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ABSTRACT 

 Today, transportation agencies face aging infrastructure, increasing traffic demands and 

funding limitations, making efficient allocation of maintenance, rehabilitation, and replacement 

(MR&R) resources increasingly difficult. Many State Departments of Transportation (DOTs) use 

asset management principles, such as deterioration modeling and future condition prediction, to 

manage and schedule maintenance for thousands of bridges in an inventory or network. 

Deterioration modeling is an essential bridge management tool for predicting future condition 

and for helping allocate MR&R funds. However, existing deterioration modeling methods fail to 

account for interaction between bridge elements, particularly subordinate deterioration.  

Subordinate deterioration occurs when element deterioration is impacted by the 

deterioration of a separate element, for example, bridge joints affecting the condition of bearings, 

pier caps, beam ends and abutments. Bridge engineers recognize subordinate deterioration exists 

for certain bridge elements, but it is ignored in current deterioration modeling. This study 

provides an investigation into the effect of deck joint deterioration on the deterioration of steel 

bearings and reinforced concrete pier caps for bridges in the Commonwealth of Virginia. 

However, the techniques developed in this research are general and can be applied to investigate 

the subordinate interaction of other elements. 

State DOTs are required by federal law to inspect and assess the condition of bridges by 

visual inspection. This is captured through element-level inspections, where the condition of 

individual members and components of a bridge are rated on a numeric scale based on condition 

definitions. Element-level data from Virginia’s inspection database were used to develop datasets 

of bridge inspection reports with steel bearing and pier cap elements. First, exploratory statistical 

analysis, using categorical data methods, was conducted to determine the significance of 
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subordinate deterioration. The investigation then explored different statistical models to predict 

the condition of the subordinate element. Finally, this research proposed a method to develop the 

transition probability matrices for elements that have a subordinate relationship to be used in 

Markov Chain deterioration modeling. 

In this research, a statistically significant association between joints and condition of 

subordinate elements was found. This showed that subordinate deterioration existed in the 

inspection data and could be incorporated into bridge management practices. Multi-category 

logistic regression models were developed but failed the global goodness-of-fit test, suggesting 

the models did not accurately reflect the inspection data. The proposed Markov Chain approach 

to incorporate subordinate deterioration provided useful results and was calibrated using 

minimization of the squared error and the goodness-of-fit test.  

 

Keywords: Deterioration Modeling, Bridge Management, Element Interaction, Subordinate 

Deterioration  
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1.0 Introduction 

Bridges represent major investments for the owner as well as for the community of users. 

In any transportation system, a bridge acts as a primary element of the community network 

because “[i]t likely controls the capacity; it is the highest cost per mile; and if the bridge fails, the 

system fails” (Barker and Puckett 2013). Currently there are over 21,000 bridges and culverts in 

the State of Virginia; over 60% of these structures are older than forty years (VDOT 2014). To 

manage maintenance and repairs for this bridge inventory, the Virginia Department of 

Transportation (VDOT) uses element-level inspection techniques to describe and maintain data 

on the in-service condition of these bridges. The collected inspection data are used for many 

purposes, including the development of deterioration models to predict future condition of bridge 

elements and to assist in decision-making and optimal resource allocation to maintain Virginia’s 

infrastructure (Reardon and Chase 2015).  

1.1 Background 

Maintenance and repair actions due to bridge deterioration accounts for a significant 

portion of DOT budget expenditures (VDOT 2014). Deterioration is caused by many factors, 

including repeated and increased loading, environmental factors and lack of maintenance. Today, 

transportation agencies face aging infrastructure, increasing traffic demands and funding 

limitations and are mandated to use asset-based management for the allocation of maintenance, 

rehabilitation, and replacement (MR&R) resources. To assist maintenance engineers, bridge 

management systems (BMS) have been developed and have the capability to generate predictive 

models of bridge deterioration based on inspection report data. These systems help optimize 

MR&R decision-making and fund allocation for bridge networks under financial constraint. “The 
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quality of these decisions depends, to a great extent, on the ability to predict the future condition 

of bridges” (Agrawal and Kawaguchi 2009).  

Despite this, current modeling and analysis of deterioration do not account for the 

interaction of elements or subordinate deterioration (Sianipar and Adams 1997, LeBeau and 

Wadia-Fascetti 2000, Wild et al. 2013). Subordinate deterioration occurs when the deterioration 

of one specific element is related to, or affected by, the deterioration of another distinct element. 

The inclusion of this interaction in bridge management would provide greater efficiency in the 

allocation of funds for maintaining bridge inventories and provide greater functionality of bridge 

management programs to capture in-service conditions.  

1.2 Subordinate Deterioration 

As described, the concept of subordinate deterioration occurs when deterioration of a 

specific element is dependent on the deterioration of other elements. A common example known 

to maintenance engineers is the deterioration of elements associated with the deterioration (and 

eventual failure) of bridge joints. The primary function of joints in a bridge is to provide 

discontinuities in the deck to accommodate expansion and contraction due to temperature 

change. The joint is typically sealed by a flexible membrane or includes a material to protect 

superstructure and substructure elements below from water and debris. Bridge joint seals can be 

neoprene rubber, silicone adhesive or assemblies. Open joints also exist and may include a 

channel or catch system to divert water and debris. However, as bridge joints deteriorate and fail, 

water, deicing chemicals, salts and debris accumulate on bridge bearings, beam ends, abutments, 

and pier caps located under the joints, thus affecting the condition and accelerating the 

deterioration of those elements. In this application, the joints act as the primary element while 

bearings, beam ends, abutments and pier caps are subordinate elements. 
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1.3 Objectives 

The concept of subordinate deterioration is known to bridge maintenance engineers; 

however, no method or study quantifying this interaction has been developed and consequently 

this relationship is largely ignored in current modeling. This research investigates subordinate 

deterioration between bridge elements by statistically describing the relationships between 

elements and developing more descriptive predictive models that account for the interaction for 

bridge management systems through the use of historic bridge inspection reports. This research 

focuses on the interaction of joint elements with bearing and pier cap elements. Specifically, this 

research looks to answer the following fundamental questions: 

 Do subordinate relationships exist between these bridge elements? 

o  Are deterioration rates for bearing and pier cap elements different with 

and without the presence of subordinate interaction? 

o Are these relationships statistically significant? 

 Can subordinate deterioration relationships be modeled? 

o If a joint is in a certain condition, can the condition of the subordinate 

element be predicted? 

o Can this be incorporated in deterioration modeling for current bridge 

management systems? 

To answer these questions, this study identified bridges with and without subordinate 

interactions for the different elements and evaluated the condition and deterioration in each case. 

It was hypothesized that the presence of joints would have a profound effect by increasing the 

deterioration of the subordinate elements as compared to the deterioration process absent of 

joints. It was further hypothesized, if joints were present, joints in poorer condition would result 
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in a higher level of deterioration for the subordinate elements than joints in good or fair 

condition.  

The importance of deterioration models is recognized in the bridge maintenance 

community. This investigation provided more detailed insight concerning the in-service 

operating conditions of bridges and developed enhanced deterioration models. This, in turn, will 

help state maintenance engineers plan and allocate resources in the most efficient way possible 

by accounting for subordinate relations between elements and increasing the usefulness of 

modeling bridge deterioration. 

2.0 Literature Review 

Federal bridge inspection requirements were implemented as a result of the collapse of 

the Ohio River Bridge in Point Pleasants, West Virginia on December 15, 1967. The “Silver 

Bridge”, as it was called, was a suspension bridge that used a steel eyebar chain and hanger 

system to support the deck. The collapse occurred due to a fracture in one of the eyebars “as a 

result of the joint action of stress corrosion and corrosion fatigue” (NTSB 1970). This collapse 

led to the creation of the National Bridge Inspection Standards (NBIS) that requires all bridges 

on public roads under a state’s jurisdiction be inspected a least once every two years (Barker and 

Puckett 2013). Also, bridges with spans greater than twenty feet must be cataloged and reported 

in the National Bridge Inventory (NBI) (Federal Register 2004). Two other bridge collapses 

contributed to the formalization of bridge inspection standards: the Mianus River Bridge in 

Greenwich, Connecticut and the Schoharie Creek Bridge in Amsterdam, New York. These 

incidents led to the primary inspection and documentation requirements that are common 

practice today and are reliant on visual inspection of condition to identify deterioration of the 

structure. 
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2.1 Bridge Inspection Types 

Resulting from the implementation of the NBIS requirements, State DOTs are required to 

collect and report inspection data on the condition of bridges to the Federal Highway 

Administration (FHWA). This inspection requirement is based on the General Condition Rating 

(GCR) of bridge components using visual inspection. The rating is based on a scale of 0-9, with 

9 being excellent condition and 0 being the failed condition and apply to four major bridge 

subsystems: deck, superstructure, substructure and culverts (FHWA 1995). These data are used 

by FHWA to appropriate funding to State DOTs. 

The NBI ratings provide a broad overall description of bridge condition and in the 1980s, 

concerns whether the NBI rating system provided the best representation of condition led to the 

development of the element-level inspection method. Element-level data, still based on visual 

inspection, differ from the GCR approach in that data are collected on individual elements 

instead of the broad NBI components (VDOT 2007). Element-level data are more descriptive of 

a bridge because each element has a prescribe unit of quantity and inspectors are required to 

specify quantities of an element that are in the different condition states.  

This inspection approach was developed for use with bridge management systems. BMS 

is a tool to assist in the management and allocation of maintenance funding and resources for a 

network of bridges as opposed to a single bridge. “A good BMS is a comprehensive database of 

bridge, traffic cost and safety data and an ongoing program for data collection and an analytical 

tool to systematically yield a network-level analysis and optimization of bridge data” (VDOT 

2007). One of the most attractive features of these systems to State DOTs is the ability to capture 

and analyze the effects of the deterioration process and to develop deterioration models to predict 

future condition for bridge elements using historic inspection data. Passed in 1991, the 
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Intermodal Surface Transportation Efficiency Act (ISTEA) required the use of BMS by State 

DOTs (Wells 1994). As described, the goal of these systems was to manage a network of bridges 

instead of a single bridge. Currently, Pontis is the most common BMS system used by State 

DOTs in the United States. However, the recently developed AASHTOWare BrM system will 

replace the Pontis system in the near future. 

2.2 Pontis Bridge Management System 

In the United States, the Pontis software system, developed by the American Association 

of State Highway and Transportation Officials (AASHTO), serves as the primary asset-based 

management system used by State DOTs to collect bridge condition data and manage bridge 

inventories. Pontis acts as a database to store inspection data as wells as an optimization tool to 

perform deterioration modeling and asset management analysis. The system has the capability to 

analyze a single bridge, a group of bridges or an entire inventory of bridges by simulating 

different maintenance and deterioration scenarios as well as determining optimal maintenance 

plans and feasible actions (Gutkowski and Arenella 1998). The feasible action and optimization 

capabilities of Pontis are based on deterioration modeling from inspection data. 

To standardize element-level inspections for use with Pontis, AASHTO identified and 

defined Commonly Recognized (CoRe) elements as important elements that exist in the main 

bridge types across the United States (VDOT 2007). State DOTs also have the ability to include 

agency defined elements, in addition to the CoRe elements, for inspection reports. Each element 

is rated on a scale of 1 to 3, 4, or 5, depending on the element. In this system, one is the excellent 

condition state and the highest value (3, 4 or 5) is the worst condition state as described by the 

condition state definitions. In addition to the CoRe and agency defined elements, Pontis 

incorporates Smart Flags, which are similar to elements but are identifiers of specific issues and 
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defects such as fatigue and section loss. Smart Flags are an important feature of Pontis because 

they provide additional detail beyond the scope of the defined elements. In the State of Virginia, 

VDOT defines 111 inspection elements and 19 Smart Flags.  

This research investigates the interaction of joint elements with bearing and pier cap 

elements. The CoRe guidelines define five joint elements, six bearing elements and pier cap 

elements for steel, timber, reinforced and prestressed concrete. The quantity for joint and pier 

cap elements are described in units of length while bearing quantities are described as each. 

These elements are listed in Appendix A with the CoRe condition state definitions. 

2.3 Markov Deterioration Modeling 

Current deterioration modeling by BMS is based on Markov Chains. This approach is a 

stochastic method that captures the randomness of a system and is well accepted for modeling 

bridge deterioration (Agrawal and Kawaguchi 2009). The Markov process determines the 

probability of a quantity transitioning from one finite state to another, based only on the current 

state (Norris 1997). Because of this, Markov Chains are termed as memoryless; the future 

probability does not rely on the past states of the element. This method is suited for use with 

bridge deterioration because the finite states of the Markov Chain are the condition states used in 

visual inspections. Based on the number of discrete states, this method develops a transition 

probability matrix (TPM) that describes the probability of an element in one state changing to the 

next state. An arbitrary TPM is shown in Eq. 1. 

𝑇𝑃𝑀 = [
𝑃11 … 𝑃1𝑘

⋮ ⋱ ⋮
𝑃𝑘1 … 𝑃𝑘𝑘

]    Eq.1 

 

Here, 𝑃𝑖𝑗, is the probability of an element in the ith state transitioning to the jth state where 

𝑖 = 1. . . 𝑘 and 𝑗 = 1. . . 𝑘, with k being the total number of states. Thus, the diagonal values are the 
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transition probabilities of an element remaining in the same state, called the retaining 

probabilities. As described by Thompson (2011), TPMs used for deterioration modeling must be 

square, only have values above the diagonal, and have positive values. These requirements are 

based on the assumption that elements do not spontaneously improve in condition (maintenance 

is not incorporated) and elements do not change more than a single condition state between 

transition periods. This creates zero values for probabilities of transitioning to a condition state 

not directly following the current state. Also, the sum of the probabilities in a row must equal to 

one (100 percent), as all quantity of an element must be accounted for as either remaining in the 

same state or transitioning to a new state. The final condition state is referred to as the terminal 

state and the probability is one (100 percent) because quantity can no longer transition to another 

state. This creates a simplified TPM for bridge deterioration as shown in Eq.2; a transition 

probability matrix for an element with three condition states is shown. 

𝑇𝑃𝑀 = [
𝑃11 1 − 𝑃11 0
0 𝑃22 1 − 𝑃22

0 0 1
]    Eq.2 

 

The TPMs developed from Markov Chains can be used to predict the distribution of an 

element in each condition state after a transition period. This is done through matrix 

multiplication of a row matrix containing the current distribution of an element quantity in each 

condition state by the transition probability matrix. This is represented in Equation 3, where 𝐶𝑜, is 

the current distribution of element quantities in each condition state and 𝐶𝑡 is the final 

distribution of quantities after a transition period. 

𝐶𝑡 = 𝐶𝑜(𝑇𝑃𝑀)      Eq.3 

 

This can be extended to additional transitions simply by repeating the multiplication with 

the final distribution (Keshavarzrad et al. 2014). Thus, the distribution after the nth transition is 

presented as  
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𝐶𝑛 = 𝐶𝑜(𝑇𝑃𝑀)𝑛     Eq. 4 

 

In the application of bridge deterioration, the transition period is taken as one year. For 

most bridges, minimum requirements state that a bridge must be inspected once every two years; 

however, a one year transition period is still applicable. The benefit of Markov Chains is the 

ability to show the distribution of quantity after each transition or at a future time of interest. 

2.4 Multi-category Logistic Regression 

The primary method of deterioration modeling for bridges is Markov Chains. However, 

other disciplines use logistic regression for deterioration models. Logistic regression is a 

statistical method for determining the probability of a dependent variable being assigned to a 

category through the relationship with independent variables. The most common form is binary 

logistic regression, where two possible categories exist for the dependent variable, usually 

described as success or failure. However, extensions of binary logistic regression are used to 

model a dependent variable with more than two possible categories. An introduction to multi-

category logistic regression is provided in Appendix B. 

Because multi-category logistic regression describes the probability of a dependent 

variable, the method can be utilized for deterioration modeling where the condition states are 

defined as the categories of the dependent variable. Salman and Salem (2012) provided a study 

of applying logistic regression to model deterioration of sewer lines for the Metropolitan Sewer 

District of Greater Cincinnati. Three methods, ordinal, multinomial and binary models, were 

used “to predict probabilities associated with future condition levels of individual wastewater 

collection pipes” (Salman and Salem 2012). Data were collected and included 11,373 inspection 

reports characterizing the condition of the sewer lines on a scale of 1-5. The lower value 

indicates better condition and is based on the National Association of Sewer Service Companies 



10 
 

(NASSC) inspection standards. The research used various independent variables to model the 

condition rating of the sewer lines. Results indicated that the ordinal method, based on the 

proportional odds assumption, violated the assumption and could not be applied. However, 

deterioration models were developed using the multinomial and binary logistic regression 

techniques to create predictive models for sewer line condition. 

A separate study (Tran et al. 2009) was conducted to develop alternative deterioration 

models to Markov Chains for storm water pipes in Australia. Here, pipe condition was based on 

a categorical scale of 1 to 3. The study used independent variables including pipe size, location, 

age and other variables to predict the condition state assignment using multi-category logistic 

regression as well as a probabilistic neural networks model. The Chi-Squared Goodness-of-Fit 

Test was utilized to test the relative performance of the models for a sample of inspection data 

for 417 pipe sections for the City of Greater Dandenong, Australia. The results of the study 

found that the multi-category logistic regression model did not provide good fit based on the 

Chi-Squared Test; however, this study did demonstrate the applicability of multi-category 

logistic regression for deterioration modeling. 

2.5 Element Interaction 

Multi-category logistic regression has been used to model deterioration of pipe networks. 

Additionally, numerous studies (Agrawal et.al 2010, Keshavarzrad, et al. 2014, Wellalage, et al. 

2015) have been conducted on the use of Markov Chains for deterioration modeling of bridge 

and infrastructure assets as well as to improve and calibrate the transition probabilities. However, 

very few studies address the impact of element interaction or subordinate deterioration for 

deterioration modeling techniques which is ignored in current bridge management practices. 
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One study that does investigate element interaction was conducted by Sianipar and 

Adams (1997). The study described element interaction as the process where the deterioration of 

one or more elements is related to the deterioration of another element in the system. This study 

investigated the use of fault-tree models to determine the probability that deck deterioration will 

accelerate based on element interaction. “Fault trees and event trees are logic diagrams 

consisting of a top event and a structure delineating the ways in which the top event can occur” 

(Wood 1985). In their research, different interaction scenarios were presented with the main 

focus placed on the interaction of bearings and expansion joints on the top event of accelerated 

deterioration of concrete decks. The joints and bearings were primary elements and the concrete 

deck was the subordinate element. Bearing malfunctions and expansion joint malfunctions were 

used as intermediate events, each composed of simple events such as worn bearings and joint 

damage, to describe the probability of the top event. The researchers used expert elicitation to 

provide the probabilities of the simple events to quantify the fault-tree. Results showed that the 

interaction between “transverse flexure cracks and damage to joint seals has the largest 

contribution to the occurrence of the top event” (Sianipar and Adams 1997). This research 

considered the interaction of elements for the study of element deterioration by showing that 

deterioration of a primary element can be affected by secondary elements. A second study 

(LeBeau and Wadia-Fascetti 2000) continued the use of fault trees to investigate bridge 

deterioration interaction and provided similar results. Similar to fault trees, impact trees 

incorporate logic statements to characterize the interaction of elements for deterioration models. 

A recent study (Wild et al. 2013) investigated the use of this method to account for element 

interaction in bridge deterioration modeling and prediction.   
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Currently, no formal method accounting for element interaction in deterioration modeling 

is implemented. The fault tree and impact tree methods acknowledge the effect an element can 

have on the deterioration of another element but focus on the use of probability theory to 

investigate the change in probability of failure. Also, these methods are not based on bridge 

inspection or condition state assignments.  

A feature in Pontis does allow element deterioration rates to be modified based on four 

different environment states (Cambridge 2005). These states are used to describe elements in 

harsher environments, which tend to deteriorate quicker. These different deterioration 

environments can be used to represent element interaction informally, but are inadequate to fully 

describe subordinate deterioration (Sianipar and Adams 1997). The four environment states 

given in the Pontis system (Cambridge 2005) are the following: 

1. Benign- no environmental condition affecting deterioration 

2. Low- environmental conditions create no adverse impacts or are mitigated by past 

non-maintenance actions or highly effective protective systems 

3. Moderate- typical level of environmental influence on deterioration 

4. Severe- environmental factors contribute to rapid deterioration 
 

For example, a bearing could be assigned a harsher Pontis environmental state if it is 

known that a joint above the element has failed, thus increasing the deterioration rate for the 

bearing. However, the environmental states are inadequate to represent interaction because 1) 

they are developed from “external factors such as traffic volumes, traffic loads, and operating 

practice”, 2) they may be previously used to represent other conditions, and 3) implementation is 

subjective (Sianipar and Adams 1997). This identified an area of needed study and can improve 

deterioration modeling for the application of bridge management and asset-based resource 

allocation.  
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2.6 Previous Research 

By a previous request from VDOT, the Markov deterioration models for all 111 Virginia 

CoRe bridge elements were developed in a separate project. These models were developed for 

use with the Virginia Pontis BMS to characterize the independent deterioration of the elements 

and did not account for subordinate deterioration. The deterioration models developed included 

the models for steel fixed bearing and reinforced concrete pier cap elements and provided the 

transition probability matrices and Markov Models. The TPMs for these elements are included in 

Appendix D. The transition probabilities were obtained by using the Solver optimization tool in 

Microsoft Excel to optimize the TPM values through minimizing the squared error between the 

modeled quantity distribution and observed quantity distribution from historic inspection reports 

in the Pontis database from 1994 to 2012. These models do not incorporated subordinate 

deterioration and could be used as a comparison to the results of this study. 

3.0 Methodology 

The objectives of this research were to investigate if any relationship exists for 

subordinate deterioration of two related bridge elements through the use of inspection data and to 

develop methods to predict the deterioration caused by interaction. The main focus for this 

research was the relationship between joint condition and the deterioration of bearing elements 

and the relationship between joint condition and the deterioration of pier caps elements. Here, 

joints are defined as the primary element, the element whose deterioration affects the condition 

of another element, and bearings and pier caps are defined as the subordinate elements whose 

condition can be affected by the deterioration of the primary element. 

Data for this research were obtained from the VDOT Pontis database. The database 

provided the historical inspection reports from 1994 to 2012 for all bridges in Virginia. The data 
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were exported to a Microsoft Access database to simplify data analysis. The development of the 

Microsoft Access database is described in a previous project (Johnston 2013). The relational 

database included tables for element-level inspection data as well as all reporting fields required 

by the NBI guidelines. Both the element-level data and NBI data were used to generate data 

samples that characterize bridges with and without subordinate deterioration. 

3.1 Bridge Types Investigated 

In bridge design, bearings support the girders and transfer load from the superstructure to 

the substructure. The importance of bearings is often disregarded; however, properly functioning 

bearings are critical to avoid freezing or locking of movement, which can lead to high stresses 

and even failure of the structure (Zhao and Tonias 2012). For simply-supported designs, bearings 

are placed at the end of each span, either at the end abutments or intermediate piers, and allow 

longitudinal movement and/or rotation due to loading and temperature effects. Typically, bridge 

joints are located above the bearings to allow the deck to expand and contract as a result of the 

same effects. Because of this, the deterioration of the joint causes the potential for water, road 

salts and debris to contact and corrode the bearing and pier cap, leading to significant 

deterioration. However, simply-supported bridges, can be retrofitted to eliminate the joints, thus 

protecting the bearing for water and debris. Figure 1 shows typical joint-bearing layouts for two 

span simply-supported bridges. This is similar for single span bridges with the exception of the 

intermediate support location.  
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Figure 1- Typical simply-supported bridge layouts 

For continuous bridge designs, a single girder can extend multiple spans with bearings 

located at the ends of the span as well as in between the ends. This design eliminates the need for 

joints within the deck. At the end of the spans, joints may or may not be present over the 

bearings or also may be eliminated. In a continuous span, there always exists a bearing line that 

is protected by the deck as shown in Figure 2. 

 

 
 
 
 
 
 

 

Figure 2- Typical continuous bridge layouts 

Because of the large number of bridges in Virginia and the multitude of bearing and joint 

configurations, this research only investigates one- and two-span bridges. One- and two-span 

bridges account for the majority of bridges and facilitate the ability to identify the configuration 

a) Two-span simply-supported bridge with joints 

b) Two-span simply-supported bridge with joints eliminated 

a) Two-span continuous bridge with joints 

b) Two-span continuous bridge with joints eliminated 

Fixed Bearing Movable Bearing 

Fixed Bearing Movable Bearing 

Deck Joint Eliminated Deck Joint 

Deck Joint Eliminated Deck Joint 
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of joint, bearing and pier cap elements and whether subordinate relationships are present. The 

Pontis data were analyzed to identify which bridges, and more specifically, which bearing and 

pier cap elements, are subjected to subordinate deterioration from those elements that are not 

subjected to subordinate deterioration. The objective was to develop a sample of bridges with 

joints over the bearings and pier caps and to compare the interaction to bearings and pier caps 

covered by the deck of a continuous span bridge. This was accomplished using the element-level 

inspection data and NBI data. 

3.2 Data Processing and Cleaning 

As part of the NBI standards, DOTs are required to report the material and configuration 

of bridges. Using Federal Item 43- Structure Type of the NBI coding guide, the classification of 

each bridge can be determined (FHWA 1995). Federal Item 43 is given in Table 1. 

Table 1- NBI bridge types 

Federal Item 43 Structure Type 

Materialmain 1 Concrete- Simply-Supported 

Materialmain 2 Concrete- Continuous 

Materialmain 3 Steel- Simply-Supported 

Materialmain 4 Steel- Continuous 

Materialmain 5 Prestressed Concrete- Simply-Supported 

Materialmain 6 Prestressed Concrete- Continuous 

 

All bridges are identified by a unique Federal Identification number called the bridge key. 

By using the NBI coding for structure type, the bridge samples could be obtained by creating a 

query in the Microsoft Access database to include only inspection records for each bridge type. 
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The inspection data for each structure type was exported to Microsoft Excel, where the samples 

were further filtered by eliminating bridges with more than two spans.  

It was necessary to remove bridges where joint elimination retrofits occurred from the 

data samples. Additional data processing and filtering were necessary to select a sample that 

would accurately include the desired interaction of elements. To investigate the subordinate 

effects of joint deterioration on bearing deterioration, the investigation was limited to steel 

bearings, the most common and most susceptible bearing type to corrosion and deterioration. 

Typically, steel bearings are only applicable to bridges that also have steel superstructures. 

Therefore, to identify bridges for this sample, the bearing portion of the investigation was limited 

to bridges coded as Materialmain 3 and Materialmain 4, steel superstructures. 

Once steel, one- and two-span bridges were identified, quantity and condition of joint 

elements for each bridge inspection were identified. The quantity of joint elements used in 

inspection reports is linear feet; therefore, the actual number of joints had to be calculated based 

on the deck width to determine the configuration of joints over the bearings. A major factor in 

this computation was the inclusion of the skew angle. The skew of a bridge is the angle between 

the centerline of the abutment/pier and a line perpendicular to the direction of the roadway. For 

bridges with large skew angles, the linear footage of a single joint would be much greater than 

the deck width. The total number of joints present on a bridge was determined by dividing the 

quantity of joint by the deck width adjusted for the skew angle. This is given in Eq. 5. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐽𝑜𝑖𝑛𝑡𝑠 =
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝐽𝑜𝑖𝑛𝑡 

𝐷𝑒𝑐𝑘 𝑤𝑖𝑑𝑡ℎ÷cos (𝑠𝑘𝑒𝑤)
     Eq. 5 

The calculation was necessary to identify the configuration of joints on different bridges 

and whether joints had been eliminated. For typical bridges, the maximum number of joints 

possible is the number of spans plus one; that is, joints can occur at the beginning and end of 
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each span. Therefore, single-span bridges can have a maximum of two joints and two-span 

bridges can have three joints. In the case of continuous bridges, the number of joints would be 

less than or equal to the number of spans. This was important to identify whether bearings were 

subjected to subordinate deterioration, especially for the case of simply-supported bridges since, 

as described, a bridge could be coded as a simply-supported superstructure, but the deck could be 

made continuous by retrofits that eliminate the deck joints. These bridges must not be included in 

the sample of bridges with joints since subordinate deterioration no longer exists. By subtracting 

the number of joints present on a bridge from the maximum possible number of joints, the 

number of bearing lines that do not have joints present, was identified. Simply-supported bridges 

that had bearings without joints present and bridges with erroneous number of joints were 

removed so only simply-supported bridges with joints above all bearings were used to populate 

the sample of bearings with joints. For continuous bridges, the calculation described should 

result in one bearing line without joints and bridges that did not meet this requirement were 

removed. Furthermore, the most typical bearing configuration for continuous bridges is movable-

fixed-movable where the middle fixed bearing does not have a joint above. Only bridges in this 

configuration were used to populate the sample of bearings without joints. This was 

accomplished by eliminating bridges that did not have twice as many movable bearings (Element 

311) than fixed bearings (Element 313). Because of this configuration, only fixed bearings 

existed without element interaction. To remain consistent, this study only focuses on the 

subordinate deterioration of fixed bearing elements (Element 313); however, a complimentary 

dataset of movable bearings was developed and could be investigated separately. 

The investigation of subordinate deterioration for joint-pier cap relationships only 

focused on Element 234- Reinforced Concrete Pier Cap because reinforced concrete is the most 
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common material for pier cap design. To develop the sample of pier caps with and without joints, 

similar procedures used for categorizing the bearing samples were applied. However, the sample 

of bridges was not limited to bridges with steel superstructures but was extended to all 

superstructure types (Materialmain 1-6) as deterioration of pier caps is significant regardless of 

the material type of the superstructure. Data processing was simplified for the pier cap samples 

since only two-span bridges needed to be investigated.  

3.3 Element Condition Improvements 

In any standard maintenance program, joints are replaced, steel bearings are repainted 

and concrete is repaired to improve condition. Elements that had major improvements in the 

condition states were identified and removed from the sample. Major improvements for joints, 

bearings and pier caps were identified by comparing the average of condition state for the 

element from one inspection report to the next. If the average condition state increased greater 

than ten percent, it was assumed that a repair or replacement to the element had occurred. Also, 

for each dataset, bridges older than sixty-five years at the time of inspection were removed 

because improvements or repairs likely occurred and may not be included in the inspection 

reports. Also, this age was selected based on the 50-100 year design life common for most 

bridges in Virginia (VDOT 2014). The purpose of these checks is to limit the sample to include 

only condition data for continued deterioration processes because repairs can affect future 

deterioration rates.  

3.4 Data Errors 

As expected with any large set of field data, inconsistencies and errors exist. Common 

errors included missing data, erroneous values and erroneous element coding. The most 

prominent error occurred as a result of calculating the number of joints present and the number 
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of bearing lines without joints. This calculation was used to identify the profile of bridges and 

whether joints exist over all bearings or whether bearings did not have joints present above. 

However, many instances occurred where the calculated number of joints exceeded the possible 

number of joints, resulting in negative number of bearings without joints. To investigate the 

cause of these errors, a random sample of bridges with this error were investigated using the 

element-level data, NBI data, bridge design plans and visual images.  An example of this is the 

twin bridges carrying northbound and southbound traffic of North Sycamore Street over Four 

Mile Run in Northern Virginia. The bridges are identified by bridge key 22 for the southbound 

bridge and the bridge key 23 for the northbound bridge and both have identical inspection 

reports. Inspection reports are available for the years 1996, 2000, 2010 and 2012. The first three 

inspection reports show quantities of 28 for Element 301- Pourable Joint Seal and 24 for Element 

302- Compression Joint Seal. The last inspection report only shows quantity of 24.384 for 

Element 302. The bridges are coded as single span with a skew angle of 25 degrees. The deck 

width is 11.3 meters (37 feet) with length of 19.5 meters (64 feet). The number of protected 

bearing lines calculated was -2.  

Using Google Maps, the location was found using the latitude and longitude in the NBI 

coding. The bridges have two lanes of traffic with a sidewalk on one side of each bridge. This 

supports the deck measurement in the Pontis database assuming twelve foot lanes. The calculated 

length of joint based on the deck width and skew angle is 12.46 meters (41 feet). 
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Figure 3- NBL and SBL N. Sycamore Street over Four Mile Run (Google Maps 2015) 

There are two possible reasons that these bridges did not pass the protected bearing 

check: 1) the joint units are in feet and the deck units are in meters or 2) the quantities are double 

counted. Calculating the length of joint using the skew was 12.46 meters, thus two joints would 

require 24.92 meters of joints. This is close to the values given in either quantity of joint, (28 for 

Element 301 and 24 for Element 302). Thus one of the values may be erroneous. For the final 

inspection report in 2012, however, there is only 24.384 quantity for Element 302, which would 

be accurate. This suggests that the 28 quantity in Element 301 for the first inspection report is an 

error.  

Investigations of three other bridges found similar issues. The conclusion of the 

investigation was that the majority of erroneous values from calculating the number of joints was 

due to inconsistent units of measure, where the deck width was in meters and the joint length was 

in feet. However, other errors and field conditions exist, leading to erroneous calculations. It was 

also noted that documentation or plans of repair or retrofits commonly do not exist with other 

data for a bridge. As was previously described, bridges with quantity errors were not included in 

the samples of data. 
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3.5  Field Inspection 

As part of this research, a field visit with VDOT officials to inspect the condition of 

bearings and pier caps for bridges with and without joints was performed. The investigation 

identified highway bridges in the Staunton district where joint eliminations had been performed 

and bridges where joints were still present. This provided a direct comparison of condition for 

bearing and pier cap elements where joints are present and where joints had been eliminated. The 

investigation found that bridges where joints had been eliminated showed less or slowed 

deterioration of bearings, pier caps and abutments than bridges where joints were still present. 

The field investigation also included a continuous span bridge where a line of bearings 

and a pier cap were not subjected to joint interaction, as was the focus of this study. The bridge 

carries Route 654, White Hill Road over I-81 in Augusta County and is a four-span bridge built 

in 1967. The two end spans of the bridge are simply-supported and the middle two spans over I-

81 are continuous. The bridge is shown in Figure 4. 

 

Figure 4- Rte. 654 White Hill Road over I-81 (Google Maps 2015) 
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The joints between the simply-supported spans and the continuous spans recently had 

been eliminated. The bridge girders as well as the bearings had been repainted. Because of this, 

the bearings under the continuous span and the bearings where joints previously existed showed 

no significant difference in condition. However, the condition of the pier caps at the location of 

the joints before elimination showed significant patching and repairs, while the pier cap located 

under the continuous span where no joints ever existed was in near-perfect condition. The 

condition of the pier cap under the continuous span is shown in Figure 5 and the pier cap located 

where joints previously existed is shown in Figure 6. 

 

Figure 5- Pier cap with no joints present 
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Figure 6- Pier cap where joints existed before elimination 

This field investigation supported the hypothesis that element interaction of joints with 

bearings and pier caps create a subordinate deterioration effect where the deterioration of the 

bearings and pier caps are dependent on the deterioration of the joint element. This field visit 

also supported the methodology of this study to remove bridges where joint elimination retrofits 

have occurred and when improvements to the elements have occurred. 

4.0 Analysis of Data and Results 

With the development of the datasets of inspection reports for bearings and pier caps with 

and without joints, data analysis was conducted. The analysis began by investigating if a 

statistically significant difference in condition existed between the samples for elements with 

subordinate deterioration and elements without subordinate deterioration. Next, statistical 

modeling was conducted to develop a method to predict the condition of the subordinate 

elements based on the primary joint element condition using multi-categorical logistic 

regression. Finally, a method to develop transition probabilities for subordinate deterioration in 

Markov Chains using conditional probabilities was proposed and calibrated.  
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4.1  Exploratory Data Analysis 

As previously described, the quantity for joint elements is linear feet (see Appendix A for 

condition state definitions); thus, inspectors may assign portions of the total length of joints to 

the three condition states defined under the CoRe element definitions. Because of this, a method 

was developed to categorize joint condition based on the average condition state. Classification 

of the joint elements is shown in Table 2.  

Table 2- Joint average condition classification 

Good Fair Poor 

1-1.67 1.67-2.33 2.33-3 

 

The condition of a given joint type present on the bridge was classified as good, fair or 

poor condition based on this calculation. For example, brkey 7 identifies a bridge coded with 

Element 302 – Compression Joint Seal and has 13.6 feet in CS1, 3 feet in CS2, and 7.4 feet in 

CS3. The average joint condition state for this bridge is 1.74 and is classified as fair condition. 

This provided a method for further analysis by dividing the samples of bearings and pier caps 

with joints into subsamples based on the condition of the joint elements.  

For each category of joint condition, the mean and standard deviation of bearing 

conditions was calculated. Results are shown in Table 3. 

Table 3- Average bearing condition by joint category 

Joint 
Category 

# of Inspection Reports  
with Bearing Element 313 

Bearing 
AVE CS 

Bearing 
Std Dev 

No Joint 1268 1.09 0.281 

Good  1630 1.21 0.398 

Fair 658 1.39 0.473 

Poor 283 1.57 0.543 
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 Similar analysis for the subordinate deterioration of pier caps due to the presence of joints 

was conducted. For pier cap elements, four condition states are defined by the CoRe Definitions 

and can be found in Appendix A. The mean and standard deviation, given each joint category, is 

provided in Table 4. 

Table 4- Average pier cap condition by joint category 

Joint 
Category 

# Inspection Reports  
with Pier Cap 234 

Pier Cap 
AVE CS 

Pier Cap 
Std Dev 

No Joint 1654 1.03 0.124 

Good 796 1.12 0.289 

Fair 256 1.36 0.704 

Poor 219 1.57 0.626 

 

This initial analysis was based on the average condition of the joints and as well as the 

average condition of the subordinate elements and showed that average condition state increases 

for the subordinate elements and when the joints were classified in poorer condition. However, 

additional methods using categorical data analysis further investigated the relationships and more 

fully utilized the data.  

Significant work has been done to develop visualization techniques to develop “insightful 

graphical display[s]… to reveal some aspects of the data” (Friendly 2000). To further investigate 

the samples, R software for statistical analysis was used to visualize the relationships in the data. 

Using the vcd package for visualizing categorical data, a ternary plot (also known as a trilinear 

plot) was generated (Meyer et al. 2015). The ternary plot specifically applies to a dataset with 

three variables where the coordinate points are plotted based on the percentages of data in each 

category and the vertices of the triangle represent the extreme location for each category. “Each 

profile point is a weighted average, or centroid, of the vertices” (Greenacre 2007). A ternary plot 
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for bearing inspection reports was developed to show the effect of the presence or absence of a 

joint on bearing condition.  

 

Figure 7- Ternary plot for bearing samples 

 The ternary plot shows the distribution of the percentage of bearing quantity, with and 

without joints, in each condition state for each inspection report. The overall average condition 

state distribution was also determined and is shown by the solid square and triangle in Figure 7. 

These two points are significant because they are the centroid of the samples (Greenacre 2007). 

The ternary plot shows for the majority of inspections, bearing quantity is in CS1 and CS2 with 

less quantity in CS3. Also, the dispersion of bearing condition states is greater for elements with 

joints present, as indicated by the open red squares. 

 The use of a ternary plot was extended to investigate the relation between joint 

classification and the condition state distribution of bearings.  
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Figure 8- Distribution of bearing condition states based on joint condition classification 

Figure 8 relates the joint type present when bearings are coded for the three different 

condition states. The vertices are the joint condition classifications and the coordinate points are 

based on the quantity of joint in each classification state. For inspection reports of bearings 

coded as CS1, approximately 70% have joints classified as good; whereas for bearings coded as 

CS3, approximately 35% of joints are classified as good and nearly 55% are classified as poor. 

Again, only steel fixed bearings were investigated based on the standard continuous bridge 

configuration.  

 Because reinforced concrete pier cap elements are defined with four condition states by 

the CoRe definitions (see Appendix A), a trilinear plot cannot visually express the data. 

However, a similar approach was taken using a percent stack chart to show the distribution of 
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quantity for each condition state and is shown in Figure 9. Note the vertical scale begins at 50% 

because the majority of quantity for both samples are assigned to the first condition state. 

 

Figure 9- Pier cap quantity condition state profile 

 Here, a much larger portion of quantity is assigned to CS2, CS3, and CS4 when joints are 

above the pier caps. When joints are not present, 98% of the quantity is assigned to CS1 with no 

quantity in CS4. Similar to the bearing investigation, the sample of pier caps with joints can be 

further investigated for the classification of the joint that is present. Figure 10 shows the 

association between pier cap condition and the joint present, as classified in the three categories. 
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Figure 10- Distribution of pier cap condition states based on joint condition classification 

 Here, the ternary plot shows similar results to the bearing sample with joints. Of note, the 

plot shows that in all cases of pier caps coded with quantity in condition state four, the joint 

present above the element is in either fair or poor condition, but never in good condition.  

4.2  Statistical Significance of Categorical Data 

The initial exploratory data analysis supported the hypothesis that element interaction 

affects the condition of subordinate elements. However, a primary goal of this research was to 

determine whether the association between the joint and subordinate element deterioration is 

statistically significant. By assigning element quantity to condition states, the data are 

categorical, and therefore, the data cannot be analyzed as continuous variables with typical tests 
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such as the z-test or t-test. Thus, categorical methods, primarily based on the Chi-Squared 

statistic, were used to identify statistical significance.  

For the analysis of statistical significance, contingency tables were developed to cross 

tabulate data based on two variables: joint presence and the subordinate element condition states. 

Table 5 shows the contingency table for bearing condition with and without joints. 

Table 5- Contingency table for bearing condition states and joints 

Bearing Class 
Condition State Col Profile 

(Row Sum) CS1 CS2 CS3 

313 Bearings with Joints 10787 4618 248 15653 

313 Bearings without Joints 6981 739 2 7722 

Row Profile (Column Sum) 17768 5357 250 23375 

 

To investigate if there is a statistical relationship between the condition state of bearings 

with joints and bearings without joints, the Chi-Squared Test for Independence was utilized. This 

test is based on the null hypothesis (Ho) that the variables are independent and the alternative 

hypothesis (HA) that the variables are not independent. In a two-way contingency table as 

presented, the cell frequency can be presented as 𝑛𝑖𝑗 and the cell proportions can be presented 

as 𝑝𝑖𝑗. To test the hypothesis, the observed frequencies are compared to expected frequencies 

calculated assuming independence of the samples. If two variables are statistically independent, 

the joint probability distribution of a cell is the marginal probability of the first variable times the 

marginal probability of the second variable (Walpole et al. 2007). Thus, the expected frequency 

of a certain cell can be calculated as  

𝐸𝑥𝑝𝑖𝑗 =
𝑛𝑖+𝑛+𝑗

𝑛
      Eq. 6 

Here, the plus sign (+) indicates a summation over the indices and n is the grand total of 

the contingency table (Agresti 2007). This equation can be described as the row sum multiplied 
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by the column sum divided by the grand total of the contingency table. As defined earlier and 

using the same notation for the test of independence, the null and alternative hypothesis infer 

𝐻𝑂: 𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗  𝑎𝑛𝑑 𝐻𝐴: 𝑝𝑖𝑗 ≠ 𝑝𝑖+𝑝+𝑗    Eq.7 

The expected value can be compared to the observed value using the Pearson Chi-Squared 

statistic: 

χ2 = ∑
(𝑂𝑏𝑠𝑖𝑗−𝐸𝑥𝑝𝑖𝑗)2 

𝐸𝑥𝑝𝑖𝑗
     Eq.8 

The Chi-Squared statistic was compared to the value of the Chi-Squared distribution at a 

designated level of significance to determine whether the null hypothesis should be rejected. For 

standard hypothesis testing procedure, the designated level of significance is normally α = 0.05. 

Thus, if the Chi-Squared Statistic is greater than the value of the Chi-Squared distribution at α = 

0.05, then the null hypothesis is rejected. 

 To determine whether the distribution of bearing condition state is independent of 

whether a joint is present or not present above the bearing, the R software chisq.test code 

performs the Test for Independence. The R output is shown below. 

 

Figure 11- R output for Chi-Squared Test for Independence of bearings and joints 

The observed and expected values are given under the headings xsq$observed and 

xsq$expected, respectively. The value of the Chi-Squared distribution at α = 0.05 on two degrees 
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of freedom, found using standard Chi-Squared Distribution tables, is 5.991. The test statistic 

value is much greater than the evaluation of the distribution (1328.1>>5.991), indicating that the 

null hypothesis of independence should be rejected, supporting the claim that there is an 

association between the two variables. The associated p-value of the hypothesis is also shown. 

 The same procedure was conducted for the samples of pier cap elements. The 

contingency table was developed to include the four condition states defined for pier caps and is 

shown in Table 6. 

Table 6- Contingency table for pier cap condition states and joints  

Pier Cap Class 
Condition State 

Row Sum CS1 CS2 CS3 CS4 

Pier Caps with Joints 13355.5 1045.2 1064.7 465.9 15931.3 
Pier Caps without Joints 26626.0 402.4 80.0 0 27108.4 

Column Sum: 39981.5 1447.6 1144.7 465.9 43039.7 

 

The Chi-Squared Statistic was calculated using R software and the output is given in Figure 12.  

 

Figure 12- R output for Chi-Squared Test for Independence for pier caps and joints 

The value of the Chi-Squared distribution at α = 0.05 on three degrees of freedom is 

7.815. Again, the statistic value is much greater than the evaluation of the distribution 

(3324.8>>7.815), indicating that the null hypothesis of independence should be rejected. 
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To further investigate the deviation from independence, an association plot was 

developed using R. Association plots graphically display the Chi-Squared Test by visually 

representing deviations from independence for each variable. In the association plot, cell height 

is proportional to the residual value (observed value minus expected value), thus the baseline 

represents independence or no deviation (Friendly 2000). Positive deviations are show above the 

baseline and negative deviations are below the baseline. The cell width is proportional to the 

number of observations for each category. 

  

 

Figure 13- Association plot for bearing samples  
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Figure 14- Association plot for pier cap samples 

As shown, there is deviation from the baseline in each case, which is the reason for the 

rejection of independence from the Chi-Squared Test. Also, it is significant to note that in each 

case the samples with joints are approximately mirror images to the samples without joints. For 

the sample of bearings with joints present, the deviation is negative for CS1 and positive for CS2 

and CS3, indicating that for CS1, less bearings are observed than expected and for CS2 and CS3 

more bearings are observed than expected (based on independence). The exact opposite occurs 

for the sample of bearings without joints; if independence between variables existed, more 

bearings than expected occur in CS 1 and less than expected occur in CS 2 and CS 3. This 

suggests an association that bearings with joints tend to have more quantity in CS 2 and CS 3 and 
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bearings without joints tend to have more quantity in CS 1. The results for the pier cap samples 

exhibit the same mirrored pattern of deviation from independence. 

To further quantify and visualize the Chi-Squared statistic, correspondence analysis was 

utilized. Correspondence analysis (CA) is a method of visualizing the associations in 

contingency tables and is closely related to the Chi-Squared value calculated in the Test for 

Independence (Friendly 2000). In normal application of data representation, scatterplots can be 

used to show data points based on two variables. The distance between these points is based on 

the coordinates of the data point and can be calculated as the Euclidean or straight line distance 

where the distance between two points is the square root of the squared differences between 

coordinates (Greenacre 2007). Correspondence analysis can be used to represent the distances 

between data points as the Chi-Squared distance. This provides a “graphical method to represent 

the structure of cross tabulations to shed light on underlying mechanisms” (Yelland 2014). To 

plot distances, correspondence analysis reduces the dimensions of the data. The number of 

dimensions for a contingency table is the smaller of the number of rows or columns. “CA 

identifies dimensions along which there is very little dispersion of the profile points and 

eliminates these low-information directions of spread” (Greenacre 2007). However, for the data 

in this study, two-way contingency tables were used, already providing low dimensional data.  

Using the R software ca package, a correspondence analysis was performed for the 

developed contingency tables (Nenadic and Greenacre 2007). The results of the correspondence 

analysis showed the relative location of the points and were plotted based on the Chi-Squared 

distances. The plot is one-dimensional and the column categories act as the direction of the axes.  
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Figure 15- Correspondence analysis for bearing samples 

Figure 15 shows that samples of bridges without joints are more closely associated to 

CS1 while bridges with joints are more associated with CS2 and CS3. 

In addition to the visual map, the output of correspondence analysis provides the total and 

principle inertia values. Total inertia is calculated as the Chi-Squared statistic divided by the 

grand total of the contingency table. This provides a measure of dispersion and can be used to 

determine a correlation coefficient (Greenacre 2007). The principle inertia is the contribution of 

each principle axis and sum to the total inertia. Because the contingency table for bearing data is 

one dimensional, one principle inertia accounts for the total inertia for the contingency table of 

bearing data and is given by R as 0.0568 or 5.68%. By taking the square root of the inertia, a 

correlation coefficient can be interpreted (Greenacre 2007). In this case, the square root of the 
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inertia is 0.238 or 23.8%. “As a rule of thumb, any value of this correlation coefficient in excess 

of 0.2 [20%] indicates significant dependency” (Bendixen 2003). 

The same procedures were applied with the samples using pier cap data. Again, one 

dimension can be used to fully visualize the relationship between variables. This is shown in the 

following figure. 

 

Figure 16- Correspondence analysis for pier cap samples 

The plot of the Chi-Squared distances shows how the two samples are associated with the 

condition states. The sample without joints is more associated with quantities in CS1 and the 

sample with joints is more associated with CS2, CS3 and CS4. Again to provide quantification of 

the relationships, the inertia is calculated as 0.0772 or 7.72%. To quantify the correlation, the 

square root of the total inertia is calculated as 0.278 (27.8%).   
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4.3 Multi-category Logistic Regression Modeling  

The previous section investigated the association and relationship between a primary 

element and two subordinate elements. The second research objective of this study was to 

investigate methods to account for element interaction by predicting the condition state 

distribution of subordinate elements based on the primary element. Models accounting for the 

relationship of each subordinate element were developed to attempt to predict the condition of 

the subordinate element as a dependent variable using the condition of the primary element as an 

independent, explanatory variable. To do this, multi-categorical logistic regression was used to 

develop generalized linear models (GLMs). A brief introduction to multi-categorical logistic 

regression is provide in Appendix B. 

Multi-category logistic regression is an extension of the binary logistic regression 

technique and can be used to model cases with three or more categories (Agresti 2007). Two 

types of multi-category logistic regression models exist. Multinomial models do not consider 

order between the categories whereas ordinal models can be used for data with hierarchal 

categories. The models provided the probability of bearing or pier cap element quantity being 

assigned to a certain condition state based on an explanatory variable using the log odds or logit 

link function. The explanatory variable chosen for the logit model was the average condition 

state of the joint element as calculated for the joint classification. 

Using the datasets for bearing and pier cap elements with joints, the data was inputted 

into R software. Using the mlogit package and referencing Katchova (2013), multinomial logistic 

regression models using base-line category logits were fit to the data (Croissant 2013). The 

independent variable selected to develop the probability distribution of condition states was the 
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joint average condition. This was used because it provided an average of the joint condition. The 

logit model for fixed steel bearings is shown in Figure 17. 

 

 

Figure 17- Multinomial logit model for bearings condition states 

The probability for each condition state is given as π1 for probability of CS1, π2 for 

probability of CS2 and π3 for probability of CS3. The logit model shows when all joint quantity 

is in CS1, there is an 80% probability of the bearings being in CS1, 20% probability of the 

bearings being in CS2 and negligible probability of being in CS3. However, as the deterioration 

of the joint progresses, the probability of bearings in CS1 decreases, while probabilities of CS2 

and CS3 increase. For the fitted data, however, the probability of quantity in CS3 remains under 

ten percent for the range of joint condition, indicating quantity in CS3 is a rare occurrence.  

A multinomial logit model using base-line category logits was also developed for pier 

cap elements based on joint average condition state. This is shown in Figure 18 and shows 

similar results as for the bearing model. The slope and intercept (α and β) parameters developed 

from the logistic regression equations are given in Appendix C. 
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Figure 18- Multinomial logit model for pier cap condition states 

Using the probabilities developed by the logit models, a predicted condition state profile 

for bearings or pier caps for each inspection report was calculated by multiplying the condition 

state probability by the total quantity of bearings or pier caps for a certain inspection report. The 

expected distribution of quantity based on the model was calculated for each inspection report 

and compared to the observed data. The observed data and the predicted quantities using the logit 

model probabilities are shown below.  

Table 7- Observed quantity distribution for bearings 

Bearing Condition 
State 

Joint AVE Condition Row 
Sum Good Fair Poor 

CS1 7429 2174 1184 10787 

CS2 2064 1355 1199 4618 

CS3 85 26 137 248 

Column Sum 9578 3555 2520 15653 
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Table 8- Predicted quantity distribution for bearings from multinomial model 

Bearing Condition 
State 

Joint AVE Condition Row 
Sum Good Fair Poor 

CS1 7217 2152 1112 10481 

CS2 2231 1297 1263 4791 

CS3 131 106 144 382 

Column Sum 9578 3555 2520 15653 

 

 

Table 9- Observed quantity distribution for pier caps 

Pier Caps Condition 
State 

Joint AVE Condition 
Row Sum 

Good Fair Poor 

CS1 8757.2 2771.7 1816.5 13345.4 

CS2 397.1 166.1 482.0 1045.2 

CS3 373.5 366.2 324.9 1064.7 

CS4 0 391.5 74.4 465.9 

Column Sum 9527.8 3695.5 2697.8 15921.2 

 

 

Table 10- Predicted quantity distribution for pier caps from multinomial model 

Pier Cap Condition 
State 

Joint AVE Condition 
Row Sum 

Good Fair Poor 

CS1 7298.0 2371.9 1325.6 10995.4 

CS2 1243.0 701.0 677.5 2621.6 

CS3 946.6 576.3 601.8 2124.8 

CS4 40.2 46.3 93.0 179.5 

Column Sum 9527.8 3695.5 2697.8 15921.2 

 

To test the fit of the models to the actual data, the Chi-Squared Goodness-of-Fit test was 

employed. The test is similar to the Test for Independence utilized earlier, except the expected 

values are determined from the logit model and not calculated based on independence. The Chi-

Squared values for the bearing model and pier cap models were 106.7 and 4749, respectively. As 

before, small Chi-Squared values indicate an accurate model while large Chi-Squared values 

indicate poor fit.  
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To attempt to develop better fit, the models were refined by using ordinal logit models 

that accounted for the inherent hierarchal ordering of the categories or condition states of the 

data. This method was based on the cumulative logit model assuming proportional odds. 

Appendix B also provides a brief introduction to ordinal logit models. The proportional odds 

model accounts for the order of the categories by relating the probability of each category to the 

cumulative probability of each category. “This results in models that have simpler interpretations 

and potentially greater power than baseline-category logit models” (Agresti 2007). To test the 

proportional odds assumption, a Likelihood Ratio Test was performed to compare the hypothesis 

that the slope coefficient is the same for each category against the alternative hypothesis that the 

coefficients are different. R code was developed referencing Bilder and Loughin (2015) to 

develop the hypothesis test. The test produced a p-value of 0.685 and 1 for the bearing model 

and the pier cap model, respectively. This indicates that the null hypothesis should not be 

rejected, supporting the use of the proportional odds assumption. Despite this, it should be noted 

that this does not confirm the proportional odds assumption is true, but “it does offer some 

assurance that a proportional odds model provides a reasonable approximation…” (Bilder and 

Loughin 2015). The probabilities were obtained and the expected quantity for each condition 

state was calculated as before. The ordinal models are shown in Figures 19 and 20 with the 

predicted quantity distribution shown in Tables 11 and 12. The ordinal models were developed 

using R and referencing Bilder and Loughin (2015). 
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Figure 19- Ordinal logit model for bearings 

 

Table 11- Predicted quantity distribution for bearings from ordinal model 

Bearing Condition 
State 

Joint AVE Condition 
Row Sum 

Good Fair Poor 

CS1 7226 2145 1104 10475 

CS2 2213 1308 1276 4797 

CS3 139 103 140 381 

Column Sum 9578 3555 2520 15653 
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Figure 20- Ordinal logit model for pier caps 

 

Table 12- Predicted quantity distribution for pier caps from ordinal model 

Pier Cap Condition 
State 

Joint AVE Condition Row Sum 

Good Fair Poor   

CS1 7286.3 2371.8 1342.3 11000.4 

CS2 1285.7 702.2 631.5 2619.4 

CS3 885.8 572.5 659.6 2117.9 

CS4 70.1 49.0 64.4 183.5 

Column Sum 9527.9 3695.6 2697.8 15921.2 

 

The ordinal method provided slightly different models than the multinomial models. The 

Chi-Squared values for the cumulative logit models with proportional odds were 106.7 and 4596. 

For the bearing model, the Chi-Squared value was unchanged, however, the ordinal model 

reduced the Chi-Squared value compared to the baseline category logit model for the pier cap 

element. Despite this, the values remained very large. 

4.4 Subordinate Deterioration using Markov Chains 

A more powerful and widely accepted method for modeling deterioration is Markov 

Chains. As described, Markov Chains are used for deterioration modeling in most current bridge 
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management applications and many different studies have investigated the use and calibration of 

Markov Chains; however, no method has attempted to include element interaction. To account 

for element interaction, a method to calculate the diagonal transition probabilities for the 

subordinate element (bearing and pier cap elements) was developed and calibrated based on the 

joint element condition.  

 The developed method calculates the diagonal transition probabilities, the probabilities 

of quantity remaining in a certain condition state, based on the percent of quantity of the joint 

element in each condition state multiplied by conditional probabilities given each condition state 

of the joint. The overall concept of conditional probabilities were used to relate the quantity of 

joint in each condition state to the rate of deterioration for the subordinate element. This is 

shown in by the following equation. 

[
𝑃11

𝑃22

𝑃33

] =  [

𝐶𝑆1 ∙ 𝑇𝑃11
+ 𝐶𝑆2 ∙ 𝑇𝑃21

+ 𝐶𝑆3 ∙ 𝑇𝑃31

𝐶𝑆1 ∙ 𝑇𝑃12
+ 𝐶𝑆2 ∙ 𝑇𝑃22

+ 𝐶𝑆3 ∙ 𝑇𝑃32

𝐶𝑆1 ∙ 𝑇𝑃13
+ 𝐶𝑆2 ∙ 𝑇𝑃23

+ 𝐶𝑆3 ∙ 𝑇𝑃33

]   Eq. 9 

𝑇𝑃|𝑗𝑜𝑖𝑛𝑡=𝐶𝑆1 = (

𝑇𝑃11

𝑇𝑃12

𝑇𝑃13

)  𝑇𝑃|𝑗𝑜𝑖𝑛𝑡=𝐶𝑆2 = (

𝑇𝑃21

𝑇𝑃22

𝑇𝑃23

) 𝑇𝑃|𝑗𝑜𝑖𝑛𝑡=𝐶𝑆3 = (

𝑇𝑃31

𝑇𝑃32

𝑇𝑃33

)  

Here, 𝐶𝑆𝑖 is the percentage of quantity in each condition state for the joint (primary 

element) and the column matrices, 𝑇𝑃|𝑖 , are the conditional probabilities for the subordinate 

element (bearings or pier caps) given the quantity of joint in each condition state. To develop the 

full transition probability matrix for a subordinate element, the transition probabilities of quantity 

moving to the next state was calculated by subtracting the diagonal (retaining) probability from 

one, as was earlier described in Equation 2.  

 This method was implemented using Microsoft Excel Visual Basic for Applications 

(VBA). VBA code was necessary to implement the matrix multiplication to account for different 
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number of transition periods and is given in Appendix F. To arrive at the conditional probability 

matrices, the values were calibrated based on minimizing the squared error between calculated 

quantity distribution and the actual quantity distribution observed for each inspection report. The 

Chi-Squared Goodness-of-Fit test was also used to characterize the global fit. For this study, 

calibration was based on manual trial and error adjustment to improve fit. The calibration found 

that the conditional probabilities for bearing elements shown in Table 13 approached a minimum 

in the squared error as well as passed the Chi-Squared Test to a level of significance of 0.05. 

Table 13- Bearing conditional probabilities from calibration 

Bearing State TP|joint=CS1 TP|joint=CS2 TP|joint=CS3 

CS1 0.989 0.982 0.977 

CS2 0.996 0.997 0.997 

CS3 1 1 1 

 

 The bearing conditional probabilities created a minimum for the squared error of the 

calculated and actual condition state profiles. Using the Chi-Squared Goodness-of-Fit Test, the 

calculated Chi-Squared value was 5.64 and compared to the Chi-Squared distribution on two 

degrees of freedom of 5.991 at an α = 0.05. This shows a statistically accepted level of fit. 

 The same technique was employed to calibrate the conditional probabilities for pier caps. 

The calibration yielded values presented in Table 14. 

Table 14- Pier cap conditional probabilities from calibration 

Pier Cap State TP|joint=CS1 TP|joint=CS2 TP|joint=CS3 

CS1 0.997 0.992 0.990 

CS2 0.963 0.923 0.965 

CS3 0.998 0.966 0.981 

CS4 1 1 1 

 

The pier cap conditional probabilities showed a convergence to a minimum of the 

squared error between calculated and observed condition state distribution for the inspection 
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report data. Despite this, the Chi-Squared value calculated was 107.3 and was compared to the 

Chi-Squared distribution of 7.815 for three degrees of freedom at α = 0.05.  

To illustrate the developed method, the data for bearings were filtered and only 

inspection data for bridges with all joint quantity in CS1 remain. In this set of bridges, the 

conditional transition probabilities TP|joint=CS1 are multiplied by one and become the diagonal, 

retaining transition probabilities. Using these transition probabilities, the Markov deterioration 

model can be developed. This is shown in Figure 21. 

 

 

Figure 21- Subordinate Markov deterioration model for fixed bearings with joints in CS1 

 Similarly, the subordinate deterioration model for bearings when joints are in CS3 were 

developed. In this case the conditional probabilities TP|joint=CS3 in Table 13 become the overall 

transition probabilities for the model. This is shown in Figure 22. 
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Figure 22- Subordinate Markov deterioration model for fixed bearings with joints in CS3 

 These deterioration models show that when all the joint quantity is assigned to CS1, the 

deterioration of the bearings is less than when all the joint quantity is assigned to CS3. After a 

predicted life of 65 years, 50 percent of the bearings with joints are predicted to remain in CS1 

while for the same period, if the joints are in CS3, only 25 percent of the bearings are predicted 

to remain in CS1. This would be expected given the previous discussion of results showing the 

statistical significance of association between joints and subordinate elements. These models 

accounting for subordinate deterioration are more dynamic and were compared to the static 

CoRe element deterioration model that does not incorporate subordinate deterioration developed 

in a previous study (Section 2.6). The CoRe deterioration model for the fixed bearing element is 

shown in Figure 23. 
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Figure 23- CoRe deterioration model for fixed bearings 

 When comparing the CoRe model to the subordinate deterioration models when joint 

elements are in CS1 and CS3, it is shown that if joints are in good condition, the subordinate 

deterioration model shows less deterioration than the CoRe model, however, when the joints are 

in poor condition, the subordinate deterioration model shows greater deterioration than the CoRe 

model. This is expected since the CoRe model does not incorporate subordinate deterioration but 

includes all cases of bearing condition regardless of the condition or presence of a joint element. 

The transition probability matrices for the CoRe element and subordinate deterioration models 

are given in Appendix D. 

Similar results were obtained for the pier cap element data. When all joint quantity is 

coded in CS1, the deterioration of the pier cap is shown in Figure 24. 
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Figure 24- Subordinate Markov deterioration model for pier cap with joint in CS1 

As deterioration of the joint progresses, the deterioration of pier cap also progresses. The 

subordinate deterioration model when the joint is coded as CS3 is shown in Figure 25. 

 

 

Figure 25- Subordinate Markov deterioration model for pier cap with joint in CS3 
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Again, the developed deterioration models capture the influence of joint deterioration on 

the deterioration of the subordinate element and can be compared to the CoRe model for 

Reinforced Concrete Pier Cap when subordinate deterioration is not considered. The CoRe 

Model is shown in Figure 26. 

 

Figure 26- CoRe deterioration model for reinforced concrete pier cap 

 The comparison between the CoRe model and the subordinate deterioration models 

shows that the CoRe model exhibits a deterioration rate greater than the subordinate deterioration 

model when joints are in CS1, but significantly less deterioration than the subordinate 

deterioration model when joints are in CS3. Again, the subordinate deterioration models provide 

a dynamic deterioration model based on the effect of joint deterioration as compared to the static 

CoRe model currently used in BMS. 

 

 

 



53 
 

5.0 Conclusions 

This research provides an in-depth investigation of the element deterioration interaction 

of two bridge elements using data analysis of element-level inspection data. The main 

contributions of this study to bridge management include: 

 A general framework to investigate element interaction 

 A statistical investigation of two subordinate interactions using categorical data 

techniques 

 An investigation of two modeling methods to incorporate subordinate interaction 

into current deterioration modeling practices 

The investigation began with statistical comparison of elements with interaction to those 

not subjected to interaction. Predictive models using logistic regression were investigated as a 

method to determine subordinate condition state distribution based on the primary element. 

Finally, a new method was proposed to include element interaction in Markov Chain 

deterioration modeling using calibrated conditional probabilities. Statistical tests and methods 

were employed at each stage of the study.  

5.1  Exploratory Data Analysis 

The initial exploratory analysis of data included statistical methods and visualization 

techniques to characterize the relation of subordinate element condition to joint elements. The 

investigation showed for bridges without joints or for well-performing joints, bearing elements 

have a lower mean condition state, thus, are in better condition, whereas bearings associated with 

joints exhibiting deterioration show a higher mean condition, indicating worse condition. A 

similar trend is shown for pier cap elements. This suggests there is significant impact due to 

element interaction. 
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Through the use of statistical methods developed specifically for analysis of categorical 

data, the associations between joints and subordinate elements were presented. The use of 

categorical data analysis methods further explained the findings of the initial exploratory 

analysis. The ternary plot for bearings and the percent stack chart for pier caps supported the 

hypothesis that joints affect subordinate element condition. As shown, for the majority of 

inspections, subordinate elements are in CS1 with smaller percentages in CS2 and even less in 

CS3 (for bearings) and CS4 (for pier caps). However, in both data samples for subordinate 

elements, when joints are present, significantly higher deterioration with greater quantity in CS3 

and CS4 occurs. This is further supported by the ternary plots showing the relation between joint 

classifications and element condition states. The subordinate elements rated as CS1 are located 

closer to the vertex of joints being in good condition, and subordinate elements in poorer 

condition states tend toward condition of joints in poorer condition. 

The Chi-Squared Test for Independence provided a test of statistical significance that 

confirms the difference in condition when joints are present and when joints are not present. 

Association plots were developed to characterize the relation between the expected and observed 

quantities for each subordinate element. Correspondence analysis provided a further 

investigation of the Chi-Squared statistic. Visual maps were developed and correlation 

coefficients were calculated showing significant dependency of the subordinate element 

condition to the presence and condition of joint elements.  

5.2 Multi-categorical Logistic Regression Modeling 

The overall findings of the previous sections support the hypothesis of element 

interaction and subordinate deterioration. Because of this, modeling techniques to characterize 

and predict subordinate element condition were investigated. Multi-category logistic regression 
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models were developed to model the probability of quantity being assigned to a certain condition 

state based on joint average condition state as the explanatory variable. The global goodness-of-

fit tests showed that the models do not adequately represent the actual data for both bearing and 

pier cap elements when only joint average condition is used as the explanatory variable.  

5.3  Subordinate Deterioration using Markov Chains 

The current and most popular method of modeling deterioration of bridge elements uses 

Markov Chains. This research incorporated the effects of subordinate deterioration into Markov 

Chains by developing a method to determine the transition probabilities for the subordinate 

element based on the condition states of the primary element. The calibration of the conditional 

probabilities for the subordinate elements resulted in a convergence to a minimum of the squared 

error between the observed and modeled data for both steel fixed bearings and reinforced 

concrete pier caps. The global fit was tested using the Chi-Squared Goodness-of-Fit Test and 

showed the conditional probabilities for the bearing subordinate deterioration passed at a five 

percent level of significance. The conditional probabilities for pier cap elements did not pass the 

Chi-Squared Test. However, the presented method shows useful results to incorporate 

subordinate deterioration in Markov deterioration modeling and further optimization and 

calibration methods can be applied in future research. 

5.4 Discussion of Age 

Age is a factor when considering deterioration and future condition prediction. Older 

bridges are typically expected to exhibit greater deterioration than younger bridges. In the initial 

analysis describing the difference of condition between subordinate elements with joints and 

elements without joints, the age of each population was investigated. The average age of the 

bridges in the bearing sample with joints was 25.9 years with a standard deviation of 14.7 years 
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while the age of bridges in the bearing sample without joints was 18.7 years with a standard 

deviation of 10.8 years. Similarly for the pier cap samples, the average age for the sample with 

joints was 28 years and the sample without joints was 18 years. A non-pooled t-test showed that 

the average age of the two populations are different at a five percent level of significance for 

each subordinate element. Age was not included in the investigation because the goal of this 

research was to investigate the current status of the bridges with element interaction. Also, many 

other variables affect deterioration including atmospheric conditions, location, industrial region, 

as well as protective systems such as paint and maintenance. Also, element-level inspection 

reports began in 1994, thus any maintenance or repair action prior to this date was not captured 

in the data. Because of this, older bridges may exhibit better than expected condition for their age 

or even better condition compared to newer bridges.  

This research does not attempt to “uncouple” age from the deterioration process but 

instead attempts to relate condition of the subordinate element to a primary element, given the 

historic inspection data. In the development of the logit models, the use of the joint average 

condition as the explanatory variable provides an association to age through information of the 

joint condition as it is expected that joints in good condition represent younger age while joints 

in poor condition are characteristic of older bridge. Again however, other variables significantly 

affect joint deterioration such as weather, application of salt and deicing chemicals, level of 

expansion and contraction as well as other effects.  

A brief exploratory investigation used age as the explanatory variable in the logistic 

regression model to predict the distribution of condition states of the bearings. The method used 

the same procedures described earlier. The results found that age does not accurately predict the 

distribution of condition state for bearing elements. A second regression model was developed 
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and incorporated age and joint average condition as explanatory variables in a baseline multi-

category logistic regression model. Despite the additional variable, incorporating age into the 

logistic regression model still did not provide a better fitting model when compared to the logit 

models with only joint average condition as the explanatory variable. 

For the application of the Markov Models, age is incorporated by the number of 

transition periods. In bridge deterioration modeling, the transition period is taken as one year. 

The calibration of the transition probabilities for the model are based on minimizing the squared 

error between the model and observed quantity distribution in each condition state for each 

inspection report which occurs at a specific age of the bridge at the time of the inspection. 

Because of this, age is already incorporated as a factor in the developed models.  

5.5 Future Research 

An area of future research is the refinement of the logistic regression models. The multi-

category logistic regression models developed in this study using a single independent variable 

did not provide satisfactory global fit to the data. This may be due to lack of data; however, 

additional variables, beyond the average joint condition state, may have an impact on the 

deterioration that is not captured by the current models. The inclusion of a combination of 

additional explanatory variables, such as VDOT district, age, average daily traffic, etc. may 

create better fitting models. A second possible method of creating better fit for the logit models 

is to include random effects. In the data, bridges are inspected multiple times in their lifespan and 

are grouped based on district, possibly causing correlation between responses. Random effect 

models include parameters to account for “clustered” data or repeated measurements (Bilder and 

Loughin 2015). However, with each refinement, the complexity of the models increase.  
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The method to account for subordinate deterioration using Markov Chains minimized the 

squared error between the model and observed data. However, the conditional probabilities for 

the pier cap model did not provide adequate fit based on the Chi-Squared Goodness-of-Fit Test. 

This may be caused by obtaining conditional probability values for a local minimum of the 

squared error rather than a global minimum. More rigorous optimization techniques are available 

and can be utilized to increase the fit to the data (Wellalage et.al. 2015). However, the presented 

method shows useful results to incorporate subordinate deterioration in Markov deterioration 

modeling and further optimization and calibration methods can be applied in future research.  

5.6 Future Application 

By investigating joint to bearing and joint to pier cap interactions, this research provided 

a framework that can be applied to other elements. The methods and procedures described in this 

study are general and can be extended to additional interactions that include: 

 Influence of joints on the deterioration of abutments 

 Influence of joints on the deterioration of columns  

 Influence of joints on the deterioration of  pier walls  

Also, to improve inspection procedures and bridge management practices, AASHTO has 

updated element-level inspection by modifying inspection standards, consolidating inspection 

elements and redefining element condition states (Reardon and Chase 2015). The newly 

developed AASHTOWare BrM software will incorporated these changes and will supersede the 

Pontis system. With these changes, element-level data inspection and collection will remain 

similar, except the number of condition states will be standardized to four (CS1-4) and 

inspection elements will be consolidated to provide greater detailed data. Unlike the Pontis CoRe 

definitions, the new inspection definitions are created for each element and describe all possible 
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deterioration paths related to the element (AASHTO 2015). In addition to multipath 

deterioration, new inspection elements have been created that separate protective elements and 

underlying elements. An example of this is Element 107 - Steel Girder and Element 515 - Steel 

Protective Coating, where Element 107 describes the underlying steel and Element 515 describes 

the paint or coating (AASHTO 2015). This provides an additional opportunity for the application 

of element interaction. This is an important development because it introduces significant 

concern for modeling with regards to the deterioration of the underlying subordinate element and 

the protective coating element. Two significant subordinate interactions that can be investigated 

with this method include: 

 Influence of protective coatings on the deterioration of steel elements  

 Influence of wearing surfaces on the deterioration of deck/slab elements  

The AASHTOWare BrM software will continue the use of Markov Chains but will 

incorporate the Weibull Distribution to determine the transition of an element from CS1 to CS2, 

after which the Markov Chains will be used (Johnson 2013). This modification addresses calls 

for more accurate models to describe the initiation phase of deterioration (O’Conner et al. 2013). 

The Weibull Distribution differs from Markov Chains because it is a time-based model and not a 

state-based model. The Weibull Distribution relies on the duration an element remains in the 

condition state to model the transition to the next state (Agrawal et al. 2010). This improves 

modeling of the first transition and is significant since the majority of element quantity usually 

resides in CS 1 (AASTHO 2012). Despite these advances, AASHTO currently provides no 

guidance to account for element interaction and is still ignored in deterioration modeling. 
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5.7 Recommendations 

Subordinate Deterioration was shown to have a significant effect on the deterioration of 

bridge elements. Because of this and the future application relating to the development of the 

AASHTOWare BrM system, it is recommended VDOT begin implementation of a method to 

account for element interaction in bridge management practices. As shown, this can increase the 

efficiency and quality of maintenance and repair decision-making. 

Also as a result of this research, data errors and inconsistencies were shown to be 

abundant in the Pontis database. Typical issues found by this research included double-counted 

quantities, inconsistent units and absence of data. This suggested that the data quality controls 

currently implemented by the software are inadequate. Data quality may be increased by 

providing addition control measures when data is inputted into the systems. A possible method to 

address input errors would be to provide a check that compares the data inputted by an inspector 

to data already in the system. If the new data are outside a given range of error from the previous 

data, the inspector would be prompted to override the error by providing reasoning for the 

discrepancy or a description of any maintenance or repair action that occurred to cause the 

change of quantity. This can lead to the development of a unified method to track and document 

maintenance and repair actions to improve data quality and help inspectors provide more 

accurate data. Currently, no method to record maintenance actions such as joint eliminations, 

repainting, or other repairs exists with the current inspection database. A method to unify 

inspection data with documented MR&R actions can further increase the quality and 

effectiveness of data for future data analysis, which will lead to enhanced modeling and 

condition prediction.  
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Appendix A- Select Pontis CoRe Elements and Definitions 
 

Adopted from VDOT Element Data Collection Manual, 2007 

Joint Elements     

 Element 300 Strip Seal Expansion Joint 

 Element 301 Pourable Joint Seal  

 Element 302 Compression Joint Seal 

 Element 303 Assembly Joint/Seal  

 Element 304 Open Expansion Joint 

 

Joint Condition States (quantity: linear feet) 

CS1 The element shows minimal deterioration 

The seal shows no leakage at any point along the length 

Gland is secure and has no defects 

Debris in joint is not causing any problems 

The adjacent deck and/or header are sound 

The armored joint anchorage shows no signs of looseness 

Fingers are not broken or misaligned 

Welds exhibit no problems 

The coating system is functioning as intended 

CS2 The element shows moderate deterioration and/or minor cohesion failures 

The seal shows signs of leakage along the joint 

Gland shows signs of abrasion or minor tearing or is partially pulled out of extrusion 

Significant debris is in all or part of the joint and is affecting joint performance 

The adjacent deck and/or header exhibit no spalls 

The armored joint anchorage is loose 

Fingers are bent or misaligned 

Welds exhibit minor cracking 

The coating system is beginning to fail with the element beginning to corrode 

CS3 The element has failed 

The seal shows signs of leakage along the length 

Gland has failed from abrasion or tearing or has pulled out of extrusion 

The adjacent deck and/or header exhibits spalls 

The armored joint anchorage has failed 

Fingers are missing or broken 

Welds are failing 

The coating system has failed with the element exhibiting advanced corrosion 
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Bearing Elements   

 Element 310 Elastomeric Bearing 

 Element 311  Movable Bearing 

 Element 312 Enclosed/Concealed Bearing or System 

 Element 313 Fixed Bearing 

 Element 314 Pot Bearing 

 Element 315 Disk Bearing 
 

Bearing Condition States (quantity: each) 

CS1 The element shows little or no deterioration and has minimal debris and corrosion 

The coating system is sound and functioning as intended 

Vertical and horizontal alignments are within limits 

Bearing support member is sound. There is no cracking of support members 

Any lubrication system is functioning properly 

The supported member is stable under traffic 

CS2 The coating system has failed and exposed metal may show moderated to heavy 

corrosion with some pitting but still functions as intended 

The assemblies have moved causing minor cracking in the supporting concrete 

Debris buildup is affecting bearing movement 

Bearing alignment and/or load carrying capacity is still tolerable 

CS3 Section loss sufficient to warrant supplemental supports or load restrictions 

Bearing alignment may be beyond tolerable limits 

Shear keys and the lubrication system have failed 
 

Pier Cap Elements   

 Element 230 Steel Pier Cap- Uncoated 

 Element 231 Steel Pier Cap- Coated 

 Element 233 Prestressed Concrete Pier Cap 

 Element 234 Reinforced Concrete Pier Cap 

 Element 235 Timber Pier Cap 
 

Reinforced Concrete Pier Cap Condition States (quantity: linear feet) 
CS1 Little or no deterioration 

There may be discoloration, efflorescence and/or superficial cracking without effect 

on strength and/or ability to function as intended 

CS2 Minor deterioration 

Minor cracks, and spalls may be present but there is no exposed reinforcing or 

surface evidence of rebar corrosion 

CS3 Moderate deterioration 

Some delaminations and/or spalls may be present and some reinforcing may be 

exposed 

Corrosion of rebar may be present but loss of section is incidental and does not 

warrant structural analysis 

CS4 Advanced deterioration 

Corrosion of reinforcement and/or loss of concrete section are sufficient to warrant 

structural analysis 
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Appendix B- Introduction to Multi-category Logistic Regression 
 

Many are familiar with binary logistic regression but fewer are familiar with the extension of 

logistic regression to multiple categories. An excellent reference for an introduction to 

categorical data and multi-category logistic regression is An Introduction to Categorical Data 

Analysis (Agresti 2007). A brief review based on this work is provided along with reference to 

other works to provide an introduction to multiple category data analysis and logistic regression. 

Logistic regression is a statistical method for determining the probability of a dependent variable 

through the relationship with independent variables. The most common form is binary logistic 

regression, where two possible categories exist for the dependent variable, usually described as 

success or failure. However, extensions of the binary logistic regression can be extended to 

model a dependent variable with more than two possible categories based on the multinomial 

distribution. Logistic regression is based on the logit link function as given below (Friendly 

2000). 

𝐿𝑜𝑔𝑖𝑡[𝜋(𝑥)] = 𝑙𝑜𝑔 (
𝜋(𝑥)

1−𝜋(𝑥)
) =  𝛼 + 𝛽𝑥    Eq. D-1 

Here, 𝜋(𝑥) is the probability of an independent variable, given an explanatory variable x and can 

be simplified to an intercept parameter (α) and slope parameter (β). The term in the parentheses 

is referred to as the odds of success and the logit function may be referred to as the log odds 

function (Friendly 2000). Eq. D-1 can be rearranged to give the probability (Friendly 2000): 

𝜋(𝑥) =  
𝑒𝛼+𝛽𝑥

1 + 𝑒𝛼+𝛽𝑥
 

     Eq. D-2 

To apply logistic regression to multiple categories, the types of categorical data must be 

acknowledged. Categorical data can be classified as nominal when the categories have no 

specific order or ordinal when each category does have a specific ordered. Based on this, two 

types of multi-categorical logistic regression models exist: multinomial logistic regression and 

ordinal logistic regression.  

The most common multinomial logit model is the baseline-category logit. “Logit models for 

nominal response variables pair each category with a baseline category… the choice of the 

baseline category is arbitrary” (Agresti 2007). In effect, the model is developed based on 

multiple binary regressions between the selected baseline category and the remaining categories. 

Using the relationships of probability and the logit link function described, the probability of the 

jth category of a total of h categories is defined as 

𝜋𝑗 =
𝑒𝛼𝑗+𝛽𝑗𝑥

∑ 𝑒𝛼ℎ+𝛽ℎ𝑥
 

      Eq. D-3 

The sum of the probabilities of each category is one (100%). “Software for multicategory logit 

models fits all the equations simultaneously” (Agresti 2007).  

For cases where the categories of data are in a specific order, the ordering can be used to enhance 

a logistic model. These models are ordinal logistic regression and rely on cumulative probability. 
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“Cumulative probability for Y is the probability that Y falls at or below a particular point” 

(Agresti 2007):  

𝑃(𝑌 ≤ 𝑗) = ∑ 𝜋𝑖

𝑗

𝑖=1

 

     Eq. D-4 

The most common ordinal model also assumes proportional odds. The proportional odds model 

“assumes that the logit of these cumulative probabilities changes linearly as the explanatory 

variable changes, and also that the slope of this relationship is the same regardless of the 

category j” (Bilder and Loughin 2015). This simplifies the model to have only one slope 

parameter (β). The probability of a single category is the cumulative probability minus the 

probability of the lower categories. 

𝜋𝑗 = 𝑃(𝑌 = 𝑗) = 𝑃(𝑌 ≤ 𝑗) − 𝑃(𝑌 ≤ 𝑗 − 1) =
𝑒𝛼𝑗+𝛽𝑥

∑ 𝑒𝛼ℎ+𝛽𝑥
−

𝑒𝛼𝑗−1+𝛽𝑥

∑ 𝑒𝛼ℎ+𝛽𝑥
 

  Eq. D-5 

Other cumulative multiordinal logit models that do not assume proportional odds exist, however, 

become increasingly complex. These models have additional parameters and include partial 

proportional odds models, adjacent-categories models and non-proportional odds models that 

consider separate effects (Agresti 2010, Bilder and Loughin 2015). These models were not 

explored for this study.   
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Appendix C- Multi-category Logistic Regression Model Parameters 

This appendix provides the intercept (α) and slope (β) parameters for the four multi-category 

logistic regression models shown in Figures 17-20 developed using R software. The parameters 

are applied to Eq. D-3 for the baseline category model and Eq. D-5 for the ordinal model. 

 

C.1 – Baseline Category Model 

Parameter Variable Bearing Model               Pier Cap Model 

 CS1 0 0 
 CS2 -1.99593 -2.43681 

α: intercept CS3 -5.25927 -2.80317 
 CS4 - -6.76048 

 CS1:Joint Ave CS 0 0 
 CS2:Joint Ave CS 0.73726 0.605685 

β: slope CS3:Joint Ave CS 1.11406 0.690323 
 CS4:Joint Ave CS - 1.401229 

 

 

C.2 – Ordinal Proportional Odds Model 

Parameter  Bearing Model   Pier Cap Model 

α: intercept 

CS1|CS2 1.9878 1.9001 

CS2|CS3 5.0865 2.9165 

CS3|CS4 - 5.6284 

β: slope Joint Ave CS -0.7762 -0.6548 
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Appendix D- Markov Deterioration Transition Probability Matrices 
 

D.1 - Fixed Bearings Transition Probability Matrices 

CoRe Element 313- Fixed Bearing  

TP Total CS1 CS2 CS3 

0.983 CS1 0.983 0.017 0.000 

0.997 CS2 0.000 0.997 0.003 

1 CS3 0.000 0.000 1.000 

 

Subordinate Deterioration Model for Fixed Bearings: Joints in CS1 

TP Total CS1 CS2 CS3 

0.989 CS1 0.989 0.011 0.000 

0.996 CS2 0.000 0.996 0.004 

1 CS3 0.000 0.000 1.000 

 

Subordinate Deterioration Model for Fixed Bearings: Joints in CS2 

TP Total CS1 CS2 CS3 

0.982 CS1 0.982 0.018 0.000 

0.997 CS2 0.000 0.997 0.003 

1 CS3 0.000 0.000 1.000 

 

Subordinate Deterioration Model for Fixed Bearings: Joints in CS3 

TP Total CS1 CS2 CS3 

0.978 CS1 0.978 0.022 0.000 

0.997 CS2 0.000 0.997 0.003 

1 CS3 0.000 0.000 1.000 
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D.2 - Reinforced Concrete Pier Caps Transition Probability Matrices 

CoRe Element 234- Reinforced Concrete Pier Cap 

TP Total CS1 CS2 CS3 CS4 

0.994 CS1 0.994 0.006 0.000 0.000 

0.969 CS2 0.000 0.969 0.031 0.000 

0.998 CS3 0.000 0.000 0.998 0.002 

1 CS4 0.000 0.000 0.000 1.000 

 

Subordinate Deterioration Model for Fixed Bearings: Joints in CS1 

TP Total CS1 CS2 CS3 CS4 

0.999 CS1 0.999 0.001 0.000 0.000 

0.959 CS2 0.000 0.959 0.041 0.000 

0.999 CS3 0.000 0.000 0.999 0.001 

1 CS4 0.000 0.000 0.000 1.000 

 

Subordinate Deterioration Model for Fixed Bearings: Joints in CS2 

TP Total CS1 CS2 CS3 CS4 

0.994 CS1 0.994 0.006 0.000 0.000 

0.919 CS2 0.000 0.919 0.080 0.000 

0.966 CS3 0.000 0.000 0.966 0.034 

1 CS4 0.000 0.000 0.000 1.000 

 

Subordinate Deterioration Model for Fixed Bearings: Joints in CS3 

TP Total CS1 CS2 CS3 CS4 

0.989 CS1 0.989 0.011 0.000 0.000 

0.965 CS2 0.000 0.965 0.035 0.000 

0.957 CS3 0.000 0.000 0.957 0.043 

1 CS4 0.000 0.000 0.000 1.000 
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Appendix E- Multi-category Logistic Regression R Code 
 

This appendix provides the R code used to develop the multi-category logistic regression models.  
 
E.1 Bearing Code 
 
######Multicategory Logit Models for Bearing Data######## 
 
###Multinomial Logit Model### 
#reference: Katchova (2013) 
library(package=mlogit) 
A<-read.csv("Logit_data.csv") 
attach(A) 
table(state) 
mltable<-mlogit.data(A,choice="state",shape="wide") 
 
mlogit.model.bearing<-mlogit(state~0|Joint.Ave.CS,data=mltable,reflevel="CS1") 
summary(mlogit.model.bearing) 
 
###ORDINAL MODEL FOR BEARING DATA 
##Cumulative Logit Model with Proportional Odds 
#reference: Bilder and Loughin (2015) 
 
A<-read.csv("Logit_data.csv") 
levels(A$state) 
A$state.order <- factor(A$state, levels = c("CS1","CS2", "CS3")) 
levels(A$state.order) 
library(package=MASS) 
 
mod.fit.ord <- polr(formula = state.order ~ Joint.Ave.CS, data = A, method = 
"logistic") 
summary(mod.fit.ord) 
 
##NOTE## 
#Signs from output must be reverse to state estimated model for the beta coefficients 
 
##TEST PROPORTIONAL ODDS ASSUMPTION 
#Use VGAM package to remake proportional odds model 
library(package=VGAM) 
prop.odd.model<-vglm(formula=state.order~Joint.Ave.CS, 
family=cumulative(parallel=TRUE),data=A) 
summary(prop.odd.model) 
 
##Nonproportional Odds Model 
nonprop.odd.model<-vglm(formula=state.order~Joint.Ave.CS, 
family=cumulative(parallel=FALSE),data=A) 
summary(nonprop.odd.model) 
 
#Likelihood Ratio Test 
LRT<-deviance(prop.odd.model)-deviance(nonprop.odd.model) 
df<-prop.odd.model@df.residual-nonprop.odd.model@df.residual 
p.value<-1-pchisq(q=LRT,df=df) 
data.frame(LRT,df,p.value) 
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E.2 Pier Cap Code 
 
#####Multicategory logit models for Pier Cap data####### 
#Predict probabilities of CS using count data 
 
###Multinomial mlogit 
library(mlogit) 
piercap<-read.csv("Pier_Cap.csv") 
attach(piercap) 
table(State) 
mtable<-mlogit.data(piercap,choice="State",shape="wide") 
 
mlogit.model.piercap<-mlogit(State~0|J.Ave.CS,data=mtable,reflevel="CS1") 
summary(mlogit.model.piercap) 
 
###Ordinal Logit model for pier cap data 
##Cumulative Logit Model with Proportional Odds 
ord<-read.csv("Pier_Cap.csv") 
attach(ord) 
levels(ord$State) 
ord$State.order<-factor(ord$State,levels=c("CS1","CS2","CS3","CS4")) 
levels(ord$State.order) 
library(package=MASS) 
mod.fit.ordinal<-polr(formula=State.order~J.Ave.CS,data=ord,method="logistic") 
summary(mod.fit.ordinal) 
#Note: sign must be reversed for slope (beta coefficient) 
 
##TEST PROPORTIONAL ODDS ASSUMPTION 
#Use VGAM package to remake proportional odds model 
library(package=VGAM) 
prop.odd.model.pc<-vglm(formula=State.order~J.Ave.CS, 
family=cumulative(parallel=TRUE),data=ord) 
summary(prop.odd.model.pc) 
 
##Nonproportional Odds Model 
nonprop.odd.model.pc<-vglm(formula=state.order~Joint.Ave.CS, 
family=cumulative(parallel=FALSE),data=A) 
summary(nonprop.odd.model.pc) 
 
#Likelihood Ratio Test 
LRT.pc<-deviance(prop.odd.model.pc)-deviance(nonprop.odd.model.pc) 
df.pc<-prop.odd.model.pc@df.residual-nonprop.odd.model.pc@df.residual 
p.value.pc<-1-pchisq(q=LRT.pc,df=df.pc) 
data.frame(LRT.pc,df.pc,p.value.pc) 
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Appendix F- Subordinate Markov Chains VBA Code 
 
This appendix provides the Microsoft Excel VBA code to implement the matrix multiplication 

for the transition periods of the Markov process to calibrate the conditional probabilities for the 

subordinate deterioration models.  

 

F.1 Bearing VBA Code 
 
Option Base 1 
Sub TPM_Multiplication() 
 
Dim rng1 As Range 
Dim rng2 As Range 
Dim rng3 As Range 
Dim rng4 As Range 
Dim rng5 As Range 
Dim rng6 As Range 
Dim rng7 As Range 
Dim rng8 As Range 
Dim rng9 As Range 
'Dim rng10 As Range 
'Dim rng11 As Range 
'Dim rng12 As Range 
 
Dim TPM(3, 3) 'Dimension Transition Probability Matrix 
Dim SCS(1, 3) 'Subordinate Element initial Condition State row matrix (1 0 0) 
Dim BCS() 'Bearing Condition State row matrix after n generations 
 
Dim i As Integer    'index variable 
Dim x As Integer    'index variable 
 
Set rng1 = Range("Y:Y") 'Transition Probability 11 
Set rng2 = Range("Z:Z") 'Transition Probability 12 
Set rng3 = Range("AA:AA") 'Transition Probability 22 
Set rng4 = Range("AB:AB") 'Transition Probability 23 
Set rng5 = Range("AC:AC") 'Transition Probability 33 (terminal) 
 
Set rng6 = Range("AH:AH")   'Expected Quantity for CS1 
Set rng7 = Range("AI:AI")   'Expected Quantity for CS2 
Set rng8 = Range("AJ:AJ")   'Expected Quantity for CS3 
 
Set rng9 = Range("X:X") 'Age (number of generations) 
 
'Set rng10 = Range("D:D")    'Primary Element (Joint) Percent CS1 
'Set rng11 = Range("E:E")    'Primary Element (Joint) Percent CS2 
'Set rng12 = Range("F:F")    'Primary Element (Joint) Percent CS3 
 
'NumRows is number of rows of data/inspection reports 
NumRows = Range("Y1", Range("Y1").End(xlDown)).Rows.Count 
Start = 2   'initialize at 2 to skip col headings 
 
For x = Start To NumRows 
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'TPM is the transition probability matrix developed based on the conditional 
probabilities and joint condition matrix 
TPM(1, 1) = rng1.Cells(x).Value 'TP11 
TPM(1, 2) = rng2.Cells(x).Value 'TP12 
TPM(1, 3) = 0                   'TP13 
TPM(2, 1) = 0                   'TP21 
TPM(2, 2) = rng3.Cells(x).Value 'TP22 
TPM(2, 3) = rng4.Cells(x).Value 'TP23 
TPM(3, 1) = 0                   'TP31 
TPM(3, 2) = 0                   'TP32 
TPM(3, 3) = rng5.Cells(x).Value 'TP33 
 
'SCS is the INITIAL subordinate element (bearing) condition matrix 
'SCS matrix is (1 0 0); begins in first CS and transitions by TPM 
SCS(1, 1) = 1 'Bearing CS1 
SCS(1, 2) = 0 'Bearing CS2 
SCS(1, 3) = 0 'Bearing CS3 
 
n = rng9.Cells(x).Value 'age/number of generations to raise TPM 
 
    BCS() = Application.WorksheetFunction.MMult(SCS, TPM) 'BCS is Bearing Condition 
State Matrix based on joint CS 
 
i = 1 ' initialize the number of generations to 1 
 
'If n is greater than 1 then: 
'Do loop to loop through number of generations 
'raises the TPM to the power of n 
'Cf=Co*(TPM)^n 
If n > 1 Then 
    Do 
        BCS() = Application.WorksheetFunction.MMult(BCS, TPM) 
        i = i + 1 
    Loop Until i = n 
    'Output condition state profile 
    rng6.Cells(x) = BCS(1) 'Expected Qty CS1 
    rng7.Cells(x) = BCS(2) 'Expected Qty CS2 
    rng8.Cells(x) = BCS(3) 'Expected Qty CS3 
End If 
'If n equals 1 then use BCS before Do Loop 
'which is after one generation 
If n = 1 Then 
    'Output condition state profile 
    rng6.Cells(x) = BCS(1) 'Expected Qty CS1 
    rng7.Cells(x) = BCS(2) 'Expected Qty CS2 
    rng8.Cells(x) = BCS(3) 'Expected Qty CS3 
End If 
 
Next 
 
End Sub 
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F.2 Pier Cap VBA Code 
 
Option Base 1 
Sub TPM_Multiplication() 
 
Dim rng1 As Range 
Dim rng2 As Range 
Dim rng3 As Range 
Dim rng4 As Range 
Dim rng5 As Range 
Dim rng6 As Range 
Dim rng7 As Range 
Dim rng8 As Range 
Dim rng9 As Range 
Dim rng10 As Range 
Dim rng11 As Range 
Dim rng12 As Range 
 
Dim TPM(4, 4) 'Dimension Transition Probability Matrix 
Dim SCS(1, 4) 'Subordinate Element initial Condition State row matrix (1 0 0) 
Dim PCS() 'Pier Cap Condition State row matrix after n generations 
 
Dim i As Integer    'index variable 
Dim x As Integer    'index variable 
 
Set rng1 = Range("AD:AD") 'Transition Probability 11 
Set rng2 = Range("AE:AE") 'Transition Probability 12 
Set rng3 = Range("AF:AF") 'Transition Probability 22 
Set rng4 = Range("AG:AG") 'Transition Probability 23 
Set rng5 = Range("AH:AH") 'Transition Probability 33 
Set rng6 = Range("AI:AI") 'Transition Probability 34 
Set rng7 = Range("AJ:AJ") 'Transition Probability 44 
 
Set rng8 = Range("AL:AL") 'Expected Quantity for CS1 
Set rng9 = Range("AM:AM") 'Expected Quantity for CS2 
Set rng10 = Range("AN:AN") 'Expected Quantity for CS3 
Set rng11 = Range("AO:AO")  'Expected Quantity for CS4 
 
Set rng12 = Range("AC:AC") 'Age (number of generations) 
 
'NumRows is number of rows of data/inspection reports 
NumRows = Range("AD1", Range("AD1").End(xlDown)).Rows.Count 
 
Start = 2   'initialize at 2 to skip col headings 
 
For x = Start To NumRows 
 
'TPM is the transition probability matrix developed based on the conditional 
probabilities and joint condition matrix 
TPM(1, 1) = rng1.Cells(x).Value 'TP11 
TPM(1, 2) = rng2.Cells(x).Value 'TP12 
TPM(1, 3) = 0                   'TP13 
TPM(1, 4) = 0                   'TP14 
TPM(2, 1) = 0                   'TP21 
TPM(2, 2) = rng3.Cells(x).Value 'TP22 
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TPM(2, 3) = rng4.Cells(x).Value 'TP23 
TPM(2, 4) = 0                   'TP24 
TPM(3, 1) = 0                   'TP31 
TPM(3, 2) = 0                   'TP32 
TPM(3, 3) = rng5.Cells(x).Value 'TP33 
TPM(3, 4) = rng6.Cells(x).Value 'TP34 
TPM(4, 1) = 0                   'TP41 
TPM(4, 2) = 0                   'TP42 
TPM(4, 3) = 0                   'TP43 
TPM(4, 4) = rng7.Cells(x).Value 'TP44 
 
'SCS is the INITIAL subordinate element (bearing) condition matrix 
'SCS matrix is (1 0 0 0); begins in first CS and transitions by TPM 
SCS(1, 1) = 1 'Bearing CS1 
SCS(1, 2) = 0 'Bearing CS2 
SCS(1, 3) = 0 'Bearing CS3 
SCS(1, 4) = 0 'Bearing CS4 
 
n = rng12.Cells(x).Value 'age/number of generations to raise TPM 
 
    PCS() = Application.WorksheetFunction.MMult(SCS, TPM) 'PCS is Pier Cap Condition 
State Matrix based on joint CS 
 
i = 1 ' initialize the number of generations to 1 
 
'If n is greater than 1 then: 
'Do loop to loop through number of generations 
'raises the TPM to the power of n 
'Cf=Co*(TPM)^n 
If n > 1 Then 
    Do 
        PCS() = Application.WorksheetFunction.MMult(PCS, TPM) 
        i = i + 1 
    Loop Until i = n 
    'Output condition state profile 
    rng8.Cells(x) = PCS(1) 'Expected Qty CS1 
    rng9.Cells(x) = PCS(2) 'Expected Qty CS2 
    rng10.Cells(x) = PCS(3) 'Expected Qty CS3 
    rng11.Cells(x) = PCS(4) 'Expected Qty CS4 
End If 
'If n equals 1 then use BCS before Do Loop 
'which is after one generation 
If n = 1 Then 
    'Output condition state profile 
    rng8.Cells(x) = PCS(1) 'Expected Qty CS1 
    rng9.Cells(x) = PCS(2) 'Expected Qty CS2 
    rng10.Cells(x) = PCS(3) 'Expected Qty CS3 
    rng11.Cells(x) = PCS(4) 'Expected Qty CS4 
End If 
 
Next 
 
End Sub 

 


