ∈ {0, 1, . . . , T − 1}, the agent selects an action At ∈ A according

5

to a policy πt(a | s), receives a reward Rt+1 = r(St, At) and a cost Ct+1 = c(St, At),

and transitions to the next state St+1 sampled from p(· | St, At).

The return for the reward and the cost at time step t are defined as:

Gt
.
=

T∑
i=t+1

Ri, Gc
t
.
=

T∑
i=t+1

Ci.

The state-value and action-value functions for the reward are defined as:

vπ,t(s)
.
= Eπ[Gt | St = s], qπ,t(s, a)

.
= Eπ[Gt | St = s, At = a].

Similarly, the state-value and action-value functions for the cost are defined as:

vcπ,t(s)
.
= Eπ[Gc

t | St = s], qcπ,t(s, a)
.
= Eπ[Gc

t | St = s, At = a].

The overall performance of policy π is measured by the expected total reward:

J(π)
.
=
∑
s∈S

p0(s)vπ,0(s).

Similarly, the total cost under policy π is defined as:

J c(π)
.
=
∑
s∈S

p0(s)v
c
π,0(s).

We denote the generated trajectory in a finite CMDP as

τ = {S0, A0, R1, C1, S1, A1, R2, C2, . . . , ST−1, AT−1, RT , CT},

which is simplified by the shorthand τ
µt:T−1

t:T−1 .

2.4 Off-Policy Evaluation

In reinforcement learning, an important problem is to assess the performance of a

policy without executing it in the environment. This problem is referred to as off-policy

evaluation (OPE). The objective of OPE is to estimate the expected total reward

J(π) of a target policy π, using data generated by a different policy µ, known as the

behavior policy.

Formally, we are interested in estimating:

J(π)
.
=
∑
s∈S

p0(s)vπ,0(s),

6

where the value function vπ,0(s) is defined under the target policy π, but the available

data consists of trajectories generated under the behavior policy µ. Each trajectory

collected under µ takes the form:

{S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT},

where S0 ∼ p0 and At ∼ µt(· | St) for all t.

Off-policy evaluation is essential in settings where directly deploying the target

policy is impractical due to safety concerns, high interaction costs, or low data efficiency.

By leveraging data collected from the behavior policy, properly designed OPE enables

practitioners to estimate policy performance with existing data or smaller amount of

online interaction.

However, OPE faces fundamental challenges due to the distribution mismatch

between the target and behavior policies. In particular, naively using behavior policy

data to estimate J(π) may result in biased estimates. Classical solutions address this

issue by employing techniques such as importance sampling to reweight observed data

and account for the difference between π and µ.

While importance sampling-based methods are known to suffer from high vari-

ance—especially when the target policy differs significantly from the behavior pol-

icy—recent work, including the contributions of this thesis, demonstrates that off-policy

evaluation can be made efficient and reliable through proper algorithmic design and

data collection strategies. In the next section, we will provide a detailed discussion of

importance sampling and its various formulations for off-policy evaluation.

2.5 Importance Sampling for Off-Policy Evaluation

A standard approach to address the distribution mismatch in off-policy evaluation is

the technique of importance sampling. Importance sampling adjusts the contribution

of behavior policy data to reflect the target policy’s distribution by reweighting the

observed rewards.

For each trajectory collected under the behavior policy µ, we define the importance

sampling ratio at time step t as:

ρt
.
=
πt(At | St)

µt(At | St)
.

The product of importance sampling ratios from time step t to t′ ≥ t is denoted as:

ρt:t′
.
=

t′∏
k=t

πk(Ak | Sk)

µk(Ak | Sk)
.

7

Several variants of importance sampling estimators have been proposed in the

literature (Geweke, 1988; Hesterberg, 1995; Koller and Friedman, 2009; Thomas, 2015).

A classical approach is the trajectory-wise importance sampling estimator (IS), which

reweights the total return of an entire trajectory:

IS(τ)
.
= ρ0:T−1

T−1∑
t=0

Rt+1.

While this estimator is unbiased under the standard policy coverage assumption

(Precup et al., 2000a; Maei, 2011; Sutton et al., 2016; Zhang, 2022), it typically suffers

from high variance, especially when the importance weights ρ0:T−1 deviate significantly

from one.

To mitigate this issue, the per-decision importance sampling estimator (PDIS)

was introduced by Precup et al. (2000a). PDIS reweights rewards at each time step

separately, leading to reduced variance compared to trajectory-wise IS. It is defined

as:

GPDIS(τ
µt:T−1

t:T−1)
.
=

T−1∑
k=t

ρt:kRk+1.

The PDIS estimator can also be expressed recursively as:

GPDIS(τ
µt:T−1

t:T−1) =

{
ρt
(
Rt+1 +GPDIS(τ

µt+1:T−1

t+1:T−1)
)

t ∈ [T − 2],

ρtRt+1 t = T − 1.

Under the standard policy coverage assumption,

∀t, s, a, µt(a | s) = 0 =⇒ πt(a | s) = 0,

both IS and PDIS estimators are unbiased. In this thesis, we further loosen this

condition and characterize a broader class of behavior policies under which the PDIS

estimator remains unbiased.

Traditionally, the variance issue associated with importance sampling has led to

the belief that off-policy evaluation using such estimators is inherently inefficient. In

this thesis, we revisit this belief and demonstrate that, with properly designed behavior

policies and variance reduction techniques, importance sampling can be leveraged not

only to correct distribution mismatch but also to serve as a variance minimization

tool.

8

2.6 Fitted Q Evaluation

Fitted Q Evaluation (FQE) is a regression-based algorithm for offline policy evaluation.

Its objective is to estimate the expected total return of a target policy using a fixed

dataset collected by potentially unknown behavior policies.

FQE is motivated by the Bellman equation, which characterizes the action-value

function qπ,t(s, a) of a target policy π at time step t as:

qπ,t(s, a) = Eπ

[
Rt+1 + qπ,t+1(St+1, At+1)

∣∣St = s, At = a
]
,

with the terminal condition qπ,T (s, a) = 0. This recursive structure motivates a

backward dynamic programming approach for estimating qπ,t from offline data.

Given an offline dataset D = {(Si
t , A

i
t, R

i
t+1, S

i
t+1)}ni=1, FQE iteratively estimates

the Q-function at each time step. For each t = T − 1, T − 2, . . . , 0, the Q-function is

updated by solving:

q
(ℓ+1)
t ∈ arg min

q∈F

n∑
i=1

(
q(Si

t , A
i
t)−

(
Ri

t+1 +
∑
a∈A

πt+1(a | Si
t+1)q

(ℓ)
t+1(S

i
t+1, a)

))2

,

where ℓ ≥ 0 denotes the iteration index, and the initialization is q
(0)
T ≡ 0.

This backward procedure continues until the Q-function estimates converge. Once

the estimates {q(ℓ)t }T−1
t=0 are obtained, the expected total reward of the target policy is

estimated by:

J(π) ≈
∑
s∈S

p0(s)
∑
a∈A

π0(a | s)q(ℓ)0 (s, a).

In this thesis, we adopt FQE as a fundamental tool for offline policy evaluation.

Specifically, we use FQE to estimate the extended value function of target policies

from existing offline data, which in turn enables the learning of closed-form behavior

policies for efficient online data collection.

2.7 Policy Gradient

Policy gradient methods are a foundational class of reinforcement learning algorithms

that optimize the policy directly in the parameter space. Unlike value-based methods

that learn action-value functions and derive the policy indirectly, policy gradient

methods parameterize the policy as πθ, where θ ∈ Rd is a vector of parameters, and

perform gradient ascent on the expected return.

9

Formally, the objective is to maximize the expected total reward of the policy:

J(θ) = Eπθ

[
T−1∑
t=0

Rt+1

]
.

The policy gradient theorem (Sutton et al., 1999) provides a tractable expression

for the gradient of J(θ) with respect to the policy parameters:

∇θJ(θ) = Eπθ

[
T−1∑
t=0

∇θ log πθ(At | St)Gt

]
,

where Gt =
∑T

i=t+1Ri is the cumulative return starting from time step t. This gradient

estimator is unbiased under the assumption that the trajectories are generated by the

current policy πθ.

Policy gradient algorithms, such as REINFORCE (Williams, 1992) and its variants,

perform stochastic gradient ascent by updating the policy parameters as:

θ ← θ + α∇θJ(θ),

where α > 0 is the learning rate.

One of the key advantages of policy gradient methods is their applicability to

high-dimensional or continuous action spaces, where value-based methods may struggle.

However, a major challenge associated with policy gradient estimators is their high

variance, which can result in unstable or sample-inefficient learning. Several variance

reduction techniques have been proposed to address this issue, including the use of

baselines (Greensmith et al., 2004), advantage functions (Schulman et al., 2016), and

control variates (Wu et al., 2018).

Beyond policy optimization, the policy gradient framework also provides a powerful

tool for sensitivity analysis and variance evaluation. In particular, the gradient of the

return variance with respect to the policy parameters can be computed and optimized,

enabling variance-aware learning and behavior policy design.

In this thesis, we leverage the idea for policy gradient to control the variance of

policy evaluation. Specifically, we utilize a variance gradient formulation to control

the variance of policy evaluation under adversarial transition dynamics and to guide

the learning of behavior policies that are robust to environmental perturbations.

2.8 Linear Function Approximation

In large or continuous state spaces, representing the exact value function is often

impractical due to the curse of dimensionality. To overcome this challenge, a common

10

approach is to approximate the value function using a linear combination of features.

Specifically, let ϕ : S → RK denote a feature mapping from states to K-dimensional

vectors. The approximate value function is then defined as

vθ(s)
.
= ϕ(s)⊤θ,

where θ ∈ RK is the parameter vector to be learned.

We further define the feature matrix Φ ∈ R|S|×K , whose s-th row is given by ϕ(s)⊤.

Under this notation, the value function over all states can be written compactly as

vθ = Φθ.

Linear function approximation has been widely adopted in reinforcement learning,

particularly in theoretical analyses and algorithm development, due to its simplicity and

analytical tractability. Throughout this thesis, we assume access to such a fixed feature

representation and adopt linear function approximation in both algorithmic design

and theoretical analysis. In particular, the algorithms and stochastic approximation

procedures studied in this thesis, including TD learning, GTD, and their stability

analysis, are all developed under this setting.

2.9 Off-policy Temporal Difference Learning

Temporal Difference (TD) learning is a widely used method for estimating value

functions by bootstrapping from future estimates. In the off-policy setting, data is

collected under a behavior policy µ while evaluating a different target policy π. When

combined with linear function approximation, the off-policy TD(λ) algorithm updates

its value estimate θt using the following recursion:

et = λγρt−1et−1 + ϕt,

δt = Rt+1 + γϕ⊤
t+1θt − ϕ⊤

t θt,

θt+1 = θt + αtρtδtet,

where ϕt = ϕ(St), ρt = π(At|St)
µ(At|St)

is the importance sampling ratio, and et is the eligibility

trace vector.

While off-policy TD methods are widely used, they can exhibit instability even

with linear function approximation and regularization. Recent work shows that

regularization may fail to prevent divergence and can introduce additional instability

(Manek and Kolter, 2022). These issues motivate the development of more stable

alternatives such as GTD, which optimizes a well-defined objective and enables

theoretical convergence analysis.

11

2.10 Gradient Temporal Difference Learning

Temporal difference learning with linear function approximation is one of the most

widely used approaches in reinforcement learning. However, when applied in the

off-policy setting, conventional TD methods suffer from instability and divergence

due to the so-called deadly triad. Gradient Temporal Difference (GTD) learning is

a family of algorithms specifically designed to address this challenge by performing

stochastic gradient descent on a well-defined objective function. Throughout this

section, we assume linear function approximation.

The idea of GTD is to minimize the off-policy mean squared projected Bellman

error (MSPBE) objective directly and use a weight duplication trick or Fenchel’s

duality to address the double sampling issue in estimating the gradient (Sutton et al.,

2009; Liu et al., 2015). Various GTD variants have been developed in the literature

(Sutton et al., 2008b, 2009; Maei, 2011; Yu, 2017; Zhang et al., 2021a; Qian and Zhang,

2025). In this thesis, we focus on the following representative variant, referred to as

GTD(λ).

In GTD(λ), an additional weight vector ν ∈ RK is introduced, and θ and ν are

updated recursively as follows:

et = λγρt−1et−1 + ϕt,

δt = Rt+1 + γϕ⊤
t+1θt − ϕ⊤

t θt,

νt+1 = νt + αt

(
ρtδtet − ϕtϕ

⊤
t νt
)
,

θt+1 = θt + αtρt(ϕt − γϕt+1)e
⊤
t νt.

The introduction of the auxiliary weight vector ν facilitates the avoidance of the

double sampling problem.

To analyze the algorithm, it is convenient to rewrite the updates compactly. Let

xt
.
=

[
νt
θt

]
and define an augmented Markov chain {Yt} as Yt+1

.
= (St, At, St+1, et). We

further define:

A(y)
.
= ρ(s, a)e(γϕ(s′)− ϕ(s))⊤,

b(y)
.
= ρ(s, a)r(s, a)e,

C(y)
.
= ϕ(s)ϕ(s)⊤,

H(x, y)
.
=

[
−C(y) A(y)
−A(y)⊤ 0

]
x+

[
b(y)

0

]
.

12

Then, the GTD(λ) update can be rewritten as:

xt+1 = xt + αtH(xt, Yt+1).

In this thesis, GTD(λ) serves as a fundamental example of stochastic approximation

algorithms under Markovian noise, whose stability and convergence we study more

generally.

2.11 Emphatic Temporal Difference Learning

Emphatic Temporal Difference (ETD) learning is a family of off-policy policy evaluation

methods designed to stabilize learning in the presence of function approximation and

distribution mismatch. The core idea is to reweight the standard off-policy linear TD

updates with an additional emphasis factor that accounts for the mismatch between

the target policy π and the behavior policy µ (Sutton et al., 2016; Yu, 2015). Similar

to GTD, there are many variants of ETD. In this section, we focus on the original

ETD(λ) algorithm (Yu, 2015; Sutton et al., 2016).

ETD(λ) updates the value parameter θ recursively with the help of a followon

trace Ft, an eligibility trace et, and an interest function i : S → (0,∞):

Ft = γρt−1Ft−1 + i(St),

Mt = λi(St) + (1− λ)Ft,

et = λγρt−1et−1 +Mtϕt,

θt+1 = θt + αtρt
(
Rt+1 + γϕ⊤

t+1θt − ϕ⊤
t θt
)
et.

The interest function i(·) encodes user-defined preferences over states, and is usually

constant (e.g., i(s) ≡ 1), although non-trivial choices are possible.

Compared with GTD, ETD modifies the eligibility trace update by introducing

the scalar Mt, which incorporates both the interest function and the followon trace Ft.

This modification, known as the emphasis, enables ETD to better align the distribution

of updates with the stationary distribution under the target policy.

ETD(λ) is included in this thesis as a representative instance of stochastic approx-

imation procedures operating under Markovian noise, whose stability properties are

studied under our proposed theoretical framework.

13

Chapter 3

Related Work

3.1 Variance Reduction in Policy Evaluation

Reducing the variance for policy evaluation in reinforcement learning (RL) has been

widely studied. One rising approach is variance reduction by designing a proper

data-collecting policy, also known as the behavior policy. Noticing that the target

policy itself is not the best behavior policy, Hanna et al. (2017) formulate the task of

finding a variance-reduction behavior policy as an optimization problem. They use

stochastic gradient descent to update a parameterized behavior policy. However, the

stochastic method has been known to easily get stuck in highly suboptimal points

in just moderately complex environments, where various local optimal points exist

(Williams, 1992). Moreover, their method requires highly sensitive hyperparameter

tuning to learn the behavior policy effectively. Specifically, the learning rate can

vary by up to 105 times across different environments, as reported in the experiments

of Hanna et al. (2017). This extreme sensitivity requires online tuning, consuming

massive online data. Furthermore, Hanna et al. (2017) constrain the online data to be

complete trajectories.

Zhong et al. (2022) also aim to reduce the variance of policy evaluation through

designing a proper behavior policy. They propose adjusting the behavior policy to focus

on under-sampled data segments. Nevertheless, their method necessitates complete

offline trajectories generated by known policies and assumes a strong similarity

between the behavior and target policies, limiting the generalizability. Moreover, the

estimates made by Zhong et al. (2022) lack theoretical guarantees of unbiasedness

nor consistency. Another approach by Mukherjee et al. (2022) investigates behavior

policies aimed at reducing variance in per-decision importance sampling estimators.

However, their results are limited to tree-structured MDPs, a significant limitation

since most problems do not adhere to tree structure. Moreover, Mukherjee et al.

14

(2022) explicitly require the knowledge of transition probability and, therefore, suffer

from all canonical challenges in model learning (Sutton, 1990; Sutton et al., 2008a;

Deisenroth and Rasmussen, 2011; Chua et al., 2018). The current state-of-the-art

method in behavior policy design is proposed by Liu and Zhang (2024), where they

find an optimal and offline-learnable behavior policy with the per-decision importance

sampling estimator.

Besides behavior policy design, another popular approach for reducing the variance

in policy evaluation is using the baseline functions. Jiang and Li (2016) propose a

doubly robust estimator by incorporating a baseline function into the plain per-decision

importance sampling estimator. However, their method assumes that the behavior

policy is fixed and given, but does not discuss how to choose a proper behavior policy.

Ignoring the choice of behavior policy loses the opportunity to save online samples

manyfold. Thomas and Brunskill (2016) extend the method of Jiang and Li (2016) into

the infinite horizon setting, proposing a weighted doubly robust estimator. However,

their method introduces bias into the estimator, potentially leading the estimation to

systematically deviate from the true return of the target policy.

3.2 Multi-Policy Evaluation

3.2.1 Multiple target policies

In multi-policy evaluation, traditional approaches often evaluate each policy separately

using on-policy Monte Carlo methods. However, this ordinary method ignores the

potential similarity between target policies and is crude for two reasons. First, the

method does not utilize data sampled by other policies, causing the number of required

online samples to scale quickly with the number of target policies. Second, even for a

single target policy, the on-policy evaluation method is still not the optimal choice.

Through a tailored behavior policy (Liu and Zhang, 2024), the variance of the on-policy

Monte Carlo evaluation can be reduced while achieving an unbiased estimation.

To address the inefficiency in multi-policy evaluation problem, Dann et al. (2023)

present an algorithm to reuse online samples from target policies. However, their

algorithm works only when all target policies are deterministic, which is also highly

restricted. The key difference is that they consider the plain approach by reusing

samples from target policies, while we propose a tailored behavior for multiple target

policies, which is designed to generate samples that all similar policies can efficiently

share.

15

3.2.2 Multiple logging policies

Other approaches consider using data from multiple logging policies to perform off-

policy evaluation, although only aiming at a single target policy. We call them logging

policies because in their works (Agarwal et al., 2017; Lai et al., 2020; Kallus et al.,

2021), data are previously logged from certain behavior policies and are fixed. This

is different from our setting, in which we design an active data-collecting policy for

multiple target policies.

Agarwal et al. (2017) point out that directly combining data from different policies

may increases the estimation variance. They then propose two new estimators by

reweighting data from different policies. However, their method is restricted to the

contextual bandit setting. Lai et al. (2020) extend the method from Agarwal et al.

(2017) into multi-step RL. Nevertheless, getting the desired weights for different

logging policies requires knowing complicated covariance terms between every pair of

logging policies. That is, given K logging policies, their method needs to compute K2

covariances. Such strong prior knowledge is rarely available and is computationally

expensive, making the method impractical. Furthermore, they ignore bias from

any off-policy estimator. Kallus et al. (2021) also explore off-policy evaluation with

multiple target policies in RL setting. They combine the reweighting strategy with the

control variate method, leading to a reduced variance estimation. However, getting

the weights proposed by their method requires knowledge of state visitation densities,

whose approximation is very challenging in MDPs with large stochasticity and function

approximation (cf. model-based RL (Sutton, 1990; Sutton et al., 2008a; Deisenroth

and Rasmussen, 2011; Chua et al., 2018)). Due to this impracticability, Kallus et al.

(2021) only conduct experiment of their method in the contextual bandit setting,

remaining the experiment on the multi-step RL setting untouched.

3.3 Safe Reinforcement Learning

Safety in reinforcement learning, often framed as safe RL (Garcıa and Fernández,

2015), has been an active research topic recently. Many recent works focus on safety

in policy exploration and optimization (Brunke et al., 2022). For safe exploration,

Moldovan and Abbeel (2012) present a method for ensuring safe exploration by keeping

the agent within a predefined set of safe states during its learning process. However,

their method is a model-based approach, requiring an explicit approximation of the

transition function, which introduces challenges common to model learning, such

as compounding errors and the need for accurate model dynamics (Sutton, 1990;

16

Sutton et al., 2008a; Deisenroth and Rasmussen, 2011; Chua et al., 2018). As for safe

optimization, Berkenkamp et al. (2017) propose to ensure safety by keeping the agent

within safe regions, which are characterized by a Lyapunov function. However, they

assume the environment to be deterministic, which is a significant limitation as most

MDPs are stochastic. Their method is also model-based, requiring knowledge of the

transition functions.

Safe reinforcement learning is often modeled as a Constrained Markov Decision

Process (CMDP) (Gu et al., 2022; Liu et al., 2021b), in which we need to maximize

the agent reward while making agents satisfy safety constraints. Achiam et al. (2017)

enforce a constant threshold to constrain the expected total cost. However, even

though they adopt the trust-region method to control policy updates, the expected

total cost of the new policy can still exceed the safety threshold at each update step,

leading to uncontrolled violations of the safety constraints over time. Wachi and Sui

(2020) propose a method for safe reinforcement learning in constrained Markov decision

processes (CMDPs) by using a Gaussian Process to model the safety constraints and

guide exploration. Nevertheless, their approach needs to compute the covariance

matrix between explored states throughout the execution, which is computationally

expensive, especially in environments with large state spaces. In addition, they assume

that the state transitions are deterministic, making their method highly restricted.

3.4 Robust Reinforcement Learning

Robustness in reinforcement learning has been extensively studied under the framework

of Robust Markov Decision Processes (RMDPs), where uncertainty in transition

dynamics is modeled explicitly. Classical RMDP formulations introduce uncertainty

sets over transition probabilities and aim to optimize policies for worst-case outcomes

within these sets (Iyengar, 2005). More recently, robust policy improvement methods

have adopted a game-theoretic perspective, modeling adversarial perturbations to the

environment. For instance, Wang et al. (2020) proposed a transition gradient method

that computes adversarial transitions to degrade policy performance, thereby learning

policies that are robust to such perturbations. These works focus primarily on policy

optimization rather than evaluation, and their techniques are not directly applicable

to off-policy evaluation (OPE), which requires unbiased and low-variance estimates of

a fixed policy’s performance.

Despite these advancements, the problem of robust policy evaluation, particularly

in the off-policy setting, remains underexplored. Unlike policy optimization, where the

17

policy can adapt to adversarial perturbations, off-policy evaluation requires estimating

the performance of a fixed policy accurately—even under dynamics shift. Existing

OPE methods typically assume known and stationary dynamics (Hanna et al., 2017;

Zhong et al., 2022; Mukherjee et al., 2022), leaving a gap in reliable evaluation

techniques when the deployment environment differs from the one used for data

collection. Our work addresses this gap by introducing a transition-gradient-based

minimax formulation for robust off-policy evaluation.

3.5 Stability of Reinforcement Learning Algorithms

Stochastic approximation is central to the analysis of many reinforcement learning

algorithms, with foundational results establishing almost sure convergence by linking

stochastic updates to limiting ordinary differential equations (ODEs) (Borkar, 2009;

Kushner and Yin, 2003). A key milestone in this area is Borkar and Meyn (2000),

which ensures the stability of iterates under Martingale difference noise when the

associated ODE at infinity is globally asymptotically stable. This result has been

widely used in the analysis of temporal difference learning and other classical RL

methods.

However, the Borkar-Meyn theorem and related results generally assume i.i.d.

or Martingale difference noise, which does not hold in many RL applications where

data is generated by a Markov process. To address this, previous work attempts to

extend stability analysis to Markovian noise settings. Ramaswamy and Bhatnagar

(2018) consider differential inclusions and require that the limiting update function

be uniformly well-behaved for all noise realizations, which can be difficult to verify

and does not hold in many standard RL algorithms. Another influential line of work

(Kushner and Yin, 2003) focuses on projected stochastic approximation schemes that

maintain stability by enforcing bounded iterates through projection operators. While

effective in general settings, this approach introduces reflection terms into the limiting

ODE, which complicates analysis and typically requires domain-specific arguments to

handle properly.

These limitations have left a gap in the literature: a general and verifiable stabil-

ity result for stochastic approximation under Markovian noise without resorting to

restrictive assumptions, compactness, or projection schemes. This gap has particular

relevance in reinforcement learning, where Markovian noise and unbounded traces are

common.

18

Chapter 4

Efficient Policy Evaluation with
Offline Data Informed Behavior
Policy Design

This chapter is based on my paper Liu and Zhang (2024) published at ICML 2024.

In this chapter, we propose novel methods that improve the data efficiency of

online Monte Carlo estimators while maintaining their unbiasedness. We first propose

a tailored closed-form behavior policy that provably reduces the variance of an online

Monte Carlo estimator. We then design efficient algorithms to learn this closed-form

behavior policy from previously collected offline data. Theoretical analysis is provided

to characterize how the behavior policy learning error affects the amount of reduced

variance. Compared with previous works, our method achieves better empirical

performance in a broader set of environments, with fewer requirements for offline data.

4.1 Preliminaries

We study a finite horizon Markov Decision Process (MDP, Puterman (2014)) as defined

in Section 2.1. We use Monte Carlo methods, as introduced by Kakutani (1945), for

estimating the total rewards J(π). The most straightforward Monte Carlo method is

to draw samples of J(π) through the online execution of the policy π. The empirical

average of the sampled returns converges to J(π) as the number of samples increases.

Since this method estimates a policy by executing itself, it is called on-policy learning

(Sutton 1988).

Moving forward, we focus on off-policy evaluation, where the goal is to esti-

mate the total rewards J(π) of an interested policy π, which is called the target

policy. Data for off-policy evaluation are collected by executing a different policy

19

µ, called the behavior policy. In off-policy evaluation, we generate each trajectory

{S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT} by a behavior policy µ with At ∼ µt(·|St).

We use a shorthand τ
µt:T−1

t:T−1
.
= {St, At, Rt+1, . . . , ST−1, AT−1, RT} for a trajectory gen-

erated by the behavior policy µ from time step t to T − 1 inclusively. We use the

importance sampling ratio to reweight the rewards obtained by the behavior policy µ,

in order to give an estimate of J(π). We define the importance sampling ratio at time

step t as ρt
.
= πt(At|St)

µt(At|St)
. Then, the product of importance sampling ratios from time

t to t′ ≥ t is defined as ρt:t′
.
=
∏t′

k=t
πk(Ak|Sk)
µk(Ak|Sk)

. In off-policy learning, there are several

ways to use the importance sampling ratios (Geweke, 1988; Hesterberg, 1995; Koller

and Friedman, 2009; Thomas, 2015).

In this chapter, we adopt the per-decision importance sampling estimator (PDIS,

Precup et al. (2000a)). We define the PDIS Monte Carlo estimator as GPDIS(τ
µt:T−1

t:T−1)
.
=∑T−1

k=t ρt:kRk+1, which can also be expressed recursively as

GPDIS(τ
µt:T−1

t:T−1) =

{
ρt
(
Rt+1 +GPDIS(τ

µt+1:T−1

t+1:T−1)
)

t ∈ [T − 2],

ρtRt+1 t = T − 1.
(4.1)

Under the classic policy coverage assumption (Precup et al., 2000a; Maei, 2011; Sutton

et al., 2016; Zhang, 2022) ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s) = 0, this off-policy estimator

GPDIS(τ
µ0:T−1

0:T−1) provides an unbiased estimation for J(π), i.e., E
[
GPDIS(τ

µ0:T−1

0:T−1)
]

=

J(π).

4.2 Variance Reduction in Statistics

In this section, we provide the mathematical foundation for variance reduction with

importance sampling ratios. The notations here are independent of the rest of this

paper. We use similar notations only for easy interpretation in later sections. Con-

sider a discrete random variable A taking values from a finite space A according

to a probability mass function π : A → [0, 1] and a function q : A → R mapping

a value in A to a real number. We are interested in estimating EA∼π[q(A)]. The

ordinary Monte Carlo methods then sample {A1, . . . , AN} from π and use the em-

pirical average 1
N

∑N
i=1 q(Ai) as the estimate. In statistics, importance sampling is

introduced as a variance reduction technique for Monte Carlo methods (Rubinstein

1981). The main idea is to sample {Ai, . . . , AN} from a different distribution µ and

use 1
N

∑N
i=1 ρ(Ai)q(Ai) as the estimate, where ρ(A)

.
= π(A)

µ(A)
is the importance sampling

ratio. Assuming µ covers π, i.e.,

∀a, µ(a) = 0 =⇒ π(a) = 0, (4.2)

20

the importance sampling ratio weighted empirical average is then unbiased, i.e.,

EA∼π[q(A)] = EA∼µ[ρ(A)q(A)].

If the sampling distribution µ is carefully designed, the variance can also be reduced.

To adapt this idea for RL, we relax the condition (4.2) in this section. We formulate

this problem of searching a variance-reducing sampling distribution as an optimization

problem:

minµ∈Λ+ VA∼µ(ρ(A)q(A)). (4.3)

Here Λ+ denotes the set of all the policies that give unbiased estimations, i.e.,

Λ+
.
= {µ ∈ ∆(A) | EA∼µ [ρ(A)q(A)] = EA∼π [q(A)]},

where ∆(X) denotes the set of all probability distributions on the set X . Solving (4.3)

is actually very challenging. To see this, consider a concrete example where A =

{a1, a2, a3} and
q(a1) = −10

q(a2) = 2

q(a3) = 2

,


π(a1) = 0.1

π(a2) = 0.5

π(a3) = 0.4

,


µ(a1) = 0

µ(a2) = 0

µ(a3) = 1

. (4.4)

It can be computed that EA∼π [q(A)] = 0.8 and EA∼µ [ρ(A)q(A)] = 0.8. In other

words, we could sample A from µ and use ρ(A)q(A) as an estimator. This estimator is

unbiased. But apparently, this µ does not cover π. Moreover, since µ is deterministic,

the variance of this estimator is 0. Then µ is an optimal sampling distribution.

However, µ is hand-crafted based on the knowledge that q(a1)π(a1) + q(a2)π(a2) = 0.

Without such knowledge, we argue that there is little hope to find this µ. This example

suggests that searching over the entire Λ+ might be too ambitious. One natural choice

presented by Rubinstein (1981) is to restrict the search to

Λ−
.
= {µ ∈ ∆(A) | ∀a, µ(a) = 0 =⇒ π(a) = 0}. (4.5)

In other words, we aim to find a variance-minimizing sampling distribution among

all distributions that cover π.r we have Λ− ⊆ Λ+. In this work, we enlarge Λ− to Λ

defined as

Λ
.
= {µ ∈ ∆(A) | ∀a, µ(a) = 0 =⇒ π(a)q(a) = 0}. (4.6)

following Owen (2013). The space Λ weakens the assumption in (4.5). Owen (2013)

proves that any distribution µ in Λ gives unbiased estimation, though µ may not cover

π.

21

Lemma 1. ∀µ ∈ Λ,EA∼µ [ρ(A)q(A)] = EA∼π [q(A)] .

For completeness, its proof is in Appendix A.1.1. We now consider the variance

minimization problem on Λ, i.e.,

minµ∈Λ VA∼µ(ρ(A)q(A)). (4.7)

The following lemma from Owen (2013) gives an optimal solution µ∗ to the optimization

problem (4.7).

Lemma 2. Define µ∗(a) ∝ π(a)|q(a)|. Then µ∗ is an optimal solution to (4.7).

For completeness, its proof is detailed in Appendix A.1. Here by

µ(a) ∝ π(a)w(a)

with some non-negative w(a), we mean

µ(a)
.
= π(a)w(a)/

∑
b π(b)w(b).

The reader may notice that if π(a)w(a) = 0 for all a, the above “reweighted” distribu-

tion is not well defined. We then use the convention to interpret µ(a) as a uniform

distribution, i.e., µ(a) = 1/|A|. We adopt this convention in using ∝ in the rest of

the paper to simplify the presentation. The following lemma gives intuition on the

optimality of µ∗, whose proof is in Appendix A.1.3.

Lemma 3. If ∀a ∈ A, q(a) ≥ 0 or ∀a ∈ A, q(a) ≤ 0, then Λ = Λ+, and the µ∗ defined

in Lemma 2 gives a zero variance, i.e., VA∼µ∗(ρ(A)q(A)) = 0.

An optimal sampling distribution proportional to π(a)|q(a)| dates back to Kahn

and Marshall (1953); Rubinstein (1981); Benjamin Melamed (1998) and is commonly

used in RL (Carpentier et al., 2015; Mukherjee et al., 2022). We, however, make

two remarks. First, we show such a sampling distribution can be suboptimal in Λ+.

For (4.4), such a sampling distribution incurs strictly positive variance, but µ in (4.4)

has a zero variance and is also unbiased. Second, different from existing literature in

RL (Carpentier et al., 2015; Sutton and Barto, 2018; Mukherjee et al., 2022), our µ∗

defined in Lemma 2 does not need to cover π. Nevertheless, we note that Lemma 1

still ensures that µ∗ gives unbiased estimation (Owen, 2013) and extend unbiasedness

to RL settings in Theorem 1.

22

4.3 Variance Reduction in Reinforcement Learning

We now apply the techniques in Section 4.2 in RL. In particular, we seek to reduce

the variance V
(
GPDIS(τ

µ0:T−1

0:T−1)
)

by designing a proper behavior policy µ. Of course,

we need to ensure that the PDIS estimator with this behavior policy is unbiased. In

other words, ideally we should search over

Λ+
.
=
{
µ ∈ ∆(A)T | E

[
GPDIS(τ

µ0:T−1

0:T−1)
]

= J(π)
}
.

As discussed in Section 4.2, this is too ambitious without domain-specific knowledge.

Instead, we can search over all policies that cover π, i.e.,

Λ−
.
= {µ | ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s) = 0}.

The set Λ− contains all policies that satisfy the policy coverage constraint in off-policy

learning (Sutton and Barto 2018). Similar to (4.6), we can also enlarge Λ− to

Λ
.
={µ | ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s)qπ,t(s, a) = 0}.

The following theorem ensures the desired unbiasedness, which is proved in Ap-

pendix A.1.4.

Theorem 1 (Unbiasedness). ∀µ ∈ Λ, ∀t, ∀s,
E
[
GPDIS(τ

µt:T−1

t:T−1) | St = s
]

= vπ,t(s).

One immediate consequence of Theorem 1 is that ∀µ ∈ Λ,E
[
GPDIS(τ

µ0:T−1

0:T−1)
]

=

J(π). In this chapter, we consider a set Λ∗ such that Λ− ⊆ Λ∗ ⊆ Λ. This Λ∗ inherits

the unbiasedness property of Λ and is less restrictive than Λ−, the classical search

space of behavior policies. This Λ∗ will be defined shortly. We now formulate our

problem as

minµ∈Λ∗ V
(
GPDIS(τ

µ0:T−1

0:T−1)
)
. (4.8)

By the law of total variance, for any µ ∈ Λ∗, we decompose the variance of the PDIS

estimator as

V
(
GPDIS(τ

µ0:T−1

0:T−1)
)

=ES0

[
V
(
GPDIS(τ

µ0:T−1

0:T−1) | S0

)]
+ VS0

(
E
[
GPDIS(τ

µ0:T−1

0:T−1) | S0

])
=ES0

[
V
(
GPDIS(τ

µ0:T−1

0:T−1) | S0

)]
+ VS0 (vπ,0(S0)) . (by Theorem 1)

23

The second term VS0 (vπ,0(S0)) is a constant given a target policy π and is unrelated to

the choice of µ. In the first term, the expectation is taken over S0 that is determined

by the initial probability distribution p0. Consequently, to solve the problem (4.8), it

is sufficient to solve for each s,

minµ∈Λ∗ V
(
GPDIS(τ

µ0:T−1

0:T−1) | S0 = s
)
. (4.9)

Denote the variance of the state value for the next state given the current state-action

pair (s, a) as νπ,t(s, a). We have νπ,t(s, a) = 0 for t = T − 1 and otherwise

νπ,t(s, a)
.
= VSt+1 (vπ,t+1(St+1) | St = s, At = a) . (4.10)

We now construct a behavior policy µ∗ as

µ∗
t (a|s) ∝ πt(a|s)

√
uπ,t(s, a), (4.11)

where uπ,t(s, a)
.
= q2π,t(s, a) for t = T − 1 and otherwise

uπ,t(s, a) = q2π,t(s, a) + νπ,t(s, a) (4.12)

+
∑

s′ p(s
′|s, a)V

(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)
.

Notably, µ∗
t and uπ,t are defined backwards and alternatively, i.e., they are defined

in the order of uπ,T−1, µ
∗
T−1, uπ,T−2, µ

∗
T−2, . . . , uπ,0, µ

∗
0. We prove µ∗ is optimal in the

following sense.

Theorem 2 (Optimal Behavior Policy). For any t and s, the behavior policy µ∗
t (a|s)

defined above is an optimal solution to the following problem

min
µt∈Λt,...,µT−1∈ΛT−1

V
(
GPDIS(τ

µt:T−1

t:T−1) | St = s
)
,

where Λt
.
= {µt ∈ ∆(A) | ∀s, a, µt(a|s) = 0 =⇒

πt(a|s)uπ,t(s, a) = 0}.

Its proof is in Appendix A.1.5. We are now ready to define Λ∗ .
= Λ0 × · · · × ΛT−1.

Theorem 2 indicates that µ∗ achieves optimality for the optimization problem (4.9).

Since uπ,t(s, a) = 0 =⇒ qπ,t(s, a) = 0 by the non-negativity of the summands

in (4.12), we have Λ∗ ⊆ Λ. If µt(a|s) = 0 =⇒ πt(a|s) = 0, it follows immediately

that µt(a|s) = 0 =⇒ πt(a|s)uπ,t(s, a) = 0. This indicates Λ− ⊆ Λ∗. This means that

the set of policies Λ∗ considered in Theorem 2 are unbiased and includes at least all

the policies that cover the target policy, which is the classical behavior policy search

space Λ− (Precup et al., 2000a; Maei, 2011; Sutton et al., 2016; Zhang, 2022).

24

Unfortunately, empirically implementing µ∗
t requires knowledge of uπ,t (4.12) that

contains the transition function p. Approximating the transition function is very

challenging in MDPs with large stochasticity and function approximation (cf. model-

based RL (Sutton, 1990; Sutton et al., 2008a; Deisenroth and Rasmussen, 2011; Chua

et al., 2018)). Thus, we seek to build another policy µ̂ that can be easily implemented

without direct knowledge of the transition function p (cf. model-free RL (Sutton, 1988;

Watkins, 1989)).

We achieve this by aiming at one-step optimality instead of global optimality. We

try to find the best µt assuming in the future we follow πt+1, . . . , πT−1, instead of

µ∗
t+1, . . . , µ

∗
T−1. We refer to this one-step optimal behavior policy as µ̂t. Similarly, to

define optimality, we first need to specify the set of policies we are concerned about.

To this end, we define

q̂π,t(s, a)
.
= q2π,t(s, a) (4.13)

for t = T − 1 and otherwise

q̂π,t(s, a)
.
= q2π,t(s, a) + νπ,t(s, a) (4.14)

+
∑

s′ p(s
′|s, a)V

(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1 = s′
)
.

Notably, q̂π,t(s, a) is always non-negative since all the summands are non-negative.

Accordingly, we define for t ∈ [T − 1], Λ̂t
.
= {µt ∈ ∆(A) | ∀s, a, µt(a|s) = 0 =⇒

πt(a|s)q̂π,t(s, a) = 0}. Comparing (4.12) and (4.14), the optimality of µ∗ implies that

∀s, a, t, we have q̂π,t(s, a) ≥ uπ,t(s, a) ≥ 0. As a result, if µt ∈ Λ̂t, we have

µt(a|s) = 0 =⇒ πt(a|s)q̂π,t(a|s) = 0

=⇒ πt(a|s)uπ,t(a|s) = 0,

indicating µt ∈ Λt. In other words, we have Λ̂t ⊆ Λt. To search for µ̂0:T−1, we work on

Λ̂
.
= Λ̂0 × · · · × Λ̂T−1. To summarize, we have Λ− ⊆ Λ̂ ⊆ Λ∗ ⊆ Λ ⊆ Λ+. Recall that

Λ+ is the set of all behavior policies such that the corresponding PDIS estimator is

unbiased. Λ is a sufficient but not necessary condition to ensure such unbiasedness

(Theorem 1). Λ∗ is a restriction of Λ such that we are able to find an optimal solution.

We restrict Λ∗ to Λ̂, aiming for a sub-optimal but implementable policy. Λ̂ is still

larger than Λ−, which is the space with the coverage assumption (4.2) that previous

works (Precup et al., 2000a; Maei, 2011; Sutton et al., 2016; Sutton and Barto, 2018;

Zhang, 2022) consider.

25

After confirming the space of behavior policies, we formulate the optimization

problem for designing an efficient behavior policy to achieve one-step optimality as

min
µt∈Λ̂t

V
(
GPDIS(τ

{µt,πt+1,...,πT−1}
t:T−1) | St = s

)
. (4.15)

According to the recursive expression of the variance in Lemma 34 in Appendix A.1.5,

we rewrite (4.15) as

min
µt∈Λ̂t

EAt∼µt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At] + νπ,t(St, At) + q2π,t(St, At)

)
| St

]
, (4.16)

where the objective can be further simplified as

EAt∼µt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At] + νπ,t(St, At) + q2π,t(St, At)

)
| St

]
=EAt∼µt

[
ρ2t q̂π,t(St, At) | St

]
(By (4.14))

=VAt∼µt

(
ρt

√
q̂π,t(St, At) | St

)
− E2

At∼πt

[√
q̂π,t(St, At) | St

]
. (Lemma 1 and µt ∈ Λ̂t)

Since the second term is unrelated to µt, it is equivalent to solving

min
µt∈Λ̂t

VAt∼µt

(
ρt

√
q̂π,t(St, At) | St

)
.

According to Lemma 2,

µ̂t(a|s) ∝ πt(a|s)
√
q̂π,t(s, a). (4.17)

is an optimal solution to (4.16). We now present our main result that µ̂ provably

reduces variance.

Theorem 3 (Variance Reduction). For any t and s,

V
(
GPDIS(τ

µ̂t:T−1

t:T−1) | St = s
)

≤V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
− ϵt(s).

To define ϵt(s), first define ct(s) =∑
a πt(a|s)q̂π,t(s, a)−

(∑
a πt(a|s)

√
q̂π,t(s, a)

)2
.

Then we define ϵt(s)
.
= ct(s) for t = T − 1 and otherwise

ϵt(s)
.
= ct(s) + EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1)|s, At]

]
. (4.18)

26

Its proof is in Appendix A.1.6. Notably, this ct is always non-negative by Jensen’s

inequality, ensuring the non-negativity of ϵt and thus the variance reduction property.

Moreover, ct(s) = 0 occurs only when all actions have the same q̂π,t on the state s.

It is reasonable to conjecture that this is rare in practice. So, ct(s) is likely to be

strictly positive. This shows the variance of the PDIS estimator with µ̂ at a state s is

provably smaller than or equal to that with π, the straightforward on-policy Monte

Carlo estimator, by at least ϵt(s). The magnitude of ϵt(s) depends on a specific target

policy and the environment. We empirically show the variance reduction is significant

in commonly used benchmarks in Section 4.5.

4.4 Learning Closed-Form Behavior Policies

We now present efficient algorithms to learn the closed-form behavior policy µ̂. De-

spite that q̂π,t in (4.14) has a complicated definition, we prove that it has a concise

representation. It is exactly the action value function of the policy π with the same

transition function p but a different reward function r̂.

Theorem 4. Define

r̂π,t(s, a)
.
= 2r(s, a)qπ,t(s, a)− r2(s, a). (4.19)

Then q̂π,t(s, a) = r̂π,t(s, a) for t = T − 1 and otherwise

q̂π,t(s, a) (4.20)

=r̂π,t(s, a) +
∑

s′,a′ p(s
′|s, a)πt+1(a

′|s′)q̂π,t+1(s
′, a′).

Its proof is in Appendix A.1.7. This observation makes it possible to apply any

off-the-shelf offline policy evaluation methods to learn q̂, after which the behavior

policy µ̂ can be computed easily with (4.17). For generality, we consider the behavior

policy agnostic offline learning setting (Nachum et al., 2019), where the offline data

in the form of {(ti, si, ai, ri, s′i)}
m
i=1 consists of m previously logged data tuples. In

the i-th data tuple, ti is the time step, si is the state at time step ti, ai is the action

executed on state si, ri is the sampled reward, and s′i is the successor state. Those

tuples can be generated by one or more, known or unknown behavior policies. Those

tuples do not need to form a complete trajectory.

In this chapter, we choose Fitted Q-Evaluation (FQE, Le et al. (2019)) as a

demonstration, but our framework is ready to incorporate any state-of-the-art offline

policy evaluation methods to approximate q̂. To learn r̂, it is sufficient to learn r and

27

Algorithm 1: Offline Data Informed (ODI) algorithm

1: Input: Estimators r(s, a), qπ,t(s, a), q̂π,t(s, a),
a target policy π,
an offline dataset D = {(ti, si, ai, ri, si)}mi=1

2: Output: a behavior policy µ̂
3: Approximate r from D using supervised learning
4: Approximate qπ,t from D using any offline RL method (e.g. Fitted Q-Evaluation)
5: Compute r̂i by (4.19) for each data pair in D
6: Construct Dr̂

.
= {(ti, si, ai, r̂i, si)}mi=1 by plugging r̂i into D

7: Approximate q̂π,t from Dr̂ by (4.20) using any offline RL method (e.g. Fitted
Q-Evaluation)

8: Return: µ̂t(a|s) ∝ πt(a|s)
√
q̂π,t(s, a)

q. FQE can be used to learn q, and learning r is a simple regression problem. FQE

is then invoked again w.r.t. the learned r̂ to learn an approximation of q̂. We refer

the reader to Algorithm 1 for a detailed exposition of our algorithm. We split the

offline data into training sets and test sets to tune all the hyperparameters offline

in Algorithm 1, based on the supervised learning loss or the FQE loss on the test

set. We remark that FQE loss on the test set is known to be an inaccurate signal

(Fujimoto et al., 2022) so our q̂ estimation would be poorly tuned in this sense. We,

however, notice that even with such a poorly tuned estimation, the variance reduction

in the tested environments is still significant. This suggests that ϵt(s) in Theorem 3 is

likely to be large and demonstrates the robustness of our approach. Since q̂π,t(s, a) is

proved to be always non-negative (cf. (4.14)), we use positive function class for FQE

in approximating q̂, e.g., a neural network with softplus as the last activation function.

In the following, we theoretically analyze how the error in approximating q̂ affects

the amount of reduced variance in Theorem 3. We assume q̂π,t(s, a) is not only non-

negative but also positive. Given its non-negative summands in (4.14), we argue that

this positivity assumption is not restrictive at all. We use q+π,t(s, a) > 0 to denote our

approximation to q̂π,t(s, a). The approximation error can then be captured by

ηπ,t(s, a)
.
= q̂+π,t(s, a)/q̂π,t(s, a) > 0. (4.21)

If ηπ,t(s, a) is 1, there is no approximation error for (s, a, t). The actual learned

behavior policy is then denoted by

µ̂+
t (a|s) ∝ πt(a|s)

√
q̂+π,t(s, a). (4.22)

Then, we generalize Theorem 3 to the following theorem.

28

Theorem 5. For any t and s,

V(GPDIS(τ
µ̂+
t:T−1

t:T−1) | St = s)

≤V(GPDIS(τ
πt:T−1

t:T−1) | St = s)− ϵ+t (s).

To define ϵ+t (s), first define

c+t (s)
.
=
∑

a πt(a|s)q̂π,t(s, a)−(∑
a πt(a|St)

√
ηπ,t(St, a)

√
q̂π,t(St, a)

)
×
(∑

a πt(a|St)
1√

ηπ,t(St,a)

√
q̂π,t(St, a)

)
.

Then we define ϵ+t (s)
.
= c+t (s) for t = T − 1 and otherwise

ϵ+t (s) (4.23)
.
=c+t (s) + EAt∼µ̂+

t
[ρ2tESt+1 [ϵ

+
t+1(St+1)|s, At]].

Its proof is in Appendix A.1.8. When there is no estimation error, i.e., ηπ,t(s, a) = 1,

c+t and ϵ+t reduce to ct and ϵt in Theorem 3, which is non-negative by Jensen’s inequality.

As discussed earlier, it is reasonable to conjecture that ct(s) is likely to be strictly

positive. This leaves room to tolerate estimation errors such that c+t (s) can still be

positive even if ηt(s, a) ̸= 1. Because the sign of c+t only depends on the current ηπ,t,

the estimation error in the future step does not affect current ct. Notably, even if

some ϵ+t+1(St+1) < 0, ϵ+t (St) can still be positive. This is because ϵ+t (s) depends on

the expectation of the ϵ+t+1(St+1), not a single value, and c+t can still be positive. This

makes our approach robust to the approximation error. It is important to note that

the PDIS estimator with µ̂t(a|s) is always unbiased, regardless of the approximation

error η.

Theorem 5 makes it straightforward to analyze how the offline data affects the

amount of the reduced variance. For example, if FQE is used, one can resort to Munos

(2003); Antos et al. (2008); Munos and Szepesvári (2008); Chen and Jiang (2019) to

connect offline data and the approximation error η. Theorem 5 then directly relays

the approximation error to the amount of reduced variance. We, however, omit such

analysis since it deviates from our main contribution.

4.5 Empirical Results

In this section, we present empirical results comparing our methods against three

baselines: (1) the canonical on-policy Monte Carlo estimator, (2) off-policy Monte

29

On-policy MC Ours with 2.3% Ours with 4.6% Ours with 18.4% BPG ROS
data coverage data coverage data coverage

300 150 90 60 300 300
600 330 180 120 540 540
1200 540 420 270 990 990

Table 4.1: The above table is an extension of Figure 4.1 by adding experiments with
4.6%/18.4% offline data coverage for our algorithm in Gridworld with size = 27, 000.
Each number is the number of steps needed to achieve the same estimation accuracy
that the naive Monte Carlo achieves with 300/600/1200 steps. All numbers are
averaged from 900 different runs over a wide range of policies. Standard errors are
visualized in Figure 4.1 of our paper and are invisible for some algorithm curves
because they are too small.

Carlo estimator with behavior policy search (BPS, Hanna et al. (2017)), and (3)

robust on-policy sampling (ROS, Zhong et al. (2022)). We do not implement ReVar

(Mukherjee et al., 2022) because it will incur infinite loops if the MDP is not tree-

structured. Our method first learns a behavior policy with given offline data using

Algorithm 1, then the PDIS Monte Carlo estimator (4.1) is used to estimate the

performance of the target policy, where the learned behavior policy is used to interact

with the environment. We call our method Offline Data Informed (ODI) algorithm.

Our method is superior in data requirements and applicability as summarized in Table

4.2.

Gridworld: We first conduct experiments with linear function approximation in

Gridworld with n3 states, i.e., it is an n× n grid with the time horizon also being n.

Specifically, we use Gridworld with n3 = 1, 000 and n3 = 27, 000. We use randomly

generated reward functions with 30 randomly generated target policies. The offline

data is generated by selecting random actions on uniformly random state distribution.

We report the normalized estimation error of the four methods against the number

of environment interactions (steps). Intuitively, this normalized estimation error is

the estimation error of an estimator normalized by that of the on-policy Monte Carlo

estimator. Precisely speaking, define the estimation error at step t as the absolute

difference between an estimator and the ground truth divided by the ground truth.

The normalized estimation error is then the estimation error divided by the average

estimation error of the on-policy Monte Carlo estimator after the first episode. Thus,

the normalized estimation error of the on-policy Monte Carlo estimator starts from 1.

30

On-policy MC Ours BPG ROS Improvement in Saved Episodes

Ant 100 81 91 103 (100-81)/(100-91)≈211.1%
Hopper 100 54 89 100 (100-54)/(100-89)≈418.2%
I. Pendulum 100 72 103 99 (100-72)/(100-99)=2800%
I. D. Pendulum 100 35 95 90 (100-35)/(100-90)=650%
Walker 100 70 92 91 (100-70)/(100-91)≈333.3%

Table 4.2: Episodes needed to achieve the same of estimation accuracy that on-policy
Monte Carlo achieves with 100 episodes.

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Es

tim
at

io
n

Er
ro

r size = 1, 000
on-policy MC
ours
BPG
ROS

0 300 600 900 1200 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0
size = 27, 000

on-policy MC
ours
BPG
ROS

Figure 4.1: Results on Gridworld. The curves are averaged over 900 trials (30 target
policies, each having 30 independent runs). The shaded regions denote standard errors
and are invisible for some curves because they are too small.

0 50 100 150 200
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Es

tim
at

io
n

Er
ro

r

Ant-v4
on-policy MC
ours
BPS
ROS

0 50 100 150 200
Episodes

0.0

0.1

0.2

0.3

0.4

0.5
Hopper-v4

on-policy MC
ours
BPS
ROS

0 50 100 150 200
Episodes

0.0

0.1

0.2

0.3

0.4

0.5
InvertedDoublePendulum-v4

on-policy MC
ours
BPS
ROS

0 50 100 150 200
Episodes

0.0

0.1

0.2

0.3

0.4

0.5
InvertedPendulum-v4

on-policy MC
ours
BPS
ROS

0 50 100 150 200
Episodes

0.0

0.1

0.2

0.3

0.4

0.5
Walker2d-v4

on-policy MC
ours
BPS
ROS

Figure 4.2: Results on Mujoco environments. Each curve is averaged over 900 trials
(30 target policies, each having 30 independent runs). The shaded regions denote
standard errors and are invisible for some curves because they are too small.

As shown in Figure 4.1, our method outperforms baselines by a large margin. In

particular, as shown by the dotted line, in Gridworld with size 1, 000, to achieve the

same estimation error that the on-policy Monte Carlo estimator achieves with 250

steps, our methods only need around 50 steps. In Gridworld with size 27, 000, to

achieve the same estimation error that on-policy Monte Carlo estimator achieves with

750 steps, our methods only need around 400 steps, saving more than 40% of online

iteractions. The improvement in environments with size = 27, 000 is smaller than

environments with size = 1, 000 because the amount of offline data is the same for

31

both environments, i.e., the offline data coverage is worse for the Gridworld with

size = 27, 000. In fact, the offline data coverage for the Gridworld with size = 1, 000

and size = 27, 000 are 62.5% and 2.3%, respectively. More experiment details are in

Appendix A.2.1.

MuJoCo: We then conduct experiments with neural network function approxi-

mation in MuJoCo (Todorov et al., 2012) robot simulation tasks. Since our methods

are designed for discrete action space, we discretize the MuJoCo action space. Details

about action space discretization, target policy generation, and offline data generation

are provided in Appendix A.2.2. We report the normalized estimator error in Figure

4.2, where our methods are consistently better than baselines. In particular, as shown

by the dotted line in Figure 4.2 and Table 4.2, our methods need much fewer episodes

(save up to 65% episodes) to achieve the estimation error that the on-policy Monte

Carlo estimator achieves with 100 episodes. Recognizing episodes may have different

lengths in MuJoCo, we also provide in Appendix A.2.2 a version of Figure 4.2 with

the x-axis being steps, where our methods are still consistently better.

It is worth mentioning that all hyperparameters of our methods required to learn

µ̂ are tuned offline and are the same across all MuJoCo and Gridworld experiments.

4.6 Discussion

Monte Carlo methods are the most dominant approach for evaluating a policy. The

development and deployment of almost all RL algorithms, including offline RL algo-

rithms, implicitly or explicitly depend on Monte Carlo methods more or less. For

example, when an RL researcher wants to plot a curve of the agent performance

against training steps, Monte Carlo methods are usually the first choice. Our method

improves the online data efficiency of Monte Carlo evaluation while maintaining its

unbiasedness by learning a tailored behavior policy from offline data. The two main

contributions are the provably better closed-form behavior policy (Theorem 3) and

its alternative representation (Theorem 4). Extending them to temporal difference

learning (Sutton, 1988) is a possible future work.

32

Chapter 5

Efficient Multi-Policy Evaluation
for Reinforcement Learning

This chapter is based on my paper Liu et al. (2025c) published at AAAI 2025 with an

oral presentation honor.

To unbiasedly evaluate multiple target policies, the dominant approach among

RL practitioners is to run and evaluate each target policy separately. However, this

evaluation method is far from efficient because samples are not shared across policies,

and running target policies to evaluate themselves is actually not optimal. In this

chapter, we address these two weaknesses by designing a tailored behavior policy to

reduce the variance of estimators across all target policies. Theoretically, we prove

that executing this behavior policy with manyfold fewer samples outperforms on-policy

evaluation on every target policy under characterized conditions. Empirically, we

show our estimator has a substantially lower variance compared with previous best

methods and achieves state-of-the-art performance in a broad range of environments.

5.1 Preliminaries

We consider the task of multi-policy evaluation in the context of a finite Markov

Decision Process (MDP), as defined in Section 2.1. Specifically, we aim to evaluate a

set of K target policies. In this chapter, any index with parenthesis around it (e.g. π(k))

is related to the policy index. We define abbreviations π
(k)
i:j

.
=
{
π
(k)
i , π

(k)
i+1, . . . , π

(k)
j

}
and π(k) .

= π
(k)
0:T−1, where π

(k)
t : A × S → [0, 1] defines the probability of selecting

action At given the state St at time t ∈ [T − 1]. An initial state S0 is sampled from p0

at time step 0. At each time step t, after the execution of an action, a finite reward

Rt+1 = r(St, At) is obtained and a successor state St+1 is sampled from p(· | St, At).

33

We define the return at time step t as Gt
.
=
∑T

i=t+1Ri. The state- and action-value

function is defined as

vπ(k),t(s)
.
= Eπ(k) [Gt | St = s]

and

qπ(k),t(s, a)
.
= Eπ(k) [Gt | St = s, At = a] .

The performance of the policy π is defined as J(π(k))
.
=
∑

s p0(s)vπ(k),0(s). We adopt the

total rewards performance metric, introduced by Puterman (2014), as a measurement

of the performance. In this work, we focus on the Monte Carlo methods, which have

been widely adopted since their introduction by Kakutani (1945). We draw samples

of J(π(k)) by executing the policy π(k) online. The empirical average of the sampled

returns converges to J(π(k)) as the number of samples increases. Since this method

estimates the performance of a policy π(k) by running itself, it is called on-policy

learning (Sutton 1988).

Henceforth, we study off-policy learning, in which we need to estimate the total

rewards J(π(k)) of a policy π(k), called the target policy, by running a different policy µ,

known as the behavior policy. Each trajectory {S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT}
is generated by a behavior policy µ with S0 ∼ p0, At ∼ µt(·|St), t ∈ [T − 1]. We use

τ
µt:T−1

t:T−1
.
= {St, At, Rt+1, . . . , ST−1, AT−1, RT}

to denote a segment of a random trajectory generated by the behavior policy µ

from the time step t to the time step T − 1 inclusively. The key tool for off-policy

learning is importance sampling (IS) (Rubinstein, 1981), which is used to reweight

rewards collected by µ to give an unbiased estimate of J(π(k)). For each policy

π(k), the importance sampling ratio at time step t is defined as ρπ
(k),µ

t
.
=

π
(k)
t (At|St)

µt(At|St)
.

Then, the product of importance sampling ratios from time t to t′ ≥ t is defined

as ρπ
(k),µ

t:t′
.
=
∏t′

i=t
π
(k)
i (Ai|Si)

µi(Ai|Si)
. Among the various ways to use the importance sampling

ratios in off-policy learning (Geweke, 1988; Hesterberg, 1995; Koller and Friedman,

2009; Thomas, 2015), we use the per-decision importance sampling estimator (PDIS,

Precup et al. (2000a)) In this chapter and leave the study of others for future work. For

π(k), the PDIS Monte Carlo estimator is defined as GPDIS
k

(
τ
µt:T−1

t:T−1

) .
=
∑T−1

i=t ρ
π(k),µ
t:i Ri+1,

which is unbiased for any behavior policy µ that covers target policy π(k) (Precup

et al., 2000a). That is, when ∀s, ∀a, µt(a|s) = 0 =⇒ π
(k)
t (a|s) = 0, we have ∀t,

∀s, E[GPDIS
k

(
τ
µt:T−1

t:T−1

)
| St = s] = vπ(k),t(s). We also leverage the recursive form of the

34

PDIS estimator:

GPDIS
k

(
τ
µt:T−1

t:T−1

)
(5.1)

=

{
ρπ

(k),µ
t

(
Rt+1 +GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

))
t ∈ [T − 2],

ρπ
(k),µ

t Rt+1 t = T − 1.

Because the PDIS estimator is unbiased, reducing its variance is sufficient for the

improvement of its sample efficiency. We achieve this variance reduction goal for

multiple policies by designing a tailored behavior policy.

5.2 Variance Reduction in Statistics

In this section, we propose the mathematical framework for variance reduction using

importance sampling ratios. Let A be a discrete random variable with a finite set of

possible values A, and assume it follows a probability mass function π(k) : A → [0, 1],

called target policy. Additionally, let q : A → R be a function that maps elements of

A to real numbers. Our objective is to estimate EA∼π(k) [q(A)] for each π(k), where k

is an index within a finite set [K]. Since In this chapter, data can be generated from

multiple distributions, we specify their source clearly. We reserve the superscript with

brackets [·, ·] to denote the source and the index of samples. For example, A[π(k),i]

is the ith sample generated by running π(k). We use nk to denote the total number

of samples sampled by policy π(k). The plain Monte Carlo methods then samples{
A[π(k),1], . . . , A[π(k),nk]

}
from each π(k) and use the empirical average 1

nk

∑nk

i=1 q(A
[π(k),i])

as the estimate for each EA∼π(k) [q(A)].

The importance sampling is introduced as a variance reduction technique in

statistics, where the main idea is to sample
{
q(A[µ,i])

}N
i=1

following a distribution µ

and use 1
N

∑N
i=1 ρ

π(k),µ(A[µ,i])q(A[µ,i]) as the estimate, where ρπ
(k),µ(A)

.
= π(k)(A)

µ(A)
is the

importance sampling ratio. In this statistics section, we propose the optimal behavior

policy µ that evaluates all target policies π(k) simultaneously by sharing samples. We

also define the similarity of policies and prove when target policies satisfy the similarity

condition, samples needed to estimate all of them do not scale with the number of

policies K. These ideas are later extended into the multi-step reinforcement learning

(RL) setting in the following section.

Assuming that ∀i, µ covers π(k), i.e.,

∀a, µ(a) = 0 =⇒ π(k)(a) = 0. (5.2)

35

Then, the importance sampling ratio weighted empirical average is unbiased, i.e., ∀k,

EA∼π(k) [q(A)] = EA∼µ[ρπ
(k),µ(A)q(A)]. If we carefully design the sampling distribution

µ, the variance can be reduced. We formulate this problem of searching a variance-

reducing sampling distribution for K policies as an optimization problem

minµ∈Λ−

∑
k∈[K] VA∼µ(ρπ

(k),µ(A)q(A)),

where Λ− is the classical search space (Rubinstein, 1981; Zhang, 2022; Liu et al.,

2025b; Qian et al., 2024) defined as

Λ−
.
=
{
µ ∈ ∆(A) | ∀a,∀k, µ(a) = 0⇒ π(k)(a) = 0

}
.

Here, ∆(A) denotes the set of all probability distributions on the set A. In other

words, Λ− includes all distributions that cover
{
π(k)
}K
k=1

. In this work, we enlarge Λ−

to Λ, which is defined as

Λ
.
=
{
µ ∈ ∆(A) | ∀a,∀k, µ(a) = 0⇒ π(k)(a)q(a) = 0

}
. (5.3)

The space Λ weakens the assumption in (5.2). We prove that any distribution µ in Λ

still gives unbiased estimation, though Λ− ⊆ Λ.

Lemma 4. ∀µ ∈ Λ, ∀k,

EA∼µ

[
ρπ

(k),µ(A)q(A)
]

= EA∼π(k) [q(A)] .

Its proof is in the appendix. We now consider the variance minimization problem

on Λ, i.e.,

minµ∈Λ
∑

k∈[K] VA∼µ(ρπ
(k),µ(A)q(A)). (5.4)

The following lemma gives an optimal solution µ∗ to the optimization problem (5.4).

Lemma 5. Define µ∗(a) ∝
√∑

k∈[K] π
(k)(a)2q(a)2. Then µ∗ is an optimal solution to

(5.4).

Its proof is in the appendix. Here, µ(a) ∝ f(a) with some non-negative f(a) means

µ(a)
.
= f(a)/

∑
b f(b).

If f(a) = 0 for all a, the above “reweighted” distribution is not well defined. We then

use the convention to interpret µ(a) as a uniform distribution, i.e., µ(a) = 1/|A|. This

convention in using ∝ is adopted in the rest of the paper for simplicity.

36

When estimating EA∼π(k) [q(A)], π(k)(a)q(a) shows how much an action contributes

to the expectation and is heavily used (Owen, 2013; Liu and Zhang, 2024). Denote

w(k)(a)
.
=
(
π(k)(a)q(a)

)2
, (5.5)

w̄(a)
.
=
∑

j∈[K]w
(j)(a)/K. (5.6)

We use η(k)(a) to denote the similarity between π(k) and the average w̄(a),

η(k)(a)
.
= w(k)(a)/w̄(a). (5.7)

Naturally, η(k)(a) = 1 when all policies are the same on a. Define η
.
= mink,a η

(k)(a)

and η
.
= maxk,a η

(k)(a), we have ∀k, a,

η ≤ η(k)(a) ≤ η. (5.8)

In the following theorem, we compare the variance of estimation methods. For off-

policy evaluation, our designed µ∗ generates n samples. For on-policy evaluation, when

evaluating multiple policies, it is common for different policies to generate different

numbers of samples. Thus, to achieve a fair and general enough comparison, each

target policy π(k) generates nk samples. There is no constraint on nk, as long as∑K
k=1 nk = n. Using A[π(k),i] to denote the ith sample generated following

{
π(k)
}

, we

define the empirical average for all π(k) as

Eon,π(k) .
=
∑nk

i=1 q(A
[π(k),i])

nk
. (5.9)

Similarly, using A[µ∗,i] to denote the ith sample generated by µ∗, We define the

empirical average for all π(k) as

Eoff,π(k) .
=

∑n
i=1 ρ

π(k),µ∗
(A[µ∗,i])q(A[µ∗,i])

n
. (5.10)

Then, we characterize sufficient conditions on policy similarity such that with the

same total samples, off-policy evaluation with our tailored behavior policy µ∗ achieves

a lower variance than on-policy Monte Carlo on each π(k).

Lemma 6. ∀k ∈ [K],

VA∼µ∗

(
Eoff,π(k)

)
≤ VA∼π(k)

(
Eon,π(k)

)
,

if the similarity η(·) has ∀k,√
η
η

(∑
a π

(k)(a)q(a)
)2 − (n

nk
− 1
)

∆(k)

≤
∑

a π
(k)(a)q(a)2, (5.11)

where

∆(k) .=
[∑

a π
(k)(a)q(a)2 −

(∑
a π

(k)(a)q(a)
)2]

.

37

Its proof is in the appendix. In Lemma 6, we show under characterized conditions,

using only the same total samples n generated by µ∗, the off-policy estimator already

achieves a lower variance than on-policy estimator for each target policy π(k). Now,

we present a stronger lemma by allowing each target policy to also generate n samples,

resulting in a total of nK samples, which is K times larger than n. Using the empirical

average for on-policy estimator as defined in (5.9), we now have, for all π(k),

Eon,π(k)

=
∑n

i=1 q(A
[π(k),i])/n. (5.12)

Then, we simplify the variance of the on-policy estimator for π(k) as

VA∼π(k)(Eon,π(k)

)

=VA∼π(k)(
∑n

i=1 q(A
[π(k),i])

n
) (By (5.12))

=
1

n
VA∼π(k)(

∑n
i=1 q(A

[π(k),i]))

=VA∼π(k)(q(A)).

In the last step, we leverage the independence of samples. Similarly, using the definition

of empirical average for off-policy estimator as defined in (5.10), we have

VA∼π(k)(Eoff,π(k)

) = VA∼µ∗

(
ρπ

(k),µ∗
(A)q(A)

)
.

Then, we formalize the superiority for the “n-to-Kn” comparison in the following

theorem.

Lemma 7. ∀k ∈ [K],

VA∼µ∗

(
ρπ

(k),µ∗
(A)q(A)

)
≤ VA∼π(k)(q(A)),

if the similarity η(·) has ∀k,√
η
η

(∑
a∈A π

(k)(a)q(a)
)2 ≤∑a∈A π

(k)(a)q(a)2. (5.13)

Its proof is in the appendix. The superiority of using our designed behavior policy

µ∗ comes from two sources. First, µ∗ generates samples that all similar policies can

efficiently share. Second, it is designed to generate low-variance and unbiased samples

compared with the on-policy evaluation.

38

5.3 Variance Reduction in Reinforcement Learning

We extend the techniques discussed in the statistics section into multi-step reinforce-

ment learning (RL). In this section, Theorem 6 is the RL version of Lemma 4 for

unbiasedness. Theorem 7 is the RL version of Lemma 5 for behavior policy design.

Theorem 8 and 9 are the RL version of Lemma 6 and 7, respectively, for variance

reduction.

As discussed in the related work section, the major caveat in multi-policy evaluation

problems is data sharing. Without efficient data sharing, the total number of samples

required for evaluating all policies increases rapidly with the number of target policies.

Previous works try to reuse collected data across multiple target policies. However,

their method rely on either (1) restrictive assumptions, namely, deterministic

policies and flexible environment starting at any desired state (Dann et al., 2023), or

(2) impractical knowledge, namely, complicated covariances (Lai et al., 2020) and

state visitation densities at very step (Kallus et al., 2021). Thus, none of the existing

methods (Dann et al., 2023; Lai et al., 2020; Kallus et al., 2021; Agarwal et al., 2017)

is implementable in the multi-step RL setting.

In this work, we tackle this notorious problem of efficient multi-policy evaluation in

RL without any impracticability. We seek to reduce the variance
∑

k∈[K] V
(
GPDIS

k

(
τ
µ0:T−1

0:T−1

))
by designing a proper behavior policy µ. Certainly, we need to ensure that the PDIS

estimator with this behavior policy is unbiased.

In the off-policy evaluation problem, classic reinforcement learning (Sutton and

Barto 2018) requires coverage assumption to ensure unbiased estimation. This means

they only consider a set of policies that cover
{
π(k)
}K
k=1

, i.e.,

Λ−
.
= {µ | ∀k, t, s, a, µt(a|s) = 0 =⇒ π

(k)
t (a|s) = 0}.

Similar to (5.3), we enlarge Λ− to

Λ
.
={µ | ∀k, t, s, a, µt(a|s) = 0

=⇒ π
(k)
t (a|s)qπ(k),t(s, a) = 0}.

We prove every policy µ ∈ Λ still achieves unbiased estimation in the following theorem.

Theorem 6 (Unbiasedness). ∀µ ∈ Λ, ∀k, ∀t, ∀s,

E
[
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St = s

]
= vπ(k),t(s).

39

Its proof is in the appendix. One immediate consequence of Theorem 6 is that

∀µ ∈ Λ,∀k,E
[
GPDIS

k

(
τ
µ0:T−1

0:T−1

)]
= J(π(k)). In this chapter, we consider a set Λ̂ such

that Λ− ⊆ Λ̂ ⊆ Λ. Λ̂ inherits the unbiasedness property of Λ and is less restrictive

than Λ−, the classical search space of behavior policies. This Λ̂ will be defined shortly.

We now formulate our problem as

minµ∈Λ̂
∑

k∈[K] V
(
GPDIS

k

(
τ
µ0:T−1

0:T−1

))
. (5.14)

By the law of total variance, for any µ ∈ Λ̂, we decompose the variance of the PDIS

estimator as ∑
k∈[K] V

(
GPDIS

k

(
τ
µ0:T−1

0:T−1

))
(5.15)

=
∑

k∈[K] ES0

[
V
(
GPDIS

k

(
τ
µ0:T−1

0:T−1

)
| S0

)]
+ VS0

(
E
[
GPDIS

k

(
τ
µ0:T−1

0:T−1

)
| S0

])
=
∑

k∈[K] ES0

[
V
(
GPDIS

k

(
τ
µ0:T−1

0:T−1

)
| S0

)]
+ VS0

(
vπ(k),0(S0)

)
. (by Theorem 6)

The second term in (5.15) is a constant given a target policy π(k) and is unrelated to

the choice of µ. In the first term, the expectation is taken over S0 that is determined

by the initial probability distribution p0. Consequently, to solve the problem (5.14), it

is sufficient to solve for each s,

minµ∈Λ̂
∑

k∈[K] V
(
GPDIS

k

(
τ
µ0:T−1

0:T−1

)
| S0 = s

)
.

Denote the variance of the state value for the next state given the current state-

action pair (s, a) as νπ(k),t(s, a). We have νπ(k),t(s, a) = 0 for t = T − 1 and otherwise

νπ(k),t(s, a)
.
= VSt+1

(
vπ(k),t+1(St+1) | St = s, At = a

)
. (5.16)

To achieve variance reduction compared with on-policy evaluation, we aim to

design µ̂t as an optimal solution to the following problem

minµt∈Λ̂
∑

k V
(
GPDIS

k

(
τ

{
µt,π

(k)
t+1:π

(k)
T−1

}
t:T−1

)
| St = s

)
, (5.17)

The high-level intuition is that we aim to find the optimal behavior policy µt for the

current step, assuming that in the future we perform the on-policy evaluation. To

define optimality, we first specify the set of policies we are concerned about. To this

end, we define that ∀k, q̂π(k),t(s, a)
.
= qπ(k),t(s, a)2 for t = T − 1 and otherwise

q̂π(k),t(s, a)
.
= qπ(k),t(s, a)2 + νπ(k),t(s, a) (5.18)

+
∑

s′ p(s
′|s, a)V

(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St+1 = s′

)
.

40

Notably, q̂π(k),t(s, a) is always non-negative since all the summands are non-negative.

Accordingly, we define Λ̂
.
= {µ | ∀k, t, s, a, µt(a|s) = 0 ⇒ π

(k)
t (a|s)q̂π(k),t(s, a) = 0}.

From (5.18), we observe for any k, t, s, a, q̂π(k),t(s, a) ≥ qπ(k),t(s, a) ≥ 0. As a result,

if µt ∈ Λ̂, we have µt(a|s) = 0 ⇒ π
(k)
t (a|s)q̂π(k),t(s, a) = 0 ⇒ π

(k)
t (a|s)qπ(k),t(s, a) = 0.

Thus, Λ̂ ⊆ Λ. To summarize, we have Λ− ⊆ Λ̂ ⊆ Λ. Λ̂ inherits the unbiased property

of Λ (Theorem 6) and is larger than the classic space Λ− considered in previous works

(Precup et al., 2000a; Maei, 2011; Sutton et al., 2016; Sutton and Barto, 2018).

Now, we define the optimal behavior policy as

µ̂t(a|s) ∝
√∑K

k=1 π
(k)
t (a|s)2q̂π(k),t(s, a). (5.19)

q̂ defined in (5.18) is different from q, and is always non-negative. We confirm the

optimality of µ̂t in the following theorem.

Theorem 7 (Behavior Policy Design). For any k, t and s, the behavior policy µ̂t(a|s)
defined in (5.19) is an optimal solution to the following problem

minµt∈Λ̂
∑

k V
(
GPDIS

k

(
τ

{
µt,π

(k)
t+1:π

(k)
T−1

}
t:T−1

)
| St = s

)
.

Its proof is in the appendix. Next, we formalize the similarity between target

policies. Similar to (5.5), (5.6) in the statistics setting, ∀k, ∀t, ∀s, we denote

w
(k)
t (s, a)

.
= π

(k)
t (a|s)2q̂π(k),t(s, a), (5.20)

w̄t(s, a)
.
=
(∑

j∈[K]w
(j)
t (s, a)

)
/K. (5.21)

Then, adopting the notation from (5.7) and (5.8), we denote the similarity between

π
(k)
t and the average w̄t as

η
(k)
t (s, a)

.
= w

(k)
t (s, a)/w̄t(s, a). (5.22)

When policies are the same, ∀k, t, s, η(k)t (s, a) = 1. Define η
t

.
= mink,s,a η

(k)
t (s, a) and

η
.
= maxk,a η

(k)
t (s, a), we have ∀t, k, s, a,

η
t
≤ η

(k)
t (s, a) ≤ ηt. (5.23)

Next, to extend the variance reduction property from statistics (Lemma 6) into

reinforcement learning, we also allow each target policy to generate nk samples. With

a similar notation, we have the empirical average for all π(k) as

Eon,π(k)

t:T−1
.
=

∑nk
i=1 G

PDIS
k

(
τ
[π

(k)
t:T−1

,i]

t:T−1

)
nk

, (5.24)

41

where τ [π
(k),i] is the ith trajectory obtained by running π(k). To achieve a fair com-

parison, when doing off-policy estimation by following µ̂, we generate n =
∑K

k=1 nk

samples. Likewise, define

Eoff,π(k)

t:T−1
.
=

∑n
i=1 G

PDIS
k

(
τ
[µ̂t:T−1,i]

t:T−1

)
n

. (5.25)

We have the following theorem.

Theorem 8 (Variance Reduction with Same Sample Sizes). ∀k, ∀t, ∀s,

V
(
Eoff,π(k)

t:T−1 | St = s
)
≤ V

(
Eon,π(k)

t:T−1 | St = s
)
.

if the similarity η has ∀k,∀t, ∀s,√
ηt
ηt

(∑
a π

(k)
t (a|s)

√
q̂π(k),t(a|s)

)2
−
(
1− nk

n

)
∆

(k)
t (s)

≤
∑

a π
(k)
t (a|s)q̂π(k),t(s, a), (5.26)

where

∆
(k)
t (s)

.
= EAt∼µ̂t

[
ρπ

(k),µ̂
2
νπ(k),t(St, At) | St = s

]
+VAt∼µ̂t

(
ρπ

(k),µ̂qπ(k),t(St, At) | St = s
)
.

Its proof is in the appendix. We then compare the datasets when the behavior

policy µ̂ and each target policy π(k) both generate n samples, resulting in a “n-to-nK”

comparison, similar to Lemma 7.

Theorem 9 (Variance Reduction). ∀k, ∀t, ∀s,

V
(
GPDIS

k

(
τ
µ̂t:T−1

t:T−1

)
| St = s

)
≤V

(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St = s

)
,

if the similarity η has ∀k,∀t, ∀s,√
ηt
η
t

(∑
a π

(k)
t (a|s)

√
q̂π(k),t(s, a)

)2
(5.27)

≤
∑

a π
(k)
t (a|s)q̂π(k),t(s, a).

Its proof is in the appendix. This theorem implies that in the multi-step RL

setting, running our tailored behavior policy µ̂ also ensures that the number of

required samples does not scale with the number of target policies under similarity

42

Algorithm 2: Multi-Policy Evaluation (MPE) algorithm

1: Input: K target policies π(k),
an offline dataset D = {(ti, si, ai, ri, s′i)}

m
i=1

2: Output: a behavior policy µ̂
3: Approximate qπ(k),t from D using any offline RL method (e.g. Fitted

Q-Evaluation)
4: Compute r̂π(k),i for data pairs in D by (4.19)

5: Construct D(k) .=
{

(ti, si, ai, r̂π(k),i, s
′
i)
}m
i=1

6: Approximate q̂π(k),t from D(k) by (C.22) using any offline method (e.g. Fitted
Q-Evaluation)

7: Return: µ̂t(a|s) ∝
√∑K

k=1 π
(k)
t (a|s)2q̂π(k),t(s, a)

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Ant
Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Hopper

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
InvertedDoublePendulum

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
InvertedPendulum

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Walker

Ours
On-policy MC
ODI
SON
SODI

Figure 5.2: Results on MuJoCo. Each curve is averaged over 900 runs (30 groups of
target policies, each having 30 independent runs). Shaded regions denote standard
errors and are invisible for some curves because they are too small.

conditions. The reduced variance of our method depends on the similarity between

target policies, which can be easily checked through learning q̂ with offline data. Thus,

if RL practitioners are not confident in the similarity between target policies, they

can verify it before actual deployment without consuming any online data.

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

size = 1,000
Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
size = 27,000

Ours
On-policy MC
ODI
SON
SODI

Figure 5.1: Results on Gridworld. Each curve is averaged over 900 runs (30 groups of
policies, each having 30 independent runs). Shaded regions denote standard errors
and are invisible for some curves because they are too small.

43

5.4 Empirical Results

We evaluate K = 10 target policies simultaneously by executing the tailored behavior

policy µ̂ with n total samples. We name our method multiple policy evaluation (MPE)

estimator. We present our empirical comparisons with the following baselines: (1)

The canonical on-policy Monte Carlo estimator with nk samples for each target policy

π(k), summing to a total of n =
∑K

k=1 nk samples. (2) The offline data informed

estimator (ODI, Liu and Zhang (2024)) that runs each behavior policy (designed for

each target policy π(k)) for nk samples, summing to a total of n =
∑K

k=1 nk samples.

(3) The shared-sample on-policy Monte Carlo estimator (SON), where we evaluate

each target policy with shared data collected by canonical on-policy Monte Carlo

estimators of all K policies, resulting in n =
∑K

k=1 nk samples used to evaluate every

target policy. (4) The shared-sample ODI estimator (SODI), where we evaluate each

target policy with shared data collected by ODI estimators of all K policies. Since

each single behavior policy from the ODI estimator collects nk samples, each target

policy in SODI leverages n =
∑K

k=1 nk samples.

As a demonstration of concept, we set K = 10 and nk = n
K

for each of the 10

target policies. Target policies are drawn from the training process of proximal policy

optimization (PPO) algorithm (Schulman et al., 2017). We learn our behavior policy

µ̂ using Algorithm 2. Hyperparameters are the same across all MuJoCo and Gridworld

experiments. Experimental details are in the appendix.

Gridworld: We use Gridworld with m3 = 1, 000 and m3 = 27, 000 states, where

each Gridworld has a width m and height m with a time horizon T = m.

Env Ours On-policy ODI SON SODI
Size MC

1,000 0.125 1.000 0.637 1.289 2.073
27,000 0.129 1.000 0.601 1.561 3.532

Table 5.1: Relative variance of estimators on Gridworld. The relative variance is
defined as the variance of each estimator divided by the variance of the on-policy
Monte Carlo estimator. Numbers are averaged over 900 independent runs (30 groups
of target policies, each having 30 independent runs).

44

Env Ours On-policy ODI SON SODI
Size MC

1,000 126 1000 632 1264 2046
27,000 131 1000 629 1568 3501

Table 5.2: Episodes needed to achieve the same of estimation accuracy that on-policy
Monte Carlo achieves with 1000 episodes. Numbers are averaged over 900 independent
runs (30 groups of target policies, each having 30 independent runs) and their standard
errors are shown in Figure 5.1.

Figure 5.1 shows our method outperforms all baselines by a large margin. The

relative error is defined as the estimation error divided by the estimation error of the

on-policy MC at the beginning of x-axis. The samples on the x-axis represents the total

online episodes for multi-policy evaluation. The blue line in the graph is below other

lines, indicating that our method requires fewer samples to achieve the same accuracy.

To quantify the variance reduction, Table 5.1 shows our method reduces variance to

about 12.5% compared with the on-policy Monte Carlo estimator. Table 5.2 shows

that to achieve the same estimation error that the on-policy Monte Carlo estimator

achieves with 1000 samples, our estimator only needs about 130 samples saving about

87% of online interactions, achieving state-of-the-art performance.

MuJoCo: Next, we conduct experiments in MuJoCo robot simulation tasks

(Todorov et al., 2012). MuJoCo is a physics engine containing various stochastic

environments, where the goal is to control a robot to achieve different behaviors such

as walking, jumping, and balancing. Figure 5.2 shows our method is consistently

better than all baselines. The tables in the appendix show similar patterns as in the

Gridworld experiment. In particular, our estimator reduces the variance to about 10%

compared with the on-policy Monte Carlo estimator and saves about 90% of online

interactions.

An interesting observation to demonstrate the discrepancy among target policies is

that SODI and SON generally perform worse than On-policy MC and ODI. This result

suggests that when target policies lack sufficient similarity, reusing data without a

carefully designed joint behavior policy leads to high-variance estimation. Additionally,

while ODI outperforms On-policy MC, SODI performs worse than SON. This may be

because each behavior policy in SODI is specially tailored for its own target policy,

making it vulnerable to target policy change. These observations confirm the notorious

difficulty of data sharing across multiple policies, highlighting the need for a tailored

and shared behavior policy to efficiently facilitate data sharing.

45

5.5 Discussion

In this chapter, we introduce a novel approach for multi-policy evaluation by designing

a tailored behavior policy that efficiently and unbiasedly evaluates multiple target

policies.

Theoretically, our method eliminates the need for restrictive assumptions or infea-

sible knowledge required by previous methods. Our method achieves lower variance

compared to on-policy evaluation for each target policy under similarity conditions

(Theorem 8, Theorem 9) and ensures the number of required samples does not scale

with the number of target policies when similarity conditions hold.

Empirically, our method outperforms previously best-performing methods, achiev-

ing state-of-the-art performance across various environments. One promising future

direction is to extend our variance reduction method to policy improvement and

achieve efficient policy learning.

46

Chapter 6

Doubly Optimal Policy Evaluation

This chapter is based on my paper Liu et al. (2025a) published at ICLR 2025.

Policy evaluation estimates the performance of a policy by (1) collecting data from

the environment and (2) processing raw data into a meaningful estimate. Due to the

sequential nature of reinforcement learning, any improper data-collecting policy or data-

processing method substantially deteriorates the variance of evaluation results over

long time steps. Thus, policy evaluation often suffers from large variance and requires

massive data to achieve the desired accuracy. In this work, we design an optimal

combination of data-collecting policy and data-processing baseline. Theoretically, we

prove our doubly optimal policy evaluation method is unbiased and guaranteed to

have lower variance than previously best-performing methods. Empirically, compared

with previous works, we show our method reduces variance substantially and

6.1 Preliminaries

In this chapter, we study the task of off-policy evaluation in the context of a finite

Markov Decision Process (MDP), as defined in Section 2.1. In off-policy evaluation,

a notorious curse is that the importance sampling ratios can be extremely large,

resulting in infinite variance (Sutton and Barto, 2018). Even with the PDIS method,

this fundamental issue still remains if the behavior policy significantly differs from

the target policy, particularly when the behavior policy assigns very low probabilities

to actions favored by the target policy. Moreover, such degeneration of important

sampling ratios typically grows with the dimensions of state and action spaces as

well as the time horizon (Levine et al., 2020). One way to control for the violation

in important sampling ratios is to subtract a baseline from samples (Williams, 1992;

Greensmith et al., 2004; Jiang and Li, 2016; Thomas and Brunskill, 2017). Using b to

47

denote an arbitrary baseline function, the PDIS estimator with baseline is defined as

Gb(τ
µt:T−1

t:T−1) =

{
ρt
(
Rt+1 +Gb(τ

µt+1:T−1

t+1:T−1)− bt(St, At)
)

+ b̄t(St) t ∈ [T − 2],

ρt(Rt+1 − bt(St, At)) + b̄t(St) t = T − 1,
(6.1)

where

b̄t(St)
.
= EAt∼π[bt(St, At)]. (6.2)

The variance of (6.1) highly depends on the importance sampling ratio ρt = πt(At|St)
µt(At|St)

and the choice of baseline function b.

6.2 Variance Reduction in Reinforcement Learning

We seek to reduce the variance V(Gb(τ
µ0:T−1

0:T−1)) by designing an optimal behavior policy

and an optimal baseline function at the same time. We solve the bi-level optimization

problem

min
b

min
µ

V(Gb(τ
µ0:T−1

0:T−1)) (6.3)

s.t. E
[
Gb(τ

µ0:T−1

0:T−1)
]

= J(π),

where the optimal behavior policy µ∗ and the optimal baseline function b∗ are care-

fully tailored to each other to guarantee both unbiasedness and substantial variance

reduction.

Our paper proceeds as follows. In Section 6.2, we solve this bi-level optimization

problem in closed-form. In Section 6.3, we mathematically quantify the superiority in

variance reduction of our designed optimal behavior policy and baseline function, in

comparison with cutting-edge methods (Jiang and Li, 2016; Liu and Zhang, 2024). In

Section 6.5, we empirically show that such doubly optimal design reduces the variance

substantially compared with the on-policy Monte Carlo estimator and previously best

methods (Jiang and Li, 2016; Liu and Zhang, 2024) in a broad set of environments.

To ensure that the off-policy estimator Gb(τ
µ0:T−1

0:T−1) is unbiased, the classic reinforce-

ment learning wisdom (Precup et al., 2000a; Maei, 2011; Sutton et al., 2016; Zhang,

2022) requires that the behavior policy µ covers the target policy π. This means that

they constraint µ to be in a set

Λ− .
={µ | ∀t, s, a, πt(a|s) ̸= 0 =⇒ µt(a|s) ̸= 0}

={µ | ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s) = 0},

48

which contains all policies that satisfy the policy coverage constraint in off-policy

learning (Sutton and Barto 2018). By specifying the policy coverage constraint, the

optimization problem (6.3) is reformulated as

min
b

min
µ

V(Gb(τ
µ0:T−1

0:T−1)) (6.4)

s.t. µ ∈ Λ−.

In this chapter, compared with the classic reinforcement learning literature, we

enlarge the search space of µ from this set Λ− to a set Λ. To achieve a superior and

reliable optimization solution, we require Λ to have two properties.

1. (Broadness) Λ must be broad enough such that it includes all policies satisfying

the classic policy coverage constraint (Precup et al., 2000a; Sutton and Barto,

2018). Formally,

Λ− ⊆ Λ. (6.5)

2. (Unbiasedness) Every behavior policy in Λ must be well-behaved such that the

data collected by it can be used by the off-policy estimator to achieve unbiased

estimation for all state s and time step t. Formally, ∀µ ∈ Λ,

∀t, ∀s, E
[
Gb(τ

µt:T−1

t:T−1) | St = s
]

= vπ,t(s). (6.6)

The space Λ that satisfies those two properties will be defined shortly. We now

reformulate our bi-level optimization problem as

min
b

min
µ

V(Gb(τ
µ0:T−1

0:T−1)) (6.7)

s.t. µ ∈ Λ.

Compared with the classic approach (6.4), our bi-level optimization problem (6.7)

searches for µ in a broader space Λ such that Λ− ⊆ Λ. Thus, the optimal solution of

our optimization problem must be superior to the optimal solution of the optimization

problem with the classic policy coverage constraint. To solve our bi-level optimization

problem (6.7), we first give a closed-form solution of the inner optimization problem

min
µ

V(Gb(τ
µ0:T−1

0:T−1)) (6.8)

s.t. µ ∈ Λ

for any baseline function b. Notably, this baseline function b does not need to be any

kind of oracle. We design the optimal solution of (6.8) for this baseline function b

49

without requiring any property on b. Now, we decompose the variance of our off-policy

estimator Gb(τ
µ0:T−1

0:T−1). By the law of total variance, ∀b,∀µ ∈ Λ,

V
(
Gb(τ

µ0:T−1

0:T−1)
)

=ES0

[
V
(
Gb(τ

µ0:T−1

0:T−1) | S0

)]
+ VS0

(
E
[
Gb(τ

µ0:T−1

0:T−1) | S0

])
=ES0

[
V
(
Gb(τ

µ0:T−1

0:T−1) | S0

)]
+ VS0 (vπ,0(S0)) . (by (6.6)) (6.9)

The second term in (6.9) is a constant given a target policy π and is unrelated to the

choice of µ. In the first term, the expectation is taken over S0 that is determined by

the initial probability distribution p0. Consequently, given any baseline function b, to

solve the problem (6.8), it is sufficient to solve

min
µ

V(Gb(τ
µt:T−1

t:T−1) | St = s) (6.10)

s.t. µ ∈ Λ

for all s and t. If we can find one optimal behavior policy µ∗ that simultaneously

solves the optimization problem (6.10) on all states and time steps, µ∗ is also the

optimal solution for the optimization problem (6.8). Denote the variance of the state

value function for the next state given the current state-action pair as νπ,t(s, a). Recall

the notation [T − 2] is a shorthand for the set {0, 1, . . . , T − 2}. We have νπ,t(s, a)
.
= 0

for t = T − 1, and ∀t ∈ [T − 2],

νπ,t(s, a)
.
= VSt+1 (vπ,t+1(St+1) | St = s, At = a) . (6.11)

Given any baseline function b, we construct a behavior policy µ∗ as

µ∗
t (a|s) ∝ πt(a|s)

√
uπ,t(s, a) (6.12)

where uπ,t(s, a)
.
= [qπ,t(s, a)− bt(s, a)]2 for t = T − 1, and ∀t ∈ [T − 2],

uπ,t(s, a)
.
= (qπ,t(s, a)− bt(s, a))2 + νπ,t(s, a) +

∑
s′ p(s

′|s, a)V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)
.

(6.13)

Notably, uπ,t and µ∗
t are defined backwards and alternatively, i.e., they are defined in

the order of uπ,T−1, µ
∗
T−1, uπ,T−2, µ

∗
T−2, . . . , uπ,0, µ

∗
0. We now break down each term in

uπ,t(s, a).

1. (qπ,t(s, a)− bt(s, a))2 is the squared difference between the state-value function

qπ,t and the baseline function b. This term is always non-negative because of the

square operation. Its magnitude is mainly controlled by the baseline function b.

50

2. νπ,t(s, a) defined in (6.11) is the variance of the value for the next state. This

term is always non-negative by the definition of variance. Its magnitude is mainly

controlled by the stochasticity of the environment (i.e. transition function p).

3.
∑

s′ p(s
′|s, a)V

(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)

is the expected future variance given

the current state s and action a. This term is always non-negative by the

definition of variance. Its magnitude is jointly controlled by the choice of

behavior policy µ∗, the baseline function b, and the transition function p.

uπ,t(s, a) is non-negative because it is the sum of three non-negative terms. Therefore,√
uπ,t(s, a) is always well-defined. In (6.12), µ∗

t (a|s) ∝ πt(a|s)
√
uπ,t(s, a) means

µ∗
t (a|s)

.
=

πt(a|s)
√

uπ,t(s,a)∑
b πt(b|s)

√
uπ,t(s,b)

. If ∀a, πt(a|s)
√
uπ,t(s, a) = 0, the denominator is zero.

In this case, we use the convention to interpret µ∗
t (a|s) as a uniform distribution,

i.e., ∀a, µ∗
t (a|s) = 1/|A|. We adopt this convention for ∝ in the rest of the paper to

simplify the presentation. Now, we define the enlarged space Λ as

Λ
.
={µ | ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s)uπ,t(s, a) = 0}. (6.14)

We prove that this policy space Λ defined above satisfies the broadness (6.5) and the

unbiasedness (6.6) by the following lemmas.

Lemma 8 (Broadness). ∀b, Λ− ⊆ Λ.

Its proof is in Appendix B.1.1.

Lemma 9 (Unbiasedness). ∀b,∀µ ∈ Λ, ∀t, ∀s, E
[
Gb(τ

µt:T−1

t:T−1) | St = s
]

= vπ,t(s).

Its proof is in Appendix B.1.2. After confirming the broadness and unbiasedness

of the space Λ, we now prove that the behavior policy µ∗ is the optimal solution for

the inner optimization problem.

Theorem 10. For a baseline function b, the behavior policy µ∗ defined in (6.12) is an

optimal solution to the optimization problems ∀t, s,

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ.

Its proof is in Appendix B.1.3. Theorem 10 proves that ∀b, the behavior policy µ∗

(6.12) is the closed-form optimal solution for all t and s. With Theorem 10, for any t

and s, we reduce the bi-level optimization problem

min
b

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ

51

to a single-level unconstrained optimization problem

min
b

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)
.

In this unconstrained optimization problem, we design a function b that influences

both the data processing estimator Gb (6.1) and the optimal behavior policy µ∗ (6.12).

Notably, the optimal behavior policy µ∗ depends on the baseline b because it is tailored

to a baseline function b in Theorem 10. Unless otherwise noted, we omit explicitly

writing this dependency in the notation of µ∗ for simplicity. We show that although

both Gb and µ∗ depend on b, through the mathematical proof in the appendix, the

optimal baseline function b∗ has a concise format. Define ∀t, s, a,

b∗t (s, a)
.
= qπ,t(s, a). (6.15)

Theorem 11. b∗ is the optimal solution to the optimization problems ∀t, s,

min
b

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)
. (6.16)

Its proof is in Appendix B.1.4. By solving each level of the optimization problem,

we show (µ∗, b∗) is the optimal solution for the bi-level optimization problem by

utilizing Theorem 10 and Theorem 11.

Theorem 12. (µ∗, b∗) is the optimal solution to the bi-level optimization problems ∀t,
s,

min
b

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ.

Proof. ∀b,∀µ ∈ Λ, we have ∀t,∀s

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

≥V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)

(Theorem 10)

≥V
(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)
. (Theorem 11)

Thus, (µ∗, b∗) achieves the minimum value of V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

for all t and

s.

52

6.3 Variance Comparison

Theorem 12 shows (µ∗, b∗) is the optimal behavior policy and baseline function. This

means (µ∗, b∗) is superior to any other choice of (µ, b). In this section, we further

quantify its superiority. We quantify the variance reduction in reinforcement learning.

We show that the variance reduction compounds over each step, bringing substantial

advantages. Specifically, we provide a theoretical comparison of our method—the

doubly optimal estimator—with the following baselines: (1) the on-policy Monte Carlo

estimator, (2) the offline data informed estimator (Liu and Zhang, 2024), and (3) the

doubly robust estimator (Jiang and Li, 2016). We use ub
∗
t to denote ut (6.13) using b∗

as the baseline function. First, we compare our off-policy estimator with the on-policy

Monte Carlo estimator (ON).

Theorem 13. ∀t, s,

V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
− V

(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)

=VAt∼πt

(√
ub

∗
t (St, At) | St = s

)
︸ ︷︷ ︸

(4.1)

+VAt∼πt (qπ,t(St, At) | St = s)︸ ︷︷ ︸
(4.2)

+ δON, ours
t (s)︸ ︷︷ ︸

(4.3)

,

where δON, ours
t (s)

.
= 0 for t = T − 1 and ∀t ∈ [T − 2], δON, ours

t (s)
.
=

EAt∼πt,St+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St = s

]
.

Moreover, we prove ∀t, s, δON, ours
t (s) ≥ 0 meaning the variance reduction in future

steps is compounded into the current step.

Its proof is in Appendix B.1.5. In Theorem 13, we show that the variance reduction

of our method includes three sources. First, a part of the future variance (4.1) is

eliminated by choosing an optimal behavior policy µ∗. Second, the variance of the q

function (4.2) is eliminated by the optimal baseline function b∗. Third, the variance

reduction in the future step (4.3) is compounded into the current step.

Next, the following theorem quantifies the variance reduction of our method

compared with the offline data informed (ODI) method in Liu and Zhang (2024).

Because the behavior policy µ∗ is tailored for the baseline function b, we use µ∗,b to

denote µ∗ with a baseline function b and µ∗,PDIS to denote µ∗ with no baseline function

(i.e., the plain PDIS estimator considered in offline data informed (ODI) method (Liu

and Zhang, 2024)).

53

Theorem 14. ∀t, s,

V
(
GPDIS(τ

µ∗,PDIS
t:T−1

t:T−1) | St = s

)
− V

(
Gb∗(τ

µ∗,b∗
t:T−1

t:T−1) | St = s

)
≥VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St)︸ ︷︷ ︸

(5.1)

+ δODI, ours
t (s)︸ ︷︷ ︸

(5.2)

,

where δODI, ours
t (s)

.
= 0 for t = T − 1 and ∀t ∈ [T − 2], δODI, ours

t (s)
.
=

EAt∼µ∗,PDIS
t ,St+1

[
ρ2t

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
− V

(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)]
| St

]
.

Moreover, we prove ∀t, s, δODI, ours
t (s) ≥ 0 meaning the variance reduction in future

steps is compounded into the current step.

Its proof is in Appendix B.1.6. The variance reduction of our estimator includes

two sources. First, the variance of the q function (5.1) is eliminated. Second, the

variance reduction in the future step (5.2) is compounded to the current step.

We also quantify the variance reduction of our estimator with the doubly robust

(DR) estimator defined in Jiang and Li (2016). Since Jiang and Li (2016) does not

specify any candidate behavior policy, we leverage the conventional wisdom, supposing

they use the canonical target policy π as the data-collecting policy.

Theorem 15. ∀t, s,

V
(
Gb∗(τ

πt:T−1

t:T−1) | St = s
)
− V

(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)

=VAt∼πt

(√
ub

∗
t (St, At) | St = s

)
︸ ︷︷ ︸

(6.1)

+ δDR, ours
t (s)︸ ︷︷ ︸

(6.2)

,

where δDR, ours
t (s)

.
= 0 for t = T − 1 and ∀t ∈ [T − 2], δDR, ourst(s)

.
=

EAt∼πt,St+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St

]
.

Moreover, we prove ∀t, s, δDR, ours
t (s) ≥ 0 meaning the variance reduction in future

steps is compounded into the current step.

Its proof is in Appendix B.1.7. Similarly, there are two sources of the variance

reduction for our method. First, with an optimal behavior policy µ∗, we eliminate a

part of the future variance (6.1). Second, the variance reduction in the future steps

(6.2) is compounded to the current step.

54

Algorithm 3: Doubly Optimal (DOpt) Policy Evaluation

1: Input: a target policy π,
an offline dataset D = {(ti, si, ai, ri, s′i)}

m
i=1

2: Output: a behavior policy µ∗,
a baseline function b∗

3: Approximate qπ,t from D using offline RL methods (e.g. Fitted Q-Evaluation)
4: Construct νπ,t from D by (B.22)
5: Construct Dν

.
= {(ti, si, ai, νi, s′i)}

m
i=1

6: Approximate uπ,t from Dν by Lemma 10
7: Return: µ∗

t (a|s) ∝ πt(a|s)
√
uπ,t(s, a), b∗t (s, a) = qπ,t(s, a)

6.4 Learning Closed-Form Behavior Policies

In this section, we present an efficient Algorithm 3 to learn our doubly optimal

method including the optimal behavior policy µ∗ and the optimal baseline function

b∗. Specifically, we learn (µ∗, b∗) from offline data pairs. By definition (6.15), we can

apply any off-the-shelf offline policy evaluation methods to learn b∗t (s, a)
.
= qπ,t(s, a)

(e.g., Fitted Q-Evaluation (Le et al., 2019)). By (6.12), µ∗
t (a|s) ∝ πt(a|s)

√
uπ,t(s, a),

where u is defined in (6.13) as

uπ,t(s, a)
.
= (qπ,t(s, a)− bt(s, a))2 + νπ,t(s, a) +

∑
s′ p(s

′|s, a)V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)
.

Learning u from this perspective is very inefficient because it requires the approxima-

tion of the complicated variance term V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)

regarding future

trajectories. To solve this problem, we propose the following recursive form of u.

Lemma 10 (Recursive form of u). With b = b∗, when t = T − 1, ∀s, a, uπ,t(s, a) = 0,

when t ∈ [T − 2], ∀s, a,

uπ,t(s, a) = νπ,t(s, a) +
∑

s′,a′ ρt+1p(s
′|s, a)πt+1(a

′|s′)uπ,t+1(s
′, a′).

Its proof is in Appendix B.1.8. This lemma allows us to learn u recursively without

approximating the complicated trajectory variance. Subsequently, the desired optimal

behavior policy µ∗ can be easily calculated using (6.12). To ensure broad applicability,

we utilize the behavior policy-agnostic offline learning setting (Nachum et al., 2019),

in which the offline data consists of {(ti, si, ai, ri, s′i)}
m
i=1, with m previously logged

data tuples. Those tuples can be generated by various unknown behavior policies,

and they are not required to form a complete trajectory. In the i-th data tuple, ti

represents the time step, si is the state at time step ti, ai is the action executed, ri is

55

the sampled reward, and s′i is the successor state. In this chapter, we learn (µ∗, b∗)

from cheaply available offline data using Fitted Q -Evaluation (FQE, (Le et al., 2019)),

but our framework is ready to integrate any state-of-the-art offline policy evaluation

technique. As for constructing ν, we use the learned q function and ri, s
′
i from the

data tuples, according to the derivation (B.22) in Appendix B.2.

6.5 Empirical Results

In this section, we show the empirical comparison between our methods and three

baselines: (1) the on-policy Monte Carlo estimator, (2) the offline data informed

estimator (ODI, Liu and Zhang (2024)), and (3) the doubly robust estimator (DR,

Jiang and Li (2016)). In the doubly robust estimator, because they do not design a

tailored behavior policy, we leverage the conventional wisdom to use the target policy

π as the behavior policy. Given previously logged offline data, we learn our optimal

behavior policy and the optimal baseline tuple (µ∗, b∗) using Algorithm 3. All baseline

methods learn their required quantities from the same offline dataset to ensure fair

comparisons. We use the behavior policy µ∗ for data collection and the baseline b∗

for data processing. Since our method reduces variance in both the data-collecting

and the data-processing phases, we name our method doubly optimal (DOpt) policy

evaluation. More experiment details are in Appendix B.2.

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

size = 1,000
On-policy MC
Ours
ODI
DR

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0
size = 27,000

On-policy MC
Ours
ODI
DR

Figure 6.1: Results on Gridworld. Each
curve is averaged over 900 runs (30 tar-
get policies, each having 30 independent
runs). Shaded regions denote standard
errors and are invisible for some curves
because they are too small.

Env On-policy Ours ODI DR
Size MC

1,000 1.000 0.274 0.467 0.450
27,000 1.000 0.283 0.481 0.541

Table 6.1: Relative variance of estimators
on Gridworld. The relative variance is
defined as the variance of each estimator
divided by the variance of the on-policy
Monte Carlo estimator. Numbers are av-
eraged over 900 independent runs (30 tar-
get policies, each having 30 independent
runs).

Gridworld: We begin by conducting experiments in Gridworld with n3 states,

i.e., an n× n grid with n as the time horizon. The number of states in this Gridworld

environment scales cubically with n, offering a suitable tool to test algorithm scalability.

56

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Ant
On-policy MC
Ours
ODI
DR

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Hopper

On-policy MC
Ours
ODI
DR

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0
InvertedDoublePendulum

On-policy MC
Ours
ODI
DR

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0
InvertedPendulum

On-policy MC
Ours
ODI
DR

100 101 102 103

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Walker

On-policy MC
Ours
ODI
DR

Figure 6.2: Results on MuJoCo. Each curve is averaged over 900 independent runs
(30 target policies, each having 30 independent runs). Shaded regions denote standard
errors and are invisible for some curves because they are too small.

We choose Gridworld with n3 = 1, 000 and n3 = 27, 000, which are the largest

Gridworld environment tested among related works (Jiang and Li, 2016; Hanna et al.,

2017; Liu and Zhang, 2024). We use randomly generated reward functions with 30

randomly generated target policies. The offline data is generated by various unknown

policies to simulate cheaply available but segmented offline data. Because MC methods

use each episode as one empirical return sample, we view each episode as one online

sample. We report the relative error of the four methods against the number of online

samples. This relative error is the estimation error normalized by the estimation error

of the on-policy Monte Carlo estimator after the first episode. Thus, the relative error

of the on-policy Monte Carlo estimator starts from 1.

Figure 6.1 shows our method outperforms all baselines by a large margin. The

blue line in the graph is below all other lines, indicating that our method requires

fewer samples to achieve the same accuracy. This is because our designed (µ∗, b∗)

substantially reduces estimation variance. In Table 6.1, we quantify such variance

reduction, showing our method reduces variance by around 75% in both Gridworld

with size 1, 000 and 27, 000.

One observation is that DR performs slightly better than ODI in smaller Gridworld

but is slightly worse in larger Gridworld, which shows that there might be no domi-

nating relationship between those two methods. Meanwhile, our method is superior

to both approaches because the variance reduction of our method comes from both

data-collecting and data-processing.

MuJoCo: We also conduct experiments in MuJoCo robot simulation tasks

(Todorov et al., 2012). MuJoCo is a physics engine containing various stochastic

environments, where the goal is to control a robot to achieve different behaviors such

as walking, jumping, and balancing. Figure 6.2 shows our method is consistently

better than all baselines in various MuJoCo robot environments. Table 6.2 shows our

method requires substantially fewer samples to achieve the same estimation accuracy

57

On-policy MC Ours ODI DR Saved Episodes Percentage

Ant 1000 492 810 636 (1000 - 492)/1000 = 50.8%
Hopper 1000 372 544 582 (1000 - 372)/1000 = 62.8%
I. D. Pendulum 1000 426 727 651 (1000 - 426)/1000 = 57.4%
I. Pendulum 1000 225 356 439 (1000 - 225)/1000 = 77.5%
Walker 1000 475 705 658 (1000 - 475)/1000 = 52.5%

Table 6.2: Episodes needed to achieve the same of estimation accuracy that on-policy
Monte Carlo achieves with 1000 episodes. Standard errors are plotted in Figure 6.2.
Each number is averaged over 900 independet runs.

compared with the on-policy Monte Carlo method. Specifically, our method saves

50.8% to 77.5% of online interactions in different tasks, achieving state-of-the-art

performance in policy evaluation.

It is worth mentioning that our method is robust to hyperparameter choices—all

hyperparameters required to learn (µ∗, b∗) in our method are tuned offline and stay

the same across all environments.

6.6 Discussion

Due to the sequential nature of reinforcement learning, policy evaluation often suffers

from large variance and requires massive data to achieve the desired level of accuracy.

In this work, we design an optimal combination of data-collecting policy µ∗ and

data-processing baseline b∗.

Theoretically, we prove our method considers larger policy space (Lemma 8), and is

unbiased (Lemma 9) and optimal (Theorem 12). Further, we mathematically quantify

the superiority of our method in variance reduction compared with existing methods

(Theorem 13, 14, 15).

Empirically, compared with previous best-performing methods, we show our method

reduces variance substantially in a broad range of environments, achieving state-of-

the-art performance in policy evaluation.

One limitation is, as there is no free lunch, if the offline data size is too small—perhaps

consisting of just a single data tuple—the behavior policy and baseline approximated

by our method may be inaccurate. In this case, we recommend on-policy evaluation.

The future work of our paper is to extend the variance reduction technique to temporal

difference learning.

58

Chapter 7

Efficient Off-Policy Evaluation with
Safety Constraint for
Reinforcement Learning

This chapter is based on my paper Chen et al. (2025), published at ICLR 2025, in

which I am a co–first author. I contributed to the initial idea, participated in the

theoretical development, and was responsible for the experimental implementation.

In reinforcement learning, classic on-policy evaluation methods often suffer from

high variance and require massive online data to attain the desired accuracy. Previous

studies attempt to reduce evaluation variance by searching for or designing proper

behavior policies to collect data. However, these approaches ignore the safety of such

behavior policies—the designed behavior policies have no safety guarantee and may lead

to severe damage during online executions. In this chapter, to address the challenge of

reducing variance while ensuring safety simultaneously, we propose an optimal variance-

minimizing behavior policy under safety constraints. Theoretically, while ensuring

safety constraints, our evaluation method is unbiased and has lower variance than

on-policy evaluation. Empirically, our method is the only existing method to achieve

both substantial variance reduction and safety constraint satisfaction. Furthermore,

we show our method is even superior to previous methods in both variance reduction

and execution safety.

7.1 Preliminaries

In this chapter, we study off-policy evaluation under a constrained Markov decision

process (CMDP), as defined in Section 2.3. For any set X , we use |X | to denote its

59

cardinality. We use ∆|X |−1 to denote the (|X | − 1)-dimensional probability simplex,

representing the set of all probability distributions over the set X .

In this work, we focus on off-policy evaluation. We restate the key ideas for off-policy

evaluation here to facilitate reading. The goal is to estimate the total rewards J(π) of an

interested policy π, called the target policy by executing a different policy µ, called the

behavior policy. We generate each trajectory {S0, A0, R1, C1, S1, A1, R2, C2, . . . , ST−1, AT−1, RT , CT}
by a behavior policy µ with S0 ∼ p0, At ∼ µt(·|St). For simplicity, we use a shorthand

τ
µt:T−1

t:T−1 for a trajectory generated by the behavior policy µ from the time step t to the

time step T−1 inclusively. It is defined as τ
µt:T−1

t:T−1
.
= {St, At, Rt+1, Ct+1 . . . , ST−1, AT−1, RT , CT}.

In off-policy evaluation, to give an estimate of J(π), we adopt the importance sampling

ratio to reweigh rewards collected by the behavior policy µ. We define the importance

sampling ratio at time t as ρt
.
= πt(At|St)

µt(At|St)
. We also define the product of importance

sampling ratios from time t to t′ ≥ t as ρt:t′
.
=
∏t′

k=t
πk(Ak|Sk)
µk(Ak|Sk)

. Various methods utilize

importance sampling ratios within off-policy learning frameworks (Geweke, 1988;

Hesterberg, 1995; Koller and Friedman, 2009; Thomas, 2015). In this chapter, We

study the per-decision importance sampling estimator (PDIS, Precup et al. (2000a)).

The PDIS Monte Carlo estimator is defined as GPDIS(τ
µt:T−1

t:T−1)
.
=
∑T−1

k=t ρt:kRk+1. We

also use the recursive expression of the PDIS estimator as

GPDIS(τ
µt:T−1

t:T−1) =

{
ρt
(
Rt+1 +GPDIS(τ

µt+1:T−1

t+1:T−1)
)

t ∈ [T − 2],

ρtRt+1 t = T − 1.
(7.1)

With the classic policy coverage assumption (Precup et al., 2000a; Maei, 2011; Sutton

et al., 2016; Zhang, 2022; Liu et al., 2025b) ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s) = 0,

GPDIS provides an unbiased estimation for J(π), i.e., E
[
GPDIS(τ

µ0:T−1

0:T−1)
]

= J(π). Since

the PDIS estimator is unbiased, reducing its variance is sufficient for improving its

sample efficiency. We achieve this variance reduction by designing and learning proper

behavior policies.

7.2 Constrained Variance Minimization for Con-

textual Bandits

In this section, we focus on variance minimization in policy evaluation under safety

constraints in contextual bandits. These discussions provide the foundation for the

more complicated optimization problems in sequential reinforcement learning settings,

which we explore in Section 7.3. Notations defined in this section are independent of

the rest of the paper.

60

We consider contextual bandits as one-step CMDPs, where the trajectories are in

the form of (s, a, r, c). To estimate the performance of the target policy π, Ea∼π[r(s, a)],

with data collected by a behavior policy µ, we adopt the importance sampling ratio (Ru-

binstein, 1981) to reweigh the reward collected by µ. That is, we use Ea∼µ[ρ(a|s)r(s, a)]

as an estimator, where ρ(a|s) = π(a|s)
µ(a|s) . Recall ∆|A|−1 is the probability simplex rep-

resenting all probability distributions over the set A. To ensure that this off-policy

evaluation is unbiased, a classic choice by Rubinstein (1981) searches for µ in

Λ−
.
=
{
µ | ∀s, a, µ(a|s) = 0⇒ π(a|s) = 0 ∧ ∀s, µ(·|s) ∈ ∆|A|−1

}
.

In this work, we search in an enlarged space Λ (Owen, 2013; Liu and Zhang, 2024),

where

Λ
.
=
{
µ | ∀s, a, µ(a|s) = 0⇒ π(a|s)r(s, a) = 0 ∧ ∀s, µ(·|s) ∈ ∆|A|−1

}
. (7.2)

Although a behavior policy µ in Λ may not cover the target policy π, µ still gives

unbiased estimation in statistics. In the following lemma, we show that searching for

µ in this enlarged space Λ guarantees unbiasedness in the contextual bandits setting.

Lemma 11. ∀µ ∈ Λ, ∀s,

Ea∼µ[ρ(a|s)r(s, a)] = Ea∼π[r(s, a)].

Its proof is in Appendix D.1.1. Our goal is to search for a variance-minimizing

behavior policy µ. Except for the unbiasedness guaranteed by the search space Λ, we

also require µ to satisfy safety constraints which will be defined later. We formulate

the variance minimization objective as, ∀s,

min
µ∈Λ

Va∼µ(ρ(a|s)r(s, a)). (7.3)

Then, with the unbiasedness in Lemma 11, we can further decompose the objective

in (7.3) as

Va∼µ(ρ(a|s)r(s, a)) =Ea∼µ[(ρ(a|s)r(s, a))2]− Ea∼µ[ρ(a|s)r(s, a)]2 (7.4)

=Ea∼µ[ρ(a|s)2r(s, a)2]− Ea∼π[r(s, a)]2. (By Lemma 11)

Since the second term is a constant and is unrelated to µ, it suffices to solve

min
µ∈Λ

Ea∼µ[ρ(a|s)2r(s, a)2]. (7.5)

61

Next, to ensure the safety of executing the behavior policy µ, we incorporate a safety

constraint into the variance minimization problem. Since measuring safety by the

expected cost is a common approach in the safety RL community (Berkenkamp et al.,

2017; Achiam et al., 2017; Chow et al., 2018), we require that the expected cost of µ

remains within a threshold related to the expected cost of π. Given a safety parameter

ϵ ∈ [0,∞), define a cost threshold

δϵ(s)
.
= (1 + ϵ)Ea∼π[c(s, a)].

We impose the following constraint to the optimization problem (7.5)

Ea∼µ[c(s, a)] ≤ δϵ(s), ∀s. (7.6)

This constraint requires that the expected cost of the designed behavior policy µ

should be smaller than the multiple of the expected cost of the target policy π. By

satisfying this constraint, we maintain a desired level of safety during the execution of

the behavior policy µ. This safety is defined with respect to the target policy π, which

is executed in the classic on-policy evaluation method. By setting ϵ = 0, behavior

policies satisfying this constraint are guaranteed to be safer than the target policy.

Notably, another line of research focused on policy safety chooses a constant

threshold for the expected cost. We can simply modify (7.6) into a constant-threshold

constraint by replacing the threshold function δϵ(s) with a constant δ. However, such

absolute thresholds may make optimization problems infeasible. Strong assumptions

on environments and policies have to be made to guarantee the existence of feasible

solutions under absolute threshold (Achiam et al., 2017). In this chapter, we impose

the safety constraint with respect to the target policy π, because our goal is to design

a safe behavior policy to address the high variance associated with classic on-policy

evaluation methods. The parameter ϵ in our threshold allows RL practitioners to

adjust safety tolerance based on the specific requirements of the problem, as safety

constraints are often highly problem-dependent (Achiam et al., 2017). In Section 7.5,

we demonstrate our method in sequential reinforcement learning with a harsh threshold,

ϵ = 0, achieving both variance and cost reduction compared to the on-policy method.

We formally define our optimization problem and prove its convexity and feasibility

in the following theorem.

Lemma 12. For all ϵ and s, the following optimization problem is convex and feasible.

min
µ∈Λ

Ea∼µ[ρ(a|s)2r(s, a)2], (7.7)

s.t. Ea∼µ[c(s, a)] ≤ δϵ(s). (7.8)

62

Its proof is in Appendix D.1.2. Use µ∗ to denote the optimal solution of the above

optimization problem. We have the following lemma.

Lemma 13. For all ϵ and s, let µ∗ be the optimal solution of optimization problem

(7.7), we have

Va∼µ∗(ρ(a|s)r(s, a)) ≤ Va∼π(r(s, a)).

Proof. We first show that the target policy π is always in the feasible set of the

optimization problem (7.7). We define the set of feasible policies as

F .
= {µ ∈ Λ | ∀ϵ, s,Ea∼µ[c(s, a)] ≤ δϵ(s)}. (7.9)

Because ϵ ∈ [0,∞), for the safety constraint, we have

Ea∼π[c(s, a)] ≤ (1 + ϵ)Ea∼π[c(s, a)] = δϵ(s).

By the definition of Λ (7.2), π ∈ Λ. Thus, π ∈ F . Because

µ∗ .
= argmin

µ∈F
Ea∼µ[ρ(a|s)2r(s, a)2] (7.10)

is the optimal solution, we have

Va∼µ∗(ρ(a|s)r(s, a))

=Ea∼µ∗ [ρ(a|s)2r(s, a)2]− Ea∼π[r(s, a)]2 (by (7.4))

≤Ea∼π[ρ(a|s)2r(s, a)2]− Ea∼π[r(s, a)]2 (by (7.10))

=Ea∼π[r(s, a)2]− Ea∼π[r(s, a)]2

=Va∼π(r(s, a)).

In Section 7.3, we expand Lemma 12 and Lemma 13 from contextual bandits to

sequential reinforcement learning in Theorem 16 and Theorem 17. We show that

with a recursive expression of the estimation variance, we can reduce the sequential

problem into bandits in each time step t, and thereafter obtain the optimal behavior

policy µ∗ that minimizes variance under safety constraints.

63

7.3 Constrained Variance Minimization for Sequen-

tial Reinforcement Learning

In this section, we extend the techniques from contextual bandits to the sequential

reinforcement learning setting. We seek to find an optimal behavior policy µ that

reduces the variance V
(
GPDIS(τ

µ0:T−1

0:T−1)
)

under safety constraints. Before defining the

optimization problem, we first define the policy space we search for the behavior policy

to ensure the unbiasedness of the PDIS estimator. Conventional methods search µ in

the set of all policies that cover the target policy π (Sutton and Barto, 2018), i.e.,

Λ−
.
= {µ | ∀t, s, a, µt(a|s) = 0⇒ πt(a|s) = 0 ∧ ∀t, s, µt(·|s) ∈ ∆|A|−1}.

In this chapter, similar to the bandits setting (7.2), we search in an enlarged set Λ,

which is defined as

Λ
.
={µ | ∀t, s, a, µt(a|s) = 0⇒ πt(a|s)qπ,t(s, a) = 0 ∧ ∀t, s, µt(·|s) ∈ ∆|A|−1}.(7.11)

The following lemma from Liu and Zhang (2024) ensures the unbiasedness of the

off-policy estimator with the behavior policy µ ∈ Λ.

Lemma 14. ∀µ ∈ Λ, ∀t, ∀s,

E
[
GPDIS(τ

µt:T−1

t:T−1) | St = s
]

= vπ,t(s).

Its proof is in Appendix D.1.3. A natural idea to do variance minimization

under safety constraints with a safety parameter ϵ ∈ [0,∞) is to solve the following

optimization problem

min
µ∈Λ

V
(
GPDIS(τ

µ0:T−1

0:T−1)
)
, (7.12)

s.t. J c(µ) ≤ (1 + ϵ)J c(π),

where J c(µ)
.
=
∑

s p0(s)v
c
µ,0(s) is the expected cost of the behavior policy µ. Solving

this problem directly is very challenging. When designing a policy at a time step

t, we need to consider not only the immediate reward generated by this action but

also the future consequences. Hanna et al. (2017) try to solve this problem without

safety constraints by directly optimizing the behavior policy µ with gradient descent.

However, this approach requires online data to optimize µ and struggles in even

moderately complicated environments as shown in Zhong et al. (2022) and Liu and

Zhang (2024).

64

In this chapter, we therefore propose to solve this problem in a backward way

while ensuring safety constraints. Given an ϵ, use

δϵ,t(s)
.
= (1 + ϵ)vcπ,t(s) (7.13)

to denote the safety threshold. We define an extended reward function r̃t(s, a) and a be-

havior policy µ∗. They are defined in the order of
{
r̃T−1, µ

∗
T−1, r̃T−2, µ

∗
T−2, · · · , r̃0, µ∗

0

}
.

Denote the variance of the state value for the next state given the current state-action

pair (s, a) as νπ,t(s, a). We have

νπ,t(s, a)
.
=

{
0 t = T − 1,

VSt+1 (vπ,t+1(St+1) | St = s, At = a) t ∈ [T − 2].

Then, the extended reward function is defined as

r̃t(s, a)
.
=

{
rπ,t(s, a)2 t = T − 1,

νπ,t(s, a) + qπ,t(s, a)2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
t ∈ [T − 2].

(7.14)

The behavior policy µ∗
t is defined as the optimal solution to the following problem.

∀t, s,

min
µt∈Λ

Ea∼µt [ρ
2
t r̃t(s, a)],

s.t. Ea∼µt [q
c
µ,t(s, a)] ≤ δϵ,t(s).

We have the following theorem showing the convexity and feasibility of (7.15), thus

ensuring the existence of the behavior policy µ∗.

Theorem 16. For all ϵ ≥ 0, t, and s, the following optimization problem is convex

and feasible.

min
µt∈Λ

Ea∼µt [ρ
2
t r̃t(s, a)], (7.15)

s.t. Ea∼µt [q
c
µ,t(s, a)] ≤ δϵ,t(s). (7.16)

Its proof is in Appendix D.1.4. We notice that the constrained optimization

problem (7.15) is similar to (7.7), which is the optimization problem introduced

in Section 7.2. In the contextual bandit setting (7.7), we optimize the objective

with respect to the reward function r, ensuring variance reduction (Lemma 13). In

sequential reinforcement learning (7.15), we optimize with respect to the extended

reward function r̃, achieving variance reduction (Theorem 17 and (7.17)), while

65

simultaneously guaranteeing safety (7.18). This observation provides a key insight:

the step-wise optimization problem in sequential reinforcement learning can be viewed

as a reduced optimization problem in one-step contextual bandits, where the reward is

r̃. In Section 7.4, we further propose an efficient algorithm to learn r̃ without directly

addressing the complicated trajectory variance V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
, making

long-horizon RL problems more tractable.

Theorem 17. The behavior policy µ∗ reduces variance compared with the on-policy

evaluation method.

∀t, s,V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)
≤ V

(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
.

Its proof is in Appendix D.1.5. We also present the following theorem to demon-

strate variance reduction and safety guarantee with respect to the original constrained

optimization problem (7.12).

Theorem 18. For all ϵ ≥ 0, the corresponding behavior policy µ∗ has the following

property

1. V
(
GPDIS(τ

µ∗
0:T−1

0:T−1)
)
≤ V

(
GPDIS(τ

π0:T−1

0:T−1)
)

(7.17)

2. J c(µ∗) ≤ (1 + ϵ)J c(π) (7.18)

Its proof is in Appendix D.1.6. Notably, (7.18) shows that our step-wise safety-

constraint (7.16) is stricter than the original constraint (7.12).

Algorithm 4: Safety-Constrained Optimal Policy Evaluation (SCOPE)

1: Input: a target policy π,
an offline dataset D = {(ti, si, ai, ri, ci, s′i)}

m
i=1

2: Output: a behavior policy µ∗

3: Approximate qπ,t, q
c
π,t from D

4: for t = T − 1 to 0 do
5: Approximate r̃t from D by Lemma 15
6: Approximate µ∗

t (a|s) following (7.15)
7: end for
8: Return: the approximated behavior policy µ∗

7.4 Learning the Optimal Behavior Policy

In this section, we propose an efficient algorithm to learn r̃ with previously logged

offline data, and subsequently derive the optimal behavior policy µ∗ under safety

66

constraints. We notice that learning r̃ by (7.14) is inefficient since we need to

approximate the complicated variance V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St

)
, which involves the

entire future trajectory. To tackle this challenge, we present a recursive expression of

r̃ in the following lemma.

Lemma 15. ∀s, a, when t = T − 1, r̃t(s, a) = rπ,t(s, a)2. When t ∈ [T − 2],

r̃t(s, a) = 2qπ,t(s, a)r(s, a)− r(s, a)2 + Es′∼p,a′∼µ∗

[
πt+1(a′|s′)
µ∗
t+1(a

′|s′) r̃π,t+1(s
′, a′)

]
.

Its proof is in Appendix D.1.7. With this lemma, we can learn r̃ recursively without

approximating the complicated trajectory variance. Then, by (D.14) in the appendix,

we can also decompose the widely interested variance target in a succinct form

V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)

︸ ︷︷ ︸
(a)

= Ea∼µ∗ [ρ2t r̃t(s, a)]︸ ︷︷ ︸
(b)

− vπ,t(s)2︸ ︷︷ ︸
(c)

, ∀s, t. (7.19)

This succinct form offers a way to approximate the complicated trajectory variance

term (a) from (b) and (c), which do not contain any variance term themselves. This

is a surprising result because previously the best simplification of the variance for

off-policy estimator (a) still depends on state-value variance terms (Jiang and Li, 2016;

Liu and Zhang, 2024). With (7.19), we can approximate the variance of the off-policy

estimator in a model-free way with only segmented offline data.

For broad applicability, we adopt the behavior policy-agnostic offline learning

setting (Nachum et al., 2019), where the offline data has m previously logged data

tuples in the form of {(ti, si, ai, ri, ci, s′i)}
m
i=1. These data tuples can be generated by

one or more possibly unknown behavior policies, and they are not required to form a

complete trajectory. In the i-th data tuple, ti is the time step, si is the state at time

step ti, ai is the action taken, ri is the observed reward, ci is the observed cost, and s′i

is the successor state. In this chapter, we learn r̃ from previously logged offline data.

Previously logged offline data are cheap and readily available compared with online

data. This makes them a great engine for improving policy evaluation in the online

phase. Compared with gradient-based methods (Hanna et al., 2017; Zhong et al., 2022)

which need complete online trajectories, our method does not require a long online

warm-up time to find a good behavior policy because we are able to utilize offline

data. Subsequently, the optimal variance-reducing behavior policy µ∗ under safety

constraints is approximated through standard convex optimization solvers (Nocedal

and Wright, 1999; Agrawal et al., 2018).

67

100 101 102 103

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
Er

ro
r

size = 1,000
On-policy MC
Ours
ODI
ROS

100 101 102 103

Episodes

0.0

0.2

0.4

0.6

0.8

1.0
size = 27,000

On-policy MC
Ours
ODI
ROS

Figure 7.1: Results on Gridworld with
episodes as x-axis. Each curve is averaged
over 900 runs (30 target policies, each hav-
ing 30 independent runs). Shaded regions
denote standard errors and are invisible
for some curves as they are too small.

100 101 102 103

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
Er

ro
r

size = 1,000
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
size = 27,000

On-policy MC
Ours
ODI
ROS

Figure 7.2: Results on Gridworld with cost
budget as x-axis. Cost budget is the total
cost of execution. Each curve is averaged
over 900 runs (30 target policies, each hav-
ing 30 independent runs). Shaded regions
denote standard errors.

Env Size On-policy MC Ours ODI ROS

1,000 1.000 0.861 1.602 1.083
27,000 1.000 0.849 1.590 1.067

Table 7.1: Average trajectory cost on Gridworld. Numbers are normalized by the cost
of the on-policy estimator. ODI and ROS have much larger costs because they both
ignore safety constraints. Our method is the only method achieving both variance
reduction and constraint satisfaction.

7.5 Empirical Results

In this section, we demonstrate the empirical results comparing our methods against

three baselines: (1) the on-policy Monte Carlo estimator, (2) the robust on-policy

sampling estimator (ROS, Zhong et al. (2022)), and (3) the offline data informed

estimator (ODI, Liu and Zhang (2024)). To ensure our method attains lower cost and

is thus even safer than the on-policy estimator, we choose ϵ = 0 in the threshold δϵ,t

(7.13). All methods learn their required parameters from the same offline dataset to

ensure fair comparisons. Given previously logged offline data, our method learns the

optimal behavior policy under safety constraints using Algorithm 4.

We name our algorithm Safety-Constrained Optimal Policy Evaluation (SCOPE)

to emphasize that safety constraints are inherently considered in the design of the

variance-minimizing behavior policy, unlike previous methods that overlook safety

concerns. A metaphor for SCOPE is that it builds a bridge focused on efficient

transportation (evaluation efficiency) while simultaneously ensuring traffic safety

(satisfying safety constraints).

68

Gridworld: We first conduct experiments in Gridworld with n3 states. Each

Gridworld is an n×n grid with the time horizon also being n. Gridworld environments

offer a great tool to test algorithm scalability, because the number of states scales

cubically with n. Gridworld in our experiments have n3 = 1, 000 and n3 = 27, 000

number of states, which are the largest Gridworld environments tested among related

works (Zhong et al., 2022; Liu and Zhang, 2024). We test all methods on target policies

with various performances. The offline data is generated by many different policies to

simulate previously logged offline data. In Figure 7.1, we report the estimation error

against episodes. The estimation error for any line is the absolute error normalized

by the absolute error of the on-policy estimator after the first episode. Thus, the

estimation error of the on-policy estimator starts from 1. In Figure 7.2, we report the

estimation error against the total cost of execution.

If considering solely variance reduction, Figure 7.1 shows our method outperforms

the on-policy estimator and ROS by a large margin. Admittedly, ODI (Liu and Zhang,

2024) is slightly better than our method in terms of variance reduction. However,

this slight advantage comes with a huge trade-off of safety. As shown in Table 7.1,

ODI has a much larger cost than on-policy evaluation method (more than 1.5 times)

and our method (almost twice as much). This addresses the underestimated

fact—solely reducing variance without safety constraints leads to high-cost

(unsafe) methods.

To further demonstrate the superiority of balancing variance reduction and safety

cost of our method, we provide Figure 7.2 to compare the variance reduction each

method achieves with the same cost budget. Since our method SCOPE is optimal for

safety-constrained variance minimization, it consistently outperforms all baselines in

Figure 7.2, as shown by the lowest blue line. This means that compared with existing

best-performing methods, SCOPE needs less cost to achieve the same level of accuracy.

From Figure 7.2, we compute that to achieve the same accuracy that the on-policy

estimator achieves with 1000 costs (each on-policy episode has expected cost 1 by

normalization), ODI costs 880 and SCOPE costs only 425. Following this computation,

our method saves 57.5% of costs compared to the on-policy method, and 50% compared

to ODI. This reinforces the underestimated fact from the opposite direction—

ensuring safety constraints along with the variance minimization leads to a

low-cost method. Also, notably, our estimator outperforms the on-policy and ROS

estimators in reducing both variance and cost.

MuJoCo: Next, we conduct experiments in MuJoCo robot simulation tasks

(Todorov et al., 2012). MuJoCo is a physics engine with a variety of stochastic

69

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
Er

ro
r

Ant
On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
Hopper

On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
InvertedDoublePendulum

On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
InvertedPendulum

On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
Walker

On-policy MC
Ours
ODI
ROS

Figure 7.3: Results on MuJoCo. Cost budget on the x-axis is the total cost of execution.
Each curve is averaged over 900 runs (30 of target policies, each having 30 independent
runs). Shaded regions denote standard errors and are invisible for some curves because
they are too small. Results with a larger x-axis range are in the appendix.

On-policy MC Ours ODI ROS Saved Cost Percentage

Ant 1000 746 1136 1063 (1000 - 746)/1000 = 25.4%
Hopper 1000 552 824 1026 (1000 - 552)/1000 = 44.8%
I. D. Pendulum 1000 681 1014 1003 (1000 - 681)/1000 = 31.9%
I. Pendulum 1000 425 615 890 (1000 - 425)/1000 = 57.5%
Walker 1000 694 1031 960 (1000 - 694)/1000 = 30.6%

Table 7.2: Cost needed to achieve the same estimation accuracy that on-policy Monte
Carlo achieves with 1000 episodes on MuJoCo. Each curve is averaged over 900 runs.
Standard errors are plotted in Figure 7.3.

environments The goal is to control a robot to achieve different behaviors such as

walking, jumping, and balancing.

As confirmed in Table D.3 and Table D.4 in the appendix, our method is the

only method consistently achieving both variance reduction and safety constraint

satisfaction. Figure 5.2 again indicates that our method consistently outperforms all

baselines on reducing variance under the same cost budget. This advantage is observed

across all five environments, demonstrating the stableness of our method in balancing

variance reduction and cost management. Numerically, in Table 7.2, we show that our

method, SCOPE, saves up to 57.5% cost to achieve the desired evaluation accuracy.

More experiment details are in Appendix D.2. It is worth mentioning that our method

is robust to hyperparameter choices—all hyperparameters in our method are tuned

offline and stay the same across all environments.

70

7.6 Discussion

In reinforcement learning, due to the sequential nature, policy evaluation often suffers

from large variance and thus requires massive data to achieve the desired level of

accuracy. In addition, safety is a critical concern for policy execution, since unsafe

actions can lead to significant risks and irreversible damage. In this chapter, we address

these two challenges simultaneously: we propose an optimal variance-minimizing

behavior policy under safety constraints.

Theoretically, we show that our estimate is unbiased. Moreover, while simulta-

neously satisfying safety constraints, our behavior policy is proven to achieve lower

variance than the classic on-policy evaluation method (Theorem 17, Theorem 18). We

solve the constrained optimization problem without approximating the complicated

trajectory variance (Lemma 15), pointing out a promising direction for addressing

long-horizon sequential reinforcement learning challenges.

Empirically, compared with existing best-performing methods, we show our method

is the only one that achieves both substantial variance reduction and constraint

satisfaction for policy evaluation in sequential reinforcement learning. Moreover, it is

even superior to previous methods in both variance reduction and execution safety.

Admittedly, as there is no free lunch, if the offline data size is too small—perhaps

containing merely a single data tuple—the learned behavior policy in our method

may be inaccurate. In this case, for a safe backup, we recommend the on-policy

evaluation method. The future work of our paper is to extend the constrained variance

minimization technique to temporal difference learning.

71

Chapter 8

Efficient and Robust Policy
Evaluation for Reinforcement
Learning through Transition
Gradient

In this chapter, we consider a setting where access to a simulator allows us to

collect data and obtain heuristics about policy performance prior to a final evaluation

stage in the real-world environment. Our goal is to reduce the amount of data

required during this final online evaluation by minimizing the variance of off-policy

estimates. To this end, we learn a variance-reducing behavior policy using data

collected from the simulator. However, many reinforcement learning applications

suffer from distributional shifts between the simulator and the real world, making

standard off-policy evaluation methods unreliable. To address this, we propose a

robust evaluation framework that optimizes against adversarial perturbations of the

transition dynamics. By formulating the problem as a double-loop optimization, we

improve evaluation robustness in potentially mismatched environments.

8.1 Preliminaries

In this work, we study a finite horizon Markov Decision Process (MDP, Puterman

(2014)), which is introduced in Section 2.1. We redefine the concepts here to facilitate

reading. The finite MDP contains a finite action space A, a finite action space A, a

transition probability function p : S × A → ∆(S), a reward function r : S × A →
[rmin, rmax], an initial state distribution p0 : S → [0, 1], and a constant horizon length

T . For simplifying notations, we consider the undiscounted setting without loss of

72

generality. Our method naturally applies to the discounted setting as long as the

horizon is fixed and finite (Puterman, 2014).

We define ∆(X) for a finite set X as the probability simplex over X , i.e., ∆(X)
.
=

{p : X → [0, 1] |
∑

x∈X p(x) = 1}. Then, the policy π : S → ∆(A) is the function

mapping states to probability distribution over the action space A. For gradient based

methods, we consider the parameterized policies πθ obtained via a neural network

with a softmax output. The parameters θ ∈ Θ is a vector, where Θ ∈ Rn for some

constant n. Likewise, we parameterize the transition function pω : S × A → ∆(S)

by a parameters ω ∈ Ω with Ω ∈ Rm, implemented using a neural network with a

softmax layer.

We define a shorthand [n]
.
= {0, 1, . . . , n} for any integer n. The MDP process

begins at time step 0, where an initial state S0 is sampled from p0. At each time

step t ∈ [T − 1], an action At is sampled based on π(· | St). Then, a finite reward

Rt+1
.
= r(St, At) is given by the environment and a successor state St+1 is obtained

based on p(· | St, At). After T steps, the agent’s interaction with the environment

terminates. If the agent reaches any terminal state before time step T , it stays there

and receives zero reward.

In this chapter, we use h
.
= {S0, A0, R1, S1, A1, ...ST−1, AT−1, RT} to denote the

trajectory of this MDP. We then define the return of h as g(h)
.
=
∑T−1

t=0 Rt+1. For

any policy, we have a distribution over the trajectory as Pr(H = h|π), where H is a

random variable used to denote the trajectory. Lastly, we define the value of a policy

as v(π)
.
= EH∼π[g(H)].

We consider the task of off-policy evaluation, where the goal is to estimate the

value of an interested policy πe, which is called the target policy. We execute a different

policy πb, called the behavior policy, to collect data. Because this method evaluate the

value of a policy πe by running a different policy πb, it is called off-policy evaluation.

For wide applicability, we consider a general off-policy estimator, OPE, such as the

importance sampling estimator IS and the per-decision importance sampling estimator

PDIS. We denote such an estimator as OPE(πe, πθ, H), which estimates the value of

the target policy using trajectory H collected by behavior policy πθ parameterized by

θ.

8.2 Adversarial Off-Policy Evaluation

We begin by studying the adversarial policy evaluation problem for a general off-policy

estimator. While standard off-policy evaluation methods assume a fixed transition

73

model, real-world applications often involve uncertainties in transition dynamics due to

model misspecifications, partial observability, or adversarial perturbations. To account

for such uncertainties, we formulate the policy evaluation problem as a minimax

optimization problem, where the worst-case transition model is identified to assess

the robustness of policy evaluation. Our objective is to solve

min
θ

max
ω

VH∼pω ,πθ
[OPE(πe, πθ, H)] . (8.1)

Here, the inner maximization over ω finds the transition perturbations that maximize

the variance of the evaluation estimator, exposing potential weaknesses in policy

evaluation. The outer minimization over θ then optimizes the behavior policy to

mitigate these worst-case effects, ensuring that collected data remains informative

even under adversarial dynamics. This formulation extends traditional OPE methods

by explicitly considering transition uncertainty, making policy evaluation more robust

in dynamic and non-stationary environments.

8.3 Solving the Inner Loop

8.3.1 On-Transition Gradient of the Variance

In this section, we focus the inner-loop of the optimization problem (8.1). Given

a behavior policy πθ, we look for the variance-optimizing adversarial transition pω.

Formally, we need to solve

max
ω

VH∼pω ,πθ
[OPE(πe, πθ, H)] .

First, let the simulator’s transition is the same as the target transition pω (namely, an

on-transition case). In the following lemma, we give the gradient expression of the

evaluation variance for any off-policy estimator OPE.

Lemma 16 (Transition Gradient of the Variance). For a fixed behavior policy πθ,

∂

∂ω
VH∼pω ,πθ

[OPE(πe, πθ, H)]

=EH∼pω ,πθ

[
OPE2(πe, πθ, H)

∑T−1
t=0

∂
∂ω

log(pω(St+1|St, At))
]

− 2EH∼pω ,πθ
[OPE(πe, πθ, H)]EH∼pω ,πθ

[
OPE(πe, πθ, H)

∑T−1
t=0

∂
∂ω

log(pω(St+1|St, At))
]
.

Its proof is in E.1.1. In Algorithm 5, we formalize our method with the important

sampling off-policy estimator, IS, as a demonstration. To discuss the convergence

74

Algorithm 5: On-Transition Gradient (OG) for Variance.

1: Input: an initial transition parameter ω0, a target policy πe, a fixed behavior
policy πθ, a number of iteration n, a batch size k, a step-size αi for each i

2: Output: a final adversarial transition parameter ωn

3: For all i ∈ 0, ..., n− 1 do
4: Sample k trajectories H ∼ πθ, pωi

5: ωi+1 = ωi + αi

k

[∑k
j=1

(
IS2(πe, πθ, Hj)

∑T−1
t=0

∂
∂ω

log(pjω(St+1|St, At))
)
−

2
∑ k

2
j=1 IS(πe, πθ, Hj)

∑k
j= k

2
+1

(
IS(πe, πθ, Hj)

∑T−1
t=0

∂
∂ω

log(pjω(St+1|St, At))
)]

6: End for
7: Return: ωn

property of Algorithm 5, we make the widely used assumption on the step-size αi at each

iteration, which is known as the Robbins and Monroe condition (Robbins and Monro,

1951). We assume that the step-size αi satisfies
∑∞

i=0 αi =∞ and
∑∞

i=0 α
2
i <∞. We

also make the standard assumption that the quotient πe(a|s)
πθ(a|s)

is bounded above for all s,

a, and θ (Hanna et al., 2024). Then, we have the following lemma for the convergence

of Algorithm 5.

Lemma 17 (Transition Gradient Convergence). For a fixed behavior policy πθ, Algo-

rithm 5 converges. That is, VHi∼pωi ,πθ
[IS(πe, πθ, Hi)] convereges to a finite value and

limi→∞
∂
∂ω
VHi∼pωi ,πθ

[IS(πe, πθ, Hi)] = 0.

The proof of Lemma 17 is in Appendix E.1.2.

Although discrepancies often exist between the transition kernel in the deployment

environment and the original simulator, the simulator typically remains a reasonable

approximation. Thus, to ensure the learned adversarial transition remains realistic

rather than overly pessimistic, we incorporate a Kullback–Leibler (KL) divergence

penalty that discourages large deviations between pω and the initial simulator tran-

sition pω0 . That is, given a behavior policy πe, we consider the following inner-loop

optimization problem under KL regularization:

max
ω

VH∼pω ,πθ
[OPE(πe, πθ, H)]−DKL(Pr(H|pω)∥Pr(H|pω0)),

where η > 0 is the regularization coefficient and the KL-divergence term is defined

as DKL(Pr(H|pω)∥Pr(H|pω0)) = EH∼pω ,πθ

[
log Pr(H|pω)

Pr(H|pω0)

]
. To simplify notations, we

define ℓpω
.
=
∑T−1

t=0 log(pω(St+1|St, At)). We provide the gradient expression of this

regularized optimization problem in the following lemma.

75

Algorithm 6: On-Transition Gradient with KL (OGK) for Variance.

1: Input: an initial transition parameter ω0, a target policy πe, a fixed behavior
policy πθ, a number of iteration n, a batch size k, a step-size αi for each i, a
KL coefficient η

2: Output: a final adversarial transition parameter ωn

3: For all i ∈ 0, ..., n− 1 do
4: Sample k trajectories H ∼ πθ, pωi

5: ωi+1 = ωi + αi

k

[∑k
j=1

(
IS2(πe, πθ, Hj)

∂
∂ω
ℓjpω
)
−

2
∑ k

2
j=1 IS(πe, πθ, Hj)

∑k
j= k

2
+1

(
IS(πe, πθ, Hj)

∂
∂ω
ℓjpω
)

−

−η
∑k

j=1

(
∂
∂ω
ℓjpω
)
(1 + ℓjpω − ℓ

j
pω0

)
]

6: End for
7: Return: ωn

Lemma 18 (Transition Gradient of Variance with KL). For a fixed behavior policy

πθ and a regularization coefficient η > 0,

∂

∂ω
VH∼pω ,πθ

[OPE(πe, πθ, H)]−DKL(Pr(H|pω)∥Pr(H|pω0))

=EH∼pω ,πθ

[
OPE2(πe, πθ, H) ∂

∂ω
ℓpω
]

− 2EH∼pω ,πθ
[OPE(πe, πθ, H)]EH∼pω ,πθ

[
OPE(πe, πθ, H) ∂

∂ω
ℓpω
]

− ηEH∼pω ,πθ

[(
∂
∂ω
ℓpω
)(

1 + ℓpω − ℓpω0

)]
.

It proof is in Appendix E.1.3. Algorithm 6 formalizes this method with the

importance sampling estimator as a demonstration.

8.3.2 Off-Transition Gradient of the Variance

In this section, we consider a setting where the simulator’s transition dynamics, defined

as p′ω, remain unchanged. Since our target transition pω can differ from the simulator’s

transition pω′ , we refer to this as the ”off-transition” setting.

Since we collect data from the simulator with different ”behavior” transition, we

have to reweigh the collected samples. For a general off-policy estimator OPE, we

overload the notation as follows

OPE(πe, πθ, pω, H)
.
=

∏T−1
t=0 pω(St+1|St,At)∏T−1
t=0 pω′ (St+1|St,At)

OPE(πe, πθ, H).

We omit the input pω′ in OPE(πe, πθ, pω, H) to simplify notations. Taking the

76

importance-sampling off-policy estimator, IS, as an example, we thus have

IS(πe, πθ, pω, H)

=
∏T−1

t=0 pω(St+1|St,At)∏T−1
t=0 pω′ (St+1|St,At)

IS(πe, πθ, H)

=

∏T−1
t=0 pω(St+1|St, At)∏T−1
t=0 pω′(St+1|St, At)

∏T−1
t=0 πe(At|St)∏T−1
t=0 πθ(At|St)

g(H).

We first give the gradient expression of the evaluation variance.

Lemma 19 (Off-Transition Gradient of Variance). When pω ̸= pω′, for a fixed behavior

policy πθ,

∂

∂ω
VH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− 2EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)] · EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H) ∂

∂ω
ℓpω
]
.

Its proof is in Appendix E.1.4. In the following lemma, we incorporate a Kullback-

Leibler(KL) divergence term to penalize large deviations between pω and pω′ . That is,

given a behavior policy πe, we consider the following inner-loop optimization problem

under KL regularization:

max
ω

VH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)]− ηDKL(Pr(H|pω′)∥Pr(H|pω)),

where η > 0 is the regularization coefficient. We provide the gradient expression of

this regularized optimization problem.

Lemma 20 (Off-transition Gradient of Variance with KL). For a fixed behavior policy

πθ and a regularization coefficient η > 0,

∂

∂ω
VH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]− ηDKL(Pr(H|pω′)∥Pr(H|pω))

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− 2EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)]EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− ηEH∼pω′ ,πθ

[
− ∂

∂ω
ℓpω
]
.

Its proof is in Appendix E.1.5.

77

Algorithm 7: Double-Loop Robust Gradient (DRG) for Variance

1: Input: an initial transition parameter ω0, a target policy parameter θe,
a number of iteration n, a batch size k, a step-size αi for each i

2: Output: a final robust behavior policy parameter θn
3: θ0 = θe
4: For all i ∈ 0, ..., n− 1 do
5: ωi+1 = OGK(πe, πθi , pωi

)
6: Sample k trajectories H ∼ πθi , pωi+1

7: θi+1 = θi + αi

k

∑k
j=1 IS2(πe, πθ, Hj)

∑T−1
t=0

∂
∂ω

log πj
θ(At|St)

8: End for
9: Return: θn

8.4 Solving the Outer Loop

In this section, we propose an off-policy evaluation method that is robust to potential

discrepancies in the environment. Specifically, we adopt a policy gradient approach to

search for a variance-reducing behavior policy under an adversarial transition kernel.

To begin with, we present the gradient expression for variance with respect to the

behavior policy adopted from Hanna et al. (2017).

Lemma 21 (Variance Gradient Expression). With a fixed transition kernel pω, ∀θ,

∂
∂θ
VH∼pω ,πθ

[IS(πe, πθ, H)] = EH∼pω ,πθ
[−IS(πe, πθ, H)2

∑T−1
t=0

∂
∂θ

log πθ(At|St)].

For simplicity, we denote our inner-loop Algorithm 6 as OGK(πe, πθ, pω0), where

the latter pω0 serves as the initial transition kernel for Algorithm 6. We have the

double-loop method as formalized in Algorithm 7. In the inner loop, OGK(πe, πθ, pω0)

returns an adversarial transition pω by performing gradient ascent on the variance

objective penalized by a KL divergence. The outer loop then updates the behavior

policy parameters via policy gradient to reduce the variance induced by the worst-case

transition. Together, this double-loop procedure yields a robust behavior policy for

off-policy evaluation under environment uncertainty.

8.5 Empirical Results

In this section, we first show the effectivity of Algorithm 5. Specifically, we demonstrate

the variance increasing ability of our algorithm in various Gridworld environments.

To the best of our knowledge, this is the first method that adversarially perturbs the

transition kernel for evaluation variance in reinforcement learning.

78

0.0 0.2 0.4 0.6 0.8 1.0
Episode 1e6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Va
ria

nc
e

Ra
tio

size = 27
Transition Gradient
Original Variance

0.0 0.2 0.4 0.6 0.8 1.0
Episode 1e6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

size = 125
Transition Gradient
Original Variance

0.0 0.2 0.4 0.6 0.8 1.0
Episode 1e6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

size = 1000
Transition Gradient
Original Variance

Figure 8.1: Results on Gridworld. Each curve is averaged over 30 training trajectories
of transition probability. Shaded regions denote standard errors.

We conduct experiments in Gridworld with n3 total states, comprising of an n× n
grid with a time horizon of n. Since the number of states scales cubically with the

choice of n, such environments provide a great tool to test the scalability of algorithms.

We use three different sizes of the environments with n3 = 27, n3 = 125 and n3 = 1000

respectively. In comparison, related works in robust RL conduct experiments with

total states of no more than 100 (Grand-Clément and Kroer, 2021; Wang et al., 2023;

Sun et al., 2024).

As shown in Figure 8.1, our algorithm consistently increases the evaluation variance

across all environment sizes. The variance ratio grows with training episodes and

stabilizes at a higher level than the original variance baseline.

79

Chapter 9

The ODE Method for Stochastic
Approximation and Reinforcement
Learning with Markovian Noise

This chapter is based on my paper Liu et al. (2025b) published at JMLR 2025.

Stochastic approximation is a class of algorithms that update a vector iteratively,

incrementally, and stochastically, including, e.g., stochastic gradient descent and

temporal difference learning. One fundamental challenge in analyzing a stochastic

approximation algorithm is to establish its stability, i.e., to show that the stochastic

vector iterates are bounded almost surely. In this chapter, we extend the celebrated

Borkar-Meyn theorem for stability from the Martingale difference noise setting to

the Markovian noise setting, which greatly improves its applicability in reinforcement

learning, especially in those off-policy reinforcement learning algorithms with linear

function approximation and eligibility traces. Central to our analysis is the diminishing

asymptotic rate of change of a few functions, which is implied by both a form of the

strong law of large numbers and a form of the law of the iterated logarithm.

9.1 Preliminaries

Stochastic approximation (Robbins and Monro, 1951; Benveniste et al., 1990; Kushner

and Yin, 2003; Borkar, 2009) is a class of algorithms that update a vector iteratively,

incrementally, and stochastically. Successful examples include stochastic gradient

descent (Kiefer and Wolfowitz, 1952) and temporal difference learning (Sutton, 1988).

Given an initial x0 ∈ Rd, stochastic approximation algorithms typically generate a

sequence of vectors {xn} recursively as

xn+1 = xn + α(n)H(xn, Yn+1) n = 0, 1, . . . (9.1)

80

Here {α(n)}∞n=0 is a sequence of deterministic learning rates, {Yn}∞n=1 is a sequence of

random noise in a general space Y (not necessarily compact), and H : Rd×Y → Rd is

a function that maps the current iterate xn and noise Yn+1 to the actual incremental

update.

One way to analyze the asymptotic behavior of {xn} is to regard {xn} as Euler’s

discretization of the ODE

dx(t)

dt
= h(x(t)), (9.2)

where h(x)
.
= E[H(x, y)] is the expected updates (the expectation will be rigorously

defined shortly). Then the asymptotic behavior of the discrete and stochastic iterates

{xn} can be characterized by continuous and deterministic trajectories of the ODE (9.2).

To establish this connection between the two, however, requires to establish the stability

of {xn} first (Kushner and Yin, 2003; Borkar, 2009). In other words, one needs to

first show that

sup
n
∥xn∥ <∞ a.s.,

which is in general challenging. Once the stability is confirmed, the convergence of

{xn} follows easily (Kushner and Yin, 2003; Borkar, 2009). The seminal Borkar-Meyn

theorem (Borkar and Meyn, 2000) establishes the desired stability assuming the global

asymptotic stability of the following ODE

dx(t)

dt
= h∞(x),

where h∞(x)
.
= h(cx)

c
. Despite the celebrated success of the Borkar-Meyn theorem (see,

e.g., Abounadi et al. (2001); Maei (2011)), one major limit is that the Borkar-Meyn

theorem requires {Yn} to be i.i.d. noise. As a result, {H(xn, Yn+1)− h(xn)}∞n=0 is

then a Martingale difference sequence and the Martingale convergence theorem applies

under certain conditions. However, in many Reinforcement Learning (RL, Sutton

and Barto (2018)) problems, {Yn} is a Markov chain and is not i.i.d. Our main

contribution is to extend the Borkar-Meyn theorem to the Markovian noise setting

with verifiable assumptions. The extension to Markovian noise has been previously

explored by Ramaswamy and Bhatnagar (2018); Borkar et al. (2021). However, their

assumptions are way more restrictive than ours so their results are not applicable in

many important RL algorithms, particularly, off-policy RL algorithms with eligibility

traces (Yu, 2012, 2015, 2017). See Section 9.5 for more discussion on this class of RL

algorithms.

81

In Ramaswamy and Bhatnagar (2018), it is assumed that the Differential Inclusion

(DI)

dx(t)

dt
∈ co{H∞(x(t), y)|y ∈ Y}

is stable, where co(·) denotes the convex hull and H∞(x, y)
.
= limc→∞

H(cx,y)
c

. To

demonstrate the challenge in verifying this assumption, we consider a special linear

case where H(x, y) = A(y)x+ b(y) for some matrix-valued function A(y) and vector-

valued function b(y). Then one sufficient and commonly used condition (Molchanov and

Pyatnitskiy, 1989) for this DI to be stable is that the A(y) is uniformly negative definite,

i.e., there exists some strictly positive η such that x⊤A(y)x ≤ −η∥x∥2 ∀x ∈ Rd, y ∈ Y .

However, in many RL algorithms (e.g., Sutton (1988); Sutton et al. (2008b, 2009,

2016), as well as the off-policy RL algorithms with eligibility traces in Section 9.5), we

can at most say that E[A(y)] is negative definite. The individual matrix A(y) does not

have any special property. Intuitively, Ramaswamy and Bhatnagar (2018) assume that

the function H∞(x, y) behaves well almost surely, significantly limiting its application

in RL. In fact, we are not aware of any application of Ramaswamy and Bhatnagar

(2018) in standard RL algorithms. By contrast, we only need h∞(x) to behave well,

i.e., we only need H∞(x, y) to behave well in expectation. Ramaswamy and Bhatnagar

(2018) also assume Y to be compact. Unfortunately, in many important RL algorithms

mentioned above, neither DI’s stability nor the compactness holds.

In Borkar et al. (2021), it is assumed that a V4 Laypunov drift condition holds for

{Yn} and the eighth moment of some function is bounded. Unfortunately, in many

important RL algorithms (see, e.g., those in Section 9.5), neither assumption holds.

We instead establish the stability via examining the asymptotic rate of change of

certain functions, inspired by Kushner and Yin (2003). When V4 does not hold, a

form of the strong law of large numbers and a form of the law of the iterated logarithm

can be used to establish the desired asymptotic rate of change. When V4 does hold,

we only need the second moment, instead of the eighth moment, to be bounded to

establish the desired asymptotic rate of change.

We demonstrate in Section 9.5 the wide applicability of our results in RL, especially

in off-policy RL algorithms with linear function approximation and eligibility traces,

where the Markovian noise {Yn} can easily grow unbounded almost surely and have

unbounded second moment. The key idea of our approach is to apply the Arzela-Ascoli

theorem to the scaled iterates. Then the Moore-Osgood theorem computes a double

limit, confirming that the scaled iterates converge to the corresponding limiting ODEs

along a carefully chosen subsequence. This subsequence view is an important technical

82

innovation of our approach. By contrast, previous works concerning the Borkar-Meyn

theorem (Borkar and Meyn, 2000; Bhatnagar, 2011; Lakshminarayanan and Bhatnagar,

2017; Ramaswamy and Bhatnagar, 2017, 2018; Borkar et al., 2021) all seek to establish

the convergence along the entire sequence to invoke a proof by contradiction argument

to establish the desired stability. This subsequence view is essential for our approach

because the Arzela-Ascoli theorem can only guarantee the existence of a convergent

subsequence. As a result, we need a variant of the standard proof by contradiction

argument to establish the desired stability.

9.2 Main Results

Assumption 1. The Markov chain {Yn} has a unique invariant probability measure

(i.e., stationary distribution), denoted by dY .

Technically speaking, the uniqueness and even the existence of the invariant

probability measure can be relaxed, as long as the average of certain functions exists.

We are, however, not aware of any applications where such relaxation is a must. We,

therefore, use Assumption 1 to ease presentation and refer the reader to A1.3 in

Chapter 6 of Kushner and Yin (2003) as an example of such relaxation. In light of

the update (9.1), we use the convention that {Yn} starts from n = 1.

Assumption 2. The learning rates {α(n)} are positive, decreasing, and satisfy

∞∑
i=0

α(i) =∞, lim
n→∞

α(n) = 0, and
α(n)− α(n+ 1)

α(n)
= O (α(n)) . (9.3)

Remark 1. For any α(n) = B1

(n+B2)β
with β ∈ (0.5, 1], it can be easily computed that

α(n)− α(n+ 1)

α(n)
= O

(
β

n

)
= O (α(n)) .

Next, we make a few assumptions about the function H. For any c ∈ [1,∞), define

Hc(x, y)
.
=
H(cx, y)

c
. (9.4)

The function Hc is the rescaled version of the function H and will be used to construct

rescaled iterates, which are key techniques in proving the Borkar-Meyn theorem (see,

e.g., Borkar and Meyn (2000); Borkar (2009)). Similar to Borkar and Meyn (2000);

Borkar (2009), we need the limit of Hc to exist in a certain sense when c→∞.

83

Assumption 3. There exists a measurable function H∞(x, y), a function κ : R→ R
(independent of x, y), and a measurable function b(x, y) such that for any x, y,

Hc(x, y)−H∞(x, y) =κ(c)b(x, y), (9.5)

lim
c→∞

κ(c) =0,

Moreover, there exists a measurable function Lb(y) such that ∀x, x′, y,

∥b(x, y)− b(x′, y)∥ ≤ Lb(y)∥x− x′∥. (9.6)

And the expectation Lb
.
= Ey∼dY [Lb(y)] is well-defined and finite.

Assumption 3 provides details on how Hc converges to H∞ when c→∞. We note

that in many RL applications, see, e.g., Section 9.5, the function b(x, y) actually does

not depend on x so (9.6) trivially holds. We consider b(x, y) as a function of both x

and y for generality. Next, we assume Lipschitz continuity of the functions Hc, which

guarantees the existence and uniqueness of the solutions to the corresponding ODEs.

Assumption 4. There exists a measurable function L(y) such that for any x, x′, y,

∥H(x, y)−H(x′, y)∥ ≤ L(y)∥x− x′∥, (9.7)

∥H∞(x, y)−H∞(x′, y)∥ ≤ L(y)∥x− x′∥. (9.8)

Moreover, the following expectations are well-defined and finite for any x:

h(x)
.
= Ey∼dY [H(x, y)],

h∞(x)
.
= Ey∼dY [H∞(x, y)],

L
.
= Ey∼dY [L(y)].

Apparently, the function x 7→ Hc(x, y) shares the same Lipschitz constant L(y) as

the function x 7→ H(x, y). Similar to (9.4), we define

hc(x)
.
=
h(cx)

c
.

The following assumption is the central assumption in the original proof of the

Borkar-Meyn theorem.

Assumption 5. (Assumption A5 in Chapter 3 of Borkar (2009)) As c→∞, hc(x)

converges to h∞(x) uniformly in x on any compact subsets of Rd. The ODE

dx(t)

dt
= h∞(x(t)) (ODE@∞)

has 0 as its globally asymptotically stable equilibrium.

84

We refer the reader to Dai (1995); Dai and Meyn (1995); Borkar and Meyn

(2000); Borkar (2009); Fort et al. (2008); Meyn (2008, 2022) for the root and history

of (ODE@∞).

Assumption 6. Let g denote any of the following functions:

y 7→H(x, y) (∀x), (9.9)

y 7→Lb(y), (9.10)

y 7→L(y). (9.11)

Then for any initial condition Y1, it holds that

lim
n→∞

α(n)
n∑

i=1

(
g(Yi)− Ey∼dY [g(y)]

)
= 0 a.s. (9.12)

Remark 2. Consider α(n) = B1

(n+B2)β
as an example again. For β = 1, (9.12) is

implied by the following Law of Large Numbers (LLN)

lim
n→∞

1

n

n∑
i=1

(
g(Yi)− Ey∼dY [g(y)]

)
= 0 a.s. (LLN)

For β ∈ (0.5, 1], (9.12) is implied by the following Law of the Iterated Logarithm (LIL)∥∥∥∥∥
n∑

i=1

(
g(Yn)− Ey∼dY [g(y)]

)∥∥∥∥∥ ≤ ζ
√
n log log n a.s., (LIL)

where ζ is a sample path dependent finite constant.

Remark 3. If the Markov chain {Yn} is positive1 Harris2, then (LLN) holds for any

function g whenever E[∥g(y)∥] <∞ (Theorem 17.0.1 (i) of Meyn and Tweedie (2012)).

If {Yn} is further V-uniformly ergodic3, then (LIL) holds (Theorem 17.0.1 (iii) and

(iv) of Meyn and Tweedie (2012)). For the special case where Y is finite, (LLN) holds

when the Markov chain is irreducible and (LIL) holds when it is further aperiodic.

Remark 4. We note that (LLN) is stronger than Doob’s strong law of large numbers on

stationary processes (see, e.g., Theorem 17.1.2 of Meyn and Tweedie (2012), referred

to as Doob’s LLN hereafter). Doob’s LLN concludes (at most) that (LLN) holds for

any Y1 ∈ Yg, where Yg is an unknown, probably g-dependent set such that dY(Yg) = 1.

If we use only Doob’s LLN, all the “almost surely” statements in the paper must be

1See page 235 of Meyn and Tweedie (2012) for the definition of positive chains.
2See page 204 of Meyn and Tweedie (2012) for the definition of Harris chains.
3See page 387 of Meyn and Tweedie (2012) for the definition of V-uniform ergodicity.

85

replaced by “Y∗-almost surely”, where Y∗
.
=
⋂

g Yg. This means that all the statements

hold only when Y1 ∈ Y∗. However, since the g functions in Assumption 6 depend on x,

this Y∗ is an intersection of possibly uncountably many sets {Yg}. It is possible that

in some applications Y∗ turns out to be a set of interest, where (LLN) can indeed be

relaxed to Doob’s LLN. But in general, characterizing Y∗ is pretty challenging.

Remark 5. The Markov chain {Yn} we consider in our RL applications in Section 9.5

is a general space Markov chain but is not positive Harris. Fortunately, Yu (2012,

2015, 2017) have established that (LLN) holds for those chains. Whether (LIL) holds

for those chains remains open.

To better contrast our work with Borkar et al. (2021), in the following, we provide

an alternative to Assumption 6.

Assumption 6′. The learning rates {α(n)} further satisfy
∑∞

n=0 α(n)2 < ∞. The

Markov chain {Yn} is ψ-irreducible4. The Lyapunov drift condition (V4) holds for the

Markov chain {Yn}.5 In other words, there exists a Lyapunov function v : Y → [1,∞]

such that for any y ∈ Y,

E [v(Yn+1)− v(Yn)|Yn = y] ≤ −δv(y) + τIC(y). (V4)

Here δ > 0, τ <∞ are constants, C is a small set6, and I is the indicator function.

Moreover, let g be any of the functions H(0, y), Lb(y), and L(y). Then g ∈ L2
v,∞

7.

Assumption 6′ uses the idea of Borkar et al. (2021) but is weaker than its counter-

parts. See more detailed comparisons in Section 9.3.

Remark 6. Assumption 6′ is listed here mostly for better comparison with Borkar

et al. (2021). We are not aware of any RL application where Assumption 6′ holds

but Assumption 6 does not hold. Instead, in the RL applications in Section 9.5,

Assumption 6 holds but Assumption 6′ does not. That being said, the applicability of

Assumptions 6 and 6′ outside RL is beyond the scope of this work.

Having listed all the assumptions, our main theorem confirms the stability of {xn}.

4See page 91 of Meyn and Tweedie (2012) for the definition of ψ-irreducibility.
5See page 371 of Meyn and Tweedie (2012) for in-depth discussion about (V4).
6See page 109 of Meyn and Tweedie (2012) for the definition of small sets.
7g belongs to Lp

v,∞ if and only if supy∈Y
∥g(y)∥p

p

v(y) <∞, where v is the Lyapunov function in (V4).

86

Theorem 19. Let Assumptions 1 - 5 hold. Let Assumption 6 or 6′ hold. Then the

iterates {xn} generated by (9.1) are stable, i.e.,

sup
n
∥xn∥ <∞ a.s.

Its proof is in Section 9.4. Once the stability is established, the convergence follows

easily.

Corollary 1. Let Assumptions 1 - 5 hold. Let Assumption 6 or 6′ hold. Then the

iterates {xn} generated by (9.1) converge almost surely to a (sample path dependent)

bounded invariant set8 of the ODE9

dx(t)

dt
= h(x(t)). (9.13)

Arguments used in proving Corollary 1 are similar but much simpler than the

counterparts in the proof of Theorem 19. We include a proof of Corollary 1 in Appendix

F.2.9 with the details of those similar but simpler lemmas omitted to avoid verbatim

repetition.

It is worth mentioning that it is easy to extend our results to more general updates

xn+1 = xn + α(n) (H(xn, Yn+1) +Mn+1 + ϵn) ,

where Mn+1 is a Martingale difference sequence and ϵn is another additive noise.

Similarly, it would require the asymptotic rate of change of {Mn+1} and {ϵn} to

diminish. We refer the reader to Kushner and Yin (2003) for more details. Since

our main contribution is the stability under the Markovian noise {Yn+1}, we use the

simpler update rule (9.1) for improving clarity.

9.3 Prior Work

General H. In this chapter, the function H can be a general function and we do

not make any linearity assumptions. We first compare our results with existing works

applicable to general H and Markovian noise {Yn}. Since convergence follows easily

from stability, we focus on comparison in terms of establishing stability. Notably, the

8A set X is an invariant set of the ODE (9.13) if and only if for every x ∈ X, there exists
a solution x(t) to the ODE (9.13) such that x(0) = x and x(t) ∈ X for all t ∈ (−∞,∞). If the
ODE (9.13) is globally asymptotically stable, the only bounded invariant set is the singleton {x∗},
where x∗ denotes the unique globally asymptotically stable equilibrium. We refer the reader to page
105 of Kushner and Yin (2003) for more details.

9By {xn} converges to a set X, we mean limn→∞ infx∈X ∥xn − x∥ = 0.

87

related stability results in Borkar and Meyn (2000); Borkar (2009) are superceded by

Borkar et al. (2021). We, therefore, discuss only Borkar et al. (2021); Kushner and

Yin (2003); Benveniste et al. (1990).

Compared with Borkar et al. (2021), our improvements lie in two aspects. First,

central to Borkar et al. (2021) are (i) a V4 Laypunov drift condition, (ii) an aperiodicity

assumption of {Yn}, and (iii) a boundedness assumption L(y) ∈ L8
v,∞. By contrast,

our Assumption 6′ only requires L(y) ∈ L2
v,∞ and does not need aperiodicity. Second,

we further provide an approach that establishes the stability based on Assumption 6

without using (V4), aperiodicity, and the boundedness in L8
v,∞. As noted in Remark 6,

Assumption 6 is more applicable than Assumption 6′ in RL.

Compared with Kushner and Yin (2003), our main improvement is that we prove

stability under the asymptotic rate of change conditions. By contrast, Kushner and

Yin (2003) mostly use stability as a priori and are concerned with the convergence of

projected algorithms in the form of

xn+1 = Π (xn + α(n)H(xn, Yn+1)) ,

where Π is a projection to some compact set to ensure stability of {xn}. As a result,

the corresponding ODE (cf. Corollary 1) becomes

dx(t)

dt
= h(x(t)) + ξ(t),

where ξ(t) is a reflection term resulting from the projection Π. We refer the reader to

Section 5.2 of Kushner and Yin (2003) for more details regarding this reflection term.

Analyzing these reflection terms typically requires strong domain knowledge, see, e.g.,

Yu (2015); Zhang et al. (2021b), and Section 5.4 of Borkar (2009).

We argue that this work combines the best of both Borkar and Meyn (2000) and

Kushner and Yin (2003), i.e., the ODE@∞ technique for establishing stability from

Borkar and Meyn (2000) and the asymptotic rate of change technique for averaging

out the Markovian noise {Yn}. As a result, our results are more general than both

Borkar et al. (2021) and Kushner and Yin (2003) in the aforementioned sense.

Compared with Benveniste et al. (1990), our main improvement is that despite

the proof under Assumption 6′ essentially using Poisson’s equation10, the proof under

Assumption 6 does not need Poisson’s equation at all. Notably, Benveniste et al. (1990)

10Let g be a function defined on Y. The Poisson’s equation holds for g if there exists a finite
function ĝ such that ĝ(y) = g(y) − Ey∼dY [g(y)] +

∫
Y P (y, y

′)ĝ(y′)dy′ holds for any y ∈ Y, where
P denotes the transition kernel of {Yn}. The drift condition (V4), together with some other mild
conditions, is sufficient to ensure the existence of Poisson’s equation. We refer the reader to Theorem
17.4.2 of Meyn and Tweedie (2012) for more details.

88

assume Poisson’s equation directly without specifying sufficient conditions to establish

Poisson’s equation. Moreover, to establish stability, Benveniste et al. (1990) require a

Lyapunov function for the ODE (9.13) that is always greater than or equal to α∥·∥2

for some α > 0 (Condition (ii) of Theorem 17 in Benveniste et al. (1990)). By contrast,

our Assumption 5 does not put any restriction on the possible Lyapunov functions.

We also note that Borkar et al. (2021) is also based on an error representation similar

to Benveniste et al. (1990) enabled by Poisson’s equation.

Linear H. If we further assume that the function H(x, y) has a linear form, i.e.,

H(x, y) = A(y)x+ b(y),

there are several other results regarding the stability (and thus convergence), e.g.,

Konda and Tsitsiklis (1999); Tadic (2001); Yu (2015) and Proposition 4.8 of Bertsekas

and Tsitsiklis (1996). They, however, all require that the matrix A
.
= Ey∼dY [A(y)] is

negative definite11. But contrast, our Assumption 5 only requires A to be Hurwitz12

(see, e.g., Theorem 4.5 of Khalil (2002)), which is a weaker condition.13 In Section 9.5,

we provide a concrete RL algorithm where the corresponding A matrix is Hurwitz but

not negative definite.

Local clock. Another approach to deal with Markovian noise {Yn} is to apply

results in asynchronous schemes. We refer the reader to Chapter 7 of Borkar (2009)

for details. The major limitation is that it requires count-based learning rates. At the

n-th iteration, instead of using α(n), where n can be regarded as a “global lock”, the

asynchronous schemes use α(ϖ(n, Yn+1)) as the learning rate, where ϖ(n, y) counts

the number of visits to the state y until time n and can be regarded as a “local clock”.

The asynchronous schemes also have other assumptions regarding the local clock.

Successful examples include Abounadi et al. (2001); Wan et al. (2021). However, we

are not aware of any successful applications of such count-based learning rates in RL

with function approximation, where an RL algorithm typically only has access to some

feature ϕ(Yn) instead of Yn directly. Unless ϕ is a one-to-one mapping, there will be

no way to count the state visitation.

11A real matrix A, not necessarily symmetric, is negative definite if and only if all the eigenvalues
of the symmetric matrix A+A⊤ is strictly negative.

12A real matrix A is Hurwitz if and only if the real parts of all its eigenvalues are strictly negative.
13All negative definite matrices are Hurwitz, but many Hurwitz matrices are not negative definite.

See Chapter 2 of Horn and Johnson (1991) for more details.

89

Other type of noise. The Borkar-Meyn theorem applies to only Martingale differ-

ence noise, which is, later on, relaxed to allow more types of noise, e.g., Bhatnagar

(2011); Ramaswamy and Bhatnagar (2017). However, none of those extensions applies

to general Markovian noise.

9.4 Main Proof

This section is dedicated to proving Theorem 19. Overall, we prove by contradiction.

Section 9.4.1 sets up notations and establishes the desired diminishing asymptotic

rate of change of a few functions. Section 9.4.2 establishes the desired equicontinuity.

Section 9.4.3 assumes the opposite and thus identifies a subsequence of interest.

Section 9.4.4 analyzes the property of the subsequence, helping the reductio ad

absurdum in Section 9.4.5. Lemmas in this section are derived on an arbitrary sample

path {x0, {Yi}∞i=1} such that the assumptions in Section 9.2 hold. Thus, we omit “a.s.”

on the lemma statements for simplicity.

9.4.1 Diminishing Asymptotic Rate of Change

We divide the non-negative real axis [0,∞) into segments of length {α(i)}i=0,1,.... Those

segments are then grouped into larger intervals {[Tn, Tn+1)}n=0,1,.... The sequence {Tn}
has the property that Tn+1 − Tn ≈ T for some fixed T and as n tends to ∞, the error

in this approximation diminishes. Precisely speaking, we define

t(0)
.
=0,

t(n)
.
=

n−1∑
i=0

α(i) n = 1, 2,

For any T > 0, define

m(T) = max {i|T ≥ t(i)} (9.14)

to be the largest i that has t(i) smaller or equal to T . Intuitively, t(m(T)) is “just”

left to T in the real axis. Then t(m(T)) has the follow properties:

t(m(T)) ≤ T < t(m(T) + 1) = t(m(T)) + α(m(T)), (9.15)

t(m(T)) > T − α(m(T)). (9.16)

Define

T0 = 0,

Tn+1 = t(m(Tn + T) + 1). (9.17)

90

Intuitively, Tn+1 is “just” right to Tn + T in the real axis. For proving Theorem 19,

it suffices to work with solutions of ODEs in only [0,∞). But for Corollary 1, it is

necessary to consider solutions of ODEs in (−∞,∞). To this end, we define

α(i) =0 ∀i < 0,

m(t) =0 ∀t ≤ 0, (9.18)

for simplifying notations. For any given function f with domain Y, its asymptotic

rate of change is defined as

lim sup
n

sup
−τ≤t1≤t2≤τ

∥∥∥∥∥∥
m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i)[f(Yi+1)− Ey∼dY [f(y)]]

∥∥∥∥∥∥.
The asymptotic rate of change characterizes the asymptotic regularity of the sequence

{f(Yn)} and is a powerful tool to study stochastic approximation iterates. We refer the

reader to Sections 5.3.2 and 6.2 of Kushner and Yin (2003) for an in-depth exposition

of this tool. In the following, we demonstrate that the asymptotic rate of change is 0

for the functions in Assumption 6.

Lemma 22. Let Assumptions 1, 2, and 4 hold. Let Assumption 6 or 6′ hold. Then

the asymptotic rate of change of the functions (9.9), (9.10), and (9.11) is 0, i.e., for

any fixed τ > 0 and x, it holds that

lim sup
n

sup
−τ≤t1≤t2≤τ

∥∥∥∥∥∥
m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i) [H(x, Yi+1)− h(x)]

∥∥∥∥∥∥ = 0 a.s.,

lim sup
n

sup
−τ≤t1≤t2≤τ

∥∥∥∥∥∥
m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i)[Lb(Yi+1)− Lb]

∥∥∥∥∥∥ = 0 a.s., (9.19)

lim sup
n

sup
−τ≤t1≤t2≤τ

∥∥∥∥∥∥
m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i)[L(Yi+1)− L]

∥∥∥∥∥∥ = 0 a.s. (9.20)

Its proof is in Appendix F.4.1. Furthermore, the convergence of Hc to H∞ in

Assumption 3 demonstrates a similar pattern.

Lemma 23. Let Assumptions 1, 2, 3, and 4 hold. Let Assumption 6 or 6′ hold. It

then holds that

lim
c→∞

sup
x∈B

sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i) [Hc(x, Yi+1)−H∞(x, Yi+1)]

∥∥∥∥∥∥ = 0 a.s.,

where B denote an arbitrary compact set of Rd.

Its proof is in Appendix F.2.1.

91

9.4.2 Equicontinuity of Scaled Iterates

Fix a sample path {x0, {Yn}}. Let x̄(t) be the piecewise constant interpolation 14 of

xn at points {t(n)}n=0,1,..., i.e.,

x̄(t)
.
=


x0 t ∈ [0, t(1))

x1 t ∈ [t(1), t(2))

x2 t ∈ [t(2), t(3))
...

Using (9.14) to simplify it, we get

x̄(t)
.
= xm(t). (9.21)

Notably, x̄(t) is right continuous and has left limits. By (9.1), ∀n ≥ 0, we have

x̄(t(n+ 1)) = x̄(t(n)) + α(n)H(x̄(t(n)), Yn+1).

Now we scale x̄(t) in each segment [Tn, Tn+1).

Definition 1. ∀n ∈ N, t ∈ [0, T), define

x̂(Tn + t)
.
=
x̄(Tn + t)

rn
(9.22)

where

rn
.
= max {1, ∥x̄(Tn)∥}. (9.23)

This implies

∀n ∈ N, ∥x̂(Tn)∥ ≤ 1. (9.24)

Moreover15, ∀n ∈ N, t ∈ [0, T),

x̂(Tn + t) =
x̄(Tn) +

∑m(Tn+t)−1
i=m(Tn)

α(i)H(x̄(t(i)), Yi+1)

rn
.

= x̂(Tn) +

m(Tn+t)−1∑
i=m(Tn)

α(i)Hrn(x̂(t(i)), Yi+1).

14It also works if we consider a piecewise linear interpolation following Borkar (2009). The
piecewise linear interpolation, however, will significantly complicate the presentation. We, therefore,
follow Kushner and Yin (2003) to use piecewise constant interpolation.

15In this chapter, we use the convention that
∑j

k=i α(k) = 0 when j < i

92

The function t 7→ x̂(Tn + t) is the scaled version of x̄(t) (by rn) in the interval

[Tn, Tn+1). Its domain is [0, Tn+1 − Tn). In most of the rest of this work, we will

restrict it to [0, T), such that the sequence of functions {t 7→ x̂(Tn + t)}n=0,1,... have

the same domain [0, T), which is crucial in applying the Arzela-Ascoli Theorem. The

excess part [T, Tn+1 − Tn) diminishes asymptotically (cf. Lemma 49) and thus can be

easily processed when necessary. Notably, x̂(Tn + t) can be regarded as the Euler’s

discretization of zn(t) defined below.

Definition 2. ∀n ∈ N, t ∈ [0, T), define zn(t) as the solution of the ODE

dzn(t)

dt
= hrn(zn(t)) (9.25)

with initial condition

zn(0) = x̂(Tn). (9.26)

Apparently, zn(t) can also be written as

zn(t) = x̂(Tn) +

∫ t

0

hrn(zn(s))ds. (9.27)

Ideally, we would like to see that the error of Euler’s discretization diminishes asymp-

totically. Precisely speaking, the discretization error is defined as

fn(t)
.
= x̂(Tn + t)− zn(t) (9.28)

and we would like that fn(t) diminishes to 0 as n → ∞ in a certain sense. To this

end, we study the following three sequences of functions

{t 7→ x̂(Tn + t)}∞n=0, {zn(t)}∞n=0, {fn(t)}∞n=0. (9.29)

In particular, we show that they are all equicontinuous in the extended sense. To

understand equicontinuity in the extended sense, we first give the definition of equicon-

tinuity.

Definition 3. A sequence of functions
{
gn : [0, T)→ RK

}
is equicontinuous on [0, T)

if

supn ∥gn(0)∥ <∞ and ∀ϵ > 0, ∃δ > 0 such that

sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥gn(t1)− gn(t2)∥ ≤ ϵ.

93

One example of equicontinuity is a sequence of bounded Lipschitz continuous

functions with a common Lipschitz constant. Obviously, if {gn} is equicontinuous,

each gn must be continuous. However, the functions of interest in this work, i.e.,

x̂(Tn + t), fn(t), are not continuous so equicontinuity would not apply. We, therefore,

introduce the following equicontinuity in the extended sense16 akin to Kushner and

Yin (2003).

Definition 4. A sequence of functions
{
gn : [0, T)→ RK

}
is equicontinuous in the

extended sense on [0, T) if supn ∥gn(0)∥ <∞ and ∀ϵ > 0, ∃δ > 0 such that

lim sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥gn(t1)− gn(t2)∥ ≤ ϵ.

Notably, Kushner and Yin (2003) show that
{
t ∈ (−∞,∞) 7→ x̄(t(n) + t) ∈ Rd

}∞
n=0

is equicontinuous in the extended sense with a priori that

sup
n
∥xn∥ <∞.

We do not have this a priori. Instead, we prove a posteriori that

sup
n≥0,t∈[0,T)

∥x̂(Tn + t)∥ <∞

and show that
{
t ∈ [0, T) 7→ x̂(Tn + t) ∈ Rd

}∞
n=0

is equicontinuous in the extended

sense. We remark that our function t 7→ x̂(Tn+t) actually belongs to the J1 Skorokhod

topology (Skorokhod, 1956; Billingsley, 1999; Kern, 2023), although we will not work

on this topology explicitly. Nevertheless, the following lemmas establish the desired

equicontinuity, where Lemma 22 plays a key role.

Lemma 24. The three sequences of functions {x̂(Tn + t)}, {zn(t)}, and {fn(t)} are
all equicontinuous in the extended sense on t ∈ [0, T).

Its proof is in appendix F.2.2.

9.4.3 A Convergent Subsequence

According to the Arzela-Ascoli theorem in the extended sense (Theorem F.1.4), a

sequence of equicontinuous functions always has a subsequence of functions that

16We must use this equicontinuity in the extended sense because we have chosen to use piecewise
constant instead of piecewise linear interpolation. For piecewise linear interpolation, the standard
equicontinuity is enough. However, as also argued in Kushner and Yin (2003), piecewise linear
interpolation complicates the presentation much more than the equicontinuity in the extended sense.

94

uniformly converge to a continuous limit. In the following, we use this to identify a

particular subsequence of interest.

We observe the following inequality

∀n,
∥∥xm(Tn)

∥∥ = ∥x̄(Tn)∥ ≤ rn. (9.30)

Thus, to prove Theorem 19, we first show

sup
n
rn <∞,

and which is implied by

lim sup
n
rn <∞. (9.31)

In the following, we aim to show (9.31) by contradiction. We first assume the opposite,

i.e., lim supn rn =∞. Based on this assumption and applying Gronwall’s inequality a

few times, we can find a particular subsequence of interest, along which all the three

sequences of functions in (9.29) converge uniformly.

Lemma 25. Suppose lim supn rn = ∞. Then there exists a subsequence {nk}∞k=0 ⊆
{0, 1, 2, . . . } that has the following properties:

lim
k→∞

rnk
=∞,

rnk+1 > rnk
∀k. (9.32)

Moreover, there exist some continuous functions f lim(t) and x̂lim(t) such that ∀t ∈
[0, T),

lim
k→∞

fnk
(t) =f lim(t),

lim
k→∞

x̂(Tnk
+ t) =x̂lim(t), (9.33)

where both convergences are uniform in t on [0, T). Furthermore, let zlim(t) denote

the unique solution to the (ODE@∞) with the initial condition

zlim(0) = x̂lim(0),

in other words,

zlim(t) = x̂lim(0) +

∫ t

0

h∞(zlim(s))ds. (9.34)

Then ∀t ∈ [0, T), we have

lim
k→∞

znk
(t) = zlim(t),

where the convergence is uniform in t on [0, T).

Its proof is in Appendix F.2.3. We use the subsequence {nk} intensively in the

remaining proofs.

95

9.4.4 Diminishing Discretization Error

Recall that fn(t) denotes the discretization error of x̂(Tn + t) of zn(t). We now proceed

to prove that this discretization error diminishes along {nk}. We note that we are able

to improve over Borkar et al. (2021) because we only require the discretization error

to diminish along the subsequence {nk}, while Borkar et al. (2021) aim to show that

the discretization error diminishes along the entire sequence {n}, which is unnecessary

given (9.32).

In particular, we aim to prove that

lim
k→∞
∥fnk

(t)∥ =
∥∥f lim(t)

∥∥ = 0.

This means x̂(Tnk
+ t) is close to znk

(t) as k →∞. For any t ∈ [0, T), we have

lim
k→∞
∥fnk

(t)∥

= lim
k→∞

∥∥∥∥∥∥x̂(Tnk
) +

m(Tnk
+t)−1∑

i=m(Tnk
)

α(i)Hrnk
(x̂(t(i)), Yi+1)− znk

(t)

∥∥∥∥∥∥ (by (9.28))

= lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnk
(x̂(t(i)), Yi+1)−

∫ t

0

hrnk
(znk

(s))ds

∥∥∥∥∥∥ (by (9.27))

≤ lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnk
(x̂(t(i)), Yi+1)−

∫ t

0

hrnk
(x̂lim(s))ds

∥∥∥∥∥∥
+ lim

k→∞

∥∥∥∥∫ t

0

hrnk
(x̂lim(s))ds−

∫ t

0

hrnk
(znk

(s))ds

∥∥∥∥. (9.35)

We now prove that the first term in the RHS of (9.35) is 0. Precisely speaking, we

aim to prove ∀t ∈ [0, T),

lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnk
(x̂(t(i)), Yi+1)−

∫ t

0

hrnk
(x̂lim(s))ds

∥∥∥∥∥∥ = 0. (9.36)

To compute the limit above, we first fix any t ∈ [0, T) and compute the following

stronger double limit, which implies the existence of the above limit (cf. Lemma 62).

lim
j→∞
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥. (9.37)

96

To compute this double limit, we use the Moore-Osgood theorem (Theorem F.1.5)

to make it iterated limits. To invoke the Moore-Osgood theorem, we first prove the

uniform convergence in k when j →∞.

Lemma 26. ∀t ∈ [0, T),

lim
j→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥
=

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)H∞(x̂(t(i)), Yi+1)−
∫ t

0

h∞(x̂lim(s))ds

∥∥∥∥∥∥
uniformly in k.

Its proof is in Appendix F.2.4, where Lemma 23 plays a key role. Next, we prove,

for each j, the convergence with k →∞.

Lemma 27. ∀t ∈ [0, T), ∀j,

lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥ = 0.

The proof of Lemma 27 follows the proof sketch of a similar problem on page 168

of Kushner and Yin (2003) with some minor changes and is the central averaging

technique of Kushner and Yin (2003). We expect a reader familiar with Kushner

and Yin (2003) should have belief in its correctness. We anyway still include all the

details in the Appendix F.4.2 for completeness. We are now ready to compute the

limit in (9.36).

Lemma 28. ∀t ∈ [0, T),

lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnk
(x̂(t(i)), Yi+1)−

∫ t

0

hrnk
(x̂lim(s))ds

∥∥∥∥∥∥ = 0.

Proof. It follows immediately from Lemmas 26 & 27, the Moore-Osgood theorem, and

Lemma 62.

97

Lemma 28 confirms that the first term in the RHS of (9.35) is 0. Moreover, it also

enables us to rewrite x̂lim(t) from a summation form to an integral form.

x̂lim(t)

= lim
k→∞

x̂(Tnk
) +

m(Tnk
+t)−1∑

i=m(Tnk
)

α(i)Hrnk
(x̂(t(i)), Yi+1)

= lim
k→∞

x̂(Tnk
) +

∫ t

0

hrnk
(x̂lim(s))ds. (by Lemma 28)(9.38)

This, together with a few Gronwall’s inequality arguments, confirms that the dis-

cretization error indeed diminishes along {nk}.

Lemma 29. ∀t ∈ [0, T),

lim
k→∞
∥fnk

(t)∥ = 0.

Its proof is in Appendix F.2.6.

9.4.5 Identifying Contradiction and Completing Proof

Having made sure that the error of the discretization x̂(Tn + t) of zn(t) diminishes

along {nk}, we now study the behavior x̂(Tnk
+ t) through znk

(t) and identify a

contradiction. The underlying idea is identical to Borkar (2009). However, the

execution is different so we cannot use the arguments from Borkar (2009) directly.

Namely, to use the arguments in Chapter 3 of Borkar (2009) directly, we have to

prove that the discretization error diminishes along the entire sequence. This is

impossible for us because the Arzela-Ascoli theorem only guarantees convergence

along the subsequence {nk}. Nevertheless, after carefully choosing the subsequence in

Lemma 25, we are still able to execute the contradiction idea as documented below.

Lemma 30. Suppose lim supn rn =∞. Then there exists a k0 such that

rnk0
+1 ≤ rnk0

.

Its proof is in Appendix F.2.7. This lemma constructs a contradiction to (9.32).

This means the proposition lim supn rn =∞ is impossible. This completes the proof

of

sup
n
rn <∞. (9.39)

98

By decomposition,

sup
n
∥xn∥

= sup
n

sup
i∈{i|m(Tn)≤m(Tn)+i<m(Tn+1)}

∥∥xm(Tn)+i

∥∥− ∥∥xm(Tn)

∥∥+
∥∥xm(Tn)

∥∥
≤sup

n
sup

i∈{i|m(Tn)≤m(Tn)+i<m(Tn+1)}

∥∥xm(Tn)+i

∥∥− ∥∥xm(Tn)

∥∥+ sup
n
rn. (by (9.30))(9.40)

We show the first term above is also bounded.

Lemma 31.

sup
n

sup
i∈{i|m(Tn)≤m(Tn)+i<m(Tn+1)}

∥∥xm(Tn)+i

∥∥− ∥∥xm(Tn)

∥∥ <∞.
Its proof is in Appendix F.2.8. Thus, (9.39), (9.40) and Lemma 31 conclude

Theorem 19.

9.5 Applications in Reinforcement Learning

In this section, we discuss broad applications of Corollary 1 in RL. In particular, we

both demonstrate state-of-the-art analysis in Section 9.5.3 and greatly simplify existing

analysis in Section 9.5.4. We first introduce notations and lay out the background of

RL.

All vectors are column vectors. For a vector d ∈ RN with strictly positive entries,

we use ∥x∥d to denote the d-weighted ℓ2 norm, i.e., ∥x∥d
.
=
√∑N

i=1 dix
2
i . We also abuse

∥·∥d to denote the corresponding induced matrix norm. We use ∥·∥ to denote a general

norm that respects sub-multiplicity. We use vectors and functions interchangeably

when it does not confuse. For example, for some g : S → R, we also interpret g as a

vector in R|S|. We use ΠΦ,d to denote a projection operator that projects a vector d to

the column space of a matrix Φ, assuming Φ has a full column rank. In other words,

ΠΦ,dv = Φ arg min
θ
∥Φθ − v∥2d.

When it is clear from the context, we write ΠΦ,d as Πd for simplifying presentation.

We consider an MDP with a finite state space17 S, a finite action space A, a

reward function r : S ×A → R, a transition function p : S ×S ×A → [0, 1], an initial

distribution p0 : S → [0, 1], and a discount factor γ ∈ [0, 1). At time step 0, an initial

17It is worth mentioning that even if the MDP problem itself is finite, the Markov chains used to
analyze many RL algorithms still evolve in an uncountable and unbounded space. This will be seen
shortly.

99

state S0 is sampled from p0. At time t, given the state St, the agent samples an action

At ∼ π(·|St), where π : A× S → [0, 1] is the policy being followed by the agent. A

reward Rt+1
.
= r(St, At) is then emitted and the agent proceeds to a successor state

St+1 ∼ p(·|St, At). The return at time t is defined as Gt
.
=
∑∞

i=1 γ
i−1Rt+i, using which

we define the state-value function vπ(s) and action-value function qπ(s) as

vπ(s)
.
=Eπ,p [Gt|St = s] ,

qπ(s, a)
.
=Eπ,p [Gt|St = s, At = a] .

The value function vπ is the unique fixed point of the Bellman operator

Tπv
.
= rπ + γPπv,

where rπ ∈ R|S| is the reward vector induced by the policy π, i.e., rπ(s)
.
=
∑

a π(a|s)r(s, a),

and Pπ ∈ R|S|×|S| is the transition matrix induced by the policy π, i.e., Pπ(s, s′)
.
=

π(a|s)p(s′|s, a). With a λ ∈ [0, 1], we can rewrite vπ = Tπvπ using the identity

vπ = (1− λ)vπ + λTπvπ as

vπ =rπ + γPπ((1− λ)vπ + λTπvπ)

=rπ + γ(1− λ)Pπvπ + γλPπ(rπ + γPπvπ)

=rπ + γλPπrπ + γ(1− λ)Pπvπ + γ2λP 2
π ((1− λ)vπ + λTπvπ)

= . . .

=
∞∑
i=0

(γλPπ)irπ + (1− λ)
∞∑
i=1

λi−1γiP i
πvπ,

=(I − γλPπ)−1rπ + (1− λ)γ(I − γλPπ)−1Pπvπ.

This suggests that we define a λ-Bellman operator as

Tπ,λv
.
= rπ,λ + γPπ,λv,

where rπ,λ
.
= (I− γλPπ)−1rπ, Pπ,λ

.
= (1−λ)(I− γλPπ)−1Pπ. It is then easy to see that

when λ = 0, Tπ,λ reduces to Tπ. When λ = 1, Tπ,λ reduces to a constant function that

always output (I − γPπ)−1rπ. It is proved that Tπ,λ is a γ(1−λ)
1−γλ

-contraction w.r.t. ∥·∥dπ
(see, e.g., Lemma 6.6 of (Bertsekas and Tsitsiklis, 1996)), where we use dπ ∈ R|S| to

denote the stationary distribution of the Markov chain induced by π. Obviously, vπ is

the unique fixed point of Tπ,λ.

One fundamental task in RL is prediction, i.e., to estimate vπ, for which temporal

difference (TD, Sutton (1988)) learning is the most powerful method. In particular,

100

Sutton (1988) considers a linear architecture. Let ϕ : S → RK be the feature function

that maps a state to a K-dimensional feature. Linear TD(λ) (Sutton, 1988) aims to

find a θ ∈ RK such that ϕ(s)⊤θ is close to vπ(s) for every s ∈ S. To this end, linear

TD(λ) updates θ recursively as

et =λγet−1 + ϕt, (9.41)

θt+1 =θt + αt

(
Rt+1 + γϕ⊤

t+1θt − ϕ⊤
t θt
)
et,

where we have used ϕt
.
= ϕ(St) as shorthand and et ∈ RK is the eligiblity trace with

an arbitrary initial e−1. We use Φ ∈ R|S|×K to denote the feature matrix, each row of

which is ϕ(s)⊤. It is proved (Tsitsiklis and Roy, 1996) that, under some conditions,

{θt} converges to the unique zero of Jon(θ)
.
= ∥ΠdπTπ,λΦθ − Φθ∥2dπ . This Jon(θ) is

referred to as the on-policy mean squared projected Bellman error (MSPBE).

In many scenarios, due to the concerns of data efficiency (Lin, 1992; Sutton et al.,

2011) or safety (Dulac-Arnold et al., 2019), we would like to estimate vπ but select

actions using a different policy, called µ. This is off-policy learning, where π is called

the target policy and µ is called the behaivor policy. In the rest of this section,

we always consider the off-policy setting, i.e., the action At is sampled from µ(·|St).

Correspondingly, off-policy linear TD(λ) updates θ recursively as

et =λγρt−1et−1 + ϕt, (9.42)

θt+1 =θt + αtρt
(
Rt+1 + γϕ⊤

t+1θt − ϕ⊤
t θt
)
et,

where ρt
.
= ρ(St, At)

.
= π(At|St)

µ(At|St)
is the importance sampling ratio to account for the

discrepancy in action selection between π and µ. Obviously, if π = µ, then (9.42)

reduces to (9.41). Let dµ ∈ R|S| be the stationary distribution of the Markov chain

induced by µ. If {θt} in (9.42) converged, it would converge to the unique zero of

Joff(θ)
.
=
∥∥ΠdµTπ,λΦθ − Φθ

∥∥2
dµ
,

which is the off-policy MSPBE.

9.5.1 Eligibility Trace

The eligibility trace is one of the most fundamental ingredients in RL and is deeply

rooted in RL since the very beginning of RL (Klopf, 1972; Sutton, 1978; Barto and

Sutton, 1981a,b; Barto et al., 1983; Sutton, 1984). The eligibility trace in (9.41) is

called the accumulating trace, first introduced in Barto and Sutton (1981a). Later

on, this trace is also used in control by Rummery and Niranjan (1994). Its off-policy

101

version in (9.42) is introduced by Precup et al. (2000b, 2001) and further developed

by Bertsekas and Yu (2009); Yu (2012). Other forms of traces include the Dutch trace

introduced by Seijen and Sutton (2014) and the followon trace introduced by Sutton

et al. (2016). In short, traces are usually used to accelerate credit assignment, which is

a fundamental challenge in RL. Intuitively, traces are able to achieve this goal because

they function as memory of the past. Empirically, RL algorithms with traces usually

outperform those without traces (Sutton and Barto, 2018). Traces are also important

in establishing the equivalence between backward and forward views of RL algorithms

(Sutton et al., 2014).

Despite the superiority of traces in multiple aspects, they usually complicate the

analysis of RL algorithms. Without any trace, to analyze an RL algorithm it is usually

sufficient to consider the Markov chain {(St, At)}. Under a finite MDP assumption,

this augmented Markov chain is still finite. Once trace is introduced, we, however,

must consider the Markov chain {(St, At, et)}, see, e.g., Tsitsiklis and Roy (1996).

This augmented Markov chain now immediately evolves in an uncountable space

S × A × Rd. In the on-policy case (cf. (9.41)), this is still managable. It is clear

from (9.41) that et remains bounded almost surely. So the augmented Markov chain

evolves in a compact space. In the off-policy case (cf. (9.42)), the trace et can easily

be unbounded almost surely due to the importance sampling ratio ρt−1 (Yu, 2012).

The augmented Markov chain then evolves in an unbounded and uncountable space.

Even worse, sometimes the second moment of et can also be unbounded (Yu, 2012),

further complicating the analysis. Despite that et is demonstrated to obey a form

of the strong law of large numbers (Yu, 2012), there does not exist a general tool to

make use of this in convergence analysis before this work. In other words, this work is

the first to provide a general tool to analyze the stability (and thus convergence) of

RL algorithms with off-policy traces.

9.5.2 The Deadly Triad

Despite the aforementioned superiority of off-policy learning in safety and data

efficiency, it complicates RL algorithms in at least two aspects. The first is that

it makes traces extremely hard to analyze, as demonstrated in the section above.

Second, it makes the RL algorithm behaves poorly in expectation. In other words,

even if there is no noise (cf. replacing H(xn, Yn+1) with h(xn)), the RL algorithm

can still behave poorly. A concrete example is that, for a general λ, the iterates {θt}
in (9.42) can possibly diverge to infinity, as documented in Baird (1995); Tsitsiklis

and Roy (1996); Sutton and Barto (2018). This is the notorious deadly triad, which

102

refers to the instability of an RL algorithm when it combines bootstrapping, function

approximation, and off-policy learning simultaneously while maintaining a constant

O(K) computational complexity each step.

The deadly triad has been one of the central challenges of RL in the past three

decades and numerous works have been done in this topic (Precup et al., 2000b, 2001;

Sutton et al., 2008b, 2009; Maei et al., 2009, 2010; Maei and Sutton, 2010; Maei,

2011; Sutton et al., 2011; Yu, 2012; Mahadevan et al., 2014; Liu et al., 2015; Yu, 2015;

White and White, 2016; Mahmood et al., 2017; Yu, 2017; Wang et al., 2017; Touati

et al., 2018; Liu et al., 2018; Zhang et al., 2020b; Nachum et al., 2019; Xu et al., 2019;

Zhang et al., 2021a, 2020c; Ghiassian et al., 2020; Wang and Zou, 2020; Zhang et al.,

2020a; Guan et al., 2021; Zhang et al., 2021b; Zhang and Whiteson, 2022; Qian and

Zhang, 2025; Liu et al., 2025d). We refer the reader to Chapter 11 of Sutton and

Barto (2018) and Zhang (2022) for more detailed exposition.

Among all those works, gradient temporal difference learning (GTD, Sutton et al.

(2008b)) and emphatic temporal difference learning (ETD, Sutton et al. (2016)) are

the two most important solutions to the deadly triad in terms of policy evaluation.

GTD and ETD are also important building blocks for other algorithms. They can be

used in convergent off-policy actor-critic algorithms for control, see, e.g., Imani et al.

(2018); Maei (2018); Zhang et al. (2020b); Xu et al. (2021); Graves et al. (2023). They

can also be used to learn value functions w.r.t. some augmented reward function to

construct behavior policies for efficient and unbiased Monte Carlo policy evaluation,

see, e.g., Liu and Zhang (2024); Liu et al. (2025c); Chen et al. (2025); Liu et al. (2025a).

But surprisingly, the convergence analysis of their ultimate form with eligibility trace,

i.e., GTD(λ) and ETD(λ), is still not fully settled down. In the next, we shall analyze

GTD(λ) and ETD(λ) in the sequel. Throughout the rest of Section 9.5, we make the

following assumptions.

Assumption 9.5.1. Both S and A are finite. The Markov chain {St} induced by the

behavior policy µ is irreducible. And µ(a|s) > 0 for all s, a.

We note again that in light of Section 9.5.1, even if the MDP itself is finite, the

augmented Markov chain used to analyze GTD(λ) and ETD(λ) still evolves in an

unbounded and uncountable space. The analysis is, therefore, very challenging. As-

sumption 9.5.1 is a standard assumption in off-policy RL to ensure enough exploration,

see, e.g., Precup et al. (2001); Sutton et al. (2016). The condition µ(a|s) > 0 can

be easily relaxed to π(a|s) > 0 =⇒ µ(a|s) > 0, at the price of complicating the

presentation.

103

Assumption 9.5.2. The learning rates {αt} have the form αt = B1

t+B2
.

Assumption 9.5.2 is also used in existing works, see, e.g., Yu (2012, 2015, 2017).

Assumption 9.5.3. The feature matrix Φ has a full column rank.

Assumption 9.5.3 is a standard assumption in RL with linear function approxima-

tion to ensure the existence and uniqueness of the solution, see, e.g., Tsitsiklis and

Roy (1996).

9.5.3 Gradient Temporal Difference Learning

The idea of GTD is to perform stochastic gradient descent on Joff(θ) directly and use

a weight duplication trick or Fenchel’s duality to address a double sampling issue

in estimating ∇Joff(θ). We provide the key concepts of GTD in Section 2.10, and

we re-elaborate on them in this section to facilitate reading. We refer the reader

to Sutton et al. (2009); Liu et al. (2015) for detailed derivation. GTD has many

different variants, see, e.g., Sutton et al. (2008b, 2009); Maei (2011); Yu (2017); Zhang

et al. (2021a); Qian and Zhang (2025). In this chapter, we present and analyze the

following arguably most representative one, referred to as GTD(λ) for simplicity.18 In

particular, GTD(λ) employs an additional weight vector ν ∈ RK and update θ and ν

simultaneously in a recursive way as

et =λγρt−1et−1 + ϕt, (9.43)

δt =Rt+1 + γϕ⊤
t+1θt − ϕ⊤

t θt,

νt+1 =νt + αt

(
ρtδtet − ϕtϕ

⊤
t νt
)
,

θt+1 =θt + αtρt(ϕt − γϕt+1)e
⊤
t νt.

This additional weight vector results from the weight duplication or Fenchel’s duality.

To analyze (9.43), we first express the update to ν and θ in a compact form as[
νt+1

θt+1

]
=

[
νt
θt

]
+ αt

([
−ϕtϕ

⊤
t ρtet(γϕt+1 − ϕt)

⊤

−(γϕt+1 − ϕt)ρte
⊤
t 0

][
νt
θt

]
+

[
ρtRt+1et

0

])
.

To further simplify it, we define an augmented Markov chain {Yt} as

Yt+1
.
= (St, At, St+1, et), t = 0, 1,

18This is the GTDa in Yu (2017) and is the GTD2 in Sutton et al. (2009) with eligibility trace.

104

We also define shorthands

x
.
=

[
ν
θ

]
, xt

.
=

[
νt
θt

]
,

y
.
=(s, a, s′, e),

A(y)
.
=ρ(s, a)e(γϕ(s′)− ϕ(s))⊤,

b(y)
.
=ρ(s, a)r(s, a)e,

C(y)
.
=ϕ(s)ϕ(s)⊤,

H(x, y)
.
=

[
−C(y) A(y)
−A(y)⊤ 0

]
x+

[
b(y)

0

]
.

Then GTD(λ) can be expressed as

xt+1 = xt + αtH(xt, Yt+1),

which reduces to the form of (9.1). We now proceed to prove the almost sure

convergence of {xt} using Corollary 1. Apparently, {Yt} evolves in the state space

Y .
= S ×A× S × RK .

Despite that both S and A are finite, Y can still be unbounded and uncountable. It

is shown in Proposition 3.1 of Yu (2012) that as long as there is a cycle in {St}, et is

unbounded almost surely in arguably almost all natural problems. Nevertheless, Yu

(2012) shows that {Yt} has the following property.

Lemma 32. (Theorems 3.2 & 3.3 of Yu (2012)) Let Assumption 9.5.1 hold. Then

(i) {Yt} has a unique invariant probability measure, referred to as dY .

(ii) For any matrix/vector-valued function g(s, a, s′, e) on Y which is Lipschitz con-

tinuous in e with a Lipschitz constant Lg, i.e.,

∥g(s, a, s′, e)− g(s, a, s′, e′)∥ ≤ Lg∥e− e′∥, ∀s, a, s′, e, e′,

the expectation Ey∼dY [g(y)] exists and is finite, and the (LLN) holds for the g

function.

Yu (2012) also shows that

A
.
=Ey∼dY [A(y)] = Φ⊤Dµ(γPπ,λ − I)Φ,

b
.
=Ey∼dY [b(y)] = Φ⊤Dµrπ,λ,

C
.
=Ey∼dY [C(y)] = Φ⊤DµΦ,

where we use Dµ to denote the diagonal matrix whose diagonal entry is dµ.

105

Theorem 20. Let Assumptions 9.5.1 - 9.5.3 hold. Assume A is nonsingular. Then

the iterates {θt} generated by GTD(λ) (9.43) satisfy

lim
t→∞

θt = −A−1b a.s.

Its proof is in Appendix F.2.10. It can be shown easily that −A−1b is the unique

zero of Joff(θ), see, e.g., Sutton et al. (2009). Notably, Theorem 20 is the first almost

sure convergence analysis of GTD with eligibility trace without adding additional bias

terms. Most existing convergence analyses of GTD (see, e.g., Sutton et al. (2008b,

2009); Maei (2011); Liu et al. (2015); Wang et al. (2017); Qian and Zhang (2025))

do not have eligibility trace. To our knowledge, the only previous analysis of GTD

with eligibility trace is Yu (2017), which, however, relies on additional projection

operators or regularization to ensure the stability and unavoidably introduces bias

into the final limiting point. As a result, Yu (2017) cannot establish the almost

sure convergence of GTD(λ) to the unique zero of Joff(θ). Yu (2017) also introduces

extensions to λ. Instead of being a constant, it can be a state-dependent function

λ : S → [0, 1]. The almost sure convergence of GTD(λ) with a state-dependent λ

function follows similarly. We present the simplest constant λ case for clarity. Yu

(2017) also introduces history-dependent λ function, which we leave for future work.

9.5.4 Emphatic Temporal Difference Learning

The idea of ETD is to reweight the off-policy linear TD update (9.42) by an additional

factor. Similar to GTD, ETD also has many different variants, see, e.g., Yu (2015);

Sutton et al. (2016); Hallak et al. (2016); Zhang et al. (2020b); Zhang and Whiteson

(2022); Guan et al. (2021). Variants of ETD have also been applied in deep RL, see,

e.g., Jiang et al. (2021, 2022); Mathieu et al. (2023).

We introduce the key concepts of ETD in Section 2.11, and we re-elaborate on

them here to facilitate reading. In this section, we consider the original ETD(λ) in Yu

(2015); Sutton et al. (2016). ETD(λ) updates θ recursively in the following way

Ft =γρt−1Ft−1 + i(St), (9.44)

Mt =λi(St) + (1− λ)Ft,

et =λγρt−1et−1 +Mtϕt,

θt+1 =θt + αtρt
(
Rt+1 + γϕ⊤

t+1θt − ϕ⊤
t θt
)
et,

where i : S → (0,∞) is an arbitrary “interest” function (Sutton et al., 2016), specifying

user’s preference for different states, despite that in most applications, i(s) is a constant

106

function which is always 1. See Zhang et al. (2019) for an example where the interest

function is not trivially 1. Comparing the eligibility trace et in (9.44) with that

in (9.42), one can find that there is an additional scalar multiplier Mt proceeding

ϕt. This Mt is called “emphasis” (Sutton et al., 2016), which is the accumulation of

Ft, called “followon trace” (Sutton et al., 2016). We refer the reader to Sutton et al.

(2016) for the intuition behind ETD. Nevertheless, Yu (2015) proves that, under mild

conditions, {θt} in (9.44) converges almost surely to the unique zero of

Jemphatic(θ) = ∥ΠmTπ,λΦθ − Φθ∥2m,

where m
.
= (I − γP⊤

π,λ)−1Dµi. We remark that the zero of Jemphatic(θ) has better

theoretical guarantees than the zero of Joff(θ) in terms of the approximation error for

vπ (Hallak et al., 2016). ETD, however, usually suffers from a larger variance than

GTD (Sutton and Barto, 2018).

To analyze ETD(λ), Yu (2015) considers the following augmented Markov chain

Yt+1 =(St, At, St+1, et, Ft).

Again, {Yt} behaves poorly in that (et, Ft) can be unbounded almost surely and its

variance can grow to infinity as time progresses. We refer the reader to Remark A.1

in Yu (2015) for an in-depth discussion regarding this poor behavior. Nevertheless,

Yu (2015) shows that {Yt} has the following property.

Lemma 33. (Theorems 3.2 & 3.3 of Yu (2015)) Let Assumption 9.5.1 hold. Then

(i) {Yt} has a unique invariant probability measure, referred to as dY .

(ii) For any matrix / vector-valued function g(s, a, s′, e, f) on Y which is Lipschitz

continuous in (e, f) with a Lipschitz constant Lg, i.e.,

∥g(s, a, s′, e, f)− g(s, a, s′, e′, f ′)∥ ≤ Lg∥e− e′∥, ∀s, a, s′, e, e′, f, f ′,

the expectation Ey∼dY [g(y)] exists and is finite, and the (LLN) holds for the

function g.

We now discuss how Yu (2015) establishes the almost sure convergence of {θt}.
First, we define shorthands

y
.
=(s, a, s′, e, f),

A(y) =ρ(s, a)e(γϕ(s′)− ϕ(s))⊤,

b(y) =ρ(s, a)r(s, a)e,

H(θ, y) =A(y)θ + b(y).

107

Then the ETD(λ) update can be expressed as

θt+1 = θt + αtH(θt, Yt+1).

Yu (2015) also shows that

A
.
=Ey∼dY [A(y)] = Φ⊤Dm(γPπ,λ − I)Φ,

b
.
=Ey∼dY [b(y)] = Φ⊤Dmrπ,λ,

and −A−1b is the unique zero of Jemphatic(θ). Despite that A is negative definite (see,

e.g., Section 4 of Sutton et al. (2016)) and the corresponding ODE@∞ is, therefore,

globally asymptotically stable, Yu (2015) is not able to establish the stability of {θt}
directly, simply because the results in the stochastic approximation community are

not ready yet. See Section 9.3 for a comprehensive review. As a workaround, Yu

(2015) analyzes a constrained variant of ETD(λ) first:

θ′t+1 = Π (θ′t + αtH(θ′t, Yt+1)) ,

where Π is a projection to a centered ball of properly chosen radius w.r.t. ℓ2 norm.

Yu (2015) then proves that the difference between {θt} and {θ′t} diminishes almost

surely and therefore establishes the convergence of {θt} indirectly. To establish the

convergence of {θ′t}, Yu (2015) invokes Theorem 1.1 in Chapter 6 of Kushner and

Yin (2003). Now with our Corollary 1, the same arguments Yu (2015) use to invoke

Kushner and Yin (2003) can lead to the convergence of {θt} directly. Our contribution

is, therefore, a greatly simplified almost sure convergence analysis of ETD(λ). In

particular, we have

Theorem 21. Let Assumptions 9.5.1 - 9.5.3 hold. Then the iterates {θt} generated
by ETD(λ) (9.44) satisfy

lim
t→∞

θt = −A−1b a.s.

The proof of Theorem 21 is a verbatim repetition of the proof of Theorem 20 in

Appendix F.2.10 after noticing that A is negative definite and Lemma 33 and is thus

omitted. Notably, this proof does not involve the comparison between {θt} and {θ′t}.
We remark that the comparison technique between {θt} and {θ′t} used by Yu (2015)

heavily relies on the fact that A is negative definite (see Lemma 4.1 of Yu (2015)).

But in GTD(λ), the corresponding matrix is

[
−C A
−A⊤ 0

]
, which is Hurwitz but not

negative definite. In fact, it is only negative semidefinite. As a result, the comparison

technique in Yu (2015) does not apply to GTD(λ).

108

9.6 Discussion

In this chapter, we develop a novel stability result of stochastic approximations,

extending the celebrated Borkar-Meyn theorem from the Martingale difference noise

setting to the Markovian noise setting. Our result is built on the diminishing asymptotic

rate of change of a few functions, which is implied by both a form of the strong law

of larger numbers and a form of the law of the iterated logarithm. We demonstrate

the wide applicability of our results in RL, generating state-of-the-art analysis for

important RL algorithms in breaking the notorious deadly triad. There are many

possible directions for future work. One direction is to characterize the behavior of the

iterates in (9.1) in more aspects. For example, it is possible to establish a (functional)

central limit theorem following Borkar et al. (2021). It is also possible to establish

an almost sure convergence rate, a high probability concentration bound, and an Lp

convergence rate following Qian et al. (2024). Another direction is to weaken the

required assumptions further. In the context of RL, Assumption 5 is typically obtained

by assuming h is related to some contraction operator and the feature matrix Φ has a

full column rank. It is possible to weaken h to nonexpansive operators following Blaser

and Zhang (2024). It is also possible to allow Φ to have arbitrary ranks following

Wang and Zhang (2024).

109

Chapter 10

Conclusion

Policy evaluation remains one of the most fundamental challenges in reinforcement

learning, particularly when aiming for both efficiency and reliability in high-stakes

environments. In this thesis, we focused on improving the efficiency, robustness,

and theoretical understanding of policy evaluation. While we made substantial

progress—achieving significant improvements over prior methods—many important

questions remain open for future investigation.

One possible line of future work is to extend our variance reduction methods

beyond Monte Carlo evaluation. Temporal difference (TD) learning is a widely used

alternative that requires less data but suffers from stability issues, particularly in

off-policy settings. Adapting our optimal data collection and processing frameworks

to TD-based objectives could lead to more sample-efficient algorithms.

Another important direction is to extend our methods to multi-agent settings. Cur-

rently, our methods are developed for single-agent environments, but many real-world

applications—such as autonomous driving, smart grids, and financial markets—involve

multiple interacting agents whose policies evolve over time. Extending our variance

reduction and safety frameworks to multi-agent systems presents new challenges,

particularly due to the non-stationarity introduced by the changing behaviors of

other agents. This may require developing new approaches that account for strategic

interactions, as well as designing data collection strategies that remain informative in

the presence of such dynamics.

While we introduced robustness to transition model uncertainty, future work

could explore robustness to other forms of environmental perturbation, such as

reward misspecification or partial observability in state information. These forms

of uncertainty are common in deployed systems and present unique challenges for

off-policy evaluation. New formulations of robust off-policy evaluation that explicitly

110

handle reward and state uncertainty could yield safer and more reliable estimators in

noisy real-world environments.

Another future direction is to investigate how to stabilize transition-gradient-

based methods, which we introduced for robust policy evaluation. While powerful in

practice, these methods may suffer from instability when applied with deep function

approximators. Techniques from modern policy optimization—such as trust region

methods, clipping strategies, or adaptive baselines—could be adapted to stabilize the

transition gradient updates. Understanding the theoretical and practical properties of

these extensions could significantly enhance the robustness of evaluation in RL.

On the theoretical front, our ODE-based framework lays the foundation for analyz-

ing the stability of stochastic approximation algorithms under Markovian noise, but

several extensions are worth pursuing. One direction is to characterize the behavior of

the learning iterates more precisely. For instance, it may be possible to establish a

functional central limit theorem, capturing the asymptotic distribution of the iterates.

Further refinements such as high-probability concentration bounds and almost sure

convergence rates may also be derived. Pursuing these directions could broaden the

applicability of our theory to a wider range of RL algorithms.

The tension between efficiency, robustness, safety, and stability is at the heart of

policy evaluation—and, more broadly, reinforcement learning itself. The algorithms

and analyses in this thesis do not offer a complete solution, but they provide new tools

and perspectives that we hope will be useful for tackling the next set of challenges. We

believe that progress in reinforcement learning depends not just on new algorithms, but

on deepening our understanding of when, how, and why they work. In this spirit, we

hope this thesis can serve as a stepping stone toward building reinforcement learning

systems that are not only powerful, but also deployable and reliable.

111

Bibliography

Abounadi, J., Bertsekas, D., and Borkar, V. S. (2001). Learning algorithms for markov

decision processes with average cost. SIAM Journal on Control and Optimization.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimiza-

tion. In International conference on machine learning, pages 22–31. PMLR.

Agarwal, A., Basu, S., Schnabel, T., and Joachims, T. (2017). Effective evaluation

using logged bandit feedback from multiple loggers. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. (2018). A rewriting system

for convex optimization problems. Journal of Control and Decision, 5(1):42–60.

Antos, A., Szepesvári, C., and Munos, R. (2008). Learning near-optimal policies with

bellman-residual minimization based fitted policy iteration and a single sample path.

Machine Learning.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of the International Conference on Machine Learning.

Barto, A. G. and Sutton, R. S. (1981a). Goal seeking components for adaptive intelli-

gence: An initial assessment. air force wright aeronautical laboratories. Technical re-

port, Avionics Laboratory Technical Report AFWAL-TR-81-1070, Wright-Patterson

AFB.

Barto, A. G. and Sutton, R. S. (1981b). Landmark learning: An illustration of

associative search. Biological Cybernetics.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on Systems,

Man, and Cybernetics.

112

Benjamin Melamed, R. Y. R. (1998). Modern Simulation and Modeling (Wiley Series

in Probability and Statistics). Wiley-Interscience.

Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive Algorithms and

Stochastic Approximations. Springer.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A. (2017). Safe model-based

reinforcement learning with stability guarantees. Advances in neural information

processing systems, 30.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific Belmont, MA.

Bertsekas, D. P. and Tsitsiklis, J. N. (2000). Gradient convergence in gradient methods

with errors. SIAM Journal on Optimization, 10(3):627–642.

Bertsekas, D. P. and Yu, H. (2009). Projected equation methods for approximate

solution of large linear systems. Journal of Computational and Applied Mathematics.

Bhatnagar, S. (2011). The borkar-meyn theorem for asynchronous stochastic approxi-

mations. Systems & Control Letters.

Billingsley, P. (1999). Convergence of probability measures. Wiley Series in Probability

and Statistics: Probability and Statistics.

Blaser, E. and Zhang, S. (2024). Asymptotic and finite sample analysis of nonexpansive

stochastic approximations with markovian noise. arXiv preprint arXiv:2409.19546.

Borkar, V., Chen, S., Devraj, A., Kontoyiannis, I., and Meyn, S. (2021). The ode

method for asymptotic statistics in stochastic approximation and reinforcement

learning. arXiv preprint arXiv:2110.14427.

Borkar, V. S. (2009). Stochastic approximation: a dynamical systems viewpoint.

Springer.

Borkar, V. S. and Meyn, S. P. (2000). The ode method for convergence of stochas-

tic approximation and reinforcement learning. SIAM Journal on Control and

Optimization.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge

university press.

113

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. (2016). OpenAI Gym. ArXiv Preprint.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., and Schoellig, A. P.

(2022). Safe learning in robotics: From learning-based control to safe reinforcement

learning. Annual Review of Control, Robotics, and Autonomous Systems.

Carpentier, A., Munos, R., and Antos, A. (2015). Adaptive strategy for stratified

monte carlo sampling. Journal of Machine Learning Research.

Chen, C., Liu, S., and Zhang, S. (2025). Efficient policy evaluation with safety

constraint for reinforcement learning. In Proceedings of the International Conference

on Learning Representations.

Chen, J. and Jiang, N. (2019). Information-theoretic considerations in batch reinforce-

ment learning. In International Conference on Machine Learning.

Chervonyi, Y., Dutta, P., Trochim, P., Voicu, O., Paduraru, C., Qian, C., Karagozler,

E., Davis, J. Q., Chippendale, R., Bajaj, G., Witherspoon, S., and Luo, J. (2022).

Semi-analytical industrial cooling system model for reinforcement learning.

Chow, Y., Nachum, O., Duenez-Guzman, E., and Ghavamzadeh, M. (2018). A

lyapunov-based approach to safe reinforcement learning. Advances in neural infor-

mation processing systems, 31.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement

learning in a handful of trials using probabilistic dynamics models. In Advances in

Neural Information Processing Systems.

Dai, J. G. (1995). On positive harris recurrence of multiclass queueing networks: a

unified approach via fluid limit models. The Annals of Applied Probability.

Dai, J. G. and Meyn, S. P. (1995). Stability and convergence of moments for multiclass

queueing networks via fluid limit models. IEEE Transactions on Automatic Control.

Dann, C., Ghavamzadeh, M., and Marinov, T. V. (2023). Multiple-policy high-

confidence policy evaluation. In Proceedings of the International Conference on

Artificial Intelligence and Statistics.

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A model-based and data-

efficient approach to policy search. In Proceedings of the International Conference

on Machine Learning.

114

Dulac-Arnold, G., Mankowitz, D., and Hester, T. (2019). Challenges of real-world

reinforcement learning. arXiv preprint arXiv:1904.12901.

Dunford, N. and Schwartz, J. T. (1988). Linear operators, part 1: general theory.

John Wiley & Sons.

Farahmand, A.-m. and Szepesvári, C. (2011). Model selection in reinforcement learning.

Machine learning, 85(3):299–332.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-Paredes, B., Barekatain, M.,

Novikov, A., R Ruiz, F. J., Schrittwieser, J., Swirszcz, G., et al. (2022). Discovering

faster matrix multiplication algorithms with reinforcement learning. Nature.

Fort, G., Meyn, S., Moulines, E., and Priouret, P. (2008). The ODE method for

stability of skip-free Markov chains with applications to MCMC. The Annals of

Applied Probability.

Fujimoto, S., Meger, D., Precup, D., Nachum, O., and Gu, S. S. (2022). Why should i

trust you, bellman? the bellman error is a poor replacement for value error. arXiv

preprint arXiv:2201.12417.

Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement

learning. Journal of Machine Learning Research, 16(1):1437–1480.

Geweke, J. (1988). Antithetic acceleration of monte carlo integration in bayesian

inference. Journal of Econometrics.

Ghiassian, S., Patterson, A., Garg, S., Gupta, D., White, A., and White, M. (2020).

Gradient temporal-difference learning with regularized corrections. In International

Conference on Machine Learning.

Grand-Clément, J. and Kroer, C. (2021). Scalable first-order methods for robust mdps.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages

12086–12094.

Graves, E., Imani, E., Kumaraswamy, R., and White, M. (2023). Off-policy actor-critic

with emphatic weightings. Journal of Machine Learning Research.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques

for gradient estimates in reinforcement learning. Journal of Machine Learning

Research.

115

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J., and Knoll, A. (2022). A

review of safe reinforcement learning: Methods, theory and applications. ArXiv

Preprint.

Guan, Z., Xu, T., and Liang, Y. (2021). Per-etd: A polynomially efficient emphatic

temporal difference learning method. arXiv preprint arXiv:2110.06906.

Hallak, A., Tamar, A., Munos, R., and Mannor, S. (2016). Generalized emphatic

temporal difference learning: Bias-variance analysis. In Proceedings of the AAAI

Conference on Artificial Intelligence.

Hanna, J. P., Chandak, Y., Thomas, P. S., White, M., Stone, P., and Niekum, S.

(2024). Data-efficient policy evaluation through behavior policy search. Journal of

Machine Learning Research, 25(313):1–58.

Hanna, J. P., Thomas, P. S., Stone, P., and Niekum, S. (2017). Data-efficient policy

evaluation through behavior policy search. In Proceedings of the International

Conference on Machine Learning.

Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture

distributions. Technometrics.

Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge

University Press.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., and Araújo,

J. G. (2022). Cleanrl: High-quality single-file implementations of deep reinforcement

learning algorithms. Journal of Machine Learning Research.

Imani, E., Graves, E., and White, M. (2018). An off-policy policy gradient theorem

using emphatic weightings. In Advances in Neural Information Processing Systems.

Iyengar, G. N. (2005). Robust dynamic programming. Mathematics of Operations

Research, 30(2):257–280.

Jiang, N. and Li, L. (2016). Doubly robust off-policy value evaluation for reinforcement

learning. In Proceedings of the International Conference on Machine Learning.

Jiang, R., Zahavy, T., White, A., Xu, Z., Hessel, M., Blundell, C., and van Hasselt, H.

(2021). Emphatic algorithms for deep reinforcement learning. In Proceedings of the

International Conference on Machine Learning.

116

Jiang, R., Zhang, S., Chelu, V., White, A., and van Hasselt, H. (2022). Learning

expected emphatic traces for deep RL. In Proceedings of the AAAI Conference on

Artificial Intelligence.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunya-

suvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., et al. (2021). Highly accurate

protein structure prediction with alphafold. Nature.

Kahn, H. and Marshall, A. W. (1953). Methods of reducing sample size in monte

carlo computations. Journal of the Operations Research Society of America.

Kakutani, S. (1945). Markoff process and the dirichlet problem. Proceedings of the

Japan Academy.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly,

E., Kalakrishnan, M., Vanhoucke, V., et al. (2018). Scalable deep reinforcement

learning for vision-based robotic manipulation. In Conference on robot learning.

Kallus, N., Saito, Y., and Uehara, M. (2021). Optimal off-policy evaluation from

multiple logging policies. In International Conference on Machine Learning.

Kern, J. (2023). Skorokhod topologies: What they are and why we should care.

Mathematische Semesterberichte.

Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall.

Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a

regression function. Annals of Mathematical Statistics.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In

Proceedings of the International Conference on Learning Representations.

Klopf, A. H. (1972). Brain function and adaptive systems: a heterostatic theory. Air

Force Cambridge Research Laboratories, Air Force Systems Command, United

States Air Force.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and

Techniques. Mit Press.

Konda, V. R. and Tsitsiklis, J. N. (1999). Actor-critic algorithms. In Advances in

Neural Information Processing Systems.

117

Kushner, H. and Yin, G. G. (2003). Stochastic approximation and recursive algorithms

and applications. Springer Science & Business Media.

Lai, J., Zou, L., and Song, J. (2020). Optimal mixture weights for off-policy evaluation

with multiple behavior policies. arXiv preprint arXiv:2011.14359.

Lakshminarayanan, C. and Bhatnagar, S. (2017). A stability criterion for two timescale

stochastic approximation schemes. Automatica.

Le, H. M., Voloshin, C., and Yue, Y. (2019). Batch policy learning under constraints.

In Proceedings of the International Conference on Machine Learning.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference:

Tutorial and review. arXiv preprint arXiv:1805.00909.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tu-

torial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Li, L. (2019). A perspective on off-policy evaluation in reinforcement learning. Frontiers

of Computer Science.

Lin, L. J. (1992). Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine Learning.

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., and Petrik, M. (2015). Finite-

sample analysis of proximal gradient TD algorithms. In Proceedings of the Conference

on Uncertainty in Artificial Intelligence.

Liu, Q., Li, L., Tang, Z., and Zhou, D. (2018). Breaking the curse of horizon:

Infinite-horizon off-policy estimation. In Advances in Neural Information Processing

Systems.

Liu, S., Chen, C., and Zhang, S. (2025a). Doubly optimal policy evaluation for

reinforcement learning. In Proceedings of the International Conference on Learning

Representations.

Liu, S., Chen, S., and Zhang, S. (2025b). The ode method for stochastic approximation

and reinforcement learning with markovian noise. Journal of Machine Learning

Research.

Liu, S., Chen, Y., and Zhang, S. (2025c). Efficient multi-policy evaluation for reinforce-

ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence.

118

Liu, S., Shen, W., and Xu, H. (2021a). Optimal pricing of information. In Proceedings

of the ACM Conference on Economics and Computation.

Liu, S. and Zhang, S. (2024). Efficient policy evaluation with offline data informed

behavior policy design. In Proceedings of the International Conference on Machine

Learning.

Liu, X., Xie, Z., and Zhang, S. (2025d). Linear Q-learning does not diverge: Conver-

gence rates to a bounded set. arXiv preprint arXiv:2501.19254.

Liu, Y., Halev, A., and Liu, X. (2021b). Policy learning with constraints in model-

free reinforcement learning: A survey. In Proceedings of the International Joint

Conference on Artificial Intelligence.

Maei, H., Szepesvari, C., Bhatnagar, S., Precup, D., Silver, D., and Sutton, R. S.

(2009). Convergent temporal-difference learning with arbitrary smooth function

approximation. Advances in Neural Information Processing Systems.

Maei, H. R. (2011). Gradient temporal-difference learning algorithms. PhD thesis,

University of Alberta.

Maei, H. R. (2018). Convergent actor-critic algorithms under off-policy training and

function approximation. arXiv preprint arXiv:1802.07842.

Maei, H. R. and Sutton, R. S. (2010). Gq (lambda): A general gradient algorithm for

temporal-difference prediction learning with eligibility traces. In Proceedings of the

Conference on Artificial General Intelligence.

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton, R. S. (2010). Toward off-policy

learning control with function approximation. In Proceedings of the International

Conference on Machine Learning.

Mahadevan, S., Liu, B., Thomas, P. S., Dabney, W., Giguere, S., Jacek, N., Gemp, I.,

and Liu, J. (2014). Proximal reinforcement learning: A new theory of sequential

decision making in primal-dual spaces. arXiv preprint arXiv:1405.6757.

Mahmood, A. R., Yu, H., and Sutton, R. S. (2017). Multi-step off-policy learning

without importance sampling ratios. arXiv preprint arXiv:1702.03006.

Manek, G. and Kolter, J. Z. (2022). The pitfalls of regularization in off-policy td

learning. Advances in Neural Information Processing Systems, 35:35621–35631.

119

Marivate, V. N. (2015). Improved empirical methods in reinforcement-learning evalua-

tion. Rutgers The State University of New Jersey, School of Graduate Studies.

Mathieu, M., Ozair, S., Srinivasan, S., Gulcehre, C., Zhang, S., Jiang, R., Paine, T. L.,

Powell, R., Żo lna, K., Schrittwieser, J., Choi, D., Georgiev, P., Toyama, D., Huang,

A., Ring, R., Babuschkin, I., Ewalds, T., Bordbar, M., Henderson, S., Colmenarejo,

S. G., van den Oord, A., Czarnecki, W. M., de Freitas, N., and Vinyals, O. (2023).

Alphastar unplugged: Large-scale offline reinforcement learning.

Meyn, S. (2008). Control techniques for complex networks. Cambridge University

Press.

Meyn, S. (2022). Control systems and reinforcement learning. Cambridge University

Press.

Meyn, S. P. and Tweedie, R. L. (2012). Markov chains and stochastic stability. Springer

Science & Business Media.

Molchanov, A. P. and Pyatnitskiy, Y. S. (1989). Criteria of asymptotic stability

of differential and difference inclusions encountered in control theory. Systems &

Control Letters.

Moldovan, T. M. and Abbeel, P. (2012). Safe exploration in markov decision processes.

arXiv preprint arXiv:1205.4810.

Mukherjee, S., Hanna, J. P., and Nowak, R. D. (2022). Revar: Strengthening policy

evaluation via reduced variance sampling. In Proceedings of the Conference in

Uncertainty in Artificial Intelligence.

Munos, R. (2003). Error bounds for approximate policy iteration. In Proceedings of

the International Conference on Machine Learning.

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration.

Journal of Machine Learning Research.

Nachum, O., Chow, Y., Dai, B., and Li, L. (2019). Dualdice: Behavior-agnostic

estimation of discounted stationary distribution corrections. In Advances in Neural

Information Processing Systems.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

120

O’Donoghue, B., Osband, I., Munos, R., and Mnih, V. (2018). The uncertainty

bellman equation and exploration. In Proceedings of the International Conference

on Machine Learning.

Owen, A. B. (2013). Monte Carlo theory, methods and examples. Stanford.

Precup, D., Sutton, R. S., and Dasgupta, S. (2001). Off-policy temporal difference

learning with function approximation. In Proceedings of the International Conference

on Machine Learning.

Precup, D., Sutton, R. S., and Singh, S. P. (2000a). Eligibility traces for off-policy

policy evaluation. In Proceedings of the International Conference on Machine

Learning.

Precup, D., Sutton, R. S., and Singh, S. P. (2000b). Eligibility traces for off-policy

policy evaluation. In Proceedings of the International Conference on Machine

Learning.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

Qian, X., Xie, Z., Liu, X., and Zhang, S. (2024). Almost sure convergence rates

and concentration of stochastic approximation and reinforcement learning with

markovian noise. arXiv preprint arXiv:2411.13711.

Qian, X. and Zhang, S. (2025). Revisiting a design choice in gradient temporal

difference learning. In Proceedings of the International Conference on Learning

Representations.

Ramaswamy, A. and Bhatnagar, S. (2017). A generalization of the borkar-meyn

theorem for stochastic recursive inclusions. Mathematics of Operations Research.

Ramaswamy, A. and Bhatnagar, S. (2018). Stability of stochastic approximations with

“controlled markov” noise and temporal difference learning. IEEE Transactions on

Automatic Control.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals

of Mathematical Statistics.

Royden, H. L. and Fitzpatrick, P. (1968). Real analysis. Macmillan New York.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley.

121

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist

systems. University of Cambridge, Department of Engineering Cambridge, UK.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016). High-

dimensional continuous control using generalized advantage estimation. In Proceed-

ings of the International Conference on Learning Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Seijen, H. and Sutton, R. (2014). True online TD(λ). In Proceedings of the International

Conference on Machine Learning.

Sherstan, C., Bennett, B., Young, K., Ashley, D. R., White, A., White, M., and Sutton,

R. S. (2018). Directly estimating the variance of the λ-return using temporal-

difference methods. arXiv preprint arXiv:1801.08287.

Skorokhod, A. V. (1956). Limit theorems for stochastic processes. Theory of Probability

& Its Applicationss.

Sun, Z., He, S., Miao, F., and Zou, S. (2024). Policy optimization for robust average

reward mdps. Advances in Neural Information Processing Systems, 37:17348–17372.

Sutton, R., Mahmood, A. R., Precup, D., and Hasselt, H. (2014). A new Q(λ) with

interim forward view and monte carlo equivalence. In International Conference on

Machine Learning.

Sutton, R. S. (1978). Single channel theory: A neuronal theory of learning. Brain

Theory Newsletter.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. University

of Massachusetts Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Machine Learning.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In Proceedings of the International

Conference on Machine Learning.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd

Edition). MIT press.

122

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and

Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference learning

with linear function approximation. In Proceedings of the International Conference

on Machine Learning.

Sutton, R. S., Mahmood, A. R., and White, M. (2016). An emphatic approach to the

problem of off-policy temporal-difference learning. Journal of Machine Learning

Research.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999). Policy gradient

methods for reinforcement learning with function approximation. In Advances in

Neural Information Processing Systems.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and

Precup, D. (2011). Horde: a scalable real-time architecture for learning knowledge

from unsupervised sensorimotor interaction. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems.

Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. H. (2008a). Dyna-style

planning with linear function approximation and prioritized sweeping. In Proceedings

of the Conference in Uncertainty in Artificial Intelligence.

Sutton, R. S., Szepesvári, C., and Maei, H. R. (2008b). A convergent o(n) temporal-

difference algorithm for off-policy learning with linear function approximation. In

Advances in Neural Information Processing Systems.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. Machine Learning.

Tamar, A., Castro, D. D., and Mannor, S. (2016). Learning the variance of the

reward-to-go. Journal of Machine Learning Research.

Thomas, P. S. (2015). Safe reinforcement learning. PhD thesis, University of Mas-

sachusetts Amherst.

Thomas, P. S. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for

reinforcement learning. In Proceedings of the International Conference on Machine

Learning.

123

Thomas, P. S. and Brunskill, E. (2017). Policy gradient methods for reinforcement

learning with function approximation and action-dependent baselines. arXiv preprint

arXiv:1706.06643.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based

control. In Proceedings of the International Conference on Intelligent Robots and

Systems.

Touati, A., Bacon, P.-L., Precup, D., and Vincent, P. (2018). Convergent tree backup

and retrace with function approximation. In Proceedings of the International

Conference on Machine Learning.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulão,

M., Kallinteris, A., Krimmel, M., KG, A., et al. (2024). Gymnasium: A standard

interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032.

Tsitsiklis, J. N. and Roy, B. V. (1996). Analysis of temporal-diffference learning with

function approximation. In IEEE Transactions on Automatic Control.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,

J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss,

M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,

Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y.,

Molloy, J., Paine, T. L., Gülçehre, Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,

Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T. P.,

Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. (2019). Grandmaster level

in starcraft II using multi-agent reinforcement learning. Nature.

Wachi, A. and Sui, Y. (2020). Safe reinforcement learning in constrained markov

decision processes. In International Conference on Machine Learning, pages 9797–

9806. PMLR.

Wan, Y., Naik, A., and Sutton, R. S. (2021). Learning and planning in average-

reward markov decision processes. In Proceedings of the International Conference

on Machine Learning.

Wang, J. and Zhang, S. (2024). Almost sure convergence of linear temporal difference

learning with arbitrary features. arXiv preprint arXiv:2409.12135.

124

Wang, L., Cai, Q., Yang, Z., and Wang, Z. (2020). On the global optimality of

model-agnostic meta-learning. In International conference on machine learning,

pages 9837–9846. PMLR.

Wang, Q., Ho, C. P., and Petrik, M. (2023). Policy gradient in robust mdps with

global convergence guarantee. In International Conference on Machine Learning,

pages 35763–35797. PMLR.

Wang, Y., Chen, W., Liu, Y., Ma, Z., and Liu, T. (2017). Finite sample analysis of

the GTD policy evaluation algorithms in markov setting. In Advances in Neural

Information Processing Systems.

Wang, Y. and Zou, S. (2020). Finite-sample analysis of greedy-gq with linear func-

tion approximation under markovian noise. In Proceedings of the Conference on

Uncertainty in Artificial Intelligence.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s

College, Cambridge.

White, A. and White, M. (2016). Investigating practical linear temporal difference

learning. arXiv preprint arXiv:1602.08771.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning.

Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M., Kakade, S., Mordatch, I.,

and Abbeel, P. (2018). Variance reduction for policy gradient with action-dependent

factorized baselines. arXiv preprint arXiv:1803.07246.

Xu, T., Yang, Z., Wang, Z., and Liang, Y. (2021). Doubly robust off-policy actor-critic:

Convergence and optimality. arXiv preprint arXiv:2102.11866.

Xu, T., Zou, S., and Liang, Y. (2019). Two time-scale off-policy td learning: Non-

asymptotic analysis over markovian samples. Advances in Neural Information

Processing Systems, 32.

Yu, H. (2012). Least squares temporal difference methods: An analysis under general

conditions. SIAM Journal on Control and Optimization.

Yu, H. (2015). On convergence of emphatic temporal-difference learning. In Proceedings

of the Conference on Learning Theory.

125

Yu, H. (2017). On convergence of some gradient-based temporal-differences algorithms

for off-policy learning. arXiv preprint arXiv:1712.09652.

Zhang, S. (2022). Breaking the deadly triad in reinforcement learning. PhD thesis,

University of Oxford.

Zhang, S. (2023). A new challenge in policy evaluation. Proceedings of the AAAI

Conference on Artificial Intelligence.

Zhang, S., Boehmer, W., and Whiteson, S. (2019). Generalized off-policy actor-critic.

In Advances in Neural Information Processing Systems.

Zhang, S., Liu, B., and Whiteson, S. (2020a). GradientDICE: Rethinking generalized

offline estimation of stationary values. In Proceedings of the International Conference

on Machine Learning.

Zhang, S., Liu, B., Yao, H., and Whiteson, S. (2020b). Provably convergent two-

timescale off-policy actor-critic with function approximation. In Proceedings of the

International Conference on Machine Learning.

Zhang, S., Veeriah, V., and Whiteson, S. (2020c). Learning retrospective knowledge

with reverse reinforcement learning. In Advances in Neural Information Processing

Systems.

Zhang, S., Wan, Y., Sutton, R. S., and Whiteson, S. (2021a). Average-reward off-policy

policy evaluation with function approximation. In Proceedings of the International

Conference on Machine Learning.

Zhang, S. and Whiteson, S. (2022). Truncated emphatic temporal difference methods

for prediction and control. Journal of Machine Learning Research.

Zhang, S., Yao, H., and Whiteson, S. (2021b). Breaking the deadly triad with a target

network. In Proceedings of the International Conference on Machine Learning.

Zhong, R., Zhang, D., Schäfer, L., Albrecht, S. V., and Hanna, J. P. (2022). Robust

on-policy sampling for data-efficient policy evaluation in reinforcement learning. In

Advances in Neural Information Processing Systems.

126

Appendix A

Appendix for Chapter 4

A.1 Proofs

A.1.1 Proof of Lemma 1

Proof.

EA∼µ [ρ(A)q(A)] =
∑

a∈{a|µ(a)>0}

µ(a)
π(a)

µ(a)
q(a)

=
∑

a∈{a|µ(a)>0}

π(a)q(a)

=
∑

a∈{a|µ(a)>0}

π(a)q(a) +
∑

a∈{a|µ(a)=0}

π(a)q(a) (µ ∈ Λ)

=
∑
a

π(a)q(a)

=EA∼π [q(A)] .

The intuition in the third equation is that the sample a where µ does not cover

π must satisfy q(a) = 0, i.e., this sample does not contribute to the expectation

anyway.

A.1.2 Proof of Lemma 2

Proof.

For a given π and q, define

A+
.
= {a | π(a)q(a) ̸= 0}.

127

For any µ ∈ Λ, we expand the variance as

VA∼µ(ρ(A)q(A))

=EA∼µ[(ρ(A)q(A))2]− E2
A∼µ[ρ(A)q(A)]

=EA∼µ[(ρ(A)q(A))2]− E2
A∼π[q(A)] (Lemma 1)

=
∑

a∈{a|µ(a)>0}

π2(a)q2(a)

µ(a)
− E2

A∼π[q(A)]

=
∑

a∈{a|µ(a)>0}∩A+

π2(a)q2(a)

µ(a)
− E2

A∼π[q(A)] (π(a)q(a) = 0,∀a /∈ A+)

=
∑
a∈A+

π2(a)q2(a)

µ(a)
− EA∼π[q(A)]2 (µ ∈ Λ)

The second term is a constant and is unrelated to µ. Solving the optimization problem

(4.7) is, therefore, equivalent to solving

minµ∈Λ
∑
a∈A+

π2(a)q2(a)

µ(a)
. (A.1)

Case 1: |A+| = 0

In this case, the variance is always 0 so any µ ∈ Λ is optimal. In particular, µ∗(a) = 1
A

is optimal.

Case 2: |A+| > 0

The definition of Λ in (4.6) can be equivalently expressed, using contraposition, as

Λ = {µ ∈ ∆(A) | ∀a, a ∈ A+ =⇒ µ(a) > 0}.

The optimization problem (A.1) can then be equivalently written as

minµ∈∆(A)

∑
a∈A+

π2(a)q2(a)

µ(a)
(A.2)

s.t. µ(a) > 0 ∀a ∈ A+.

If for some µ we have
∑

a∈A+
µ(a) < 1, then there must exist some a0 /∈ A+ such that

µ(a0) > 0. Since a0 does not contribute to the summation in the objective function

of (A.2), we can move the probability mass on a0 to some other a1 ∈ A+ to increase

µ(a1) to further decrease the objective. In other words, any optimal solution µ to (A.2)

must put all its mass on A+. This motivates the following problem

minz∈∆(A+)

∑
a∈A+

π2(a)q2(a)

z(a)
(A.3)

s.t. z(a) > 0 ∀a ∈ A+.

128

In particular, if z∗ is an optimal solution to (A.3), then an optimal solution to (A.2)

can be constructed as

µ∗(a) =

{
z∗(a) a ∈ A+

0 otherwise.
(A.4)

Let R++
.
= (0,+∞).

According to the Cauchy-Schwarz inequality, for any z ∈ R|A+|
++ , we have∑

a∈A+

π2(a)q2(a)

z(a)

∑
a∈A+

z(a)

 ≥
∑

a∈A+

π(a)|q(a)|√
z(a)

√
z(a)

2

=

∑
a∈A+

π(a)|q(a)|

2

.

It can be easily verified that the equality holds for

z∗(a)
.
=

π(a)|q(a)|∑
b π(b)|q(b)|

> 0.

Since
∑

a∈A+
z∗(a) = 1, we conclude that z∗ is an optimal solution to (A.3). An

optimal solution µ∗ to (4.7) can then be constructed according to (A.4). Making use

of the fact that π(a)|q(a)| = 0 for a /∈ A+, this µ∗ can be equivalently expressed as

µ∗(a) =
π(a)|q(a)|∑
b∈A π(b)q(b)

,

which completes the proof.

A.1.3 Proof of Lemma 3

Proof. We start by showing Λ = Λ+. Lemma 1 ensures that µ ∈ Λ =⇒ µ ∈ Λ+. We

now show that µ ∈ Λ+ =⇒ µ ∈ Λ. For any µ ∈ Λ+, we have∑
a∈{a|µ(a)>0}

µ(a)
π(a)

µ(a)
q(a) =

∑
a

π(a)q(a).

This indicates that ∑
a∈{a|µ(a)=0}

π(a)q(a) = 0.

Since π(a) ≥ 0 and all q(a) has the same sign, we must have

π(a)q(a) = 0, ∀a ∈ {a | µ(a) = 0}.

129

This is exactly µ(a) = 0 =⇒ π(a)q(a) = 0, yielding µ ∈ Λ. This completes the proof

of Λ+ = Λ.

We now show the zero variance. When ∀a ∈ A, q(a) ≥ 0, if ∃a0, π0(a0)q(a0) ̸= 0,

we have ∀a ∈ A

µ∗(a) =
π(a)|q(a)|

c

and c > 0 is a normalizing constant. Plugging µ∗ to ρ(A)q(A), we get ∀a ∈ A

ρ(a)q(a) =
π(a)

µ∗(a)
q(a) =

π(a)
π(a)|q(a)|

c

q(a) = c.

This means in this setting, with the optimal distribution µ∗, the random variable

ρ(·)q(·) is a constant function. Thus,

VA∼µ∗(ρ(A)q(A)) = 0.

When ∀a ∈ A, q(a) ≥ 0, if ∀a0, π0(a0)q(a0) = 0, we have ∀a ∈ A

µ∗(a) =
1

|A|
.

Plugging µ∗ to ρ(A)q(A), we get ∀a ∈ A

ρ(a)q(a) =
π(a)

µ∗(a)
q(a) =

π(a)q(a)
1
|A|

= 0.

This shows ρ(A)q(A) is also a constant. Thus,

VA∼µ∗(ρ(A)q(A)) = 0.

The proof is similar for ∀a ∈ A, q(a) ≤ 0 and is thus omitted.

A.1.4 Proof of Theorem 1

Proof. We proceed via induction. For t = T − 1, we have

E
[
GPDIS(τ

µt:T−1

t:T−1) | St

]
=E [ρtRt+1 | St] = E [ρtqπ,t(St, At) | St]

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 1)

=vπ,t(St).

130

For t ∈ [T − 2], we have

E
[
GPDIS(τ

µt:T−1

t:T−1) | St

]
=E

[
ρtRt+1 + ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St

]
=E [ρtRt+1 | St] + E

[
ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St

]
=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[
E
[
ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St

]
(Law of total expectation)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[
ρtE

[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St

]
(Conditional independence and Markov property)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At) [ρtvπ,t+1(St+1) | St]
(Inductive hypothesis)

=EAt∼µt(·|St) [ρtqπ,t(St, At) | St] (Definition of qπ,t)

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 1)

=vπ,t(St),

which completes the proof.

A.1.5 Proof of Theorem 2

To prove Theorem 2, we rely on a recursive expression of the PDIS Monte Carlo

estimator summarized by the following lemma.

Lemma 34 (Recursive Expression of Variance). For any µ ∈ Λ, for t = T − 1,

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
= EAt∼µt

[
ρ2t q

2
π,t(St, At) | St

]
− v2π,t(St),

for t ∈ [T − 2],

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt∼µt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St

)
| St, At

]
+ νπ,t(St, At) + q2π,t(St, At)

)
| St

]
− v2π,t(St).

131

Proof. When t ∈ [T − 2], we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
(A.5)

=EAt

[
V
(
GPDIS(τ

µt:T−1

t:T−1) | St, At

)
| St

]
+ VAt

(
E
[
GPDIS(τ

µt:T−1

t:T−1) | St, At

]
| St

)
(Law of total variance)

=EAt

[
ρ2tV

(
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρtE

[
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

]
| St

)
(Using (7.1))

=EAt

[
ρ2tV

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρtE

[
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

]
| St

)
(Deterministic reward r)

=EAt

[
ρ2tV

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt (ρtqπ,t(St, At) | St) .

Further decomposing the first term, we have

V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
(A.6)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St, At

)
(Law of total variance)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St, At

)
(Markov property)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1 (vπ,t+1(St+1) | St, At) .

(Theorem 14)

With νπ,t defined in (4.10), plugging (A.6) back to (A.5) yields

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt (ρtqπ,t(St, At) | St)

=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt

[
ρ2t q

2
π,t(St, At) | St

]
− (EAt [ρtqπ,t(St, At) | St])

2

=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt

[
ρ2t q

2
π,t(St, At) | St

]
− v2π,t(St). (Lemma 1)

When t = T − 1, we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=V (ρtr(St, At) | St)

=V (ρtqπ,t(St, At) | St)

=EAt

[
ρ2t q

2
π,t(St, At) | St

]
− v2π,t(St),

which completes the proof.

132

We restate and present the main proof of Theorem 2.

Theorem 2 (Optimal Behavior Policy). For any t and s, the behavior policy µ∗
t (a|s)

defined above is an optimal solution to the following problem

min
µt∈Λt,...,µT−1∈ΛT−1

V
(
GPDIS(τ

µt:T−1

t:T−1) | St = s
)
,

where Λt
.
= {µt ∈ ∆(A) | ∀s, a, µt(a|s) = 0 =⇒

πt(a|s)uπ,t(s, a) = 0}.

Proof. We proceed via induction. When t = T − 1, we have

V
(
GPDIS(τ

µT−1:T−1

T−1:T−1) | ST−1 = s
)

=VAT−1
(ρT−1r(s, AT−1) | ST−1 = s)

=VAT−1
(ρT−1qπ,T−1(s, AT−1) | ST−1 = s) .

The definition of µ∗
T−1 in (4.11) and Lemma 2 ensure that µ∗

T−1 is an optimal solution

to

min
µT−1∈ΛT−1

V
(
GPDIS

(
τ
µT−1

T−1

)
| ST−1 = s

)
.

Now, suppose for some t ∈ [T − 2], µ∗
t+1:T−1 is an optimal solution to

min
µt+1∈Λt+1,...,µT−1∈ΛT−1

V
(
GPDIS

(
τ
µt+1:T−1

t+1:T−1

)
| St+1 = s

)
.

To complete induction, we proceed to proving that µ∗
t:T−1 is an optimal solution to

min
µt∈Λt,...,µT−1∈ΛT−1

V
(
GPDIS

(
τ
µt:T−1

t:T−1

)
| St = s

)
. (A.7)

In the rest of this proof, we omit the domain Λt, . . . ,ΛT−1 for simplifying notations.

133

For any µt:T−1, we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + q2π,t(St, At)

)
| St

]
− v2π,t(St) (By Lemma 34)

(a)

≥EAt

[
ρ2t

(
ESt+1

[
min

µ′
t+1:T−1

V
(
GPDIS(τ

µ′
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + q2π,t(St, At)

)
| St

]

− v2π,t(St) (Monotonically non-increasing in V(·))

=EAt

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + q2π,t(St, At)

)
| St

]
− v2π,t(St) (Inductive hypothesis)

=EAt

[
ρ2tuπ,t(St, At) | St

]
− v2π,t(St) (By (4.12))

=VAt

(
ρt

√
uπ,t(St, At) | St

)
+ EAt

[
ρt

√
uπ,t(St, At) | St

]2
− v2π,t(St)

(Definition of variance)

=VAt

(
ρt

√
uπ,t(St, At) | St

)
+ EAt∼πt(·|St)

[√
uπ,t(St, At) | St

]2
− v2π,t(St)

(Lemma 1 and µt ∈ Λt)

(b)

≥EAt∼πt(·|St)

[√
uπ,t(St, At) | St

]2
− v2π,t(St). (Non-negativity of variance)

According to the inductive hypothesis, the equality in (a) can be achieved when

µt+1:T−1 = µ∗
t+1:T−1. According to the construction of µ∗

t in (4.11) and Lemma 3, the

equality in (b) can be achieved when µt = µ∗
t . This suggests that µ∗

t:T−1 achieves the

lower bound and is thus an optimal solution to (A.7), which completes the induction

and thus completes the proof.

A.1.6 Proof of Theorem 3

To prove the variance reduction property of µ̂, we express V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
,

the variance of the on-policy Monte Carlo estimator, in the form of a Bellman equation

(Tamar et al., 2016; O’Donoghue et al., 2018; Sherstan et al., 2018). Define

r̃π,t(s, a)
.
= νπ,t(s, a) + q2π,t(s, a)− v2π,t(s) ∀t ∈ [T − 1], (A.8)

q̃π,t(s, a)
.
=

{
r̃π,t(s, a) +

∑
s′,a′ p(s

′|s, a)πt+1(a
′|s′)q̃π,t+1(s

′, a′) if t ∈ [T − 2]

r̃π,t(s, a) if t = T − 1
.(A.9)

We have

134

Lemma 35 (Variance Equality).

V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)

=
∑
a

πt(a|s)q̃π,t(s, a) ∀t, s.

Proof. We proceed via induction. When t = T − 1, we have

V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
=VAt (ρtr(St, At) | St)

=VAt (r(St, At) | St) (By on-policy)

=VAt (qπ,t(St, At) | St)

=EAt

[
q2π,t(St, At) | St

]
− v2π,t(St)

=
∑
a

πt(a|St)q̃π,t(St, a). (By (A.9) and νπ,T−1(s, a) = 0)

For t ∈ [T − 2], we have

V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
=EAt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ q2π,t(St, At) + νπ,t(St, At) | St

]
− v2π,t(St)

(Lemma 34 and on-policy)

=
∑
a

πt(a|St)

(∑
s′

p(s′|St, a)V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1 = s′
)

+ r̃(St, a)

)

=
∑
a

πt(a|St)

(∑
s′

p(s′|St, a)
∑
a′

πt+1(a
′|s′)q̃π,t+1(s

′, a′) + r̃(St, a)

)
(Inductive hypothesis)

=
∑
a

πt(a|St)q̃π,t(St, a), (By (A.9))

which completes the proof.

Here, this q̃ is exactly the state-action value function of the target policy π in the

MDP w.r.t. to a new reward function r̃. Manipulating (4.14) then yields

q̂π,t(s, a) =
∑
s′

p(s′|s, a)
∑
a′

πt+1(a
′|s′)q̃π,t+1(s

′, a′) + νt(s, a) + q2π,t(s, a)

=q̃π,t(s, a) + v2π,t(s). (A.10)

Now, we restate and present the main proof of Theorem 3.

Theorem 3 (Variance Reduction). For any t and s,

V
(
GPDIS(τ

µ̂t:T−1

t:T−1) | St = s
)

≤V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
− ϵt(s).

135

To define ϵt(s), first define ct(s) =

∑
a πt(a|s)q̂π,t(s, a)−

(∑
a πt(a|s)

√
q̂π,t(s, a)

)2
.

Then we define ϵt(s)
.
= ct(s) for t = T − 1 and otherwise

ϵt(s)
.
= ct(s) + EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1)|s, At]

]
. (4.18)

Proof. We proceed via induction. For t = T − 1, we have

V
(
GPDIS(τ

µ̂t:T−1

t:T−1) | St

)
=EAt∼µ̂t

[
ρ2t q

2
π,t(St, At) | St

]
− v2π,t(St) (Lemma 34)

=EAt∼µ̂t

[
ρ2t q̂π,t(St, At) | St

]
− v2π,t(St) (Definition of q̂ (4.13))

=VAt∼µ̂t

(
ρt

√
q̂π,t(St, At)|St

)
+ E2

At∼µ̂t

[
ρt

√
q̂π,t(St, At)|St

]
− v2π,t(St)

(Definition of variance and non-negativity of q̂)

=VAt∼µ̂t

(
ρt

√
q̂π,t(St, At)|St

)
+

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

− v2π,t(St) (Lemma 1)

=

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

− v2π,t(St) (Definition of µ̂ (4.17) and Lemma 3)

=
∑
a

πt(a|St)q̂π,t(St, a) +

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

−
∑
a

πt(a|St)q̂π,t(St, a)− v2π,t(St)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
+

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

−
∑
a

πt(a|St)q̂π,t(St, a)

(By (A.10) and Lemma 35)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
− ϵt(St). (Definition of ϵ (4.18))

136

For t ∈ [T − 2], we have

V
(
GPDIS(τ

µ̂t:T−1

t:T−1) | St

)
=EAt∼µ̂t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ̂t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νπ,t(St, At) + q2π,t(St, At)

)
| St

]
− v2π,t(St) (Lemma 34)

≤EAt∼µ̂t

[
ρ2t

(
ESt+1

[∑
a′

πt+1(a
′|St+1)q̃π,t+1(St+1, a

′) | St, At

]
+ νπ,t(St, At)

+ q2π,t(St, At)
)
| St

]
− v2π,t(St)− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(Inductive hypothesis and Lemma 35)

=EAt∼µ̂t

[
ρ2t
(
q̃π,t(St, At) + v2π,t(St)

)
| St

]
− v2π,t(St)− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(Definition of q̃ (A.9))

=EAt∼µ̂t

[
ρ2t q̂π,t(St, At) | St

]
− v2π,t(St)− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(Definition of q̂ (A.10))

=VAt∼µ̂t

(
ρt

√
q̂π,t(St, At)|St

)
+ E2

At∼µ̂t

[
ρt

√
q̂π,t(St, At)|St

]
− v2π,t(St)

− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(Definition of variance and non-negativity of q̂)

=VAt∼µ̂t

(
ρt

√
q̂π,t(St, At)|St

)
+

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

− v2π,t(St)

− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(Lemma 1)

=

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

− v2π,t(St)− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(Definition of µ̂ (4.17) and Lemma 3)

=
∑
a

πt(a|St)q̂π,t(St, a)− v2π,t(St) +

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

−
∑
a

πt(a|St)q̂π,t(St, a)

− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
=V

(
GPDIS(τ

πt:T−1

t:T−1) | St

)
+

(∑
a

πt(a|St)
√
q̂π,t(St, a)

)2

−
∑
a

πt(a|St)q̂π,t(St, a)

− EAt∼µ̂t

[
ρ2tESt+1 [ϵt+1(St+1) | St, At]

]
(By (A.10) and Lemma 35)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
− ϵt(St). (Definition of ϵ (4.18))

137

A.1.7 Proof of Theorem 4

Proof. For t = T − 1, we have

q̂π,t(s, a) = q2π,t(s, a) (Definition of q̂π,t (4.13))

= r̂π,t(s, a). (By qπ,T−1(s, a) = r(s, a) and Theorem 4)

For t ∈ [T − 2], we have

q̂π,t(s, a)

=q̃π,t(s, a) + v2π,t(s) (By (A.10))

=r̃π,t(s, a) + v2π,t(s) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)q̃π,t+1(s

′, a′) (Definition of q̃ (A.9))

=r̃π,t(s, a) + v2π,t(s) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)(q̃π,t+1(s

′, a′) + v2π,t+1(s
′)− v2π,t+1(s

′))

=r̃π,t(s, a) + v2π,t(s) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)(q̂π,t+1(s

′, a′)− v2π,t+1(s
′)) (By (A.10))

=νπ,t(s, a) + q2π,t(s, a)−
∑
s′

p(s′|s, a)v2π,t+1(s
′) +

∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′)

(Definition of r̃ (A.8))

=− (E[vπ,t+1(St+1) | St = s, At = a])2 + q2π,t(s, a) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′)

(Definition of ν (4.10))

=− (qπ,t(s, a)− r(s, a))2 + q2π,t(s, a) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′)

=2r(s, a)qπ,t(s, a)− r2(s, a) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′)

=r̂π,t(s, a) +
∑
s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′), (By Theorem 4)

which completes the proof.

138

A.1.8 Proof of Theorem 5

Proof. We first derive an important equality. ∀t,

EAt∼µ̂+
t

[
ρ+t

2
q̂π,t(St, At) | St

]
(A.11)

=
∑
a

π2
t (a|St)

µ̂+
t (a|St)

q̂π,t(St, a)

=
∑
a

π2
t (a|St)

πt(a|St)
√

q̂+π,t(St,a)∑
b πt(b|St)

√
q̂+π,t(St,b)

q̂π,t(St, a) (by (4.22))

=

[∑
a

πt(a|St)
√
q̂+π,t(St, a)

]∑
a

πt(a|St)
q̂π,t(St, a)√
q̂+π,t(St, a)


=

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

][∑
a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

]
.

(By (4.21))

We proceed via induction. For t = T − 1, we have

V
(
GPDIS(τ

µ̂+
t:T−1

t:T−1) | St

)
=EAt∼µ̂+

t

[
ρ+t

2
q2π,t(St, At) | St

]
− v2π,t(St) (Lemma 34)

=EAt∼µ̂+
t

[
ρ+t

2
q̂π,t(St, At) | St

]
− v2π,t(St) (Definition of q̂ (4.13))

=

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

][∑
a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

]
− v2π,t(St)

(By (A.11))

=
∑
a

πt(a|St)q̂π,t(St, a) +

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

]
[∑

a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

]
−
∑
a

πt(a|St)q̂π,t(St, a)− v2π,t(St)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
−

(∑
a

πt(a|St)q̂π,t(St, a)−

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

]
[∑

a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

])
(By (A.10) and Lemma 35)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
− ϵ+t (St). (Definition of ϵ+ (4.23))

139

For t ∈ [T − 2], we have

V
(
GPDIS(τ

µ̂+
t:T−1

t:T−1) | St

)
=EAt∼µ̂+

t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ̂+
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νπ,t(St, At) + q2π,t(St, At)

)
| St

]

− v2π,t(St) (Lemma 34)

≤EAt∼µ̂+
t

[
ρ2t

(
ESt+1

[∑
a′

πt+1(a
′|St+1)q̃π,t+1(St+1, a

′) | St, At

]
+ νπ,t(St, At)

+ q2π,t(St, At)
)
| St

]
− v2π,t(St)− EAt∼µ̂+

t

[
ρ2tESt+1

[
ϵ+t+1(St+1) | St, At

]]
(Inductive hypothesis and Lemma 35)

=EAt∼µ̂+
t

[
ρ2t
(
q̃π,t(St, At) + v2π,t(St)

)
| St

]
− v2π,t(St)− EAt∼µ̂+

t

[
ρ2tESt+1

[
ϵ+t+1(St+1) | St, At

]]
(Definition of q̃ (A.9))

=EAt∼µ̂+
t

[
ρ2t q̂π,t(St, At) | St

]
− v2π,t(St)− EAt∼µ̂+

t

[
ρ2tESt+1

[
ϵ+t+1(St+1) | St, At

]]
(Definition of q̂ (4.14))

=

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

][∑
a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

]
− v2π,t(St)

− EAt∼µ̂+
t

[
ρ2tESt+1

[
ϵ+t+1(St+1) | St, At

]]
(By (A.11))

=
∑
a

πt(a|St)q̂π,t(St, a)− v2π,t(St)

+

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

][∑
a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

]
−
∑
a

πt(a|St)q̂π,t(St, a)

− EAt∼µ̂+
t

[
ρ2tESt+1

[
ϵ+t+1(St+1) | St, At

]]
=V

(
GPDIS(τ

πt:T−1

t:T−1) | St

)
+

[∑
a

πt(a|St)
√
ηπ,t(St, a)

√
q̂π,t(St, a)

]
[∑

a

πt(a|St)
1√

ηπ,t(St, a)

√
q̂π,t(St, a)

]
−
∑
a

πt(a|St)q̂π,t(St, a)− EAt∼µ̂+
t

[
ρ2tESt+1

[
ϵ+t+1(St+1) | St, At

]]
]

(By (A.10) and Lemma 35)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St

)
− ϵ+t (St). (Definition of ϵ+ (4.23))

140

A.2 Experiment Details

A.2.1 GridWorld

For a Gridworld with size n, its width, height, and time horizon T are all set to n.

There are four possible actions: up, down, left, and right. After taking an action, the

agent has a 0.9 probability of moving accordingly and a 0.1 probability of moving

uniformly at random. If the agent runs into a boundary, the agent stays in its current

location. The reward function r(s, a) is randomly generated and fixed after generation.

We normalize the rewards across all (s, a) such that maxs,a r(s, a) = 1. We consider

a set of randomly generated target policies. The ground truth policy performance

is estimated using the on-policy Monte Carlo method by running each target policy

for 106 episodes. We test two different sizes of the Gridworld with a number of

1, 000 and 27, 000 states. The offline dataset contains m = 105 randomly generated

tuples. For a Gridworld of size n, the total amount of possible (s, t, a, r, s′) tuples is

n× n× n× 4× 4 = 16n3. The offline data coverages for the Gridworld of size 1, 000

and 27, 000 are then 62.5% and 2.3%.

We use a one-hot vector representing the position of the agent and a real number

representing the current time step as features for the state. We execute Algorithm

1 to approximate function r, q, and q̂. As shown in Algorithm 1, we train r using

supervised learning by batch stochastic gradient descent. We train q and q̂ using fitted

Q-learning. We split the offline data into a training set and a test set. We tune all

hyperparameters offline based on the supervised learning loss and fitted Q-learning

loss on the test set. With the Adam optimizer (Kingma and Ba, 2015), we search

the learning rates in {2−20, 2−18, · · · , 20} to minimize the loss on the offline data and

use the learning rate 2−10 on all learning processes. For the behavior policy search

(BPS, Hanna et al. (2017)) and robust on-policy sampling (ROS, Zhong et al. (2022))

algorithms, we use the reported parameters from Hanna et al. (2017) and Zhong et al.

(2022), since it is not clear how to do hyperparameter turning for BPS and ROS with

only offline data.

A.2.2 MuJoCo

Figure A.1 is an introduction to the MuJoCo environments. We construct 150

policies (30 policies in each environment) with a wide range of performance using

the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) and the

default PPO implementation in Huang et al. (2022). Since our methods are designed

for discrete action space, we discretize the first dimension of MuJoCo action space

141

Figure A.1: MuJoCo (Todorov et al., 2012) robot simulation tasks. MuJoCo is a
physics engine for robotics simulation and contains various stochastic environments.
The goal in each environment is to control a robot to achieve different behaviors such
as walking, jumping, and balancing. Environments from the left to the right are Ant,
Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker. We conducted
experiments on those five environments with results reported in Section 4.5.

in our experiments. The remaining dimensions are controlled by the PPO policy

and are deemed as part of the environment. We run each compared algorithm 30

times for each policy and compute the average and standard error to plot curves in

Figure 4.2. To generate offline data, we add different levels of noise to the target

policy and run noisy target policies for 2000 episodes. The noise is in the form of a

uniformly random policy, and its weight is uniformly randomly sampled from (0, 0.1].

This data generation process simulates the data generated during the training of a

policy. Notably, compared with previous works, we do not need data to be complete

trajectories or generated by known policies. We leave the investigation of entirely

irrelevant offline data in the MuJoCo domain for future work. Our algorithm is robust

on hyperparameters. All learning rates in Algorithm 1 are tuned offline and are the

same 2−10 across all MuJoCo and Gridworld experiments.

In MuJcCo, the episode length varies because of stochasticity in policies and

environments. Because the length of each episode is not fixed, episodes in off-policy

estimation may be longer than episodes in on-policy estimation. In the main text, we

use episodes instead of steps as the x-axis mainly to improve readability. Because

after running 100 steps, we might already have a good estimate for a target policy

with a length of 10 but may still not finish a single episode for a target policy with a

length of 250. Due to the diversity of our target policies, averaging using steps as the

x-axis makes the plot conceptually hard to interpret.

We anyway show the figure with steps as the x-axis in Figure A.2. Setting steps as

the x-axis, we linearly interpolate the estimation error across episodes. At each step,

we average the estimation error for all tests that have completed the first episode and,

thus, have an estimate. The estimation error is divided by the first estimate of the

on-policy estimation to get the normalized estimation error. Although the normalized

142

100 4000 8000 1200016000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Es

tim
at

io
n

Er
ro

r

Ant-v4
on-policy MC
ours
BPS
ROS

100 2000 4000 6000 8000
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Hopper-v4

on-policy MC
ours
BPS
ROS

100 500 1000 1500
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30
InvertedDoublePendulum-v4

on-policy MC
ours
BPS
ROS

100 1000 2000 3000
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30
InvertedPendulum-v4

on-policy MC
ours
BPS
ROS

100 3500 7000 1050014000
Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Walker2d-v4

on-policy MC
ours
BPS
ROS

Figure A.2: MuJoCo results using steps as the x-axis. We draw each curve from step
100 because some policies need more than 100 steps to finish the first episode. All
curves are averaged over 900 trials (30 target policies, each having 30 independent
runs). The shaded regions denote standard errors and are invisible because they are
too small.

estimation error for the on-policy estimation starts from 1, it may be unstable until

around 1000 steps because different policies get the first estimate at different steps.

However, it is still clear that our off-policy estimator achieves the same accuracy with

fewer online steps.

143

Appendix B

Appendix for Chapter 6

B.1 Proofs

B.1.1 Proof of Lemma 8

Proof. Given any baseline function b, ∀µ ∈ Λ−, ∀t, s, a,

µt(a|s) = 0

=⇒ πt(a|s) = 0 (Definition of Λ−)

=⇒ πt(a|s)uπ,t(s, a) = 0.

This shows µ ∈ Λ. Thus, Λ− ⊆ Λ.

B.1.2 Proof of Lemma 9

To prove Lemma 9, we first prove the following auxiliary lemma.

Lemma 36. ∀b, ∀µ ∈ Λ,∀t, s,

EAt∼µt(·|St)

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St = s

]
= EAt∼πt(·|St) [qπ,t(St, At) | St = s] .

Proof. We fix any baseline function b. Because µ ∈ Λ, ∀t, s, a,

µt(a|s) = 0

=⇒ πt(a|s)uπ,t(s, a) = 0

=⇒ πt(a|s)
[
(qπ,t(s, a)− bt(s, a))2 + νπ,t(s, a) +

∑
s′ p(s

′|s, a)V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)]

= 0

(By (6.13))

=⇒ πt(a|s)(qπ,t(s, a)− bt(s, a))2 = 0

(νπ,t(s, a) and
∑

s′ p(s
′|s, a)V

(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)

are non-negative)

=⇒ πt(a|s)(qπ,t(s, a)− bt(s, a)) = 0. (B.1)

144

Then, we have

EAt∼µt(·|St)

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St = s

]
=EAt∼µt(·|St)

[
πt(At|St)

µt(At|St)
[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St = s

]
=

∑
a∈{a|µt(a|s)>0}

µt(a|s)
[
πt(a|s)
µt(a|s)

[qπ,t(s, a)− bt(s, a)] + b̄t(s)

]
=

∑
a∈{a|µt(a|s)>0}

πt(a|s)[qπ,t(s, a)− bt(s, a)] +
∑

a∈{a|µt(a|s)>0}

µt(a|s)b̄t(s)

=
∑

a∈{a|µt(a|s)>0}

πt(a|s)[qπ,t(s, a)− bt(s, a)] + b̄t(s)
∑

a∈{a|µt(a|s)>0}

µt(a|s)

=
∑

a∈{a|µt(a|s)>0}

πt(a|s)[qπ,t(s, a)− bt(s, a)] + b̄t(s)

=
∑

a∈{a|µt(a|s)>0}

πt(a|s)[qπ,t(s, a)− bt(s, a)]

+
∑

a∈{a|µt(a|s)=0}

πt(a|s)[qπ,t(s, a)− bt(s, a)] + b̄t(s) (By (B.1))

=
∑
a

πt(a|s)[qπ,t(s, a)− bt(s, a)] + b̄t(s)

=
∑
a

πt(a|s)qπ,t(s, a)− b̄t(s) + b̄t(s) (By (6.2))

=EA∼π[qπ,t(St, At) | St = s].

Now, we are ready to prove Lemma 9.

Lemma 9 (Unbiasedness). ∀b,∀µ ∈ Λ, ∀t, ∀s, E
[
Gb(τ

µt:T−1

t:T−1) | St = s
]

= vπ,t(s).

Proof. Fix any baseline function b. We proceed via induction.

For t = T − 1, ∀µ ∈ Λ, ∀s, we have

E
[
Gb(τ

µt:T−1

t:T−1) | St = s
]

=EAt∼µt(·|St)

[
ρt[Rt+1 − bt(St, At)] + b̄t(St) | St

]
=EAt∼µt(·|St)

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

]
=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 36)

=vπ,t(St).

For t ∈ [T − 2], assuming that Lemma 9 holds for t+ 1, we have ∀µ ∈ Λ, ∀s,

E
[
Gb(τ

µt+1:T−1

t+1:T−1) | St+1 = s
]

= vπ,t+1(s).

145

Then, ∀t,

E
[
Gb(τ

µt:T−1

t:T−1) | St = s
]

=E
[
ρt
(
Rt+1 +Gb(τ

µt+1:T−1

t+1:T−1)− bt(St, At)
)

+ b̄t(St)) | St

]
(By (6.1))

=E
[
ρt(Rt+1 − bt(St, At)) + b̄t(St) | St

]
+ E

[
ρtG

b(τ
µt+1:T−1

t+1:T−1) | St

]
=E

[
ρt(Rt+1 − bt(St, At)) + b̄t(St) | St

]
+ EAt∼µt(·|St),St+1∼p(·|St,At)

[
E
[
ρtG

b(τ
µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St

]
(Law of Iterated Expectation)

=E
[
ρt(Rt+1 − bt(St, At)) + b̄t(St) | St

]
+ EAt∼µt(·|St),St+1∼p(·|St,At)

[
ρtE

[
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St

]
(Conditional independence and Markov property)

=E
[
ρt(Rt+1 − bt(St, At)) + b̄t(St) | St

]
+ EAt∼µt(·|St),St+1∼p(·|St,At) [ρtvπ,t+1(St+1) | St]

(Inductive hypothesis)

=EAt∼µt(·|St)

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

]
(Definition of qπ,t)

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 36)

=vπ,t(s),

which completes the proof.

B.1.3 Proof of Theorem 10

To prove Theorem 10, we first characterize the variance of the off-policy estimator in

a recursive form.

Lemma 37. ∀b, ∀µ ∈ Λ, for t = T − 1,

V
(
Gb(τ

µt:T−1

t:T−1) | St

)
= EAt∼µt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2;

For t ∈ [T − 2],

V
(
Gb(τ

µt:T−1

t:T−1) | St

)
=EAt∼µt

[
ρ2t
(
ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

+[qπ,t(St, At)− bt(St, At)]
2
)
| St

]
− [vπ,t(St)− b̄t(St)]

2.

146

Proof. When t ∈ [T − 2], we have

V
(
Gb(τ

µt:T−1

t:T−1) | St

)
=EAt

[
V
(
Gb(τ

µt:T−1

t:T−1) | St, At

)
| St

]
+ VAt

(
E
[
Gb(τ

µt:T−1

t:T−1) | St, At

]
| St

)
(Law of total variance)

=EAt

[
V
(
ρt
[
r(St, At) +Gb(τ

µt+1:T−1

t+1:T−1)− bt(St, At)
]

+ b̄t(St) | St, At

)
| St

]
+ VAt

(
E
[
ρt
[
r(St, At) +Gb(τ

µt+1:T−1

t+1:T−1)− bt(St, At)
]

+ b̄t(St)) | St, At

]
| St

)
(By (6.1))

=EAt

[
ρ2tV

(
Gb(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρt[r(St, At) + E

[
Gb(τ

µt+1:T−1

t+1:T−1) | St, At

]
− bt(St, At)] + b̄t(St) | St

)
(r(St, At), bt(St, At), b̄t(St) are constant given St, At)

=EAt

[
ρ2tV

(
Gb(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρt[r(St, At) + E [vπ,t+1(St+1) | St, At]− bt(St, At)] + b̄t(St) | St

)
(Lemma 9)

=EAt

[
ρ2tV

(
Gb(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

)
. (Defintion of qπ,t)(B.2)

For the inner part of the first term, we have

V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St, At

)
=ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

)
| St, At

]
+ VSt+1

(
E
[
Gb(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St, At

)
(Law of total variance)

=ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1

(
E
[
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St, At

)
(Markov property)

=ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1 (vπ,t+1(St+1) | St, At) (Lemma 9)

=ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At). (By (6.11)) (B.3)

147

For the second term, we have

νt(St, At)

=VAt

(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

)
(By (6.11))

=EAt

[(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St)

)2 | St

]
−
(
EAt

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

])2
=EAt

[(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St)

)2 | St

]
− vπ,t(St)

2. (Lemma 36)

=EAt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
+ 2b̄t(St)EAt [ρt[qπ,t(St, At)− bt(St, At)] | St]

+ b̄t(St)
2 − vπ,t(St)

2

=EAt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
+ 2b̄t(St)EAt

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

]
− 2b̄t(St)

2 + b̄t(St)
2 − vπ,t(St)

2

=EAt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
+ 2b̄t(St)vπ,t(St)

− b̄t(St)
2 − vπ,t(St)

2 (Lemma 9)

=EAt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− (vπ,t(St)− b̄t(St))

2. (B.4)

Plugging (B.3) and (B.4) back to (B.2) gives

V
(
Gb(τ

µt:T−1

t:T−1) | St

)
=EAt

[
ρ2tV

(
Gb(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

)
(By (B.2))

=EAt

[
ρ2t
(
ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt

(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

)
(By (B.3))

=EAt

[
ρ2t
(
ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− (vπ,t(St)− b̄t(St))

2 (By (B.4))

=EAt

[
ρ2t

(
ESt+1

[
V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + [qπ,t(St, At)− bt(St, At)]

2
)
| St

]
− [vπ,t(St)− b̄t(St)]

2.

When t = T − 1, we have

V
(
Gb(τ

µt:T−1

t:T−1) | St

)
=V

(
ρt[r(St, At)− bt(St, At)] + b̄t(St) | St

)
(By (6.1))

=V
(
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

)
=EAt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− (vπ,t(St)− b̄t(St))

2,

148

which completes the proof.

We now restate Theorem 10 and give its proof.

Theorem 10. For a baseline function b, the behavior policy µ∗ defined in (6.12) is an

optimal solution to the optimization problems ∀t, s,

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ.

Proof. Fix a baseline function b. ∀t, s, a,

µ∗
t (a|s) = 0

=⇒ πt(a|s)
√
uπ,t(s, a) = 0 (By (6.12))

=⇒ πt(a|s)uπ,t(s, a) = 0.

Thus, µ∗ ∈ Λ.

∀t, ∀µ ∈ Λ, we have an unbiasedness on
√
uπ,t(s, a).

EAt∼µt

[
ρt

√
uπ,t(St, At) | St = s

]
=

∑
a∈{a|µt(a|s)>0}

µt(a|s)
πt(a|s)
µt(a|s)

√
uπ,t(s, a)

=
∑

a∈{a|µt(a|s)>0}

πt(a|s)
√
uπ,t(s, a)

=
∑

a∈{a|µt(a|s)>0}

πt(a|s)
√
uπ,t(s, a) +

∑
a∈{a|µt(a|s)=0}

πt(a|s)
√
uπ,t(s, a)

(∀µ ∈ Λ, µt(a|s) = 0 =⇒ πt(a|s)uπ,t(s, a) = 0 by (6.14))

=EAt∼πt

[√
uπ,t(St, At) | St = s

]
. (B.5)

We prove the optimality of the behavior policy µ∗ via induction.

When t = T − 1, ∀µ ∈ Λ, ∀s, the variance of the off-policy estimator has the

149

following lower bound

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

=EAt∼µt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− (vπ,t(St)− b̄t(St))

2 (Lemma 37)

=EAt∼µt

[
ρ2tuπ,t(St, At) | St

]
− (vπ,t(St)− b̄t(St))

2 (By (6.13))

≥EAt∼µt

[
ρt

√
uπ,t(St, At) | St

]2
− (vπ,t(St)− b̄t(St))

2 (By Jensen’s Inequality)

=EAt∼πt

[√
uπ,t(St, At) | St

]2
− (vπ,t(St)− b̄t(St))

2. (By (B.5))

For any state s, the variance of the off-policy estimator with the behavior policy

µ∗ achieves this lower bound by the following derivations.

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)

(B.6)

=EAt∼µ∗
t

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− (vπ,t(St)− b̄t(St))

2 (Lemma 37)

=EAt∼µ∗
t

[
ρ2tuπ,t(St, At) | St

]
− (vπ,t(St)− b̄t(St))

2. (By (6.13))

For the first term, we have

EAt∼µ∗
t

[
ρ2tuπ,t(St, At) | St

]
=
∑
a

πt(a|St)
2

µ∗
t (a|St)

uπ,t(St, a)

=
∑
a

πt(a|St)
√
uπ,t(St, a)

∑
b

πt(St, b)
√
uπ,t(St, b) (By (6.12))

=EAt∼πt

[√
uπ,t(St, At) | St

]2
. (B.7)

Plugging (B.7) back to (B.6), we obtain

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)

=EAt∼µ∗
t

[
ρ2tuπ,t(St, At) | St

]
− (vπ,t(St)− b̄t(St))

2

=EAt∼πt

[√
uπ,t(St, At) | St

]2
− (vπ,t(St)− b̄t(St))

2.

Thus, the behavior policy µ∗ defined in (6.12) is an optimal solution to the optimization

problems

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ

150

for t = T − 1 and all s.

When t ∈ [T − 2], we proceed via induction. The inductive hypothesis is that the

behavior policy µ∗ is an optimal solution to the optimization problems

min
µ

V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St = s
)

s.t. µ ∈ Λ

for all s.

To complete the induction, we prove that the behavior policy µ∗ is an optimal

solution to the optimization problems

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ

for all s.

∀µ ∈ Λ, ∀s, the variance of the off-policy estimator has the following lower bound

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

=EAt∼µt

[
ρ2t
(
ESt+1

[
V
(
Gb(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + [qπ,t(St, At)− bt(St, At)]

2
)
| St

]
− [vπ,t(St)− b̄t(St)]

2 (Lemma 37)

≥EAt∼µt

[
ρ2t

(
ESt+1

[
V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+νt(St, At) + [qπ,t(St, At)− bt(St, At)]

2
)
| St

]
− [vπ,t(St)− b̄t(St)]

2

(Indutive Hypothesis)

=EAt∼µt

[
ρ2tuπ,t(St, At) | St

]
− (vπ,t(St)− b̄t(St))

2 (By (6.13))

≥EAt∼µt

[
ρt

√
uπ,t(St, At) | St

]2
− (vπ,t(St)− b̄t(St))

2 (By Jensen’s Inequality)

=EAt∼πt

[√
uπ,t(St, At) | St

]2
− (vπ,t(St)− b̄t(St))

2. (By (B.5))

For any state s, the variance of the off-policy estimator with the behavior policy

µ∗ achieves the lower bound by the following derivations.

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)

=EAt∼µt

[
ρ2t

(
ESt+1

[
V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

+[qπ,t(St, At)− bt(St, At)]
2
)
| St

]
− [vπ,t(St)− b̄t(St)]

2 (Lemma 37)

=EAt∼µ∗
t

[
ρ2tuπ,t(St, At) | St

]
− (vπ,t(St)− b̄t(St))

2 (By (6.13))

=EAt∼πt

[√
uπ,t(St, At) | St

]2
− (vπ,t(St)− b̄t(St))

2. (By (B.7))

151

Thus, the behavior policy µ∗ defined in (6.12) is an optimal solution to the optimization

problems

min
µ

V
(
Gb(τ

µt:T−1

t:T−1) | St = s
)

s.t. µ ∈ Λ

for t and all s.

This completes the induction.

B.1.4 Proof of Theorem 11

In this proof, to differentiate different µ∗ with different baseline functions b, we use µ∗,b

to denote the corresponding µ∗ when using a function b as the baseline function. Gb,

ubπ,t, and Λb are defined following the same convention. We first present an auxiliary

lemma.

Lemma 38. ∀b, ∀µ ∈ Λb, ∀t,

EAt∼µt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2

=VAt∼µt (ρt[qπ,t(St, At)− bt(St, At)] | St) (B.8)

Proof. ∀b, ∀µ ∈ Λb, ∀t,

EAt∼µt

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2

=VAt∼µt (ρt[qπ,t(St, At)− bt(St, At)] | St) + EAt∼µt [ρt[qπ,t(St, At)− bt(St, At)] | St]
2

− [vπ,t(St)− b̄t(St)]
2

=VAt∼µt (ρt[qπ,t(St, At)− bt(St, At)] | St) + EAt∼µt [ρt[qπ,t(St, At)− bt(St, At)] | St]
2

− [EAt∼µt(·|St)

[
ρt[qπ,t(St, At)− bt(St, At)] + b̄t(St) | St

]
− b̄t(St)]

2

(Definition of qπ,t, Lemma 36)

=VAt∼µt (ρt[qπ,t(St, At)− bt(St, At)] | St) + EAt∼µt [ρt[qπ,t(St, At)− bt(St, At)] | St]
2

− EAt∼µt(·|St) [ρt[qπ,t(St, At)− bt(St, At)] | St]
2

=VAt∼µt (ρt[qπ,t(St, At)− bt(St, At)] | St) .

We now restate Theorem 11 and give its proof.

Theorem 11. b∗ is the optimal solution to the optimization problems ∀t, s,

min
b

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)
. (6.16)

152

Proof. We prove this by induction on the time step t.

When t = T −1, ∀s, the optimization problem (6.16) has the following lower bound

V(Gb(τ
µ∗,b
t:T−1

t:T−1) | S0 = s)

=EAt∼µ∗,b
t

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2 (Lemma 37)

=VAt∼µ∗,b
t

(ρt[qπ,t(St, At)− bt(St, At)] | St) (Lemma 38)

≥0. (Variance non-negativity)

When using b∗ as the baseline, we achieve this lower bound.

V(Gb∗(τ
µ∗,b∗
t:T−1

t:T−1) | S0 = s)

=E
At∼µ∗,b∗

t

[
ρ2t [qπ,t(St, At)− b∗t (St, At)]

2 | St

]
− [vπ,t(St)− b̄∗t (St)]

2 (Lemma 37)

=V
At∼µ∗,b∗

t
(ρt[qπ,t(St, At)− b∗t (St, At)] | St) (Lemma 38)

=V
At∼µ∗,b∗

t
(ρt[qπ,t(St, At)− qπ,t(St, At)] | St) (Definition of b∗ (6.15))

=0.

When t ∈ [T − 2], we proceed via induction. The inductive hypothesis is that the

baseline function b∗ is an optimal solution to the optimization problems

min
b

V
(
Gb(τ

µ∗,b
t+1:T−1

t+1:T−1) | St = s

)
for all s. Notice that we have

Λb ⊆ Λb∗ . (B.9)

This is because ∀s, a,

ubπ,t(s, a)

=(qπ,t(s, a)− bt(s, a))2 + νπ,t(s, a) +
∑

s′ p(s
′|s, a)V

(
Gb(τ

µ∗,b
t+1:T−1

t+1:T−1) | St+1 = s′
)

(By (6.13))

≥νπ,t(s, a) +
∑

s′ p(s
′|s, a)V

(
Gb(τ

µ∗,b
t+1:T−1

t+1:T−1) | St+1 = s′
)

≥νπ,t(s, a) +
∑

s′ p(s
′|s, a)V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1 = s′
)

(Inductive Hypothesis)

≥ub∗π,t(s, a).

Thus, ∀µ ∈ Λb, we have ∀s, a

µ(a|s) = 0

=⇒ π(a|s)ubπ,t(s, a) = 0

=⇒ π(a|s)ub∗π,t(s, a) = 0.

153

This shows

Λb ⊆ Λb∗ .

∀b, the optimization problem (6.16) has the following lower bound

V
(
Gb(τ

µ∗,b
t:T−1

t:T−1) | S0 = s

)
=EAt∼µ∗,b

t

[
ρ2t

(
ESt+1

[
V
(
Gb(τ

µ∗,b
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt∼µ∗,b

t

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2 (Lemma 37)

≥EAt∼µ∗,b
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt∼µ∗,b

t

[
ρ2t [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2

(Inductive hypothesis)

=EAt∼µ∗,b
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt∼µ∗,b

t
(ρt[qπ,t(St, At)− bt(St, At)] | St) (Lemma 38)

≥EAt∼µ∗,b
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
(Variance non-negativity)

=EAt∼µ∗,b
t

[
ρ2tu

b∗

π,t(St, At) | St

]
(By (6.13))

≥EAt∼µ∗,b
t

[
ρt

√
ub

∗
π,t(St, At) | St

]2
(Jensen’s inequality)

=EAt∼πt

[√
ub

∗
π,t(St, At) | St

]2
(By (B.5) and (B.9))

When setting ∀s,∀a, b∗t (s, a)
.
= qπ,t(s, a) as the baseline, we achieve this lower

154

bound.

V
(
Gb∗(τ

µ∗,b∗
t:T−1

t:T−1) | S0 = s

)
=E

At∼µ∗,b∗
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ E

At∼µ∗,b∗
t

[
ρ2t [qπ,t(St, At)− b∗t (St, At)]

2 | St

]
− [vπ,t(St)− b̄∗t (St)]

2 (Lemma 37)

=E
At∼µ∗,b∗

t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ V

At∼µ∗,b∗
t

(ρt[qπ,t(St, At)− b∗t (St, At)] | St) (Lemma 38)

=E
At∼µ∗,b∗

t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ V

At∼µ∗,b∗
t

(ρt[qπ,t(St, At)− qπ,t(St, At)] | St) (Definition of b∗ (6.15))

=E
At∼µ∗,b∗

t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
=E

At∼µ∗,b∗
t

[
ρ2tu

b∗

π,t(St, At) | St

]
(By (6.13))

=EAt∼πt

[√
ub

∗
π,t(St, At) | St

]2
(By (6.12))

Thus, b∗ is the optimal solution to the optimization problem

min
b

V
(
Gb(τ

µ∗
t:T−1

t:T−1) | St = s
)

for all t and s.

B.1.5 Proof of Theorem 13

Proof. Use ub
∗
t to denote ut (6.13) using b∗ as the baseline function. Then, by (6.13),

for t = T − 1,

ub
∗

t (s, a) = [qπ,t(s, a)− bt(s, a)]2 = 0. (B.10)

For t ∈ [T − 2],

ub
∗

t (s, a)

=(qπ,t(s, a)− bt(s, a))2 + νπ,t(s, a) +
∑

s′ p(s
′|s, a)V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1 = s′
)

(By (6.13))

=νπ,t(s, a) +
∑

s′ p(s
′|s, a)V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1 = s′
)
. (By (6.15)) (B.11)

155

The variance of Gb∗(τ
µ∗
t:T−1

t:T−1) has ∀s, for t = T − 1,

V
(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)

(B.12)

=EAt∼µ∗
t

[
ρ2t [qπ,t(St, At)− b∗t (St, At)]

2 | St

]
− [vπ,t(St)− b̄∗t(St)]

2 (Lemma 37)

=0 (Definition of b∗ (6.15))

=EAt∼µ∗
t

[
ρ2tu

b∗

t (St, At) | St

]
(By (B.10))

=EAt∼πt

[√
ub

∗
t (St, At) | St

]2
. (By (B.7))

For t ∈ [T − 2],

V
(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)

(B.13)

=EAt∼µ∗
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1)|St+1

)
|St, At

]
+ νt(St, At) + [qπ,t(St, At)− bt(St, At)]

2
)
|St

]
(Lemma 37)

− [vπ,t(St)− b̄t(St)]
2

=EAt∼µ∗
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt∼µ∗

t
(ρt[qπ,t(St, At)− b∗t (St, At)] | St) (Lemma 38)

=EAt∼µ∗
t

[
ρ2t

(
ESt+1

[
V
(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
(By (6.15))

=EAt∼µ∗
t

[
ρ2tu

b∗

t (St, At) | St

]
(By (B.11))

=EAt∼πt

[√
ub

∗
t (St, At) | St

]2
. (By (B.7))

The variance of GPDIS(τ
πt:T−1

t:T−1) has ∀s, for t− T − 1,

V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)

(B.14)

=EAt∼πt

[
qπ,t(St, At)

2 | St

]
− vπ,t(St)

2 (Lemma 37 with b = 0 and on-policy)

=VAt∼πt (qπ,t(St, At) | St) (Lemma 38 with b = 0 and on-policy)

=EAt∼πt

[
ub

∗

t (St, At) | St

]
+ VAt∼πt (qπ,t(St, At) | St) . (By (B.11))

156

For t ∈ [T − 2],

V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)

(B.15)

=EAt∼πt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + qπ,t(St, At)

2 | St

]
− vπ,t(St)

2 (Lemma 37 with b = 0)

=EAt∼πt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) | St

]
+ VAt∼πt (qπ,t(St, At) | St) (Lemma 38)

=EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) | St

]
+ VAt∼πt (qπ,t(St, At) | St)

+ EAt∼πt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]

=EAt∼πt

[
ub

∗

t (St, At) | St

]
+ VAt∼πt (qπ,t(St, At) | St)

+ EAt∼πt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]
.

(By (B.11))

Thus, for t = T − 1, their difference is

V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
− V

(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)

=EAt∼πt

[
ub

∗

t (St, At) | St

]
− EAt∼πt

[√
ub

∗
t (St, At) | St

]2
+ VAt∼πt (qπ,t(St, At) | St) (By (B.12) and (B.14))

=VAt∼πt

(√
ub

∗
t (St, At) | St

)
+ VAt∼πt (qπ,t(St, At) | St) .

157

For t ∈ [T − 2],

V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
− V

(
Gb∗(τ

µ∗
t:T−1

t:T−1) | St = s
)

=EAt∼πt

[
ub

∗

t (St, At) | St

]
− EAt∼πt

[√
ub

∗
t (St, At) | St

]2
+ VAt∼πt (qπ,t(St, At) | St)

+ EAt∼πt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]
(By (B.13) and (B.15))

=VAt∼πt

(√
ub

∗
t (St, At) | St

)
+ VAt∼πt (qπ,t(St, At) | St)

+ EAt∼πt

[
ESt+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]
.

We use induction to prove ∀t, s, δON, ours
t (s) ≥ 0. For t = T − 1,

δON, ours
t (s) = 0 ≥ 0.

For t ∈ [T − 2], the induction hypothesis is ∀s,

δON, ours
t+1 (s) ≥ 0.

This implies ∀s,

V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1 = s
)
− V

(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s
)

=VAt+1∼πt+1

(√
ub

∗
t+1(St+1, At+1) | St+1 = s

)
+ VAt+1∼πt+1 (qπ,t+1(St+1, At+1) | St+1 = s) + δON, ours

t+1 (s)

≥0. (B.16)

Thus, ∀s,

δON, ours
t (s)

=EAt∼πt,St+1

[
V
(
GPDIS(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| St = s

]
≥0. (by (B.16)) (B.17)

Thus, ∀t, s, δON, ours
t (s) ≥ 0.

158

B.1.6 Proof of Theorem 14

Proof. The variance of GPDIS(τ
µ∗,PDIS
t:T−1

t:T−1) has ∀s, for t = T − 1,

V
(
GPDIS(τ

µ∗,PDIS
t:T−1

t:T−1) | St = s

)
(B.18)

=EAt∼µ∗,PDIS
t

[
ρ2t qπ,t(St, At)

2 | St

]
− vπ,t(St)

2 (Lemma 37 and b = 0)

=VAt∼µ∗,PDIS
t

(ρtqπ,t(St, At) | St) (By (B.8))

=EAt∼µ∗,PDIS
t

[
ρ2tu

b∗

t (St, At) | St

]
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St) (By (B.11))

=EAt∼πt

[√
ub

∗
t (St, At) | St

]2
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St) . (By (B.7))

159

For t ∈ [T − 2],

V
(
GPDIS(τ

µ∗,PDIS
t:T−1

t:T−1) | St = s

)
(B.19)

=EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + qπ,t(St, At)

2

)
| St

]

− vπ,t(St)
2 (Lemma 37 with b = 0)

=EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St) (Lemma 38 with b = 0)

=EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St)

+ EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
−V

(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

])
| St

]
≥E

At∼µ∗,b∗
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St)

+ EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
−V

(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

])
| St

]
(∀µ∗,PDIS

t ∈ Λt, µ
∗,b∗
t achieves the minimum value of the first term in Λt)

=E
At∼µ∗,b∗

t

[
ρ2tu

b∗

t (St, At) | St

]
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St)

+ EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
−V

(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

])
| St

]
(By (B.11))

=EAt∼πt

[√
ub

∗
t (St, At) | St

]2
+ VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St)

+ EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
−V

(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

])
| St

]
. (By (B.7))

160

Thus, for t = T − 1,

V
(
GPDIS(τ

µ∗,PDIS
t:T−1

t:T−1) | St = s

)
− V

(
Gb∗(τ

µ∗,b∗
t:T−1

t:T−1) | St = s

)
=VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St) . (By (B.12) and (B.18))

For t ∈ [T − 2],

V
(
GPDIS(τ

µ∗,PDIS
t:T−1

t:T−1) | St = s

)
− V

(
Gb∗(τ

µ∗,b∗
t:T−1

t:T−1) | St = s

)
=VAt∼µ∗,PDIS

t
(ρtqπ,t(St, At) | St)

+ EAt∼µ∗,PDIS
t

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µ∗,PDIS
t+1:T−1

t+1:T−1) | St+1

)
−V

(
GPDIS(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

])
| St

]
. (By (B.13)and (B.19))

The proof of ∀t, s, δODI, ours
t (s) ≥ 0 is similar to (B.17) and is omitted.

B.1.7 Proof of Theorem 15

Proof. We begin the proof by manipulating the variance of Gb∗(τ
πt:T−1

t:T−1). ∀s, for

t = T − 1,

V
(
Gb∗(τ

πt:T−1

t:T−1) | St = s
)

(B.20)

=EAt∼πt

[
[qπ,t(St, At)− b∗t (St, At)]

2 | St

]
− [vπ,t(St)− b̄∗t(St)]

2

(Lemma 37 and on-policy)

=0 (Definition of b∗ (6.15))

=EAt∼πt

[
ub

∗

t (St, At) | St

]
. (By (B.11))

161

For t ∈ [T − 2],

V
(
Gb∗(τ

πt:T−1

t:T−1) | St = s
)

(B.21)

=EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) + [qπ,t(St, At)− bt(St, At)]

2 | St

]
− [vπ,t(St)− b̄t(St)]

2 (By Lemma 37)

=EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) | St

]
+ VAt∼πt ([qπ,t(St, At)− b∗t (St, At)] | St) (Lemma 38)

=EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) | St

]
(By (6.15))

=EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νt(St, At) | St

]
+ EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]

=EAt∼πt

[
ub

∗

t (St, At) | St

]
+ EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]
.

(By (B.11))

Thus, for t = T − 1, their difference is

V
(
Gb∗(τ

πt:T−1

t:T−1) | St = s
)
− V

(
Gb∗(τ

µ∗,b∗
t:T−1

t:T−1) | St = s

)
=EAt∼πt

[
ub

∗

t (St, At) | St

]
− EAt∼πt

[√
ub

∗
t (St, At) | St

]2
(By (B.12) and (B.20))

=VAt∼πt

(√
ub

∗
t (St, At) | St

)
.

For t ∈ [T − 2],

V
(
Gb∗(τ

πt:T−1

t:T−1) | St = s
)
− V

(
Gb∗(τ

µ∗,b∗
t:T−1

t:T−1) | St = s

)
=EAt∼πt

[
ub

∗

t (St, At) | St

]
− EAt∼πt

[√
ub

∗
t (St, At) | St

]2
+ EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]
(By (B.13) and (B.21))

=VAt∼πt

(√
ub

∗
t (St, At) | St

)
+ EAt∼πt

[
ESt+1

[
V
(
Gb∗(τ

πt+1:T−1

t+1:T−1) | St+1

)
− V

(
Gb∗(τ

µ∗,b∗
t+1:T−1

t+1:T−1) | St+1

)
| St, At

]
| St

]
.

162

The proof of ∀t, s, δDR, ours
t (s) ≥ 0 is similar to (B.17) and is omitted.

B.1.8 Proof of Lemma 10

Lemma 10 (Recursive form of u). With b = b∗, when t = T − 1, ∀s, a, uπ,t(s, a) = 0,

when t ∈ [T − 2], ∀s, a,

uπ,t(s, a) = νπ,t(s, a) +
∑

s′,a′ ρt+1p(s
′|s, a)πt+1(a

′|s′)uπ,t+1(s
′, a′).

Proof. When t = T − 1, ∀s, a,

uπ,t(s, a)

=(qπ,t(s, a)− b∗t (s, a))2 + νπ,t(s, a) (By (B.11))

=0. (By (6.15))

When t ∈ [T − 2], ∀s, a,

uπ,t(s, a)

=νπ,t(s, a) +
∑
s′

p(s′|s, a)V
(
Gb(τ

µ∗
t+1:T−1

t+1:T−1) | St+1 = s′
)

(By (B.11))

=νπ,t(s, a) +
∑
s′

p(s′|s, a)
[
EAt+1∼µ∗

t+1

[
ρ2t+1uπ,t+1(St+1, At+1) | St+1 = s′

]
−[vπ,t+1(s

′)− b̄∗t+1(s
′)]2
]

(Lemma 37)

=νπ,t(s, a) +
∑
s′

p(s′|s, a)EAt+1∼µ∗
t+1

[
ρ2t+1uπ,t+1(St+1, At+1) | St+1 = s′

]
(By (6.15))

=νπ,t(s, a) +
∑
s′,a′

ρt+1p(s
′|s, a)πt+1(a

′|s′)uπ,t+1(s
′, a′).

B.2 Experiment Details

We utilize the behavior policy-agnostic offline learning setting (Nachum et al., 2019),

in which the offline data consists of {(ti, si, ai, ri, s′i)}
m
i=1, with m previously logged

data tuples. Those tuples can be generated by one or multiple behavior policies,

regardless of whether these policies are known or unknown, and they are not required

to form a complete trajectory. In the i-th data tuple, ti represents the time step, si is

the state at time step ti, ai is the action executed, ri is the sampled reward, and s′i is

the successor state.

163

Figure B.1: MuJoCo robot simulation tasks (Todorov et al., 2012). The pictures are
adapted from (Liu and Zhang, 2024). Environments from the left to the right are Ant,
Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker.

In this work, we first learn the action-value function qπ,t from offline data using

Fitted Q-Evaluation algorithms (FQE, Le et al. (2019)), but our method can integrate

state-of-the-art offline policy evaluation techniques. Notably, Fitted Q-Evaluation

(FQE, Le et al. (2019)) is a different algorithm from Fitted Q-Improvement (FQI).

Fitted Q-Evaluation is not prone to overestimate the action-value function qπ,t because

Fitted Q-Evaluation does not have any max operator and does not change the policy.

Then, by the following derivation

νπ,t(s, a)

=VSt+1 (vπ,t+1(St+1) | St = s, At = a) (By (6.11))

=ESt+1

[
vπ,t+1(St+1)

2 | St = s, At = a
]
− ESt+1 [vπ,t+1(St+1) | St = s, At = a]2

=ESt+1

[
vπ,t+1(St+1)

2 | St = s, At = a
]
− (qπ,t(s, a)− r(s, a))2, (B.22)

the first term is an expectation of St+1. Because we have (ti, si, ai, ri, s
′
i) data tuples,

we construct ν using s′i in (ti, si, ai, ri, s
′
i) data tuples as the sample of the first term

and compute the rest quantity using the learned action-value function qπ,t and reward

data ri. Therefore, we construct Dν
.
= {(ti, si, ai, νi, s′i)}

m
i=1. Finally, by passing data

tuples in Dν from t = T − 1 to 0, we fit the function uπ,t using FQE in a dynamic

programming way with respect to the recursive form of uπ,t derived in Lemma 10.

For each time step, we take a copy of the neural network as an approximation of

function uπ,t at time step t. After learning the functions uπ,t and qπ,t, we return the

learned behavior policy µ∗
t (a|s) ∝ πt(a|s)

√
uπ,t(s, a) and the learned baseline function

b∗t (s, a) = qπ,t(s, a). The pseudocode of this procedure is presented in Algorithm 3.

B.2.1 GridWorld

For a Gridworld with size n, we set its width, height, and time horizon all to be n.

The number of states in this Gridworld environment scales cubically with n, offering

a suitable tool to test algorithm scalability. We choose Gridworld with n3 = 1, 000

164

and n3 = 27, 000, the largest Gridworld environment tested among related works

(Jiang and Li, 2016; Hanna et al., 2017; Liu and Zhang, 2024). There are four possible

actions: left, right, up, and down. After the agent takes an action, it has a probability

of 0.9 to move accordingly and a probability of 0.1 to move uniformly at random. If

runs into a boundary, the agent stays in its current location. The reward function

r(s, a) is randomly generated. We consider 30 randomly generated target policies.

We generate the ground truth policy performance using the on-policy Monte Carlo

method, running each target policy for 106 episodes. We test two different environment

sizes of the Gridworld, one with 1, 000 states and 27, 000 states. The offline dataset

of both environments contains 1, 000 episodes generated by a set of random policies.

To learn functions qπ,t and uπ,t, we split the offline data into a training set and a

test set. We tune all hyperparameters offline based on Fitted Q-learning loss on the

test set. We choose a one-hidden-layer neural network and test the neural network

size with [64, 128, 256] and choose 64 as the final size. We test the learning rate for

Adam optimizer with [1e−5, 1e−4, 1e−3, 1e−2] and choose to use the default learning

rate 1e−3 as learning rate for Adam optimizer (Kingma and Ba, 2015). All benchmark

algorithms are learned using their reported hyperparameters (Jiang and Li, 2016; Liu

and Zhang, 2024). Each policy has 30 independent runs, resulting in 30 · 30 = 900

total runs. Therefore, each curve in Figure 6.1 is averaged from 900 different runs

over a wide range of policies, showing a strong statistical significance.

B.2.2 MuJoCo

MuJoCo is a physics engine containing various stochastic environments, where the

goal is to control a robot to achieve different behaviors such as walking, jumping,

and balancing. Environments in Figure B.1 from the left to the right are Ant,

Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker. We construct

30 policies in each environment (resulting a total of 150 policies), incorporating a

wide range of performance generated by the proximal policy optimization (PPO)

algorithm (Schulman et al., 2017). We use the the default PPO implementation in

Huang et al. (2022). We set each MuJoCo environment to have a fixed time horizon

100 in OpenAI Gymnasium (Towers et al., 2024). As our methods are designed for

discrete action space, we discretize the first dimension of MuJoCo action space. The

remaining dimensions are controlled by the PPO policies, and they are deemed as part

of the environment. The offline dataset of each environment contains 1, 000 episodes

generated by a set of policies with various performances. Functions qπ,t and uπ,t are

learned the same way as in Gridworld environments. Our algorithm is robust on

165

hyperparameters. All hyperparameters in Algorithm 3 are tuned offline and are the

same across all MuJoCo and Gridworld experiments. Each policy in MuJoCo also has

30 independent runs, resulting in 30 · 30 = 900 total runs. Therefore, each curve in

Figure 6.2 and each number in Table 4.2 are averaged from 900 different runs over a

wide range of policies indicating strong statistical significance.

166

Appendix C

Appendix for Chapter 5

C.1 Proofs

C.1.1 Proof of Lemma 4

Proof. ∀k,

EA∼µ

[
ρπ

(k),µ(A)q(A)
]

=
∑

a∈{a|µ(a)>0}

µ(a)
π(k)(a)

µ(a)
q(a)

=
∑

a∈{a|µ(a)>0}

π(k)(a)q(a)

=
∑

a∈{a|µ(a)>0}

π(k)(a)q(a) +
∑

a∈{a|µ(a)=0}

π(k)(a)q(a) (µ ∈ Λ)

=
∑
a

π(k)(a)q(a)

=EA∼π(k) [q(A)] .

The intuition in the third equation is that the sample a where µ does not cover

π(k) must satisfy q(a) = 0, i.e., this sample does not contribute to the expectation

anyway.

C.1.2 Proof of Lemma 5

Proof.

Define

A+
.
=
{
a | ∃k, π(k)(a)q(a) ̸= 0

}
. (C.1)

167

For any µ ∈ Λ, we expand the variance in (5.4) as∑
k∈[K]

VA∼µ(ρπ
(k),µ(A)q(A)) (C.2)

=
∑
k∈[K]

EA∼µ[(ρπ
(k),µ(A)q(A))2]− EA∼µ[ρπ

(k),µ(A)q(A)]2

=
∑
k∈[K]

EA∼µ[(ρπ
(k),µ(A)q(A))2]− EA∼π(k) [q(A)]2 (Lemma 4)

=
∑
k∈[K]

∑
a∈{a|µ(a)>0}

π(k)(a)2q(a)2

µ(a)
− EA∼π(k) [q(A)]2

=
∑
k∈[K]

∑
a∈{a|µ(a)>0}∩A+

π(k)(a)2q(a)2

µ(a)
− EA∼π(k) [q(A)]2 (∀a /∈ A+,∀k, π(k)(a)q(a) = 0)

=
∑
a∈A+

∑
k∈[K] π

(k)(a)2q(a)2

µ(a)
−
∑
k∈[K]

EA∼π(k) [q(A)]2. (µ ∈ Λ)

The second term is a constant and is unrelated to µ. Solving the optimization problem

(5.4) is, therefore, equivalent to solving

minµ∈Λ
∑
a∈A+

∑
k∈[K] π

(k)(a)2q(a)2

µ(a)
. (C.3)

Case 1: |A+| = 0

In this case, optimization target (C.2) is always 0. Any µ ∈ Λ is optimal. In particular,

µ∗(a) = 1
A is optimal.

Case 2: |A+| > 0

The definition of Λ in (5.3) can be equivalently expressed, using contraposition, as

Λ = {µ ∈ ∆(A) | ∀a, a ∈ A+ =⇒ µ(a) > 0}.

The optimization problem (C.3) can then be equivalently written as

minµ∈∆(A)

∑
a∈A+

∑
k∈[K] π

(k)(a)2q(a)2

µ(a)
(C.4)

s.t. µ(a) > 0 ∀a ∈ A+.

If for some µ we have
∑

a∈A+
µ(a) < 1, then there must exist some a0 /∈ A+ such that

µ(a0) > 0. By the definition of A+ (C.1), ∀a0 /∈ A+,∑
k∈[K]

π(k)2(a0)q
2(a0) = 0.

168

This means a0 does not contribute to the summation in the objective function of (C.4),

we can move the probability mass on a0 to some other a1 ∈ A+ to increase µ(a1) to

further decrease the objective. In other words, any optimal solution µ to (C.4) must

put all its probability mass on A+. This motivates the following problem

minz∈∆(A+)

∑
a∈A+

∑
k∈[K] π

(k)(a)2q(a)2

z(a)
(C.5)

s.t. z(a) > 0 ∀a ∈ A+.

In particular, if z∗ is an optimal solution to (C.5), then an optimal solution to (C.4)

can be constructed as

µ∗(a) =

{
z∗(a) a ∈ A+,

0 otherwise.
(C.6)

Let R++
.
= (0,+∞). According to the Cauchy-Schwarz inequality, for any z ∈ R|A+|

++ ,

we have∑
a∈A+

∑
k∈[K] π

(k)(a)2q(a)2

z(a)

∑
a∈A+

z(a)

 ≥
∑

a∈A+

√∑
k∈[K] π

(k)(a)2q(a)2√
z(a)

√
z(a)

2

=

∑
a∈A+

√∑
k∈[K]

π(k)(a)2q(a)2

2

.

It can be easily verified that the equality holds for

z∗(a)
.
=

√∑
k∈[K] π

(k)(a)2q(a)2∑
b

√∑
k∈[K] π

(k)(b)2q(b)2
> 0.

Since
∑

a∈A+
z∗(a) = 1, we conclude that z∗ is an optimal solution to (C.5). An

optimal solution µ∗ to (5.4) can then be constructed according to (C.6). Making use

of the fact that ∀a /∈ A, ∀k, π(k)(a)q(a) = 0, this µ∗ can be equivalently expressed as

µ∗(a) =

√∑
k∈[K] π

(k)(a)2q(a)2∑
b∈A

√∑
k∈[K] π

(k)(b)2q(b)2
,

which completes the proof.

169

C.1.3 Proof of Lemma 6

Proof. ∀k, we first derive an upper-bound on VA∼µ∗

(
ρπ

(k),µ∗
(A)q(A)

)
,

VA∼µ∗(ρπ
(k),µ∗

(A)q(A))

=EA∼µ∗

[
(ρπ

(k),µ∗
(A)q(A))2

]
− EA∼µ∗

[
ρπ

(k),µ∗
(A)q(A)

]2
=EA∼µ∗

[
(ρπ

(k),µ∗
(A)q(A))2

]
− EA∼π(k) [q(A)]2 (Lemma 4)

=EA∼µ∗

[
w(k)(a)

µ∗(a)2

]
− EA∼π(k) [q(A)]2 (By (5.5))

=
∑
a

w(k)(a)
1

µ∗(a)
− EA∼π(k) [q(A)]2

=
∑
a

w(k)(a)

∑b

√∑
j∈[K]w

(j)(b)√∑
j∈[K]w

(j)(a))

− EA∼π(k) [q(A)]2

(By (5.5) and definition of µ∗)

=
∑
a

w(k)(a)

(∑
b

√
Kw̄(b)√

Kw̄(a)

)
− EA∼π(k) [q(A)]2 (By (5.6))

=
∑
a

w(k)(a)

(∑
b

√
w̄(b)√

w̄(a)

)
− EA∼π(k) [q(A)]2

=
∑
a

w(k)(a)

∑b

√
w(k)(b)

η(k)(b)√
w(k)(a)

η(k)(a)

− EA∼π(k) [q(A)]2 (By (5.7))

≤
∑
a

w(k)(a)

∑b

√
w(k)(b)

η√
w(k)(a)

η

− EA∼π(k) [q(A)]2 (By (5.8))

=
∑
a

w(k)(a)


√

1
η

∑
b

√
w(k)(b)√

1
η

√
w(k)(a)

− EA∼π(k) [q(A)]2

=
∑
a

w(k)(a)

∑b

√
ηw(k)(b)√

ηw(k)(a)

− EA∼π(k) [q(A)]2

170

=

√
η

η

∑
a

w(k)(a)

(∑
b

√
w(k)(b)√

w(k)(a)

)
− EA∼π(k) [q(A)]2

=

√
η

η

(∑
a

√
w(k)(a)

)(∑
b

√
w(k)(b)

)
− EA∼π(k) [q(A)]2

=

√
η

η

(∑
a

√
w(k)(a)

)2

− EA∼π(k) [q(A)]2

=

√
η

η

(∑
a

π(k)(a)q(a)

)2

− EA∼π(k) [q(A)]2. (By (5.5))(C.7)

Then, ∀k ∈ [K], observe the following inequality,

1

n

√η

η

(∑
a

π(k)(a)q(a)

)2

− EA∼π(k) [q(A)]2


=

1

n

√η

η

(∑
a

π(k)(a)q(a)

)2

−
(
n

nk

− 1

)∑
a

π(k)(a)q(a)2 −

(∑
a

π(k)(a)q(a)

)2


+

(
n

nk

− 1

)∑
a

π(k)(a)q(a)2 −

(∑
a

π(k)(a)q(a)

)2
− EA∼π(k) [q(A)]2


≤ 1

n

∑
a

π(k)(a)q(a)2 +

(
n

nk

− 1

)∑
a

π(k)(a)q(a)2 −

(∑
a

π(k)(a)q(a)

)2
− EA∼π(k) [q(a)]2


(By (5.11))

=
1

n

[
n

nk

∑
a

π(k)(a)q(a)2 −
(
n

nk

− 1

)
EA∼π(k) [q(a)]2 − EA∼π(k) [q(a)]2

]

=
1

n

[
n

nk

∑
a

π(k)(a)q(a)2 − n

nk

EA∼π(k) [q(a)]2
]

=
1

nk

[∑
a

π(k)(a)q(a)2 − EA∼π(k) [q(a)]2
]
. (C.8)

171

Now, we have ∀k ∈ [K],

VA∼µ∗

(
Eoff,π(k)

)
=VA∼µ∗

(∑n
i=1 ρ

π(k),µ∗
(A[µ∗,i])q(A[µ∗,i])

n

)
(By (5.10))

=
1

n2
VA∼µ∗

(
n∑

i=1

ρπ
(k),µ∗

(A[µ∗,i])q(A[µ∗,i])

)
=

1

n
VA∼µ∗

(
ρπ

(k),µ∗
(A)q(A)

)
(Independence of A[µ∗,i])

≤ 1

n

√η

η

(∑
a

π(k)(a)q(a)

)2

− EA∼π(k) [q(A)]2

 (by (C.7))

≤ 1

nk

[∑
a

π(k)(a)q(a)2 − EA∼π(k) [q(A)]2
]

(by (C.8))

=
1

nk

VA∼π(k)(q(A))

=
1

n2
k

VA∼π(k)

(
nk∑
i=1

q(A[π(k),i])

)
(Independence of A[π(k),i])

=VA∼π(k)

(∑nk

i=1 q(A
[π(k),i])

nk

)
=VA∼π(k)

(
Eon,π(k)

)
. (By (5.9))

C.1.4 Proof of Lemma 7

Proof. When sampling from the target policy π(k), we have ∀k,

VA∼π(k)(q(A))

=EA∼π(k)

[
q(A)2

]
− EA∼π(k) [q(A)]2

=
∑
a

π(k)(a)q(a)2 − EA∼π(k) [q(A)]2. (C.9)

172

With the sufficient condition (5.13), we show the variance reduction. ∀k,

VA∼µ∗

(
ρπ

(k),µ∗
(A)q(A)

)
=

√
η

η

(∑
a

π(k)(a)q(a)

)2

− EA∼π(k) [q(A)]2 (by (C.7))

≤
∑
a

π(k)(A)q(a)2 − EA∼π(k) [q(A)]2 (by (5.13))

=VA∼π(k)(q(A)). (By (C.9))

C.1.5 Proof of Theorem 6

Before proving Theorem 6, we first present an auxiliary lemma that is a stronger

version of Lemma 4.

Lemma 39. ∀µ ∈ Λ, ∀k,∀t, ∀s,

EAt∼µt

[
ρπ

(k),µ
t qπ(k),t(St, At) | St = s

]
= E

At∼π
(k)
t

[
qπ(k),t(St, At) | St = s

]
.

Proof. ∀µ ∈ Λ, ∀k,∀t, ∀s,

EAt∼µt

[
ρπ

(k),µ
t qπ(k),t(St, At) | St = s

]
=

∑
a∈{a|µt(a|s)>0}

µt(a|s)
π
(k)
t (a|s)
µt(a|s)

qπ(k),t(s, a)

=
∑

a∈{a|µt(a|s)>0}

π
(k)
t (a|s)qπ(k),t(s, a)

=
∑

a∈{a|µt(a|s)>0}

π
(k)
t (a|s)qπ(k),t(s, a) +

∑
a∈{a|µt(a|s)=0}

π
(k)
t (a|s)qπ(k),t(s, a) (µ ∈ Λ)

=
∑
a

π
(k)
t (a|s)qπ(k),t(s, a)

=E
At∼π

(k)
t

[
qπ(k),t(St, At) | St = s

]
.

Now, we are ready to prove Theorem 6.

173

Proof. We proceed via induction. ∀k, for t = T − 1, we have

E
[
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

]
=E

[
ρπ

(k),µ
t r(St, At) | St

]
=E

[
ρπ

(k),µ
t qπ(k),t(St, At) | St

]
=E

At∼π
(k)
t (·|St)

[
qπ(k),t(St, At) | St

]
(Lemma 39)

=vπ(k),t(St).

For t ∈ [T − 2], we have

E
[
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

]
=E

[
ρπ

(k),µ
t Rt+1 + ρπ

(k),µ
t GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St

]
=E

[
ρπ

(k),µ
t Rt+1 | St

]
+ E

[
ρπ

(k),µ
t GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St

]
=E

[
ρπ

(k),µ
t Rt+1 | St

]
+ EAt∼µt(·|St),St+1∼p(·|St,At)

[
E
[
ρπ

(k),µ
t GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At, St+1

]
| St

]
(Law of total expectation)

=E
[
ρπ

(k),µ
t Rt+1 | St

]
+ EAt∼µt(·|St),St+1∼p(·|St,At)

[
ρπ

(k),µ
t E

[
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

]
| St

]
(Conditional independence and Markov property)

=E
[
ρπ

(k),µ
t Rt+1 | St

]
+ EAt∼µt(·|St),St+1∼p(·|St,At)

[
ρπ

(k),µ
t vπ(k),t+1(St+1) | St

]
(Inductive hypothesis)

=EAt∼µt(·|St)

[
ρπ

(k),µ
t qπ(k),t(St, At) | St

]
(Definition of qπ(k),t)

=E
At∼π

(k)
t (·|St)

[
qπ(k),t(St, At) | St

]
(Lemma 39)

=vπ(k),t(St).

This completes the proof.

C.1.6 Proof of Theorem 7

To prove Theorem 7, we rely on a recursive expression of the PDIS Monte Carlo

estimator, which is restated from Liu and Zhang (2024), as summarized by the following

lemma.

Lemma 40 (Recursive Expression of Variance). For any µ ∈ Λ, ∀k, we have for

t = T − 1,

V
(
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

)
= EAt∼µt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2;

174

For t ∈ [T − 2],

V
(
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

)
=EAt∼µt

[
ρπ

(k),µ
t

2 (
ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St

)
| St, At

]
+ νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]

− vπ(k),t(St)
2.

Proof. When t ∈ [T − 2], we have

V
(
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

)
(C.10)

=EAt

[
V
(
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St, At

)
| St

]
+ VAt

(
E
[
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St, At

]
| St

)
(Law of total variance)

=EAt

[
ρπ

(k),µ
t

2
V
(
r(St, At) +GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At

)
| St

]
+ VAt

(
ρπ

(k),µ
t E

[
r(St, At) +GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At

]
| St

)
(Using (5.1))

=EAt

[
ρπ

(k),µ
t

2
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At

)
| St

]
+ VAt

(
ρπ

(k),µ
t qπ(k),t(St, At) | St

)
.

(Deterministic reward r)

Further decomposing the first term, we have

V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At

)
(C.11)

=ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At, St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St, At, St+1

]
| St, At

)
(Law of total variance)

=ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

]
| St, At

)
(Markov property)

=ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+ VSt+1

(
vπ(k),t+1(St+1) | St, At

)
.

(Theorem 6)

175

With νπ(k),t defined in (5.16), plugging (C.11) back to (C.10) yields

V
(
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

)
=EAt

[
ρπ

(k),µ
t

2 (
ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ VAt

(
ρπ

(k),µ
t qπ(k),t(St, At) | St

)
=EAt

[
ρπ

(k),µ
t

2 (
ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St

]
−
(
EAt

[
ρπ

(k),µ
t qπ(k),t(St, At) | St

])2
=EAt

[
ρπ

(k),µ
t

2 (
ESt+1

[
V
(
GPDIS

k

(
τ
µt+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+ νt(St, At)

)
| St

]
+ EAt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2. (Lemma 39)

When t = T − 1, we have

V
(
GPDIS

k

(
τ
µt:T−1

t:T−1

)
| St

)
=V

(
ρπ

(k),µ
t r(St, At) | St

)
=V

(
ρπ

(k),µ
t qπ(k),t(St, At) | St

)
=EAt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2,

which completes the proof.

Then, to solve the variance minimization problem, we manipulate the variance

expression in (5.17). For any policy k, for any µ ∈ Λ̂, when t = T − 1,

K∑
k=1

V
(
GPDIS

k

(
τ

{
µt,π

(k)
t+1,...,π

(k)
T−1

}
t:T−1

)
| St = s

)
(C.12)

=
K∑
k=1

EAt∼µt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2 (Lemma 40)

=
K∑
k=1

EAt∼µt

[
ρπ

(k),µ
t

2
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (5.18))

=
K∑
k=1

VAt∼µt

(
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

)
−

K∑
k=1

EAt∼µt

[
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

]2
− vπ(k),t(St)

2

=
K∑
k=1

VAt∼µt

(
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

)
−

K∑
k=1

E
At∼π

(k)
t

[√
q̂π(k),t(St, At) | St

]2
− vπ(k),t(St)

2. (Lemma 39 and µt ∈ Λ̂ ⊆ Λ)

176

For t ∈ [T − 2],

K∑
k=1

V
(
GPDIS

k

(
τ

{
µt,π

(k)
t+1,...,π

(k)
T−1

}
t:T−1

)
| St = s

)
(C.13)

=
K∑
k=1

EAt∼µt

[
ρπ

(k),µ
t

2 (
ESt+1

[
V
(
GPDIS

k

(
τ
π(k)

t+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− vπ(k),t(St)

2 (Lemma 40)

=
K∑
k=1

EAt∼µt

[
ρπ

(k),µ
t

2
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (5.18))

=
K∑
k=1

VAt∼µt

(
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

)
−

K∑
k=1

EAt∼µt

[
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

]2
− vπ(k),t(St)

2

=
K∑
k=1

VAt∼µt

(
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

)
−

K∑
k=1

E
At∼π

(k)
t

[√
q̂π(k),t(St, At) | St

]2
− vπ(k),t(St)

2. (Lemma 39 and µt ∈ Λ̂ ⊆ Λ)

Since for both (C.12) and (C.13), the second and third terms are unrelated to µ̂,

solving (5.17) is equivalent to solve

min
µt∈Λ̂

K∑
k=1

VAt∼µt

(
ρπ

(k),µ
t

√
q̂π(k),t(St, At) | St

)
. (C.14)

Then, with Lemma 5, we conclude that µ̂t as defined in (5.19) is an optimal solution

to (C.14), which completes the proof.

C.1.7 Proof of Theorem 8

Before proving Theorem 8, given the sufficient condition in (5.26), we first observe

the following equation.

EAt∼µ̂t

[
ρπ

(k),µ̂
2
νπ(k),t(St, At) | St

]
+ VAt∼µ̂t

(
ρπ

(k),µ̂qπ(k),t(St, At) | St

)
(C.15)

=EAt∼µ̂t

[
ρπ

(k),µ̂
2
νπ(k),t(St, At) | St

]
+ EAt∼µ̂t

[
ρπ

(k),µ̂
2
qπ(k),t(St, At)

2 | St

]
− EAt∼µ̂t

[
ρπ

(k),µ̂qπ(k),t(St, At) | St

]2
=EAt∼µ̂t

[
ρπ

(k),µ̂
2
νπ(k),t(St, At) | St

]
+ EAt∼µ̂t

[
ρπ

(k),µ̂
2
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2.

(Theorem 6)

177

Thus, we obtain ∀t, s,√
ηt
η
t

(∑
a

π
(k)
t (a|s)

√
q̂π(k),t(a|s)

)2

(C.16)

− n− nk

n

(
EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(s, At) + qπ(k),t(s, At)

2
)
| s
]
− vπ(k),t(s)

2
)

=

√
ηt
η
t

(∑
a

π
(k)
t (a|s)

√
q̂π(k),t(a|s)

)2

− n− nk

n

(
EAt∼µ̂t

[
ρπ

(k),µ̂
2
νπ(k),t(St, At) | St = s

]
+ VAt∼µ̂t

(
ρπ

(k),µ̂qπ(k),t(St, At)
)
| St = s

)
(By (C.15))

≤E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St = s

]
. (By (5.26))

We also discover the following inequality. ∀k, ∀s, ∀t,

1

n

√ηt
ηt

(∑
a

π
(k)
t (a|s)

√
q̂π(k),t(a|s)

)2

− vπ(k),t(s)
2


=

1

n

√ηt
ηt

(∑
a

π
(k)
t (a|s)

√
q̂π(k),t(a|s)

)2

−
(
n

nk

− 1

)(∑
a

π
(k)
t (a|s)q̂π(k),t(s, a)− vπ(k),t(s)

2

)

+

(
n

nk

− 1

)(∑
a

π
(k)
t (a|s)q̂π(k),t(s, a)− vπ(k),t(s)

)
− vπ(k),t(s)

2

]

≤ 1

n

[∑
a

π
(k)
t (a|s)q̂π(k),t(s, a) +

(
n

nk

− 1

)(∑
a

π
(k)
t (a|s)q̂π(k),t(s, a)− vπ(k),t(s)

2

)
− vπ(k),t(s)

2

]
(By (C.16))

=
1

n

[
n

nk

∑
a

π
(k)
t (a|s)q̂π(k),t(s, a)−

(
n

nk

− 1

)
vπ(k),t(s)

2 − vπ(k),t(s)
2

]

=
1

n

[
n

nk

∑
a

π
(k)
t (a|s)q̂π(k),t(s, a)− n

nk

vπ(k),t(s)
2

]

=
1

nk

[∑
a

π
(k)
t (a|s)q̂π(k),t(s, a)− vπ(k),t(s)

2

]
=

1

nk

(
E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St = s

]
− vπ(k),t(s)

2
)
. (C.17)

Next, to prove Theorem 9, we present a closed-form representation of the variance

of the on-policy estimator.

178

Lemma 41. For any k, t and s,

V
(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St = s

)
= E

At∼π
(k)
t

[
q̂π(k),t(St, At) | St = s

]
− vπ(k),t(s)

2.

Proof. We proceed via induction. When t = T − 1,

V
(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St

)
=E

At∼π
(k)
t

[
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2 (Lemma 40 and on-policy)

=E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2. (By (5.18))

When t ∈ [T − 2],

V
(
GPDIS

k

(
τ
πt:T−1

t:T−1

)
| St

)
=EAt∼πt

[(
ESt+1

[
V
(
GPDIS

k

(
τ
πt+1:T−1

t+1:T−1

)
| St

)
| St, At

]
+ νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− vπ(k),t(St)

2 (Lemma 40 and on-policy)

=E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2, (By (5.18))

which completes the induction.

Additionally, we discover the following inequality. ∀k, ∀s, ∀t,

179

EAt∼µt

[
ρπ

(k),µ
t

2
q̂π(k),t(St, At) | St = s

]
=EAt∼µ̂t

[
w

(k)
t (St, At)

µ̂t(At|St)2
| St = s

]
(By (5.20))

=
∑
a

w
(k)
t (s, a)

1

µ̂t(a|s)

=
∑
a

w
(k)
t (s, a)

∑b

√∑
j∈[K]w

(j)
t (s, b)√∑

j∈[K]w
(j)
t (s, a)

 (By (5.19))

=
∑
a

w
(k)
t (s, a)

(∑
b

√
Kw̄t(s, b)√

Kw̄t(s, a)

)
(by (5.21))

=
∑
a

w
(k)
t (s, a)

(∑
b

√
w̄t(s, b)√

w̄t(s, a)

)

=
∑
a

w
(k)
t (s, a)


∑

b

√
w

(k)
t (s,b)

η
(k)
t (s,b)√

w
(k)
t (s,a)

η
(k)
t (s,a)

 (By (5.22))

≤
∑
a

w
(k)
t (s, a)


∑

b

√
w

(k)
t (s,b)

η
t√

w
(k)
t (s,a)

ηt

 (By (5.23))

=
∑
a

w
(k)
t (s, a)


√

1
η
t

∑
b

√
w

(k)
t (s, b)√

1
ηt

√
w

(k)
t (s, a)


=
∑
a

w
(k)
t (s, a)

∑b

√
ηtw

(k)
t (s, b)√

η
t
w

(k)
t (s, a)


=

√
ηt
η
t

∑
a

w
(k)
t (s, a)

∑b

√
w

(k)
t (s, b)√

w
(k)
t (s, a)


=

√
ηt
η
t

(∑
a

√
w

(k)
t (s, a)

)(∑
b

√
w

(k)
t (s, b)

)

=

√
ηt
η
t

(∑
a

√
w

(k)
t (s, a)

)2

=

√
ηt
η
t

(∑
a

π
(k)
t (a|s)

√
q̂π(k),t(s, a)

)2

. (By (5.20))(C.18)

180

From here, we restate Theorem 8 and give its proof.

Theorem 8 (Variance Reduction with Same Sample Sizes). ∀k, ∀t, ∀s,

V
(
Eoff,π(k)

t:T−1 | St = s
)
≤ V

(
Eon,π(k)

t:T−1 | St = s
)
.

if the similarity η has ∀k,∀t, ∀s,√
ηt
ηt

(∑
a π

(k)
t (a|s)

√
q̂π(k),t(a|s)

)2
−
(
1− nk

n

)
∆

(k)
t (s)

≤
∑

a π
(k)
t (a|s)q̂π(k),t(s, a), (5.26)

where

∆
(k)
t (s)

.
= EAt∼µ̂t

[
ρπ

(k),µ̂
2
νπ(k),t(St, At) | St = s

]
+VAt∼µ̂t

(
ρπ

(k),µ̂qπ(k),t(St, At) | St = s
)
.

First, we manipulate the variance of both Eoff,π(k)

0:T−1 and Eon,π(k)

0:T−1 .

V
(
Eoff,π(k)

0:T−1

)
(C.19)

=V

∑n
i=1G

PDIS
k

(
τ
[µ̂0:T−1,i]
0:T−1

)
n

 (By (5.25))

= 1
n2V

(∑n
i=1G

PDIS
k

(
τ
[µ̂0:T−1,i]
0:T−1

))
=

1

n
V
(
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

))
(Independence of τ

[µ̂0:T−1,i]
0:T−1)

=
1

n
ES0

[
V
(
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

)
| S0 = s

)]
+

1

n
VS0

(
E
[
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

)
| S0 = s

])
(Law of total variance)

=
1

n
ES0

[
V
(
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

)
| S0 = s

)]
+

1

n
VS0(vπ,0(S0)). (Theorem 6)

181

Similarly, we have

V
(
Eon,π(k)

0:T−1

)
(C.20)

=V


∑nk

i=1G
PDIS
k

(
τ
[π

(k)
0:T−1,i]

0:T−1

)
nk

 (By (5.24))

=
1

nk
2
V
(∑nk

i=1G
PDIS
k

(
τ
[π

(k)
0:T−1,i]

0:T−1

))
=

1

nk

V
(
GPDIS

k

(
τ
π
(k)
0:T−1

0:T−1

))
(Independence of τ

[π
(k)
0:T−1,i]

0:T−1)

=
1

nk

ES0

[
V
(
GPDIS

k

(
τ
π
(k)
0:T−1

0:T−1

)
| S0 = s

)]
+

1

nk

VS0

(
E
[
GPDIS

k

(
τ
π
(k)
0:T−1

0:T−1

)
| S0 = s

])
(Law of total variance)

=
1

nk

ES0

[
V
(
GPDIS

k

(
τ
π
(k)
0:T−1

0:T−1

)
| S0 = s

)]
+

1

nk

VS0(vπ,0(S0)).

(Theorem 6 and on-policy)

With the manipulated sufficient condition in (C.16), we present the following

lemma.

Lemma 42. Under the condition in (5.26), ∀k, t, s,
nk

n
V
(
GPDIS

k

(
τ
µ̂t:T−1

t:T−1

)
| St = s

)
≤V

(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St = s

)
.

Proof. We proceed via induction. ∀k, ∀s, when t = T − 1,

nk

n
V
(
GPDIS

k

(
τ
µ̂t:T−1

t:T−1

)
| St = s

)
=
nk

n

[
EAt∼µt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St = s

]
− vπ(k),t(s)

2

]
(Lemma 40)

=
nk

n

[
EAt∼µt

[
ρπ

(k),µ
t

2
q̂π(k),t(St, At) | St = s

]
− vπ(k),t(s)

2

]
(By (5.18))

≤nk

n

√ηt
η
t

(∑
a

π
(k)
t (a|s)

√
q̂π(k),t(s, a)

)2

− vπ(k),t(s)
2

 (By (C.18))

≤E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St = s

]
− vπ(k),t(s)

2 (By (C.17))

=V
(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St = s

)
. (Lemma 41)

182

For t ∈ [T − 2],

nk

n
V
(
GPDIS

k

(
τ
µ̂t:T−1

t:T−1

)
| St = s

)
=
nk

n
EAt∼µ̂t

[
ρπ

(k),µ̂
2
(
ESt+1

[
V
(
GPDIS

k

(
τ
µ̂t+1:T−1

t+1:T−1

)
| St

)
| St, At

]
+νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− nk

n
vπ(k),t(St)

2 (Lemma 40)

=EAt∼µ̂t

[
ρπ

(k),µ̂
2
ESt+1

[nk

n
V
(
GPDIS

k

(
τ
µ̂t+1:T−1

t+1:T−1

)
| St

)
| St, At

]
| St

]
+
nk

n
EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− nk

n
vπ(k),t(St)

2

(Linearity of Expectation)

≤EAt∼µ̂t

[
ρπ

(k),µ̂
2
(
ESt+1

[
V
(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St

)
| St, At

])
| St

]
+
nk

n
EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− nk

n
vπ(k),t(St)

2

(Indutive Hypothesis)

=EAt∼µ̂t

[
ρπ

(k),µ̂
2
(
ESt+1

[
V
(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St

)
| St, At

]
+νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
+ (

nk

n
− 1)EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− nk

n
vπ(k),t(St)

2

=EAt∼µ̂t

[
ρπ

(k),µ̂
2
q̂π(k),t(St, At) | St

]
− n− nk

n
EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− nk

n
vπ(k),t(St)

2

(By (5.18))

≤
√
ηt
η
t

(∑
a

π
(k)
t (a|St)

√
q̂π(k),t(a|St)

)2

− n− nk

n
EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− nk

n
vπ(k),t(St)

2

(by (C.18))

=

√
ηt
η
t

(∑
a

π
(k)
t (a|St)

√
q̂π(k),t(a|St)

)2

− n− nk

n

(
EAt∼µ̂t

[
ρπ

(k),µ̂
2 (
νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− vπ(k),t(St)

2
)
− vπ(k),t(St)

2

≤E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (C.16))

=V
(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St

)
. (Lemma 41)

183

Now, we are ready to present the proof of Theorem 8.

V
(
Eoff,π(k)

0:T−1

)
=

1

n
ES0

[
V
(
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

)
| S0 = s

)]
+

1

n
VS0(vπ,0(S0)) (By (C.19))

≤ 1

n
ES0

[
V
(
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

)
| S0 = s

)]
+

1

nk

VS0(vπ,0(S0)) (nk ≤ n)

=
1

nk

· nk

n
V
(
GPDIS

k

(
τ
µ̂0:T−1

0:T−1

)
| S0 = s

)
+

1

nk

VS0(vπ,0(S0))

≤ 1

nk

V
(
GPDIS

k

(
τ
π
(k)
0:T−1

0:T−1

)
| S0 = s

)
+

1

nk

VS0(vπ,0(S0)) (Lemma 42)

=V
(
Eon,π(k)

0:T−1

)
. (By (C.20))

C.1.8 Proof of Theorem 9

Proof. We prove it using induction. When t = T − 1, ∀k, ∀s,

V
(
GPDIS

k

(
τ
µ̂t:T−1

t:T−1

)
| St = s

)
=EAt∼µt

[
ρπ

(k),µ
t

2
qπ(k),t(St, At)

2 | St

]
− vπ(k),t(St)

2 (Lemma 40)

=EAt∼µt

[
ρπ

(k),µ
t

2
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (5.18))

≤
√
ηt
η
t

(∑
a

π
(k)
t (a|St)

√
q̂π(k),t(St, a)

)2

− vπ(k),t(St)
2 (By (C.18))

≤E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (5.27))

=V
(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St

)
. (Lemma 41)

184

When t ∈ [T − 2],

V
(
GPDIS

k

(
τ
µ̂t:T−1

t:T−1

)
| St = s

)
=EAt∼µt

[
ρπ

(k),µ
t

2 (
ESt+1

[
V
(
GPDIS

k

(
τ
µ̂t+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− vπ(k),t(St)

2 (Lemma 40)

≤EAt∼µt

[
ρπ

(k),µ
t

2
(
ESt+1

[
V
(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St+1

)
| St, At

]
+νπ(k),t(St, At) + qπ(k),t(St, At)

2
)
| St

]
− vπ(k),t(St)

2 (Inductive Hypothesis)

=EAt∼µt

[
ρπ

(k),µ
t

2
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (5.18))

≤
√
ηt
η
t

(∑
a

π
(k)
t (a|St)

√
q̂π(k),t(St, a)v

)2

− vπ(k),t(St)
2 (By (C.18))

≤E
At∼π

(k)
t

[
q̂π(k),t(St, At) | St

]
− vπ(k),t(St)

2 (By (5.27))

=V
(
GPDIS

k

(
τ
π
(k)
t:T−1

t:T−1

)
| St

)
. (Lemma 41)

C.2 Experiment Details

C.2.1 Learning Closed-Form Behavior Policy

In this section, we present an efficient algorithms to learn the closed-form optimal

behavior policy µ̂ with previously logged offline data. By (5.19), µ̂ is defined as

µ̂t(a|s) ∝
√∑K

k=1 π
(k)
t (a|s)q̂π(k),t(s, a)2, where for each target policy k, q̂π(k) is defined

in (5.18) as

q̂π(k),t(s, a)
.
=qπ(k),t(s, a)2 + νπ(k),t(s, a) +

∑
s′ p(s

′|s, a)V
(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St+1

)
.

Learning µ̂ from this perspective is very inefficient because it requires approximations

of the complex variance term V
(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St+1

)
regarding future trajectory.

To solve this problem, we restate the recursive expression of q̂ in the form of a Bellman

equation (Tamar et al., 2016; O’Donoghue et al., 2018; Sherstan et al., 2018) from Liu

and Zhang (2024) and give its proof.

Theorem 22. For any target policy π(k), define

r̂π(k),t(s, a)
.
= 2r(s, a)qπ(k),t(s, a)− r2(s, a). (C.21)

185

Then q̂π(k),t(s, a) = r̂π(k),t(s, a) for t = T − 1 and otherwise

q̂π(k),t(s, a) = r̂π(k),t(s, a) +
∑

s′,a′ p(s
′|s, a)π

(k)
t+1(a

′|s′)q̂π(k),t+1(s
′, a′). (C.22)

Proof. For any k, for t = T − 1, we have

q̂π(k),t(s, a) = qπ(k),t(s, a)2 (Definition of q̂π(k),t (5.18))

= r̂π(k),t(s, a). (By qπ(k),T−1(s, a) = r(s, a) and (C.21))

For t ∈ [T − 2], we have

q̂π(k),t(s, a)

=qπ(k),t(s, a)2 + νπ(k),t(s, a) +
∑
s′

p(s′|s, a)V
(
GPDIS

k

(
τ
π
(k)
t+1:T−1

t+1:T−1

)
| St+1 = s′

)
(Definition of q̂ (5.18))

=qπ(k),t(s, a)2 + νπ(k),t(s, a) +
∑
s′

p(s′|s, a)
(
E

At+1∼π
(k)
t+1

[
q̂π(k),t+1(St+1, At+1) | St+1 = s′

]
−vπ(k),t+1(St+1)

2
)

(Lemma 41)

=νπ(k),t(s, a) + qπ(k),t(s, a)2 −
∑
s′

p(s′|s, a)vπ(k),t+1(s
′)2 +

∑
s′,a′

p(s′|s, a)π
(k)
t+1(a

′|s′)q̂π(k),t+1(s
′, a′)

=− (E[vπ(k),t+1(St+1) | St = s, At = a])2 + qπ(k),t(s, a)2 +
∑
s′,a′

p(s′|s, a)π
(k)
t+1(a

′|s′)q̂π(k),t+1(s
′, a′)

(Definition of ν (5.16))

=− (qπ(k),t(s, a)− r(s, a))2 + qπ(k),t(s, a)2 +
∑
s′,a′

p(s′|s, a)π
(k)
t+1(a

′|s′)q̂π(k),t+1(s
′, a′)

=2r(s, a)qπ(k),t(s, a)− r(s, a)2 +
∑
s′,a′

p(s′|s, a)π
(k)
t+1(a

′|s′)q̂π(k),t+1(s
′, a′)

=r̂π(k),t(s, a) +
∑
s′,a′

p(s′|s, a)π
(k)
t+1(a

′|s′)q̂π(k),t+1(s
′, a′),

which completes the proof.

This derivation enables the implementation of any off-the-shelf offline policy evalu-

ation methods to learn q̂π(k), after which the behavior policy µ̂ can be computed easily

with (5.19). For generality, we consider the behavior policy agnostic offline learning

setting (Nachum et al., 2019), where the offline data in the form of {(ti, si, ai, ri, s′i)}
m
i=1

consists of m previously logged data tuples. In the i-th data tuple, ti is the time step,

si is the state at time step ti, ai is the action executed on state si, ri is the sampled

186

reward, and s′i is the successor state. Those tuples can be generated by one or more,

known or unknown behavior policies. Those tuples do not need to form a complete

trajectory.

In this work, we use Fitted Q-Evaluation (FQE, Le et al. (2019)) as a demonstration,

but our algorithm can incorporate any state-of-the-art offline policy evaluation methods

to approximate q̂
(k)
π . To learn r̂

(k)
π , it is sufficient to learn q, in which FQE can be

applied. Then, FQE is invoked to learn an approximation of q̂
(k)
π . We refer the reader

to Algorithm 2 for a detailed exposition of our algorithm. In practice, we split the

offline data into training sets and test sets to tune all the hyperparameters offline in

Algorithm 2.

C.2.2 GridWorld

For a Gridworld with size m3, we set its width, height, and time horizon T all to

be m. We test Gridworlds with m3 = 1, 000 and m3 = 27, 000 states. The action

space contains four possible actions: up, down, left, and right. After taking an action,

the agent has a probability of 0.9 to move accordingly and a probability of 0.1 to

move uniformly at random. If running into a boundary, the agent stays in the current

position. The reward function r(s, a) is randomly generated.

We generate target policies using the proximal policy optimization (PPO) algorithm

(Schulman et al., 2017) with the default parameters in CleanRL (Huang et al., 2022).

We choose PPO just for a demonstration. Our method copes with any other deep RL

algorithm. We randomly draw 10 policies in a randomly chosen time step interval.

We obtain the ground truth policy performance for each target policy by executing

on-policy Monte Carlo evaluation for 106 total episodes. Our offline dataset includes

104 episodes from various policies with a wide range of performances. We execute

Algorithm 1 to learn our tailored behavior policy. When approximating q and q̂, we

use Fitted Q-Evaluation (Le et al., 2019). We use a one-hidden-layer neural network

for Fitted Q-Evaluation. We test the neural network size for Fitted Q-Evaluation

with [64, 128, 256] and choose 64 as the final size. We test the learning rate for Adam

optimizer with [1e−5, 1e−4, 1e−3, 1e−2] and choose to use the default learning rate 1e−3

as learning rate for Adam optimizer (Kingma and Ba, 2015).

The results for each target policy are shown in Figure C.1 and Figure C.2 in terms

of the relative error against total samples, as described in the main text. Notably, for

the On-policy Monte Carlo estimator and the ODI estimator (Liu and Zhang, 2024),

samples for each single target policy π(k) are collected once in every K = 10 total

sample steps. Smooth lines are plotted through interpolation. Each line in Figure C.1

187

and Figure C.2 is averaged over 900 different runs (30 groups of target policies, each

having 30 independent runs), indicating strong statistical significance. Our method

(MPE) consistently outperforms all other estimators for the evaluation of every single

target policy, demonstrating state-of-the-art performance.

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Policy 1
Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 2

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 3

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 4

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 5

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Policy 6
Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 7

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 8

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 9

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 10

Ours
On-policy MC
ODI
SON
SODI

Gridworld size = 1,000

Figure C.1: Results on Gridworld. Each curve is averaged over 900 runs (the corre-
sponding target policies from 30 groups, each having 30 independent runs). Shaded
regions denote standard errors and are invisible for some curves because they are too
small.

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Policy 1
Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 2

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 3

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 4

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 5

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Policy 6
Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 7

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 8

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 9

Ours
On-policy MC
ODI
SON
SODI

101 102 103 104

Samples

0.0

0.2

0.4

0.6

0.8

1.0
Policy 10

Ours
On-policy MC
ODI
SON
SODI

Gridworld size = 27,000

Figure C.2: Results on Gridworld. Each curve is averaged over 900 runs (the corre-
sponding target policies from 30 groups, each having 30 independent runs). Shaded
regions denote standard errors and are invisible for some curves because they are too
small.

188

C.2.3 MuJoCo

Figure C.3: MuJoCo robot simulation tasks (Todorov et al., 2012). Pictures are
adapted from (Liu and Zhang, 2024). Environments from the left to the right are Ant,
Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker.

In experiments of MuJoCo robot simulation tasks (Todorov et al., 2012), we use the

same method for obtaining offline data, randomly generating target policies, training

behavior policies, and applying the same hyperparameters as in the Gridworld experi-

ment. We discretize the first dimension of MuJoCo action space in our experiment.

The policies of remaining dimensions are obtained during PPO (Schulman et al., 2017)

training process, and deemed as part of the environment. The following table offers

an additional interpretation to Figure 5.2.

Env ID Ours On-policy MC ODI SON SODI

Ant 0.115 1.000 0.606 1.144 1.548
Hopper 0.114 1.000 0.580 1.287 1.413
InvertedDoublePendulum 0.111 1.000 0.494 0.882 1.582
InvertedPendulum 0.124 1.000 0.565 0.889 1.250
Walker 0.094 1.000 0.590 0.759 1.056

Table C.1: Relative variance of estimators on MuJoCo environments. The relative
variance is defined as the variance of each estimator divided by the variance of the
on-policy Monte Carlo estimator. Numbers are averaged over 900 independent runs
(30 groups of target policies, each having 30 independent runs).

189

Env ID Ours On-policy MC ODI SON SODI

Ant 125 1000 626 1171 1701
Hopper 115 1000 583 1253 1413
InvertedDoublePendulum 103 1000 464 835 1547
InvertedPendulum 111 1000 530 916 1166
Walker 97 1000 542 749 1033

Table C.2: Episodes needed to achieve the same estimation accuracy that on-policy
Monte Carlo achieves with 1000 episodes on MuJoCo environments. Numbers are
averaged over 900 independent runs (30 groups of target policies, each having 30
independent runs) and their standard errors are shown in Figure 6.2.

190

Appendix D

Appendix for Chapter 7

D.1 Proofs

D.1.1 Proof of Lemma 11

Proof. ∀s, ∀µ ∈ Λ,

Ea∼µ[ρ(a|s)r(s, a)] =
∑

a∈{a|µ(a|s)>0}

µ(a|s)π(a|s)
µ(a|s)

r(s, a)

=
∑

a∈{a|µ(a|s)>0}

π(a|s)r(s, a)

=
∑

a∈{a|µ(a|s)>0}

π(a|s)r(s, a) +
∑

a∈{a|µ(a|s)=0}

π(a|s)r(s, a) (µ ∈ Λ)

=
∑
a

π(a|s)r(s, a)

=Ea∼π[r(s, a)].

D.1.2 Proof of Lemma 12

Proof. To prove Lemma 12, we express the objective function as

Ea∼µ[ρ(a|s)2r(s, a)2] =
∑

a∈{a|µ(a|s)>0}

π(a|s)2r(s, a)2

µ(a|s)
.

To prove the problem is convex, we begin by examining the feasible set of each

constraint separately.

In the first constraint of Λ (7.2),

∀s, a, µ(a|s) = 0 =⇒ π(a|s)r(s, a) = 0. (D.1)

191

The feasible set of (D.1) is a linear subspace of R|A| defined by a set of linear equations.

Thus, this feasible set is convex.

Next, we decompose the other constraint of Λ (7.2), µ(·|s) ∈ ∆|A|−1 ∀s, into two

subconstraints: ∑
a

µ(a|s) = 1, (D.2)

∀a, µ(a|s) ≥ 0. (D.3)

For all s, the feasible set in (D.2) can be written in the vector form as

1T−→µs = 1, (D.4)

where 1 ∈ R|A| is the vector of ones defined as

1
.
=

1
...
1

 ,
and −→µs ∈ R|A| is defined as

−→µs
.
=

 µ(a1|s)
...

µ(a|A||s)

 .
Since (D.4) is linear, the constraint (D.2) is affine and thus convex (Boyd et al., 2004).

For all s, the feasible set of (D.3) is the non-negative orthant, defined as

R|A|
+

.
= {µ(·|s) ∈ R|A| | µ(a|s) ≥ 0,∀a}.

Since the non-negative orthant forms a convex cone and is known to be a convex set

(Boyd et al., 2004), we conclude that this constraint’s feasible set is convex.

Next, we define the vector of costs for all s as

cs
.
=

 c(s, a1)...
c(s, a|A|)

 .
Then, for all ϵ and s, the safety constraint (7.8) can be rewritten as

c⊤s
−→µs ≤ δϵ(s),

which is a linear inequality in µ. Thus, its feasible set is in a convex half-space.

Because all the constraints are convex, we conclude that the feasible set F in (7.9) is

convex.

192

Finally, we examine the minimization objective (7.7), where π and r are fixed and

independent of the behavior policy µ. For all s, we express the objective function as

Ea∼µ[ρ(a|s)2r(s, a)2] =
∑

a∈{a|µ(a|s)>0}

π(a|s)2r(s, a)2

µ(a|s)
.

Then, for each a, we decompose the objective function as

fa(µ(a|s)) .
=
π(a|s)2r(s, a)2

µ(a|s)
. (D.5)

Taking the first and second derivatives of fa, we get

f ′
a(µ(a|s)) = −π(a|s)2r(s, a)2

µ(a|s)2
,

f ′′
a (µ(a|s)) =

2π(a|s)2r(s, a)2

µ(a|s)3
.

Since ∀s, a, f ′′
a (µ(a|s)) ≥ 0, we know that (D.5) is convex for all a. Then, as a

summation of convex functions, (7.7) is also convex. In conclusion, by the convexity

of the feasible set F and the objective function (7.7), we obtain the convexity of the

constrained optimization problem in Lemma 12.

For feasibility, note that by Lemma 13, π ∈ F , which is the feasible set. Thus, we

confirm the feasibility in Lemma 12.

D.1.3 Proof of Lemma 1

Proof. We proceed via induction. For t = T − 1, we have

E
[
GPDIS(τ

µt:T−1

t:T−1) | St

]
=E [ρtRt+1 | St] = E [ρtqπ,t(St, At) | St]

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 11)

=vπ,t(St).

193

For t ∈ [T − 2], we have

E
[
GPDIS(τ

µt:T−1

t:T−1) | St

]
=E

[
ρtRt+1 + ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St

]
=E [ρtRt+1 | St] + E

[
ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St

]
=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[
E
[
ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St

]
(Law of total expectation)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[
ρtE

[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St

]
(Conditional independence and Markov property)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At) [ρtvπ,t+1(St+1) | St]
(Inductive hypothesis)

=EAt∼µt(·|St) [ρtqπ,t(St, At) | St] (Definition of qπ,t)

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 11)

=vπ,t(St),

which completes the proof.

D.1.4 Proof of Theorem 16

Proof. We first define the set of feasible policies as

F .
= {µ ∈ Λ | ∀ϵ, t, s,Ea∼µt [v

c
µ,t(s)] ≤ δϵ,t(s)}. (D.6)

We begin by examining each constraint. In the first constraint of Λ (7.11),

∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s)qπ,t(s, a) = 0. (D.7)

The feasible set of (D.7) is a linear subspace of R|A| defined by a set of linear equations.

Thus, this feasible set is convex.

Next, we decompose the other constraint of Λ (7.11), µt(·|s) ∈ ∆|A|−1, into two

constraints: ∑
a

µt(a|s) = 1, (D.8)

∀a, µt(a|s) ≥ 0. (D.9)

For all t and s, in (D.8), the feasible set can be written as

1⊤−→µs,t = 1, (D.10)

194

where 1 ∈ R|A| is the vector of ones and −→µs,t ∈ R|A| is defined as

−→µs,t
.
=

 µt(a1|s)
...

µt(a|A||s)

 .
Since (D.10) is linear, the feasible set of constraint (D.8) is affine and thus convex

(Boyd et al., 2004).

For all t and s, the feasible set for the constraint in (D.9) is the non-negative

orthant, defined as

R|A|
+

.
= {µt(·|s) ∈ R|A| | µt(a|s) ≥ 0,∀a}.

Since the non-negative orthant forms a convex cone and is known to be a convex set

(Boyd et al., 2004), we conclude that this constraint is convex.

Next, we define the vector of the state-action value function for the cost c for each

s as

qµ,t
.
=

 q
c
µ,t(s, a1)

...
qcµ,t(s, a|A|)

 .
Then, for all ϵ, t and s, the safety constraint (7.16) can be rewritten as

q⊤
µ,t
−→µs,t ≤ δϵ,t(s),

which is a linear inequality in µt. Thus, its feasible set is a convex half-space. Because

all the constraints’ feasible sets are convex, we conclude that the feasible set F in

(D.6) is convex.

To prove Theorem 16, we express the objective function as

Ea∼µt [ρ
2
t r̃t(s, a)] =

∑
a∈{a|µt(a|s)>0}

πt(a|s)2r̃t(s, a)

µt(a|s)
,

where r̃ in (7.14) is defined as

r̃t(s, a)
.
=

{
rπ,t(s, a)2 t = T − 1,

νπ,t(s, a) + qπ,t(s, a)2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
t ∈ [T − 2].

Here, r̃t can be learned with logged offline data, as detailed in Algorithm 4, and it is

unrelated to µt. Then, for each a, we decompose the objective function as

fa(µt(a|s))
.
=
πt(a|s)2r̃t(s, a)

µt(a|s)
. (D.11)

195

Taking the first and second derivatives of fa, we get

f ′
a(µt(a|s)) = −πt(a|s)

2r̃(s, a)

µt(a|s)2
,

f ′′
a (µt(a|s)) =

2πt(a|s)2r̃(s, a)

µt(a|s)3
.

Notice that the extended reward r̃ defined in (7.14) is non-negative, since all the

summands are non-negative. Thus, ∀t, s, a, f ′′
a (µt(a|s)) ≥ 0, and we know that (D.11)

is convex for all a. Then, as a summation of convex functions, (7.15) is also convex.

In conclusion, by the convexity of the feasible set F and the objective function (7.15),

we obtain the convexity of the constrained optimization problem in Theorem 16.

For feasibility, we show that the set of feasible policies (D.6) is non-empty. Because

ϵ ∈ [0,∞), for the safety constraint, we have

Ea∼πt [v
c
µ,t(s)] ≤ (1 + ϵ)Ea∼πt [v

c
µ,t(s)] = δϵ,t(s).

By the definition of Λ (7.11), ∀t, πt ∈ Λ. Therefore, the set of feasible policies (D.6) is

non-empty. Thus, the constrained optimization problem in Theorem 16 is feasible.

D.1.5 Proof of Theorem 17

To prove Theorem 17, we first restate a recursive expression of the variance V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
for all µ ∈ Λ from Liu and Zhang (2024), and present its proof for completeness.

Lemma 43. For any µ ∈ Λ, for t = T − 1,

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
= EAt∼µt

[
ρ2t q

2
π,t(St, At) | St

]
− v2π,t(St),

for t ∈ [T − 2],

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt∼µt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St

)
| St, At

]
+ νπ,t(St, At) + q2π,t(St, At)

)
| St

]
− v2π,t(St).

Proof. For completeness, we provide the proof from Liu and Zhang (2024). We proceed

via induction. When t = T − 1, we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=V (ρtr(St, At) | St)

=V (ρtqπ,t(St, At) | St)

=EAt

[
ρ2t qπ,t(St, At)

2 | St

]
− vπ,t(St)

2,

196

When t ∈ [T − 2], we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
(D.12)

=EAt

[
V
(
GPDIS(τ

µt:T−1

t:T−1) | St, At

)
| St

]
+ VAt

(
E
[
GPDIS(τ

µt:T−1

t:T−1) | St, At

]
| St

)
(Law of total variance)

=EAt

[
ρ2tV

(
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρtE

[
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

]
| St

)
(By (7.1))

=EAt

[
ρ2tV

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρtE

[
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

]
| St

)
(Deterministic reward r)

=EAt

[
ρ2tV

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt (ρtqπ,t(St, At) | St) .

Further decomposing the first term, we have

V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
(D.13)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St, At

)
(Law of total variance)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St, At

)
(Markov property)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1 (vπ,t+1(St+1) | St, At) .

(Lemma 1)

Then, plugging (D.13) back to (D.12) yields

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1(vπ,t(St+1) | St = s, At = a)

)
| St

]
+ VAt (ρtqπ,t(St, At) | St)

=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1(vπ,t(St+1) | St = s, At = a)

)
| St

]
+ EAt

[
ρ2t qπ,t(St, At)

2 | St

]
− (EAt [ρtqπ,t(St, At) | St])

2

=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1(vπ,t(St+1) | St = s, At = a)

)
| St

]
+ EAt

[
ρ2t qπ,t(St, At)

2 | St

]
− vπ,t(St)

2, (Lemma 11)

=EAt

[
ρ2t
(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νπ,t(St, At) + qπ,t(St, At)

2
)
| St

]
− vπ,t(St)

2, (Definition of ν)

which completes the proof.

197

Then, with the extended reward r̃ in (7.14) defined as

r̃t(s, a)
.
=

{
rπ,t(s, a)2 t = T − 1,

νπ,t(s, a) + qπ,t(s, a)2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
t ∈ [T − 2],

we can express the variance in a succinct form

V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)

= Ea∼µ∗ [ρ2t r̃t(s, a)]− vπ,t(s)2, ∀s, t. (D.14)

Now, we restate Theorem 17 and present its proof.

Theorem 17. The behavior policy µ∗ reduces variance compared with the on-policy

evaluation method.

∀t, s,V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)
≤ V

(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
.

In Appendix D.1.4, we show that ∀t, πt ∈ F , where F in (D.6) is the set of feasible

policies for the constrained optimization problem in Theorem 16. Recall that µ∗
t is

defined as the optimal solution to the problem (7.15), i.e.,

µ∗
t
.
= argmin

µt∈F
Ea∼µt [ρ

2
t r̃(s, a)]. (D.15)

Thus, ∀t, s,

V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)

=Ea∼µ∗
t
[ρ2t r̃t(s, a)]− vπ,t(s)2 (By (D.14))

≤Ea∼πt [ρ
2
t r̃t(s, a)]− vπ,t(s)2 (By (D.15) and πt ∈ F)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
, (By (D.14))

which completes the proof.

D.1.6 Proof of Theorem 18

Proof. We first prove the variance reduction property.

V
(
GPDIS(τ

µ∗
0:T−1

0:T−1)
)

=ES0

[
V
(
GPDIS(τ

µ∗
0:T−1

0:T−1) | S0

)]
+ VS0

(
E
[
GPDIS(τ

µ∗
0:T−1

0:T−1) | S0

])
(Law of Total Variance)

=ES0

[
V
(
GPDIS(τ

µ∗
0:T−1

0:T−1) | S0

)]
+ VS0 (vπ,0(S0)) (By Lemma 1 and µ∗ ∈ Λ)

≤ES0

[
V
(
GPDIS(τ

π0:T−1

0:T−1) | S0

)]
+ VS0 (vπ,0(S0)) (Theorem 17)

=ES0

[
V
(
GPDIS(τ

π0:T−1

0:T−1) | S0

)]
+ VS0

(
E
[
GPDIS(τ

π0:T−1

0:T−1) | S0

])
(By Lemma 1 and π ∈ Λ)

=V
(
GPDIS(τ

π0:T−1

0:T−1)
)
. (Law of Total Variance)

198

Next, we prove the safety constraint satisfaction.

J c(µ∗)

=
∑
s

p0(s)v
c
µ∗,0(s)

=
∑
s

p0(s)Ea∼µ∗
0
[qcµ∗,0(s, a)]

≤
∑
s

p0(s)δϵ,0(s) (Theorem 16)

=
∑
s

p0(s)(1 + ϵ)vcπ,0(s) (By (7.13))

=(1 + ϵ)
∑
s

p0(s)v
c
π,0(s)

=(1 + ϵ)J c(π),

which completes the proof.

199

D.1.7 Proof of Lemma 15

Proof. ∀s, a, when t = T − 1, r̃t(s, a) = rπ,t(s, a)2, as defined in (7.14). For t ∈ [T − 2],

r̃t(s, a)

=νπ,t(s, a) + qπ,t(s, a)2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
(By (7.14))

=νπ,t(s, a) + qπ,t(s, a)2

+
∑
s′

p(s′|s, a)
[
EAt+1∼µ∗

t+1

[
ρ2t+1

(
ESt+2

[
V
(
GPDIS(τ

µ∗
t+2:T−1

t+2:T−1) | St+2

)
| St+1, At+1

]

+νπ,t+1(St+1, At+1) + qπ,t+1(St+1, At+1)
2
)
| St+1 = s′

]
− vπ,t+1(s

′)2
]
(By Lemma 43)

=νπ,t(s, a) + qπ,t(s, a)2 +
∑
s′

p(s′|s, a)
[
EAt+1∼µ∗

t+1

[
ρ2t+1r̃π,t+1(St+1, At+1) | St+1 = s′

]
−vπ,t+1(s

′)2
]

(By (7.14))

=νπ,t(s, a) + qπ,t(s, a)2 +
∑
s′,a′

p(s′|s, a)
[
ρt+1πt+1(a

′|s′)r̃π,t+1(s
′, a′)− vπ,t+1(s

′)2
]
.

=VSt+1 (vπ,t+1(St+1) | St = s, At = a) + qπ,t(s, a)2

+
∑
s′,a′

p(s′|s, a)
[
ρt+1πt+1(a

′|s′)r̃π,t+1(s
′, a′)− vπ,t+1(s

′)2
]

(Definition of ν)

=ESt+1

[
vπ,t+1(St+1)

2 | St = s, At = a
]
− ESt+1 [vπ,t+1(St+1) | St = s, At = a]2

+ qπ,t(s, a)2 +
∑
s′,a′

p(s′|s, a)
[
ρt+1πt+1(a

′|s′)r̃π,t+1(s
′, a′)− vπ,t+1(s

′)2
]

=
∑
s′

p(s′|s, a)vπ,t+1(s
′)2 − (qπ,t(s, a)− r(s, a))2 + qπ,t(s, a)2

+
∑
s′,a′

p(s′|s, a)ρt+1πt+1(a
′|s′)r̃π,t+1(s

′, a′)−
∑
s′

p(s′|s, a)vπ,t+1(s
′)2

=2qπ,t(s, a)r(s, a)− r(s, a)2 +
∑
s′,a′

p(s′|s, a)ρt+1πt+1(a
′|s′)r̃π,t+1(s

′, a′)

=2qπ,t(s, a)r(s, a)− r(s, a)2 + Es′∼p,a′∼π

[
πt+1(a

′|s′)
µ∗
t+1(a

′|s′)
r̃π,t+1(s

′, a′)

]
.

200

Environment Size On-policy MC Ours ODI ROS

1,000 1.000 0.547 0.460 0.953
27,000 1.000 0.575 0.484 0.987

Table D.1: Relative variance for estimators on Gridworld. The relative variance is
defined as the variance of each estimator divided by the variance of the on-policy
Monte Carlo estimator. Numbers are averaged over 900 independent runs (30 target
policies, each having 30 independent runs). Standard errors are plotted in Figure 7.1.

Env Size On-policy MC Ours ODI ROS Saved Cost Percentage

10 1000 472 738 1035 (1000 - 472)/1000 = 52.8%
30 1000 487 765 1049 (1000 - 487)/1000 = 51.3%

Table D.2: Cost needed to achieve the same estimation accuracy that on-policy Monte
Carlo achieves with 1000 episodes on Gridworld. Each number is averaged over 900
runs. Standard errors are plotted in Figure 7.2.

D.2 Experiment Details

D.2.1 GridWorld

We conduct experiments on Gridworlds with n3 = 1, 000 and n3 = 27, 000 states,

where for a Gridworld with size n3, we set the width, height, and time horizon T all

to be n. The action space contains four different possible actions: up, down, left, and

right. After taking an action, the agent has a probability of 0.9 to move accordingly

and a probability of 0.1 to move uniformly at random. When the agent runs into a

boundary, it stays in its current position. We randomly generate the reward function

r(s, a) and cost function c(s, a). We consider 30 randomly generated target policies

with various performances. The ground truth policy performance is estimated by

the on-policy Monte Carlo method, running each target policy for 106 episodes. We

experiment two different sizes of the Gridworld with a number of 1, 000 and 27, 000

states.

The offline dataset of each environment contains a total of 1, 000 episodes generated

by 30 policies with various performances. The performance of those policies ranges

from completely random initialized policies to well-trained policies in each environment.

For example, in Hopper, the performance of those 30 policies ranges from around 18

to around 2800. We let offline data be generated by various policies to simulate the

fact that offline data are from different past collections.

We learn functions qπ,t, q
c
π,t, and r̂π,t using Fitted Q-Evaluation algorithms (FQE,

201

Le et al. (2019)) by passing data tuples in Dν from t = T − 1 to 0. It is worth noticing

that Fitted Q-Evaluation (FQE, Le et al. (2019)) is a different algorithm from Fitted

Q-Improvement (FQI). Importantly, Fitted Q-Evaluation is not prone to overestimate

the action-value function qπ,t because it does not have any max operator and does not

change the policy. All hyperparameters are tuned offline based on Fitted Q-learning

loss. We leverage a one-hidden-layer neural network and test the neural network size

with [64, 128, 256]. We then choose 64 as the final size. We also test the learning rate

for Adam optimizer with [1e−5, 1e−4, 1e−3, 1e−2] and finally choose to use the default

learning rate 1e−3 as learning rate for Adam optimizer (Kingma and Ba, 2015). For

the benchmark algorithms, we use their reported hyperparameters (Zhong et al., 2022;

Liu and Zhang, 2024). Each policy has 30 independent runs, resulting in a total of

30× 30 = 900 runs. Thus, each curve in Figure 7.1, Figure 7.2 and each number in

Table 7.1, Table D.1 and Table D.2 are averaged from 900 different runs over a wide

range of policies, demonstrating a strong statistical significance.

D.2.2 MuJoCo

Figure D.1: MuJoCo robot simulation tasks (Todorov et al., 2012). Pictures are
adapted from (Liu and Zhang, 2024). Environments from the left to the right are Ant,
Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker.

On-policy MC Ours ODI ROS

Ant 1.000 0.835 0.811 1.032
Hopper 1.000 0.596 0.542 1.005
I. D. Pendulum 1.000 0.778 0.724 0.992
I. Pendulum 1.000 0.439 0.351 0.900
Walker 1.000 0.728 0.696 0.908

Table D.3: Relative variance of estimators on MuJoCo. The relative variance is defined
as the variance of each estimator divided by the variance of the on-policy Monte Carlo
estimator. All numbers are averaged over 900 independent runs (30 target policies,
each having 30 independent runs).

202

100 101 102 103

Cost Budget

10 1

100

Es
tim

at
io

n
Er

ro
r

Ant
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

Hopper
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

InvertedDoublePendulum
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

InvertedPendulum
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

Walker
On-policy MC
Ours
ODI
ROS

Figure D.2: Results on MuJoCo with log-scale y-axis to show the error does not
converge. Each curve is averaged over 900 runs (30 target policies, each having 30
independent runs). Shaded regions denote standard errors and are invisible for some
curves because they are too small.

On-policy MC Ours ODI ROS

Ant 1.000 0.897 1.397 1.033
Hopper 1.000 0.930 1.523 1.021
I. D. Pendulum 1.000 0.876 1.399 1.012
I. Pendulum 1.000 0.961 1.743 0.990
Walker 1.000 0.953 1.485 1.061

Table D.4: Average trajectory cost on MuJoCo. Numbers are normalized by the
cost of the on-policy estimator. ODI and ROS have much larger costs because they
both ignore safety constraints. Our method is the only method consistently
achieving both variance reduction and safety constraint satisfaction.

MuJoCo is a physics engine with various stochastic environments, in which the

goal is to control a robot to achieve different behaviors such as walking, jumping,

and balancing. We construct 30 policies in each environment, resulting a total of

150 policies. The policies demonstrate a wide range of performance generated by

the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) using the

default PPO implementation in Huang et al. (2022). Original MuJoCo environments

are Markov decision processes (MDP) and do not have cost functions. We enhance

it with cost functions to make it constrained Markov decision processes (CMDP).

Specifically, the cost of the MuJoCo environments is built on the control cost of the

robot. The control cost is the L2 norm of the action and is proposed by OpenAI

Gymnasium (Brockman et al., 2016). This control cost is motivated by the fact that

large actions in robots induce sudden changes in the robot’s state and may cause

safety issues.

We set each environment in MuJuCo to have a fixed time horizon 100 in OpenAI

Gymnasium (Towers et al., 2024). Because our methods are designed for discrete

203

action space, we discretize the first dimension of the MuJoCo action space. The

remaining dimensions are then controlled by the PPO policies and are deemed as

part of the environment. The offline dataset for each environment contains 1, 000

episodes generated by 30 policies with various performances, following the same

method as in the Gridworld environments. Functions qπ,t, q
c
π,t, and r̂π,t are learned

using the same way as in Gridworld environments. Notably, our algorithm is robust

on hyperparameters, as all hyperparameters in Algorithm 4 are tuned offline and are

the same across all MuJoCo and Gridworld experiments. Each policy in MuJoCo has

30 independent runs, resulting in a total of 30× 30 = 900 runs. As a result, curves in

all figures are averaged from 900 different runs with a wide range of policies, showing

a strong statistical significance.

204

Appendix E

Appendix for Chapter 8

E.1 Proof

E.1.1 Proof of Lemma 16

Lemma 16 (Transition Gradient of the Variance). For a fixed behavior policy πθ,

∂

∂ω
VH∼pω ,πθ

[OPE(πe, πθ, H)]

=EH∼pω ,πθ

[
OPE2(πe, πθ, H)

∑T−1
t=0

∂
∂ω

log(pω(St+1|St, At))
]

− 2EH∼pω ,πθ
[OPE(πe, πθ, H)]EH∼pω ,πθ

[
OPE(πe, πθ, H)

∑T−1
t=0

∂
∂ω

log(pω(St+1|St, At))
]
.

Proof. To prove Lemma 16, we aim at decomposing the term Pr(H = h | pω) into two

parts: one that depends on pω and one that does not. Let

mpω(h)
.
=

T−1∏
t=0

pω(St+1|St, At) (E.1)

and

p(h)
.
=

Pr(H = h | pω)

mpω(h)
, (E.2)

then we have

Pr(H = h | pω) = p(h)mpω(h). (E.3)

205

Next, we manipulate the term ∂
∂θ
mpω(h).

∂

∂θ
mpω(h) =

∂

∂ω

T−1∏
t=0

pω(St+1|St, At) (By (5.5))

=
T−1∑
t=0

(∏
i ̸=t

pω(Si+1|Si, Ai)
∂pω(St+1|St, At)

∂ω

)

=
T−1∑
t=0

(∏L−1
i=0 pω(Si+1|Si, Ai)

pω(St+1|St, At)
.
∂pω(St+1|St, At)

∂ω

)

=
L−1∏
i=0

pω(Si+1|Si, Ai) ·
T−1∑
t=0

(
1

pω(St+1|St, At)

∂pω(St+1|St, At)

∂ω

)
(a)
=

L−1∏
i=0

pω(Si+1|Si, Ai) ·
T−1∑
t=0

(
1

pω(St+1|St, At)
pω(St+1|St, At)

∂ log pω(St+1|St, At)

∂ω

)

=
L−1∏
i=0

pω(Si+1|Si, Ai)
T−1∑
t=0

(
∂

∂ω
log pω(St+1|St, At)

)

=mpω(h)
T−1∑
t=0

(
∂

∂ω
log pω(St+1|St, At)

)

=mpω(h)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At)) (E.4)

Here, (a) follows from the fact that

∂

∂x
log f(x) =

1

f(x)

∂f(x)

∂x

=⇒ ∂f(x)

∂x
= f(x) · ∂ log f(x)

∂x
.

206

Then, we decompose the variance objective

∂

∂ω
VH∼pω ,πθ

[OPE(πe, πθ, H)]

=
∂

∂ω

(
EH∼pω ,πθ

[OPE2(πe, πθ, h)]− EH∼pω ,πθ
[OPE(πe, πθ, h)]2

)
=
∂

∂ω

∑
h

Pr(H = h|pω)OPE2(πe, πθ, h)

− 2EH∼pω ,πθ
[OPE(πe, πθ, h)]

∂

∂ω

∑
h

Pr(H = h|pω)OPE(πe, πθ, h)

=
∑
h

p(h)OPE2(πe, πθ, h)
∂

∂ω
mpω(h)

− 2EH∼pω ,πθ
[OPE(πe, πθ, h)]

∑
h

p(h)OPE(πe, πθ, h)
∂

∂ω
mpω(h) (By (E.3))

=
∑
h

p(h)OPE2(πe, πθ, h)mpω(h)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

− 2EH∼pω ,πθ
[OPE(πe, πθ, h)]

∑
h

p(h)OPE(πe, πθ, h)mpω(h)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

(By (E.4))

=EH∼pω ,πθ
[OPE2(πθ, H)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))]

− 2EH∼pω ,πθ
[OPE(πe, πθ, h)]EH∼pω ,πθ

[
OPE(πe, πθ, H)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

]
.

E.1.2 Proof of Lemma 17

Lemma 17 (Transition Gradient Convergence). For a fixed behavior policy πθ, Algo-

rithm 5 converges. That is, VHi∼pωi ,πθ
[IS(πe, πθ, Hi)] convereges to a finite value and

limi→∞
∂
∂ω
VHi∼pωi ,πθ

[IS(πe, πθ, Hi)] = 0.

Proof. The proof leverages Proposition 3 in Bertsekas and Tsitsiklis (2000), for which

we have to show that Algorithm 5 satisfies the following conditions:

1. V[IS(πθ, pωi
, Hi)] is continuously differentiable w.r.t. ω.

2. The gradient of the variance objectives, ∂
∂ω
V[IS(πθ, pωi

, Hi)], is Lipschitz contin-

uous w.r.t. ω.

207

3. The variance of the gradient estimate used by Algorithm 5 is bounded.

The other conditions of Proposition 3 in Bertsekas and Tsitsiklis (2000) are satisfied

because of the unbiasedness of the gradient estimates in Algorithm 5. Additionally,

since the gradient objective, as a variance, is bounded below by zero, we can avoid the

case of converging to −∞ according to Proposition 3 (Bertsekas and Tsitsiklis, 2000).

For the continuous differentiability, we have pω is continuously differentiable because

it is obtained through a soft-max layer. In addition, since πθ is attained through

the neural network with soft-max layer, it is always non-zero. Thus, the quotient
wπe

wπθ
always exists and so is the estimator IS(πθ, pω, H). Therefore, by the gradient

expression in Lemma 16, we conclude that ∂
∂ω
VH∼pω ,πθ

[IS(πθ, pω, H)] is continuously

differentiable, verifying condition 1.

Next, we show the Lipschitz continuity of ∂
∂ω
VH∼pω ,πθ

[IS(πθ, pω, H)] by verifying

the boundedness of its second derivative.

∂2

∂2ω
VH∼pω ,πθ

[IS(πθ, pω, H)]

=
∂

∂ω
EH∼pω ,πθ

[
IS2(πe, πθ, pω, H)

∑T−1
t=0 log(pω(St+1|St, At))

]
− 2EH∼pω ,πθ

[IS(πe, πθ, pω, H)]EH∼pω ,πθ

[
IS(πe, πθ, pω, H)

∑T−1
t=0 log(pω(St+1|St, At))

]
= ∂

∂ω

(∑
h

(
p(h)mpω(h)IS2(πe, πθ, pω, H)

∑T−1
t=0

∂
∂ω

log(pω(St+1|St, At))
)

− 2
∑

h (p(h)mpω(h)IS(πe, πθ, pω, H))

·
∑

h

(
p(h)mpω(h)IS(πe, πθ, pω, H)

∑T−1
t=0

∂
∂ω

log(pω(St+1|St, At))
))

(By Lemma 16 and (E.3))

= ∂
∂ω

(∑
h

(
p(h)mpω(h)IS2(πe, πθ, pω, H) ∂

∂ω
logmpω(h)

)
−2
∑

h (p(h)mpω(h)IS(πe, πθ, pω, H)) ·
∑

h

(
p(h)mpω(h)IS(πe, πθ, pω, H) ∂

∂ω
logmpω(h)

))
= ∂

∂ω

(∑
h

(
p(h)mpω(h)IS2(πe, πθ, pω, H) 1

mpω (h)
∂
∂ω
mpω(h)

)
−2
∑

h (p(h)mpω(h)IS(πe, πθ, pω, H)) ·
∑

h

(
p(h)mpω(h)IS(πe, πθ, pω, H) 1

mpω (h)
∂
∂ω
mpω(h)

))
= ∂

∂ω

(∑
h

(
p(h)IS2(πe, πθ, pω, H) ∂

∂ω
mpω(h)

)
−2
∑

h (p(h)mpω(h)IS(πe, πθ, pω, H)) ·
∑

h

(
p(h)IS(πe, πθ, pω, H) ∂

∂ω
mpω(h)

))

208

=
∑

h p(h)

IS2(πe, πθ, pω, H)︸ ︷︷ ︸
(1)

∂2

∂2ω
mpω(h)︸ ︷︷ ︸
(2)


− 2 ∂

∂ω

[∑
h (p(h)mpω(h)IS(πe, πθ, pω, H)) ·

∑
h

(
p(h)IS(πe, πθ, pω, H) ∂

∂ω
mpω(h)

)]
.

We further decompose the term in the square brackets.

∂

∂ω

[∑
h

(p(h)mpω(h)IS(πe, πθ, pω, H)) ·
∑
h

(
p(h)IS(πe, πθ, pω, H)

∂

∂ω
mpω(h)

)]

=
∑
h

p(h)
∂

∂ω
(mpω(h)IS(πe, πθ, pω, H)) ·

∑
h

(
p(h)IS(πe, πθ, pω, H)

∂

∂ω
mpω(h)

)
+
∑
h

(p(h)mpω(h)IS(πe, πθ, pω, H)) ·
∑
h

p(h)
∂

∂ω

(
IS(πe, πθ, pω, H)

∂

∂ω
mpω(h)

)

=
∑
h

p(h)

IS(πe, πθ, pω, H)︸ ︷︷ ︸
(3)

∂

∂ω
mpω(h)︸ ︷︷ ︸
(4)

 ·∑
h

p(h)

(
IS(πe, πθ, pω, H)

∂

∂ω
mpω(h)

)

+
∑
h

p(h)

mpω(h)︸ ︷︷ ︸
(5)

IS(πe, πθ, pω, H)

 ·∑
h

p(h)

(
IS(πe, πθ, pω, H)

∂2

∂2ω
mpω(h)

)
.

Notice that since p(h) is defined as Pr(H=h|π)
wπ(h)

in (E.2), where Pr(H = h) is trivially

bounded and wπ(h) is always positive. Thus, p(h) is bounded. We then analyze the

boundedness of ∂2

∂2ω
VH∼pω ,πθ

[IS(πθ, pω, H)] through the above 5 terms.

For (1) and (3), the quotient πe(a|s)
πθ(a|s)

is bounded above by assumption. Besides,

since the reward is bounded, so is g(h). Therefore, both (1), IS2(πe, πθ, pω, H) and (3)

IS(πe, πθ, pω, H) are bounded.

For (5), it is bounded because mpω(h) =
∏T−1

t=0 pω(St+1|St, At) ≤ 1. Then, for (4),

∂

∂ω
mpω(h) =

∂

∂ω

T−1∏
t=0

pω(St+1|St, At)

=
T−1∑
t=0

∂

∂ω
pω(St+1|St, At)

∏L−1
i=0 pω(Si+1|Si, Ai)

pω(St+1|St, At)
.

209

Here, ∂
∂ω
pω(St+1|St, At) is bounded by construction and

∏L−1
i=0 pω(Si+1|Si,Ai)

pω(St+1|St,At)
≤ 1. Thus,

(4) is bounded. Lastly, for (2)

∂2

∂2ω
mpω(h)

=
∂

∂ω

T−1∑
t=0

∂

∂ω
pω(St+1|St, At)

∏L−1
i=0 pω(Si+1|Si, Ai)

pω(St+1|St, At)

=
∂

∂ω

T−1∑
t=0

∂

∂ω
pω(St+1|St, At)

∏
i ̸=t

pω(Si+1|Si, Ai)

=
T−1∑
t=0

∂2

∂2ω
pω(St+1|St, At)

∏
i ̸=t

pω(Si+1|Si, Ai) +
∂

∂ω
pω(St+1|St, At)

·
∑
i ̸=t

∂

∂ω
pω(Si+1|Si, Ai)

∏
j ̸=t,i

pω(Sj+1|Sj, Aj),

which is bounded because pω is constructed to be twice differentiable with bounded

first and second derivatives.

Therefore, we conclude that the gradient objective ∂
∂ω
VH∼pω ,πθ

[IS(πθ, pω, H)] is

Lipschitz continuous w.r.t. ω, verifying condition 1.

Finally, we show that the variance of the gradient estimate used by Algorithm 5 is

bounded. According to Algorithm 5, we use the unbiased estimate as

∂
∂ω
VH∼pω ,πθ

[IS(πθ, pω, H)] ≈ IS2(πθ, pω, H)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))︸ ︷︷ ︸

A

− 2IS(πθ, pω, H)IS(πθ, pω, H)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))︸ ︷︷ ︸

B

.

Then, the variance of the estimate is decomposed into

V[A] + V[B] + 2Cov[A,B],

where Cov[A,B] ≤
√

V[A] ·
√

V[B] by the Cauchy-Schwarz inequality. Thus, it is

sufficient to show the boundedness of V[A] and V[B]. For V[A], since the variance of

a bounded random variable is bounded, we aim to demonstrate that for any trajectory

210

h, the term IS2(πθ, pω, h)
∑T−1

t=0 log(pω(St+1|St, At)) is bounded.

IS2(πθ, pω, h)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

=IS2(πθ, pω, h)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

=IS2(πθ, pω, h)
∂

∂ω
logmpω(h)

=IS2(πθ, pω, h)
∂
∂ω
mpω(h)

mpω(h)
. (E.5)

The boundedness of IS2(πθ, pω, h) and ∂
∂ω
mpω(h) is shown by the argument above for

term (3) and (4). And the boundedness of 1
mpω (h)

= 1∏T−1
t=0 pω(St+1|St,At)

comes from

the fact that pω is always nonzero by construction. Thus, we conclude that V[A] is

bounded.

Next, we decompose term B into two parts because of the different samples used

to estimate them:

IS(πθ, pω, H)︸ ︷︷ ︸
C

IS(πθ, pω, H)
∑T−1

t=0
∂
∂ω

log(pω(St+1|St, At))︸ ︷︷ ︸
D

.

We then have

V[B] = V[CD] = E[C2]V[D] + E[D2]V[C].

We show their boundedness term by term.

E[C2] = EH∼pω ,πθ
[IS2(πθ, pω, H)] =

∑
h

p(h)mpω(h)IS2(πe, πθ, pω, H), (E.6)

where each term is shown to be bounded above. Next, by the derivation from (E.5),

E[D2] =
∑
h

p(h)mpω(h)IS2(πe, πθ, pω, H)

(
∂
∂ω
mpω(h)

mpω(h)

)2

,

where the boundedness follows from the analysis of (E.6) and (E.5).

As for the two variance terms, V[C] and V[D], we show the boundedness of the

random variable C and D for each trajectory h, where IS(πθ, pω, H) is shown to be

bounded in term (3) above, and the boundedness of
∑T−1

t=0
∂
∂ω

log(pω(St+1|St, At)) is

incorporated in (E.5).

211

Therefore, we conclude that the variance of our estimate is bounded. By far, we

show that the three conditions of Proposition 3 in Bertsekas and Tsitsiklis (2000) are

satisfied, demonstrating the convergence of Algorithm 5.

E.1.3 Proof of Lemma 18

Proof.

Lemma 18 (Transition Gradient of Variance with KL). For a fixed behavior policy

πθ and a regularization coefficient η > 0,

∂

∂ω
VH∼pω ,πθ

[OPE(πe, πθ, H)]−DKL(Pr(H|pω)∥Pr(H|pω0))

=EH∼pω ,πθ

[
OPE2(πe, πθ, H) ∂

∂ω
ℓpω
]

− 2EH∼pω ,πθ
[OPE(πe, πθ, H)]EH∼pω ,πθ

[
OPE(πe, πθ, H) ∂

∂ω
ℓpω
]

− ηEH∼pω ,πθ

[(
∂
∂ω
ℓpω
)(

1 + ℓpω − ℓpω0

)]
.

We begin by manipulating the KL-divergence term.

DKL(Pr(H|pω)∥Pr(H|pω0)) =EH∼pω ,πθ

[
log

Pr(H|pω)

Pr(H|pω0)

]
=EH∼pω ,πθ

[
log

mpω(H)

mpω0
(H)

]
(By (E.3))

=EH∼pω ,πθ

[
logmpω(H)− logmpω0

(H)
]
.

Next, we decompose the following gradient:

∂

∂ω
logmpω(H) (E.7)

=
T−1∑
t=0

∂

∂ω
log pω(St+1|St, At)

=
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At)). (By definition)

212

Then, we take the gradient of the KL-divergence with respect to ω:

∂

∂ω
DKL(Pr(H|pω)∥Pr(H|pω0)) (E.8)

=
∂

∂ω
EH∼pω ,πθ

[
logmpω(H)− logmpω0

(H)
]

=
∂

∂ω

∑
h

Pr(H = h|pω)
[
logmpω(h)− logmpω0

(h)
]

=
∂

∂ω

∑
h

p(h)mpω(h)
[
logmpω(h)− logmpω0

(h)
]

(By (E.3))

=
∑
h

p(h)

[
∂

∂ω
mpω(h) logmpω(h)− logmpω0

(h)
∂

∂ω
mpω(h)

]
=
∑
h

p(h)

[
logmpω(h)

∂

∂ω
mpω(h) +mpω(h)

∂

∂ω
logmpω(h)

− logmpω0
(h)mpω(h)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

]
(By (E.4))

=
∑
h

p(h)

[
logmpω(h)mpω(h)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At)) +mpω(h)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

− logmpω0
(h)mpω(h)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

]
(By (E.4) (E.7))

=
∑
h

p(h)mpω(h)
T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

[
logmpω(h) + 1− logmpω0

(h)
]

=
∑
h

Pr(H = h|pω)
T−1∑
t=0

[
∂

∂ω
log(pω(St+1|St, At))

][
logmpω(h) + 1− logmpω0

(h)
]

(By (E.3))

=EH∼pω ,πθ

[(
∂

∂ω
ℓpω

)(
1 + ℓpω − ℓpω0

)]
. (By (E.1))

213

Thus,

∂

∂ω
VH∼pω ,πθ

[OPE(πe, πθ, H)]−DKL(Pr(H|pω)∥Pr(H|pω0))

=EH∼pω ,πθ

[
OPE2(πe, πθ, H)

∑T−1
t=0 log(pω(St+1|St, At))

]
− 2EH∼pω ,πθ

[OPE(πe, πθ, H)]

· EH∼pω ,πθ

[
OPE(πe, πθ, H)

∑T−1
t=0 log(pω(St+1|St, At))

]
− η ∂

∂ω
DKL(Pr(H|pω)∥Pr(H|pω0))

(By Lemma 16)

=EH∼pω ,πθ

[
OPE2(πe, πθ, H) ∂

∂ω
ℓpω
]
− 2EH∼pω ,πθ

[OPE(πe, πθ, H)]EH∼pω ,πθ

[
OPE(πe, πθ, H) ∂

∂ω
ℓpω
]

− EH∼pω ,πθ

[(
∂
∂ω
ℓpω
)(

1 + ℓpω − ℓpω0

)]
. (By (E.8))

E.1.4 Proof of Lemma 19

Lemma 19 (Off-Transition Gradient of Variance). When pω ̸= pω′, for a fixed behavior

policy πθ,

∂

∂ω
VH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− 2EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)] · EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H) ∂

∂ω
ℓpω
]
.

Proof. For simplification, we define wπ(h)
.
=
∏T−1

t=0 π(At|St) under trajectory h. Then,

∂

∂ω
VH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]

=
∂

∂ω

(
EH∼pω′ ,πθ

[OPE2(πe, πθ, pω, H)]− EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)]2

)
=
∂

∂ω

(
EH∼pω′ ,πθ

[
m2

pω(H)

m2
pω′ (H)

OPE2(πe, πθ, H)

]
− EH∼pω′ ,πθ

[
mpω(H)

mpω′ (H)
OPE(πe, πθ, H)

]2)

=
∂

∂ω

∑
h

(
Pr(H = h|pω′)

m2
pω(H)

m2
pω′ (H)

OPE2(πe, πθ, H)

)
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]

∂

∂ω
EH∼pω′ ,πθ

[
mpω(H)

mpω′ (H)
OPE(πe, πθ, H)

]

214

=
∑
h

(
p(h)

1

mpω′ (H)
OPE2(πe, πθ, H)

∂

∂ω
m2

pω(h)

)
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]
∂

∂ω

∑
h

(
p(h)mpω′ (h)

mpω(h)

mpω′ (h)
OPE(πe, πθ, H)

)
(By (E.3))

=2
∑
h

(
p(h)

mpω(h)

mpω′ (h)
OPE2(πe, πθ, H)

∂

∂ω
mpω(h)

)
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]
∑
h

(
p(h)OPE(πe, πθ, H)

∂

∂ω
mpω(h)

)
(By (E.3))

=2
∑
h

(
p(h)OPE2(πe, πθ, H)

mpω(h)

mpω′ (h)
mpω(h)

∂

∂ω
ℓpω

)
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]
∑
h

(
p(h)OPE(πe, πθ, H)mpω(h)

∂

∂ω
ℓpω

)
(By (E.4))

=2
∑
h

(
p(h)mpω′ (h)

m2
pω(h)

m2
pω′ (h)

OPE2(πe, πθ, H)
∂

∂ω
ℓpω

)
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]

·
∑
h

(
p(h)mpω′ (h)

mpω(h)

mpω′ (h)
OPE(πe, πθ, H)

T−1∑
t=0

log(pω(St+1|St, At))

)
(By (E.4))

=2
∑
h

(
Pr(H = h|pω′)OPE2(πe, πθ, pω, H)

∂

∂ω
ℓpω

)
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]

·
∑
h

(
Pr(H = h|p′ω)OPE(πe, πθ, pω, H)

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

)
(By (E.3))

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H)

∂

∂ω
ℓpω

]
− 2EH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H)

∂

∂ω
ℓpω

]
.

215

E.1.5 Proof of Lemma 20

Lemma 20 (Off-transition Gradient of Variance with KL). For a fixed behavior policy

πθ and a regularization coefficient η > 0,

∂

∂ω
VH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]− ηDKL(Pr(H|pω′)∥Pr(H|pω))

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− 2EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)]EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− ηEH∼pω′ ,πθ

[
− ∂

∂ω
ℓpω
]
.

The KL-divergence between two probability distribution p and q is defined as

DKL(p∥q) .
= EX∼p

[
log p(X)

q(X)

]
. Therefore, the KL-divergence between the trajectory

distribution of the target transition pω and the simulator’s transition pω′ is given by

DKL(Pr(H|pω′)∥Pr(H|pω)) =EH∼pω′ ,πθ

[
log

Pr(H|pω′)

Pr(H|pω)

]
=EH∼pω′ ,πθ

[
log

mpω′ (H)

mpω(H)

]
(By (E.3))

=EH∼pω′ ,πθ

[
logmpω′ (H)− logmpω(H)

]
.

We take the gradient of the KL-divergence with respect to ω:

∂

∂ω
DKL(Pr(H|pω′)∥Pr(H|pω)) =

∂

∂ω
EH∼pω′ ,πθ

[
logmpω′ (H)− logmpω(H)

]
=EH∼pω′ ,πθ

[
− ∂

∂ω
logmpω(H)

]
=EH∼pω′ ,πθ

[
−

T−1∑
t=0

∂

∂ω
log pω(St+1|St, At)

]

=EH∼pω′ ,πθ

[
−

T−1∑
t=0

∂

∂ω
log(pω(St+1|St, At))

]
.(E.9)

216

Thus,

∂

∂ω
VH∼pω′ ,πθ

[OPE(πe, πθ, pω, H)]− ηDKL(Pr(H|pω′)∥Pr(H|pω))

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− 2EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)]EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− ∂
∂ω
ηDKL(Pr(H|pω′)∥Pr(H|pω)) (By Lemma 20)

=2EH∼pω′ ,πθ

[
OPE2(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− 2EH∼pω′ ,πθ
[OPE(πe, πθ, pω, H)]EH∼pω′ ,πθ

[
OPE(πe, πθ, pω, H) ∂

∂ω
ℓpω
]

− ηEH∼pω′ ,πθ

[
−
∑T−1

t=0
∂
∂ω

log(pω(St+1|St, At))
]
. (By (E.9))

217

Appendix F

Appendix for Chapter 9

F.1 Mathematical Background

Theorem F.1.1 (Gronwall Inequality). (Lemma 6 in Section 11.2 in Borkar

(2009)) For a continuous function u(·) ≥ 0 and scalars C,K, T ≥ 0,

u(t) ≤ C +K

∫ t

0

u(s)ds ∀t ∈ [0, T]

implies

u(t) ≤ CetK ,∀t ∈ [0, T].

Theorem F.1.2 (Gronwall Inequality in the Reverse Time). For a continuous

function u(·) ≥ 0 and scalars C,K, T ≥ 0,

u(t) ≤ C +K

∫ 0

t

u(s)ds ∀t ∈ [−T, 0] (F.1)

implies

u(t) ≤ Ce−tK , ∀t ∈ [−T, 0].

Proof. ∀s ∈ [0, T], define

v(s)
.
= esKK

∫ 0

s

u(r)dr. (F.2)

Taking the derivative of v(s),

v′(s) = −esKKu(s) + esKK2

∫ 0

s

u(r)dr

= esKK

[
−u(s) +K

∫ 0

s

u(r)dr

]
(by (F.1))

≥ −CesKK.

218

Thus,

v(t) =v(0)−
∫ 0

t

v′(s)ds ≤ v(0) +

∫ 0

t

CesKKds = KC

∫ 0

t

esKds.

By (F.2),

K

∫ 0

t

u(s)ds = v(t)e−tK

≤ KC

∫ 0

t

esKdse−tK

≤ KC

∫ 0

t

e(s−t)Kds

= KC[
1

k
e(0−t)K − 1

k
e(t−t)K]

= −C + Ce−tK .

Thus,

u(t) ≤C +K

∫ 0

t

u(s)ds ≤ Ce−tK .

Theorem F.1.3 (Discrete Gronwall Inequality). (Lemma 8 in Section 11.2 in

Borkar (2009)) For non-negative sequences {xn, n ≥ 0} and {an, n ≥ 0} and scalars

C,L ≥ 0,

xn+1 ≤ C + L
n∑

i=0

aixi ∀n

implies

xn+1 ≤ CeL
∑n

i=0 ai ∀n.

Theorem F.1.4 (The Arzela-Ascoli Theorem in the Extended Sense on [0, T)). Let

{t ∈ [0, T) 7→ gn(t)} be equicontinuous in the extended sense. Then, there exists a

subsequence {gnk
(t)} that converges to some continuous limit glim(t), uniformly in t

on [0, T).

The proof of the Arzela-Ascoli Theorem can be found in any standard analysis

textbook, see, e.g., Royden and Fitzpatrick (1968); Dunford and Schwartz (1988). The

proof of the Arzela-Ascoli Theorem in the extended sense is virtually the same. The

difference is that in the standard Arzela-Ascoli Theorem, one uses the compactness

to find a finite subcover. But in the extended one, [0, T) is not compact. However,

finding a finite cover for this specific set [0, T) is indeed trivial. We anyway still

include the full proof below for completeness.

219

Proof. Fix an arbitrary ϵ > 0, by Definition 4, ∃δ > 0 such that

lim sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥gn(t1)− gn(t2)∥ ≤ ϵ. (F.3)

This means by the definition of equicontinuity in the extended sense, when n is large

enough, for any 0 ≤ |t1 − t2| ≤ δ, the function values gn(t1) and gn(t2) are also close.

To conveniently utilize this property, we divide [0, T) into a set of disjoint intervals

and each interval has a length δ such that the t in each interval is close. In particular,

we define

N
.
= max {i | iδ < T, i ∈ Z},

Ii
.
= [iδ, (i+ 1)δ), i = 0, 1, . . . , N.

The set of intervals {Ii}Ni=0 covers the domain [0, T),

[0, T) ⊆
N⋃
i=0

Ii.

We now show gn(t) is uniformly bounded uniformly on the set of dividing points

{iδ}Ni=0. In particular, we have for any i ∈ {0, 1, . . . , N},

lim sup
n
∥gn(iδ)∥

≤ lim sup
n
∥gn(iδ)− gn((i− 1)δ)∥

+ lim sup
n
∥gn((i− 1)δ)− gn((i− 2)δ)∥

+ . . .

+ lim sup
n
∥gn(δ)− gn(0)∥

+ lim sup
n
∥gn(0)∥

≤(N + 1)ϵ+ lim sup
n
∥gn(0)∥ (by (F.3))

≤(N + 1)ϵ+ sup
n
∥gn(0)∥

<∞. (supn ∥gn(0)∥ <∞ in Definition 4)

This implies

sup
i∈{0,1,...,N},n≥0

∥gn(iδ)∥ <∞.

By the Bolzano-Weierstrass theorem, there exists a subsequence of functions
{
gn0,k

}
in {gn} such that

{
gn0,k

(0 · δ)
}

converges. Repeating the same argument for the

220

sequence of points
{
gn0,k

(1 · δ)
}

, there exists a subsequence
{
gn1,k

}
of
{
gn0,k

}
such

that
{
gn1,k

(1 · δ)
}

converges. Repeating this process, because N is finite, there exists

a subsequence {gnk
} that converges at all dividing points t ∈ {iδ}Ni=0. Due to the

finiteness of N , ∃k0, such that ∀i ∈ {0, 1, . . . , N}, ∀k1 ≥ k0,∀k2 ≥ k0, we have∥∥∥gnk1
(iδ)− gnk2

(iδ)
∥∥∥ ≤ ϵ. (F.4)

By (F.3), ∃k1 such that ∀k ≥ k1,

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥gnk
(t1)− gnk

(t2)∥ ≤ 2ϵ. (F.5)

Thus, ∀t ∈ [0, T), ∀k ≥ max {k0, k1},∀k′ ≥ max {k0, k1},∥∥gnk
(t)− gnk′

(t)
∥∥

≤∥gnk
(t)− gnk

(⌊t/δ⌋ · δ)∥+
∥∥gnk

(⌊t/δ⌋ · δ)− gnk′
(⌊t/δ⌋ · δ)

∥∥
+
∥∥gnk′

(⌊t/δ⌋ · δ)− gnk′
(t)
∥∥

≤2ϵ+
∥∥gnk

(⌊t/δ⌋ · δ)− gnk′
(⌊t/δ⌋ · δ)

∥∥+ 2ϵ (by (F.5))

≤2ϵ+ ϵ+ 2ϵ (by (F.4))

=5ϵ.

This shows that the sequence {gnk
} is uniformly Cauchy and therefore uniformly

converges to a continuous function.

Theorem F.1.5 (Moore-Osgood Theorem for Interchanging Limits). If limn→∞ an,m =

bm uniformly in m and limm→∞ an,m = cn for each large n, then both limm→∞ bm and

limn→∞ cn exists and are equal to the double limit, i.e.,

lim
m→∞

lim
n→∞

an,m = lim
n→∞

lim
m→∞

an,m = lim
n→∞
m→∞

an,m.

221

F.2 Technical Proofs

F.2.1 Proof of Lemma 23

Proof. Let Assumptions 1, 2, 3, and 4 hold. Fix an arbitrary sample path {x0, {Yi}∞i=1}.
Use B to denote an arbitrary compact set of x.

lim
c→∞

sup
x∈B

sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i) [Hc(x, Yi+1)−H∞(x, Yi+1)]

∥∥∥∥∥∥
= lim

c→∞
sup
x∈B

sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)κ(c)b(x, Yi+1)

∥∥∥∥∥∥ (by (9.5))

= lim
c→∞

κ(c) sup
x∈B

sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x, Yi+1)

∥∥∥∥∥∥
=0 sup

x∈B
sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x, Yi+1)

∥∥∥∥∥∥ (F.6)

We now show that the function

x 7→ sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x, Yi+1)

∥∥∥∥∥∥ (F.7)

is Lipschitz continuous. ∀x, x′,∣∣∣∣∣∣sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x, Yi+1)

∥∥∥∥∥∥− sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x′, Yi+1)

∥∥∥∥∥∥
∣∣∣∣∣∣

≤ sup
n

sup
t∈[0,T]

∣∣∣∣∣∣
∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x, Yi+1)

∥∥∥∥∥∥−
∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x′, Yi+1)

∥∥∥∥∥∥
∣∣∣∣∣∣

(by |supx f(x)− supx g(x)| ≤ supx |f(x)− g(x)|)

≤ sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x, Yi+1)−
m(Tn+t)−1∑
i=m(Tn)

α(i)b(x′, Yi+1)

∥∥∥∥∥∥
≤ sup

n
sup

t∈[0,T]

m(Tn+t)−1∑
i=m(Tn)

α(i)∥b(x, Yi+1)− b(x′, Yi+1)∥

≤ sup
n

sup
t∈[0,T]

m(Tn+t)−1∑
i=m(Tn)

α(i)Lb(Yi+1)

 ∥x− x′∥ (by (9.6))

222

Additionally, let Assumption 6 or 6′ hold. By Lemma 22 and (F.49),

sup
n

sup
t∈[0,T]

m(Tn+t)−1∑
i=m(Tn)

α(i)Lb(Yi+1)

 <∞

can be viewed as the Lipschitz constant. Thus, (F.7) is a continuous function. Since

B is compact, the extreme value theorems asserts that the supremum of (F.7) in B is

attainable at some xB and is finite. This means the RHS of (F.6) is 0,

lim
c→∞

sup
x∈B

sup
n

sup
t∈[0,T]

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i) [Hc(x, Yi+1)−H∞(x, Yi+1)]

∥∥∥∥∥∥ = 0.

F.2.2 Proof of Lemma 24

Proof. By (9.24),

sup
n
∥x̂(Tn + 0)∥ ≤ 1.

∀ξ > 0, by (F.44), ∃δ0, such that ∀0 < δ ≤ δ0,

sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥ ≤ ξ. (F.8)

By (F.48), ∃δ1, such that ∀0 < δ ≤ δ1,

lim sup
n

sup
0≤t2−t1≤δ

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1) ≤ ξ. (F.9)

223

Without loss of generality, let t1 ≤ t2. Then∀δ ≤ min {δ0, δ1}, we have

lim sup
n

sup
0≤t2−t1≤δ

∥x̂(Tn + t1)− x̂(Tn + t2)∥

= lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(x̂(t(i)), Yi+1)

∥∥∥∥∥∥
≤ lim sup

n
sup

0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(x̂(t(i)), Yi+1)

∥∥∥∥∥∥−
∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
+ lim sup

n
sup

0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
≤ lim sup

n
sup

0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(x̂(t(i)), Yi+1)

∥∥∥∥∥∥−
∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
+ sup

c≥1
lim sup

n
sup

0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥
≤ lim sup

n
sup

0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(x̂(t(i)), Yi+1)

∥∥∥∥∥∥−
∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
+ ξ (by (F.8))

≤ lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(x̂(t(i)), Yi+1)−
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
+ ξ

≤ lim sup
n

sup
0≤t2−t1≤δ

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)∥Hrn(x̂(t(i)), Yi+1)−Hrn(0, Yi+1)∥+ ξ

≤ lim sup
n

sup
0≤t2−t1≤δ

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1)∥x̂(t(i))∥+ ξ

≤Cx̂ lim sup
n

sup
0≤t2−t1≤δ

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1) + ξ (by Lemma 54)

≤Cx̂ξ + ξ, (by (F.9))

224

which implies that {x̂(Tn + t)} is equicontinuous in the extended sense.

For {zn(t)}, by (9.24) and (9.26), we have

sup
n
∥zn(0)∥ ≤ 1.

Without loss of generality, let t1 ≤ t2. Then ∀δ > 0, we have

sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥zn(t1)− zn(t2)∥

= sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥∥∥∥∫ t2

t1

hrn(zn(s))ds

∥∥∥∥
= sup

n
sup

0≤|t1−t2|≤δ, 0≤t1≤t2<T

∥∥∥∥∫ t2

t1

[hrn(zn(s))− hrn(0)] ds+

∫ t2

t1

hrn(0)ds

∥∥∥∥
≤ sup

n
sup

0≤|t1−t2|≤δ, 0≤t1≤t2<T

∫ t2

t1

∥hrn(zn(s))− hrn(0)∥ds+ sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∫ t2

t1

∥hrn(0)∥ds

≤ sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∫ t2

t1

L∥zn(s)∥ds+ sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∫ t2

t1

∥hrn(0)∥ds

(by Lemma 50)

≤δLCx̂ + sup
n

sup
0≤|t1−t2|≤δ, 0≤t1≤t2<T

∫ t2

t1

∥hrn(0)∥ds (by Lemma 55)

≤δ(LCx̂ + CH), (by (F.51))

which implies that {zn(t)} is equicontinuous.

For {fn(t)}, we have

sup
n
fn(0) = sup

n
x̂(Tn)− zn(0) = sup

n
x̂(Tn)− x̂(Tn) = 0 <∞.

Because {x̂(Tn + t)} and {zn(t)} are equicontinuous, ∀ϵ > 0, ∃δ such that

lim sup
n

sup
0≤t2−t1≤δ

∥x̂(Tn + t1)− x̂(Tn + t2)∥ ≤
ϵ

2
,

sup
n

sup
0≤t2−t1≤δ

∥zn(t1)− zn(t2)∥ ≤
ϵ

2
.

Without loss of generality let t1 ≤ t2. Then ∀ϵ, ∃δ such that

lim sup
n

sup
0≤t2−t1≤δ

∥fn(t1)− fn(t2)∥

= lim sup
n

sup
0≤t2−t1≤δ

∥x̂(Tn + t1)− x̂(Tn + t2)− (zn(t1)− zn(t2))∥

≤ lim sup
n

sup
0≤t2−t1≤δ

∥x̂(Tn + t1)− x̂(Tn + t2)∥+ lim sup
n

sup
0≤t2−t1≤δ

∥zn(t1)− zn(t2)∥

≤ lim sup
n

sup
0≤t2−t1≤δ

∥x̂(Tn + t1)− x̂(Tn + t2)∥+ sup
n

sup
0≤t2−t1≤δ

∥zn(t1)− zn(t2)∥

≤ϵ,

225

which implies that {fn} is equicontinuous in the extended sense.

F.2.3 Proof of Lemma 25

Proof. We can construct a subsequence
{
rn1,k

}
that diverges to infinity and satisfies

∀k, ∀n < n1,k,

rn < rn1,k
. (F.10)

For example, we can define

n1,0
.
= 1

n1,k
.
= min

{
n | n > n1,k−1, rn > rn1,k−1

+ 1
}
. (F.11)

Because lim supn rn = ∞, we know ∀k > 0,
{
n | n > n1,k−1, rn > rn1,k−1

+ 1
}
̸= ∅.

Because ∀k > 0, rn1,k
− rn1,k−1

> 1,

lim
k→∞

rn1,k
=∞. (F.12)

Because (F.11) defines n1,k to be the first index that is large enough after n1,k−1,

(F.10) holds. Otherwise n1,k would not be the first. Define a sequence {n2,k} as

n2,k
.
= n1,k − 1 ∀k. (F.13)

We make two observations. First, n2,k and n1,k are neighbors so rn2,k
and rn1,k

correspond to x̄(Tn) and x̄(Tn+1) for some n. Second, by Lemma 56, the increment of

x̄(t) in [Tn, Tn+1) is bounded in the following sense ∀n,

∥x̄(Tn+1)∥ ≤ (∥x̄(Tn)∥CH + CH) eCH + ∥x̄(Tn)∥

where CH is a positive constant. This means that if rn2,k
is not large enough, rn1,k

will

not be large enough either. We can then prove by contradiction in Lemma 57 that

lim sup
k
rn2,k

=∞.

Thus, using the similar method as (F.11), we can construct a subsequence {n3,k} from

{n2,k} such that

lim
k
rn3,k

=∞.

Moreover, since {n3,k + 1} is a subsequence of {n1,k}, (F.10) implies that

rn3,k
< rn3,k+1.

226

Since {fn} is equicontinuous in the extended sense,
{
fn3,k

}
k=0,1,...

is also equicon-

tinuous in the extended sense. By the Arzela-Ascoli Theorem (Theorem F.1.4), it

has a uniformly convergent subsequence, referred to as
{
fn4,k

}
. Because the se-

quence
{
x̂(Tn4,k

+ t)
}

is also equicontinuous in the extended sense, it has a uniformly

convergent subsequence {x̂(Tnk
+ t)}. To summarize,

{nk} ⊆ {n4,k} ⊆ {n3,k} ⊆ {n2,k} ⊆ {n1,k − 1} ⊆ N. (F.14)

We construct {nk} in this way because it then inherits all uniform convergence

properties. Precisely speaking, by the Arzela-Ascoli theorem in Appendix F.1.4, we

have the following corollary.

Corollary 2. There exist some continuous functions f lim(t) and x̂lim(t) such that

∀t ∈ [0, T),

lim
k→∞

fnk
(t) =f lim(t),

lim
k→∞

x̂(Tnk
+ t) =x̂lim(t).

Moreover, the convergence is uniform in t on [0, T).

In terms of the three sequences of functions in (9.29), Corollary 2 has identified

that two of them converge along {nk}. Lemma 61 further confirms that zlim is the

limit of {znk
}. That is ∀t ∈ [0, T),

lim
k→∞

znk
(t) = zlim(t).

Moreover, the convergence is uniform in t on [0, T). By (F.14), we have

lim
k→∞

rnk
=∞, (F.15)

lim
k→∞

rnk+1 =∞,

which completes the proof.

227

F.2.4 Proof of Lemma 26

Proof. ∀j, ∀k, ∀t ∈ [0, T),∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)H∞(x̂(t(i)), Yi+1)−
∫ t

0

h∞(x̂lim(s))ds

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣∣

≤

∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

−
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)H∞(x̂(t(i)), Yi+1) +

∫ t

0

h∞(x̂lim(s))ds

∥∥∥∥∥
(by |∥a∥ − ∥b∥| ≤ ∥a− b∥)

≤

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)(Hrnj
(x̂(t(i)), Yi+1)−H∞(x̂(t(i)), Yi+1))

∥∥∥∥∥∥+

∥∥∥∥∫ t

0

hrnj
(x̂lim(s))− h∞(x̂lim(s))ds

∥∥∥∥

≤

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)(Hrnj
(x̂(t(i)), Yi+1)−H∞(x̂(t(i)), Yi+1))

∥∥∥∥∥∥+

∫ t

0

∥∥∥hrnj
(x̂lim(s))− h∞(x̂lim(s))

∥∥∥ds
(F.16)

By Lemma 54, x̂(t(i)) is in a compact set Bx̂. By Lemma 23, for the compact set Bx̂,

∀ϵ > 0, ∃j1 such that ∀j ≥ j1, ∀k, ∀x ∈ B, ∀t ∈ [0, T),∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)
[
Hrnj

(x, Yi+1)−H∞(x, Yi+1)
]∥∥∥∥∥∥ ≤ ϵ. (F.17)

Similar to the proof of Lemma 60, we have

lim
j→∞

hrnj
(x̂(Tk + t)) = h∞(x̂(Tk + t)) (F.18)

uniformly in k and t ∈ [0, T). By (F.18), ∀ϵ > 0, ∃j2 such that ∀j > j2, ∀k, ∀t ∈ [0, T),∥∥∥hrnj
(x̂(Tk + t))− h∞(x̂(Tk + t))

∥∥∥ ≤ ϵ. (F.19)

228

Define j0
.
= max {j1, j2}. ∀j ≥ j0, ∀k, ∀t ∈ [0, T),∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)H∞(x̂(t(i)), Yi+1)−
∫ t

0

h∞(x̂lim(s))ds

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣∣

≤

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)(Hrnj
(x̂(t(i)), Yi+1)−H∞(x̂(t(i)), Yi+1))

∥∥∥∥∥∥+ Tϵ

(by (F.16), (F.19))

≤ϵ+ Tϵ (by (F.16), (F.17))

≤(T + 1)ϵ.

This completes the proof of uniform convergence.

F.2.5 Proof of Lemma 28

Proof.

lim
j→∞
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥
= lim

j→∞
lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥
(by Lemma 26, 27, and Moore-Osgood Theorem for interchanging limits in Theorem F.1.5)

= lim
j→∞

0 (by Lemma 27)

=0. (F.20)

229

F.2.6 Proof of Lemma 29

Proof. We now proceed to investigate the property of fnk
(t). ∀t ∈ [0, T),

lim
k→∞
∥fnk

(t)∥

≤ lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnk
(x̂(t(i)), Yi+1)−

∫ t

0

hrnk
(x̂lim(s))ds

∥∥∥∥∥∥
+ lim

k→∞

∥∥∥∥∫ t

0

hrnk
(x̂lim(s))ds−

∫ t

0

hrnk
(znk

(s))ds

∥∥∥∥ (by (9.35))

= lim
k→∞

∥∥∥∥∫ t

0

hrnk
(x̂lim(s))ds−

∫ t

0

hrnk
(znk

(s))ds

∥∥∥∥ (by (F.20))

=

∥∥∥∥∫ t

0

h∞(x̂lim(s))ds−
∫ t

0

h∞(zlim(s))ds

∥∥∥∥. (by Lemma 63 and Lemma 64)(F.21)

We now show the relationship between x̂lim(t) and zlim(t).∥∥x̂lim(t)− zlim(t)
∥∥ (F.22)

=

∥∥∥∥ lim
k→∞

[
x̂(Tnk

) +

∫ t

0

hrnk
(x̂lim(s))ds

]
−
[
x̂lim(0) +

∫ t

0

h∞(zlim(s))ds

]∥∥∥∥
(by (9.34) and (9.38))

=

∥∥∥∥x̂lim(0) +

∫ t

0

h∞(x̂lim(s))ds−
[
x̂lim(0) +

∫ t

0

h∞(zlim(s))ds

]∥∥∥∥ (by Lemma 63)

=

∥∥∥∥∫ t

0

h∞(x̂lim(s))ds−
∫ t

0

h∞(zlim(s))ds

∥∥∥∥ (F.23)

≤
∫ t

0

L
∥∥x̂lim(s)− zlim(s)

∥∥ds (by Lemma 50)

≤0. (by Gronwall inequality in Theorem F.1.1)

Thus, ∥∥∥ lim
k→∞

fnk
(t)
∥∥∥

≤
∥∥∥∥∫ t

0

h∞(x̂lim(s))ds−
∫ t

0

h∞(zlim(s))ds

∥∥∥∥ (by (F.21))

=
∥∥x̂lim(t)− zlim(t)

∥∥ (by (F.23))

≤0. (by (F.22))

230

F.2.7 Proof of Lemma 30

Proof. According to (9.25), to study {znk
(t)}, it is instrumental to study the following

ODE

dϕc(t)

dt
= hc(ϕc(t))

for some c ≥ 1. Let ϕc,x(t) denote the unique solution of the ODE above with the

initial condition ϕc,x(0) = x. Intuitively, as c → ∞, the above ODE approaches

the (ODE@∞). Since any trajectory of (ODE@∞) will diminish to 0 (Assumption 5),

ϕc,x(t) should also diminish to some extent for sufficiently large c. Precisely speaking,

we have the following lemma.

Lemma 44. (Corollary 3.3 in Borkar (2009)) There exist c1 > 0 and τ > 0 such that

for all initial conditions x with ∥x∥ ≤ 1, we have

∥ϕc,x(t)∥ ≤ 1

4

for t ∈ [τ, τ + 1] and c ≥ c1.

Here the 1
4

is entirely arbitrary. Now we fix any c0 ≥ max {c1, 1} and set T = τ .

Then Lemma 44 confirms that znk
(t) will diminish to some extent as t approaches T

for sufficiently large k, so does x̂(Tnk
+ t). We, however, recall that x̂(Tnk

+ t) and

x̄(Tnk
+ t) are well defined on [0, Tn+1−Tn) and we restrict them to [0, T) for applying

the Arzela-Ascoli theorem. Lemma 66 processes the excess part [T, Tn+1 − Tn), by

showing that x̄(Tnk
+ t) cannot grow too much in the excess part. By Lemma 66,

lim
k→∞

∥x̄(Tnk+1)∥ − limt→T− ∥x̄(Tnk
+ t)∥

∥x̄(Tnk
)∥

= 0. (F.24)

We are now in the position to identify the contradiction. By (F.15), ∃k1 such that

∀k ≥ k1,

rnk+1 > (c0CH + CH) eCH + c0 > c0 > 1. (F.25)

By Lemma 29, ∃k2 such that ∀k ≥ k2,

lim
t→T−

∥fnk
(t)∥ = lim

t→T−
∥x̂(Tnk

+ t)− znk
(t)∥ ≤ 1

4
. (F.26)

By (F.24), ∃k3 such that ∀k ≥ k3,

∥x̄(Tnk+1)∥ − limt→T− ∥x̄(Tnk
+ t)∥

∥x̄(Tnk
)∥

≤ 1

4
. (F.27)

231

By (F.15), ∃k4 such that ∀k ≥ k4,

rnk
> c0.

Define k0
.
= max {k1, k2, k3, k4}. Because rnk0

> c0, by Lemma 44 and (9.25), we have

lim
t→T−

∥∥∥znk0
(t)
∥∥∥ ≤ 1

4
. (F.28)

We have

lim
t→T−

∥∥∥x̂(Tnk0
+ t)

∥∥∥
≤ lim

t→T−

∥∥∥x̂(Tnk0
+ t)− znk0

(t)
∥∥∥+

∥∥∥znk0
(t)
∥∥∥

≤1

2
. (by (F.26) and (F.28))(F.29)

This implies∥∥∥x̄(Tnk0
+1)
∥∥∥∥∥∥x̄(Tnk0

)
∥∥∥

=

∥∥∥x̄(Tnk0
+1)
∥∥∥− limt→T−

∥∥∥x̄(Tnk0
+ t)

∥∥∥∥∥∥x̄(Tnk0
)
∥∥∥ +

limt→T−

∥∥∥x̄(Tnk0
+ t)

∥∥∥∥∥∥x̄(Tnk0
)
∥∥∥

≤1

4
+

limt→T−

∥∥∥x̄(Tnk0
+ t)

∥∥∥∥∥∥x̄(Tnk0
)
∥∥∥ (by (F.27))

=
1

4
+

limt→T−

∥∥∥x̂(Tnk0
+ t)

∥∥∥∥∥∥x̂(Tnk0
)
∥∥∥ (by (9.22))

=
1

4
+ lim

t→T−

∥∥∥x̂(Tnk0
+ t)

∥∥∥ (
∥∥∥x̂(Tnk0

)
∥∥∥ = 1 because of rnk0

> c0 > 1 and (9.22))

≤3

4
. (by (F.29)) (F.30)

Now, we can derive the following inequality.

rnk0
+1 =

∥∥∥x̄(Tnk0
+1)
∥∥∥ (by (F.25))

≤ 3

4

∥∥∥x̄(Tnk0
)
∥∥∥ (by (F.30))

≤
∥∥∥x̄(Tnk0

)
∥∥∥

≤ rnk0
, (by rnk0

> c0 > 1 and (9.23))

which completes the proof.

232

F.2.8 Proof of Lemma 31

Proof.

sup
n

sup
i∈{i|m(Tn)≤m(Tn)+i<m(Tn+1)}

∥∥xm(Tn)+i

∥∥− ∥∥xm(Tn)

∥∥
≤ sup

n
sup

i∈{i|m(Tn)≤m(Tn)+i<m(Tn+1)}

∥∥xm(Tn)+i − xm(Tn)

∥∥
= sup

n
sup

i∈{i|m(Tn)≤m(Tn)+i<m(Tn+1)}
∥x̄(t(m(Tn) + i))− x̄(Tn)∥

= sup
n

sup
t∈[Tn,Tn+1)

∥x̄(Tn + t)− x̄(Tn)∥ (by (9.21))

≤ sup
n

sup
t∈[Tn,Tn+1)

[∥x̄(Tn)∥CH + CH] eCH (by (F.55))

≤ sup
n

sup
t∈[Tn,Tn+1)

[rnCH + CH] eCH (by (9.23))

= sup
n

[rnCH + CH]eCH

<∞. (by (9.39))

F.2.9 Proof of Corollary 1

This proof follows the idea of the proof of Theorem 2.1 in Chapter 5 of Kushner and

Yin (2003).

Proof. Let Assumptions 1 - 5 hold. Let Assumption 6 or 6′ hold. To prove convergence

results on t ∈ (−∞,∞) in Corollary 1, we fix an arbitrary sample path {x0, {Yi}∞i=1}.
The stability results from Theorem 19 hold. To prove properties on t ∈ (−∞,∞), we

first fix an arbitrary τ > 0 and show properties on ∀t ∈ [−τ, τ].

Definition 5. ∀n ∈ N, define z̄n(t) as the solution to the ODE (9.13) in (−∞,∞)

with an initial condition

z̄n(0) = x̄(t(n)).

Apparently, z̄n(t) can also be written as

z̄n(t) = x̄(t(n)) +

∫ t

0

h(z̄n(s))ds, ∀t ∈ (−∞,∞). (F.31)

The major difference between the {z̄n(t)} here and the {zn(t)} in (9.25) is that all

{z̄n(t)} here are solutions to one same ODE (9.13), just with different initial conditions,

233

but {zn(t)} is for different ODEs with different initial conditions and rescale factors

rn and is written as

zn(t) = x̂(Tn) +

∫ t

0

hrn(zn(s))ds. (Restatement of (9.27))

Ideally, we would like to see that the error of Euler’s discretization diminishes asymp-

totically. With (9.18) and (9.21), ∀τ > 0, ∀t ∈ [−τ, τ],

x̄(t(n) + t) = xm(t(n)+t) =

{
x̄(t(n)) +

∑m(t(n)+t)−1
i=n α(i)H(x̄(t(i)), Yi+1) if t ≥ 0

x̄(t(n))−
∑n−1

i=m(t(n)+t) α(i)H(x̄(t(i)), Yi+1) if t < 0.
(F.32)

Notably, the property (9.18) that ∀t < 0,m(t) = 0 in (F.32) ensures x̄(t(n) + t)

is well-defined when t(n) + t < 0. Precisely speaking, ∀τ > 0, ∀t ∈ [−τ, τ], the

discretization error is defined as

f̄n(t)
.
= x̄(t(n) + t)− z̄n(t). (F.33)

and we would like f̄n(t) diminishes to 0 as n→∞ in certain sense. To this end, we

study the following three sequences of functions

{x̄(t(n) + t)}∞n=0, {z̄n(t)}∞n=0,
{
f̄n(t)

}∞
n=0

.

Equicontinuity in the extended sense on domain (−∞,∞) is defined as following

(Section 4.2.1 in Kushner and Yin (2003)).

Definition 6. A sequence of functions
{
gn : (−∞,∞)→ RK

}
is equicontinuous in

the extended sense on (−∞,∞) if supn ∥gn(0)∥ <∞ and ∀τ > 0, ∀ϵ > 0, ∃δ > 0 such

that

lim sup
n

sup
0≤|t1−t2|≤δ,|t1|≤τ,|t2|≤τ

∥gn(t1)− gn(t2)∥ ≤ ϵ.

We show {x̄(t(n) + t)}, {z̄n(t)} and
{
f̄n(t)

}
are all equicontinuous in the extended

sense.

Lemma 45. The three sequences of functions {x̄(t(n) + t)}∞n=0, {z̄n(t)}∞n=0, and{
f̄n(t)

}∞
n=0

are all equicontinuous in the extended sense on t ∈ (−∞,∞).

To prove those lemmas, we need the Gronwall inequality in the reverse time in

Appendix F.1.2. Compared to lemmas in the main text which have domain t ∈ [0, T),

lemmas in this section have similar proofs because we first fix an arbitrary τ and prove

properties on the domain t ∈ [−τ, τ]. We omit proofs for Lemma 45 because they are

ditto to proofs of Lemma 24. Similar to Lemma 25, we now construct a particular

subsequence of interest.

234

Lemma 46. There exists a subsequence {nk}∞k=0 ⊆ {0, 1, 2, . . . } and some continuous

functions f̄ lim(t) and x̄lim(t) such that ∀τ , ∀t ∈ [−τ, τ],

lim
k→∞

f̄nk
(t) =f̄ lim(t),

lim
k→∞

x̄(Tnk
+ t) =x̄lim(t),

where both convergences are uniform in t on [−τ, τ]. Furthermore, let z̄lim(t) denote

the unique solution to the ODE (9.13) with the initial condition

z̄lim(0) = x̄lim(0),

in other words,

z̄lim(t) = x̄lim(0) +

∫ t

0

h(z̄lim(s))ds.

Then ∀τ , ∀t ∈ [−τ, τ], we have

lim
k→∞

z̄nk
(t) = z̄lim(t),

where the convergence is uniform in t on [−τ, τ].

Its proof is ditto to the proof of Lemma 25 and is omitted. We use the subsequence

{nk} intensively in the remaining proofs. Recall that f̄n(t) denotes the discretization

error between x̄(t(n) + t) and z̄n(t). We now proceed to prove that this discretization

error diminishes along {nk}. In particular, we aim to prove that ∀τ , ∀t ∈ [−τ, τ],

lim
k→∞

∥∥f̄nk
(t)
∥∥ =

∥∥f̄ lim(t)
∥∥ = 0.

This means x̄(t(nk) + t) is close to z̄nk
(t) as k →∞. For t ∈ (0, τ], the proof for this

part is the same as the proof we have done in Section 9.4.4. Thus, we only discuss the

proof for t ∈ [−τ, 0]. ∀τ , ∀t ∈ [−τ, 0],

lim
k→∞

∥∥f̄nk
(t)
∥∥

= lim
k→∞

∥∥∥∥∥∥x̄(t(nk))−
nk−1∑

i=m(t(nk)+t)

α(i)H(x̄(t(i)), Yi+1)− z̄nk
(t)

∥∥∥∥∥∥ (by (F.32) and (F.33))

= lim
k→∞

∥∥∥∥∥∥−
nk−1∑

i=m(t(nk)+t)

α(i)H(x̄(t(i)), Yi+1)−
∫ t

0

h(z̄nk
(s))ds

∥∥∥∥∥∥ (by (F.31))

≤ lim
k→∞

∥∥∥∥∥∥−
nk−1∑

i=m(t(nk)+t)

α(i)H(x̄(t(i)), Yi+1)−
∫ t

0

h(x̄lim(s))ds

∥∥∥∥∥∥
+ lim

k→∞

∥∥∥∥∫ t

0

h(x̄lim(s))ds−
∫ t

0

h(z̄nk
(s))ds

∥∥∥∥. (F.34)

235

We now prove that the first term in the RHS of (F.34) is 0.

Lemma 47. ∀τ , ∀t ∈ [−τ, 0],

lim
k→∞

∥∥∥∥∥∥−
nk−1∑

i=m(t(nk)+t)

α(i)H(x̄(t(i)), Yi+1)−
∫ t

0

h(x̄lim(s))ds

∥∥∥∥∥∥ = 0.

Its proof is ditto to the proof of Lemma 27 and is omitted. This convergence is

also simpler than (9.36) because here we have only a single (H, h). But in (9.36), we

have a sequence {(Hnk
, hnk

)}, for which we have to split it to a double limit (9.37)

and then invoke the Moore-Osgood theorem to reduce it to the single (H, h) case.

Lemma 47 confirms that the first term in the RHS of (F.34) is 0. Moreover, it

also enables us to rewrite x̄lim(t) from a summation form to an integral form. ∀τ ,

∀t ∈ [−τ, 0]

x̄lim(t)

= lim
k→∞

x̄(t(nk))−
nk−1∑

i=m(t(nk)+t)

α(i)H(x̄(t(i)), Yi+1)

= lim
k→∞

x̄(t(nk)) +

∫ t

0

h(x̄lim(s))ds. (by Lemma 47)

Thus, we can show the following diminishing discretization error.

Lemma 48. ∀τ , ∀t ∈ [−τ, τ],

lim
k→∞

∥∥f̄nk
(t)
∥∥ = 0.

Moreover, the convergence is uniform in t on [−τ, τ].

Its proof is ditto to the proof of Lemma 29 and is omitted. This immediately

implies that for any t ∈ (−∞,∞)

lim
k→∞

x̄(t(nk) + t) = z̄lim(t). (F.35)

Theorem 19 then yields that

sup
t∈(−∞,∞)

∥∥z̄lim(t)
∥∥ <∞.

Let X be the limit set of {xn}, i.e., X consists of all the limits of all the convergent

subsequences of {xn}. By Theorem 19, supn ∥xn∥ <∞, so X is bounded and nonempty.

236

We now prove X is an invariant set of the ODE (9.13). For any x ∈ X, there exists a

subsequence {xnk
} such that

lim
k→∞

xnk
= x.

Since {x̄(t(nk) + t)} is equicontinuous in the extended sense, following the way we

arrive at (F.35), we can construct a subsequence {n′
k} ⊆ {nk} such that

lim
k→∞

x̄(t(n′
k) + t) = zlim(t), (F.36)

where zlim(t) is a solution to the ODE (9.13) and zlim(0) = x. The remaining is to

show that zlim(t) lies entirely in X. For any t ∈ (−∞,∞), by the piecewise constant

nature of x̄ in (F.32), the above limit (F.36) implies that there exists a subsequence

of {xn} that converges to zlim(t), indicating zlim(t) ∈ X by the definition of the limit

set. We now have proved ∀x ∈ X, there exists a solution zlim(t) to the ODE (9.13)

such that zlim(0) = x and ∀t ∈ (−∞,∞), zlim(t) ∈ X. This means X is an invariant

set, by definition. In particular, X is a bounded invariant set.

We now prove that {xn} converges to X. Let {xnk
} be any convergent subsequence

of {xn} with its limit denoted by x. We must have x ∈ X by the definition of the

limit set. So we have proved that all convergent subsequences of {xn} converge to a

point in the bounded invariant set X. If {xn} does not converge to X, there must

exists a subsequence
{
xn′

k

}
such that

{
xn′

k

}
is always away from X by some small

ϵ0 > 0, i.e., ∀k,

inf
x∈X

∥∥xn′
k
− x
∥∥ ≥ ϵ0. (F.37)

But
{
xn′

k

}
is bounded so it must have a convergent subsequence, which, by the

definition of the limit set, converges to some point in X. This contradicts (F.37). So

we must have {xn} converges to X, which is a bounded invariant set of the ODE (9.13).

This completes the proof.

F.2.10 Proof of Theorem 20

Proof. For simplicity, we define

A′ .=

[
−C A
−A⊤ 0

]
,

b′
.
=

[
b
0

]
.

237

We first invoke Corollary 1 to show that

lim
t→∞

xt = −A′−1b′ a.s.

Assumption 1 follows immediately from Lemma 32.

Assumption 2 follows immediately from Assumption 9.5.2.

For Assumption 3, define

H∞(x, y)
.
=

[
−C(y) A(y)
−A(y)⊤ 0

]
x.

Then we have

Hc(x, y)−H∞(x, y) =
1

c

[
b(y)

0

]
.

After noticing

∥b((s, a, s′, e))− b((s, a, s′, e′))∥ = ρ(s, a)|r(s, a)|∥e− e′∥, ∀s, a, s′, e, e′,

Assumption 3 follows immediately from Lemma 32.

For Assumption 4, it can be easily verified that both H(x, y) and H∞(x, y) are

Lipschitz continuous in x for each y with the Lipschitz constant being

L(y)
.
=

∥∥∥∥[−C(y) A(y)
−A(y)⊤ 0

]∥∥∥∥.
Since A(y), b(y), C(y) are Lipschitz continuous in e for each (s, a, s′), Lemma 32 implies

that

h(x) =A′x+ b′,

h∞(x) =A′x,

L =∥A′∥.

Assumption 4 then follows.

For Assumption 5, we have

∥hc(x)− h∞(x)∥ ≤ ∥b
′∥
c
,

the uniform convergence of hc to h∞ follows immediately. Proving that A′ is Hurwitz

is a standard exercise using the field of values of A′. We refer the reader to Section 5

of Sutton et al. (2009) for details and omit the proof. This immediately implies the

globally asymptotically stability of the following two ODEs

dx(t)

dt
= A′x(t) + b′,

dx(t)

dt
= A′x(t).

238

The unique globally asymptotically equilibrium of the former is −A′−1b′. That of the

latter is 0. Assumption 5 then follows.

Assumption 6 follows immediately from Lemma 32 and Assumption 9.5.2.

Corollary 1 then implies that

lim
t→∞

xt = −A′−1b′ a.s.

Block matrix inversion immediately shows that the lower half of A′−1b′ is A−1b, yielding

lim
t→∞

θt = −A−1b a.s.,

which completes the proof.

F.3 Auxiliary Lemmas

Lemma 49.

∀n, Tn+1 − Tn ≥T,

lim
n→∞

Tn+1 − Tn =T.

Moreover, ∀τ > 0, t1, t2 such that −τ ≤ t1 ≤ t2 ≤ τ , we have

lim
n→∞

m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i) = t2 − t1. (F.38)

Proof. ∀n,

Tn+1 − Tn
=t(m(Tn + T) + 1)− Tn (by (9.17))

≥Tn + T − Tn (by (9.15))

≥T.

Thus,

lim
n→∞

Tn+1 − Tn ≥ T.

With

lim
n→∞

Tn+1 − Tn

= lim
n→∞

t(m(Tn + T) + 1)− Tn

= lim
n→∞

t(m(Tn + T)) + α(m(Tn + T))− Tn

≤ lim
n→∞

Tn + T + α(m(Tn + T))− Tn (by (9.15))

=T,

239

by the squeeze theorem, we have limn→∞ Tn+1 − Tn = T .

To prove (F.38), ∀τ , ∀ − τ ≤ t1 ≤ t2 ≤ τ , it suffices to only consider large n such

that t(n)− τ ≥ 0. We have

lim
n→∞

m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i)

= lim
n→∞

t(m(t(n) + t2))− t(m(t(n) + t1))

≤ lim
n→∞

t(n) + t2 − t(m(t(n) + t1)) (by (9.15))

≤ lim
n→∞

t(n) + t2 − (t(n) + t1 − α(m(t(n) + t1))) (by (9.16))

=t2 − t1 + lim
n→∞

α(m(t(n) + t1))

=t2 − t1 (by (9.3))

and

lim
n→∞

m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i)

= lim
n→∞

t(m(t(n) + t2))− t(m(t(n) + t1))

≥ lim
n→∞

t(n) + t2 − α(m(t(n) + t2))− t(m(t(n) + t1)) (by (9.16))

≥ lim
n→∞

t(n) + t2 − α(m(t(n) + t2))− (t(n) + t1) (by (9.15))

= lim
n→∞

t2 − t1 − α(m(t(n) + t2))

=t2 − t1. (by (9.3))

By the squeeze theorem, we have

lim
n

m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i) = t2 − t1.

Lemma 50. For any x, x′, c ≥ 1, including c =∞,

∥Hc(x, y)−Hc(x
′, y)∥ ≤ L(y)∥x− x′∥, (F.39)

∥hc(x)− hc(x′)∥ ≤ L∥x− x′∥. (F.40)

240

Proof. To prove (F.39), we first consider 1 ≤ c <∞,

∥Hc(x, y)−Hc(x
′, y)∥

=

∥∥∥∥H(cx, y)

c
− H(cx′, y)

c

∥∥∥∥ (by (9.4))

≤∥H(cx, y)−H(cx′, y)∥
c

≤L(y)
∥cx− cx′∥

c
(by (9.7))

=L(y)∥x− x′∥.

By (9.8),

∥H∞(x, y)−H∞(x′, y)∥ ≤ L(y)∥x− x′∥.

To prove (F.40), ∀x, ∀x′, ∀c ≥ 1 including c =∞,

∥hc(x)− hc(x′)∥

=
∥∥Ey∼dY [Hc(x, y)−Hc(x

′, y)]
∥∥

≤Ey∼dY [∥Hc(x, y)−Hc(x
′, y)∥]

≤Ey∼dY [L(y)∥x− x′∥]

≤L∥x− x′∥.

Lemma 51. ∀x,

sup
c≥1
∥hc(0)∥ <∞, (F.41)

sup
c≥1

lim sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i) [Hc(x, Yi+1)− hc(x)]

∥∥∥∥∥∥ = 0 a.s.,(F.42)

sup
c≥1

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥ <∞ a.s.,(F.43)

lim
δ→0+

sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥ = 0 a.s.(F.44)

Proof. Proof of (F.41):

sup
c≥1
∥hc(0)∥ = sup

c≥1

∥∥∥∥h(0)

c

∥∥∥∥ ≤ sup
c≥1
∥h(0)∥ = ∥h(0)∥ <∞.

241

Proof of (F.42): ∀x,

sup
c≥1

lim sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i) [Hc(x, Yi+1)− hc(x)]

∥∥∥∥∥∥
= sup

c≥1
lim sup

n
sup

0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)

[
H(cx, Yi+1)

c
− h(cx)

c

]∥∥∥∥∥∥
= sup

c≥1

1

c
lim sup

n
sup

0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i) [H(cx, Yi+1)− h(cx)]

∥∥∥∥∥∥
≤ sup

c≥1

1

c
lim sup

n
sup

0≤t1≤t2≤T+supj α(j)

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i) [H(cx, Yi+1)− h(cx)]

∥∥∥∥∥∥
(∀n, Tn+1 − Tn ≤ T + supj α(j))

= sup
c≥1

1

c
· 0 (by Lemma 22)

=0. (F.45)

242

Proof of (F.43):

lim sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
= lim sup

n
sup

0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)[H(0, Yi+1)− h(0) + h(0)]

∥∥∥∥∥∥
≤ lim sup

n
sup

0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)[H(0, Yi+1)− h(0)]

∥∥∥∥∥∥
+ lim sup

n
sup

0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)h(0)

∥∥∥∥∥∥
≤ lim sup

n
sup

0≤t1≤t2≤T+supj α(j)

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)[H(0, Yi+1)− h(0)]

∥∥∥∥∥∥
+ lim sup

n
sup

0≤t1≤t2≤T+supj α(j)

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)h(0)

∥∥∥∥∥∥ (∀n, Tn+1 − Tn ≤ T + supj α(j))

= lim sup
n

sup
0≤t1≤t2≤T+supj α(j)

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)h(0)

∥∥∥∥∥∥ (by Lemma 22)

=∥h(0)∥ lim sup
n

sup
0≤t1≤t2≤T+supj α(j)

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)

=∥h(0)∥(T + sup
j
α(j)) (by Lemma 49)

<∞. (F.46)

We now consider c in the above bounds. We first get

sup
c≥1

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥
= sup

c≥1
sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)
H(0, Yi+1)

c

∥∥∥∥∥∥ (by (9.4))

= sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)H(0, Yi+1)

∥∥∥∥∥∥ (by c ≥ 1)

<∞. (by (F.46))

243

Proof of (F.44):

lim
δ→0+

sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥
≤ lim

δ→0+
sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i) [Hc(0, Yi+1)− hc(0)]

∥∥∥∥∥∥
+ lim

δ→0+
sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)hc(0)

∥∥∥∥∥∥
≤0 + lim

δ→0+
sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)hc(0)

∥∥∥∥∥∥ (by (F.45))

≤0 + lim
δ→0+

sup
c≥1

lim sup
n

sup
0≤t2−t1≤δ

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)
h(0)

c

∥∥∥∥∥∥
≤0 + ∥h(0)∥ lim

δ→0+
sup
c≥1

1

c
lim sup

n
sup

0≤t2−t1≤δ

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)

≤∥h(0)∥ lim
δ→0+

sup
c≥1

1

c
δ (by (F.38))

=∥h(0)∥ lim
δ→0+

δ

=0.

Lemma 52.

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1)

 <∞ a.s., (F.47)

lim
δ→0+

lim sup
n

sup
0≤t2−t1≤δ

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1)

 = 0 a.s., (F.48)

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Lb(Yi+1)

 <∞ a.s. (F.49)

Its proof is similar to the proof of Lemma 51 and is thus omitted.

244

Lemma 53. Fix a sample path {x0, {Yi}∞i=1}, there exists a constant CH such that

LT ≤ CH , (F.50)

sup
c≥1
∥hc(0)∥ ≤ CH

T
, (F.51)

sup
c≥1

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥ ≤ CH , (F.52)

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1) ≤ CH . (F.53)

Moreover, for the presentation convenience, we denote

Cx̂
.
= [1 + CH] eCH . (F.54)

Proof. Fix a sample path {x0, {Yi}∞i=1},

LT <∞, (L and T are constants)

sup
c≥1
∥hc(0)∥T <∞, (by (F.41))

sup
c≥1

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥ <∞, (by (F.43))

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1) <∞. (by (F.47))

Thus, there exists a constant CH such that

LT ≤ CH

sup
c≥1
∥hc(0)∥ ≤ CH

T
,

sup
c≥1

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)Hc(0, Yi+1)

∥∥∥∥∥∥ ≤ CH ,

sup
n

sup
0≤t1≤t2≤Tn+1−Tn

m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)L(Yi+1) ≤ CH .

Lemma 54. supn,t∈[0,T) ∥x̂(Tn + t)∥ ≤ Cx̂.

245

Proof. ∀n ∈ N, t ∈ [0, T),

∥x̂(Tn + t)∥

=

∥∥∥∥∥∥x̂(Tn) +

m(Tn+t)−1∑
i=m(Tn)

α(i)Hrn(x̂(t(i)), Yi+1)

∥∥∥∥∥∥
≤∥x̂(Tn)∥+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)Hrn(x̂(t(i)), Yi+1)

∥∥∥∥∥∥
=∥x̂(Tn)∥+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i) [Hrn(x̂(t(i)), Yi+1)−Hrn(0, Yi+1)] +

m(Tn+t)−1∑
i=m(Tn)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
≤∥x̂(Tn)∥+

m(Tn+t)−1∑
i=m(Tn)

α(i)∥Hrn(x̂(t(i)), Yi+1)−Hrn(0, Yi+1)∥+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
≤∥x̂(Tn)∥+

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̂(t(i))∥+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)Hrn(0, Yi+1)

∥∥∥∥∥∥
≤∥x̂(Tn)∥+

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̂(t(i))∥+ CH (by (F.52))

≤1 +

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̂(t(i))∥+ CH (by (9.24))

≤ [1 + CH] e
∑m(Tn+t)−1

i=m(Tn)
α(i)L(Yi+1)

(by x̂(Tn + t) = x̂(t(m(Tn + t))) and discrete Gronwall inequality in Theorem F.1.3)

≤ [1 + CH] eCH (by (F.53))

=Cx̂. (by (F.54))

Lemma 55. supn,t∈[0,T) ∥zn(t)∥ ≤ Cx̂.

246

Proof. ∀n, t ∈ [0, T),

∥zn(t)∥

=

∥∥∥∥zn(0) +

∫ t

0

hrn(zn(s))ds

∥∥∥∥
≤∥zn(0)∥+

∥∥∥∥∫ t

0

hrn(zn(s))ds

∥∥∥∥
≤∥zn(0)∥+

∫ t

0

∥hrn(zn(s))− hrn(0)∥ds+

∫ t

0

∥hrn(0)∥ds

≤∥zn(0)∥+

∫ t

0

L∥zn(s)∥ds+

∫ t

0

∥hrn(0)∥ds (by Lemma 50)

≤∥zn(0)∥+

∫ t

0

L∥zn(s)∥ds+ T∥hrn(0)∥

≤∥zn(0)∥+

∫ t

0

L∥zn(s)∥ds+ T
CH

T
(by (F.51))

≤1 +

∫ t

0

L∥zn(s)∥ds+ CH (by (9.24), (9.26))

≤ [1 + CH] eLT (by Gronwall inequality in Theorem F.1.1)

≤ [1 + CH] eCH (by (F.50))

=Cx̂ (by (F.54))

Lemma 56. ∀n,

∥x̄(Tn+1)∥ ≤ (∥x̄(Tn)∥CH + CH) eCH + ∥x̄(Tn)∥

where CH is a positive constant defined in Lemma 53.

Proof. We first show the difference between x̄(Tn+1) and x̄(Tn) by the following

247

derivations. ∀n, ∀t ∈ [0, Tn+1 − Tn],

∥x̄(Tn + t)− x̄(Tn)∥

=∥x̄(t(m(Tn + t)))− x̄(Tn)∥

=

∥∥∥∥∥∥x̄(Tn) +

m(Tn+t)−1∑
i=m(Tn)

α(i)H(x̄(t(i)), Yi+1)− x̄(Tn)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(x̄(t(i)), Yi+1)

∥∥∥∥∥∥
≤

m(Tn+t)−1∑
i=m(Tn)

α(i)∥H(x̄(t(i)), Yi+1)−H(x̄(Tn), Yi+1)∥+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(x̄(Tn), Yi+1)

∥∥∥∥∥∥
≤

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(t(i))− x̄(Tn)∥+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(x̄(Tn), Yi+1)

∥∥∥∥∥∥
≤

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(t(i))− x̄(Tn)∥+

m(Tn+t)−1∑
i=m(Tn)

α(i)∥H(x̄(Tn), Yi+1)−H(0, Yi+1)∥

+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
≤

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(t(i))− x̄(Tn)∥+

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(Tn)∥

+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(0, Yi+1)

∥∥∥∥∥∥ (by Assumption 4)

=

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(t(i))− x̄(Tn)∥+ ∥x̄(Tn)∥
m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)

+

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
≤

m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(t(i))− x̄(Tn)∥+ ∥x̄(Tn)∥CH +

∥∥∥∥∥∥
m(Tn+t)−1∑
i=m(Tn)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
(by (F.53))

≤
m(Tn+t)−1∑
i=m(Tn)

α(i)L(Yi+1)∥x̄(t(i))− x̄(Tn)∥+ [∥x̄(Tn)∥CH + CH] (by (F.52))

≤ [∥x̄(Tn)∥CH + CH] e
∑m(Tn+t)−1

i=m(Tn)
α(i)L(Yi+1)

(by discrete Gronwall inequality in Theorem F.1.3)

≤[∥x̄(Tn)∥CH + CH] eCH (by (F.53)) (F.55)

248

Lemma 57.

lim sup
k
rn2,k

=∞.

Proof. We use proof by contradiction. Suppose

lim sup
k
rn2,k

= Cr <∞

where Cr is a constant. ∀ϵ > 0, ∃k0 such that ∀k ≥ k0,

rn2,k
≤ Cr + ϵ.

By Lemma 56, ∀k ≥ k0,

rn1,k
= max

{∥∥x̄(Tn1,k
)
∥∥, 1} (by (9.23))

= max
{∥∥x̄(Tn2,k+1)

∥∥, 1} (by (F.13))

≤
∥∥x̄(Tn2,k+1)

∥∥+ 1

≤
(∥∥x̄(Tn2,k

)
∥∥CH + CH

)
eCH +

∥∥x̄(Tn2,k
)
∥∥+ 1

≤
(
rn2,k

CH + CH

)
eCH + rn2,k

+ 1

≤ [(Cr + ϵ)CH + CH] eCH + (Cr + ϵ) + 1

<∞.

This contradicts (F.12). Thus,

lim sup
k
rn2,k

=∞.

Lemma 58. supn,t∈[0,T) ∥hrn(zn(t))∥ <∞.

Proof. ∀n,∀t ∈ [0, T),

∥hrn(zn(t))∥

≤∥hrn(zn(t))− hrn(0)∥+ ∥hrn(0)∥

≤L∥zn(t)∥+ ∥hrn(0)∥ (by Lemma 50)

≤LCx̂ + ∥hrn(0)∥ (by Lemma 55)

≤LCx̂ +
CH

T
. (by (9.23) and (F.51))

Thus, because Cx̂, CH are independent of n, t, supn,t∈[0,T) ∥hrn(zn(t))∥ <∞.

249

Lemma 59. supt∈[0,T)

∥∥zlim(t)
∥∥ ≤ Cx̂.

Proof. ∀t ∈ [0, T),∥∥zlim(t)
∥∥

=

∥∥∥∥zlim(0) +

∫ t

0

h∞(zlim(s))ds

∥∥∥∥
≤
∥∥zlim(0)

∥∥+

∥∥∥∥∫ t

0

h∞(zlim(s))ds

∥∥∥∥
=
∥∥zlim(0)

∥∥+

∥∥∥∥∫ t

0

[
h∞(zlim(s))− h∞(0)

]
ds+

∫ t

0

h∞(0)ds

∥∥∥∥
≤
∥∥zlim(0)

∥∥+

∫ t

0

∥∥h∞(zlim(s))− h∞(0)
∥∥ds+

∫ t

0

∥h∞(0)∥ds

≤
∥∥zlim(0)

∥∥+

∫ t

0

L
∥∥zlim(s)

∥∥ds+

∫ t

0

∥h∞(0)∥ds (by Lemma 50)

≤1 +

∫ t

0

L
∥∥zlim(s)

∥∥ds+

∫ t

0

∥h∞(0)∥ds (by (9.24), (9.26))

≤1 +

∫ t

0

L
∥∥zlim(s)

∥∥ds+ T∥h∞(0)∥

≤1 +

∫ t

0

L
∥∥zlim(s)

∥∥ds+ CH (by Assumption 5 and (F.51))

≤ [1 + CH] e
∫ t
0 Lds (by Gronwall inequality in Theorem F.1.1)

≤ [1 + CH] eLT

≤Cx̂. (by (F.50), (F.54))

Lemma 60. limk→∞ hrnk
(zlim(t)) = h∞(zlim(t)) uniformly in t ∈ [0, T).

Proof. By Assumption 5, limk→∞ hrnk
(v) = h∞(v) uniformly in a compact set{

v|v ∈ Rd, ∥v∥ ≤ Cx

}
. By Lemma 59,

{
zlim(t)|t ∈ [0, T)

}
⊆
{
v|v ∈ Rd, ∥v∥ ≤ Cx

}
.

Therefore, limk→∞ hrnk
(zlim(t)) = h∞(zlim(t)) uniformly in

{
zlim(t)|t ∈ [0, T)

}
and on

t ∈ [0, T).

Lemma 61. ∀t ∈ [0, T), we have

lim
k→∞

znk
(t) = zlim(t).

Moreover, the convergence is uniform in t on [0, T).

250

Proof. By (9.33), ∀δ > 0, there exists a k1 such that ∀k ≥ k1, ∀t ∈ [0, T),∥∥x̂(Tnk
+ t)− x̂lim(t)

∥∥ ≤ δ. (F.56)

By Lemma 60, there exists a k2 such that ∀k ≥ k2, ∀t ∈ [0, T),∥∥hrnk
(zlim(t))− h∞(zlim(t))

∥∥ ≤ δ. (F.57)

∀k ≥ max {k1, k2}, ∀t ∈ [0, T)∥∥znk
(t)− zlim(t)

∥∥
=

∥∥∥∥x̂(Tnk
) +

∫ t

0

hrnk
(znk

(s))ds− x̂lim(0)−
∫ t

0

h∞(zlim(s))ds

∥∥∥∥
≤
∥∥x̂(Tnk

)− x̂lim(0)
∥∥+

∥∥∥∥∫ t

0

hrnk
(znk

(s))ds−
∫ t

0

h∞(zlim(s))ds

∥∥∥∥
≤δ +

∥∥∥∥∫ t

0

hrnk
(znk

(s))− h∞(zlim(s))ds

∥∥∥∥ (by (F.56))

≤δ +

∫ t

0

∥∥hrnk
(znk

(s))− hrnk
(zlim(s))

∥∥ds+

∫ t

0

∥∥hrnk
(zlim(s))− h∞(zlim(s))

∥∥ds
≤δ + L

∫ t

0

∥∥znk
(s)− zlim(s)

∥∥ds+

∫ t

0

∥∥hrnk
(zlim(s))− h∞(zlim(s))

∥∥ds
(by Lemma 50)

≤δ + tδ + L

∫ t

0

∥∥znk
(s)− zlim(s)

∥∥ds (by (F.57))

≤(δ + tδ)eLt (by Gronwall inequality in Theorem F.1.1)

≤(δ + Tδ)eLT ,

which completes the proof.

Lemma 62. For any function f : R×R→ R, if lim
a→∞
b→∞

f(a, b) = L then lim
c→∞

f(c, c) = L

where L is a constant.

Proof. By definition, ∀ϵ > 0, ∃a0, b0 such that ∀a > a0, b > b0, ∥f(a, b)− L∥ < ϵ.

Thus, ∀ϵ > 0,∃c0 = max {a0, b0} such that ∀c > c0, ∥f(c, c)− L∥ < ϵ.

Lemma 63. ∀t ∈ [0, T),

lim
k→∞

∫ t

0

hrnk
(x̂lim(s))ds =

∫ t

0

h∞(x̂lim(s))ds.

Proof. From Lemma 54, it is easy to see that

sup
t∈[0,T)

∥∥x̂lim(t)
∥∥ <∞,

251

which, similar to Lemma 58, implies that

sup
k,t∈[0,T)

∥∥hrnk

(
x̂lim(t)

)∥∥ <∞.
By the dominated convergence theorem, ∀t ∈ [0, T),

lim
k→∞

∫ t

0

hrnk
(x̂lim(s))ds =

∫ t

0

lim
k→∞

hrnk
(x̂lim(s))ds =

∫ t

0

h∞(x̂lim(s))ds,

which completes the proof.

Lemma 64. ∀t ∈ [0, T),

lim
k→∞

∫ t

0

hrnk
(znk

(s))ds =

∫ t

0

h∞(zlim(s))ds.

Proof. ∀ϵ > 0, by Lemma 60, ∃k0 such that ∀k ≥ k0, ∀t ∈ [0, T),∥∥hrnk
(zlim(s))− h∞(zlim(s))

∥∥ ≤ ϵ. (F.58)

By Lemma 61, ∃k1 such that ∀k ≥ k1, ∀t ∈ [0, T),∥∥znk
(t)− zlim(t)

∥∥ ≤ ϵ. (F.59)

Thus, ∀k ≥ max {k0, k1}, ∀t ∈ [0, T),∥∥∥∥∫ t

0

hrnk
(znk

(s))ds−
∫ t

0

h∞(zlim(s))ds

∥∥∥∥
≤
∥∥∥∥∫ t

0

hrnk
(znk

(s))ds−
∫ t

0

hrnk
(zlim(s))ds

∥∥∥∥+

∥∥∥∥∫ t

0

hrnk
(zlim(s))ds−

∫ t

0

h∞(zlim(s))ds

∥∥∥∥
≤
∫ t

0

∥∥hrnk
(znk

(s))− hrnk
(zlim(s))

∥∥ds+

∫ t

0

∥∥hrnk
(zlim(s))− h∞(zlim(s))

∥∥ds
≤
∫ t

0

∥∥hrnk
(znk

(s))− hrnk
(zlim(s))

∥∥ds+ Tϵ (by (F.58))

≤
∫ t

0

L
∥∥znk

(s)− zlim(s)
∥∥ds+ Tϵ (by Lemma 50)

≤LTϵ+ Tϵ. (by (F.59))

Thus, ∀t ∈ [0, T),

lim
k→∞

∫ t

0

hrnk
(znk

(s))ds =

∫ t

0

h∞(zlim(s))ds.

252

Lemma 65.

lim
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)L(Yi+1)

∥∥∥∥∥∥ = 0, (F.60)

lim
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)H(0, Yi+1)

∥∥∥∥∥∥ = 0. (F.61)

Proof.

lim sup
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)L(Yi+1)

∥∥∥∥∥∥
= lim sup

n
lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)[L(Yi+1)− L] +

m(Tn+1)−1∑
i=m(Tn+t)

α(i)L

∥∥∥∥∥∥
≤ lim sup

n
lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)[L(Yi+1)− L]

∥∥∥∥∥∥+ lim sup
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)L

∥∥∥∥∥∥
≤ lim sup

n
lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)[L(Yi+1)− L]

∥∥∥∥∥∥+ L lim sup
n

α(m(Tn+1)− 1)

≤ lim sup
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)[L(Yi+1)− L]

∥∥∥∥∥∥+ 0 (by (9.3))

≤ lim sup
n

sup
0≤t1≤t2≤T+supj α(j)

∥∥∥∥∥∥
m(Tn+t2)−1∑
i=m(Tn+t1)

α(i)[L(Yi+1)− L]

∥∥∥∥∥∥
=0. (by (9.20))

This implies

lim
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)L(Yi+1)

∥∥∥∥∥∥ = 0.

Following a similar proof, we have

lim
n

lim
t→T−

∥∥∥∥∥∥
m(Tn+1)−1∑
i=m(Tn+t)

α(i)H(0, Yi+1)

∥∥∥∥∥∥ = 0.

Lemma 66. limk→∞
∥x̄(Tnk+1)∥−limt→T− ∥x̄(Tnk

+t)∥
∥x̄(Tnk

)∥ = 0.

253

Proof. We first analyze the numerator. ∀k,∣∣∣∣∥x̄(Tnk+1)∥ − lim
t→T−

∥x̄(Tnk
+ t)∥

∣∣∣∣
= lim

t→T−
|∥x̄(Tnk+1)∥ − ∥x̄(Tnk

+ t)∥|

≤ lim
t→T−

∥x̄(Tnk+1)− x̄(Tnk
+ t)∥

= lim
t→T−

∥∥∥∥∥∥x̄(Tnk
) +

m(Tnk+1)−1∑
i=m(Tnk

)

α(i)H(x̄(t(i)), Yi+1)− x̄(Tnk
)−

m(Tnk
+t)−1∑

i=m(Tnk
)

α(i)H(x̄(t(i)), Yi+1)

∥∥∥∥∥∥
= lim

t→T−

∥∥∥∥∥∥
m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)H(x̄(t(i)), Yi+1)

∥∥∥∥∥∥
≤ lim

t→T−

∥∥∥∥∥∥
m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i) [H(x̄(t(i)), Yi+1)−H(0, Yi+1)]

∥∥∥∥∥∥+

∥∥∥∥∥∥
m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
≤ lim

t→T−

m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)L(Yi+1)∥x̄(t(i)∥+

∥∥∥∥∥∥
m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
=∥x̄(t(m(Tnk+1)− 1)∥

 lim
t→T−

m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)L(Yi+1)

+ lim
t→T−

∥∥∥∥∥∥
m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)H(0, Yi+1)

∥∥∥∥∥∥
(∀k, limt→T− m(Tnk

+ t) = m(Tnk+1)− 1)

≤
(
[∥x̄(Tnk

)∥CH + CH] eCH + ∥x̄(Tnk
)∥
) lim

t→T−

m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)L(Yi+1)


+ lim

t→T−

∥∥∥∥∥∥
m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)H(0, Yi+1)

∥∥∥∥∥∥. (by (F.55))

By (F.15), we have

lim
k→∞
∥x̄(Tnk

)∥ = lim
k→∞

rnk
=∞. (F.62)

254

Thus,

lim
k→∞

∣∣∣∣∥x̄(Tnk+1)∥ − limt→T− ∥x̄(Tnk
+ t)∥

∥x̄(Tnk
)∥

∣∣∣∣
= lim

k→∞

|∥x̄(Tnk+1)∥ − limt→T− ∥x̄(Tnk
+ t)∥|

∥x̄(Tnk
)∥

= lim
k→∞

(
[∥x̄(Tnk

)∥CH + CH] eCH + ∥x̄(Tnk
)∥
) [

limt→T−
∑m(Tnk+1)−1

i=m(Tnk
+t) α(i)L(Yi+1)

]
∥x̄(Tnk

)∥

+ lim
k→∞

limt→T−

∥∥∥∑m(Tnk+1)−1

i=m(Tnk
+t) α(i)H(0, Yi+1)

∥∥∥
∥x̄(Tnk

)∥

≤
(
CHe

CH + 1
) lim

k→∞
lim
t→T−

m(Tnk+1)−1∑
i=m(Tnk

+t)

α(i)L(Yi+1)

+ lim
k→∞

limt→T−

∥∥∥∑m(Tnk+1)−1

i=m(Tnk
+t) α(i)H(0, Yi+1)

∥∥∥
∥x̄(Tnk

)∥

(by (F.62))

≤
(
CHe

CH + 1
)
· 0 + 0 (by (F.60) and (F.61))

=0.

F.4 Proofs for Completeness

Proofs in this section have used ideas and sketches from Kushner and Yin (2003) but

are self-contained and complete.

F.4.1 Proof of Lemma 22

Proof. Case 1: Let Assumptions 1, 2, 4, and 6 hold.

Fixed an arbitrary τ > 0. For an arbitrary x, t ∈ (−∞,∞), define

ψ(i)
.
= H(x, Yi+1)− h(x),

S(n)
.
=

n−1∑
i=0

ψ(i),

Ψ(t)
.
=

m(t)−1∑
i=0

α(i)ψ(i).

Here, we use (9.18) so that ∀t < 0,m(t) = 0 and the convention that
∑j

k=i α(k) = 0

when j < i. Fix a sample path {x0, {Yi}∞i=1} where Assumptions 1, 2, 4, & 6 hold.

255

Assumption 6 implies that

lim
n→∞

α(n)S(n+ 1) = 0.

Use subscript j to denote the jth dimension of a vector, we then have

lim sup
n→∞

sup
−τ≤t≤τ

|α(m(t(n) + t))S(m(t(n) + t) + 1)j| = 0. (F.63)

Moreover, for ∀t ∈ [−τ, τ], we have

Ψ(t) =

m(t)−1∑
i=0

α(i)ψ(i)

=

m(t)−1∑
i=0

α(i)

[
i∑

j=0

ψ(j)−
i−1∑
j=0

ψ(j)

]

=

m(t)−1∑
i=0

α(i)
i∑

j=0

ψ(j)−
m(t)−1∑
i=0

α(i)
i−1∑
j=0

ψ(j)

=

m(t)−1∑
i=0

α(i)
i∑

j=0

ψ(j)−
m(t)−2∑
i=0

α(i+ 1)
i∑

j=0

ψ(j)

=α(m(t)− 1)

m(t)−1∑
i=0

ψ(i) +

m(t)−2∑
i=0

[α(i)− α(i+ 1)]
i∑

j=0

ψ(j)

=α(m(t)− 1)

m(t)−1∑
i=0

ψ(i) +

m(t)−2∑
i=0

S(i+ 1)[α(i)− α(i+ 1)]

=α(m(t)− 1)S(m(t)) +

m(t)−2∑
i=0

S(i+ 1)
α(i)− α(i+ 1)

α(i)
α(i). (F.64)

256

Thus, for any dimension j,

lim sup
n→∞

sup
−τ≤t1≤t2≤τ

∣∣∣∣∣∣
m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i)(H(x, Yi+1)j − h(x)j)

∣∣∣∣∣∣
= lim sup

n→∞
sup

−τ≤t1≤t2≤τ
|Ψ(t(n) + t2)j −Ψ(t(n) + t1)j|

≤ lim sup
n→∞

sup
−τ≤t1≤t2≤τ

|α(m(t(n) + t2)− 1)S(m(t(n) + t2))j|

+ |α(m(t(n) + t1)− 1)S(m(t(n) + t1))j|

+

∣∣∣∣∣∣
m(t(n)+t2)−2∑

i=m(t(n)+t1)−1

S(i+ 1)j
α(i)− α(i+ 1)

α(i)
α(i)

∣∣∣∣∣∣ (by (F.64))

= lim sup
n→∞

sup
−τ≤t1≤t2≤τ

∣∣∣∣∣∣
m(t(n)+t2)−2∑

i=m(t(n)+t1)−1

S(i+ 1)j
α(i)− α(i+ 1)

α(i)
α(i)

∣∣∣∣∣∣ (by (F.63))

≤ lim sup
n→∞

sup
−τ≤t1≤t2≤τ

m(t(n)+t2)−2∑
i=m(t(n)+t1)−1

∣∣∣∣S(i+ 1)j
α(i)− α(i+ 1)

α(i)
α(i)

∣∣∣∣
≤ lim sup

n→∞
sup

−τ≤t1≤t2≤τ

m(t(n)+t2)−2∑
i=m(t(n)+t1)−1

|α(i)S(i+ 1)j|
∣∣∣∣α(i)− α(i+ 1)

α(i)

∣∣∣∣
≤ lim sup

n→∞
sup

−τ≤t1≤t2≤τ

(
sup

m(t(n)+t1)−1≤i≤m(t(n)+t2)−2

|α(i)S(i+ 1)j|

)
m(t(n)+t2)−2∑

i=m(t(n)+t1)−1

∣∣∣∣α(i)− α(i+ 1)

α(i)

∣∣∣∣

≤ lim sup
n→∞

sup
−τ≤t1≤t2≤τ

(
sup

m(t(n)+t1)−1≤i≤m(t(n)+t2)−2

|α(i)S(i+ 1)j|

)
Cα

m(t(n)+t2)−2∑
i=m(t(n)+t1)−1

α(i)

(by Assumption 2, Cα is a constant from the big O notation–α(n)−α(n+1)
α(n)

= O (α(n)))

= lim sup
n→∞

[
sup

−τ≤t1≤t2≤τ

(
sup

m(t(n)+t1)−1≤i≤m(t(n)+t2)−2

|α(i)S(i+ 1)j|

)

·Cα

m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i) + α(m(t(n) + t1)− 1)


= lim sup

n→∞
sup

−τ≤t1≤t2≤τ

(
sup

m(t(n)+t1)−1≤i≤m(t(n)+t2)−2

|α(i)S(i+ 1)j|

)
Cα (t2 − t1 + α(m(t(n) + t1)− 1))

(by (F.38))

≤ lim sup
n→∞

(
sup

m(t(n)−τ)−1≤i

|α(i)S(i+ 1)j|

)
Cα (t2 − t1 + α(m(t(n) + t1)− 1))

≤2Cατ lim sup
n→∞

(
sup

m(t(n)−τ)−1≤i

|α(i)S(i+ 1)j|

)

≤2Cατ lim sup
n→∞

(
sup
n≤i
|α(i)S(i+ 1)j|

)
=0. (by (F.63))

257

Thus, ∀τ > 0, ∀x,

lim sup
n

sup
−τ≤t1≤t2≤τ

∥∥∥∥∥∥
m(t(n)+t2)−1∑
i=m(t(n)+t1)

α(i) [H(x, Yi+1)− h(x)]

∥∥∥∥∥∥ = 0 a.s.

The proofs for (9.19) and (9.20) follow the same logic and thus are omitted.

Case 2: Let Assumptions 1, 2, 4, and 6′ hold.

By Assumption 4 and the equivalence between norms, we have

∥H(x, y)∥2 ≤ C (∥H(0, y)∥2 + L(y)∥x∥2)

for some constant C independent of x, y. So for any x,

sup
y

∥H(x, y)∥22
v(y)

≤ sup
y

2C2∥H(0, y)∥22 + 2C2L(y)2∥x∥22
v(y)

<∞.

In other words, for any x,

y 7→ H(x, y) ∈ L2
v,∞.

Similarly, we have for any x,

y 7→ Lb(y) ∈ L2
v,∞.

Let g denote any of the following functions:

y 7→H(x, y) (∀x),

y 7→Lb(y) (∀x),

y 7→L(y).

We now always have g ∈ L2
v,∞. Proposition 6 of Borkar et al. (2021) then confirms

that

∞∑
i=0

α(i)(g(Yi+1)− Ey∼dY [g(y)])

converges almost surely to a square-integrable random variable. Lemma 22 then

follows immediately from the Cauchy convergence test.

258

F.4.2 Proof of Lemma 27

To prove Lemma 27, we first decompose it into three terms. Then, we prove the

convergence of each term in Lemmas 67, 68, & 69. Finally, we restate Lemma 27 and

connect everything.

For each t, let {∆l}∞l=1 be a strictly decreasing sequence of real numbers such that

liml→∞ ∆l = 0 and ∀l, t
∆l
− 1 ∈ N, e.g., ∆l

.
= t

l+1
. Because ∀l,

m(Tnk
+t)−1∑

i=m(Tnk
)

α(i)Hrnj
(x̂(t(i)), Yi+1) =

t
∆l

−1∑
a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)Hrnj
(x̂(t(i)), Yi+1),

we have

lim
k→∞

∥∥∥∥∥∥
m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥ (F.65)

= lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)Hrnj
(x̂(t(i)), Yi+1)−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥∥
≤ lim

l→∞
lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)hrnj
(x̂lim(a∆l))−

∫ t

0

hrnj
(x̂lim(s))ds

∥∥∥∥∥∥∥ (F.66)

+ lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂(t(i)), Yi+1)−Hrnj
(x̂lim(a∆l), Yi+1)

)∥∥∥∥∥∥∥
(F.67)

+ lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂lim(a∆l), Yi+1)− hrnj
(x̂lim(a∆l))

)∥∥∥∥∥∥∥.
(F.68)

Now, we show the limit of (F.66), (F.67), and (F.68) are 0 in Lemmas 67, 68, and 69

with proofs in Appendix F.4.3, F.4.4, and F.4.5.

Lemma 67. ∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)hrnj
(x̂lim(a∆l))−

∫ t

0

hrnj
(x̂lim(s))

∥∥∥∥∥∥∥ = 0.

259

Lemma 68. ∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂(t(i)), Yi+1)−Hrnj
(x̂lim(a∆l), Yi+1)

)∥∥∥∥∥∥∥ = 0.

Lemma 69. ∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂lim(a∆l), Yi+1)− hrnj
(x̂lim(a∆l))

)∥∥∥∥∥∥∥ = 0.

Plugging Lemmas 67, 68, and 69 back to (F.65) completes the proof of Lemma 27.

F.4.3 Proof of Lemma 67

Proof. ∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

t
∆l

−1∑
a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)hrnj
(x̂lim(a∆l))

= lim
l→∞

t
∆l

−1∑
a=0

hrnj
(x̂lim(a∆l)) lim

k→∞

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)

= lim
l→∞

t
∆l

−1∑
a=0

hrnj
(x̂lim(a∆l))∆l (by (F.38))

=

∫ t

0

hrnj
(x̂lim(s))ds. (by definition of integral)

Thus, ∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)hrnj
(x̂lim(a∆l))−

∫ t

0

hrnj
(x̂lim(s))

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ lim
l→∞

lim
k→∞

t
∆l

−1∑
a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)hrnj
(x̂lim(a∆l))−

∫ t

0

hrnj
(x̂lim(s))

∥∥∥∥∥∥∥
=

∥∥∥∥∫ t

0

hrnj
(x̂lim(s))−

∫ t

0

hrnj
(x̂lim(s))

∥∥∥∥
=0.

260

F.4.4 Proof of Lemma 68

Proof. ∀j,∀t ∈ [0, T),∀l

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂(t(i)), Yi+1)−Hrnj
(x̂lim(a∆l), Yi+1)

)∥∥∥∥∥∥∥
≤ lim

k→∞

t
∆l

−1∑
a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
∥∥∥Hrnj

(x̂(t(i)), Yi+1)−Hrnj
(x̂lim(a∆l), Yi+1)

∥∥∥
≤ lim

k→∞

t
∆l

−1∑
a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)L(Yi+1)
∥∥x̂(t(i))− x̂lim(a∆l)

∥∥ (by Assumption 4)

≤ lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥

t
∆l

−1∑
a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)L(Yi+1)

= lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)L(Yi+1).

(F.69)

261

We show the limit of the following term.

lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥

= lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
t(m(Tnk

+a∆l))≤t(i)≤t(m(Tnk
+a∆l+∆l)−1)

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥

≤ lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
t(m(Tnk

+a∆l))≤τ≤t(m(Tnk
+a∆l+∆l)−1)

∥∥x̂(τ)− x̂lim(a∆l)
∥∥

= lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
Tnk

+a∆l≤τ≤t(m(Tnk
+a∆l+∆l)−1)

∥∥x̂(τ)− x̂lim(a∆l)
∥∥

(x̂ is a constant function on interval [t(m(Tnk
+ a∆l)), Tnk

+ a∆l] by (9.21) and (9.22))

≤ lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
Tnk

+a∆l≤τ<Tnk
+a∆l+∆l

∥∥x̂(τ)− x̂lim(a∆l)
∥∥ (by (9.16))

= lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l)

∥∥ . (F.70)

By (9.33), ∀δ > 0, ∃k0 such that ∀k ≥ k0, ∀t ∈ [0, T),∥∥x̂(Tnk
+ t)− x̂lim(t)

∥∥ ≤ δ.

∀t ∈ [0, T),∀l,∀a, ∀k ≥ k0,∣∣∣∣∣∣ sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l)

∥∥− sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥∣∣∣∣∣∣

≤ sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∣∣∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l)

∥∥− ∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥∣∣

(by |supx f(x)− supx g(x)| ≤ supx |f(x)− g(x)|)
≤ sup

0≤a≤ t
∆l

−1

sup
0≤τ<∆l

∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l)− x̂lim(a∆l + τ) + x̂lim(a∆l)

∥∥
≤ sup

0≤a≤ t
∆l

−1

sup
0≤τ<∆l

∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l + τ)

∥∥
≤ sup

0≤a≤ t
∆l

−1

sup
0≤τ<∆l

δ

≤δ.

262

Thus, ∀t ∈ [0, T),∀l,∀a,

lim
k→∞

sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l)

∥∥
= sup

0≤a≤ t
∆l

−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥.

Therefore,

lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥

= lim
k→∞

sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂(Tnk
+ a∆l + τ)− x̂lim(a∆l)

∥∥ (by (F.70))

= sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥. (F.71)

∀j,∀t ∈ [0, T),∀l,

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂(t(i)), Yi+1)−Hrnj
(x̂lim(a∆l), Yi+1)

)∥∥∥∥∥∥∥
≤ lim

k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥m(Tnk

+t)−1∑
i=m(Tnk

)

α(i)L(Yi+1)

(by (F.69))

≤ lim
k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥

lim sup
k→∞

m(Tnk
+t)−1∑

i=m(Tnk
)

α(i)L(Yi+1)


≤ lim

k→∞

 sup
0≤a≤ t

∆l
−1

sup
m(Tnk

+a∆l)≤i≤m(Tnk
+a∆l+∆l)−1

∥∥x̂(t(i))− x̂lim(a∆l)
∥∥CH

(by (F.53))

=CH sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥. (by (F.71)) (F.72)

By Corollary 2, x̂lim is continuous and [0, t] is a compact set, ∀ϵ > 0,∃η such that

sup
0≤|t1−t2|≤η,t1∈[0,t],t2∈[0,t]

∥∥x̂lim(t1)− x̂lim(t2)
∥∥ ≤ ϵ. (F.73)

263

Thus, ∀ϵ > 0, ∃l0 such that ∀l ≥ l0,∆l ≤ η and we will have

0 ≤ sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥ ≤ ϵ. (by (F.73))

Therefore, ∀t,

lim
l→∞

 sup
0≤a≤ t

∆l
−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥ = 0. (F.74)

This concludes ∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
(
Hrnj

(x̂(t(i)), Yi+1)−Hrnj
(x̂lim(a∆l), Yi+1)

)∥∥∥∥∥∥∥
= lim

l→∞
CH sup

0≤a≤ t
∆l

−1

sup
0≤τ<∆l

∥∥x̂lim(a∆l + τ)− x̂lim(a∆l)
∥∥ (by (F.72))

=CH · 0 (by (F.74))

=0.

F.4.5 Proof of Lemma 69

Proof. By (F.42), ∀j,∀a,∀l,

lim
k→∞

∥∥∥∥∥∥
m(Tnk

+a∆l+∆l)−1∑
i=m(Tnk

+a∆l)

α(i)
[
Hrnj

(x̂lim(a∆l), Yi+1)− hrnj
(x̂lim(a∆l))

]∥∥∥∥∥∥ = 0.(F.75)

Thus,∀j,∀t ∈ [0, T),

lim
l→∞

lim
k→∞

∥∥∥∥∥∥∥
t

∆l
−1∑

a=0

m(Tnk
+a∆l+∆l)−1∑

i=m(Tnk
+a∆l)

α(i)
[
Hrnj

(x̂lim(a∆l), Yi+1)− hrnj
(x̂lim(a∆l))

]∥∥∥∥∥∥∥
≤ lim

l→∞

t
∆l

−1∑
a=0

lim
k→∞

∥∥∥∥∥∥
m(Tnk

+a∆l+∆l)−1∑
i=m(Tnk

+a∆l)

α(i)
[
Hrnj

(x̂lim(a∆l), Yi+1)− hrnj
(x̂lim(a∆l))

]∥∥∥∥∥∥
= lim

l→∞

t
∆l

−1∑
a=0

0 (by (F.75))

=0.

264

	Introduction
	Background
	Finite Markov Decision Process
	Discounted Markov Decision Process
	Constrained Markov Decision Process
	Off-Policy Evaluation
	Importance Sampling for Off-Policy Evaluation
	Fitted Q Evaluation
	Policy Gradient
	Linear Function Approximation
	Off-policy Temporal Difference Learning
	Gradient Temporal Difference Learning
	Emphatic Temporal Difference Learning

	Related Work
	Variance Reduction in Policy Evaluation
	Multi-Policy Evaluation
	Multiple target policies
	Multiple logging policies

	Safe Reinforcement Learning
	Robust Reinforcement Learning
	Stability of Reinforcement Learning Algorithms

	Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design
	Preliminaries
	Variance Reduction in Statistics
	Variance Reduction in Reinforcement Learning
	Learning Closed-Form Behavior Policies
	Empirical Results
	Discussion

	Efficient Multi-Policy Evaluation for Reinforcement Learning
	Preliminaries
	Variance Reduction in Statistics
	Variance Reduction in Reinforcement Learning
	Empirical Results
	Discussion

	Doubly Optimal Policy Evaluation
	Preliminaries
	Variance Reduction in Reinforcement Learning
	Variance Comparison
	Learning Closed-Form Behavior Policies
	Empirical Results
	Discussion

	Efficient Off-Policy Evaluation with Safety Constraint for Reinforcement Learning
	Preliminaries
	Constrained Variance Minimization for Contextual Bandits
	Constrained Variance Minimization for Sequential Reinforcement Learning
	Learning the Optimal Behavior Policy
	Empirical Results
	Discussion

	Efficient and Robust Policy Evaluation for Reinforcement Learning through Transition Gradient
	Preliminaries
	Adversarial Off-Policy Evaluation
	Solving the Inner Loop
	On-Transition Gradient of the Variance
	Off-Transition Gradient of the Variance

	Solving the Outer Loop
	Empirical Results

	The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise
	Preliminaries
	Main Results
	Prior Work
	Main Proof
	Diminishing Asymptotic Rate of Change
	Equicontinuity of Scaled Iterates
	A Convergent Subsequence
	Diminishing Discretization Error
	Identifying Contradiction and Completing Proof

	Applications in Reinforcement Learning
	Eligibility Trace
	The Deadly Triad
	Gradient Temporal Difference Learning
	Emphatic Temporal Difference Learning

	Discussion

	Conclusion
	Bibliography
	Appendix for Chapter 4
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Experiment Details
	GridWorld
	MuJoCo

	Appendix for Chapter 6
	Proofs
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Lemma 10

	Experiment Details
	GridWorld
	MuJoCo

	Appendix for Chapter 5
	Proofs
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9

	Experiment Details
	Learning Closed-Form Behavior Policy
	GridWorld
	MuJoCo

	Appendix for Chapter 7
	Proofs
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 1
	Proof of Theorem 16
	Proof of Theorem 17
	Proof of Theorem 18
	Proof of Lemma 15

	Experiment Details
	GridWorld
	MuJoCo

	Appendix for Chapter 8
	Proof
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Lemma 19
	Proof of Lemma 20

	Appendix for Chapter 9
	Mathematical Background
	Technical Proofs
	Proof of Lemma 23
	Proof of Lemma 24
	Proof of Lemma 25
	Proof of Lemma 26
	Proof of Lemma 28
	Proof of Lemma 29
	Proof of Lemma 30
	Proof of Lemma 31
	Proof of Corollary 1
	Proof of Theorem 20

	Auxiliary Lemmas
	Proofs for Completeness
	Proof of Lemma 22
	Proof of Lemma 27
	Proof of Lemma 67
	Proof of Lemma 68
	Proof of Lemma 69

	doctype2: Dissertation
	degree2: Doctor of Philosophy
	studentname2: Shuze Daniel Liu
	verbiage: This Dissertation has been read and approved by the examing committee:
	advisor1: Shangtong Zhang
	advisor2:
	comm1: Aidong Zhang
	comm2: Chen-Yu Wei
	comm3: Cong Shen
	comm4: Feng Lu
	comm5:
	comm6:
	semester2: May
	year2: 2025
	doctitle: Efficient and Robust Policy Evaluation for
Reinforcement Learning
	doctype: Dissertation
	degree: Doctor of Philosophy
	studentname: Shuze Daniel Liu
	semester: May
	year: 2025

