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ABSTRACT

The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observatory

currently projected to launch in the 2030s. Its frequency range will be lower and broader than LIGO’s,

allowing it the capability to observe mergers and events we have still been unable to detect. Its

increased sensitivity also allows for the potential to observe other effects of gravitational waves, such

as gravitational wave memory. The memory effect we are focused on in this project is called the spin

memory effect, which arises from the flux of the angular momentum per solid angle of the gravitational

wave. This paper discusses gravitational wave memory and its derivation, the noise curve model for

LISA, and the computation of the signal-to-noise ratios of detections. Our results for the spin memory

(l = 3,m = 0) mode are not yet ready for publication, however the preliminary results for the pre-

translation l = 2,m = 2 mode have been included.

1. INTRODUCTION TO GRAVITATIONAL WAVES

Gravitational waves are ripples in spacetime that

propagate at the speed of light. While they can

technically be produced by any object in non spherically

or rotationally symmetric motion involving changes in

acceleration, the radiation is extremely small unless it

originates in regions of strong and dynamic gravitational

fields. One such source is a compact binary, for example

binary black holes or neutron stars. Gravitational waves

carry off orbital energy, eventually leading to the merger

of the two objects. The waves propagate out from the

source in all directions, and contain information about

both the source and its environment.

Gravitational waves were first detected in September

of 2015 when a binary black hole merger (GW150914)

was observed by the Laser Interferometer Gravitational-

Wave Observatory (LIGO) sites in Hanford, Washington

and Livingston, Louisiana (1). The event data matched

the predictions of general relativity for the inward spiral,

coalescence, and ringdown of the resultant black hole,

and confirmed the existence of stellar mass black hole

binaries.

The amplitude of gravitational waves is most

commonly described using the dimensionless parameter

h =
2∆d

d
(1)

where d is the displacement, or the characteristic

distance between two points, and ∆d is the change

in that distance between them as a wave passes by.

Therefore, the strain h is a measure of the fractional

change in the proper distance between two points as a

result of a gravitational wave.

This project focuses on the asymptotic gravitational

waveform of the Bondi framework 12, which uses the set

of coordinates (u, r, θA), where u = t− r is the retarded

time, r is an affine parameter3 along outgoing (from the

source) null rays, and θA are arbitrary coordinates on

the 2-sphere4.

Specifically, within the post-Newtonian-expanded,

multipolar post-Minkowski approximation (or simply

the PN approximation). Thus, the gravitational

1 A formalism of General Relativity in which the coordinates are
adjusted to the spacetime’s null geodesics.2

2 A null geodesic is one whose interval equals zero and has no
proper time associated with it. It is the path that massless
particles, such as photons, follow.

3 A parameter on a curve which is preserved under the fundamental
group of transformations of the affine space.

4 The two-dimensional surface of a three-dimensional ball in three-
dimensional space.
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waveform is encoded within a symmetric, trace-free, and

transverse tensor (11)

hTT
ij =

1

r
Σ

m,l≥2
[Ulm(u)T

(e),lm
ij +Vlm(u)T

(b),lm
ij ] +O(1/r2)

(2)

where r is the distance from the source to the detector,

u is the retarded time, T
(e),lm
ij and T

(b),lm
ij are tensor

harmonics, Ulm(u) are the radiative mass moments, and

Vlm(u) and the radiative current moments.

Ulm(u) and Vlm(u) can be related to the complex

waveform

h = h+ − ih× (3)

using the spin-weighted spherical-harmonic expansion

h = Σ
l,m
hlm(u)−2Ylm (4)

where

hlm =
1

r
√

2
(Ulm − iVlm) (5)

2. GRAVITATIONAL WAVE MEMORY

Since it has been confirmed that gravitational

waves exist at all, and since upgrades to LIGO

have significantly improved its sensitivity, some focus

is shifting back to the physical effects of rippling

spacetime. One such effect is gravitational wave

memory.

Gravitational waves distort the shape of spacetime,

which results in a change of relative positions, velocities,

accelerations, and trajectories of freely falling observers.

The idea of gravitational wave memory postulates
that spacetime does not simply return to its original

state after a wave has passed, instead “remembering”

it in that the proper distances between objects is

permanently changed, even after the oscillations have

ceased. For example, assume the arms of LIGO are the

exact same length to start. After a wave passes, the x-

arm may then be longer than the y-arm, or vice versa.

The effect can be visualized with freely falling masses as

shown in Figure (1).

Gravitational wave memory can also be seen in its

effect on the wave strain, as shown in Figure (2).

The standard gravitational wave memory effect,

referred to as displacement memory, arises from the

energy carrying gravitational waves. It is produced

by isolated sources that asymmetrically radiate energy

density in massless, or gravitational, fields, or by

sources that have changes in supermomentum charges

Figure 1: Image source: (9). A representation of

the gravitational wave memory effect using a ring of

freely falling masses, with time moving from left to

right. The first frame shows the two particles relative to

each other before a gravitational wave passes. The next

three frames shows the two particles relative positions

oscillating as a wave passes. The change in displacement

occurs in the transverse plane to the radiation, causing

a stretch alone one axis then a squeeze in the orthogonal

axis. The final frame shows the particles after the

wave has passed entirely, with their relative positions

permanently changed.

Figure 2: Image source: (5). The gravitational wave

strain of an equal mass binary black hole merger event.

The blue line represents the h+ polarization of the strain

with the effects of gravitational wave memory included.

The red dashed line represents the h+ polarization

without the effect.

(11). Secondary waves are produced, leading to a

constant offset of the waveform. This effect has small

contributions from the early stages of the inspiral but

grows more rapidly the more relativistic the binary. A

formula for “practical computations” of the memory was

given by Kip Thorne (14) as

hmem(t) =
2

r

∫ t

−∞
dt′
∫
dΩ′

d2E

dt′dΩ′
(1 + cos θ′)e2iφ

′
(6)
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where t is some time after the wave has passed, dΩ′ is

the solid angle, and

d2E

dt′dtΩ′
(7)

is the gravitational wave flux. This integrates over

the entire history of the wave up to the current

time. Memory effects are larger for edge-on systems,

as opposed to the primary oscillatory wave, which is

strongest from face-on systems. To see this effect, an

event with a signal-to-noise ratio (SNR) of about 100 is

necessary.

For reference, the loudest event detected by LIGO

thus far had an SNR of about 30.

3. SPIN MEMORY EFFECT

Another type of gravitational wave memory effect is

spin memory, which is the form of the effect we are

concerned with for the sake of this project. The spin

memory effect is produced by asymmetric changes in

angular momentum per unit solid angle to null infinity

in massless fields (11). It is also produced by changes

in superspin charges, the magnetic-parity part of the

charges conjugate to the super-rotation vector fields.

This results in an offset in the time integral in the

gravitational wave strain, producing an extra pulse, as

shown in Figure (3).

The spin memory effect gradually accumulates over

the inspiral of the binary merger to have a significant

effect. The leading order effect for non-spinning binaries

is found in the l = 3, m = 0 spin-weighted spherical

harmonic mode of the wave strain, aptly named the

“spin memory mode”.

3.1. Relation of the Spin Memory Mode to Radiative

Moments

This section is an overview of how the spin memory

mode is derived in terms of the radiative mass

quadrupole moments. First, the shear tensor5, also

symmetric and trace-free, can be written as the sum of

two terms, the first being electric parity and the second

being magnetic parity,

CAB =
1

2
(2DADB − hABD2)Φ + εC(ADB)D

CΨ (8)

where hAB is the metric on a round 2-sphere, DA is

the covariant derivative compatible with hAB , and ε is

5 Part of the stress-energy tensor: the components T ik where i 6= k
represent shear stress.

Figure 3: Image source: (11). The gravitational wave

strain shown in (3,0) mode, or the spin memory mode.

The red line shows the spin memory mode in a numerical

relativity simulation. The black dashed line shows the

spin memory mode computed from the l = 2, m = ±2

modes using the associated analytical expression. The

waveform is scaled to have parameters like that of the

GW150914 event.

the antisymmetric (Levi-Civita) tensor on a 2-sphere. Φ

and Ψ are smooth functions of coordinates (u, θA), with

Φ being the displacement memory observable. The spin

memory observable is defined as

∆Σ ≡
∫
duΨ (9)

∆Σ is determined by changes in the angular momentum

flux per unit solid angle in matter and gravitational

waves, as well as changes in the curl of ∆N̂A, a quantity

which is a generalization of the spin of the system, or

the superspin charges (11).

For non-spinning, quasicircular compact binaries

in the PN approximation, with the orbital angular

momentum along the z axis, the only relevant multipoles

at leading order are U2,2 and U̇2,−2 and their complex

conjugates. The only relevant moment at leading order

of the spin memory will be the l = 3, m = 0 mode, as

all others will be higher order PN quantities. Therefore,

∆Σ becomes

∆Σ =
1

80
√

7π
Y3,0

∫ uf

−∞
du=(Ū2,2U̇2,2) +O(c−2) (10)
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where Ulm(u), the radiative mass quadrupole moments,

can be solved for using Eq. (5) to get

U2,2 = r
√

2h2,2 (11)

If we plug in the explicit expression for the spin-weighted

spherical harmonic and evaluate the integral in Eq. (10),

we find

hsmm
× =

3

64πr
=(Ū2,2U̇2,2) sin(θ)2 cos(θ) (12)

denoted the “spin memory mode” due to its close

connection to the spin memory.

3.2. Compact Binaries in the PN Approximation

While equations (11) and (12) are valid for any U2,2,

it also useful to look at the derivation for a more specific

form of the spin memory mode: that of compact binaries

in quasicircular orbits, for which

U2,2 = −8

√
2π

5
ηMxeix

−5/2/16η +O(c−2) (13)

and

U̇2,2 = 16i

√
2π

5
ηx5/2eix

5/2/16η +O(c−2) (14)

where M = m1 + m2 is the total mass of the system

with m1 and m2 being the individual masses of the two

binary objects, η = m1m2/M
2 is the symmetric mass

ratio, and x is the PN parameter, given by x = M/r for

circular orbits.

We return to the integral in Eq. (10) and evaluate

it by transforming the coordinate to x. We make the

assumption that the binary formed at a finite separation,

or that as u → −∞, x approaches x−∞, a small but

nonzero value. ∆Σ3,0 is then

∆Σ =
1

10

√
π

7
ηM2(x

−1/2
f − x−1/2−∞ )Y3,0 +O(c−2) (15)

When we take the u integral of the magnetic-parity

part of the shear tensor CAB from Eq. (8) we find

εC(ADB)D
C∆Σ =

√
3π

35
ηM2(x

−1/2
f − x−1/2−∞ )T

(b),3,0
AB

(16)

Looking at this, we can see the effect contributes to the

u integral of the strain in the cross component

∫ uf

−∞
duhsmm

× =
1

r

√
3π

70
ηM2(x

−1/2
f −x−1/2−∞ )−2Y3,0+O(c−2)

(17)

Figure 4: Image source: ESA (4). The schematic of

LISA’s orbit.

If we plug in the explicit expression for the spin-weighted

spherical harmonic and differentiate the equation with

respect to u, we find

hsmm
× = −12Mη2

5r
x7/2sin2θcosθ +O(c−2) (18)

4. LISA

As implied earlier, LIGO, for which the loudest

event so far had an SNR of about 25 - 30, is simply

not sensitive enough to realistically expect to observe

gravitational wave memory effects for a single event.

Hence, the need for future detectors. One of the

upcoming gravitational wave observatories is the Laser
Interferometer Space Antenna (LISA). This will be

a space-based observatory: three spacecraft centered

around a freely falling test mass, forming an equilateral

triangle with arms extending about a million miles. It

will be trailing tens of millions of miles behind Earth,

more than 100 times the Earth-Moon distance. The

schematic of LISA’s orbit is shown in Figure (4). This

observatory will have a lower and broader frequency

range, about 10−4 - 1 Hz, than LIGO, which is about

10 - 1000 Hz, which means LISA has the potential

to detect very loud events from supermassive binary

mergers 105−107M�. A noise sensitivity curve is shown

in Figure (5), and a contour plot of constant SNR is

shown in Figure (6).
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Figure 5: Image source: (13). The amplitude spectral

density of the noise, and the corresponding sensitivity

curve, found by dividing Pn(f), the power spectral

density of the detector noise, by R(f), the sky and

polarization averaged signal response function of the

instrument. The analytic fit to Sn(f), the LISA

sensitivity curve, is also shown.

4.1. Noise Curve Model

The sensitivity curve for LISA is well approximated

by (13)

Sn(f) =
10

3L2

(
POMS(f) +

4Pacc(f)

(2πf)4

)(
1 +

6

10

(
f

f∗

)2
)

+ Sc(f) (19)

where L = 2.5 Gm is the arm length, and f∗ =

19.09 mHz = c/L/2π, or 1/2 the light travel time of the

arms of the detector, divided by 2π. The expressions for

POMS(f), Pacc(f), and Sc(f) are given as follows.

POMS is the single-link optical metrology noise, which

is the technical noise associated with the laser itself,

arising between two of the observatory’s detectors. It is

given as

POMS = (1.5×10−11m)2

(
1 +

(
2mHz

f

)4
)

Hz−1 (20)

Pacc, the single test mass acceleration noise, is

produced by the freely falling cube between the three

spacecraft, which will use microthrusters to remain

centered on it. This noise is defined as

Figure 6: Image source: (3). Contours of constant

SNR for the baseline LISA observatory in the plane

of total source-frame mass M , redshift z (assuming

Planck cosmology), and luminosity distance Dl for black

hole binaries with a constant mass ratio of q = 0.2.

The starred points mark the positions of the threshold

binaries used to define the mission requirements.

Pacc = (3×10−15ms−2)2

(
1 +

(
0.4mHz

f

)2
)(

1 +

(
f

8mHz

)4
)

Hz−1 (21)

So the total noise in a Michelson-style LISA data channel

is

Pn(f) =
POMS

L2
+ 2(1 + cos2(f/f∗))

Pacc
(2πf)4L2

(22)

Sc(f) is called the Galactic confusion noise. On top
of noise from the instrumentation, unresolved binaries in

the galaxy will produce non-stationary noise. It’s value

decreases with mission time, as more foreground sources

are removed (13). The estimate for the new LISA design

is given as

Sc(f) = Af−7/3e−f
α+βf sin(κf)[1+tanh(γ(fk−f))]Hz−1

(23)

where A is the amplitude, fixed to 9×10−45, and α, β, κ,

γ, and fk
6 are parameters of the analytic fit that change

with observation time. Their values at four different

observation times are shown in Table 1.

6 The knee frequency, an estimate of the maximum frequency
component of the signal.
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6 months 1 year 2 years 4 years

α 0.133 0.171 0.165 0.138

β 243 292 299 -221

κ 482 1020 611 521

γ 912 1680 1340 1680

fk 0.00258 0.00215 0.00173 0.00113

Table 1: Parameters of the analytic fit of the Galactic

confusion noise. As observation time increases, the

confusion noise drops off more steeply as a result of a

decrease in fk and an increase in γ.

5. SIGNAL-TO-NOISE RATIO

The signal-to-noise ratio (SNR) is a measure of the

strength of a meaningful signal relative to that of

the interference, or noise. The amplitude SNR for a

deterministic signal h̃(f) is defined by

ρ2 = 4

∫ ∞
0

|h̃(f)|2

Pn(f)
df (24)

where h̃(f) is the Fourier transform of the detector

response function

h(t) = F+h+ + F×h× (25)

where F+ and F× are the antenna response patterns of

the detectors to the plus and cross polarizations of the

waveform (11). Averaging over sky location, inclination,

and polarization yields (13)

ρ̄2 =
16

5

∫
fA2(f)

Pn(f)
d(lnf) =

16

5

∫
(2fT )Sh(f)

Sn(f)
d(lnf)

(26)

where T is observation time, Sn(f) is the sensitivity

curve, and Sh(f) is the angle averaged, one-sided power

spectral density of the signal

Sh(f) =
A2(f)

2T
(27)

It is this equation, in the form

ρ2 =
16

5

∫ ∞
0

|h̃(f)|
Sn(f)

df, (28)

that we use to calculate our SNRs for this project.

6. METHOD FOR COMPUTING THE SNRS OF

MERGER MODELS

The model used in this project was taken from the

“Binary black hole surrogate waveform catalog” (7),

which holds the publicly available numerical relativity

(NR) surrogate data for waveforms produced by the

Spectral Einstein Code (SpEC)7. This surrogate model

was for binary black hole systems with generic mass

ratios and non-precessing spins. The NR waveform is

hybridized with PN waveforms in order to include the

early inspiral, then the surrogate is constructed.

Figure 7: The LISA sensitivity vs. frequency curve

computed with our code.

The GWSurrogate Python package (6) is then used

to evaluate the surrogate model, and returns the (2,2)

mode of the waveform. Since the surrogate model is

not perfect, there is a certain amount of non-physical

noise, especially towards the beginning of the waveform,

associated with it. In order to reduce this noise, the

wave strain is windowed using either a Tukey8 or Planck
window function. To refrain from cutting out important

information from the end of the waveform (the merger

and ringdown), the strain is padded at the end.

We then split the strain into its real and imaginary

parts, and individually Fourier transform each using

before adding them back together in quadrature to

return to the full wave strain. We derive the LISA

sensitivity curve Sn(f) using Eq. (19) with an

observation time T of four years. We then plug this

curve and our previously derived strain into Eq. (28),

in which the integral is evaluated using the Numpy trapz

function (12).

7 An infrastructure for solving partial differential equations using
multi-domain spectral methods, designed for simulating compact
objects with full general relativistic effects.

8 A tapered cosine window.
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Figure 8: The SNR integrand vs. frequency curve.

Figure 9: The wave strain vs. frequency curve.

We follow the same process when calculating the

SNR for the (3,0) mode, the only difference being

that we translate from the (2,2) mode evaluated by

GWSurrogate using equations (11) and (12) before

windowing the waveform.

The parameters of the model we are using for testing

is a non-spinning binary with a mass ratio of q =

1, a total mass M = 2 × 106Modot, an observation

time T = 4 years, and is at a distance D = 5 Gpc.

The following preliminary results were evaluated using

a tukey window, implemented using the Scipy.signal

package (16), with an alpha value α = 0.15. The SNR

of the (2,2) mode of this waveform was calculated using

Eq. (28) to be SNR ≈ 10450. The sensitivity curve we

computed using Eq. (19) is shown in Figure 7. The

plots of the argument of the integral in Eq. (28) and

that of the wave strain are shown in Figures 8 and 9.

REFERENCES

[1] Abbott, B. P., et al. (LIGO Scientific Collaboration and

Virgo Collaboration) Observation of Gravitational Waves

from a Binary Black Hole Merger. Physical Review

Letters 116(6)

[2] Camp, J. B. and Cornish, N. J. Gravitational Wave

Astronomy. Annual Review of Nuclear and Particle

Science 54 (2004)

[3] Danzmann, K., et al. LISA: A proposal in response to the

ESA call for L3 mission concepts.

[4] ESA. “Schematic of LISA’s orbit”,

https://sci.esa.int/web/lisa/-/31704-schematic-of-lisa-

orbit (Published: 2004, Last Updated:

2019)

[5] Favata, M. Gravitational-wave memory revisited: memory

from the merger and recoil of binary black holes. Journal

of Physics: Conference Series 154 (2009)

[6] Field, S., Galley, C., Hesthaven, J., Kaye, K., and Tiglio,

M. Fast prediction and evaluation of gravitational

waveforms using surrogate models. Physical Review X 4,

031006 (2014)

[7] Field, S. E., Galley, C. R., et al. Binary black-hole

surrogate waveform catalog [Data set]. Zenodo (2019):

http://doi.org/10.5281/zenodo.3629749

[8] Flanagan, E. E., Grant, A. M., Harte, A. I., Nichols, D. A.

Persistent gravitational wave observables: General

framework. Physical Review D 99(8)



8

[9] Johnson, A., Kapadia, S., Osborne, A., Hixon, A., and

Kennefick, D. Prospects of Detecting the Nonlinear

Gravitational Wave Memory. Physical Review D 99(4)
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