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Chapter 1

Summary of the Standard Model

1.1 Particles and interactions

The Standard Model (SM) in particle physics is a relativistic quantum field the-

ory which describes three out of four fundamental interactions in nature. The SM

includes quantum chromodynamics, a theory of unbroken SU(3) symmetry that

describes the strong interaction, and the electroweak model, a theory of a broken

SU(2)L×U(1)Y symmetry that describes the electromagnetic and weak interactions

[1].

In the SM, particles are divided into fermions and bosons, which are identified

by their spin quantum numbers. Fermions are particles that follow Fermi - Dirac

statistics, which include fundamental particles whose spin is 1/2 and any composite

particle that has odd number of these fundamental particles. Bosons are particles

that follow Bose - Eistein statistics, which always have integer spin quantum num-

bers. Fermions are building blocks of matter while bosons are mainly mediators for

fundamental forces described earlier.

Fermions in the SM include quarks and leptons, which come in 3 generations.

• Quarks are particles whose combination creates hadrons and have never been

observed as free particles. Bound states of a quark and an antiquark are called

mesons while bound states of three quarks are called baryons. Quarks come

9



10 CHAPTER 1. SUMMARY OF THE STANDARD MODEL

in up and down isospin doublets. Based on quarks’ charge, they are classified

into “up” type and “down” type. Quark charges are calculated by using the

generalized Gell-Mann-Nishijima formula [2]:

Q = T3 +
Y

2
, (1.1)

where T3 is the isospin quantum number (+1/2 for u, c, t quarks and -1/2 for

d, s, b quarks) and Y/2 is the hypercharge (1/6 for quark doublets). From this,

we can verify the charges of all SM quarks:

Q(u, c, t) = T3 +
Y

2
=

1

2
+

1

6
=

2

3
,

Q(d, s, b) = T3 +
Y

2
= −1

2
+

1

6
= −1

3
.

(1.2)

There are 6 flavors of quarks that fall into three “generations” or “families” as

summarized in Figure (1.1). Each quark flavor comes with three different color

charges, which enable them to interact via the strong interaction. Every quark

has a corresponding antiquark with the same mass, the same mean lifetime

and the same spin but with an opposite charge. Due to the color confinement

of hadrons in QCD, quarks cannot exist as free particles. We can only find

quarks as part of compound particles like mesons (a combination of one quark

and one antiquark) and baryons (combinations of three quarks).

• Leptons are also fermions of spin 1/2 which exist in 6 different flavors that

are grouped into three generations as described in Figure (1.1). Unlike quarks

whose charges are not integers, each generation of lepton has one neutral and

one negatively charged particle. For example, the first generation includes one

electron neutrino νe which is electrically neutral and one electron with charge

-e. Leptons’ charge also follows the Gell-Man-Nishijima formula. With all

neutrinos having T3 = +1/2, electron, muon and tau having T3 = −1/2 and

all leptons having Y/2 = −1/2, we can verify leptons’ charges:

Q(ν) = T3 +
Y

2
=

1

2
− 1

2
= 0,

Q(e) = T3 +
Y

2
= −1

2
− 1

2
= −1.

(1.3)

Each lepton described above has a corresponding anti-partner. For example,

antiparticle of an electron is the positron, whose mass is equal to that of the
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Figure 1.1: Standard Model of Elementary particles [3]

electron and has a charge of +e. One important point of the SM for leptons is

that it predicts masses of neutrinos to be zero while in fact they are not. This

is considered to be one the biggest issues of the SM. In contrast to quarks,

leptons can be observed to be free particles. The charged leptons interact with

other charged particles via electromagnetic and weak interactions while light

lepton (νe, νµ, ντ ) can only interact with other leptons via weak forces. These

interactions will be discussed in more detail in subsequent sections.

While fermions are the building blocks that make up the world of matter, bosons

are responsible for mediating the interaction between fermions, which include strong

interaction, electroweak interaction and gravitational interaction. Bosons follow

Bose - Einstein statistics and carry integer spin quantum numbers (0,±1,±2, ...).

Elementary particles interact with each other by exchanging the corresponding gauge

bosons, which are gluons, photons, W± and Z bosons.

• Gluons are mediators for the strong interaction between quarks. There are 8

gluons in the SM as this is the number of generators for the SU(3) color gauge
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group: 32 − 1 = 8. Just like quarks, gluons have color charges and cannot be

observed as free particles due to the color confinement that limits the effective

range for strong interactions to about the size of an atomic nucleus.

• The photon is the mediator for electromagnetic interactions which are de-

scribed by Quantum Electrodynamics (QED). Electrically charged particles

interact with each other by exchanging photons in electric interactions.

• W± and Z bosons are mediators for weak interactions, which are behind many

processes like beta decay of a neutron into a proton and a W− boson followed

by the decay of W− into electron and antielectron neutrino: n→ p+ e− + ν̄e.

In the SM, the weak and electromagnetic interactions are unified into the

electroweak interaction under the SU(2) × U(1) gauge group, which will be

explained in more detail in the next section.

ν̄e

W−
e−

n p

Figure 1.2: Beta decay of neutron

• The last boson of the SM is the Higgs boson which is a complex doublet.

Following the process called “Higgs mechanism”, gauge bosons like W± and

Z acquire masses after absorbing 3 out of 4 components of the Higgs doublet.

The Higgs boson is also responsible for generating masses of quarks and leptons

by coupling with them via a Higgs field. This important part will be explained

in detail in the next sections.
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1.2 The SM gauge theory

1.2.1 Lagrangian Field Theory

In Quantum Field Theory(QFT) [4], the Lagrangian density L, which is the function

of the fields of particles and their derivatives, gives us information about the kinetics

of particles and how they interact with each other. The action, which is the time

integral of the Lagrangian, is written as:

S =

∫
Ldt =

∫
L(φ, ∂µφ)d4x. (1.4)

When the action is minimized, field equations can be obtained:

0 = δS =

∫
d4x

{
∂L

∂φ
δφ+

∂L

∂(∂φ)
δ(∂µφ)

}
=

∫
d4x

{
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µx)

)
δφ+ ∂µ

(
∂L

∂(∂µx)
δφ

)}
,

(1.5)

where δφ is the infinitesimal deformation of the field. As the integral of the final

term in the equation above can be turned into a surface integration of the spacetime

region of integral, which evaluates to zero, the field equation is then expressed as in

the following form, which is also known as Euler-Lagrange equation:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (1.6)

If there is more than one field described in the Lagrangian, each field must have

a corresponding Euler-Lagrange equation. As a simple example, let us consider the

Lagrangian of a single real scalar field φ(x):

L =
1

2
(∂µφ)2 − 1

2
mφ2. (1.7)

By taking derivatives of L with respect to φ and ∂µφ, one can derive the equation

of motion for φ(x), which is given by:

(∂µ∂µ +m2)φ(x) = 0, (1.8)

which is well known as the Klein-Gordon equation.
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1.2.2 Noether’s Theorem

Noether’s theorem is the theorem that states the relationship between symmetries

and conservation laws, which can be applied in both classical and quantum field

theories. This theorem is particularly important as it provides the analysis of charge

conservation in the SM. For an infinitesimal deformation of the field given in the

following form:

φ(x)→ φ′(x) = φ(x) + α∆φ(x) (1.9)

where α is infinitesimally small and ∆φ is the deformation of the field. Such transfor-

mation is said to be symmetric if it leaves the equation of motion unchanged, which

means that the action has to be invariant under such transformation. Generally,

this will also be true if we allow the action to change by a surface term because that

term can always be turned into a surface integral and evaluated to zero. Therefore,

under the field transformation, the Lagrangian must transform as:

L(x)→ L′(x) + α∂µJ µ(x) (1.10)

by some J µ(x) function. The variation of the Lagrangian corresponding to the field

variation is given by:

α∆L(x) =
∂L
∂φ

(α∆φ) +

(
∂L

∂(∂µφ)

)
∂µ(α∆φ)

= α∂µ

(
∂L

∂(∂µφ)
∆φ

)
+ α

[
L
∂φ
− ∂µ

(
L

∂(∂µφ)

)]
∆φ.

(1.11)

The second term in equation (1.11) is equal to 0 by the result of Euler - Lagrange

equation. By comparing the remaining term in equation (1.110 with equation (1.10),

we get:

α∂µJ µ(x) = α∂µ

(
∂L

∂(∂µφ)
∆φ

)
, (1.12)

or equivalently, we can put this in the following form:

∂µj
µ = 0 where jµ =

∂L
∂(∂µφ)

∆φ− J µ(x). (1.13)

The result we come up here means that for each continuous symmetry L, we have a

corresponding conserved current jµ. The conserved charge in this case is given by:

Q =

∫
all space

j0d3x. (1.14)

where the integral is constant over time.
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1.2.3 Chiral Symmetry

In deriving Euler - Lagrange equation, we have given an example of solving the

equation of motion of real scalar field. A similar approach can give us the equation

of motion of Dirac fields which represent fermionic particles. Such equation is called

Dirac equation:

(iγµ∂µ −m)ψ(x) = 0, (1.15)

with ψ(x) denoting the field and m denoting fermion’s mass. The term γµ in the

equation above are gamma matrices, which are expressed in the Weyl basis as [4]:

γ0 =

 0 I

I 0

 , γi =

 0 τ i

−τ i 0

 , γ5 =

 −I 0

0 I

 , (1.16)

where I is the identity matrix and τ i(i = 1, 2, 3) are the Pauli matrices.

The solution of the Dirac equation can be split into two 2-dimensional represen-

tations:

ψ =

 ψL

ψR

 , (1.17)

where ψL, ψR are related to ψ by the projection operators:

P± =
1

2
(I ± γ5). (1.18)

Under this transformation, each Weyl spinor transforms independently as:

ψL = P−ψ, ψR = P+ψ (1.19)

ψ̄L = ψ̄P−, ψ̄R = ψ̄P+ (1.20)

where ψ̄ = ψ+γ0 is the Dirac adjoint of ψ. From the explicit form of γ5, we can see

that ψL and ψR are two eigenstates of γ5 with eigenvalues of −1 and +1, respectively:

γ5ψL = −ψL and γ5ψR = ψR. (1.21)

By expressing the fermion fields as the sum of the left and right-handed components,

we can see that the mass term that is proportional to ψ̄ψ will not be allowed as it

would break the symmetry under the chiral transformation above. From this, we

can rewrite the Dirac Lagrangian of a massless fermion as the sum of left and right-

handed components as:

LDirac = iψ̄γµ∂µψ = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR. (1.22)
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In case of two flavors, one can have the freedom to make a SU(2)⊗ U(1) transfor-

mations for each of the L and R components independently:

ψL → ULψL, ψR → URψR. (1.23)

The symmetry describing such transformations is called chiral symmetry. In terms

of ψL and ψR, the Dirac equation, which is derived from Dirac Lagrangian above

can be written as:

(iγµ∂µ −m)ψ =

 −m i(∂0 + σ.∇)

i(∂0 − σ.∇) −m

 ψL

ψR

 = 0 (1.24)

In the limit where m→ 0, the equation above is split into system of two independent

equations:

i(∂0 − σ.∇)ψL = 0

i(∂0 + σ.∇)ψR = 0.
(1.25)

The solution of Dirac equations above can be written as a linear combination of

plane waves with positive frequency waves given by:

ψ(x) = u(p)e−ip.x, p2 = m2, p0 > 0. (1.26)

With this substitution, equation (1.25) becomes:

(E + σ.p)ψL = 0

(E − σ.p)ψR = 0,
(1.27)

where E → |p| in the limit that m → 0. Therefore, we can rewrite the equation

(1.27) as:

hψL = −1

2
ψL, hψR = +

1

2
ψR, (1.28)

where h = 1
2
σ.p/|p| is the helicity operator with eigenvalues +1

2
,−1

2
for right and

left-handed fermions, respectively. The helicity operator projects the direction of

the angular momentum on the direction of linear momentum. For massive particles,

direction of linear momentum depends on its selection of reference frame as one

can select a reference frame that reverses the linear momentum direction while

angular momentum remains the same. Hence helicity of massive fermions depends

on the choice of reference frame. For a massless particle, the direction of the linear

momentum does not depend on the choice of reference frame. Therefore, helicities
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of massless fermionos are independent of reference frame. In general, fermions are

not massless. However, in the high energy limit where kinetic energy is much larger

than the fermion’s mass, chiral symmetry is usually utilized.

1.3 Quantum Electrodynamics

In the previous part, we have discussed the invariance of the field equation under the

global phase transformation, which means that the transformation does not depend

of the space-time coordinates. If we generalize the transformation in such a way

that it is a function of space-time:

ψ(x)→ eiα(x)ψ(x), (1.29)

where α is some functions of space-time, we will a transformation that is known as

a local gauge transformation. However, this transformation does not guarantee that

the Lagrangian of the field will be invariant. For example, the Dirac Lagrangian of

a fermion field is given by:

L = iψ̄γµ∂µψ −mψ̄ψ. (1.30)

Under local transformation (1.29), the last term of L is invariant as:

ψ̄ψ → ψ̄e−iα(x)eiα(x)ψ = ψ̄ψ. (1.31)

However, the first term in the Lagrangian is not invariant as it contains the derivative

of the fermion field:

∂µψ → eiα(x)∂µψ + ieiα(x)ψ∂µα(x), (1.32)

and the term containing ∂µα(x) breaks the invariance of the Lagrangian. Up to

this point, there is nothing crucial about this. However, if we insist on having the

Lagrangian invariant under local transformations as it does in global transformation,

we have to modify the derivative ∂µ so that the term ∂µα(x) will not appear after

such transformation. In other word, the expected derivative must transform the

same way ψ transforms:

ψ → eiα(x)ψ,

Dµψ → eiα(x)Dµψ
(1.33)
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The expected derivative is called “covariant” derivative as it has the same form of

transformation as that of the field. To be able to achieve that goal, a vector field

Aµ was introduced which transforms locally in such a way that the term containing

derivative of the phase is canceled out. This is done by replacing ∂µ by Dµ:

Dµ = ∂µ − ieAµ (1.34)

where the vector field Aµ transforms as:

Aµ → Aµ +
1

e
∂µα(x). (1.35)

We can confirm that the covariant derivative actually has the property that we

expect: under the local phase transformation, we have:

Dµψ = (∂µ − ieAµ)ψ →
[
∂µ − ie

(
Aµ +

1

e
∂µα(x)

)]
(eiα(x)ψ)

= eiα(x) (∂µ − ieAµ)ψ = eiα(x)Dµψ. (1.36)

After the replacement, the Lagrangian is invariant under the local transformation

(1.29). However, the form of the Lagrangian is also altered:

L = iψ̄γµDµψ −mψ̄ψ

= iψ̄γµ∂µψ −mψ̄ψ + eψ̄γµψAµ.
(1.37)

Thus, by requiring that the Dirac Lagrangian must be invariant under local phase

transformation, we are required to introduce a gauge vector field Aµ that couples

to the Dirac particle of charge e. To complete the Lagrangian, we must add to the

Lagrangian the kinetic term for the newly added vector field Aµ. Again, to have an

invariant Lagrangian, the kinetic term must also be invariant under (1.29). It can

be checked that a field strength tensor Fµν = ∂µAν − ∂νAµ is gauge invariant. From

this, we get the Lagrangian of QED:

LQED = ψ̄(iγµ∂µ −m)ψ + eψ̄γµψAµ −
1

4
FµνF

µν . (1.38)

We did not include the mass term for the vector field because a mass term of

1/2m2AµA
µ would break the invariance of the Lagrangian, which explains why pho-

ton must be massless. The factor of 1/4 for the kinetic term of the photon is to
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recover the Maxwell’s equations. The Euler - Lagrange equation for the photon field

Aµ is given by

∂µF
µν = jνem, (1.39)

where the electric current jνem is given by jνem = eψ̄γνψ. We can check to see that

the current corresponding to the photon field is conserved:

∂µj
µ
em = e∂µψ̄γ

µψ + eψ̄γµ∂µψ = (iemψ̄)ψ + ψ̄(−iemψ) = 0. (1.40)

In summary, we have looked into the scenario where Dirac Lagrangian variance

is broken by a local phase transformation. To retain this invariance, the photon field

Aµ was introduced that resulted in the interacting field theory of QED.

1.4 Yang-Mills Theory

In the previous section, the interacting field theory of QED was constructed based on

the idea of preserving the local phase transformation invariance of the Lagrangian of

fermion field. The original Yang and Mill’s paper [5] proposed the invariance of the

Lagrangian for proton - neutron doublet under transformation in isotopic spin space.

In generalization of that argument, Yang - Mill theory can be applied to prove that

fermion field Lagrangian must be invariant under any continuous symmetry group.

Let us consider a fermion field described by an N multiplet: ψ = (ψ1, ψ2, ..., ψN).

Under the SU(N) local phase transformation, the field will transform as:

ψ′j(x) = exp

[
−iTaθa(x)

2

]
ψj(x) = U(θ(x))ψj(x), (1.41)

where Ta are the generators of the group which follow the commutator relation:

[Ta, Tb] = ifabcTc, (1.42)

where fabc are called structure constants of the group. Again, by requiring that the

Lagrangian must be invariant under this locally continuous phase transformation,

we are forced to replace the field derivative by a covariant derivative which comes

with additional vector fields. The symmetry group that describes electrodynamics is

called Abelian symmetry and the generalized theory is called non-Abelian symmetry.
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Starting from the free Lagrangian of the multiplet fermion field:

L = ψ̄j(x)(iγµ∂µ −mj)ψj(x), (1.43)

where the field derivative will transform as:

∂µψ → ∂µ(U(θ)ψ) = U(θ(x))∂µψ + ψ∂µ(U(x)), (1.44)

which certainly destroys the invariance of this fermion field Lagrangian. If we require

that the Lagrangian must be invariant under transformation (1.41), we have to

replace the old field derivative with covariant derivative so that the term containing

∂µ(U(x)) is canceled out of the derivative. Let us introduce the covariant derivative

as

∂µψ → Dµ(ψ(x)) =

(
∂µ − ig

TaA
a
µ

2

)
ψ (1.45)

that contains gauge vector field Aaµ and g being the coupling constant of the theory,

which is similar to electric charge in quantum electrodynamics. As we expect the

covariant Dµ to transform as Dψ → U(θ(x))Dµψ, we must have the vector field Aµ

transformed as:

T aA
′a
µ = U(θ(x))T aAaµU

−1(θ(x))− i

g
[∂µU(θ(x))]U−1(θ(x)), (1.46)

where U(θ(x) ≈ 1 + − i
2
T aθa(x) for infinitesimal θa(x). This means, the field Aaµ

must transform as:

Aaµ → Aaµ −
1

g
∂µθ

a + fabcθ
bAcµ. (1.47)

The transform of the vector field ensures that the covariant derivative of ψ has the

same form with ψ and ensures that the Lagrangian of the fermion field is invariant

under local phase transformations. The field tensor is defined by:

[Dµ,Dν ] = −ig
2
F a
µνT

a, (1.48)

or equivalently:

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.49)

whose infinitesimal transformation is:

F a
µν → F a

µν − fabcθbF c
µν . (1.50)
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The complete Lagrangian for Yang-Mills theory is then:

LYM = iψ̄j(γ
µDµ −m)ψj −

1

4
F a
µνF

aµν . (1.51)

It can be seen that the mass term for the vector field would break the symmetry

under local phase transformations and therefore is forbidden. This explains the fact

that vector gauge bosons in this theory are always massless. The number of massless

gauge bosons in the group is also equal to the number of generators of the gauge

symmetry.

In this section, we have discussed the general cases of Yang - Mill’s theory, whose

original paper described the proton - neutron doublet transformed under isotopic

spin. In the next section, we will look at the example of Yang-Mill’s theory being

applied to describe QCD.

1.5 Quantum Chromodynamics

In the previous section, we have discussed the Yang-Mills theory, which can be ap-

plied to describe behaviors of fermionic particles using non-Abelian Lie groups. In

this section, we will discuss the application of Yang-Mills theory to Quantum Chro-

modynamics (QCD), the theory that describes strong interaction between quarks

and gluons, which are elementary particles that carry color charges. One important

property of QCD is that the strong coupling constant is not a constant but rather

decreases when the energy scale increases. This phenomenon is known as asymptotic

freedom and was discovered in 1973 and the theory of QCD we are about to discuss

has the ability to explain the physics behind it.

As presented in the beginning of the chapter, there are 6 flavors of quarks: u,

d, s, c, b, t. Experimental evidence [6] shows that each quark comes in three color

charges. One of such measurement is the R ratio of cross sections of the process

e+e− → hadrons to that of the process e+e− → µ+µ−:

R =
e+e− → hadrons

e+e− → µ+µ−
= 3

∑
q

e2
q, (1.52)

where eq is the fractional charge of quarks and the factor of 3 comes from the

assumption that each quark has three different color charges.
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The color charges are named red (r), green (g), blue (b) with the corresponding

color states:

r =


1

0

0

 , b =


0

1

0

 , g =


0

0

1

 , (1.53)

The QCD theory is then the Yang - Mill’s theory of SU(3) where each quark flavor

transforms as the fundamental triplet representations 3 and 3̄. Stable hadrons

observed in nature are all colorless, or more precisely, they are all in color singlet

states. For hadrons to be invariant under SU(3) color symmetry, they must belong

to one of the following types of combinations:

q̄iqi, εijkqiqjqk, εijkq̄
iq̄j q̄k, (1.54)

which represent mesons, baryons. The color singlet state is given by:

r̄r + ḡg + b̄b√
3

. (1.55)

In addition, we also have 8 mixed color states that are used for describing color

states of gluons:

(rb̄+ br̄)/
√

2, −i(rb̄− br̄)/
√

2, (rḡ + gr̄)/
√

2, −i(rḡ − gr̄)/
√

2,

(bḡ + gb̄)/
√

2, −i(bḡ − gb̄)/
√

2, (rr̄ − bb̄)/
√

2, (rr̄ + bb̄− 2gḡ)/
√

6,
(1.56)

which are linearly independent to each other. Following the theory structure we

have shown in the Yang - Mill theory, we can contruct the Lagrangian of QCD as:

LQCD = Q̄j(iγ
µDµ −mqj)Qj −

1

4
GaµνGaµν , (1.57)

where the covariant derivative and field streng tensor are defined as usual:

Dµ = ∂µ + i
g

2
λaA

µ
a ,

Ga
µν = ∂µAν − ∂νAµ + gfabcAbµA

c
ν .

(1.58)

The 8 generators of the SU(3) symmetry group are 3 × 3 Hermitian matrices

that satisfy the relation:

[λa, λb] = ifabcλc, (1.59)
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and are represented by [1]:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0



λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

(1.60)

As for any physics theories which is only appropriate for a specific energy scale

and are described by a certain set of parameters, the theory of QCD is dependent

on the energy scale. The QCD theory is renormalizable in the sense that the set of

parameters for a certain energy scale can be used to infer the set belonging to other

scales. For QCD, the rule of inference for the coupling constant g is described by

the renormalization group equation [4]:

d

d log(Q/M)
ḡ = β(ḡ), (1.61)

where the initial condition is αs(M) = αs = g2(M)/4π at some certain scale M .

The equation β(ḡ) gives us the information about how the coupling constant ḡ varies

with energy scale M and the momentum transfer scale Q. For QCD of nc = 3 colors

and nf flavors, β function is evaluated by:

β(g) = − b0

(4π)2
where b0 = 11− 2nf

nc
. (1.62)

From this, the dependence of the coupling constant αs = g2
s/4π can be evaluated as:

αs(Q
2) =

12π

(11nc − 2f) ln (|Q2|/M2)
, (1.63)

Experimental results show that the range for M is from 100 to 500 MeV. From

this dependence, we can see that at large seperation between quarks where the

momentum transfer is small, the coupling constant becomes larger and prevents

further seperation between them. This is the reason for quark confinement, which

states that quarks cannot exist in color singlet states. In other words, when the

distance of a quark to its host hadron is larger than the length of the theory, the

strong force will pull and confine the quark back to its hadron.
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1.6 Higgs Mechanism

In previous section, we have discussed the requirement of an invariance of Lagrangian

under local phase transformation of U(1) and SU(3) symmetries, which explains the

mass of photon and gluons being zero. However, this cannot be applied to the weak

interaction because the masses of the weak interaction gauge bosons W and Z are

non-zero. By manually adding masses for W and Z boson, the weak interaction will

become unrenormalizable. In this section, we will discuss a method for introducing

mass for gauge boson without breaking local phase invariance.

1.6.1 Spontaneous Symmetry Breaking

Mass of a particle as given in example (1.7) is said to be added manually by hand.

The other way to generate mass for particle is via spontaneous symmetry breaking.

Given the Lagrangian of a scalar field below:

L = T + V =
1

2
(∂µφ)2 −

(
1

2
µ2φ2 +

λ

4
φ4

)
, (1.64)

where λ > 0, which is symmetric under the reflection transformation φ→ −φ. The

case of µ2 > 0 was examined to represent a scalar of mass µ with a 4-particle vertex

with coupling λ. For the case where µ2 < 0, the particle’s potential has local minima

at:

∂V
∂φ

= 0↔ µ2 + λφ2 = 0↔ φ = ±v, (1.65)

where v =
√
−µ2/λ. With no loss of generality, we can shift the variable to the

bottom of the potential well at v with the following transformation:

φ(x) = v + η(x). (1.66)

The Lagrangian is now read:

L′ = 1

2
(∂µη)2 − λv2η2 − λη3 − 1

4
λη4 + const.. (1.67)

It can be understood that L and L′ are equivalent mathematically. However, L′

is now containing a massive scalar of mass mη =
√

2λv2 =
√
−2µ2. What is the

difference between L and L′ that makes L′ able to generate mass for its scalar field?

The answer is that φ = 0 is not a local minima in L, which makes it unstable
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under perturbation of the field. When shifting the coordinate to the ground at local

minima, we can stably do perturbation calculations.

Next, let us examine another example of spontaneous breaking of global gauge

symmetry of Lagrangian that describes a complex scalar field φ = (φ1 + iφ2)/
√

2:

L = ∂µφ ∗ ∂µφ− µ(φ ∗ φ)− λ(φ ∗ φ)2. (1.68)

The Lagrangian is invariant under global phase transformation φ → eiαφ, which is

a U(1) gauge symmetry. We can rewrite the Lagrangian as:

L =
1

2
(∂µφ1)2 +

1

2
(∂µφ2)2 − µ2

2
(φ2

1 + φ2
2)− λ

4
(φ2

1 + φ2
2)2, (1.69)

Minima of the potential are now given by:

φ2
1 + φ2

2 = v2, where v2 = −µ
2

λ
. (1.70)

By selecting the ground to be at (φ1, φ2) = (v, 0) and expand the Lagrangian around

that point by having φ(x) = [v + η(x) + iξ(x)]/
√

2, we will come up with the

Lagrangian:

L′ = 1

2
(η)2 +

1

2
(ξ)2 + µ2η2 + C, (1.71)

where C contains constants and term that are in cubic and quadratic of ξ and

η. From this form, we can see that now our field η has acquired a mass given by

mη =
√
−2µ2. However, there is now a scalar field with no corresponding mass

term ξ, which is called Goldstone - Nambu boson. From this, the next step is to

find out a way to solve the problem of the existence of this massless boson.

1.6.2 Higgs Mechanism

As an extension to the previous part, let us discuss the spontaneous symmetry

breaking of the local phase transformation of U(1) symmetry. As we have mentioned

earlier, the transformation is represented by:

φ(x)→ eiα(x)φ(x). (1.72)

The gauge invariant Lagrangian is then:

L = (Dµφ) ∗ (Dµφ)− µ2φ2 − λ(φ2)2 − 1

4
FµνF

µν , (1.73)
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where Dµ = ∂µ − ieAµ and Aµ transforms as Aµ → Aµ + 1
e
∂µA. In the previous

section, we have examined the case where µ2 > 0, which is just QED theory for

charged scalar particle of mass µ. To generate mass spontaneously as we have

done in the two examples earlier, let us assume that µ2 < 0. Again, the original

symmetry will be broken by shifting the field to its true ground state with φ(x) =

1√
2
(v + η(x) + iξ(x)). The resulting Lagrangian is then:

L′ = 1

2
(∂µξ)

2 +
1

2
(∂µη)2 − v2λµ2 +

1

2
e2v2AµA

µ − evAµ∂µξ... (1.74)

This form of Lagrangian indicates that we now have mξ = 0,mA = ev,mη =
√

2λv2.

As observed earlier, we now have an unwanted massless Goldstone - Nambu boson

ξ and massive gauge bosons η, A. However, there are some problems with this field

translation. First, there is now a term Aµ∂
µξ, which describes the transformation

of a particle into another, which is not physical. Second, by giving mass to vector

field Aµ, its degrees of freedom changes from 2 to 3, which cannot happen if all we

did was just translating the coordinates of the fields. Therefore, we have to select

an gauge transform that eliminates the appearance of unphysical particles. The

appropriate choice is:

φ→ 1√
2

(v + h(x))eiθ(x)/v

Aµ →Aµ +
1

ev
∂µθ,

(1.75)

where h is real. With this choice of gauge transformation, the Lagrangian is written

as:

L =
1

2
(∂µh)2 − λv2h2 +

1

2
e2v2A2

µ − λvh3 − 1

4
λh4

+
1

2
e2A2

µh
2 + ve2A2

µh−
1

4
FµνF

µν .

(1.76)

What we have here in the new Lagrangian are the absence of the massless Goldstone

- Nambu boson, and the existence of the massive gauge boson Aµ and massive scalar

field h, which is called Higgs particle. The massless Goldstone-Nambu boson was

transformed into the longitudinal polarization of the massive gauge boson Aµ to give

it its mass. This whole process is called “Higgs mechanism”.

Another example of Higgs mechanism is in the spontaneous symmetry breaking

of local SU(2) gauge symmetry. The Lagrangian of this theory is given by:

L = (∂µφ)†(∂µφ)− µ2φ†φ− λ(φ†φ)2, (1.77)
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where φ is a complex scalar field of SU(2):

φ =
1√
2

 φ1 + iφ2

φ3 + iφ4

 . (1.78)

Under the local phase transformation:

φ(x)→ φ′(x) = eiα(x).τ(x)/2φ(x), (1.79)

the Lagrangian is kept invariant by replacing the normal derivative with the covari-

ant derivative Dµ = ∂µ + ig τa
2
W a
µ , with the three vector fields W a

µ (a = 1, 2, 3) vary

as:

Wµ → Wµ −
1

g
∂µα− α×Wµ. (1.80)

With such field transformation, the gauge invariant is then:

L = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2 − 1

4
W µνWµν , (1.81)

where Wµν = ∂µWν − ∂νWµ − gWµ ×Wν . The cross-product of vector fields appear

due to the non-Abelian property of the group as mentioned in the previous section.

For µ2 > 0, the theory describes the four scalar fields interacting with three massless

vector fields. The scenario we are interested in is when µ2 < 0, where the potential

proportional to φ†φ has minima locating on:

φ†φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = −µ

2

2λ
. (1.82)

As usual, we will pick a particular minima and expands the field in vicinity to that

position. The choice of minima is this case will be φ1 = φ2 = φ4 = 0, φ3 = −µ2/2λ.

Our field is then expanded as:

φ(x) =
1√
2

 0

v + h(x)

 . (1.83)

From this, we can find the mass generated for the three massless gauge bosons.

The mass terms for the gauge boson will then be embedded inside of the covariant

derivative: ∣∣∣∣ig1

2
τ.Wµφ

∣∣∣∣2 =
g2

8

∣∣∣∣∣∣
 W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ W 3
µ

 0

v

∣∣∣∣∣∣
=
g2v2

8

[
(W 1

µ)2 + (W 2
µ)2 + (W 3

µ)2
]
.

(1.84)
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This tells us that the spontaneous symmetry breaking of SU(2) under local phase

transformation has generated a mass of M = gv/2 for the vector bosons. What we

have after this spontaneous symmetry breaking are the three massive bosons Wµ

and a scalar Higgs field h. The masses of the vector bosons come from the fact that

massless Goldstone-Nambu bosons were “eaten” by the vector fields. This is one

other example of Higgs mechanism.

It can be seen that Higgs mechanism has helped generating masses for vector

bosons while preserving renormalizability of the theory, which cannot be achieved

if we manually add masses for vector bosons by hand. For that reason, it is widely

believed that gauge principles are responsible for generating structures of all inter-

actions in the universe. In the next section, we will discuss how gauge principles

are used to combine electromagnetic and weak interactions with three weak bosons

being massive and photon being massless.

1.7 Electroweak Theory

The electroweak theory is the theory that unifies two out of four interactions in

nature: the weak interaction and electromagnetic interaction. The initial idea of

unifying the two interactions was proposed by Glashow, which had a flaw that the

theory is not renormalizable since W boson masses had to be inserted manually

by hand. The problem was then solved by Weinberg and Salam independently by

proposing that the masses of the vector bosons will be generated by a process called

Higgs mechanism.

As we have described in the previous section, Higgs mechansim has the ability to

generate masses for gauge bosons while preserving renormalizability of the theory.

Experimental data have confirmed that the weak and electromagnetic interactions

are invariant under weak isospin SU(2)L and weak hypercharge U(1)Y transforma-

tion. In this section, we will discuss how the invariant Lagrangian of SU(2)L×U(1)Y

was created.

By requiring the invariance of Lagrangian under local U(1) gauge transformation,
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we come up with the interacting Lagrangian for fermions:

L = ψ̄(iγµ∂µ −m)ψ − eQψ̄γµψAµ −
1

4
FµνF

µν , (1.85)

where Q is the charge of the fermion and the interaction term can be expressed as

the coupling of electromagnetic current to the vector boson:

−eQψ̄γµψAµ = −ejemµ Aµ. (1.86)

To be able to describe the weak processes, we have to replace the electromagnetic

interaction with the weak interaction between the fermions with coupling g and weak

gauge bosons Wµ and vector boson Bµ with fermions carrying weak hypercharge with

coupling g′/2. The interaction terms are then described by:

gJµ.W
µ +

g′

2
jYµ B

µ = χ̄LγµT.W
µχL +

g′

2
(χ̄LγµY χL + χ̄RγµY χR)Bµ, (1.87)

where T and Y are generators of SU(2)L and U(1)Y groups. In the expressions

above, χL is the isospin doublet of the left-handed fermions and χR is the right-

handed isosinglets. Some examples of these fields are those of the first generation

where

χL =

 νe

e−


L

, χR = e−R (1.88)

for leptons and:

χL =

 u

d


L

, χR = uR, dR (1.89)

for quarks. The generators of U(1)em, SU(2)L and U(1)Y are related by:

Q = T 3 +
Y

2
, (1.90)

which means:

jemµ = J3
µ +

1

2
jYµ . (1.91)

By having two physical fields Aµ and Zµ being orthogonal combinations of Bµ and

W3 with mixing angle θW , one can have

gJ3
µW

3 +
g′

2
jYµ Bµ =

(
g sin θWJ

3
µ + g′ cos θW

jYµ
2

)
Aµ

+

(
g cos θWJ

3
µ − g′ sin θW

jYµ
2

)
Zµ.

(1.92)
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which must contain ejemµ Aµ. From there, we can easily find the relation between g,

g′ and e as:

e = g sin θW = g′ cos θW . (1.93)

At this point, we have came up with the electroweak Lagrangian that is invariant

under SU(2)L × U(1)Y local phase transformation:

L = χ̄Lγ
µ

[
i∂µ − g

1

2
τ.Wµ − g′

(
−1

2

)
Bµ

]
χL

+ ēRγ
µ [i∂µ − g′(−1)Bµ] eR −

1

4
WµνW

µν − 1

4
BµνB

µν .

(1.94)

where YL = −1 and YR = 2. However, adding any mass term for the gauge bosons

or the fermions will break the invariance. In order to generate masses for the gauge

bosons as well as those of fermions, we have to invoke the Higgs mechanism as

discussed in the previous section of the chapter. The result from this is that we will

have massive W± and Z bosons while having the photon massless.

To do this, we need to introduce the scalar field φi and add its new SU(2)×U(1)

gauge invariant Lagrangian to the old Lagrangian:

Lφ =

∣∣∣∣(i∂µ − gT.Wµ − g′
Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ). (1.95)

where φ belongs to the multiplets of SU(2)× U(1) to keep Lφ invariant. The most

economical choice was selected by Weinberg with Y = 1:

φ =

 φ+

φ0

 =
1√
2

 φ1 + iφ2

φ3 + iφ4

 . (1.96)

The potential is as usual:

V (φ) = µ2φ†φ+ λ(φ†φ)2 (1.97)

with µ2 < 0 and λ > 0. The choice of vacuum expectation value is again:

φ0 =
1√
2

 0

v

 . (1.98)

This choice with T = 1/2, T 3 = −1/2 and Y = 1 will break both SU(2) and

U(1)Y symmetry. However, the U(1)em will remain unbroken as:

Q = T 3 +
Y

2
→ Qφ0 = 0φ0. (1.99)



1.7. ELECTROWEAK THEORY 31

For this reason, the mass of photon will be zero while other bosons will acquire

masses. The mass of other bosons can obtained by replacing φ with φ0 to the

Lagrangian Lφ. The term containing mass terms is:∣∣∣∣(−ig τ2 .Wµ − i
g′

2
Bµ

)
φ

∣∣∣∣2

=
1

8

∣∣∣∣∣∣
 gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)

g(W 1
µ + iW 2

µ) gW 3
µ + g′Bµ

 0

v

∣∣∣∣∣∣
2

=
1

8
v2g2

[
(W 1

µ)2 + (W 2
µ)2
]

+
1

8
v2(g′Bµ − gW 3

µ)(g′Bµ − gW 3µ)

=

(
1

2
gv

)2

W+
µ W

µ− +
1

8
v2(W 3

µ , Bµ)

 g2 −gg′

−gg′ g′2

 W 3µ

Bµ

 ,

(1.100)

from which, we can obtain mass for W bosons:

MW =
1

2
gv. (1.101)

The second term in the equation (1.100) can be expressed as:

1

2
v2
[
g2(W 3

µ)2 − 2gg′W 3
µB

µ + g′2B2
µ

]
=

1

8
v2
(
gW 3

µ − g′Bµ

)2
+ 0

(
g′W 3

µ + gBµ

)2
.

(1.102)

By identifying this result with the mass term for Zµ and Aµ bosons:

1

2
M2

ZZ
2
µ +

1

2
M2

AA
2
µ, (1.103)

one can get state of Zµ and Aµ as mixed states of Zµ
3 and Bµ as:

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

with MA = 0,

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

with MZ =
v

2

√
g2 + g′2.

(1.104)

From equation (1.93), we can get tan θW = g′/g, which can be used to rewrite (1.104)

as:

Aµ = cos θWBµ + sin θWW
3
µ ,

Zµ = − sin θWBµ + cos θWW
3
µ .

(1.105)

From equation (1.101) and (1.104), we can find that MW/MZ = cos θW . It is worth

mentioning that the same Higgs doublet used to generate masses for the bosons

can also be used generate masses for the fermions [4]. However, their actual masses

cannot be predicted as in cases of W and Z bosons.
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Chapter 2

Introduction to Cosmology

2.1 Observations

Up to present where many great discoveries in cosmology have been made, we are still

lacking a good data source for scientists to work on. The cosmological observables

we have so far include the expansion of the Universe, the Hubble constant H0;

the deceleration of the Universe q0, the age of the universe t0; the density of the

universe ρ0; the cosmic microwave background radiation; the abundance of light

elements which include D, 3He, 4He, 7Li; the baryon number in the Universe; and

the galaxies and larger structures’ distribution in the Universe where the subscripts

0 indicates the present values. In this section, we will discuss the physical meanings

of these observables.

• The expansion rate:

The expansion of the Universe has been observed by the fact that many nearby

galaxies are red shifting with typical red shift value z in the range of 0.94 to

4.7. For an astronomical object of luminosity L, its luminosity distance is

given by dL = (L/4πF )1/2. The red shift for such object is then given by:

z = H0dL −
1

2
(1− q0)2 + ... (2.1)

The linear relationship between the red shift and the liminosity distance has

been observed in [37]. However, the value of the Hubble constant can only be

extracted from these observations with a large uncertainty. Its current value

33
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is given by [50]:

H0 = 100h km s−1Mpc−1 = 74.03± 1.42 km s−1Mpc−1, (2.2)

where the variable h shows the fact that the precise measurement of the Hubble

constant is an ongoing effort. TheThe Hubble time or Hubble distance is

defined as the inverse of Hubble constant:

H−1
0 = 9.78h−1 × 109yr = 9.25h−1 × 1027cm. (2.3)

• The age of the Universe:

The age of the Universe is a very important test for any cosmological model.

It can be calculated in many different ways, which yield a consistent range

from 10 to 20 Gyr. By estimating the age of the Universe by Hubble time,

one can get a range of 9.8 to 24.5 Gyr. The other way to determine age of the

Universe is to compare Hertzsprung-Russell diagram from ages of the oldest

globular clusters. Most estimates by this method give the age of the Universe

in the range of 10 to 20 Gyr. One other method is to use radioactive elements

like 232Th, 235U, 238U, 87Rb, 187Re to date the Universe and other astronomical

objects in it. For example, the use of 235U and 238U estimates the age of the

Universe to be about 6.6 Gyr. A newer method conducted by Winget, et al is

to use the cooling of the white dwarf stars to determine the age of the Galaxy.

Based on the observations of oldest white dwarfs and their white dwarf model,

the age of the Universe is estimated to be 13.80± 0.02 Gyr [8].

• Cosmic microwave background radiation (CMBR):

The fact that the CMBR fluctuation across the Universe is extrememly small

(∆T/T ∼ 10−4) indicates that the Universe started from a hot Big Bang.

The wavelength of the CMBR ranging from 70 cm to 0.1 cm corresponds

to the black body radiation of temperature 2.75 ± 0.01 K and the present

number of photon density of 422cm−3. The density fluctuation required to

initiate structure formation can be used to predict temperature fluctuation in

the CMBR. Therefore, the anisotropies of the CMBR can provide a test for

theories of how how large-scale structures are formed.
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• Light-element abundances:

Shortly after Big Bang, nucleonsysthesis starts to take place, which results in

large amounts of many light elements like D (with log10(D/H) = −4.5940 ±

0.0056 [51]), 3He (with n3He/nH ∼ (1.1±0.2)×10−5), 4He (with mass fraction

Y ∼ 0.24709± 0.00017[52]) and 7Li (with nLi/nH ∼ 10−10).

By comparing the predicted light-element abundance with these observations,

we can have a test for the standard cosmology. The primordial nucleosynthesis

also provides precise estimates of baryon density in the Universe as well as

important constraints on the existence of light hypothetical particles.

• Dark matter in the Universe:

The existence of Dark Matter (DM) is widely accepted to explain the dis-

crepancy between the observations of rotational velocity and what is expected

from dynamical mechanics. Let us assume that the galaxy number density in

the Universe is n and each galaxy has an average mass M , the mass density

of the Universe will then be:

〈ρ〉 = nM. (2.4)

To measure the mass of a galaxy dynamically, one has to find the velocity of

objects orbiting that galaxy at different distances r. Following Kepler’s 3rd

law:

GM(r) = v2r, (2.5)

where M(r) is the mass enclosed in the distance r from the center of the galaxy.

By using this method, we can find the ratio of luminous mass or visible mass

density ρ to that of the critical density ρC , which will be explained in later

section, is about:

ΩLUM =
ρLUM
ρC

≤ 0.01, (2.6)

By applying the same technique for objects that are much further away from

the center of a galaxy where light corresponding to luminous matter ceases,

M(r) is not a constant as expected but rather increases with r. The rotational

velocity is not proportional to r−1/2 but stays constant with distance r, which

requires that the mass M(r) ∼ r. The mass that is accountable for this
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Figure 2.1: Rotational curves of 21 Sc galaxies [9].

unexpected velocity behavior has no detectable radiation and is considered

“dark”. The rotational curves of 21 Sc galaxies can bee seen in Fig. (2.1).

The mass accounted for the this rotational velocity distribution can be up to

10 times the mass of luminous matter:

ΩDM ≥ 0.1 ' 10ΩLUM , (2.7)

indicating that DM is actually dominating the Universe. The average mass

of galaxy in a cluster can also be found using virial theory. Suppose that the

cluster has mass M, the velocity of the galaxy is then:

GM =
2 〈v2〉
〈r−1〉

, (2.8)

giving the estimate of Ω ∼ 0.1 to 0.3, which is consistent with the previous

method and again confirming that luminous matter cannot account for the

majority of the mass of the galaxy. We can safely say that the total amount

of dark matter and luminous matter can be:

Ωmatter = 0.2± 0.1. (2.9)

These observations give us the great insight into how the Universe operates. As

more and more data are collected through many experiments, we will have more

chances to look further to the history of the Universe, to understand what makes up

the Universe and to confirm the predictions that many scientists are contributing to

the understanding of Cosmology.
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2.2 The Robertson - Walker Metric

2.2.1 Open, closed, and flat spatial models

For a region in space that is as large as our present Hubble length, our Universe can

be considered to be homogeneous and isotropic even though there is no such guar-

antee in a bigger region. That smooth region is considered to be homogeneous and

isotropic for a time duration comparable to the Hubble time, which was estimated

to be at least 10 Gyr in the previous section. The metric for such a region in space

is described by the Robertson - Walker (RW) metric [10], which is given by:

ds2 = dt2 +R2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 + sin2 θdφ2

]
, (2.10)

where the set of t, r, θ, φ is space-time coordinates and R(t) is the cosmic scale

factor. The constant k can be +1,−1, 0 corresponding to the positve, negative or

zero spatial curvature, respectively. The time component in the metric is the proper

time, which means it is measured by an observer that is at rest in that frame.

The spatial part of the metric is:

~dl
2

= hijdx
idxj, hij = −gij, (2.11)

where i, j = 1, 2, 3. Some important quantities of the metric are defined as:

Riemann tensor 3Rijkl =
k

R2(t)
(hikhjl − hilhkj),

Ricci tensor 3Rij =
2k

R2(t)
hij,

Ricci scalar 3R =
6k

R2(t)
.

(2.12)

The construction of the RW metric can be explained by the method of embedding

a two-sphere (two-dimensional curved space) in a three-dimensional Cartesian space.

For example, consider a two-sphere in a three dimensional Cartesian space x1, x2, x3

with its radius given by:

R2 = x2
1 + x2

2 + x2
3 → x2

3 = R2 − x2
1 − x2

2, (2.13)

where x3 is the fictitious spatial component as it would not be available in two

dimensional space. An element of length is calculated by:

~dl
2

= dx2
1 + dx2

2 + dx2
3 = dx2

1 + dx2
2 +

(x1dx1 + x2dx2)

R2 − x2
1 − x2

2

. (2.14)
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Now, we can replace the coordinate x1 and x2 by r′ and θ:

x1 = r′ cos θ, x2 = r′ sin θ, (2.15)

which leads to:

~dl
2

=
R2dr′2

R2 − r′2
+ r′2dθ2 = R2

[
dr2

1− r2
+ r2dθ2

]
, (2.16)

where r = r′/R. This is the spatial part of the RW metric with k = 1 with R being

the radius of the sphere.

We can also use the polar coordinates to describe the two-sphere with:

x1 = R sin θ cosφ, x2 = R sin θ sinφ, x3 = R cos θ, (2.17)

giving the length element as:

~dl
2

= R2(dθ2 + sin2 θdφ2), (2.18)

from which, sphere’s volume can be calculated to give V = 4πR2. It must be noted

that as the Universe is assumed to be homogeneous and isotropic, the scale factor

R can only be a function of time. As the Universe expands, the coordinates r and

θ are unchanged. However, the distance between two comoving points in the space

will be scaled by factor of R(t).

To get the equivalent explanation for negative curvature or with zero curvature,

one has to replace R→ iR or R→∞, respectively. However, for the zero curvature

case, the scale factor is no longer related to the physical distance between two

comoving points. It only describes the fact that the spatial distance between any

two points scales with the expansion or contraction of the Universe.

To generalize this approach to three spatial dimensions, one has to embed a three-

sphere into a four dimensional space with the fourth dimension being fictitious. The

radius and a length element are calculated by:

R2 = x2
1 + x2

2 + x2
3 + x2

4

~dl
2

= dx2
1 + dx2

2 + dx2
3 + dx2

4.
(2.19)

By eliminating the forth dimension, we get:

~dl
2

= dx2
1 + dx2

2 + dx2
3 +

(x1dx1 + x2dx2 + x3dx3)2

R2 − x2
1 − x2

2 − x2
3

. (2.20)
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By expressing x1 = r′ sin θ cosφ, x2 = r′ sin θ sinφ, x3 = r′ cos θ, r = r′/R, we come

up with the spatial component of the RW metric with k = 1. By expressing the three-

sphere using 3 angular coordinates: x1 = R sinχ sin θ cosφ, x2 = R sinχ sin θ sinχ,

x3 = R sinχ cos θ, x4 = R cosχ as:

~dl
2

= R2
[
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

]
, (2.21)

which leads to the volumes of the-three sphere as V = 2π2R3. The approach for

negative and zero curvature models are similar to what was explained in two dimen-

sions.

We can also replace the time component of the metric dt2 by “conformal time”,

which is dη = dt/R(t):

~dl
2

= R2(t)

[
dη2 − dr2

1− kr2
− r2dθ2 − r2 sin2 θdφ2

]
, (2.22)

which is conformal to the Minkowski space for flat model of k = 0. In addition, it

can also be proved that all the metric models are locally conformal to the Minkowski

space, which makes it a reasonable choice for local coordinates.

2.2.2 Particle Kinematics

Having defined the Robertson - Walker metrics, we can now discuss how it can be

applied to describe the kinetics of both massless and massive particles in the RW

metric. For a massless particle, for example a photon, assuming that a light source

emits photon at time t = 0 at r = rH , it will hit the observer at position r0 = 0 at

time t. We do not need to pay attention to other coordinates θ and φ as the RW

metric was assumed to be a homogeneous and isotropic space. The light will follow

the geodesics with ds2 = 0. From the RW metric, we can obtain:∫ t

0

dt′

R(t′)
=

∫ rH

0

dr√
1− kr2

. (2.23)

The proper distance of rH at the time we catch the photon t is:

dH(t) = R(t)

∫ rH

0

√
grrdr = R(t)

∫ rH

0

dr√
1− kr2

= R(t)

∫ t

0

dt′

R(t′)
, (2.24)

meaning that the proper distance dH could be infinity depending how R(t) behaves

around t = 0. From the form of metric as written in equation (2.22), we can have:

dH(t) = R(t)[η(t)− η(t = 0)]. (2.25)
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For a massive particle, the condition ds2 = 0 is no longer correct. The geodesics

equation is now following:

duµ

dλ
+ Γµναu

ν dx
α

dλ
= 0, (2.26)

where uµ = dxµ/ds and Γµνα is defined as:

Γµαν =
1

2
gµβ(gβα,ν + gβµ,α − gαν,β), gαβ,µ =

∂gαβ
∂xµ

. (2.27)

Choose the affine parameter λ to be the proper length, the µ = 0 component of the

geodesics equation is:

du0

ds
+ Γ0

ναu
νuα = 0→ du0

ds
+ Γ0

iju
iuj = 0

→ du0

ds
+
Ṙ

R
|~u|2 = 0

(2.28)

As u2
0 − |~u|2 = 1→ u0du0 = |~u|d|~u| and u0 = dt/ds, the equation above leads to:

|~̇u|
|~̇u|

= −Ṙ
R
→ |~u| ∼ R−1. (2.29)

This tells us that the momentum pµ = muµ of a freely moving particle in space

scale as R−1. Note that the term ds in the equation (2.28) disappears eventually,

meaning that the argument above is true for both massive and massless particles.

2.2.3 Kinematics of Robertson - Walker Metric

In the previous section, we have shown that the momentum of a massive or massless

particle is proportional to the R−1 as the Universe expands. This means that a

photon of wavelength l1 at time t1 will has its wavelength changed to l0 at time t0

with l0 given by:

λ1

λ0

=
R(t1)

R(t0)
. (2.30)

This relation means that the red shift of the photon is caused by the expansion of the

Universe. The red shift z is defined in terms of the ratio of the detected wavelength

to the wavelength when it was emitted:

1 + z =
λ0

λ1

=
R(t0)

R(t1)
. (2.31)

From the RW metric, we can come up with the Hubble’s law, which describes

the relationship between the distance from us to a galaxy and its red shift. Consider
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a galaxy of luminosity L and measured flux F . The luminosity distance of that

galaxy is defined as:

dL =
L

4πF
, (2.32)

However, to calculate dL, we have to consider the fact that the Universe expands.

Suppose that the light is emitted at r1 at time t1 and is detected at locatioin r0 = 0

at time t0. At t1, the distance between the two locations is R(t1)(r1− r0) = R(t1)r1.

However, at the detected time, we have to replace R(t1) by R(t0) and add the red

shift, which means that the physical distance is now:

dL = R(t0)r1(1 + z). (2.33)

By using the Taylor’s expansion on R(t)/R(t0), we have:

R(t)

R(t0)
= 1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 +O

(
(t− t0)3

)
, (2.34)

where

H0 = ˙R(t0)/R(t0), q0 = − R̈

RH2
0

. (2.35)

H0 is called Hubble rate of expansion and q0 is called rate of deceleration. The

subscript “0” indicates these values are at present. As 1 + z = R(t0)/R(t), we get:

z = H0(t0 − t) +

(
1 +

1

2

)
H2

0 (t0 − t)2 + ...

→(t− t0) = H−1
0

[
z −

(
1 +

q0

2

)
z2 + ...

] (2.36)

To obtain the expression for r1 in term of z, we have to use the fact that the geodesic

that photons follow is:

ds2 = 0→
∫ t0

t1

dt

R(t)
=

∫ r1

0

dr√
1− kr2

≈ r1 for small r1. (2.37)

By using the Taylor’s expansion above:

r1 =

∫ t0

t1

dt

R(t)
=

∫ t0

t1

dt

R(t0)

(
1−H0(t− t0) +

1

2
q0H

2
0 (t− t0)2

)
r1 =

1

R(t0)

[
(t0 − t1) +

1

2
H0(t0 − t1)2 + ..

]
r1 =

1

R(t0)H0

[
z − 1

2
(1 + q0)z2 + ...

]
.

(2.38)

From this, we can recover the Hubble’s law:

dL = R(t0)r1(1 + z) =
1

H0

[
z +

1

2
(1− q0)z2 + ...

]
→ H0dL = z +

1

2
(1− q0)z2 + ...

(2.39)
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In principle, one could use the Hubble diagram (dL vs z) to find q0. However,

this approach requires the existence of a star or galaxy of known luminosity that

can be detectable at cosmological distance and with little variance. In addition to

this model dependent relationship, there are some other relationships that are model

independent. The simplest one is the measured surface brightness, which is calcu-

lated by the energy flux per solid angle. These model independent relationships help

testing whether an astronomical or observational problem affects model-dependent

relationships.

2.3 The Expanding Universe

In the previous section, we have discussed how kinematics of the Universe depends

on the scale factor R(t). To really have a picture of how the scale factor R is

governed, we have to use the help of Einstein equations [11]:

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν , (2.40)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor for all matter,

radiation and Λ is the cosmological constant. The simplest form of the stress-energy

tensor is that of the perfect fluid that is described by the energy density ρ(t) and the

pressure p(t). Perfect fluid is the fluid in such a frame that pressure is the same in

all direction and is perpendicular to the surface on which it acts. On perfect fluid,

there is no heat conduction and no viscosity. The form of the stress energy tensor

T µν for perfect fluid is:

T νµ =


ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p


(2.41)

The conservation of energy-momentum is expressed as:

∂tµν

∂xν
≡ T µν;ν = 0, (2.42)

which can be used to derive the 1st law of thermodynamics in the curved space:

d(ρR2) = −pd3(R3), (2.43)
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or equivalently:

d
[
R3(ρ+ p)

]
= R3dp. (2.44)

The physical meaning of the conservation of energy-momentum described by the

equation above can be explained that the change in energy in a comoving volume

element d(ρR3) is equal to the negative of the pressure times the change in volumes

−pd3R. With the equation of state given by p = wρ, the energy density will depend

on the scale factor as:

ρ ∼ R−3(1+w). (2.45)

For a radiation-dominated universe whose equation of state is p = ρ/3, the

density energy evolves with scale factor as ρ ∼ R−4. For matter-dominated universe,

we have p = 0, leading to ρ ∼ R−3. It should be emphasized that describing the

stress - energy tensor with the equation of state p = wρ is actually a quite good

approximation for the stress - energy tensor in RW metric, which is also a good

approximation to the space-time in our Hubble volume.

From the Einstein equation, one can find the evolution of the scale factor R.

Starting from the RW metric, we have:

R00 = −3
R̈

R
,

Rij = −

[
R̈

R
+ 2

Ṙ2

R2
+

2k

R2

]
gij,

R = −6

[
R̈

R
+
Ṙ2

R2
+

k

R2

]
.

(2.46)

where Rµν is the Ricci tensor and R is the Ricci scalar as we have shown in the

previous section. From this, the 0 - 0 component of the Einstein equation, which is

also known as the Friedmann equation, is given by:

Ṙ2

R2
+

k

R2
=

8πG

3
ρ, (2.47)

and the i - i components are expressed as:

2
R̈

R
+
Ṙ2

R2
+

k

R2
= −8πGp. (2.48)

By subtracting the two equations above side by side, we get:

R̈

R
= −4πG

3
(ρ+ 3p). (2.49)
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As the Universe is expanding, we have Ṙ > 0. If the term ρ + 3p has always

been positive, it would be an indication that there was a time when R = 0, which

is usually referred to as the Big Bang.

The Hubble rate, which indicates the rate of expansion of the Universe, is cal-

culated as H = Ṙ/R and can be inferred from the Friedmann equation:

k

H2R2
=

ρ

2H2/8πG
− 1 ≡ Ω− 1 =

ρ

ρC
− 1, (2.50)

where ρC is the critical density: ρC = 3H2/8πG. From this, we can see that there

is a relation between the sign of k and the value of Ω: if k = 1 (for closed universe),

Ω > 1; if k = 0 (for flat universe), Ω = 1; if k = −1 (for open universe), Ω < 1.

It must be emphasized that the critical density ρC is not a constant but varies as

the Universe expands. At early times of the Universe, the curvature term k/H2R2

is close to 0, meaning that ρ ∼ 1 → H2 ∼ ρ. From equation (2.45), the expansion

rate varies as H2 ∼ R−3 for a matter-dominated Universe and H2 ∼ R−4 for a

radiation-dominated Universe.

At the present time, the quantity |Ω− 1| ≈ 1 and the Universe is matter domi-

nated:

|Ω− 1| = |Ω0 − 1|H
2
0R

2
0

H2R
=

R

R0

=
1

1 + z
(2.51)

Tracing back to the time before matter-radiation equilibrium, the Universe was

radiation-dominated:

|Ω− 1| = |ΩEQ − 1|H
2
0R

2
0

H2R
= |ΩEQ − 1| R

2

R2
EQ

=
REQ

R0

R2

R2
EQ

≈ 104(1 + z)−2, (2.52)

which tells us that the radiation dominated early Universe has an energy density

that is very close to the critical density.

To get an idea of how the scale factor varies with time, one has to integrate the

Friedmann equations: (
Ṙ

R0

)2

+
k

R2
0

=
8πG

3
ρ0
R0

R
(MD),(

Ṙ

R0

)2

+
k

R2
0

=
8πG

3
ρ0
R2

0

R2
(RD).

(2.53)

By utilizing equation (2.50), one can integrate the equations above to find the vari-

ation of the scale factor R as a function of time as:

R ∼ t2/3(1+w), (2.54)
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with w = 1/3 for a radiation-dominated Universe and w = 0 for a matter-dominated

Universe.

2.4 Equilibrium Thermodynamics

In cosmology, thermal equilibrium of a species refers to the state for which interac-

tion rate among that species is larger than the expansion rate of the Universe. If

that condition is maintained, the number density, energy density and pressure are

given by:

n =
g

(2π)3

∫
f(~p)d3p,

ρ =
g

(2π)3

∫
E(~p)f(~p)d3p,

p =
g

(2π)3

∫
|~p|2

3E
f(~p)d3p.

(2.55)

where the bosons and fermions follow Bose - Einsteins and Fermi - Dirac distribution

respectively:

f(~p) =
1

e
E−µ
T ± 1

, (2.56)

where “+” is for Fermi - Dirac distribution and “−” is for Bose - Eistein distribution.

µ is the chemical potential of particle. From this, we can come up with some special

cases as follows: [10]:

• For the relativistic limit (T � m), T � µ:

ρ =
π2

30
gT 4 (BOSE) ;

7

8

π2

30
gT 4 (FERMI),

n =
ζ(3)

π2
gT 3 (BOSE) ;

3

4

ζ(3)

π2
gT 3 (FERMI) ,

p =
ρ

3
.

(2.57)

• For degenerate fermions (µ� T � m):

ρ =
1

8π2
gµ4,

n =
1

6π2
gµ3,

p =
1

24µ2
gµ3.

(2.58)
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• For relativistic bosons or fermions with µ < 0:

n = exp(µ/T )
g

π2
T 3,

ρ = exp(µ/T )
3g

π2
T 4,

p = exp(µ/T )
g

π2
T 4.

(2.59)

• For the nonrelativistic limit (m� T ):

n = g

(
mT

2π

)3/2

exp [−(m− µ)/T ],

ρ = mn,

p =
ρ

3
.

(2.60)

One important quantity in Cosmology is the difference between the number

density of fermions over corresponding antifermions:

∆n = n+ − n− = n(µ)− n(−µ) =

=
gT 3

6π2

[
π2
(µ
T

)
+
(µ
T

)3
]

(T � m)

= 2g

(
mT

2π

)3/2

sinh (µ/T ) exp(−m/T ) (T � m).

(2.61)

As we can see, the energy and momentum of all the species are dominated by all

that are in relativistic limit. Therefore, we can safely approximate the energy and

momentum density by those of the relativistic particles:

ρR =
π2

30
g?T

4

pR =
ρR
3
.

(2.62)

The effective degrees of freedom g? in the expression above is calculated in such a

way that only particles that are relativistic at temperature T are taken into account:

g? =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

. (2.63)

For T �MeV, g? = 3.36 as only photons and neutrinos are relativistic. For 1 MeV <

T < 100 MeV, g? = 10.75 as we now have electrons and positrons added to the list

of relativistic particles. For T > 100 GeV, g? = 106.75 as all particles in the SM are

relativistic.
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Some important and useful relations for radiation-dominated epochs are:

R(t) ∼ t1/2

H = 1.66g1/2
?

T 2

mPl

t = 0.301g−1/2
?

mPl

T 2
.

(2.64)

As we have mentioned in the beginning of the section, the local thermal equilib-

rium will be maintained as long as the interaction rate is larger than the expansion

rate of the Universe. If the condition is satisfied, the second law of thermal dynamics

can be applied to the comoving volume:

TdS = d(ρV ) + pdV = d[(ρ+ p)V ]− V dp. (2.65)

Combining this with the first law of thermal dynamics:

d[(ρ+ p)V ] = V dp, (2.66)

it can be shown that the entropy per comoving volumn is conserved:

ds = 0 where entropy s =
ρ+ p

T
. (2.67)

As relativistic particles contribute the most to the entropy density, to a good ap-

proximation, we have:

s =
2π2

45
g?ST

3

g?S =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

.
(2.68)

Because the entropy density is constant, it means that the total entropy is also

constant:

S ∼ sR3 ∼ g?ST
3R3 = const, (2.69)

which means that the temperature will scale as T ∼ g
−1/3
?S R−1. What we are inter-

ested in here is what happens to a species after the time that its interaction rate

cannot keep up with the expansion rate. If that is the case, the species will decouple

from the heat reservoir and vary differently from those which are still in thermal

equilibrium. Consider a massless species that decouples at time tD and temperature
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TD and the scale factor RD. At time tD, the distribution follows Bose - Einstein or

Fermi - Dirac distributions:

f(~p, tD) =
1

exp(E/TD)± 1
. (2.70)

After decoupling, the energy scales as R−1, the momentum scale as R−1, meaning

that the distribution f(~p) = d3n/d3p is constant:

f(~p, t) = f(
R~p

RD

, tD)⇔ 1

exp(E/T )± 1
=

1

exp(ER/RDTD)± 1
. (2.71)

This means that after decoupling, the temperature of the massless particle drops as:

Tmassless = TD
RD

R
∼ R−1. (2.72)

In case the particle is massive and nonrelativistic, its momentum scales as T =

TDRD/R after decoupling, meaning that its energy will scale as R−2. Again, we

must have that the distribution is unchanged at t and tD:

f(~p, t) = f(
R~p

RD

, tD)⇔ 1

exp(E/T )± 1
=

1

exp(ER2/R2
DTD)± 1

, (2.73)

or equivalently:

Tmassive = TD

(
RD

R

)2

∼ R−2. (2.74)

In summary, both massive and massless particles maintain their equilibrium

phase space distribution after decoupling. After decoupling, massless particles have

their temperature scaled with R−1 while that of massive particles is scaled as R−2.

2.5 History of the Universe

In the previous section, we have shown how a species that is in local thermal equi-

librium evolves with the expansion of the Universe and how it does after decoupling

from the thermal equilibrium. The key mechanism that controls whether or not a

species in thermal equilibrium is the balance between the interaction rate involving

that species and the expansion rate of the Universe. Approximately, if the interac-

tion rate of a species is less than the expansion rate of the Universe, the number

of particles of that species per comoving volume will decrease and that species will

decouple from the local thermal equilibrium. We have also determined the thermal



2.5. HISTORY OF THE UNIVERSE 49

behaviors of massive and massless species after decoupling. Generally speaking, a

massless species will have its temperature scaled as R−1 while a massive species will

scale as R−2 after decoupling.

To illustrate this argument, let us consider the interactions mediated by massless

vector bosons and by massive vector bosons.

• Massless vector boson (γ):

The interaction cross section is σ ∼ α2/T 2, which gives the interaction rate

as Γ ∼ nσ|v| ∼ α2/T . From equation (2.64), the expansion rate varies with

the temperature as H ∼ T 2/mPl in the radiation epoch. The ratio Γ/H ∼

α2mPl/T . This means that when the temperature drops below α2mPl ∼ 1016

GeV, particles whose interaction is mediated by photons will be in local ther-

mal equilibrium.

• Massive vector bosons (W±, Z):

If T � mX where mX is the mass of the gauge bosons, the cross section will

be the same as in the first case of massless gauge boson. If T < mX , the

cross section is σ ∼ G2
XT

2 where GX = α/m2
X . From this we can have:

Γ ∼ nσ|v|σG2
XT

5 → Γ/H ∼ G2
XmPlT

3. The critical temperature above

which the species is in local thermal equilibrium is mX > T > G
−2/3
X m

−1/3
Pl ∼

(mX/100 GeV)4/3 MeV.

From this brief calculation, we can basically get an overall picture of the history of

the Universe. When the temperature is above 1016 GeV, the Universe might contain

only highly relativistic particles, which are quarks, leptons, gauge bosons, Higgs. As

our calculation has shown, these particles are not in local thermal equilibrium as

their interaction rate cannot keep up with the expansion rate of the Universe. At

around 1016 to 1014 GeV, the Grand Unification Theory (GUT) phase transition will

occur. Around 300 GeV, the electroweak spontaneous symmetry breaking will occur.

As a result, the electroweak gauge bosons start to acquire masses and the particles

that interact via those gauge bosons will decouple from the thermal equilibrium

where the order of decoupling depends on the mass of the gauge bosons as we have

shown above. As the temperature drops to 100 ∼ 300 MeV, the transition related

to the chiral symmetry breaking and color-confinement will occur. The primordial
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nucleosynthesis occurrs around T = 10 ∼ 0.1 MeV where the Universe changes

from radiation-dominated to matter-dominated. This time marks the beginning of

structure formation. Finally, at the time around 1013 (s), atoms are created as ions

and electrons are combined together, matter and radiation decouple from thermal

equilibrium.

Some details of important marks in the history of the Universe:

• Neutrino Decoupling: In the early Universe, neutrinos are kept in the ther-

mal equilibrium by processes like ν̄ν ↔ e+e−, νe↔ νe, etc. With the number

density of massless neutrinos n ∼ T 3 and the cross section σ ≈ G2
FT

2 where

GF is the Fermi constant, we have the interaction rate calculated by:

Γ = nσ|v| ≈ G2
FT

5. (2.75)

The ratio of interaction over expansion rate is then:

Γ

H
≈ G2

FT
5

T 2/mPl

≈
(

T

1MeV

)3

. (2.76)

From this, at the temperature above 1 MeV, interaction rate is higher than the

expansion rate, which means that neutrinos are in good thermal equilibrium

with the plasma. When the temperature drops below 1 MeV, neutrino decou-

ples from the plasma and its temperature Tν will scale with the form factor

as Tν ∼ R−1 as we have shown in the previous section. If the temperature

continues to drop below me, the effective degrees of freedom will change from

g∗ = 11/2 (which includes that of the photon gγ = 2 and the e± pair ge± = 4)

to g∗ = e (which includes only that of the photon). As g∗(RT )3 = const before

and after e± decoupling while RTν = const after neutrino decoupling, we have

the present temperature of the relic neutrinos:

Tν = Tγ

(
2

11/2

)1/3

= 1.96(K), (2.77)

given that the temperature of the CMBR is about 2.73 (K).

• Radiation - Matter equilibrium: After decoupling, matter energy density

varies as ρM ∼ R−3 while radiation energy density varies as ρR ∼ R−4, which

means that if we trace back to the time of radiation - matter equilibrium, we
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must have:

ρR
ρM
∼ R0

R
= 1 + z, (2.78)

from which, the ratio of radiation energy density ρR−EQ to matter energy

density ρM−EQ at equilibirium is:

1 =
ρR−EQ
ρM−EQ

=
ρR−0

ρM−0

R0

REQ

, (2.79)

given that at present time ρM0 = 1.88 × 10−29Ω0h
2g cm−3 and ρR0 = 8.09 ×

10−34g cm−3 [11].From this, we have:

R0

RE

= 1 + zEQ =
ρM0

ρR0

=
8× 10−34

1.88× 10−29Ω0h2
= 2.3× 105Ω0h

2, (2.80)

which leads to:

TEQ = T0(1 + zEQ) = 5.5Ω0h
2(eV )

tEQ =
2

3
H2

0 Ω
−1/2
0 (1 + zEQ)−3/2.

(2.81)

In summary, in this chapter, we have discussed some background understandings

of cosmology. Starting from key cosmological observation, we have discussed the

derivation of the Robertson - Walker metric and used to investigate kinetics of

object in an expanding Universe. We have also discussed the Boltzmann equation

and how it helps explaining the origin of matter in the expanding Universe by taking

into account the fact that particles interact with each other and the effect of the

expanding Universe. This background is the foundation for our research on dark

matter in this thesis.
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Chapter 3

Dark Astronomical Compact

Objects (DACOs)

3.1 Introduction

The nature of dark matter is one of the most pressing questions in particle physics

and cosmology. It goes without saying that the search for dark matter is one of

the most attractive endeavors in astroparticle physics. So far, it eludes all search

attempts despite the fact that various cosmological observations hinted at its exis-

tence.

The most popular cosmological scenario for dark matter and dark energy is the

so-called ΛCDM model [12], where the candidate for dark energy is characterized

by the unknown cosmological constant Λ, although there exists a few problems

with this scenario that need to be resolved. First, there seems to be some tension

between numerical simulations of collisionless cold dark matter for central density

profiles for dwarf galaxies and galaxy cluster halos (cusp-like) and observations which

indicate a flat core. Second, numerical simulation predicts the number of Milky Way

satellites to be much more than these observed ones, the so-called missing satellite

problem [13]. Third, the so-called too-big-to-fail problem suggests that the largest

subhalos of the Milky Way are too massive to host the brightest observed dwarf

spheroidal galaxy satellites as suggested by numerical simulations of ΛCMD. In

the next sections, we are going to discuss these problems in more detail. There

are several proposals for solving these aforementioned problems, one of which goes

53
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under the name “self-interacting dark matter”.

An explicit model of self-interacting dark matter was constructed in Refs. [14, 15,

16]. Dark matter and luminous matter are unified at a high energy scale called ΛDUT

into a DUT gauge group SU(6), which subsequently breaks into SU(4)×SU(2)W ×

U(1)DM . In this scenario, the Standard Model (SM) gauge group SU(3)C(QCD) and

U(1)Y are merely spectator gauge groups. The weak gauge group SU(2) is denoted

by SU(2)W for the reason that the model contains “mirror fermions” with opposite

chiralities to the SM fermions and allows for the existence of non-sterile right-handed

Majorana neutrinos with masses which are proportional to the electroweak scale

ΛEW ∼ 246 GeV [17]. Furthermore, the existence of mirror fermions ensures that

the DUT gauge group SU(6) is anomaly-free. Below ΛDUT , the symmetry group is

SU(4)×U(1)DM×SM where SM ≡ SU(3)C×SU(2)W ×U(1)Y . In the brief review

given in the next section, it will be shown that DM particles are singlets under the

SM gauge group and transform as χ = (4, QM) under SU(4)DM × U(1)DM , where

QM is the quantum number of SU(4)DM .

At the DUT scale, the gauge couplings of SU(4), SU(2)W and U(1)DM are equal

and, by running α4 = g2
4/4π from ΛDUT down to α4 ∼ O(1), it was found that Λ4 can

range from a few hundred GeVs to a few hundred TeVs [18]. When the confinement

of SU(4) occurs, the singlet state appears in the form of dark “baryons” formed out

of four χs called CHIMP [15] whose spin is zero and hence are considered as massive

bosons. Typically, these dark baryons have masses of O(4Λ4). As discussed in [15],

there exists very light dark pions which are χ̄χ states and which couple to the dark

“baryons”.

Let us assume that, below Λ4, one has a gas of massive bosonic dark baryons.

Under some certain conditions that will be discussed in the next sections, these dark

“baryons” can be gravitationally clumped together into compact objects. We shall

call these objects by the name DACO, which stands for Dark Astronomical Com-

pact Object. In order to form stable compact objects while these dark “baryons”

gravitationally attract each other, an energy dissipation mechanism is needed. It

will be shown below that such a mechanism indeed exists: the “Bremsstrahlung” of

dark pions from the dark “baryons” while they fall into the gravitational potential

well.
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1) How heavy can a DACO be? In other words, what would be the minimum and

maximum masses of a stable DACO? In paricular, considering the fact that dark

“baryons” are bosons which we will assume to have spin 0, is there a mechanism

which prevents DACOs from being too massive and collapse into black holes?

2) How can they be detected? We suggest here three methods which might be

applicable to search for DACOs. Two of these methods are based on the assumption

that stars can capture DACOs, which have “solar-planetory system” masses and, as a

result, the search for exoplanets appears to be the best way to look for DACOs. The

most promising methods are: 1) the radial velocity method based on the Doppler

effect of spectral lines which get shifted due to the motion of the star-planet system

around its center of mass; 2) the pulsar timing method; 3) This last method is a

long shot but it is worth mentioning. It is not impossible that DACOs can cluster

into mini dark galaxies which the physical size of say a neutron star and with a

total mass of a few tenths of the mass of the Sun. The merging of such two galaxies

could in principle generate gravitational waves. Since DACOs are supposed to be

“transparent”, the absence of the signal using the transit methods, in conjunction

of radial velocity method with a positive signal would point to a presence of DACOs

orbiting such a star.

In discussing #1 and #2 above, we will be leaving out many issues which are

beyond the scope of this thesis such as the distribution of DACOs in the galaxies

and clusters of galaxies and the detail of the search for DACOs.

It must be emphasized that DACOs can be created from any heavy dark bosons

with the only requirement being the existence of a cooling mechanism for the highly

energetic dark bosons to lose their energy. Therefore, this approach can be applied

to other models when this condition is applicable. The structure of the chapter is

as follows: first, we discuss the condition under which DACOs can be formed out

of dark bosonic baryons. In particular, we derive the minimum and maximum mass

of such object. Second, we give a brief review of the Luminogenesis model, which

was proposed in Refs. [15, 16] and expanded in Ref. [18] as an example model

that proposes new dark bosonic baryon. Last but not least, we propose various

methods to search for DACOs using exoplanet searches as well as those being used

in detection of gravitational waves.
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3.2 Current problems of Cold Dark Matter

In the previous chapter, we have introduced the reasons behind the argument that

there must be dark matter in the Universe that makes up 23% of the Universe.

We, however, have not mentioned the nature of dark matter. The constraints we

have on dark matter particles are that they must be electrically neutral, they can-

not consist of SM baryons; their interactions with each other may have effects on

structure formation of the Universe as they can transfer energy and momentum in

their interactions. The theories of Cold Dark Matter are among the most popular

theories of Dark Matter. Candidates for Cold DM fall into three categories: ax-

ions, MACHOs (Massive Compact Halo Objects) and WIMPs (Weakly Interacting

Massive Particles) among which, WIMPs have a great attraction for researches.

WIMPs interact with each other at the scale of the weak interaction and have

masses on the order of 100 GeV. The WIMP origin is thought to begin in the

early Universe where they are in thermal equilibrium with other particles. As the

Universe expands, the equilibrium is no longer maintained and the number density

of WIMPs decreases exponentially to the point where the annihilation of the WIMP

particles and anti-particles no longer occurs. From this point to the present, the

number density of the WIMPs remains constant. For a WIMP self-interaction of

the strength of that of the weak interaction and mass at the order of 100 GeV, the

WIMPs self interaction cross section can be estimated to be σann ≈ α2
W/m

2. By

using the Boltzmann equation, one can get the present number density of WIMPs,

which matches the number density calculated from cosmological constrains [39].

This coincidence is known as “WIMP miracle”.

Despite being the standard paradigm for structure formation in the Universe,

the Cold Dark Matter cosmology contains many issues. One of the problems known

as the “core versus cusp” problem is as follows: N-body simulations of Cold Dark

Matter seem to predict that the density of the galaxies increases as a power law

function toward the center of the galaxies. The typical density distribution of the

galaxies taken from N-body simulations is given as:

ρDM(x) =
ρ0

xα(x+ 1)3−α , (3.1)

where α = 1.0 for Navarro-Frenk-White model [40], and 1.5 for Fukushige - Makino
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- Moore model [41]. However, recent observations on the nearby low mass galaxies

or low surface-brightness galaxies show that the density distribution of these halos

are relatively constant at the centers of these galaxies. In Fig. 3.1, the dark matter

density profiles of 7 galaxies taken from “The HI Nearby Galaxy Survey” shows

in detail the discrepancies between the simulations of Cold Dark Matter and the

observations [42]. It can be seen that while the NFW density profile predicts a core

of that peaks at the center of the galaxy. The observation fits show densities that

are up to one order of magnitude smaller than predictions.

Figure 3.1: Density profile of simulated galaxies versus the observations from 7

nearby galaxies [42].

The second challenge of the Cold Dark Matter scenario is what is known as the

“missing satellites” problem. In the analysis of Anatoly et al,. [48] it was shown that

by using N-body simulation with ΛCDM model, the expected number of satellites

of a halo with the same size as that of our galaxy is much less than what we have

from cosmological observations. In Fig. 3.2, the circular velocity distibution of the

number of satellites are shown in the region of 200h−1kpc from the center of the
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Milky Way and Andromeda galaxies [43]. From the plot, we can see that for the

circular velocity Vcirc > 50 km/s, N-body simulations and cosmological observations

are in good statistical agreements with each other. However, for Vcirc < 50 km/s,

the simulation shows predictions that are up to one order of magnitude bigger than

the observations.

Figure 3.2: Missing satellite problem: The simulated circular velocity distribution

of number of satellites are different from cosmological observation in regions where

Vcirc < 50 km/s [43].

In addition, CDM has some more additional challenges that are not satisfactorilly

addressed. From this, it is natural to steer our imagination to the direction where

dark matter is not weakly interacting particles but rather strongly self-interacting

particles. In the next sections, we will discuss in detail the behaviors of compact

cosmological objects that are made from strongly self-interacting particles.

3.3 Evolution of Bosonic Astronomical Compact

Objects

Bosonic astronomical compact objects are made of bosons that are bound together

only by their gravitational attraction. In the early Universe, matter was highly
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energetic and the gravitational potential might not have been large enough to cluster

bosonic particles or any other particles together to form astronomical structures.

Therefore, a mechanism for these high energy bosons to lower their energy is a

requirement for bosonic astronomical compact objects to be created.

For any model that has a dark composite bosonic particle and a cooling mech-

anism, conditions for the formation of a bosonic astronomical compact object are

satisfied. It must be reiterated that the dark boson being considered is composite

particle whose constituents are dark fermions. The next question one may ask is

how stable that object is gravitationally, what would happen if the stability condi-

tion were broken? To answer these questions [19], we can start with the stability

conditions for a Bose star [49] by using the argument of James Jeans. Consider a

static universe with a uniform and static energy density ρ and pressure p. Suppose

that the energy density ρ1 fluctuates around the average energy density, the relation

between the energy density fluctuation ρ1, the pressure p and the sound velocity

through this medium vs is governed by: [11]

∂2ρ1

∂t2
= v2

s∇2ρ1 + 4πGρρ1, (3.2)

where v2
s = δp/δρ. The solution of this equation has the form of:

ρ1 ∝ exp(i~k~x− iωt), (3.3)

where ω and the wave number ~k are related by:

ω2 = ~k2v2
s − 4πGρ = v2

s

[
~k2 − (4πGρ/v2

s)
]
. (3.4)

The Jeans wave number is defined by:

kJeans = (4πGρ/v2
s)

1/2. (3.5)

The solution for the energy density fluctuation is a function of the wave number k.

• For k > kJeans → ω2 > 0→ ω is a real number, the energy density fluctuation

ρ1 varies sinusoidally with time.

• For k < kJeans → ω2 < 0 → ω is an imaginary number, the energy density

fluctuation ρ1 will then increase exponentially with time.
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For an astronomical structure to be created, it must be true that some point in

its history, the energy density fluctuation increases well above the average energy

density. Therefore, the wave number k must be less than the Jeans wave number

for a new astronomical structure to be created.

In an expanding universe, the wave number varies with the scale factor as 1/R.

For a comoving sphere of radius given by R = 2π/|~k|, the mass enclosed by such

sphere is calculated by:

MJeans =
4π

3

(
2π

| ~kJeans|

)3

nmX =
4π

3
nmX

(
πv2

s

Gρ

) 3
2

, (3.6)

where n is the number density of the boson being considered and mX is its mass.

The mass of the comoving sphere of radius equal to the Jeans wavelength λJeans =

1/kJeans is called Jeans mass. The dependence of energy density on the wave number

k can be translated to the dependence of energy density on the Jeans mass:

• For k > kJeans, the mass M is smaller than Jeans mass MJeans. The means

the energy density fluctuation oscillates sinusoidally.

• For k < kJeans, the mass M is larger than Jeans mass MJeans. The energy

density fluctuations that could form clumps DM increase exponentially.

It is reasonable to assume that these dark matter compact objects are formed

after the bosons become non-relativistic: kBT � mX . The equations of state are

then:

ρ = nmX +
3

2
nkBT,

p = nkBT,

(3.7)

where the rest energy density nmX is much bigger than the second term for non-

relativistic dark matter. It is also reasonable to assume that the boson has decoupled

from thermal equilibrium by the time of structure formation, which leads to the

scaling of the number density n ∝ R−3 ∝ T 3/2. From this, the sound velocity can

be calculated by:

v2
s =

δp

δρ
=

5
2
kBT

3/2

3
2
mXT 1/2

=
5kBT

3mX

. (3.8)

where we have neglected the second term on the right-hand side of ρ. Let the number

density n take the value at the time the bosonx become non-relativistic ni where
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mi = kBTi. ni can be estimated by the black-body radiation number density [10]

ni =
30ζ(3)

π3

a

kB
T 3
i = 3.7

a

kB
T 3
i , (3.9)

where ζ(x) is the Riemann zeta function.

As the universe expands, the number density of the boson varies with temper-

ature as n ∼ T 3/2. In other words, we can write the number density anytime after

the decoupling of the boson by:

n = ni

(
T

Ti

) 3
2

. (3.10)

From this, the Jeans mass can be estimated as:

MJeans = 4
(π

3

) 5
2

(
5kB
G

) 3
2

T
3
4
i T

3
4n
− 1

2
i m−2

X (3.11)

The corresponding Jeans wavelength gives us the order of magnitude of the radius

of DM clumps of mass MJeans:

λJeans =
2π

kJeans
= 2π

(
4πGnmX

v2
s

)− 1
2

= 2π

(
5

3

T

Ti

)1/2
[

4πGmXni

(
T

Ti

)3/2
]−1/2

.

(3.12)

Both Jeans mass and Jeans wavelength depend on the temperature T , which de-

creases as the Universe expands. A rough estimate of the order of magnitude of the

mass and the radius of such object can be made at the time where the energy density

of the non-relativistic dark boson is equal to that of the radiation. Suppose that

after the temperature drops below mX , the model-dependent effective degrees of

freedom of the model is geff (which is at least equal to that of the SM at T = mX),

the matter - radiation equilibrium temperature will then be calculated by:

ρM = ρR ↔ nmX = geffaT
4

ni

(
T

Ti

)3/2

kTi = geffaT
4

→ 3.7aT 4
i

(
T

Ti

)3/2

= geffaT
4

→ T = Ti

(
3.7

geff

)2/5

(3.13)
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We call this temperature TMD, the temperature at which energy density of the dark

bosons is equal to that of radiation. The Jeans mass at this temperature can then

be estimated as:

MJeans = 4
(π

3

) 5
2

(
5kB
G

) 3
2

T
3
4
i T

3
4n
− 1

2
i m−2

X

⇔MJeans = 3.08g
− 3

10
eff

(π
3

) 5
2

(
5kB
G

) 3
2
(
a

kB

)−1/2

m−2
X .

(3.14)

What makes DACOs fundamentally different from the regular fermionic stars is

the fact that DACOs do not have the Fermi pressure to support and balance the

gravitational pressure. Therefore, to estimate the mass of DACOs, we have to follow

the arguments of Yoshimura and Takasugi [20] on mass limits of Bose stars.

For a brief introduction to Yoshimura and Takasugi limit on Bose star, one can

anticipate that the only force that balances the graviational pressure is the pressure

created from the uncertainty of the confined bosons:

∆p∆x ≥ h = 2π~↔ ∆p ≥ π

R
, (3.15)

where ∆x = 2R is the diameter of the star and ~ = c = 1 were used as conventions.

For a spherical Bose star of mass M , radius R, the balance between the gravitational

pressure and the quantum uncertainty pressure requires that:

P

R1
∼ GMρ

R2
, (3.16)

which means that the mass of the Bose star depends on the relation between the

pressure P and its density ρ.

In the non-relativistic limit, the pressure P is related to the momentum of each

particle whose mass is m by:

P ∼ p2ρ

m2
∼ ρ

m2
XR

2
, (3.17)

where mX is boson’s mass. The mass of the Bose star in this case is:

M ∼ m2
Pl

m2
XR

, (3.18)

where mPl stands for the value of Planck’s mass.

In the relativistic limit, the pressure is related to the momentum by p = ρ/3,

and the mass of the Bose star will then be:

M ∼ m2
PlR. (3.19)
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From this, the turn-up at mX = R−1 where the maximum mass of the Bose star is:

M ∼ m2
Pl

m
. (3.20)

In the detailed calculation, the mass limit of the Bose star whose boson has mass

mX is given by:

MY−T = 0.57
m2
Pl

mX

. (3.21)

From this, we can calculate the ratio of the Jeans mass and the Yoshimura -

Takasugi limit:

MJeans

MY−T
=

3.08g
− 3

10
eff

(
π
3

) 5
2
(

5k
G

) 3
2
(
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k

)−1/2
m−2
X

0.57
m2
Pl
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= g
− 3

10
eff

(
1018

mX TeV

)
(3.22)

For a dark boson of mass in the order of 1 TeV, Jeans mass is about 17 to 18 orders

bigger than the Yoshimura - Takasugi limit. However, before the Jeans mass is

achieve, the DM sphere is not yet a clump and therefore, the Yoshimura - Takasughi

limit is not yet applicable. This means that by the time the mass of the dark boson

clump is large enough for energy density fluctuation to grow with time, its mass is

already bigger than the maximum mass a boson clump can have. As a result, the

dark boson clump will collapse to its core, increasing the central pressure to a much

higher value. When all dark bosons collapse to the center of the clump, the pressure

may be large enough to deconfine them into their constituents, which are fermions

whose spin is 1/2. Once that process is completed, the dark compact object will be

made of all dark fermions and will possess the same properties of a fermionic star.

The outward Fermi pressure of the dark fermions will counter balance the inward

gravitational pressure.

Let Mcrit be the critical mass of a fermion star, which can be estimated by

following approach of Oppenheimer - Volkoff [21], there are two scenarios that could

happen. If the critical mass Mcrit is smaller than Jeans mass MJeans, by the time

a DM clump is created, it would collapse due to the fact that Jeans mass is much

bigger than the Yoshimura - Takasugi limit. The DM clump will continue to collapse

as the fermi press cannot keep up with the gravitational pressure. At the end of

this process, we would end up with a black hole whose mass is at least equal to the

Jeans mass. In the second scenario where Jeans mass is smaller than the critical
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mass, once the DM clump is created and its mass is between Jeans mass and critical

mass, we would have a gravitationally stable DACO. If it happens that the DACO

mass is bigger than the critical mass, the DACO would then collapse and become

black hole.

Following the derivation of Oppenheimer-Volkoff [21] limit on neutron star, we

can estimate the critical mass for DACOs over which it will collapse radially as

follows: consider a degenerate gas of fermionic χ’s particles at temperature T �

EF/k enclosed in a sphere of radius R. In what followed, we used the analysis of

[49]: let the Fermi energy of each particle be EF = mχ = kF , the number density of

χ gas is then:

nF =
k3
F

6π2
=

N

4πR3/3
→ kF =

(
9π

2

) 1
3 1

R
N

1
3 . (3.23)

The gravitational energy per χ particle is:

EG = −
NGm2

χ

R
(3.24)

The condition for stability of the fermionic χ stars is now that the total energy each

particle has is positive:

EF + EG < 0→ −
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R
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(3.25)

In Figure (3.3), the orange line shows the scale of the critical mass at different

boson masses (which is equal to 4mχ). The critical mass here is considered to be

the upper limit for DACOs. For DACO of a mass that is higher than the critical

value, the Fermi pressure is not enough to balance the gravitational pressure and

that DACO will then collapse radially inward, which might possibly result in black

hole. The range from the Jeans mass to the critical mass gives us the window of

possible mass for the DACOs. These values are model independent and can be used

as predictions to confirm any model which introduces strongly interacting bosons

whose constituents are dark fermions.
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Having constructed the fomulas for Jeans mass, Yoshimura - Takasugi limits and

critical masses for DACO, we can now plug in some numeric values to see the typical

values of the Jeans mass, Yoshimura - Takasugi limit and critical mass of DACO

which is shown on Table 3.1, where geff was taken to be that of the SM. For a heavy

boson of mass in the order of 1 TeV, the corresponding Jeans mass is about several

Earth mass. This range makes it possible for us to use some current methods being

used to look for exoplanets to search for DACOs.

mX 1 TeV 10 TeV

MJeans(ME) 6.25 6.25× 10−2

MY−T (ME) 2.54× 10−17 2.54× 10−18

Mcrit(ME) 21.1 2.11× 10−1

λJeans(m) 4.9× 10−3 4.9× 10−5

Rcrit(m) 1.46× 10−1 1.46× 10−3

Table 3.1: Jeans mass, Yoshimura-Takasugi mass and critical mass of DACOs for

different boson masses and geff is model-dependent and was taken to be that of the

SM.

We can now see that as the critical mass is bigger than the Jeans mass, a DACO

will be gravitationally stable if its mass is between Jeans mass and critical mass.

However, if its mass is bigger than the critical mass, it would collapse to form a

black hole as we have mentioned earlier. The mass of this type of black hole makes

its lifetime longer than the age of the Universe (a black hole of mass 1011 kg would

have its lifetime equal to the age of the Universe). This means both stable DACOs

and DACO-originated black holes could exist together.

3.4 The Luminogenesis Model

Having discussed the conditions under which DACOs will be created and its possible

mass range as a function of dark bosonic baryon mass, we can now represent a model

whose dark bosonic baryon might possibly form DACOs: the Luminogenesis model.

The Luminogenesis model [22] was written to accommodate the flowing scenario. It
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Figure 3.3: The DACO’s mass is estimated to be in the region between the Jeans

mass and the critical mass, where the critical mass is the Oppenheimer - Volkoff

limit on the mass of a fermion star. The green dashed line indicates one Earth

mass.

was assumed that there was an inflationary stage in the early universe. Furthermore,

it was assumed that, at the end of inflation, the inflaton decayed primarily into

dark matter and the energy density of the early universe was dominated by that

of dark matter. A mechanism was proposed in which dark matter converted 15%

of its energy density into luminous matter. In order to achieve this scenario, Refs.

[22, 23] proposed that dark matter is endowed with a gauge group which is unified

with the electroweak gauge group at some high energy scale ΛDUT (DUT stands

for Dark Unified Theory) into a larger gauge group SU(6). The summary of the

Luminogenesis model is given below:

• Above DUT scale ΛDUT , the symmetry group is SU(3)C×U(1)Y ×SU(6). Here

SU(3)C×U(1)Y denotes the usual SM QCD and weak hypercharge interactions

which are “spectator” gauge group in the Luminogenesis model.

• At ΛDUT , SU(3)C×U(1)Y ×SU(6)→ SU(3)C×U(1)Y ×SU(4)DM×U(1)DM×

SU(2)W .

• For SU(3)C × U(1)Y × SU(6) to be anomaly-free, the model requires the
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presence of mirror fermions of opposite chiralities to those of the SM fermions.

It turns out that these mirror fermions give rise to a model (EW νR model)

with non-sterile electroweak-scale right-handed Majorana neutrinos, with the

test of the seesaw mechanism being accessible at Large Hadron Collider [24].

The Luminogenesis model is a natural generalization of EW νR model.

• The SU(6) representations which are relevant to the Luminogenesis model are

listed in Table (3.2) [22]:

SU(6) SU(4)DM × SU(2)L × U(1)DM

6 (1,2)2 + (4,1)−1

20 (4,1)3 + (4∗,1)−3 + (6,2)0

35 (1,1)0 + (15,1)0 + (1,3)0 + (4,2)−3 + (4∗,2)3

Table 3.2: Some SU(6) representations where (1,2)2 represents luminous matter

and (4,1)3 + (4∗,1)−3 represents dark matter.

Mirror quarks and leptons can be searched for at the LHC [11]. The electroweak-

scale right-handed neutrinos, if exist, will be a direct test for seesaw mechanism. As

emphasized in Ref. [53], the production of νRνR at the LHC can result in many

interesting signals such as like-sign dileptons. One of the most interesting processes

of mirror quarks is their decay to SM quarks by radiating a SM-singlet Higgs scalar

(qMR → qL + φS) via the interaction of the form gSq q̄LφSq
M
R + h.c, where qL and

qMR refer to the SM left-handed and mirror quark doublet, respectively. There is

also a corresponding process for the lightest mirror lepton (lMR → lL + φS) with

gSl l̄LφSl
M
R + h.c.

The inflaton φinf is represented by (1,1)0 of 35, and since 20× 20 = 1s +

35a + 175s + 189a, the inflaton decays mainly to dark matter through the inter-

action g20ΨT
20σ2Ψ20φ35 which contains the inflaton in g20ΨT

Lσ2Ψc
Lφinf . The outcome

of this process explains the predominance of dark matter over luminous matter.

The dark matter created can then decay into luminous matter in a process called

“luminogenesis”. Some key points of process can be summarized as follows

• As noted in Ref. [22], for the SU(4)DM dark matter fermion χ, there is a small
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excess of nχ over nχ̄, which is known as the asymetric part: ∆nχ = nχ − nχ̄.

The symmetric part of the number density are approximately equal to that of

χ and χ̄: nsym ≈ nχ ≈ nχ̄, which means that ∆nχ � nsym. To explain the

origin of this asymmetry in the DM number density, we assume that there is a

global U(1)χ for DM. The interaction carried by the gauge bosons for the coset

group SU(6)/SU(4)×SU(2)×U(1)DM explicitly breaks the U(1)χ symmetry,

and their decay involving the interference between the tree-level and one-loop

diagrams will ultimately produce a net DM asymmetry, assuming the presence

of CP violation in the DM sector. (This process is similar to the one involving

X and Y gauge bosons in SU(5) Grand Unified Theory.)

• χ and χ̄ can annihilate to a SM fermion pair via γDM , the dark photon of

U(1)DM with the effective Lagrangian given by g2

MγDM
(χ̄γµχ)(f̄γµf). The lu-

minous fermion pair will then annihilate to radiation.

• As χ and χ̄ annihilate, the symmetric number density nsym will be affected

while the asymmetric part ∆nχ will not. When the effective interaction goes

out of equilibrium, the number density nsym will be given by: α2

M2
γDM

nsym,D ≈
T 2
D

mPl
, where D stands for “decoupling” [22]. When χs become non-relativistic,

i.e., for T0 ≈ mχ, since the asymmetric number density ∆nχ is small, the

symmetric number density will approximately be nsym,0 ≈ ntot,0 ∼ Cm3
χ, where

C is a constant. From this,
nsym,D
nsym,0

= 1
Cα2

M2
γDMT

2
D

mPlm3
χ

. For mχ ∼ 1 TeV, MγDM ∼

O(1TeV), assume that TD = mχ/10, then nsym,D ≈ 10−16nsym,0. This means

that at the decoupling time, most of the symmetric DM has annihilated to

luminous fermion-antifermion pairs. Due to the Boltzmann suppression at

TD ∼ mχ/10, ρχ/ρR < exp(−10) ≈ 4.5 × 10−5, which is well in the radiation

epoch and before Big Bang Nuclesynthesis (BBN). Since the baryon-to-photon

ratio should be 10−9, where the main photon source comes from the radiation of

fermion-antifermion pairs created from the annihilation of symmetric DM and

where the main source of baryons is from the asymmetric part, it was estimated

that ∆nχ ∼ 10−9nsym,0. Compare 10−16 to 10−9, we can see that by number

density of symmetric DM is much smaller compared to asymmetric DM well

before BBN. Below TD, any dark pions (χ̄χ, dark “baryons” (χχχχ) and dark



3.4. THE LUMINOGENESIS MODEL 69

“anti-baryons” (χ̄χ̄χ̄χ̄) formed after SU(4)DM confinement are converted via

dark gamma γDM to radiation and can no longer be thermally produced. As

a result, there will be no more anti-DM before BBN, unlike other models in

literature.

• χ and χ̄ can also be converted to luminous matter via interactions with two

scalar fields: Φ
(L)
15 and Φ

(R)
15 , which is described by

g26
M2

15
(χTLσ2lL)(χc,TL σ2l

M,c
M ) +

h.c. This results in χL + χR → lL + lMR and χ̄L + χ̄R → l̄L + l̄MR . In the early

universe, mirror leptons lRM mainly decay to SM leptons.

• The annihilations of DM particles via γDM and via Φ
(15)
15 and Φ

(R)

1̄5
are in-

dependent of each other. After these interactions freeze out during matter

dominated epoch, any DM left in the symmetric part annihilate to radiation

while those in asymmetric part do not annihilate because there is no anti-DM

in asymmetric part. This will give us the correct observations of 14% luminous

matter and 86% of dark matter.

In the SU(4) confinement, the bound state of 4 χ forms baryons called “CHIMP”s,

which stands for “χ massive particle”. A CHIMP, which is denoted by X = (χχχχ),

is assumed to have spin 0. Similar to QCD where SU(3) Nambu-Goldstone (NG)

bosons appearing from the spontaneous breaking of chiral symmetry due to small

masses of quarks, the dark pion (χ̄χ can acquire a small mass through a term m0χ̄χ

where m0 is a Lagrangian mass term for χ. Following QCD, it should obey that

m0 � Λ4 ∼ mχ. It has been shown in Ref. [25] that the mass of CHIMP is con-

strained from 1 - 10 TeV and the mass of the dark pion mπDM was constrained from

1 - 10 MeV.

At this point, we can estimate DACOs mass for our Luminogenesis model. The

required parameters are just the number of effective degrees of freedom, and the dark

fermion mass, which was stated above. As the temperature drops below CHIMP

mass, the relativistic particles in the model consist of all particle in SM, mirror

counterparts of SM fermions, 4 Higgs singlets, 2 complex Higgs doublets, 1 complex

Higgs triplet and 1 real Higgs triplet. The number of effective degrees of freedom is
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calculated as:

gb = 28(SM) + 4 + 2× 4 + 2× 3 + 3 = 49,

gf = 90× 2 = 180,

geff = gb +
7

8
gf = 206.5.

(3.26)

For this value of geff , the numerical values show that the possible mass range for

DACOs of mass of 1 TeV is from 5 to 20 Earth mass, which makes it possible to

look for these dark compact objects by the techniques used to search for exoplanets.

3.5 The energy dissipation mechanism for DA-

COS

In the previous sections, we have discussed the possible mass limits over which the

energy density fluctuation will start to grow exponentially. For that condition to be

achieved, the highly energetic DM particles must have a mechanism to lose energy

and settle in the gravitational well. Without one, the CHIMP particles’ gravitational

attraction between each other will not be big enough to bring them together for the

energy density fluctuation to grow.

It must be noted that the density profiles of luminous matter and dark matter

in galaxies are fundamentally different. Due to the radiation of energy, the majority

of luminus matter resides closer to the center of the hosting galaxy while dark

matter has the tendency to extend throughout the extended halos due to its lack

of cooling mechanism. It has been shown that such mechanism can be available

for dark matter model that has two oppositely charged dark matter particles under

an unbroken U(1)X symmetry. However, the model requires that one dark matter

particle is at least 6 orders heavier than the other [44].

For the DACOs in the Luminogenesis model to lose their energy, we propose a

cooling mechanism based on the “Bremsstrahlung” of dark pion πDM (χ̄χ) illustrated

in Figure (3.4). The interaction between the CHIMP and dark pion can be thought

to take a similar interaction of the pion-nucleon vertex where the difference is that

our CHIMPs have spin 0 instead of 1/2 for SM nucleons. The effective Lagrangian

for the dark “baryon” - dark pion vertex is given by:
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Figure 3.4: πDM “Bremsstrahlung” of CHIMPs

L = gXmXXXφ, (3.27)

where X and φ denote CHIMPs and πDM . Following the discussion given in [4], the

scattering matrix for the process that includes πDM “Bremsstrahlung” is given in

term of scattering matrix without one is:

iM(p, p′) = −igXmX

(
M0(p− k, p′) 1

(p− l)2 −m2
X + iε

+ M0(p, p′ + k)
1

(p′ + k)2 +m2
X + iε

)
. (3.28)

It has been shown in [22] that mπDM was constrained to be O(1) MeV. The detail

calculation of the probability of such a dark pion “Bremsstrahlung” process to occur

is in Appendix A. The probability of the πDM “Bremsstrahlung” of CHIMPs are

plotted on Fig. (3.5) at different velocity of non-relativistic CHIMPs and angle θ

between p and p′:

Due to the fact that DACOs in Luminogenesis model have a cooling mechanism,

DACOs could be created during the history of the Universe. The next question one

could ask is how could we find them. Due to the fact that DACO’s mass is at the

same scale of Earth mass, if one DACO travels across the Solar system or any star

system, it could be captured by gravity and become a planet of that system that

can change the original orbits of other planets in that system. This leads to some

possible methods that could be used to detect DACOs, which will be discussed in

the next section.
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Figure 3.5: Probability of πDM “Bremsstrahlung” of CHIMPs

3.6 Detection methods for DACOs

In previous section, we have estimated the possible mass range for DACOs, which

can be from a few to tens of Earth mass. This mass range makes it possible that

DACOs can be captured by a star to form a star - planet system whose signals

are fundamentally different from those generated by luminous matter star-planet

systems. Hence, the best ways to look for DACOs are methods that are being used

to detect exoplanets in star - planet binary systems, which include: radial velocity,

astrometry, imaging, transits, gravitational microlensing and timing methods. We

briefly describe each method and whether or not it can be applied to look for DACOs:

• The radial velocity method [26] is based on the Doppler effect due to the

motion of the star around the center of mass of the star-planet systems. This

method cannot be used alone to measure the mass of the planet due to the

inclination of the planet’s plane of orbit with respect to the line-of-sign from

the observer to the star.

• The astrometry method is based on the direct observations of stars in start-

planet systems. The difference between this and the radial velocity method is

that this astrometry method is used when the planets’ plane of orbit is perpen-

dicular to the line-of-sign and hence generates no Doppler effect. The signal
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for this method is the periodic motion of a star relative to stable background

stars.

• The imaging method is a direct method, which differentiates the dim spectra

generated from the planet from bright spectrum from stars. This method can

be used to estimate the temperature but not the mass of the planet.

• The transit method [28] is used to detect the planet in the star-planet systems.

In this method, one measures the variation of flux from the star. The decrease

in flux can be seen when the start, the planet, and the observer align in that

order. The amount of variation is proportional to the ratio of the area of the

planet to that of the star.

• The gravitational microlensing method [27] is used to detect when a massive

object close to us is passing through the line-of-sign from us to distant stars.

The gravitational microlensing events of stars at the order of solar mass usually

last a couple of days. If those stars are accompanied by planets, the effect of

those planets may also create gravitational microlensing events, which last

must shorter, in matter of hours.

• The timing method [28] is the method that are based on the variation of

periodic signal from objects like pulsars, white dwarfs, etc., when these objects

are accompanied by planets.

Out of these methods above, DACOs can be seen by using radial velocity, as-

trometry, gravitational microlensing, pulsar timing methods while being completely

transparent if one uses imaging method or transit method. Therefore, an evidence

for DACOs would be positive signals from any of the first 4 methods in conjunction

with negative signals from the later two methods.

As we have mentioned in the previous chapter, the Luminogenesis model proposes

a candidate for the DACO that possesses a cooling mechanism, which is crucial for

dark matter to clump to form bigger structures such as planets, or galaxies. If

the clump of dark matter is formed in the locations where a star is, it can be

gravitationally captured by that star and will have impacts on the orbits of the

other luminous planets that are orbing that star. By identifying the abnomality
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in the orbits of these planets, the mass and the distance of the dark objects can

be identified or at least be constrained. An example for this is the proposal of the

“planet X”, and theoretically predicted object that orbit the Sun, which has the

mass that is up to 10 times the Earth mass and is at the distance of about 700 AU

[47]. Coincidently, our estimated mass for DACO in our model falls into the same

range, which means it is not impossible that DACO is a candidate for “planet X”.



Chapter 4

Heavy mirror mesons

4.1 Introduction

The validity of the SM has been solidified by the observations of particles at the Large

Hadron Collider (LHC) that possesses the properties that resemble its prediction.

However, the SM does not provide a clear understanding of many problems such as

the existence of Dark Matter, the non-zero masses of neutrinos, the origin of the

mass hierachy of fermions or the nature of the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix. To explain the fact that neutrinos are not massless, many models

have been proposed. The first model generates tiny masses for neutrinos through

Weinberg operator [30] of dimension 5 and is suppressed at scale M . This predicts

the masses of neutrinos that are three to four orders smaller than the inferred values

if M is at Planck’s scale. The other direction is to extend the SM to include new

particles. The first proposal is to extend the SM gauge symmetry to higher gauge

symmetries, such as the left-right extension or SO(10) Grand Unified Theory (GUT).

The second way is to introduce more Higgs multiplets and select appropriate masses

for these additional Higgs bosons and the corresponding Yukawa coulings. The third

way is is to add three right-handed neutrinos and a second Higgs doublet to the SM

that have a VEV at the KeV scale. The SM Higgs doublet in this model only

couples to the charged SM fermions while the second Higgs doublet only couples to

the neutrinos where the mass of these neutrinos depends on the Yukawa coulpings.

The selection of Yukawa coupling that is at the same order of magnitude of electron

Yukawa results in the correct level of neutrino mass. The fourth approach is what

75
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is called the “Electroweak fertile νR” model [22], which is an extension of SM with

the addition of the mirror fermion sector. Specifically, the model introduces some

additional fermion multiplets called mirror fermions which contain right-handed

neutrinos whose Majorana masses are proportional to the EW scale, four additional

Higgs doublets (2 Higgs doublets couple to the SM fermions and the other two

couple to the mirror fermions), two triplets and four singlets. In this model, the

right-handed neutrinos are doublets under the SU(2) gauge symmetry and will have

masses in the EW scale. The model explains the tininess of the neutrino mass

via the seesaw mechanism and the neutrinos are of Majorana type. As the gauge

symmetry of the group is actually that of the SM, all mirror fermions and the νR

have masses in EW scale. This makes the model accessible experimentally and it

can be confirmed by results from the Large Hadron Collider (LHC).

The EW-νR model has many interesting phenomenological implications related

to the searches for mirror quarks and leptons at the LHC. It has been shown in Ref.

[45] that the couplings of mirror fermions to SM fermions and the Higgs singlet are

constrained to be of the order of O(10−4). The tininess of these Yukawa couplings

indicates a possibility that the decays of mirror quarks and leptons to the SM quarks

and leptons would only be observed at displaced vertices. In the discussion below, we

will look at the possibilities that mirror mesons can be created from mirror quarks

as well as their production mechanisms, their decays and their signatures.

4.2 The Model

In this section, we will briefly summarize the key features of the Electroweak Scale

Right Handed neutrino model concentrating on the meaning and the use of the

particle content in comparison to Left - Right model [31]. By making the energy

scale of the seesaw mechanism down to the electroweak scale and making right-

handed neutrino “non-sterile” or “fertile”, we have the advantage of making the

seesaw mechanism testable at colliders such as the LHC. As pointed out in Ref. [22],

the requirement for this condition to be realized is the additions of the following:

right-handed SU(2) mirror quark and lepton doublets, left-handed mirror quark

and lepton singlets, two Higgs triplets that include one real triplet and one complex
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triplet, two Higgs doublets and four Higgs singlets. The gauge group of the model is

SU(3)C × SU(2)W ×U(1)Y , which is identical to that of the SM. By expanding the

SM, we have increased the number of degrees of freedom. To illustrate the need and

the physical meaning of that action, we will compare this model with the famous Left

- Right Symmetry model whose gauge group is SU(3)C×SU(2)L×SU(2)R×U(1)B−L.

Below we summarize the EW νR model as proposed by P. Q. Hung:

1. The gauge sector

The gauge sector of the EW νR model is that of the SM:

SU(3)C × SU(2)W × U(1)Y , (4.1)

while that of the Left - Right Symmetry model is:

SU(3)C × SU(2)L × SU(2)R × U(1)B−L. (4.2)

From this, it can be noted that the EW νR model is characterized by only one

symmetry breaking scale ΛEW ∼ 246 GeV while the Left - Right Symmetry

model has two symmetry breaking scales ΛL ∼ ΛEW and ΛR � ΛL, which is

constrained to be larger than approximately 3 TeV.

2. The Fermion sector

• For every left-handed SM doublet, there is a corresponding right handed

mirror doublet:

SM : lL =

 νL

eL

 ; Mirror : lMR =

 νR

eR

 . (4.3)

The right handed neutrino is “fertile” or “non-sterile” as it belongs to

the right handed doublet. The mass of the right-handed neutrino will be

discussed in the next section.

SM : qL =

 uL

dL

 ; Mirror : qMR =

 uR

dR

 (4.4)

• For every right-handed SM singlet, there is a corresponding left-handed

mirror singlet:

SM : uR, dR, eR; Mirror : uML , d
M
L , e

M
L (4.5)
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• In comparison, the particle content of the Left - Right model is given by:

SU(2)L : lL =

 νL

eL


SU(2)R : lR =

 νR

eR


SU(2)L : qL =

 uL

dL


SU(2)R : qR =

 uR

dR



(4.6)

3. The Scalar Sector

• The scalar sector in EW νR model:

– Higgs doublets: There are 4 Higgs doublets: ΦSM
1 (Y/2 = −1/2),

ΦSM
2 (Y/2 = +1/2), ΦM

1 (Y/2 = −1/2), ΦM
2 (Y/2 = +1/2) where the

Y/2 = ±1/2 refers to the U(1)Y quantum numbers. The require-

ments for these Higgs doublets are given in [46]. Basically, for the

Lagrangian of interest given by:

L = LKin + Lmass + Lmixing, (4.7)

where

Lmass =guq̄LΦSM
1 uR + gdq̄LΦSM

2 dR

+ gMu q̄
M
R ΦM

1 u
M
L + gMd q̄

M
R ΦM

2 d
M
L +H.c

, (4.8)

and

Lmixing = gSq q̄LφSq
M
R + gSuū

M
L φSuR + gSdd̄

M
L φSdR +H.c. (4.9)

L is invariant under the transformations of U(1)SM × U(1)MF :

U(1)SM :qL → e−iαSM qL,

(uR, dR)→ eiαSM (uR, dR)

ΦSM
1,2 → e−2iαSMΦSM

1,2 .
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U(1)MF :qR → eiαMF qR,

(uML , d
M
L )→ eiαMF (uML , d

M
L )

ΦMF
1,2 → e2iαMFΦMF

1,2 .

and

φS → e−i(αSM+αMF )φS. (4.10)

The reason for having these Higgs doublets is to have L invariant

under U(1)SM × U(1)MF transformations.

– Higgs triplets include one complex triplet (3, Y/2 = 1) and one

real triplet with ξ(3, Y/2 = 0) under SU(2)L ⊗ SU(2)R. The two

triplets, when combined, form a (3, 3) representation under the global

SU(2)L ⊗ SU(2)R as:

χ =


χ0 ξ+ χ++

χ− ξ0 χ+

χ−− ξ− χ0∗

 , (4.11)

where the VEV of χ is given by:

〈χ〉 =


vM 0 0

0 vM 0

0 0 vM

 . (4.12)

This VEV of χ breaks the symmetry SU(2)L ⊗ SU(2)R down to

SU(2) and guarantees the Custodial Symmetry of the model, which

is to maintain the relationship ρ = M2
W/M

2
Zcos

2θW = 1.

All the VEVs are related by:

∑
i=1,2

v2
i + vM,2

i + 8v2
M = v2 = (246 GeV)2, (4.13)

where 〈ΦSM
1,2 〉 = v1,2 and 〈ΦMF

1,2 〉 = vM1,2 are the VEVs of the Higgs

doublets that give masses to SM fermions and mirror fermions.

– 4 Higgs singlets are also needed to contruct neutrino mass matrices

with the A4 non-abelian discrete symmetry.
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• Scalar sector in the Left - Right symmetry model includes:

– Two complex Higgs triplets: ∆R = (1, 3) and ∆L = (3, 1) under

SU(2)L × SU(1)R where 〈∆L〉 = vL � ΛEW for ρ parameter to

satisfy ρ = 1. It is also constrained that 〈∆R〉 = vR > 3 TeV.

– A bi-doublet φ2 = (2, 2) which is equal to two SM doublets.

4. The role of the scalar sector

To simplify the notation, νMR will be writen as νR.

• Dirac and Majorana neutrino masses, charged fermion masses in the EW

νR model:

– The Majorana neutrino mass:

As the right-handed neutrino is now part of right-handed lepton dou-

blet, it is now non-sterile and can acquire a mass that is proportional

to the electroweak scale by:

LM = gM l
M,T
R σ2τ2χ̃l

M
R

= gMν
T
Rσ2νRχ

0 − 1√
2
νTRσ2e

M
R χ

+

− 1√
2
eM,T
R σ2νRχ

+ + eM,T
R σ2e

R
Mχ

++,

(4.14)

which gives us the neutrino’s Majorana mass of MR = gMvM . As the

νR interacts with Z boson, it must follow that MR = gMvM > MZ/2,

or vM > 46 GeV. It has been shown in the originial paper that

the real triplet ξ(Y/2 = 0) is required to maintain the relationship

ρ = M2
W/M

2
Zcos

2θW = 1. This is a consequence of the custodial

symmetry.

– The Dirac neutrino mass: In EW νR model, the Dirac neutrino mass

is obtained by the mixed coupling between SM and Mirror leptons

with Higgs singlets. The singlet scalar field φS couples to fermion

bilinears as:

LS = gSl l̄MφSl
R
M + h.c

= gSl(ν̄LνR + ēLeR)φS + h.c,
(4.15)

which gives us the Dirac mass of neutrino as mD = gSlvS. The seesaw

mechanism gives mν ∼ (mD
ν )2/MR ∼ O(eV ), or gSlvS < O(100 keV).
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– Mass of charged leptons and quarks:

As we have mentioned earlier, SM quarks and charged leptons ac-

quire their masses by coupling to Φ2 while mirror quarks and leptons

acquire their masses by coupling to Φ2M .

• Dirac and Majorana neutrino masses, charged fermion masses

in L-R models

– Majorana masses

Right-handed neutrinos in SU(2)R and the SM right-handed charge

lepton have their mass proportional to the VEV of ∆R: 〈∆R〉 =

vR > 3 TeV, which means that the right-handed neutrinos in the

Left- Right model must have masses in similar scale. In addition, νR

in the Left - Right model can only be created from the exchange of

WR and ZR, which are constrained to be above 3 TeV. As a result,

the production cross section of the νR is much smaller compared to

that of the EW-scale νR model.

– Diract masses

In the Left - Right symmetry model, Dirac neutrino masses are ob-

tained by coupling to the Higgs bi-doublets, which means mD ∼

O(vL ∼ EW ). Charged lepton and quark masses are obtained by

coupling to the same Higgs bi-doublets we have mentioned earlier.

In contrast, Dirac neutrino masses in EW-scale νR model come from

couplings to the Higgs singlets while SM charged leptons and quarks

and their mirror counterparts get their masses from coupling to Φ2

and Φ2M , respectively. The diffence in the couplings has been ex-

ploited to show the difference between the PMNS and CKM matrices

in Ref. [33]

• The scalar contribution to the electroweak radiative corrections

It has been noticed in Ref. [34] and Ref. [22] that triplet Higgs gives

large negative contributions to the S-parameter and therefore, fine tuning

is required to have a small contribution to the S-parameter coming from

the Higgs triplet. In addition, the fine tuning disappears if the negative
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contribution from the Higgs triplet cancels the positive contribution from

an extra fermion sector. This is satisfied by the fermion doublets in case

of the EW-scale νR model.

4.3 Yukawa Interactions Between Mirror and SM

Quarks

• The interactions As we have mentioned, the non-abelian discrete symmetry

group A4 was used to describe the Higgs singlet sector which is responsible

for generating the Dirac masses of the neutrinos. The assigments of the SM

fermions, mirror fermions and the scalars under A4 are shown in Table (4.1).

From this, the Yukawa interactions can be writen as:

LS = q̄dLU
d†
L M

d
φU

dM

R qM,d
R + h.c

= q̄dLM̄
d
φq

M,d
R + h.c

(4.16)

for down type quarks and:

LS = q̄uLU
u†
L M

u
φU

uM

R qM,u
R + h.c

= q̄uLM̄
u
φ q

M,u
R + h.c,

(4.17)

where qdL = (dL, sL, bL), quL = (uL, cL, tL), qM,d
R = (dMR , s

M
R , b

M
R ), qM,u

R =

(uMR , c
M
R , t

M
R ) and where Md,u

φ contains the couplings and mixing of mirror

quarks and SM quarks:

Md,u
φ =


gd,u0S φ0S gd,u1S φ3S gd,u2S φ2S

gd,u2S φ3S gd,u0S φ0S gd,u1S φ1S

gd,u1S φ2S gd,u2S φ1S gd,u0S φ0S

 (4.18)

Field (ν, l)L (ν, lM)R eR eML φoS φ̃S Φ2

A4 3 3 3 3 1 3 1

Table 4.1: A4 assignment for leptons and Higgs field

It must be noted that while the Yukawa couplings for lepton sector gSl, which

is constrained by rare processes like µ → eγ, there are no constraints on the
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value of gSq. Therefore, if the combination of the coupling and the mixing

are small enough, the decay length of the mirror quark to SM quark will sine

displaced-vertex behaviours as we will show below.

• The decay length From the Yukawa coupling of the SM and mirror quarks to

the scalar Higgs described above, the allowed decay mode of mirror quarks to

the SM quarks is qM → qφS where the mass of the singlet scalars are supposed

to be much smaller than that of the quarks and hence can be ignored in the

calculation. Let gSq be the generic coupling of the mirror quark to SM quark

that contains both the Yukawa coupling and the mixing angle, the decay width

of this decay process is calculated as:

Γ(qM → qφ) =
g2
Sq

64π
mqM

(
1−

m2
q

m2
qM

)(
1 +

mq

mqM
−

m2
q

2m2
qM

)
. (4.19)

Since the decay length of this process is:

L =
γβ~c

Γ(qM → q + φS)
, (4.20)

the decay length can be macroscopic if the generic coupling gSq is small enough.

This behavior is displayed in Fig. (4.1), where the generic coupling is varied

in 10−8 ∼ 10−5. For the velocity of the mirror quark in the range of β = 0.5,

the decay length can be from a few millimeters to a few centimeters.

It must be also noted that as the lowest decay time is of the order of 10−15

(s) for coupling gSq that is smaller than 10−5, mirror quarks have enough time to

hadronize. As a result, bound states of mirror quarks, which are mirror mesons and

hybrid mesons, could be created.

4.4 Production and decays of mirror mesons

4.4.1 An overview of Quarkonia

As we have mentioned earlier, the heavy mirror meson is the bound state of an

heavy mirror quark and a corresponding anti-mirror quark. In general, a bound

state of an quark and an antiquark Q̄Q is called a quarkonium. Some examples of
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Figure 4.1: Decay length of mirror quarks to SM quarks

quarkonia are the charmonium resonances ψ(c̄c) and bottomonium resonances Υ(b̄b)

discovered in the e+e− collisions or in p-nucleus collisions.

In non-relativistic approximation, the total angular momentum of the quark -

aniquark system is calculated by J = L+S where the spin states can be either S = 0

for antisymmetric cases or S = 1 for symmetric cases. The parity P and charge

conjugation of quarkonium are defined as usual: P = (−)L+1 and C = (−)L+S.

Table 4.2 lists some quantum numbers of quarkonium states. For quarkonium in

our model, the mirror meson, we consider it to be at the lowest spin state which is

1S0.

Angular momentum JPC Spectroscopy notation

S = 0 S = 1

L= 0 (S) η(0−+) ψ,Υ, θ(1−−) 1S0, 3S1

L = 1 (P) h(1+−) χJeans(0
++, 1++, 2++) 1P1, 3PJ

L = 2 (D) 2−+ 1−−, 2−−, 3−− 1D2, 3DJ

Table 4.2: Quantum number of quarkonium states

A quarkonium Q̄Q whose mass is larger than the combination of two heavy

mesons Q̄q and q̄Q, it will decay strongly into the two heavy mesons. If we set the
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zero energy to be at 2mQ where Q is the heavy quark, the threshold above which

the quarkonium would decay to two heavy meson is: ET = 2m(Q̄q) − 2mQ. This

threshold is usually independent of mQ for mQ � mq.

In the quarkonium bound states whose masses are much larger than the QCD

scale, the dynamics of such bound states can be treated by using nonrelativistic

quantum mechanics [38]. Specifically, the production and decay of heavy quarko-

nium bound states are calculated by using the Schrodinger equation where the in-

terquark potential is parameterized by:

V (r) = −4αs(r)

3r
+ VI(r) + ar, (4.21)

where αs is the strong coupling constant. The first term in the potential is from

the Fourier transformation of the short-distance Coulomb-like one-gluon-exchange

scattering amplitude. The third term that is linear in r is a confining potential

with a ' 0.2 GeV2. The second term in the potential is the parameterization of the

region between the Coulomb-like and the linear terms, which are usually extracted

from experimental data. The heavier the quarkonium is, the more important the

Coulomb-like term is. In the following sections where our proposed mirror quarks are

assumed to be heavy, we will only concentrate on this one-gluon-exchange potential.

For quarkonium mass that is large enough, it is reasonable to ignore the last two

terms in the potential above. From this, the wave function for a quark at the origin

can be approximated by:

|ψn(0)|2 =
1

π

[
2

3n
mQαs(m

2
Q)

]3

, (4.22)

where n is the radial wave number. We will use this for our next calculation for

production and decay of our mirror mesons.

4.4.2 Production

In the previous section, we have reviewed the Electroweak Scale right-handed Neu-

trino model whose particle content contains a mirror counterpart for every SM

fermion. As a result, the bound state of a mirror quark and an antimirror quark

can form to what we call “mirror meson”. Similarly, the bound state of a mirror

quark and a SM quark can form to what we call “hybrid mesons”. Let us denote
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the mirror meson formed by the lightest mirror quark - antiquark pair ηM and the

generic hybrid meson formed by the lightest mirror quarks and other much lighter

SM antiquark pair ηH .

Because the gauge group of the EW-scale νR model is the same with that of SM,

mirror quarks have the same strong interaction as that of the SM quarks. From

this, mirror meson production will come from the gluon - gluon fusion process. The

production cross section of that process can be inferred from the decay of a mirror

meson ηM to a gluon pair in spin singlet state which is given by:

Γ(ηM → gg) =
8α2

S

3

π|ψ(0)|2

m2
qM

=
32α5

S

27
mηM , (4.23)

where the strong coupling constant must be evaluated at the mqM scale and where

the wave function at the origin ψ(0) is given by:

|ψn(0)|2 =
1

π

[
2

3
n−1mqMαS

]3

(4.24)

By crossing, the spin and color average cross section of the gluon fusion to mirror

meson gg → ηM is:

σ(gg → ηM) =
π2

64m3
qM

Γ(ηM → gg) =
α2
Sπ

3

8m5
qM

|ψ(0)|2 =
α5
Sπ

2

27m2
qM

. (4.25)

4.4.3 Decays of mirror meson and hybrid meson

The mirror mesons can decay via two different mechanisms that show different sig-

natures in the collider as is shown in Figs. (4.2) and (4.4) or they can be propagators

of the gluon annihilation to two mirror mesons. In the first decay mechanism showed

in Fig. (4.2), there is a scalar Higgs φS exchanged between the mirror quark and

antiquarks and the final states are the SM quark and antiquark pair. In the second

decay mechanism showed in Fig. (4.4), there is a SM quark exchange between two

mirror quarks and the final products are two undetectable scalar Higgs φS. As we

will show in the following calculation, the decays of this type are associated with the

annihilation of two mirror quarks with exchange of φS to SM quarks. As the mass

of the φS is considered to be very small, the second decay is negligible compared to

the first one. In addition, the fact that there is no detectable signal for the second

decay makes it less significant compared to the first one. One example of the decay
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of this type would be the case where the SM quark in the process is b quark. If that

is the case, the signal of the process will be b quark jets.

In the process shown in Fig. (4.3), the mirror meson ηM is a propagator for the

process gg → ηHηH . The mirror quark in the hybrid meson will eventually decay

to an SM quark and the scalar Higgs φS, the final state of this decay is a pair of

SM mesons and missing energy that is carried out by the scalar Higgs which is not

part of the first mechanism. One example we could have for this process is the case

where the mirror quarks decay to SM b quark. The mesons in the production would

depend on the type of inner line SM quark. If the inner line SM quark was u quark,

we would have B+,− mesons in the output. If the inner line SM quark was d quark,

we would have B0, B̄0 mesons in the final state.

q̄

qM

q̄M

φS
q̄M

qM

q

Figure 4.2: g + g → ηM → qq̄ without missing energy.

q̄

q̄qM

q̄M

φS

q̄M

qM

q
φS

q

Figure 4.3: g + g → ηM → 2SM mesons + 2φS with missing energy.
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φS

qM

q̄M
q̄M

qM

φS

q

Figure 4.4: g + g → ηM → 2φS with complete missing energy

Decay without missing energy

The decay of a mirror meson ηM to the SM quark - antiquark pair is can be calcu-

lated with help from the process of free mirror quark annihilation via φS exchange:

qM q̄M → qq̄.

~p1

~p4

~p3

φ

~p2

q̄M

qM

q̄

q

Figure 4.5: Free mirror quarks annihilation via ΦS exchange

Following the method described in Ref. [35] and use the center of mass frame

such that p1−p2 = (0, 2~p) and p1 +p2 = (2mqM , 0), the free-quark scattering matrix

is given by:

A =
g2
Sq

t
(ū3Lu1R)(v̄2Rv4L). (4.26)
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Using a Feirz Transformation, we can rewrite the product above as:

A =
1

4

g2
Sq

t

[
(ū3Lv4L)(v̄2Ru1R) + (ū3Lγ

µv4L)(v̄2Rγµu1R)

+
1

2
(ū3Lσ

µνv4L)(v̄2Rσµνu1R)− (ū3Lγ
µγ5v4L)(v̄2Rγµγ5u1R)

+ (ū3Lγ5v4L)(v̄2Rγ5u1R)

]
(4.27)

By using chiral properties, we can eliminate all terms except for the first and the

last ones in the expression above, which simplifies to:

A =
1

4

g2
Sq

t

[
(ū3Lv4L)(v̄2Ru1R) + (ū3Lγ5

1 + γ5

2
v4L)(v̄2Rγ5

1 + γ5

2
u1R)

]
=

1

2

g2
Sq

t
(ū3Lv4L)(v̄2Ru1R)

=
1

2

g2
Sq

t
(ū3

1 + γ5

2
v4)(v̄2

1 + γ5

2
u1)

(4.28)

The mirror meson decay amplitude is then calculated by:

M(1S0) =

√
3Ψ(0)√
2mqM

1

2

g2
Sq

t
(ū3

1 + γ5

2
v4)Tr

[
1 + γ5

2
(/p1
−mqM )

]
, (4.29)

where Ψ(0) is the coordinate-space wave function at the origin. We only consider

here the spin 0 state of the mirror meson, since the fusion of the two gluons can

only give a scalar mirror meson:

M(1S0) =

√
3mqMΨS(0)
√

2

g2
Sq

t
(ū3

1 + γ5

2
v4)⇒

∣∣M(1S0)
∣∣2 =

6g4
SqΨ

2
S(0)

mqM
(4.30)

The decay width of mirror meson is then:

Γ(ηM → qq̄) =
p

8π(2mqM )2

∣∣M(1S0)
∣∣2

=
mqM

32πm2
qM

6g4
SqΨ

2
S(0)

mqM
=

3g4
SqΨ

2
S(0)

16πm2
qM

=
g4
Sqα

3
S

18π2
mqM .

(4.31)

The decay length γβ~c/Γ of the mirror meson into SM quarks are illustrated on

Fig. (4.6) for β = v/c = 10−3 and β = 10−1 at different mirror quark masses. It can

be seen that for the coupling gSq smaller than O(10−3), the decay length can reach

to the macroscopic sizes (1 mm). The Fig. (4.6) also plots the radius of the CMS’s

Silicon Strip Tracker. The macroscopic size of this radius allows these detectors to

observe the displaced-vertex events of mirror mesons and hyrid mesons.
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Figure 4.6: Macroscopic mirror meson decay lengths at small couplings gSq.

To simplify the process of gluon fusion to a mirror meson followed by the mirror

meson decaying to SM quarks, we can use an effective Lagrangian that describes

the gluon-mirror meson vertex and mirror meson-SM quark vertex as follows:

L =
1

4

g1

mηM
FµνF

µνηM + g2q̄
MqMηM , (4.32)

where g1 is the effective coupling constant for gluon - mirror meson vertex and g2 is

mirror meson - SM quark vertex. From this, the decay width of a mirror meson to

gluon pair and to quark pairs are:

Γ(ηM → gg) =
g2

1

128π
mηM , (4.33)

Γ(ηM → qq̄) =
g2

2mηM

16π

(
1−

2m2
q

m2
ηM

)(
1−

4m2
q

m2
ηM

)1/2

(4.34)

By comparing equations (4.23) and (4.31) with equations (4.33) and (4.34) re-

spectively, we get:

g1 ≈ 22α
5/2
S ≈ 10−2 − 10−1

g2 ≈ 1.1g2
Sqα

3/2
S ≈ 10−9 − 10−8.

(4.35)

where gSq has been chosen to be O(10−3) for the reason mentioned above.

These effective couplings are the parameters being used to simulate the process

of gg → ηM → q̄q. For demonstration purposes, the b quark was chosen to be the

resulted SM quark of the process. Various mirror meson ηM masses have been used

for the simulation and the transverse momentum distributions are plotted in Fig.

(4.7) where energy of the proton beam was set at 13 TeV.
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Figure 4.7: pT distribution of b quark after decaying from mirror mesons as predicted

by Madgraph.
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Process with missing energy

The second process involves the hybrid mesons ηH , which is created from gluon

annihilation to a mirror meson in the s-channel, decaying to SM mesons as jets and

a pair of scalar Higgs φS. As the scalar Higgs singlet carries part of the energy and

momentum of the gluons, the signature of this process will be the missing energy

and momentum of the fused gluons. The effective Lagrangian of the ηM - ηH and

ηH - φS vertices can be written as:

L =
1

4

g1

mηM
FµνF

µνηM + g3mηMη
HηHηM + g4

mηH

2
ηHJSMΦS (4.36)

where JSM is any SM meson and will be observed as jets.

The coupling contant g4 can be taken to be the same with gSq as the underlying

process of the decay ηH → JSM + φS is the decay of mirror quark qM → qSM + φS.

The decay width of hybrid meson can be calculated by:

Γ(ηH → JSM + ΦS) =
g2

4

16π
mηH

(
1−

m2
JSM

m2
ηH

)
=
g2
Sq

16π
mηH

(
1−

m2
JSM

m2
ηH

)
. (4.37)

The decay length of the hybrid meson at various mirror quark mass and coupling

constant gSq are shown in Fig. (4.8). From this, if the combination of the coupling

constant and the mixing angle is smaller than 10−8 ∼ 10−7, the decay length of

the hybrid meson to will achieve macroscopic levels and hence will show displaced

vertex behaviors.
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Figure 4.8: Macroscopic hybrid meson decay lengths at small couplings gSq.
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Figure 4.9: Invariant mass and transverse momentum distributions of the SM meson

pair from hybrid meson decay as predicted by Madgraph.

To estimate the coupling g3 of the ηH - ηM vertex, we can look at a similar decay

of f0 meson of mass 400 ∼ 700 MeV into two pion π0:

Γ(f0 → ππ) =
g2

16π
mf0

(
1− 4m2

π

m2
f0

)1/2

, (4.38)

from which, we could estimate g ≈ O(1) and assume that the coupling g3 should

also be at the same magnitude. By using these chosen parameters, the distribution

of the invariant mass and the transverse momentum can be acquired from Pythia

simulation at different mirror meson masses. The SM meson was selected to be the

neutral pion for the simulations. The fact that the scalar Higgs singlet carries part

of the energy from the incoming gluons can be seen on the SM meson pair invariant

mass distribution, which shows that the distribution is shifted to the left.
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Chapter 5

Conclusions

The Standard Model is a great tool for studying elementary particle Physics. Despite

being the most successful theory, it has many proceblems that make it not a perfect

theory. Some of those include the explantion for the gravitational interaction, the

explanation for dark matter and dark energy, the non-zero mass of neutrinos, the

matter-antimatter asymmetry, etc.

In this thesis, we have addressed two of these problems. we have reviewed the

Luminogenesis model [22], whose dark matter is proposed to be belonging to the

gauge group SU(4)DM . The baryonic bound state of SU(4)DM fermions was as-

sumed to be dark matter in the universe. By looking at the stability conditions for

this dark astronomical compact objects, we have predicted the possible mass range

for DACOs and proposed some experimental techniques for deteccting such objects.

The fact that the DACOs’ mass is about a few times of that the Earth has enabled

us to use the same tichniques being used to look for exoplanets to look for DACOs.

We also proposed a cooling mechanism for DACOs, which is crucial for highly ener-

getic particles in the universe to form a graviational potential well to attract other

particles to form bigger structures.

The problem of non-zero mass of the neutrinos was addressed by reviewing the

Electroweak-scale Right-handed neutrinos model [17]. By introducing the additional

scalar singlets and triplets, one can generate small mass of the neutrino by seesaw

mechanism in electroweak scale. As the the right-handed neutrinos are now non-

sterile and having the mass in the electroweak scale, they are accessible at the high

energy colliders such as the LHC. The model introduced mirror mesons to satisfy
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the anomaly cancellation requirements. We have looked at the possibility of long-

live mesons that are bound states of mirror quark - anti mirror quark and of mirror

quark - SM antiquark. The fact that the coupling of these mirror quarks to the

SM quarks is not constrained and can be very small has been used to reason the

possibility of existence of mirror mesons and hybrid mesons and as well as proposing

the possible displaced vertex behavior of these mesons. By using simulation tools

such as Madgraph and Pythia, we are able to simulate the signatures of these events

at higher energy colliders.

At the scope of this thesis, there are some interesting problems that we were not

able to discuss. For example, the distribution of DACOs in the Universe, the mixing

of mirror quarks and SM quarks, etc. We hope that these and other aspects of these

problem would be addressed in later research.
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Appendix A

Rate of Dark Pion

“Bremsstrahlung”

The interaction between the CHIMP and dark pion can be thought as similar to the

interaction between pion-nucleon vertex where the difference is that our CHIMPs

have spin 0 instead of 1/2 for SM nucleons. The effective Lagrangian for the dark

‘baryon” - dark pion vertex is given by:

L = gXmXXXφ, (A.1)

where X and φ denote CHIMPs and πDM . Following the discussion given in [4], the

scattering matrix for the process that includes πDM “Bremsstrahlung” is given in

term of scattering matrix without one is:

iM(p, p′) = −igXmX

(
M0(p− k, p′) 1

(p− l)2 −m2
X + iε

+ M0(p, p′ + k)
1

(p′ + k)2 +m2
X + iε

)
. (A.2)

For k � |p− p′|, we can replaceM0(p− k, p′) andM0(p, p′+ k) withM0(p, p′):

iM(p, p′) = −igXmXM0(p, p′)

(
1

−2pk
+

1

2p′k

)
(A.3)

⇔ dσ(p→ p′ + k) = dσ(p→ p′)

∫
d3k

(2π)3

1

2Ek

g2
Xm

2
X

4

(
1

p′k
− 1

pk

)2

. (A.4)

Choose a frame in which p = E(1,v), p′ = E(1,v′), k = Ek(1, k̂) =
√

k2 +mπDM (1, k̂)

where the πDM is considered to be relativistic as its mass is about 3 orders smaller

than that of CHIMPs. The probability for a “Bremsstrahlung” to happen is the
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ratio of the cross section of the process with dark pion “Bremstrahhlung” to the

process without it:

d(Prob) =

∫
d3k

(2π)3

1

8Ek

g2
xm

2
X

k2 +mπ2
DM

(
1

p′k
− 1

pk

)2

=

∫
k2dkdΩk

(2π)38Ek

g2
Xm

2
X

k2 +mπ2
DM

(
−2

(p′k̂)(pk̂)
+

1

(p′k)2
+

1

(pk)2

)

=
g2
Xm

2
X

16π2

∫
k2dk

(k2 +m2
πDM

)3/2

∫
dΩk

4π

(
−2

(p′k̂)(pk̂)
+

1

(p′k̂)2
+

1

(pk̂)2

)
.

(A.5)

The non-zero mass of dark pion makes the first integral convergent as opposed the

situation of gamma Bremsstrahlung in QED. For second integral, the last two terms

can be simplified to:∫
dΩk

4π

1

(p′k̂)2
=

1

2

∫ 1

−1

d(cos θ)
1

(p′0 − p′ cos θ)2
=

1

2

1

p′

(
1

p′0 − p′
− 1

p′0 + p′

)
=

1

E2 (1− (v′)2)
≈ 1

m2
B

.∫
dΩk

4π

1

(pk̂)2
=

1

E2 (1− (v)2)
≈ 1

m2
B

.

(A.6)

The first term in the second integral in Eq. (A.5) requires using Feynmann param-

eters:∫
dΩk

4π

−2

(p′k̂)(pk̂)
=

∫ 1

0

dx

∫
dΩk

4π

−2

[xp′k̂ + (1− x)pk̂]2

=

∫ 1

0

dx

∫ π

0

− sin θdθ

[x(p′0 − p′(cosα cos θ − sinα sin θ)) + (1− x)(p0 − pcosθ]2
,

(A.7)

where θ is the angle between p and p′. For small momentum transfer, we can

approximate sin(α) ≈ 0.∫
dΩk

4π

−2

(p′k̂)(pk̂)
= −

∫ 1

0

dx

∫ 1

−1

d(cos θ)
1

[x(p′0 − p′ cos θ) + (1− x)(p0 − p cos θ)]2

=

∫ 1

0

dx
−2

−[(xp′ + (1− x)p]2 + [xp′0 + (1− x)p0]2

=

∫ 1

0

dx
−2

[xp′ + (1− x)p]2
=

∫ 1

0

dx
−2

m2
B − x(1− x)q2

.

(A.8)

Put these to Eq. A.5, we have:

d(Prob) =
g2
Xm

2
X

16π2

∫ |q|
0

k2dk

(k2 +m2
πDM

)3/2

(
2

m2
X

−
∫ 1

0

dx
2

m2
X − x(1− x)q2

)

=
α2
DM

π
ln

(
−q2

mπ2
DM

)1−
∫ 1

0

1

1− x(1− x) q2

m2
X

 .

(A.9)
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