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Abstract 

Osteoporosis is a highly prevalent disease, characterized by reduced bone strength 

and an increased susceptibility to bone fractures, with over 10 million affected individuals in 

the U.S. alone. As populations age more successfully, the prevalence of osteoporosis is 

expected to rise; therefore, understanding the genetic basis of bone strength and related 

traits is of the utmost importance to the development of therapeutic interventions aimed at 

reducing the societal burden of osteoporosis. To this end, over the last decade, geneticists 

have performed genome-wide association studies (GWASs) of bone mineral density (BMD) 

in order to gain insight into the genetics of osteoporosis. These studies have been very 

successful, identifying over 1,100 independent associations to date. However, efforts to 

understand the genetics of bone and to discover actionable therapeutic targets have been 

limited due to two main shortcomings of BMD GWASs. First, GWASs in the bone field 

have almost exclusively focused on BMD as a trait. While BMD is a clinically relevant 

predictor of osteoporosis, it only explains part of the variance in bone strength. Second, 

progress has been limited due to the inherent difficulties in identifying the causal genes that 

underlie GWAS associations. 

Here, we address these limitations by utilizing systems genetics approaches. Using a 

novel mouse population, the Diversity Outbred, we perform a GWAS of 55 bone traits and 

identify putatively causal genes underlying some of the GWAS associations. Furthermore, we 

utilize systems genetics approaches in order to inform existing BMD GWASs. The work 

presented in this dissertation provides a resource that will increase our understanding of the 

genetics of bone, and presents methodological techniques that are applicable across myriad 

complex traits. 
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1.1 The skeleton as a dynamic system 

The human skeleton is a dynamic, adaptive, and complex system impacting a wide 

array of physiological processes. It provides support and protection, enables locomotion, 

maintains hematopoiesis, serves as a reservoir for calcium and phosphorus, and has 

important endocrine functions 1–3. Diseases of bone, however, inhibit the ability of the 

skeleton to carry out these functions. The most common disease of bone is osteoporosis, a 

condition of low bone mineral density (BMD) and an increased risk of fracture 4. 

Osteoporosis affects over 12 million individuals in the U.S. and over 200 million worldwide5. 

Osteoporotic fractures are a serious clinical outcome associated with increased morbidity 

and mortality, particularly in the elderly. In fact, of the ~300,000 people in the U.S. over the 

age of 50 that suffer a hip fracture annually, 1 in 5 will die in the subsequent 12 months, and 

half of the survivors will not return to their prior independent living status 6. Alarmingly, the 

incidence of fractures is expected to rise by 50% over the next decade, as the number of 

individuals over the age of 50 increases 7. 

One of the hallmarks of quantitative traits related to osteoporosis (BMD, bone size, 

etc.) is their high heritability (h2=0.5-0.8) 8. As a result, the development of a comprehensive 

understanding of bone biology necessitates a thorough understanding of the genetic factors 

underlying variation in bone traits. This not only includes defining the individual variants and 

genes contributing to osteoporosis, but also how they interact to impact molecular networks 

and systems-level function. Here, we discuss how systems genetics approaches are being 

used to accomplish these goals (Figure 1.1). 
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Figure 1.1 Overview of systems genetics. Genetic and environmental factors, as well as their 
interactions, influence complex bone traits, such as bone strength. The influence of these factors is 
mediated through impacts on molecular intermediates (transcriptomes, proteomes, metabolomes, etc.) and 
can be assayed via appropriate “omics” techniques. Biological information is propagated through complex 
molecular networks to affect bones traits and ultimately the risk of fracture. 
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1.2 Current state of osteoporosis genetics 

The genetic analysis of osteoporosis began in the early 1990s with candidate gene 

studies describing associations between polymorphisms in bone-relevant genes (e.g., vitamin 

D receptor and type I collagen) and BMD 9. This was followed by a plethora of additional 

candidate gene investigations and linkage scans in families 10. In retrospect, little information 

was gained from either approach 11,12. In 2007, the tide began to turn with the first of many 

genome-wide association studies (GWASs) of BMD 13. In a BMD GWAS, the genotypes of 

millions of single nucleotide polymorphisms (SNPs) across the genome are tested for an 

association with BMD in thousands, now often hundreds of thousands, of individuals 14. To 

date, over 20 primary GWAS and GWAS meta-analyses have identified hundreds of 

associations for BMD 15–18. The largest GWAS to date analyzed estimated BMD (eBMD) at 

the heel in 426,824 individuals and identified 1,103 independent genome-wide significant 

associations in 518 loci (Table 1.1) 19. BMD has been the primary target of GWASs, mainly 

because of its strong association with fracture, high heritability, and relative ease of 

assessment in very large cohorts 20. However, while BMD is the main focus of bone-related 

GWASs, it is important to note that BMD is not an all-encompassing bone phenotype. For 

example, studies have shown that only ~60% of the variance in bone strength, which is the 

most important determinant of fracture, is explained by BMD 21. Concordant with bone 

strength being an emergent property of many bone traits, the remainder of the variance in 

bone strength can be explained by other bone traits. To date, bone traits such as bone size, 

bone geometry, and serum bone remodeling markers have been sparsely interrogated by 

GWAS 22–25.  
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GWASs have reinforced the importance of known genes and pathways (RANK-

RANKL, WNT signaling, etc.) in human bone biology. More importantly, GWASs have 

provided a treasure trove of loci containing only novel genes with the potential to 

revolutionize our understanding of the genetics, and more importantly, the biology of bone. 

A limitation of current GWASs is that they have yet to fully uncover the genetic 

architecture of BMD 26. In the heel eBMD study referenced above, the 1,103 independent 

associations explained only 20% of the phenotypic variance in eBMD 19. These data suggest 

that BMD is highly polygenic, or even omnigenic, and that much of the genetic basis of 

BMD remains to be discovered 27,28. GWASs are ideally suited to identify associations with 

common variants (minor allele frequency (MAF) > 1%). Therefore, it is possible that rare 

variants (MAF < 1%) may explain part of the “missing heritability” 29. In support of this 

hypothesis, recent whole genome-sequencing projects have identified rare variants with large 

effects on BMD 17,30–32. It will likely require much larger GWASs and rare variant studies to 

fully dissect the genetic architecture of BMD and other bone traits. 

By any standard, GWASs have been wildly successful at identifying new loci; 

however, to date this information has done little to increase our understanding of bone 

biology or disease. Of the hundreds of loci impacting BMD and other bone traits, the genes 

responsible for nearly all of the associations are unknown. There are many reasons for this 

knowledge gap, including the fact that most associations are due to non-coding variation, the 

lack of bone-specific “-omic” resources, and the inherent difficulties in experimentally 

establishing causality between variants, genes, and traits. 
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Table 1.1 Examples of large-scale GWAS and GWAS meta-analyses for BMD illustrate the increase in 

identified loci as a function of sample size. Note that the most recent discovery of 518 loci encompassed nearly 

all of the previously discovered loci identified in prior studies. 

Study Phenotype Sample size Association count 

Morris et al. 
(2019)19 

Estimated heel 
BMD 426,824 

1,103 independent 
associations (518 loci, 

301 novel) 

Kemp et al. 
(2017)17 

Estimated heel 
BMD 142,487 

307 independent 
associations (203 loci, 

153 novel) 

Estrada et al. 
(2012) (meta-

analysis)16 

Lumbar spine and 
femoral neck BMD 

83,894 (32,961 
discovery, 

50,933 
replication) 

64 independent 
associations (56 loci, 

32 novel) 

Rivadeneira et 
al. (2009)33 

Lumbar spine and 
femoral neck BMD 19,195 

20 independent 
associations (20 loci, 

13 novel) 

1.3 Using systems genetics to inform bone GWAS 

One approach that has the potential to increase our understanding of bone genetics 

is the emerging field of systems genetics34,35. Systems genetics integrates the principles of 

systems biology with genetics to determine how genetic variation affects molecular 

phenotypes and cellular networks 34. In the context of GWAS, systems genetics approaches 

have proven extremely useful for connecting associated variants with molecular functions 

(e.g., transcription). The “layering” of different “-omics” datasets (transcriptomics, 

metabolomics, proteomics, etc.) onto a set of GWAS loci is the most direct way to begin to 

identify the molecular consequences of disease-associated variants (Figure 1.2). Most 
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importantly, it also serves to connect disease-associated variants to the genes they regulate. 

In this section, systems genetics approaches are discussed using three broad categories; 

namely epigenetic, transcriptomic and networks-based approaches. 

1.3.1 Epigenetics-based approaches 

An example of a systems genetics approach that has proven useful for informing 

GWAS is the integration of epigenetics data 36. As mentioned above, the vast majority of 

BMD GWAS loci implicate only non-coding variation that presumably impacts gene 

regulation. Thus, it is likely that most causal GWAS variants reside in regulatory elements, 

such as promoters and enhancers, which can be identified as regions of open chromatin. In 

support of this hypothesis, studies have demonstrated an enrichment for GWAS variants 

overlapping enhancers in disease-relevant tissues 37–40.   

Epigenetic data have recently been used to inform BMD GWAS 41. Using publicly 

available data, an eQTL in blood cells was identified for Long Intergenic Non-protein 

Coding RNA 339 (LINC00339) that colocalized with a BMD GWAS association on Chr. 

1p36.12. It was then found, using chromosome conformation capture (HI-C) data, that one 

of the eQTL SNPs (rs6426749) was located in a genomic region interacting with the 

promoter of LINC00339. Using epigenetics data from the ENCODE project, this SNP was 

found to overlap and influence the activity of an enhancer element in osteoblasts by altering 

a binding site for Transcription Factor AP-2 Alpha (TFAP2A) 42. 
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Figure 1.2 Systems genetics approaches for prioritizing GWAS data. By integrating 
biological data with data from GWAS, SNPs affecting traits can be prioritized for functional follow-up. 
For example, transcriptomic, biophysical and epigenetic data pertaining to lists of GWAS SNPs can be 
leveraged in order to prioritize the most likely causal SNPs (red bar, bottom row). TFBS = 
transcription factor binding sites, H3K27ac = histone H3 lysine 27 acetylation. 

 

 

Furthermore, alteration of LINC00339 expression influenced the transcript levels of 

a nearby gene, Cell Division Control Protein 42 Homolog (CDC42), which plays a key role 

in bone modeling and remodeling 43. Using a similar approach, another recent study 

determined that the BMD GWAS SNP rs9533090 affects the expression of Receptor 

Activator of Nuclear Factor kappa-Β Ligand (RANKL), which plays a central role in 
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osteoclastogenesis, by disrupting a nuclear factor 1 C-type (NFIC) binding site and enhancer 

activity 44,45. These studies demonstrate the power of systems genetics approaches that 

combine multiple data types to unravel the molecular consequences of BMD-associated 

variants. 

1.3.2 Transcriptomics-based approaches 

1.3.2.1 eQTL colocalization 

One of the most widely used systems genetics approaches for informing GWAS is 

the identification of expression quantitative trait loci (eQTL) 46. Just like a clinical trait, 

GWAS can be used to identify associations for the expression of a gene 47. These analyses 

identify sets of genetics variants, or eQTL, that influence transcript levels of any gene 

expressed in a given cell-type or tissue. There are two types of eQTL, local (cis) and distant 

(trans) 48. Local eQTL influence the transcript levels of genes in close proximity; whereas 

distant eQTL influence gene expression over a long genomic distance. The identification of 

eQTL is a logical follow-up to a GWAS, given that the vast majority of GWAS loci are due 

to non-coding variants that presumably play a role in gene regulation.  

Analyses utilizing eQTL have been greatly supported by recent efforts, such as the 

Genotype-Tissue Expression (GTEx) project, to provide reference datasets for gene 

expression across many human tissues and cell-types 49,50. It is important to note that a major 

consideration for eQTL studies (and for that matter the generation of any other “-omics” 

dataset) is the cell-type or tissue used for the generation of gene expression profiles. 

Recently, the GTEx project demonstrated that many eQTL are tissue-specific, thus ideally 
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the transcriptomics data would be from a disease-relevant source 51. In the context of bone 

GWAS, this would be either bone tissue or bone cells, i.e., osteoblasts and osteoclasts 51,52. 

However, the GTEx project does not include any bone-relevant data sources, and to date 

only three relatively small studies have generated bone relevant eQTL data. One such study 

generated microarray profiles on trans-iliacal bone biopsies from 84 postmenopausal 

women53. These data were used to identify loci associated with lumbar spine BMD 22. 

Microarray profiles of undifferentiated osteoblasts from 95 individuals have also been used 

to identify eQTL and inform several bone GWASs 16,17,33,54. More recently, eQTL were 

identified in cultured primary osteoclasts using RNA-seq profiles in 158 individuals 55.  

Recently, colocalization approaches (e.g., COLOC 56, ENLOC 57, eCAVIAR 58) have 

been utilized in order to identify putatively causal genes underlying GWAS loci. A typical 

colocalization analysis consists of identifying local eQTL for genes located within a GWAS 

locus and then determining if the GWAS and the eQTL signals are due to the same sets of 

variants (referred to as colocalizing eQTL) 56,58. A high probability of eQTL colocalization 

would then suggest that a genetic variant, or variants, are affecting the interrogated GWAS 

trait through the regulation of the expression of the eQTL gene. This approach has been 

successfully utilized across myriad complex traits including BMD. For example, the 

aforementioned osteoclast eQTL study used colocalization analysis to identify eight BMD 

loci with colocalizing eQTL 55. 

While many eQTL are tissue-specific, recent studies have also shown a high degree 

of shared eQTL across different tissues and cell-types, allowing for the informative 

utilization of eQTL data from non-trait relevant sources 50,51. For example, a recent study 

colocalized eQTL from GTEx expression data in thyroid tissue with a BMD GWAS, in 
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order to link the expression of Microtubule Affinity Regulating Kinase 3 (MARK3) to BMD-

associated variants on Chr. 14q32.32 59,60. Evidently, eQTL colocalization approaches can be 

useful for the elucidation of informative biology, even when trait-relevant transcriptomic 

data are unavailable. 

While colocalization analyses can certainly aid in the prioritization of genes 

underlying GWAS loci, it is important to note that identifying causal genes remains difficult. 

One major reason for this difficulty arises due linkage disequilibrium (LD). For example, it 

has been demonstrated that mismatching LD structures between GWASs and eQTL 

reference datasets (as is the norm) can lead to reduced power 61. Furthermore, 

colocalizations in a locus can arise from several underlying relationships between variants, 

genes and traits: true causality (a variant affecting the GWAS trait by affecting the expression 

of a gene), linkage (variants independently affecting a GWAS trait and the expression of a 

gene) and pleiotropy (a variant independently affecting the GWAS trait and the expression 

of a gene), thereby increasing the uncertainty of the causal links between gene expression 

and phenotypes 62. Some methods have been developed to untangle these causal 

relationships, such as structural equation modeling and Summary-based Mendelian 

Randomization approaches 63–65. However, these issues are further compounded by the use 

of summary statistics, which is the most frequently available modality of GWAS and eQTL 

data sources, rather than individual-level genotyping data.  Another limitation of 

colocalization approaches is that the reliance of these approaches on GWAS associations 

means that variants with effect sizes that are too small to be identified by GWAS are not 

included in the analyses, leading to further loss of power.  
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While different colocalization approaches have attempted to tackle these issues by 

incorporating methods such as fine-mapping approaches (e.g., ENLOC) or utilizing 

statistical approaches to test different causal configurations (e.g., COLOC), there are no 

perfect methods that completely obviate these issues 56,57. As is the prevailing trend in the 

genomics and systems genetics fields, these issues may not be resolved until larger, more 

ancestrally diverse GWAS and eQTL mapping studies, which also provide complete 

genotyping and LD structural data, are performed and made available.      

1.3.2.2 Transcriptome-wide association studies 

Another family of systems genetics approaches that utilize transcriptomic data to 

inform biology are transcriptome-wide association studies (TWAS) (e.g., FUSION 66, 

PrediXcan 67). As mentioned above, GWASs associate genomic variants with traits, and 

downstream analyses generally attempt to identify genes that are implicated by GWAS 

associations. Unlike GWAS, TWAS approaches provide insight into biology by directly 

associating gene expression with traits. Besides being more direct in associating genes with 

traits, TWAS approaches also benefit from reduced multiple testing burdens when compared 

to GWAS, as there are substantially fewer genes than there are genetic variants 67. One issue 

with such an approach is the infeasibility of profiling gene expression across large cohorts 

(hundreds of thousands of individuals). To overcome this issue, TWAS approaches have 

relied on the use of gene expression reference datasets in order to impute (predict) gene 

expression in GWAS cohorts based on genotype. In other words, TWAS approaches can 

leverage both GWAS and eQTL reference data (e.g., GTEx) in order to impute gene 

expression in the GWAS cohort, thereby side-stepping the need to assay gene expression in 
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prohibitively large cohorts. These imputed transcriptomes are then associated with biological 

traits. Furthermore, recent advances in the field have produced TWAS methods that apply 

this imputation approach by using GWAS summary statistics, thereby addressing the usual 

lack of individual-level genotyping data 66,68,69.  

Another important advance in the TWAS field is the recent generation of methods 

(e.g., MultiXcan 69) that can integrate imputed transcriptomes from multiple biological 

sources, thereby incorporating the largest components of gene expression variation across 

various tissues and cell-types. These approaches allow for the association of the joint effects 

of gene expression, from various biological sources, with biological traits. This is beneficial 

for multiple reasons; first, it is often more efficient to test the joint effects of gene 

expression variation, due to a decreased multiple testing burden 69. Second, this approach of 

combining multiple imputed transcriptomes performs better when there are multiple causal 

tissues that underlie a trait, and can be useful when expression data from causal tissues are 

unavailable 69,70. TWAS approaches have recently been successfully utilized in the bone field 

in the absence of eQTL data from bone-relevant sources. For example, one study used 

TWAS to associate gene expression data from skeletal muscle and peripheral blood with 

femoral neck and lumbar spine BMD, thereby identifying 18 candidate BMD genes 71. While 

performing TWAS on individual non-bone tissues can be informative, approaches that 

integrate imputed transcriptomes from multiple sources will likely increase the power to 

prioritize bone-relevant genes 70.  

One important caveat regarding TWAS approaches is that TWAS rely on genetically-

predicted gene expression, as opposed to total expression. In addition to the statistical 

uncertainty inherent in predicting gene expression, total gene expression is also affected by 
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non-genetic factors, such as environmental and technical factors. Therefore, TWAS 

approaches that rely on genetically-predicted gene expression will not reflect these factors 70. 

Furthermore, TWAS approaches rely on data from common cis-eQTLs, which may only 

account for ~10% of the total genetic variance in gene expression 72. 

TWAS and eQTL colocalization approaches are distinct, yet complementary, 

approaches. TWAS approaches test the correlation between genetically-imputed gene 

expression, while colocalization approaches calculate the probability that the same variant(s) 

influences both gene expression and disease risk (or a disease-associated quantitative trait). 

To this end, the use of both approaches simultaneously can improve the identification and 

prioritization of phenotype-relevant genes 73. Such an approach has been recently performed 

in the PhenomeXcan study, where GWAS summary statistics on 4,091 traits were 

interrogated by both colocalization and TWAS 73. While this study included eBMD and 

identified 76 protein-coding genes that met their significance thresholds, the GWAS 

summary statistics were not drawn from the largest available BMD GWAS. Furthermore, 

due to the breadth of their analysis, their results incurred a higher multiple-testing burden 

than if they had focused on a single GWAS. Another recent study performed a similar 

TWAS/colocalization approach to inform BMD GWAS; however, that study only used 

GTEx eQTL data from whole blood and skeletal muscle 74. 

In summary of this section, there are limitations to using eQTL data to inform BMD 

GWAS. As described above, the most powerful sets of eQTL data (e.g., GTEx) are from 

non-bone tissue. While such data have been informative for identifying colocalizing eQTL, it 

is likely that well-powered eQTL studies in bone tissue and bone cells will provide more 

insight. It has also become evident that tissue and cell-type specificity is a critical factor when 



15

trying to dissect how GWAS loci influence BMD. As a result, not only do we need efforts 

focused on generating data in bone tissue and bone cells, but also specific bone cell 

populations at different stages of their lifecycle exposed to varying stimuli. It should also be 

noted that differences in the genetic backgrounds (with differences in LD structure) of 

GWASs and eQTL studies impact the accuracy and interpretability of results. This can be 

solved by efforts to generate both types of data from racially diverse populations.  

Additionally, the use of eQTL data to inform GWAS is inherently focused on 

quantified gene expression, meaning that GWAS associations that may affect traits through 

non-eQTL related processes, such as exon splicing and protein abundance, may be missed. 

1.3.3 Network-based approaches 

GWASs for BMD have identified many genetic loci implicating disparate biological 

processes and mechanisms, suggesting a complex web of networks operating within and 

between various bone cell-types. Identifying these interactions is important as they can 

inform our understanding of “emergent properties” of bone that are not evident from the 

function of individual genes in isolation. This is analogous to identifying a car battery and 

alternator as elements involved in starting an engine. However, it would be impossible to 

understand their true function without knowing that they worked together in a car’s 

electrical system. It is also likely that genetic variation is a major perturbation that shapes 

underlying biological networks. As a result, systems, rather than reductionist, approaches to 

bone genetics are critical to understand the role of genetics in systems-level function. 

Understanding bone molecular networks and how they are influenced by genetic variation is 
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also important in the context of discovering and evaluating potential anti-osteoporotic 

therapeutic targets 75–77. 

1.3.3.1 Biological networks 

Networks are prevalent in all aspects of our lives. The internet, social media, and 

economic markets are all examples of networks that impact us daily. In biology, many types 

of networks exist including protein-protein interaction, transcriptions factor binding, 

metabolic, and gene regulatory networks. Mathematically, a network (or graph) is a set of 

nodes (elements) connected by edges, which represent relationships between nodes 78. Edges 

can be directed or undirected and either weighted or unweighted. An undirected gene co-

expression network represents the relationships in co-expression between genes without an 

indication of which node is upstream of the other, while a directed network models the 

information flow between nodes (e.g., increased expression of gene A causes increased 

expression of gene B). Weights can represent the strength of evidence for the edge or the 

strength of the relationship between nodes. Methods used to generate and analyze networks 

are indispensable to systems genetics, as they allow for a shift of focus from reductionist 

methods, like GWAS, to more holistic, systems-level approaches. Mostly due to the scarcity 

of bone-relevant data, and the relative paucity of investigators applying such approaches, the 

use of network biology in the bone field has lagged behind others. However, there are 

emerging use cases. For example, by combining BMD GWAS data with functional genomic 

analysis, a PU.1-dependent transcription factor network essential for osteoclast 

differentiation has been identified 79. 
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1.3.3.2 Co-expression networks 

The most popular types of biological networks used in systems genetics applications 

are based on co-expression. There are many methods for generating co-expression networks 

and one of the most widely used is weighted gene co-expression network analysis 

(WGCNA)80. WGCNA organizes transcriptomic data into modules, or clusters, of co-

expressed genes. It does this by analyzing co-expression (i.e., correlation in expression) 

across a set of perturbations, such as genetic background in mice or environmental 

exposures in a human population. Modules have been found to have a number of important 

features, such as containing functionally related genes that may be subject to co-regulation 

by similar factors 80,81. As a result, one can think of co-expression network analysis as a way 

to organize biology in a relatively unbiased way, similar to the way that file folders are used 

to organize documents by topic. 

There are two aspects of co-expression networks that make them particularly useful 

for systems genetics studies. First, unlike many other popular biological networks, co-

expression networks retain tissue or cell-type specific information. While recent advances in 

proteomic technology have facilitated the study of protein-protein interactions in vivo, the 

vast majority of extant data is generated through in vitro methods, which may not accurately 

reflect physiological interactions 82. Second, unlike other biological networks, co-expression 

modules can be related to phenotypes from the individuals used to generate the 

transcriptomic profiles. For example, a WGCNA network was recently generated from 

blood cells in individuals with BMD measurements 83. These data were then used to identify 

a module whose behavior (as summarized by its first principal component) was correlated 

with BMD. Once trait-correlated modules are identified they can be further analyzed to 
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identify key genes and relationships. For example, highly connected “hub” genes have been 

shown to drive modular associations with a trait 84. A recent study generated a WGCNA 

network using bone transcriptomic data on 96 strains from the Hybrid Mouse Diversity 

Panel (HMDP) 85,86. An osteoblast-lineage specific module was identified (module 9) and 

shown to be highly correlated with femoral BMD in the same HMDP strains. The study 

showed that knockdown of the top two module 9 hub genes (Melanoma Antigen Family D1 

(Maged1) and Par-6 Family Cell Polarity Regulator Gamma (Pard6g)) altered osteoblast 

proliferation, differentiation and mineralization in vitro and knockout of Maged1 decreased 

BMD in mice 84,86. The authors mapped the first principal component of module 9 and 

demonstrated that the overall expression levels of module 9 genes were influenced by a local 

eQTL for Secreted Frizzled-related Protein 1 (Sfrp1), a key regulator of osteoblastogenesis 87. 

This demonstrates how co-expression network analysis in a genetics population can be used 

to understand the systems-level organization of genes. Similarly, another study generated a 

WGCNA network using gene expression data from female transiliac bone biopsies in 

humans. Through the integration of BMD GWAS data, this study identified a gene module 

and several candidate genes (Homer Protein Homolog 1 (HOMER1) and Spectrin Beta, 

Non-erythrocytic 1 (SPTBN1)), with putatively important roles in bone mass regulation 88. 

Another use of co-expression networks is to inform GWAS. A number of studies 

have demonstrated that network information is a useful prioritization strategy for predicting 

causal genes for sets of GWAS associations 89. As an illustration, a recent study mapped 

genes located in 64 BMD GWAS associations onto the HMDP bone network described 

above 59,89. This led to the identification of two modules that were enriched for genes 

implicated by GWAS. Using information on module genes with known roles in bone, it was 

predicted that novel module genes located in GWAS loci were causal and likely altered BMD 
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via a role in osteoblasts. Two of the module genes, Microtubule Affinity Regulating Kinase 3 

(MARK3) and Spectrin Beta, Non-erythrocytic 1 (SPTBN1), were experimentally confirmed 

to influence BMD when perturbed in mice. This study indicates that viewing GWAS data 

through the lens of a disease-relevant co-expression network can begin to highlight how key 

GWAS genes function together to regulate BMD. 

 

1.3.3.3 Bayesian networks 

Though initially described in the mid 1980’s, Bayesian networks (BNs) have only 

recently begun to gain traction in biological research 90. BNs are directed, acyclic graph 

representations of conditional dependencies between random variables 78. The directed, 

acyclic nature of the graphs is informative for reconstructing systems-level relationships 

between genes. For example, in a systems genetics context it is possible to apply a BN 

structure learning algorithm to a WGCNA module, as the dependence of gene expression on 

other genes can be observed in a hierarchical manner, which allows for an elucidation of the 

direction of the flow of molecular information. One scenario is where BN analysis methods 

are applied to trait-relevant WGCNA modules, in order to direct relationships between 

genes and identify key regulatory elements (Figure 1.3). This strategy was employed in a 

recent study, where an undirected co-expression network was constructed. Directional 

relationships between nodes were then established using Bayesian network analysis. This led 

to the identification of causal network structures relevant to late-onset Alzheimer’s disease 

(LOAD) pathology as well as the identification of TYRO Protein Tyrosine Kinase Binding 

Protein (TYROBP) as a key regulator 91. In another study, a BN generated from co-

expression modules was used to reveal regulatory driver genes affecting coronary artery 
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disease 92. Furthermore, this study used tissue-specific BNs to perform key driver analysis 

(KDA). Briefly, KDA leverages network topology and trait-or-disease-related gene sets to 

identify genes that are more connected with trait-or-disease-relevant genes than is expected 

by chance. These highly connected genes, termed “key drivers”, are expected to be 

regulatory genes with strong evidence of having central roles in their associated networks. 

To our knowledge, BNs have not yet been applied in a systems genetics context in the bone 

field, and therefore provide an exciting avenue for future research. 

One advantage of BNs is that they allow for the incorporation of prior knowledge, 

which allows for more informative modeling of gene relationships within modules. For 

example, network structure learning can be biased by “whitelisting” high-confidence edges 

(such as well-known gene-gene relationships or protein-protein interactions) a priori, or 

“blacklisting” improbable edges. Disparate data sources can be easily incorporated into BNs 

as well. For example, a BN from a WGCNA module can also include SNP nodes and trait 

nodes, in order to model information transfer from genetic element to gene expression and 

phenotypic outcomes 93. Network-based approaches are not without limitations. One 

limitation involves the quality and type of the investigated bone phenotype. For example, 

BMD can be assayed in different anatomical locations by several different methods, which 

can lead to heterogeneity in the data that can obfuscate meaningful network relationships, or 

lead to network connections that are artificial and not mechanistically viable. Furthermore, a 

phenotype such as BMD is actually a composite of many different aspects of bone, which 

can also exacerbate the problems of interpretability. Therefore, careful selection of 

phenotypes should be performed a priori. Furthermore, biological networks often encompass 

multiple cell types, tissues and physiological microenvironments. In silico analyses based on 

data from in vitro sources, such as cultured osteoblasts, will not uncover many physiological 
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Figure 1.3 Network analysis can reveal systems-level information. In a typical network analysis 
workflow, gene expression profiles (a) (typically RNA-seq) can be analyzed from a network perspective. In this 
example, a co-expression network (b) is generated using WGCNA. In a WGCNA network, modules (colored 
clusters, b) consist of gene expression profiles connected by undirected edges, which signify the strength of the 
connection between two genes. A trait-correlated WGCNA module (within red circle, b) can be further dissected 
through Bayesian network analysis (c). Highly-connected hub genes (orange node, d) can signify functionally 
important genes. Bayesian networks differ from WGCNA networks in that they contain directed edges, and are 
acyclic (e). Furthermore, diverse biological information, such as SNP and trait data (blue and yellow boxes 
respectively, e) can be incorporated into Bayesian networks as prior information to improve network reconstruction. 
An advantage of Bayesian network analysis is the generation of more mechanistic hypotheses. 

relationships that exist in vivo. This drawback is not unique to network analyses and pervades 

biological science, but should be carefully considered when designing experiments and 

drawing conclusions. Methodological drawbacks exist as well. 
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A significant drawback of using BNs to model biological relationships is in their 

acyclic nature. In biological processes, structures like feedback and feed-forward loops are 

prevalent. As BNs are acyclic, these network structures will be missed. Furthermore, 

depending on the algorithm used, it can be computationally impractical to learn the network 

structure of large sets of genes. These shortcomings make the aforementioned strategy of 

using BNs to dissect WGCNA modules an attractive one 94. 

1.4 The mouse as a model for bone-related traits 

While the primary interest of biomedical research regarding bone is focused on 

understanding bone biology in humans, performing studies exclusively in humans is not 

feasible. For example, GWASs require very large sample sizes, and are generally not 

amenable to the interrogation of non-BMD traits in a well-powered fashion. Furthermore, 

ethical and practical considerations preclude most experiments in humans. To this end, the 

mouse has been an invaluable resource to the fields of bone biology and genetics. 

The utility of the mouse as a model organism for the interrogation of bone biology 

lies in the high degree of similarity in both skeletal physiology and genetics between humans 

and mice, as well as in the relatively short reproductive cycle in mice, the relatively low cost 

of the mouse as an animal model, and the availability of the sequenced mouse genome 95–97. 

These factors have enabled the use of the mouse to interrogate the genetic basis of many 

bone phenotypes, the identification of causal genes underlying bone traits, and the broad 

interrogation of the biology of bone.  
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Classically, murine studies in bone have relied on the use of inbred mouse strains. 

After large differences in BMD were observed between various inbred mouse strains, 

researchers utilized mapping strategies in F2 mice to identify bone-relevant quantitative trait 

loci (QTL) 98. Briefly, inbred mouse strains with differing bone phenotypes (e.g., low vs. high 

BMD) are crossed to generate F1 mice, which are then intercrossed to generate F2 progeny 99. 

These mice can then be used to identify broad QTL; for example, one study used F2 

mapping strategies to identify QTL for peak bone mass, by constructing intercrosses 

between SAMP6 (a murine model of senile osteoporosis with low peak bone mass) and 

SAMP2 100.  While this strategy was informative in mapping QTL, these QTL were very large 

and were not amenable to the identification of causal genes 101.  

In order to map narrower QTL regions that are more amenable to genetic analyses, 

several strategies were developed. One such strategy was to create inbred mouse panels for 

high-resolution association mapping, such as the Hybrid Mouse Diversity Panel (HMDP) 85. 

Using the HMDP, Farber et al. identified four significant associations affecting BMD, and 

identified Additional Sex Combs Like-2 (Asxl2) as a regulator of BMD and 

osteoclastogenesis 102. More recently, newly available mouse reference panels and 

populations, such as the Collaborative Cross (CC) and the Diversity Outbred (DO) are 

enabling high-resolution mapping studies of many phenotypes, including bone 

microarchitectural phenotypes which are not amenable to interrogation in large human 

cohorts 103.  The CC is a recombinant inbred panel derived from eight inbred mouse strains, 

and the DO is an outbred mouse population derived from the same eight inbred mouse 

strains as the CC 104,105. Recently, studies in the CC have successfully identified multiple QTL 

and candidate genes for several bone traits 103,106.  
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Clearly, mouse models have been invaluable in furthering our understanding of the 

genetics of bone. One of the most important concepts that we’ve learned from murine 

studies of bone is that the adaptive nature of bone creates an additional layer of complexity 

in understanding osteoporosis. Studies have demonstrated that recombinant inbred mice 

with different genetic backgrounds build functional bones in different ways. For example, 

mice with genetically slender bones will compensate for this deficiency by increasing cortical 

thickness and mineralization, whereas mice with mineralization defects will increase bone 

size 107,108. This genetically-based co-variation in traits serves as an example of a system 

adapting to perturbations. It also illustrates the importance of understanding not only how 

genetic variation impacts individual traits, but also the relationships between traits. A more 

encompassing approach to systems genetics has the potential to begin to understand how 

genetic variation contributes to these relationships and overall system function.   

Finally, the use of mouse as a model for bone biology and genetics is made possible 

by the availability of several excellent resources, such as the International Mouse 

Phenotyping Consortium (IMPC) and the Origins of Bone and Cartilage Disease (OBCD) 

project, which systematically perturb mouse genes in order to screen the effects of genetic 

perturbations on myriad phenotypes, including several skeletal parameters 109,110. 

Furthermore, resources such as the Mouse Genome Database (MGD) project provide 

integrated data such as integrated mouse strain phenotyping and genetic and genomic data111. 
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1.5 Summary 

In the past decade or so, advances in sequencing technologies have completely 

revolutionized biological science. In practically every biological field, a wealth of “-omics” 

data is being generated. However, our understanding of the underpinnings of biological 

processes and diseases is still far from complete. This is evident in the bone field, as many 

genetic associations with BMD have been described, yet we still know few of the responsible 

genes. These limitations reinforce the need for complementary strategies, such as systems 

genetics, to further advance our understanding of bone genetics. 

One of the major limitations of genetic studies of bone is the primary focus on 

BMD. Although BMD is the single strongest predictor of osteoporotic fracture, there are 

many individuals with normal BMD who experience fracture 112,113. The use of BMD has 

been necessitated by the difficulty, or impossibility, of measuring other aspects of bone 

fragility in humans. For example, biomechanical properties of bone strength, the single most 

important fracture-related trait, can only be measured in cadavers. Due to these limitations, a 

possible alternative is to use GWAS and systems genetics in mice and rats as a way of 

developing a more complete understanding of osteoporosis 102,114,115. 

In the field of systems genetics it is of the utmost importance to develop approaches 

for the effective understanding and utilization of available data. As biology is inherently 

complex, it is unreasonable to believe that a single, or few, types of genetic analyses will be 

sufficient to gain a thorough understanding of the genetics of complex bone traits. We argue 

that more realistic models of biological processes can be generated and analyzed by 

synthesizing and incorporating seemingly disparate data sources. For example, as mentioned 

above, integrating epigenetic data with genomic data can inform GWAS and identify 
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candidate genes. Computational approaches such as TWAS and colocalization can utilize 

transcriptomic data to further inform the genetics of complex traits. Network-based 

approaches can inform GWAS and identify candidate genes while also providing insight into 

relationships between genes and traits. While barely scratching the surface, the systems 

genetics approaches described herein provide an avenue for such an endeavor. Of course, 

our understanding of many systems-level principles is still evolving. With increasingly 

accessible computational resources and by training researchers adept in the computational 

sciences, the transition to understanding bone biology and the impacts of genetic variation 

from a holistic, systems perspective will be within our reach. 

In this work, we aim to address the two main limitations affecting the field of bone 

genetics; the strict focus of bone genetic studies on BMD, and the difficulties associated with 

the identification of causal genes underlying GWAS associations. We address these 

limitations in the following studies: 

(1) In Chapter 2, we use a novel mouse population, the Diversity Outbred (DO), in

order to perform GWAS on 55 bone-related traits. We then use systems genetics

approaches to identify Quiescin Sulfhydryl Oxidase 1 (Qsox1) as a novel gene

affecting several bone traits, and perform experimental validation in a murine

cohort. Furthermore, we use a network-based approach that utilizes expression

data from the DO population, in order to prioritize putatively causal genes

underlying human BMD GWAS associations.

(2) In Chapter 3, we use a combined TWAS/eQTL colocalization approach, which

leverages publicly available human gene expression and BMD GWAS data, in

order to prioritize putatively causal genes underlying BMD GWAS associations.
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Using this combined approach, we prioritize Protein Phosphatase 6 Regulatory 

Subunit 3 (PPP6R3) as a novel BMD gene, and perform functional validation in a 

murine cohort. 

Overall, this work comprises a resource that aims to increase our understanding of 

the genetics underlying complex bone traits, and presents methodologies for the 

identification of putatively causal genes that underlie complex traits.   
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Systems Genetics Analyses in Diversity Outbred Mice Inform BMD GWAS and Identify 
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2.1 Abstract 

Genome-wide association studies (GWASs) for osteoporotic traits have identified 

over 1,100 associations; however, their impact has been limited by the difficulties of causal 

gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity 

Outbred (DO) mice to directly address these limitations by performing a systems genetics 

analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone 

RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, 

including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a 

wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and 

bone strength. In this work, we advance our understanding of the genetics of osteoporosis 

and highlight the ability of the mouse to inform human genetics. 
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2.2 Introduction 

Osteoporosis is a condition of low bone strength and an increased risk of fracture 4. 

It is also one of the most prevalent diseases in the U.S., affecting over 10 million 

individuals7. Over the last decade, efforts to dissect the genetic basis of osteoporosis using 

genome-wide association studies (GWASs) of bone mineral density (BMD) have been 

tremendously successful, identifying over 1,100 independent associations 16,17,19. These data 

have the potential to revolutionize our understanding of bone biology and the discovery of 

novel therapeutic targets 15,18; however, progress to date has been limited.  

One of the main limitations of human BMD GWAS is the difficulty in identifying 

causal genes. This is largely due to the fact that most associations implicate non-coding 

variation presumably influencing BMD by altering gene regulation 19. For other diseases, the 

use of molecular “-omics” data (e.g., transcriptomic, epigenomic, etc.) in conjunction with 

systems genetics approaches (e.g., identification of expression quantitative trait loci (eQTL) 

and network-based approaches) has successfully informed gene discovery 34,35. However, few 

“-omics” datasets exist on bone or bone cells in large human cohorts (e.g., bone or bone 

cells were not part of the Geneotype-Tissue Expression (GTEx) project 51), limiting the use 

of systems genetics approaches to inform BMD GWAS 116. 

A second limitation is that all large-scale GWASs have focused exclusively on 

BMD16,17,19. BMD is a clinically relevant predictor of osteoporotic fracture; however, it 

explains only part of the variance in bone strength 117–120. Imaging modalities and bone 

biopsies can be used to collect data on other bone traits such as trabecular microarchitecture 

and bone formation rates; however, it will be difficult to apply these techniques at scale 

(N=>100K). Additionally, many aspects of bone, including biomechanical properties, 
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cannot be measured in vivo. These limitations have hampered the dissection of the genetics of 

osteoporosis and highlight the need for resources and approaches that address the challenges 

faced by human studies. 

The Diversity Outbred (DO) is a highly engineered mouse population derived from 

eight genetically diverse inbred founders (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, 

NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ ) 105. The DO has been randomly mated 

for over 30 generations and, as a result, it enables high-resolution genetic mapping and 

relatively efficient identification of causal genes 121,122. As an outbred stock, the DO also 

more closely approximates the highly heterozygous genomes of a human population. These 

attributes, coupled with the ability to perform detailed and in-depth characterization of bone 

traits and generate molecular data on bone, position the DO as a platform to assist in 

addressing the limitations of human studies described above. 

In this work, we present a resource for the systems genetics of bone strength 

consisting of information on 55 bone traits from over 600 DO mice, and RNA-seq data 

from marrow-depleted cortical bone in 192 DO mice. We demonstrate the utility of this 

resource in two ways. First, we apply a network approach to the bone transcriptomics data in 

the DO and identify 66 genes that are bone-associated nodes in Bayesian networks, and their 

human homologs are located in BMD GWAS loci and regulated by colocalizing eQTL in 

human tissues. Of the 66, 19 are not previously known to influence bone. The further 

investigation of two of the 19 novel genes, SERTAD4 and GLT8D2, reveals that they are 

likely causal and influence BMD via a role in osteoblasts. Second, we perform GWASs in the 

DO for 55 complex traits associated with bone strength; identifying 28 QTL. By integrating 

QTL and bone eQTL data in the DO, we identify Qsox1 as the gene responsible for a QTL 
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on Chromosome (Chr.) 1 influencing cortical bone accrual along the medial-lateral femoral 

axis and femoral strength. These data highlight the power of the DO mouse resource to 

complement and inform human genetic studies of osteoporosis. 

 

2.3 Results 

2.3.1 Development of a resource for the systems genetics of bone strength 

An overview of the resource is presented in Figure 2.1. We measured 55 complex 

skeletal phenotypes in a cohort of DO mice (N=619; 314 males, 305 females; breeding 

generations 23-33) at 12 weeks of age. We also generated RNA-seq data from marrow-

depleted femoral diaphyseal bone from a randomly chosen subset of the 619 phenotyped 

mice (N=192; 96/sex). All 619 mice were genotyped using the GigaMUGA123 array (~110K 

SNPs) and these data were used to reconstruct the genome-wide haplotype structures of 

each mouse. As expected, the genomes of DO mice consisted of approximately 12.5% from 

each of the eight DO founders (Figure 2.2A). The collection of phenotypes included 

measures of bone morphology, microarchitecture, and biomechanics of the femur, along 

with tibial histomorphometry and marrow adiposity (Supplementary Data 2.1 and 2.2). 

Our data included quantification of femoral strength as well as many clinically relevant 

predictors of strength and fracture risk (e.g., trabecular and cortical microarchitecture). Traits 

in all categories (except tibial marrow adipose tissue (MAT)) were significantly (Padj<0.05) 

correlated with femoral strength (Supplementary Data 2.3). 
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Figure 2.1 Resource overview. An overview of the resource including data generated and 
analyses performed. Abbreviations: GWAS – genome-wide association study, QTL – 
quantitative trait loci, eQTL – expression quantitative trait loci, SNP – single-nucleotide 
polymorphism. 

Additionally, all traits exhibited substantial variation across the DO cohort. For 

example, we observed a 30.8-fold variation (the highest measurement was 30.8 times greater 

than the lowest measurement) in trabecular bone volume fraction (BV/TV) of the distal 

femur and 5.6-fold variation in femoral strength (Figure 2.2B). After adjusting for 

covariates (age, DO generation, sex, and body weight) all traits had non-zero heritabilities 

(h2) (Figure 2.2C). Correlations between traits in the DO were consistent with expected 

relationships observed in previous mouse and human studies (Supplementary Data 2.4)124–

127.



34 
 

Figure 2.2 Characterization of the experimental Diversity Outbred cohort. A) Allele 
frequency per chromosome, across the DO cohort. Intervals represent the eight DO founder strains: A/J (yellow), 
C57BL/6J (grey), 129S1/SvImJ (beige), NOD/ShiLtJ (dark blue), NZO/HILtJ (light blue), CAST/EiJ 
(green), PWK/PhJ (red), and WSB/EiJ (purple). B) Bone volume fraction and max load across the DO 
cohort. Insets are microCT images representing low and high bone volume fraction (BV/TV). C) Heritability of 
each bone trait. Phenotypes are colored by phenotypic category: morphology (purple), marrow adiposity (light blue), 
histomorphometry (green), microarchitecture (olive), and biomechanics (beige). Abbreviations for phenotypes are 
available in Supplementary Data 1. 
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In addition to standard RNA-seq quality control procedures (Methods), we also 

assessed RNA-seq quality by principal components analysis (PCA) and did not observe any 

major effect of sex, batch, and age in the first two principal components, which explained 

over 50% of the variance (Supplemental Figure 2.1). We did observe a separation of 

samples based on sex in the third PC, but it only explained 2.4% of the variance. 

Importantly, our PCA analysis did not identify any outliers in the bulk RNA-seq data. 

Furthermore, we performed differential expression analyses between sexes and between 

individuals with high versus low bone strength (Supplementary Data 2.5 and 2.6). As 

expected, the most significantly differentially expressed genes based on sex were located on 

the X chromosome. We identified 83 significantly (FDR<0.05) differentially-expressed 

transcripts in the analysis of low and high bone strength. Many were genes, such as Ahsg 128 

and Arg1 129, which have previously been implicated in the regulation of bone traits.  

 

2.3.2 Identification of bone-associated nodes 

We wanted to address the challenge of identifying causal genes from BMD GWAS 

data, using the DO resource described above. To do so, we employed a network-based 

approach similar to one we have used in prior studies 59,130 (Figure 2.3). First, we partitioned 

genes into groups based on co-expression by applying weighted gene co-expression network 

analysis (WGCNA) to the DO cortical bone RNA-seq data 131. We generated three WGCNA 

networks; sex-combined, male, and female. The three networks contained a total of 124 

modules (Supplementary Data 2.7).  
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Figure 2.3 Overview of the network approach used to identify genes potentially 
responsible for BMD GWAS loci. Three WGCNA networks (124 total modules) were constructed 
from RNA-seq data on cortical bone in the DO (N=192). A Bayesian network was then learned for each 
module. We performed key driver analysis on each Bayesian network to identify BANs, by identifying nodes 
(genes) that were more connected to more known bone genes than was expected by chance. We colocalized GTEx 
human eQTL for each BAN with GWAS BMD SNPs to identify potentially causal genes at BMD GWAS 
loci. For the key driver analysis, the yellow node indicates the queried gene, red nodes indicate known bone genes, 
and grey nodes indicate non-bone genes. Abbreviations: DO – Diversity Outbred, WGCNA – weighted gene 
co-expression network analysis, BAN – bone-associated nodes, eQTL – expression quantitative trait loci, 
BMD – bone mineral density, GWAS – genome-wide association studies, SNP – single-nucleotide 
polymorphism. PPH4 – posterior probability of colocalization, hypothesis 4. 
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A Gene Ontology (GO) analysis revealed that nearly all modules were enriched for 

genes involved in specific biological processes, including modules enriched for processes 

specific to bone cells (osteoblasts or osteoclasts) (Supplementary Data 2.8).  

We next sought to infer causal interactions between genes in each module, and then 

use this information to identify genes likely involved in regulatory processes relevant to bone 

and the regulation of BMD. To do so, we generated Bayesian networks for each co-

expression module, allowing us to model directed gene-gene relationships based on 

conditional independence. Bayesian networks allowed us to model causal links between co-

expressed (and likely co-regulated) genes.  

We hypothesized that key genes involved in bone regulatory processes would play 

central roles in bone networks and, thus, be more highly connected in the Bayesian 

networks.  In order to test this hypothesis, we generated a list of genes implicated in 

processes known to impact bone or bone cells (“known bone gene” list (N=1,291); 

Supplementary Data 2.9; see Methods). The GWAS loci referenced in this study were 

enriched in human homologs of genes in the “known bone gene” list, relative to the set of 

protein-coding genes in the genome (OR=1.35, P=1.45-7).  Across the three network sets 

(combined, male and female), we found that genes with putative roles in bone regulatory 

processes were more highly connected than all other genes (P=3.5 x 10-4, P=1.7 x 10-2, and 

P=2.9 x 10-5 for combined, male, and female network sets, respectively), indicating the 

structures of the Bayesian networks were not random with respect to connectivity.  

To discover genes potentially responsible for GWAS associations, we identified 

bone-associated nodes (BANs). BANs were defined as genes connected in our Bayesian 

networks with more genes in the “known bone gene” list than would be expected by chance 
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92,132–134. The analysis identified 1,370 genes with evidence (Pnominal≤0.05) of being a BAN (i.e., 

sharing network connections with genes known to participate in a bone regulatory process) 

(Supplementary Data 2.10).  

 

2.3.3 Using BANs to inform human BMD GWAS 

We reasoned that the BAN list was enriched for causal BMD GWAS genes. In fact, 

of the 1,370 BANs, 1,173 had human homologs and 688 of those were within 1 Mbp of one 

of the 1,161 BMD GWAS lead SNPs identified in 16 and 19. This represents an enrichment of 

BANs within GWAS loci (± 1Mbp of GWAS SNP), relative to the number of protein-

coding genes within GWAS loci (OR=1.26, P=9.49 x 10-5). 

However, a gene being a BAN is likely not strong evidence, by itself, that a particular 

gene is causal for a BMD GWAS association. Therefore, to provide additional evidence 

connecting BMD-associated variants to the regulation of BANs, we identified local eQTL 

for each BAN homolog in 48 human non-bone samples using the Genotype-Tissue 

Expression (GTEx) project 51,135,136. Our rationale for using GTEx was that while these data 

do not include information on bone tissues or bone cells, a high degree of local eQTL 

sharing has been observed between GTEx tissues 50,51. This suggests that a colocalizing 

eQTL in a non-bone tissue may represent either a non-bone autonomous causal effect or 

may reflect the actions of a shared eQTL that is active in bone and shared across non-bone 

tissues. We then tested each eQTL for colocalization (i.e., probability that the eQTL and 

GWAS association share a common causal variant) with their respective BMD GWAS 

association 16,19. Of the 688 BANs located in proximity of a BMD GWAS locus, 66 had 

colocalizing eQTL (PPH4≥0.75, Supplementary Data 2.11, see Methods) in at least one 
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GTEx tissue (Supplementary Data 2.12). Of these, 47 (71.2%) were putative regulators of 

bone traits (based on comparing to the known bone gene list (N=36) and a literature search 

for genes influencing bone cell function (N=11)), highlighting the ability of the approach to 

recover known biology. Based on overlap with the known bone gene list, this represents a 

highly significant enrichment of known bone genes in the list of BANs with colocalizing 

eQTL relative to the number of known bone genes in the list of GWAS-proximal BANs 

(OR=2.53, P=3.09 x 10-4). Our approach identified genes such as SP7 (Osterix) 137, SOST 

138,139, and LRP5 140–142, which play central roles in osteoblast-mediated bone formation. 

Genes essential to osteoclast activity, such as TNFSF11 (RANKL) 143–146, TNFRSF11A 

(RANK) 147,148, and SLC4A2 149 were also identified. Nineteen (28.8%) genes were not 

previously implicated in the regulation of bone traits.  

One of the advantages of the network approach is the ability to identify potentially 

causal genes and provide insight into how they may impact BMD based on their module 

memberships and network connections. For example, the cyan module in the female 

network (cyan_F) harbored many of the known BANs that influence BMD through a role in 

osteoclasts (the GO term “osteoclast differentiation” was highly enriched P=2.8 x 10-15 in 

the cyan_F module) (Supplementary Data 2.8). Three of the nineteen novel BANs with 

colocalizing eQTL (Supplementary Data 2.12), ATP6V1A, PRKCH and AMZ1, were 

members of the cyan module in the female network. Based on their cyan module 

memberships it is likely they play a role in osteoclasts. ATP6V1A is a subunit of the 

vacuolar ATPase V1 domain 150. The vacuolar ATPase plays a central role in the ability of 

osteoclasts to acidify matrix and resorb bone, though ATP6V1A itself (which encodes an 

individual subunit) has not been directly connected to the regulation of BMD 150. PRKCH 

encodes the eta isoform of protein kinase C and is highly expressed in osteoclasts 151. AMZ1 
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is a zinc metalloprotease and is relatively highly expressed in osteoclasts, and is highly 

expressed in macrophages, which are osteoclast precursors 151. 

Next, we focused on two of the novel BANs with colocalizing eQTL, SERTAD4 

(GTEx Adipose Subcutaneous; coloc PPH4=0.77; PPH4/PPH3=7.9) and GLT8D2 (GTEx 

Pituitary; coloc PPH4=0.88; PPH4/PPH3=13.4). Both genes were members of the 

royalblue module in the male network (royalblue_M). The function of SERTAD4 (SERTA 

domain-containing protein 4) is unclear, though proteins with SERTA domains have been 

linked to cell cycle progression and chromatin remodeling 152. GLT8D2 (glycosyltransferase 8 

domain containing 2) is a glycosyltransferase linked to nonalcoholic fatty liver disease 153. In 

the DO, the eigengene of the royalblue_M module was significantly correlated with several 

traits, including trabecular number (Tb.N; rho=-0.26; P=9.5 x 10-3) and separation (Tb.Sp; 

rho=0.27; P=7.1 x 10-3), among others (Supplementary Data 2.13). The royalblue_M 

module was enriched for genes involved in processes relevant to osteoblasts such as 

“extracellular matrix” (P=8.4 x 10-19), “endochondral bone growth” (P=5.7 x 10-4), 

“ossification” (P=8.9 x 10-4) and “negative regulation of osteoblast differentiation” (P=0.04) 

(Supplementary Data 2.8). Additionally, Sertad4 and Glt8d2 were connected, in their local 

(3-step) Bayesian networks, to well-known regulators of osteoblast/osteocyte biology (such 

as Wnt16 154, Postn 155,156, and Col12a1 157 for Sertad4 and Pappa2 158, Pax1 158,159, and Tnn 160 for 

Glt8d2) (Figures 2.4A and 2.4B). Sertad4 and Glt8d2 were strongly expressed in calvarial 

osteoblasts with expression increasing (P<2.2 x 10-16 and P=6.4 x 10-10, respectively) 

throughout the course of differentiation (Figure 2.4C). To further investigate their 

expression in osteoblasts, we generated single-cell RNA-seq (scRNA-seq) data on mouse 

bone marrow-derived stromal cells exposed to osteogenic differentiation media in vitro from 

our mouse cohort (N=5 mice (4 females, 1 male), 7,092 cells, Supplementary Data 2.14, 
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Supplemental Figure 2.2). Clusters of cell-types were grouped into mesenchymal 

progenitors, preadipocytes/adipocytes, osteoblasts, osteocytes, and non-osteogenic cells 

based on the expression of genes defining each cell-type (Supplementary Data 2.15). 

Sertad4 was expressed across multiple cell-types, with its highest expression in a specific 

cluster (cluster 9) of mesenchymal progenitor cells and lower levels of expression in 

osteocytes (cluster 10) (Figure 2.4D, Supplemental Figure 2.3). Glt8d2 was expressed in a 

relatively small number of cells in both progenitor and mature osteoblast populations 

(Figure 2.4D, Supplemental Figure 2.3).  

Finally, we analyzed data from the International Mouse Phenotyping Consortium 

(IMPC) for Glt8d2 161. After controlling for body weight, there was a significant (P=1.5 x 

10-3) increase in BMD in male Glt8d2-/- and no effect (P=0.88) in female Glt8d2-/- mice (sex 

interaction P= 6.9 x 10-3) (Figure 2.4E). These data were consistent with the direction of 

effect predicted by the human GLT8D2 eQTL and eBMD GWAS locus where the effect 

allele of the lead eBMD SNP (rs2722176) was associated with increased GLT8D2 expression 

and decreased BMD. Together, these data suggest that SERTAD4 and GLT8D2 are causal 

for their respective BMD GWAS associations and they likely impact BMD through a role in 

modulating osteoblast-centric processes. 
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Figure 2.4 Identifying SERTAD4 and GLT8D2 as putative regulators of BMD. A) 
Local 3-step neighborhood around Sertad4. Known bone genes highlighted in green. Sertad4 highlighted in red. 
B) Local 3-step neighborhood around Glt8d2. Known bone genes highlighted in green. Glt8d2 highlighted in 
red. C) Expression of Sertad4 and Glt8d2 in calvarial osteoblasts. For each time point, N=3 independent 
biological replicates were examined. Error bars represent the standard error of the mean. TPM – transcripts 
per million. D) Single-cell RNA-seq expression data. Each point represents a cell (N=7,092 cells). The top 
panel shows UMAP clusters and their corresponding cell-type. The bottom two panels show the expression of 
Sertad4 and Glt8d2. The color scale indicates normalized gene expression value. E) Bone mineral density in 
Glt8d2 knockout mice from the IMPC. N=7 females and N=7 males for Glt8d2-/- mice, N=1,466 
females and N=1,477 males for Glt8d2+/+ mice. Boxplots indicate the median (middle line), the 25th and 
75th percentiles (box) and the whiskers extend to 1.5 * IQR. Colors indicate genotype. 
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2.3.4 Identification of QTLs for strength-related traits in the DO 

The other key limitation of human genetic studies of osteoporosis has been the strict 

focus on BMD, though many other aspects of bone influence its strength. To directly 

address this limitation using the DO, we performed GWAS for 55 complex skeletal traits. 

This analysis identified 28 genome-wide significant (permutation-derived P<0.05) QTLs for 

20 traits mapping to 10 different loci (defined as QTL with peaks within a 1.5 Mbp interval) 

(Table 2.1 and Supplemental Figure 2.4). These data are presented interactively in a web-

based tool (http://qtlviewer.uvadcos.io/). Of the 10 loci, four impacted a single trait (e.g., 

medial-lateral femoral width (ML) QTL on Chr2@145.4Mbp), while the other six impacted 

more than one trait (e.g., cortical bone morphology traits, cortical tissue mineral density 

(TMD), and cortical porosity (Ct.Por) QTL on Chr. 1@155Mbp). The 95% confidence 

intervals (CIs) for the 21 autosomal associations ranged from 615 Kbp to 5.4 Mbp with a 

median of 1.4 Mbp.  

 

2.3.5 Overlap with human BMD GWAS 

We anticipated that the genetic analysis of bone strength traits in DO mice would 

uncover novel biology not captured by human BMD GWAS. To evaluate this prediction, we 

identified overlaps between the 10 identified mouse loci and human BMD GWAS 

associations 3,19. Of the 10 mouse loci, the human syntenic regions (Supplementary Data 

2.16) for six (60%) contained at least one independent GWAS association (Supplemental 

Figure 2.5). We calculated the number expected by chance by randomly selecting 10 human 

regions (of the same size) 1000 times, followed by identifying overlaps. Six overlaps 

corresponded to the 57th percentile of the null distribution.  

http://qtlviewer.uvadcos.io/
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Table 2.1 QTL identified for complex skeletal traits in the DO 

Locus Trait LOD Chr. Position (Mbp) 95% CI (Mbp) # missense 
variants 

Genes with 
colocalizing 

eQTL 

1 TMD 23.9 1 155.1 154.8 - 155.6 7 Ier5 
1 Ma.Ar 12.8 1 155.3 155.1 - 155.7 7 Ier5, Qsox1 

1 Tt.Ar 11.5 1 155.2 155.1 - 156.2 7 Ier5, Qsox1 

1 Ct.Por 11.4 1 155.4 155.1 - 156.4 7 Ier5, Qsox1 
1 ML 10 1 155.4 155.1 - 155.7 7 Ier5, Qsox1 

1 pMOI 8.8 1 155.1 154.8 - 158.2 7 Ier5, Qsox1 

1 Ct.Ar/Tt.Ar 8.5 1 155.3 154.3 - 155.7 7 Ier5, Qsox1 
1 Imax 8.3 1 155.1 155.1 - 158.2 7 Ier5, Qsox1 

2 ML 7.9 2 145.4 144.1 - 145.6 - - 

3 Ma.Ar 8.8 3 68.1 66.6 - 70 8 
Mfsd1, Il12a, 
Gm17641, 

1110032F04Rik 
4 Ma.Ar 8 4 114.6 113 - 118.4 - - 

4 Tt.Ar 8.2 4 114.6 113.6 - 114.8 - - 

5 Ct.Ar/Tt.Ar 8.1 4 127.7 125.4 - 128.1 - 

Csf3r, Gm12946, 
Clspn, Ncdn, 
Gm12941, 

Zmym6, 
Gm25600 

6 BMD 7.8 8 103.5 102.7 - 104.4 - - 

7 TMD 14.6 10 23.5 23.1 - 24.6 - - 

7 W 13.6 10 24.3 23.5 - 24.6 - - 
7 Wpy 11.9 10 23.8 23.5 - 25.3 - - 

7 Dfx 10.7 10 23.7 23.3 - 24.6 - - 

7 DFmax 9.4 10 23.7 21.8 - 25.2 - C920009B18Rik 
8 Fmax 8.8 16 23.3 22.3 - 23.4 - - 

8 Ffx 8.2 16 23.1 22.6 - 23.4 - - 

9 Ct.Ar 13.5 X 59.4 58.4 - 71.2 - - 
9 Imax 11 X 59.5 58.4 - 69.6 - - 

9 pMOI 10.4 X 59.4 58.4 - 61.4 - - 

9 Imin 8.4 X 59.5 57.3 - 61.2 - Zic3 

10 Ct.Th 9.9 X 73.4 58.4 - 74.1 - - 

10 TbSp 8.6 X 73.8 72.7 - 77.5 - Pls3 

10 Tb.N 7.9 X 74 72.7 - 76.8 - Fundc2, Cmc4, 
Pls3 

 

http://ma.ar/
http://tt.ar/
http://ct.ar/Tt.Ar
http://ma.ar/
http://ma.ar/
http://tt.ar/
http://ct.ar/Tt.Ar
http://ct.ar/
http://ct.th/
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2.3.6 Identification of potentially causal genes 

For each locus, we defined the causal gene search space as the widest confidence 

interval given all QTL start and end positions ±250 Kbp. We then used a previously 

described approach, merge analysis, to fine-map QTL and identify likely causal genes 

(Figure 2.5)162. Merge analysis was performed by imputing all known variants from the 

genome sequences of the eight founders onto haplotype reconstructions for each DO 

mouse, and then performing single variant association tests. We focused on variants in the 

top 15% of each merge analysis as those are most likely to be causal 162.  

We next identified missense variants that were top merge analysis variants common 

to all QTL in a locus. We identified seven missense variants in locus 1, and eight missense 

variants in locus 3 (Table 2.1). Of the seven missense variants in locus 1, three 

(rs243472661, rs253446415, and rs33686629) were predicted to be deleterious by SIFT. They 

are all variants in the uncharacterized protein coding gene BC034090. In locus 3, three 

(rs250291032, rs215406048 and rs30914256) were predicted to be deleterious by SIFT 

(Supplementary Data 2.17). These variants were located in myeloid leukemia factor 1 

(Mlf1), Iqcj and Schip1 fusion protein (Iqschfp), and Retinoic acid receptor responder 1 

(Rarres1), respectively.  

We next used the cortical bone RNA-seq data to map 10,399 local eQTL in our DO 

mouse cohort (Supplementary Data 2.18). Of these, 174 local eQTL regulated genes 

located within bone trait QTL. To identify colocalizing eQTL, we identified trait 

QTL/eQTL pairs whose top merge analysis variants overlapped. This analysis identified 18 

genes with colocalizing eQTL in 6 QTL loci (Table 2.1). 
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Figure 2.5 Overview of our approach to QTL fine-mapping. A) Overview of merge analysis. 
LOD– logarithm of the odds, QTL – quantitative trait loci, DO – Diversity Outbred, SNP – single-nucleotide 
polymorphism, INDEL – insertion-deletion, SV – structural variant.   B) Overview of merge analysis as 
performed for the identification of missense variants. C) Overview of merge analysis as performed for the 
identification of colocalizing trait QTL/ gene eQTL within a locus. The pink columns around the QTL in each 
association plot represent the QTL 95% confidence intervals. The yellow box in panel (c) represents the gene search 
space for a locus, defined as the region within ± 250 Kbp around the outer boundaries of the 95% confidence 
intervals within a locus. eQTL – expression quantitative trait loci. 
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2.3.7 Characterization of a QTL on Chromosome 1 influencing bone morphology 

Locus 1 (Chr. 1) influenced cortical bone morphology (medullary area (Ma.Ar), total 

cross sectional area (Tt.Ar), medial-lateral femoral width (ML), polar moment of inertia 

(pMOI), cortical bone area fraction (Ct.Ar/Tt.Ar), and maximum moment of inertia (Imax)), 

tissue mineral density (TMD), and cortical porosity (Ct.Por) (Figure 2.6A). We focused on 

this locus due to its strong effect size and the identification of candidate genes (Ier5, Qsox1, 

and BC034090) (Table 2.1). Additionally, we had previously measured ML in an 

independent cohort of DO mice (N=577; 154 males/423 females) from earlier generations 

(generations G10 and G11) and a QTL scan of those data uncovered the presence of a 

similar QTL on Chr. 1 163 (Supplemental Figure 2.6, Methods). The identification of this 

locus across two different DO cohorts (which differed in generations, diets, and ages) 

provided robust replication justifying further analysis. 

The traits mapping to this locus fell into two phenotypic groups, those influencing 

different aspects of cross-sectional size (e.g., ML and Tt.Ar) and TMD/cortical porosity. We 

suspected that locus 1 QTL underlying these two groups were distinct, and that QTL for 

traits within the same phenotypic group were linked. This hypothesis was further supported 

by the observation that correlations among the size traits were strong and cross-sectional 

size traits were not correlated with TMD or porosity (Supplementary Data 2.4).   

Therefore, we next tested if the locus affected all traits or was due to multiple linked 

QTL.  The non-reference alleles of the top merge analysis variants for each QTL were 

private to WSB/EiJ. To test if these variants explained all QTL, we performed the same 

association scans for each trait, but included the genotype of the lead ML QTL variant 

(rs50769082; 155.46 Mbp; ML was used as a proxy for all the cortical morphology traits) as 



48 
 

Figure 2.6 QTL (locus 1) on chromosome 1. A) For each plot, the top panel shows allele effects for 
the DO founders for each of the 8 QTL (quantitative trait loci) across an interval on chromosome 1 (Mbp, 
colors correspond to the founder allele in the legend). Bottom panels show each respective QTL scan. The red 
horizontal lines represent LOD (logarithm of the odds) score thresholds (genome-wide P≤0.05). B) QTL scans 
across the same interval as panel (A), after conditioning on rs50769082. C) QTL scans after conditioning on 
rs248974780. Phenotype abbreviations: TMD – tissue mineral density, ML – medial-lateral femoral width, 
pMOI – polar moment of intertia, Imax – maximum moment of inertia, Ct.Ar/Tt.Ar – bone area fraction, 
Tt.Ar – total area, Ma.Ar – medullary area, Ct.Por – cortical porosity. 

an additive covariate. This led to the ablation of all QTL except for TMD which remained 

significant (Figure 2.6B).  
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We then repeated the analysis using the lead TMD QTL variant (rs248974780; 155.06 Mbp) 

as an additive covariate (Figure 2.6C). This led to the ablation of all QTLs. These results 

supported the presence of at least two loci both driven by WSB/EiJ alleles, one influencing 

cortical bone morphology and Ct.Por and the other influencing TMD, as well as possibly 

influencing cortical bone morphology and Ct.Por.  

 

2.3.8 Qsox1 is responsible for the effect of locus 1 on cortical bone morphology 

Given the importance of bone morphology to strength, we sought to focus on 

identifying the gene(s) underlying locus 1 and impacting cortical bone morphology. We re-

evaluated candidate genes in light of the evidence for two distinct QTL. Immediate Early 

Response 5 (Ier5) and Quiescin Sulfhydryl Oxidase 1 (Qsox1) were identified as candidates 

based on the DO mouse eQTL analysis and BC034090 as a candidate based on missense 

variants (Table 2.1). Interestingly, Ier5 and Qsox1 eQTL colocalized with all QTL, except the 

TMD QTL, where only Ier5 colocalized, providing additional support for two distinct loci 

(Table 2.1 and Figure 2.7A). We cannot exclude the involvement of the missense variants 

in BC034090; however, without direct evidence that they impacted BC034090 function, we 

put more emphasis on the eQTL. As a result, based on its colocalizing eQTL and known 

biological function (see below), we predicted that Qsox1 was at least partially responsible for 

locus 1.   

QSOX1 is the only known secreted catalyst of disulfide bond formation and a 

regulator of extracellular matrix integrity 164. It has not been previously linked to skeletal 

development. We found that Qsox1 was highly expressed in calvarial osteoblasts and its 

expression decreased (P=6.4 x 10-6) during differentiation (Figure 2.7B).  
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Figure 2.7 Characterization of Qsox1. A) The top panel shows allele effects for the DO founders for Ier5 
and Qsox1 expression an interval on chromosome 1 (Mbp, colors correspond to the founder allele in the legend). Y-
axis units are best linear unbiased predictors (BLUPs). Bottom panels show each respective QTL scan. LOD 
(logarithm of the odds) score threshold for autosomal eQTL is 10.89 (alpha=0.05). B) Qsox1 expression in 
calvarial osteoblasts. For each time point, N=3 independent biological replicates were examined. Error bars 
represent the standard error of the mean. TPM – transcripts per million. C) Single-cell RNA-seq expression data. 
Each point represents a cell (N=7,092 cells). The top panel shows UMAP clusters and their corresponding cell-
type. The bottom panel shows the expression of Qsox1. The color scale indicates normalized gene expression value. 
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In scRNA-seq on bone marrow-derived stromal cells exposed to osteogenic differentiation 

media in vitro, we observed Qsox1 expression in all osteogenic cells with its highest 

expression seen in a cluster of mesenchymal progenitors defined by genes involved in 

skeletal development such as Grem2, Lmna, and Prrx2 (cluster 1) (Supplementary Data  

2.19 and Figure 2.7C). Additionally, in the DO cortical bone RNA-seq data, Qsox1 was 

highly co-expressed with many key regulators of skeletal development and osteoblast activity 

(e.g., Runx2; rho=0.48, P=<2.2 x 10-16, Lrp5; rho=0.41, P=6.2 x 10-9).  

To directly test the role of Qsox1, we used CRISPR/Cas9 to generate Qsox1 mutant 

mice. We generated five different mutant lines harboring unique mutations, including two 1-

bp frameshifts, a 171-bp in-frame deletion of the QSOX1 catalytic domain, and two large 

deletions (756 bp and 1347 bp) spanning most of the entire first exon of Qsox1 (Figure 

2.8A, Supplementary Data 2.20 and 2.21). All five mutations abolished QSOX1 activity in 

serum (Figure 2.8B). Given the uniform lack of QSOX1 activity, we combined phenotypic 

data from all lines to evaluate the effect of QSOX1 deficiency on bone. We hypothesized 

based on the genetic and DO mouse eQTL data, that QSOX1 deficiency would increase all 

traits mapping to locus 1, except TMD. Consistent with this prediction, ML was increased 

overall (P=1.8 x10-9), and in male (P=5.6x10-7) and female (P=3.5x10-3) mice as a function of 

Qsox1 mutant genotype (Figure 2.8C). Also consistent with the genetic data, we observed 

no difference in other gross morphological traits including anterior-posterior femoral width 

(AP) (P=0.31) (Figure 2.8D) and femoral length (FL) (P=0.64) (Figure 2.8E). We next 

focused on male Qsox1+/+ and Qsox1-/- mice and used microCT to measure other bone 

parameters. We observed increased pMOI (P=0.02) (Figure 2.8F), Imax (P=0.009) (Figure 

2.8G), and Ct.Ar/Tt.Ar (P=0.031) (Figure 2.8H). Total area (Tt.Ar) (Figure 2.8I) was 

increased, but the difference was only suggestive (P=0.08). Medullary area (Ma.Ar, P=0.93) 
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was not different (Figure 2.8J). We observed no change in TMD (P=0.40) (Figure 2.8K). 

We also observed no difference in cortical porosity (Ct.Por) (P=0.24) (Figure 2.8L). 

Given the strength of locus 1 on bone morphology and its association with 

biomechanical strength, we were surprised the locus did not impact femoral strength. 

Typically, in four-point bending assays, the force is applied along the AP axis. We replicated 

this in femurs from Qsox1+/+ and Qsox1-/- mice and saw no significant impact on strength 

(P=0.20) (Figure 2.8M). However, when we tested femurs by applying the force along the 

ML axis, we observed a significant increase in strength in Qsox1-/- femurs (P=1.0 x 10-3) 

(Figure 2.8N). Overall, these data demonstrate that absence of QSOX1 activity leads to 

increased cortical bone accrual specifically along the ML axis (Figure 2.8O). 
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Figure 2.8 Qsox1 is responsible for several chromosome 1 QTL. A) Representative image of the Qsox1 
knockout mutations. B) QSOX1 activity assay in serum. Data is grouped by mouse genotype. Boxplots indicate the 
median (middle line), the 25th and 75th percentiles (box) and the whiskers extend to 1.5 * IQR. Colors indicate mutation 
type. C-E) Femoral morphology in Qsox1 mutant mice. F-L) microCT measurements of chromosome 1 QTL phenotypes 
in Qsox1 knockout mice. M ) Bone strength (max load, Fmax) in the AP orientation, measured via four-point bending. N) 
Bone strength (max load, Fmax) in the ML orientation, measured via four-point bending. O) Representative microCT 
images of the effect of Qsox1 on bone size. In panels C-N, P-values above plots are ANOVA P-values for the genotype 
term, while P-values in the plots are contrast P-values, adjusted for multiple comparisons. The center points of the plots 
represent the least-squares mean, while the error bars represent the confidence intervals at a confidence level of 
0.95.Abbreviations: ML – medial-lateral femoral width, AP – anterior-posterior femoral width, FL – femoral length, 
pMOI – polar moment of inertia, Imax – maximum moment of inertia, Ct.Ar/Tt.Ar – bone area fraction, Tt.Ar – total 
area, Ma.Ar – medullary area, TMD – tissue mineral density, Ct.Por – cortical porosity. 
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2.4 Discussion 

Human GWASs for BMD have identified over 1,100 loci. However, progress in 

causal gene discovery has been slow and BMD explains only part of the variance in bone 

strength and the risk of fracture 18. The goal of this study was to demonstrate that systems 

genetics in DO mice can help address these limitations. Towards this goal, we used cortical 

bone RNA-seq data in the DO and a network-based approach to identify 66 genes likely 

causal for BMD GWAS loci. Nineteen of the 66  were novel. We provide further evidence 

supporting the causality of two of these genes, SERTAD4 and GLT8D2. Furthermore, 

GWAS in the DO identified 28 QTLs for a wide-range of strength associated traits. From 

these data, Qsox1 was identified as a genetic determinant of cortical bone mass and strength. 

These data highlight the power of systems genetics in the DO and demonstrate the utility of 

mouse genetics to inform human GWAS and bone biology. 

To inform BMD GWAS, we generated Bayesian networks for cortical bone and used 

them to identify BANs. Our analysis was similar to key driver analyses 132–134 where the focus 

has often been on identifying genes with strong evidence (Padj<0.05) of playing central roles 

in networks. In contrast, we used BAN analysis as a way to rank genes based on the 

likelihood (Pnominal ≤ 0.05) that they are involved in a biological process important to bone 

(based on network connections to genes known to play a role in bone biology). We then 

identified genes most likely to be responsible for BMD GWAS associations by identifying 

BANs regulated by human eQTL that colocalize with BMD GWAS loci. Together, a gene 

being both a BAN in a GWAS locus and having a colocalizing eQTL is strong support of 

causality. This is supported by the observation that ~71% of the 66 BANs with colocalizing 
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eQTL were putative regulators of bone traits, based on a literature review and overlap with 

the “known bone gene” list.  

One advantage of our network approach was the ability to not only identify causal 

genes, but use network information to predict the cell-type through which these genes are 

likely acting. We demonstrate this idea by investigating the two novel BANs with 

colocalizing human eQTL from the royalblue_M module. The royalblue_M module was 

enriched in genes involved in bone formation and ossification, suggesting the module as a 

whole and its individual members were involved in osteoblast-driven processes. This 

prediction was supported by the role of genes in osteoblasts that were directly connected to 

Sertad4 and Glt8d2, the expression of the two genes in osteoblasts, and for Glt8d2, its 

regulation of BMD in vivo. Little is known regarding the specific biological processes that are 

likely impacted by Sertad4 and Glt8d2 in osteoblasts; however, it will be possible to utilize this 

information in future experiments designed to investigate their specific molecular functions. 

For example, Sertad4 was connected to Wnt16, Ror2, and Postn all of which play roles in 

various aspects of osteoblast/osteocyte function. Wnt signaling is a major driver of 

osteoblast-mediated bone formation and skeletal development 165. Interestingly, Wnt16 and 

Ror2 play central roles in canonical (Wnt16) and non-canonical (Ror2 in the Wnt5a/Ror2 

pathway) Wnt signaling 166 and have been shown to physically interact in chondrocytes 167. 

Postn has also been shown to influence Wnt signaling 167,168. These data suggest a possible role 

for Sertad4 in Wnt signaling.  

Despite their clinical importance, we know little about the genetics of bone traits 

other than BMD. Here, we set out to address this knowledge gap. Using the DO, we 

identified 28 QTL for a wide-range of complex bone traits. The QTL were mapped at high-
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resolution, most had 95% CIs < 1 Mbp 122. This precision, coupled with merge and eQTL 

analyses in DO mice, allowed us to identify a small number of candidate genes for many loci. 

Overlap of existing human BMD GWAS association and mouse loci was no more than what 

would be expected by chance, suggesting that our approach has highlighted biological 

processes impacting bone that are independent of those with the largest effects on BMD. 

This new knowledge has the potential to lead to novel pathways which could be targeted 

therapeutically to increase bone strength. Future studies extending the work presented here 

will lead to the identification of additional genes and further our understanding of the 

genetics of a broad range of complex skeletal traits. 

Using multiple approaches, we identified Qsox1 as responsible for at least part of the 

effect of the locus on Chr. 1 impacting bone morphology. We use the term “at least part” 

because it is clear that the Chr. 1 locus is complex. Using ML width as a proxy for all the 

bone morphology traits mapping to Chr. 1, the replacement of a single WSB/EiJ allele was 

associated with an increase in ML of 0.064 mm. Based on this, if Qsox1 was fully responsible 

for the Chr. 1 locus we would expect at least an ML increase of 0.128 mm in Qsox1 

knockout mice; however, the observed difference was 0.064 mm (50% of the expected 

difference). This could be due to differences in the effect of Qsox1 deletion in the DO 

compared to the SJL x B6 background of the Qsox1 knockout or to additional QTL in the 

Chr. 1 locus. The latter is supported by our identification of at least two QTL in the region. 

Further work will be needed to fully dissect this locus. 

Disulfide bonds are critical to the structure and function of numerous proteins 169. 

Most disulfide bonds are formed in the endoplasmic reticulum 170; however, the discovery of 

QSOX1 demonstrated that disulfide bonds in proteins can be formed extracellularly 164. Ilani 
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et al. 164 demonstrated that fibroblasts deficient in QSOX1 had a decrease in the number of 

disulfide bonds in matrix proteins. Moreover, the matrix formed by these cells was defective 

in supporting cell-matrix adhesion and lacked incorporation of the alpha-4 isoform of 

laminin. QSOX1 has also been associated with perturbation of the extracellular matrix in the 

context of cancer and tumor invasiveness 171,172. It is unclear at this point how QSOX1 

influences cortical bone mass; however, it likely involves modulation of the extracellular 

matrix.  

In summary, we have used a systems genetics analysis in DO mice to inform human 

GWAS and identify genetic determinants for a wide-range of complex skeletal traits. 

Through the use of multiple synergistic approaches, we have expanded our understanding of 

the genetics of BMD and osteoporosis. This work has the potential to serve as a framework 

for how to use the DO, and other mouse genetic reference populations, to complement and 

inform human genetic studies of complex disease. 
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2.5 Methods 

Diversity Outbred mouse population and tissue harvesting:  

A total of 619 (315 males, 304 females) Diversity Outbred (J:DO, JAX stock 

#0039376) mice, across 11 generations (gens. 23-33) were procured from The Jackson 

Laboratory at 4 weeks of age. DO mice were fed standard chow (Envigo Teklad LM-485 

irradiated mouse/rat sterilizable diet. Product # 7912). The mice were maintained on a 12-

hour light/12-hour dark cycle, at a temperature range of 60ºC-76ºC, with a humidity range 

of 20%-70%. Mice were injected with calcein (30 mg/g body weight) both 7 days and 1 day 

prior to sacrifice. Mice were weighed and fasted overnight prior to sacrifice. Mice were 

sacrificed at approximately 12 weeks of age (median: 86 days, range: 76-94 days). 

Immediately prior to sacrifice, mice were anesthetized with isoflurane, nose-anus length was 

recorded and blood collected via submandibular bleeding. At sacrifice, femoral morphology 

(length and width) was measured with digital calipers (Mitoyuto American, Aurora, IL). 

Right femora were wrapped in PBS soaked gauze and stored in PBS at -20°C. Right tibiae 

were stored in 70% EtOH at room temperature. Left femora were flushed of bone marrow 

(which was snap frozen and stored in liquid nitrogen, see below – Single-cell RNA-seq of 

bone marrow stromal cells exposed to osteogenic differentiation media in vitro) and were 

immediately homogenized in Trizol. Homogenates were stored at -80°C. Left tibiae were 

stored in 10% neutral buffered formalin at 4°C. Tail clips were collected and stored at -80°C. 

Measurement of trabecular and cortical microarchitecture:  

Right femora were scanned using a 10 μm isotropic voxel size on a desktop μCT40 

(Scanco Medical AG, Brüttisellen, Switzerland), following the Journal of Bone and Mineral 

Research guidelines for assessment of bone microstructure in rodents 173. Trabecular bone 
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architecture was analyzed in the endocortical region of the distal metaphysis. Variables 

computed for trabecular bone regions include: bone volume, BV/TV, trabecular number, 

thickness, separation, connectivity density and the structure model index, a measure of the 

plate versus rod-like nature of trabecular architecture. For cortical bone at the femoral 

midshaft, total cross-sectional area, cortical bone area, medullary area, cortical thickness, 

cortical porosity and area moments of inertia about principal axes were computed. 

Biomechanical testing:  

The right femur from each mouse was loaded to failure in four-point bending in the 

anterior to posterior direction, such that the posterior quadrant is subjected to tensile loads. 

The widths of the lower and upper supports of the four-point bending apparatus are 7 mm 

and 3 mm, respectively. Tests were conducted with a deflection rate of 0.05 mm/s using a 

servohydraulic materials test system (Instron Corp., Norwood, MA). The load and mid-span 

deflection were acquired directly at a sampling frequency of 200 Hz. Load-deflection curves 

were analyzed for strength (maximum load), stiffness (the slope of the initial portion of the 

curve), post-yield deflection, and total work. Post-yield deflection, which is a measure of 

ductility, is defined as the deflection at failure minus the deflection at yield. Yield is defined 

as a 10% reduction of stiffness relative to the initial (tangent) stiffness. Work, which is a 

measure of toughness, is defined as the area under the load-deflection curve. Femora were 

tested at room temperature and kept moist with phosphate buffered saline during all tests. 

Assessment of bone marrow adipose tissue (MAT): 

Fixed right tibiae, dissected free of soft tissues, were decalcified in EDTA for 20 

days, changing the EDTA every 3-4 days and stained for lipid using a 1:1 mixture of 2% 

aqueous osmium tetroxide (OsO4) and 5% potassium dichromate. Decalcified bones were 
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imaged using μCT performed in water with energy of 55 kVp, an integration time of 500 ms, 

and a maximum isometric voxel size of 10 μm (the “high” resolution setting with a 20mm 

sample holder) using a µCT35 (Scanco). To determine the position of the MAT within the 

medullary canal and to determine its change in volume, the bone was overlaid. MAT was 

recorded in 4 dimensions. 

Histomorphometry:  

Fixed right tibiae were sequentially dehydrated and infiltrated in graded steps with 

methyl methacrylate. Blocks were faced and 5 μm non-decalcified sections cut and stained 

with toludine blue to observe gross histology. This staining allows for the observation of 

osteoblast and osteoclast numbers, amount of unmineralized osteoid and the presence of 

mineralized bone. Histomorphometric parameters were analyzed on a computerized tablet 

using Osteomeasure software (Osteometrics, Atlanta, GA). Histomorphometric 

measurements were made on a fixed region just below the growth plate corresponding to the 

primary spongiosa. 

Bulk RNA isolation, sequencing and quantification:  

We isolated RNA from a randomly chosen subset (n=192, 96/sex) of the available 

mice at the time (mice number 1-417), constrained to have an equal number of male and 

female mice. Total RNA was isolated from marrow-depleted homogenates of the left 

femora, using the mirVana™ miRNA Isolation Kit (Life Technologies, Carlsbad, CA). Total 

RNA-Seq libraries were constructed using Illumina TruSeq Stranded Total RNA HT sample 

prep kits. Samples were sequenced to an average of 39 million 2 x 75 bp paired-end reads 

(total RNA-seq) on an Illumina NextSeq500 sequencer in the University of Virginia Center 

for Public Health Genomics Genome Sciences Laboratory (GSL). A custom bioinformatics 
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pipeline was used to quantify RNA-seq data. Briefly, RNA-seq FASTQ files were quality 

controlled using FASTQC (version 0.11.5) 174 and MultiQC (version 1.0.dev0) 175, aligned to 

the mm10 genome assembly with HISAT2 (version 2.0.5) 176, and quantified with Stringtie 

(version 1.3.3) 177. Read count information was then extracted with a Python script provided 

by the Stringtie website (prepDE.py). Finally, we filtered our gene set to include genes that 

had more than 6 reads, and more than 0.1 transcripts per million (TPM), in more than 38 

samples (20% of all samples). This filtration resulted in 23,648 genes remaining from an 

initial set of 53,801 genes. (Note that most of these genes were defined by StringTie 

internally as genes, but indicate loci – contiguous regions on the genome where the exons of 

transcripts overlap). Sequencing data is available on GEO at accession code 

GSE152708[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152708]. 

Bulk RNA differential expression analyses: 

RNA-seq data were subjected to a variance stabilizing transformation using the 

DESeq2 (version 1.20.0) R package178, and the 500 most variable genes were used to 

calculate the principal components using the PCA function from the FactoMineR (version 

2.4) R package179. For visualization, age was binarized into “high” and “low”, with “low” 

defined as age equal to, or less than, the median age at sacrifice (85 days) and “high” defined 

as age higher than 85 days. Differential expression was then performed using DESeq2, for 

both sex and bone strength (max load). For differential expression based on sex, we used a 

design formula of ~batch+age+sex. For bone strength, we binarized bone strength into 

“high” and “low” for each sex independently, using the median bone strength value for each 

sex (35.66 and 37.42 for males and females, respectively). Differential expression was 

performed using the following design formula: ~sex+batch+age+bone strength. Log2 fold 
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changes for both differential expression analyses were then shrunken using the lfcShrink 

function in DESeq2, using the adaptive t prior shrinkage estimator from the apeglm (version 

1.4.2) R package180. 

Mouse genotyping:  

DNA was collected from mouse tails from all 619 DO mice, using the PureLink 

Genomic DNA mini kit (Invitrogen). DNA was used for genotyping with the GigaMUGA 

array 123 by Neogen Genomics (GeneSeek; Lincoln, NE). Genotyping reports were pre-

processed for use with the qtl2 (version 0.20) R package 181 182 , and genotypes were encoded 

using directions and scripts from (kbroman.org/qtl2/pages/prep_do_data.html). Quality 

control was performed using the Argyle (version 0.2.2) R package 183, where samples were 

filtered to contain no more than 5% no calls and 50% heterozygous calls. Samples that failed 

QC were re-genotyped. Furthermore, genotyping markers were filtered to contain only tier 1 

and tier 2 markers. Markers that did not uniquely map to the genome were also removed. 

Finally, a qualitative threshold for the maximum number of no calls and a minimum number 

of homozygous calls was used to filter markers.  

We calculated genotype and allele probabilities, as well as kinship matrices using the 

qtl2 R package. Genotype probabilities were calculated using a hidden Markov model with 

an assumed genotyping error probability of 0.002, using the Carter-Falconer map function. 

Genotype probabilities were then reduced to allele probabilities, and allele probabilities were 

used to calculate kinship matrices, using the “leave one chromosome out” (LOCO) 

parameter. Kinship matrices were also calculated using the “overall” parameter for 

heritability calculations. 



63 
 

Further quality control was then performed 184, which led to the removal of several 

hundred more markers that had greater than 5% genotyping errors, after which genotype 

and allele probabilities and kinship matrices were recalculated. After the aforementioned 

successive marker filtration, 109,427 markers remained, out of 143,259 initial genotyping 

markers. As another metric for quality control, we calculated the frequencies of the eight 

founder genotypes of the DO.   

WGCNA network construction:   

Gene counts, as obtained above, were pruned to remove genes that had fewer than 

10 reads in more than 90% of samples. Genes not located on the autosomes or X 

chromosome were also removed. This led to the retention of 23,335 out of 23,648 genes. 

Variance-stabilizing transformation (DeSeq2 178) was applied, followed by RNA-seq batch 

correction using sex and age at sacrifice in days as covariates (sex was not included as a 

covariate in the sex-specific networks), using ComBat (sva (version 3.30.0) R package 185). 

We then used the WGCNA (version 1.68) R package to generate signed co-expression 

networks with a soft thresholding power of 4 (power=5 for male networks) 80,186. We used 

the blockwiseModules function to construct networks with a merge cut height of 0.15 and 

minimum module size of 30. WGCNA networks had 39, 45 and 40 modules for the sex-

combined, female and male networks, respectively. 

Bayesian network learning:  

Bayesian networks for each WGCNA module were learned with the bnlearn (version 

4.5) R package 187. Specifically, expression data for genes within a WGCNA module were 

obtained as above (WGCNA network construction), and these data were used to learn the 
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structure of the underlying Bayesian network using the Max-Min Hill Climbing algorithm 

(function mmhc in bnlearn). 

Construction of the “known bone gene” list:  

We constructed a list of bone genes using Gene Ontology (GO) terms and the 

Mouse Genome Informatics (MGI) database 188 189. Using AmiGO2, we downloaded GO 

terms for “osteo*”, “bone” and “ossif*”, using all three GO domains (cellular component, 

biological process and molecular function), without consideration of GO evidence codes 190. 

The resulting GO terms were pruned to remove some terms that were not related to bone 

function or regulation. We then used the MGI Human and Mouse Homology data table to 

convert human genes to their mouse homologs. We also downloaded human and mouse 

genes which had the terms “osteoporosis”, “bone mineral density”, “osteoblast”, 

“osteoclast”, and “osteocyte”, from MGI’s Human – Mouse: Disease Connection (HMDC) 

database. Human genes were converted to their mouse counterparts as above. GO and MGI 

derived genes were merged and duplicates were removed. Finally, we removed genes that 

were not expressed in our dataset. That is to say, they were not considered in generating the 

WGCNA modules or Bayesian networks.  

Bone Associated Node (BAN) analysis:  

We used a custom script that utilized the igraph (version 1.2.4.1) R package to 

perform BAN analysis 191. Briefly, within a Bayesian network underlying a WGCNA module, 

we counted the number of neighbors for each gene, based on a neighborhood step size of 3. 

Neighborhood sizes also included the gene itself. BANs were defined as genes that were 

more highly connected to bone genes than would be expected by chance. We merged all 
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genes from all Bayesian networks together in a matrix, and removed genes that were 

unconnected or only connected to 1 neighbor (neighborhood size ≤2). We then pruned all 

genes whose neighborhood size was greater than 1 standard deviation less than the mean 

neighborhood size across all modules. These pruning steps resulted in 13,009/17,264, 

11,861/16,446 and 11,877/17,042 genes remaining for the full, male and female Bayesian 

networks, respectively. 

Then, for each gene, we calculated if they were more connected to bone genes in our 

bone list (see construction of bone list above) than expected by chance using the 

hypergeometric distribution (phyper, R stats (version 3.5.1) package). The arguments were as 

follows: q: (number of genes in neighborhood that are also bone genes) – 1; m: total number 

of bone genes in our bone gene set; n: (number of genes in networks prior to pruning) – m; 

k: neighborhood size of the respective gene; lower.tail = false.  

GWAS-eQTL colocalization:  

We converted mouse genes with evidence of being a BAN (P≤0.05) to their human 

homologs using the MGI homolog data table. If the human homolog was within 1Mbp of a 

GWAS association, we obtained all eQTL associations within ± 200 kb of the GWAS 

association in all 48 tissues of version 7 of the Geneotype-Tissue Expression project 

(GTEx). These eQTL variants were colocalized with the GWAS variants, using the coloc.abf 

function from the R coloc (version 3.2.1) package 56. This returned posterior probabilities 

(PP) for five hypotheses: 

- H0: No association with either trait. 

- H1: Association with trait 1, not with trait 2. 
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- H2: Association with trait 2, not with trait 1. 

- H3: Association with traits 1 and 2, two independent SNPs. 

- H4: Association with traits 1 and 2, one shared SNP. 

Genes were considered colocalizing if PPH4 ≥ 0.75. 

Gene ontology:  

Gene ontology analysis for WGCNA modules was performed for each individual 

module using the topGO (version 2.32.0) package in R 192. Enrichment tests were performed 

for the “Molecular Function”, “Biological Process” and “Cellular Component” ontologies, 

using all genes in the network. Enrichment was performed using the “classic” algorithm with 

Fisher’s exact test. P-values were not corrected for multiple testing. 

Assessing the expression of Glt8d2 and Sertad4 in publicly available bone cell data:  

We used bioGPS expression data from GEO with the accession code of 

GSE10246[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10246]  to assay the 

expression of Sertad4, Glt8d2, and Qsox1 in osteoblasts 151. We also downloaded the data 

from GEO with the accession code 

GSE54461[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54461] to query 

expression in primary calvarial osteoblasts. 

Analysis of BMD data on Glt8d2-/- mice from the IMPC:  

The International Mouse Knockout Consortium 161 and the IMPC193 have generated 

and phenotyped mice harboring null alleles for Glt8d2 (Glt8d2tm1a(KOMP)Wtsi,Glt8d2-/-) (N=7 

females and N=7 males). Phenotypes for the appropriate controls (C57BL/6) were also 
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collected (N=1,466 females and N=1,477 males). A description of the battery of phenotypes 

collected on mutants can be found at 

(https://www.mousephenotype.org/impress/PipelineInfo?id=4).  The mice were 14 weeks 

of age at DEXA scanning and both sexes were included. We downloaded raw BMD, body 

weight and metadata for Glt8d2 mutants from the IMPC webportal 

[https://www.mousephenotype.org/data/charts?accession=MGI:1922032&allele_accession

_id=MGI:4364018&pipeline_stable_id=MGP_001&procedure_stable_id=IMPC_DXA_00

1&parameter_stable_id=IMPC_DXA_004_001&zygosity=homozygote&phenotyping_cente

r=WTSI]. These data were analyzed using the PhenStat (version 2.18.1) R package 194. 

PhenStat was developed to analyze data generated by the IMPC in which a large number of 

wild-type controls are phenotyped across a wide-time range in batches and experimental 

mutant animals are tested in small groups interspersed among wild-type batches. We used 

the Mixed Model framework in PhenStat to analyze BMD data. The mixed model 

framework starts with a full model (with fixed effects of genotype, sex, genotype x sex and 

weight and batch as a random effect) and ends with final reduced model and genotype effect 

evaluation procedures 194,195. 

QTL mapping:  

Phenotypes that notably deviated from normality were log10-transformed (the MAT 

phenotypes as well as PYD and Wpy were transformed after a constant of 1 was added). 

Then, QTL mapping with a single-QTL model was performed via a linear mixed model 

using the scan1 function of the qtl2 R package. A kinship matrix as calculated by the “leave 

one chromosome out” method was included. Mapping covariates were sex, age at sacrifice in 

days, bodyweight, and DO mouse generation. Peaks were then identified with a minimum 
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LOD score of 4 and a peak drop of 1.5 LODs. To identify significant QTL peaks, we 

permuted each phenotype scan 1000 times (using the scan1perm function of the qtl2 

package) with the same mapping covariates as above, and calculated the significance 

threshold for each phenotype at a 5% significance level. Heritability for the phenotypes was 

calculated using the est_herit function of the qtl2 R package, using the same covariates as 

above, but with a kinship matrix that was calculated using the “overall” argument. 

DO eQTL mapping:  

Variance stabilizing transformation was applied to gene read counts from above 

using the DESeq2 R package, followed by quantile-based inverse Normal transformation196. 

Then, hidden determinants of gene expression were calculated from these transformed 

counts, using Probabilistic Estimation of Expression Residuals (PEER (version 1.3))197. 48 

PEER factors were calculated using no intercept or covariates. Sex and the 48 PEER 

covariates were used as mapping covariates, and eQTL mapping was performed using the 

scan1 function, as above. To calculate a LOD score threshold, we randomly chose 50 genes 

and permuted them 1000 times, as above. Since all genes were transformed to conform to 

the same distribution, we found that using 50 was sufficient. Thresholds were set as the 

highest permuted LOD score each for autosomal chromosomes and the X-chromosome 

(10.89 and 11.55 LODs, respectively). Finally, we identified peaks as above, and defined 

eQTL as peaks that exceeded the LOD threshold and were no more than 1Mbp away from 

their respective transcript’s start site, as defined by the Stringtie output.  
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Merge analysis:  

We performed merge analysis,  a previously published approach, using the SNP-

association methods in the qtl2 R package 162,182. For each DO mouse QTL or eQTL peak, 

we imputed all variants within the 95% confidence interval of a peak, and tested each variant 

for association with the respective trait. This was performed using the scan1snps function of 

the qtl2 R package, with the same mapping covariates for QTL or eQTL, respectively.  

Then, we identified “top” variants by taking variants that were within 85% of the maximum 

SNP association’s LOD score. For conditional analyses using a variant, we performed the 

same QTL scan as above, but included the genotype of the respective SNP as an additive 

mapping covariate, encoding it as a 0, 0.5 or 1, for homozygous alternative, heterozygous or 

homozygous reference, respectively.  

BMD-GWAS overlap:  

To identify BMD GWAS loci that overlapped with our DO mouse associations, we 

defined a mouse association locus as the widest confidence interval given all QTL start and 

end CI positions mapping to each locus. We then used the UCSC liftOver tool 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) 198 (minimum ratio of bases that must remap 

= 0.1, minimum hit size in query = 100000) to convert the loci from mm10 to their syntenic 

hg19 positions. We then took all genome-wide significant SNPs (P ≤5 x 10-8) from the 

Morris et al. GWAS for eBMD and the Estrada et al. GWAS for FNBMD and LSBMD, and 

identified variants that overlapped with the syntenic mouse loci (GenomicRanges (version 

1.32.7) R package 199). 
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SIFT annotations:  

SIFT annotations for merge analysis missense variants were queried using Ensembl’s 

Variant Effect Predictor tool (https://useast.ensembl.org/Tools/VEP) 200. All options were 

left as default. 

Prior ML QTL mapping:  

The cohorts used for the earlier QTL mapping of ML consisted of 577 Diversity 

Outbred mice from breeding generations G10 and G11 163. G10 cohort mice consisted of 

both males and females fed a defined synthetic diet (D10001, Research Diets, New 

Brunswick, NJ), and were euthanized and analyzed at 12–15 weeks of age. G11 cohort mice 

were all females fed a defined synthetic diet (D10001, Research Diets, New Brunswick, NJ) 

until 6 weeks of age, and were then subsequently fed  either a high-fat, cholesterol-

containing (HFC) diet (20% fat, 1.25% cholesterol, and 0.5% cholic acid) or a low-fat, high 

protein diet (5% fat and 20.3% protein) (D12109C and D12083101, respectively, Research 

Diets, New Brunswick, NJ), and were euthanized and analyzed at 24–25 weeks of age. Mice 

were weighed and then euthanized by CO2 asphyxiation followed by cervical dislocation. 

Carcasses were frozen at -80°C. Subsequently, the femur was dissected and length, AP 

width, and ML width were measured two independent times to 0.01 mm using digital 

calipers. Mice were genotyped using the MegaMUGA SNP array (GeneSeek; Lincoln, NE) 

designed with 77,800 SNP markers, and QTL mapping was performed as above, but with 

the inclusion of sex, diet, age and weight at sacrifice as additive covariates. 

 

 

https://useast.ensembl.org/Tools/VEP
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Generation of Qsox1 mutant mice:  

Qsox1 knockout mice used in this study were generated using the CRISPR/Cas9 

genome editing technique essentially as reported in Mesner, et al201.  Briefly, Cas9 enzyme 

that was injected into B6SJLF2 embryos (described below) was purchased from (PNA Bio) 

while the guide RNA (sgRNA) was designed and synthesized as follows: the 20 nucleotide 

(nt) sequence that would be used to generate the sgRNA was chosen using the CRISPR 

design tool developed by the Zhang lab (crispr.mit.edu). The chosen sequence and its 

genome map position is homologous to a region in Exon 1 that is ~225 bp 3’ of the 

translation start site and ~20bp 5’ of the Exon1/Intron1 boundary (Supplementary Data 

2.22). To generate the sgRNA that would be used for injections oligonucleotides of the 

chosen sequence, as well as the reverse complement (Supplementary Data 2.22, primers 1 

and 2, respectively), were synthesized such that an additional 4 nts (CACC and AAAC) were 

added at the 5’ ends of the oligonucleotides for cloning purposes. These oligonucleotides 

were annealed to each other by combining equal molar amounts, heating to 90°C for 5 min. 

and allowing the mixture to passively cool to room temperature. The annealed 

oligonucleotides were combined with BbsI digested pX330 plasmid vector (provided by the 

Zhang lab through Addgene; https://www.addgene.org/) and T4 DNA ligase (NEB) and 

subsequently used to transform Stbl3 competent bacteria (Thermo Fisher) following the 

manufacturer's’ protocols. Plasmid DNAs from selected clones were sequenced from primer 

3 (Supplementary Data 2.22) and DNA that demonstrated accurate sequence and position 

of the guide were used for all downstream applications. The DNA template used in the 

synthesis of the sgRNA was the product of a PCR using the verified plasmid DNA and 

primers 4 and 5 (Supplementary Data 2.22). The sgRNA was synthesized via in vitro 

transcription (IVT) by way of the MAXIscript T7 kit (Thermo Fisher) following the 
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manufacturer's protocol. sgRNAs were purified and concentrated using the RNeasy Plus 

Micro kit (Qiagen) following the manufacturer's protocol. 

B6SJLF1 female mice (Jackson Laboratory) were super-ovulated and mated with 

B6SJLF1 males. The females were sacrificed and the fertilized eggs (B6SJLF2 embryos) were 

isolated from the oviducts. The fertilized eggs were co-injected with the purified Cas9 

enzyme (50 ng/μl) and sgRNA (30 ng/μl) under a Leica inverted microscope equipped with 

Leitz micromanipulators (Leica Microsystems). Injected eggs were incubated overnight in 

KSOM-AA medium (Millipore Sigma). Two-cell stage embryos were implanted on the 

following day into the oviducts of pseudopregnant ICR female mice (Envigo). Pups were 

initially screened by PCR of tail DNA using primers 6 and 7 with subsequent sequencing of 

the resultant product from primer 8, when the PCR products suggested a relatively large 

deletion had occurred in at least one of the alleles (Supplementary Data 2.22).  For those 

samples which indicated a small or no deletion had occurred, PCR of tail DNA using 

primers 9 and 10 was performed with subsequent sequencing of the resultant products from 

primer 11 (Supplementary Data 2.22).  Finally, deletions were fully characterized by 

ligating, with T4 DNA ligase (NEB), the PCR products from either primer pairs 6/7 or 9/10 

with the plasmid vector pCR 2.1 (Thermo Fisher) followed by transformation of One Shot 

Top 10 chemically competent cells (Thermo Fisher) following the manufacturers 

recommendations (Supplementary Data 2.22). 

The resulting founder mice (see Supplementary Data 2.20) were mated to 

C57BL/6J mice (Jackson Laboratory), with CRISPR/Cas9-deletion heterozygous F1 

offspring from the 1st and 2nd litters mated to generate the F2 offspring used in the study of 

bone related properties reported herein.  In addition, mouse B (Supplementary Data 2.20) 

was subsequently mated to an SJL/J male (Jackson Laboratory), and the F2 offspring from 
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the heterozygous F1 crosses, as outlined above, were also used in this study.  All F1 and F2 

mice from all deletion ‘strains’ were genotyped using primer pairs 9/10, with the PCR 

products sequenced from primer 11 for mice possessing the 7+6 and 1bp deletions 

(Supplementary Data 2.22).  An additional PCR using primers 6 and 7 was performed with 

tail DNA from mice carrying the 1347 bp and 756 bp deletions; the products from this 2nd 

PCR assisted in determining between heterozygous and homozygous deleted genotypes 

(Supplementary Data 2.22). 

ML was measured for both femurs using calipers on a population of 12-week old F2 

mice and ML was averaged between the two femurs.  A linear model with genotype, 

mutation type, length, and weight was generated separately for males and females. For the 

sex-combined data, a sex term was also included in the model. ANOVAs were performed 

using the Anova function from the car (version 3.0.7) R package 202. Lsmeans were calculated 

using the emmeans (version 1.4.1) R package 203. The same procedure was performed for the 

AP and FL sex-combined data. 

We randomly selected 50 male F2 mice (25 wt + 25 mut) from the same population, 

and microarchitectural phenotypes were measured as above, but on left femurs. Bone 

strength was measured as above but in both the AP and ML orientations. A linear model 

with genotype, mutation type and weight was generated, and lsmeans were calculated using 

the emmeans R package 203. 

Measuring Qsox1 activity in serum:  

Serum was collected via submandibular bleeding from isoflurane anesthetized mice, 

prior to sacrifice and isolation of femurs for bone trait analysis.  Blood samples were 
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incubated at room temperature for 20-30 m followed by centrifugation at 2000 xg for 10 m 

at 4°C.  The supernatants were transferred to fresh tubes and centrifuged again as described 

above.  The 2nd supernatant of each sample was separated into 50-100 µl aliquots, snap 

frozen on dry ice and stored at -70°C.  Only ‘clear’ serum samples were used for determining 

QSOX1 activity, because pink-red colored samples had slight-moderate activity, presumably 

due to sulfhydryl oxidase enzymes released from lysed red blood cells.  

Sulfhydryl oxidase activity was determined as outlined in Israel et al., 2014 204 with 

minor modifications.  Briefly, serum samples were thawed on wet ice whereupon 5 µl was 

used in a 200 µl final reaction volume which consisted of 50 mM KPO4, pH7.5, 1mM 

EDTA (both from Sigma), 10 µM Amplex UltraRed (Thermo Fisher), 0.5% (v/v) Tween 80 

(Surfact-Amps, low peroxide; Thermo Fisher), 50 nM Horseradish Peroxidase (Sigma), and 

initiated with the addition of dithiothreitol (Sigma) to 50 µM initial concentration.  The 

reactions were monitored with the ‘high-sensitive dsDNA channel’ of a Qubit Fluorimeter 

(Thermo Fisher) by measuring the fluorescence every 15-30s for 10m.  The assay was 

calibrated by adding varying concentrations (0-3.2 µM) of freshly diluted H2O2 (Sigma) to the 

reaction mixture minus serum.  Enzyme activity was expressed in units of (pmol 

H2O2/min/µl serum) and typically calculated within the first several minutes of the reaction 

for wild-type and heterozygous mutant mice. Enzyme activity was calculated during the 

entire 10 minutes of the reaction for homozygous mutant genotypes. 

Single-cell RNA-seq of bone marrow stromal cells exposed to osteogenic differentiation media in vitro: 

Bone marrow isolation:  

The left femur was isolated and cleaned thoroughly of all muscle tissue followed by 

removal of its distal epiphysis. The marrow was exuded by centrifugation at 2000 xg for 30 
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seconds into a sterile tube containing 35 μl freezing media (90% FBS, 10% DMSO). The 

marrow was then triturated 6 times on ice after addition of 150 μl ice cold freezing media 

and again after further addition of 1ml ice cold freezing media until no visible clumps 

remained prior to being placed into a Mr. Frosty Freezing Container (Thermo Scientific) and 

stored overnight at -80o C. Samples were transferred the following day to liquid nitrogen for 

long term storage.  

Bone marrow culturing:  

Previously frozen bone marrow samples from 5 DO mice (mouse IDs: 12, 45, 48, 

50, and 84) were thawed at 37o C, resuspended into 5 ml bone marrow growth media (Alpha 

MEM, 10% FBS, 1% Pen/Strep, 0.01% Glutamax), pelleted in a Sorvall tabletop centrifuge 

at 212 xg for 5 minutes at room temperature and then subjected to red blood cell lysis by 

resuspending and triturating the resultant pellet into 5 ml 0.2% NaCl for 20 seconds, 

followed by addition and thorough mixing of 1.6% NaCl. Cells were pelleted again, 

resuspended into 1 ml bone marrow growth media, plated into one well per sample of a 48 

well tissue culture plate and placed into a 37o C, 5% CO2 incubator undisturbed for 3 days 

post-plating, at which time the media was aspirated, cells were washed with 1 ml DPBS once 

and bone marrow growth media was replaced at 300 μl volume. The process was repeated 

through day 5 post-plating. At day 6 post-plating, cells were washed in same manner; 

however, we performed a standard in vitro osteoblast differentiation protocol, by replacing 

bone marrow growth media with 300 μl osteogenic differentiation media (Alpha MEM, 10% 

FBS, 1% Penicillin Streptomycin, 0.01% Glutamax, 50 mg/ml Ascorbic Acid, 1M B-

glycerophosphate, 100μM Dexamethasome). Cells undergoing differentiation were assessed 

for accumulated mineralization on days 4, 6, 8 and 10 of the differentiation process as 
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follows: IRDye 680 BoneTag Optical Probe (Li-Cor Biosciences, product #926-09374) was 

reconstituted according to the manufacturer’s instructions. On days 3, 5, 7 and 9, 0.006 

nmoles were added to each sample. Twenty-four hours later the cells were washed with 0.5 

mls DPBS (Gibco, product #14190250) and media was replaced. The cells were then placed 

on the Odyssey CLx Imaging System (Li-Cor Biosciences) to measure mineralization density 

as reflected by IRDye 680 BoneTag Optical Probe incorporation. Final values for 

mineralization were computed by subtracting the average number of fluorescent units 

recorded in designated background wells from the number of fluorescent units recorded in 

the sample wells. 

RNA isolation:  

The isolation procedure outlined below was inspired by 205. Mineralized cultures were 

washed twice with Dulbecco’s Phosphate Buffered Saline (DPBS). 0.5ml 60mM EDTA (pH 

7.4, made in DPBS) was added for 15-minute room temperature (RT) incubation. EDTA 

solution was aspirated and replaced for a second 15-minute RT incubation. Cultures were 

then washed with 0.5ml Hank’s Balanced Salt Solution (HBSS) and incubated with 0.5ml 

8mg/ml collagenase in HBSS/4mM CaCl2 for 10 minutes at 37o C with shaking. Cultures 

were triturated 10x and incubated for an additional 20 minutes and 37º C. Cultures were 

then transferred to a 1.5ml Eppendorf tube, and spun at 500 xg for 5 minutes at RT in a 

Sorvall tabletop centrifuge. Cultures were resuspended in 0.5ml 0.25% trypsin-EDTA 

(Gibco, Gaithersburg, MD) and incubated for 15 minutes at 37o C. Cultures were then 

triturated and incubated for an additional 15 minutes. 0.5ml of media were added, triturated 

and spun at 500 xg for 5 minutes at RT. Cultures were then resuspended in 0.5ml bone 

marrow differentiation media and cells were counted. 
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Library preparation, sequencing and analysis:  

The samples were pooled and concentrated to 800 cells/μl in sterile PBS 

supplemented with 0.1% BSA. The single cell suspension was loaded into a 10x Chromium 

Controller (10X Genomics, Pleasanton, CA, USA), aiming to capture 8,000 cells, with the 

Single Cell 3’ v2 reagent kit, according to the manufacturer’s protocol. Following GEM 

capturing and lysis, cDNA was amplified (13 cycles) and the manufacturer’s protocol was 

followed to generate the sequencing library. The library was sequenced on the Illumina 

NextSeq500 and the raw sequencing data was processed using CellRanger toolkit (version 

2.0.1). The reads were mapped to the mm10 mouse reference genome assembly using STAR 

(version 2.5.1b) 206. Overall, 7,188 cells were sequenced, to a mean depth of 57,717 reads per 

cell. Sequencing data is available on GEO at accession code 

GSE152806[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152806]. 

Analysis was performed using Seurat (version 3.1.4) 207,208. Features detected in at 

least 3 cells where at least 200 features were detected were used. We then filtered out cells 

with less than 800 reads and more than 5800 reads, as well as cells with 10% or more 

mitochondrial reads. This resulted in 7,105 remaining cells. Expression measurements were 

multiplied by 10,000 and log normalized, and the 3000 most variable features were identified. 

The data were then scaled. Cells were then scored by cell cycle markers, and these scores, as 

well as the percentage of mitochondrial reads, were regressed out 209. Finally, clusters were 

found with a resolution of 1 and the UMAP was generated. An outlier cluster consisting of 

13 cells was removed, resulting in 7,092 remaining cells. Cluster cell types were manually 

annotated after performing differential expression analyses of the expression of genes in 
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each cluster relative to all other clusters (Supplementary Data 2.15), using the Seurat 

FindAllMarkers function, with the only.pos=TRUE argument. 

2.6 Data availability  

Raw genotyping data, calculated genotype and allele probabilities, and R/qtl2 cross 

files are available from Zenodo at DOI:10.5281/zenodo.4265417 

[https://zenodo.org/record/4265417] 210.  Raw sequencing data is available from the NCBI 

Gene Expression Omnibus database with accession codes GSE152708 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152708] and GSE152806 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152806] . Mapped DO mouse 

QTL and eQTL can be viewed at our web-based tool [http://qtlviewer.uvadcos.io/]. 

eBMD GWAS summary statistics used for this study are available from GEFOS 

[http://www.gefos.org/?q=content/data-release-2018], as are the FN and LS BMD GWAS 

summary statistics [http://www.gefos.org/?q=content/data-release-2012].     

We used bioGPS expression data from GEO with the accession code of 

GSE10246[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10246] to assay the 

expression of Sertad4, Glt8d2, and Qsox1 in osteoblasts. We also downloaded the data from 

GEO with the accession code 

GSE54461[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54461] to query 

expression in primary calvarial osteoblasts. Glt8d2 knockout data was downloaded from the 

IMPC 

[https://www.mousephenotype.org/data/charts?accession=MGI:1922032&allele_accession

_id=MGI:4364018&pipeline_stable_id=MGP_001&procedure_stable_id=IMPC_DXA_00

1&parameter_stable_id=IMPC_DXA_004_001&zygosity=homozygote&phenotyping_cente

http://qtlviewer.uvadcos.io/
http://www.gefos.org/?q=content/data-release-2018
http://www.gefos.org/?q=content/data-release-2012
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r=WTSI]. Mouse-Human homologs were obtained from MGI 

[http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt]. 

We also obtained data from the MGI Human-Mouse:Disease Connection database 

[http://www.informatics.jax.org/diseasePortal]. Gene Ontologies were obtained from 

AmiGO2 [http://amigo.geneontology.org/amigo]. 

Finally, we obtained expression data from version 7 of the Genotype-Tissue Expression 

project [https://gtexportal.org/home/datasets]. 

2.7 Code availability 

Analysis code is available on GitHub [https://github.com/basel-

maher/DO_project]211. 
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3.1 Abstract 

Genome-wide association studies (GWASs) for bone mineral density (BMD) have 

identified over 1,100 associations to date. However, identifying causal genes implicated by 

such studies has been challenging. Recent advances in the development of transcriptome 

reference datasets and computational approaches such as transcriptome-wide association 

studies (TWASs) and expression quantitative trait loci (eQTL) colocalization have proven to 

be informative in identifying putatively causal genes underlying GWAS associations. Here, 

we used TWAS/eQTL colocalization in conjunction with transcriptomic data from the 

Genotype-Tissue Expression (GTEx) project to identify potentially causal genes for the 

largest BMD GWAS performed to date. Using this approach, we identified 512 genes as 

significant (Bonferroni ≤ 0.05) using both TWAS and eQTL colocalization. This set of 

genes was enriched for regulators of BMD and members of bone relevant biological 

processes. To investigate the significance of our findings, we selected PPP6R3, the gene with 

the strongest support from our analysis which was not previously implicated in the 

regulation of BMD, for further investigation. We observed that Ppp6r3 deletion in mice 

decreased BMD. In this work, we provide an updated resource of putatively causal BMD 

genes and demonstrate that PPP6R3 is a putatively causal BMD GWAS gene. These data 

increase our understanding of the genetics of BMD and provide further evidence for the 

utility of combined TWAS/colocalization approaches in untangling the genetics of complex 

traits. 
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3.2 Introduction 

Osteoporosis is a disease characterized by low bone mineral density (BMD), 

decreased bone strength, and an increased risk of fracture that affects over 10 million 

individuals in the U.S. 4,7. BMD is the single strongest predictor of fracture and a highly 

heritable quantitative trait 212 10 8.  Over the last decade, genome-wide association studies 

(GWASs) have identified over 1,100 independent associations for BMD 16,17,19. However, 

despite the success of GWAS, few of the underlying causal genes have been identified 18,213. 

One of the main difficulties in GWAS gene discovery is that the vast majority 

(>90%) of associations are driven by non-coding variation 214,215. Over the last decade, 

approaches such as transcriptome-wide association studies (TWASs) and expression 

quantitative trait locus (eQTL) colocalization, have been developed which leverage 

transcriptomic data in order to inform gene discovery by connecting non-coding disease 

associated variants to changes in transcript levels 56,57,66,68,73. These approaches have proven 

successful for a wide array of diseases and disease-associated quantitative traits 73,216,217. 

However, the osteoporosis field has lagged behind such efforts, due to the limited number 

of large-scale bone-related transcriptomic datasets. 

In a TWAS, genetic predictors of gene expression (e.g., local eQTL - sets of genetic 

variants that influence the expression of a gene in close proximity 218) identified in a 

reference population (e.g., the Genotype-Tissue Expression (GTEx) project 49) are used to 

impute gene expression in a GWAS cohort. Components of gene expression due to genetic 

variation are then associated with a disease or disease-associated quantitative trait. Genes 

identified by TWAS are often located in GWAS associations, suggesting that the genetic 

regulation of their expression is the mechanism underlying such associations. Several tools 
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(e.g., FUSION, PrediXcan, MultiXcan 66,67,69) have been developed to perform TWASs. Most 

of these tools use GWAS summary statistics, making TWAS widely applicable to large 

GWAS datasets. In contrast, eQTL colocalization is a statistical approach that determines if 

there is a shared genetic basis for two associations (e.g., a local eQTL and BMD GWAS 

locus). Recently, it has been demonstrated that prioritizing genes using both TWAS and 

eQTL colocalization provides a way to identify genes with the strongest support for 

causality68,73. 

The GTEx project has generated RNA-seq data on over 50 tissues across hundreds 

of individuals 50. Even though data on the tissues/cell-types likely to be most relevant to 

BMD (bone or bone cells) were not included, the project demonstrated that many 

expression quantitative trait loci (eQTL) were shared across tissues 50,51. Additionally, it is 

well known that effects in a wide-array of non-bone cell-types and tissues can impact bone 

and BMD 219,220. As a result, we sought to use the GTEx resource in conjunction with TWAS 

and eQTL colocalization to leverage non-bone gene expression data to identify putatively 

causal genes underlying BMD GWAS. 

Here, we performed TWAS and eQTL colocalization using the GTEx resource and 

the largest BMD GWAS performed to date to identify potentially causal genes 19. Using this 

approach we identified 512 genes significantly associated via TWAS with a significant 

colocalizing eQTL. To investigate the significance of our findings we selected Protein 

Phosphatase 6 Regulatory Subunit 3 (PPP6R3), the gene with the strongest support not 

previously implicated in the regulation of BMD, for further investigation. We demonstrate 

using mutant mice that Ppp6r3 is a regulator of lumbar spine BMD. These results highlight 
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the power of leveraging GTEx data, even in the absence of data from the most relevant 

tissue/cell-types, to increase our understanding of the genetic architecture of BMD. 

 

3.3 Results 

3.3.1 TWAS and eQTL colocalization identify potentially causal BMD GWAS genes 

To identify potentially causal genes responsible for BMD GWAS associations, we 

combined TWAS and eQTL colocalization using GTEx data (Figure 3.1A). We began by 

performing a TWAS using reference gene expression predictions from GTEx (Version 8; 49 

tissues) and the largest GWAS performed to date for heel estimated BMD (eBMD) (>1,100 

independent associations) 19,50. The analysis was performed using S-MultiXcan, which 

allowed us to leverage information across all 49 GTEx tissues 69. Our analysis focused on 

protein-coding genes (excluded non-coding genes). A total of 2,156 protein-coding genes 

were significantly (Bonferroni-adjusted P-value ≤ 0.05) associated with eBMD 

(Supplementary Data 3.1).  

Next, we identified colocalizing eQTL from each of the 49 tissues in GTEx using 

fastENLOC 57,73. We identified 1,182 colocalizing protein-coding genes with a regional 

colocalization probability (RCP) of 0.1 or greater (Supplementary Data 3.2). In total, 512 

protein-coding genes were significant in both the TWAS and eQTL colocalization analyses 

(Table 3.1 and Supplementary Data 3.3). Among the identified genes were many with 

well-known roles in the regulation of BMD, such as RUNX2 (Figure 3.1B), IGF1, and 

LRP6, as well as novel genes such as RERE (Figure 3.1C). Overall, the identified genes had 

significantly colocalizing eQTL in all 49 GTEx tissues, with eQTL from cultured fibroblasts 
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(132 genes), subcutaneous adipose tissue (117 genes), tibial artery (115 genes) and tibial 

nerve (114 genes) exhibiting the highest number of significant colocalizations 

(Supplementary Data 3.4). TWAS predictors were only generated for genes on autosomes 

and of the 1,103 independent associations identified by Morris, et al.19 , 1,097 were 

autosomal.  For each of these, we defined a locus as the region consisting of ± 1 Mbp 

around each association. Of the 1,097 loci, almost half (542; 49%) of the loci contained at 

least one of the 512 prioritized genes. Most loci overlapped one gene (mean = 1.7, median = 

1); however, 184 loci overlapped multiple genes, including a locus on Chromosome (Chr) 20 

(lead SNP rs6142137) which contained 9 prioritized genes. (Figure 3.1D).  

 

3.3.2 Characterization of genes identified by TWAS/eQTL colocalization 

To evaluate the ability of the combined TWAS/colocalization approach to identify 

genes previously implicated in the regulation of BMD, other bone traits, or the activity of 

bone cells, we queried the presence of “known bone genes” within the list of the 512 

prioritized protein-coding genes. To do so, we created a database-curated set of genes 

previously implicated in the regulation of bone processes (henceforth referred to as our 

“known bone genes” list, N=1,399, Supplementary Data 3.5). Of the 512 genes identified 

above, 66 (12.9%) were known bone genes, representing a significant enrichment (odds ratio 

= 1.72; P = 1.0 x 10-4) over what would be expected by chance (Supplementary Data 3.6). 

We also performed a Gene Ontology enrichment analysis of the 512 prioritized 

genes. We observed enrichments in several bone-relevant ontologies, such as “regulation of 

ossification” (P=2.6 x 10-5), “skeletal system development” (P=2.8 x 10-5), and “regulation of 

osteoblast differentiation” (P=8.7 x 10-5) (Figure 3.2A, Supplementary Data 3.7).  
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Figure 3.1 TWAS and eQTL colocalization identify potentially causal BMD GWAS genes. 
A) Overview of the analysis. The human image was obtained from BioRender.com.  TWAS/colocalization plot for 
genes in the locus around RUNX2 (B) and RERE (C). The –log10 Bonferroni-adjusted P-values from the 
TWAS analysis (top panel) and the maximum RCPs from the colocalization analyses (bottom panel). Genes 
alternate in color for visual clarity. Triangles represent RUNX2 (B) and RERE (C). D) Distribution of 
prioritized genes within eBMD GWAS loci. 
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Table 3.1 Top 10 protein-coding genes significant by colocalization (RCP ≥0.1) and TWAS, sorted by 
TWAS P-value. 

 

The International Mouse Phenotype Consortium (IMPC) has recently measured 

whole body BMD on hundreds of mouse knockouts 110,193. We searched the IMPC database 

for any of the 512 genes identified by TWAS and eQTL colocalization. Of the 512, 142 

(27.7%) had been tested by the IMPC and 64 (12.5% of the 512 prioritized genes, 45% of 

the 142 IMPC-tested genes) had a nominally significant (P≤0.05) alteration of whole body 

BMD in knockout/knockdown mice, compared to controls. Of the 64, 49 (76.5%) were not 

members of the “known bone gene” list. 

An example of one of the 64 novel genes is GPATCH1, located within a GWAS 

association on human chromosome 19q13.11. Of all the genes in the region, GPATCH1 had 

the strongest TWAS association (P=3.44 x 10-226) (Figure 3.2B) and the strongest eQTL 

colocalization (whole blood, RCP=0.36) (Figures 3.2B-D).  

Gene Tissue with greatest RCP Max. RCP TWAS P-value 
(Bonferroni) 

SPTBN1 Cells_Cultured_Fibroblasts 0.9469 <5 x 10-324 
CCDC170 Spleen 0.6582 <5 x 10-324 
FAM3C Artery_Tibial 0.4917 <5 x 10-324 
SEPT5 Skin_Sun_Exposed 0.4868 2.26 x 10-286 

FGFRL1 Cells_Cultured_Fibroblasts 0.1611 5.31 x 10-272 
GREM2 Cells_Cultured_Fibroblasts 0.9998 4.31 x 10-257 

GPATCH1 Whole_Blood 0.3564 3.44 x 10-226 

RHPN2 Pituitary 0.2181 8.71 x 10-221 

BMP4 Brain_Cortex 0.5468 5.49 x 10-169 

RUNX2 Esophagus_Gastroesophageal_Junction 0.2372 1.99 x 10-146 
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Figure 3.2 TWAS and eQTL colocalization identify GPATCH1 as a novel potentially causal BMD 
GWAS gene. A) The top 40 terms from a Gene Ontology analysis of the 512 potentially causal BMD genes identified by 
our analysis. Terms with clear relevance to bone are highlighted in red. Only terms from the “Biological Process” (BP) sub-
ontology are listed. B) TWAS/colocalization plot for genes in the locus around GPATCH1 (± 1.5 Mbp). The –log10 
Bonferroni-adjusted P-values from the TWAS analysis (top panel) and the maximum RCPs from the colocalization analyses 
(bottom panel). Genes alternate in color for visual clarity. Triangles represent GPATCH1. C) Mirrorplot showing eBMD 
GWAS locus (top panel) and colocalizing GPATCH1 eQTL in whole blood (bottom panel). SNPs are colored by their 
LD with rs11881367 (purple), the most significant GWAS SNP in the locus. D) Scatterplot of –log10 P-values for 
GPATCH1 eQTL versus eBMD GWAS SNPs. SNPs are colored by their LD with rs11881367 (purple). E) Bone 
mineral density (BMD) in Gpatch1 knockdown mice. N=7 females and N=4 males for Gpatch1+/- mice, N=880 females 
and N=906 males for Gpatch1+/+ mice. Boxplots indicate the median (middle line), the 25th and 75th percentiles (box) 
and the whiskers extend to 1.5 * IQR.  
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The eQTL and BMD GWAS allele effects for the top SNPs were in the same 

direction, suggesting that decreasing the expression of GPATCH1 would lead to decreased 

BMD. BMD data from the IMPC showed that female mice heterozygous for a Gpatch1 null 

allele had decreased BMD (P=2.17 x 10-8) (Figure 3.2E). Together, these data suggest that 

many of the genes identified by the combined TWAS/colocalization approach are likely 

causal BMD GWAS genes. 

 

3.3.3 PPP6R3 is a candidate causal gene for a GWAS association on Chr. 11 

To identify novel candidate genes for functional validation, we focused on genes 

with the strongest evidence of being causal. To do so, we increased the colocalization RCP 

threshold to 0.5, and then sorted genes based on TWAS Bonferroni-adjusted P-values. 

Furthermore, we constrained the list of candidates for functional validation to genes which 

were not members of the “known bone gene” list or genes with a nominal (P≤0.05) 

alteration in whole-body BMD as determined by the IMPC. This yielded 137 putatively 

causal BMD genes (Table 3.2, Supplementary Data 3.8).  

Though it was not on the “known bone gene” list, the first gene ranked by TWAS P-

value, SPTBN1, has been demonstrated to play a role in the regulation of BMD 59. The 

second, PPP6R3, has not been previously implicated in the regulation of BMD. PPP6R3 is 

located on human Chr. 11 within 1 Mbp of seven independent eBMD GWAS SNPs 

identified by Morris et al. 19 (subsequently referred to as “eBMD lead SNPs”) (Figure 3.3A). 

Of all the protein-coding genes (N=29) in the ~1.8 Mbp region surrounding PPP6R3, its 

expression was the most significantly associated with eBMD by TWAS (Bonferroni = 5.7 x 

10-93) (Figure 3.3B). 
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Table 3.2 Top 10 novel protein-coding genes significant by colocalization (RCP ≥0.5) and TWAS, sorted 
by TWAS P-value. 

Gene Tissue with greatest RCP Max. RCP TWAS P-value 
(Bonferroni) 

SPTBN1 Cells_Cultured_fibroblasts 0.9469 <5 x 10-324 

PPP6R3 Thyroid 0.5291 5.7 x 10-93 

BARX1 Colon_Transverse 0.7764 6.36 x 10-63 

MEOX2 Brain_Nucleus_accumbens_basal_ganglia 0.6286 3.21 x 10-53 

RERE Adipose_Subcutaneous 0.6431 6.95 x 10-46 

SIPA1 Nerve_Tibial 0.9981 4.26 x 10-41 

CAPZB Testis 0.6716 3.64 x 10-33 

B4GALNT3 Artery_Aorta 0.9241 2.67 x 10-33 

TRPC4AP Breast_Mammary_Tissue 0.5577 8.62 x 10-31 

AXL Minor_Salivary_Gland 0.6205 9.74 x 10-31 

 

Furthermore, PPP6R3 was the only gene in the region with eQTL (in four GTEx tissues, 

thyroid, ovary, brain_putamen_basal_ganglia, and stomach with RCPs = 0.53, 0.50, 0.28 and 

0.14, respectively) that colocalized with at least one of the eBMD associations (Figure 3.3B). 

Based on these data, we chose to further investigate PPP6R3 as a potentially causal BMD 

gene. 

We first determined which of the seven associations colocalized with the PPP6R3 

eQTL (Figure 3.3C). The most significant PPP6R3 eQTL SNP in thyroid tissue (the tissue 

with the highest RCP) was rs10047483 (Chr. 11, 68.464237 Mbp) (PPP6R3 eQTL P = 6.99 x 

10-8, eBMD GWAS P = 1.2 x 10-100) located in intron 1 of PPP6R3.  The most significant 

eBMD lead SNP in the locus was rs11228240 (Chr. 11, 68.450822 Mbp, eBMD GWAS P = 

6.6 X 10-101, PPP6R3 eQTL P = 3.7 X 10-6), located upstream of PPP6R3. Consistent with 
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the colocalization analysis, these two variants are in high LD (r2=0.941) and rs10047483 does 

not exhibit strong LD (r2 < 0.104) with any of the other six eBMD lead SNPs in the locus. 

The eQTL and BMD GWAS allele effects for rs10047483 were opposing, suggesting that a 

decrease in the expression of PPP6R3 would lead to an increase in BMD. 

A recent fracture GWAS identified 14 significant associations, one of which was 

located in the PPP6R3 region (rs35989399, Chr. 11, 68.622433 Mbp) 19. We analyzed the 

fracture GWAS in the same manner as we did above for eBMD. We found that PPP6R3 

expression when analyzed by TWAS was significant for fracture (TWAS Bonferroni-pval = 

6.0 x 10-3) and the same PPP6R3 eQTL colocalized with the fracture association (RCP = 

0.49 in ovary, RCP = 0.36 in thyroid) (Figure 3.3D). Together, these data highlight PPP6R3 

as a strong candidate for one of the seven eBMD/fracture associations in this region. 

 

3.3.4 PPP6R3 is a regulator of femoral geometry, BMD, and vertebral 

microarchitecture 

To assess the effects of PPP6R3 expression on bone phenotypes, we characterized 

mice harboring a gene trap allele (Ppp6r3tm1a(KOMP)Wtsi) (Figure 3.4A). We intercrossed mice 

heterozygous for the mutant allele to generate mice of all three genotypes (wild-type (WT), 

heterozygous (HET), and mutant (MUT)). The absence of PPP6R3 protein in MUT mice 

was confirmed through Western blotting (Figure 3.4B).  

The BMD analyses presented above used heel eBMD GWAS data. We used these 

data because they represent the largest, most well-powered BMD GWAS to date 16. 

However, to determine whether perturbation of Ppp6r3 would be expected to impact 
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femoral or lumbar spine BMD in a similar manner, we turned to a smaller GWAS to look at 

both of these traits. In a GWAS by Estrada et al. 16, a total of 56 loci were identified for 

femoral neck (FNBMD) and lumbar spine (LSBMD) BMD. One of the 56 loci 

corresponded to the same SNPs associated with the PPP6R3 eQTL. The locus was 

significant for LSBMD; however, it did not reach genome-wide significance for FNBMD 

(Supplemental Figure 3.1).  

We evaluated BMD at both the femur and the lumbar spine in Ppp6r3tm1a(KOMP)Wtsi 

mice, with the expectation, based on the above data, that perturbation of Ppp6r3 would have 

a stronger impact on BMD at the lumbar spine. At approximately 9 weeks of age, we 

measured areal BMD (aBMD) at the femur and lumbar spine using dual X-ray 

absorptiometry (DXA). First, we observed no change in body weight at 9 weeks that might 

impact bone phenotypes (Supplemental Figure 3.2A). As the above analysis predicted, we 

observed a significant effect of Ppp6r3 genotype on aBMD at the lumbar spine (WT vs. 

MUT P=0.01, Figure 3.4C), but not the femur (WT vs. MUT P=0.26, Figure 3.4D). It 

should also be noted, however, that we observed significantly decreased femoral width, but 

not length, in Ppp6r3 mutant mice (anterior-posterior (AP) femoral width, WT vs. MUT 

P=0.02; medial-lateral (ML) femoral width, WT vs. MUT P=2.2 x 10-6, Supplemental 

Figures 3.2B-D). 
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Figure 3.3 PPP6R3 is a top-10 novel eBMD gene. A) eBMD GWAS SNPs around the PPP6R3 locus (± 1 
Mbp). The y-axis represents –log10 eBMD GWAS P-values. Highlighted SNPs (black) are the seven lead eBMD GWAS 
SNPs in the locus. B) TWAS/colocalization plot for genes in the locus around PPP6R3 (± 1 Mbp). The –log10 Bonferroni-
adjusted P-values from the TWAS analysis (top panel) and the maximum RCPs from the colocalization analyses (bottom 
panel). Genes alternate in color for visual clarity. Triangles represent PPP6R3. Mirrorplot of the eBMD locus (C) and 
PPP6R3 eQTL in thyroid, and fracture locus and PPP6R3 eQTL in thyroid (D). The panels on the right are scatterplots of 
–log10 P-values for PPP6R3 eQTL and eBMD GWAS SNPs (C) and the PPP6R3 eQTL and fracture GWAS SNPs
(D). SNPs are colored by their LD with rs10047483 (purple), the most significant PPP6R3 eQTL in the locus. Not all
genes are shown.
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Due to the significant effect of Ppp6r3 genotype on lumbar spine aBMD, we further 

characterized the effects of Ppp6r3 genotype on microarchitectural phenotypes via micro-

computed tomography (μCT). We observed significant (P≤0.05) decreases in trabecular 

bone volume fraction (BV/TV, WT vs. MUT P=0.015, Figure 3.4E-F) and volumetric 

BMD (vBMD, WT vs. MUT P=0.015, Figure 3.4G) of the lumbar spine as a function of 

Ppp6r3 genotype, but found no significant changes in tissue mineral density (TMD, 

Supplemental Figure 3.2E), trabecular separation (TbSp), trabecular thickness (TbTh) or 

trabecular number (TbN) (Figures 3.4 H-J).  
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Figure 3.4 Ppp6r3 functional validation shows an effect of genotype on bone mass. A) Schematic of the Ppp6r3 gene-trap 
allele (Ppp6r3tm1a(KOMP)Wtsi). Image obtained from the IMPC. B) Western blot of the Ppp6r3 experimental mice. Top 
left panel shows that PPP6R1 protein (control) levels are not affected by the Ppp6r3 gene-trap allele. Top right panel shows the 
effect of the gene-trap allele on PPP6R3 protein levels. The two bands are ostensibly due to different PPP6R3 isoforms. Bottom 
panel shows that PP6C protein (control) levels are not affected by the Ppp6r3 gene-trap allele. Least-squares means for spinal 
(C) and femoral (D) areal BMD (aBMD) DXA in Ppp6r3 wild-type (WT), heterozygous (HET), and mutant (MUT) 
mice. E) Representative images of vertebrae for the Ppp6r3 experimental mice. Scale is shown on the bottom left. F-J) Least-
squares means for μCT measurements in the lumbar spines of Ppp6r3 WT, HET, and MUT mice. Contrast P-values, 
adjusted for multiple comparisons are presented. *P≤0.05. Abbreviations: BV/TV - bone volume fraction, vBMD –
volumetric bone mineral density, TbSp – trabecular separation, TbTh – trabecular thickness, TbN – trabecular number.
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3.4 Discussion 

BMD GWASs have identified over 1,100 associations to date. However, identifying 

causal genes remains a challenge. To aid researchers in further dissecting the genetics of 

complex traits, reference transcriptomic datasets and computational methods have been 

developed for the prioritization and identification of causal genes underlying GWAS 

associations. In this work, our goal was to utilize these data and tools to prioritize putatively 

causal genes underlying BMD GWAS associations. Specifically, we used the GTEx eQTL 

reference dataset in 49 tissues to perform TWAS and eQTL colocalization on the largest 

BMD GWAS. Using this approach, we identified 512 putatively causal protein-coding genes 

that were significant in both the TWAS and colocalization approaches. 

Our approach was inspired by a recent study that used the GTEx resource and a 

TWAS/eQTL colocalization approach similar to the one we employed. Pividori et al. 73 

recently combined TWAS and eQTL colocalization to GTEx and GWAS data on 4,091 

traits, including BMD, from the UK Biobank data. A total of 76 protein-coding genes were 

identified and of the 76, we identified 55 (72.4%) of the same genes in our implementation. 

There are several reasons for this discrepancy in the number of prioritized genes. First, both 

studies used a GWAS based on the UK BioBank 221; however, there were significant 

differences in sample size. The PhenomeXcan project utilized GWAS data based on the 

analysis of ~207,000 individuals, whereas we used GWAS data based on the analysis of 

~426,000 individuals 19,73. Second, the two GWAS studies utilized different association 

models. Finally, due to the breadth of the PhenomeXcan project, they had a higher multiple-

testing burden than we did, which led to different Bonferroni-adjusted P-value thresholds 

(P<5.49 x 10−10 vs. P≤2.38 x 10−6).  
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One of many novel genes identified in our study was PPP6R3, which was also 

identified in the PhenomeXcan project 73. PPP6R3 is a regulatory subunit of protein 

phosphatase 6 and has been implicated in several cancers222,223. In humans, the PPP6R3 

protein shows ubiquitous expression across tissues, and may have an important role in 

maintaining immune self-tolerance 223. It is unclear how PPP6R3 may be influencing BMD. 

However, Protein Phosphatase 6 has been shown to oppose activation of the nuclear factor 

kappa-light-chain enhancer of activated B cells (NF-κB) pathway in lymphocytes 224. Since 

the NF-κB signaling pathway is highly involved in osteoclastogenesis and bone resorption, it 

is possible that PPP6R3 may be involved in the regulation of this pathway in osteoclasts225. 

The PPP6R3 locus demonstrated a high level of complexity, containing seven 

independent GWAS associations, at least one of which was also associated with fracture. 

Interestingly, just upstream of PPP6R3 is LRP5, a WNT signaling co-receptor 226. LRP5 is a 

well-known regulator of BMD and gain and loss of function mutations lead to high bone 

mass syndrome and osteoporosis pseudoglioma, respectively 140,142,227,228. LRP5 expression 

was not significantly associated with eBMD by TWAS (Bonferroni P= 1), nor did it have a 

colocalizing eQTL in GTEx tissues (most significant RCP=1.6 x 10-2 in pancreas). However, 

another eBMD lead SNP in the region, rs4988321, is a missense mutation in LRP5 

(Val667Met) that has been associated with BMD in multiple studies 229–231. While this variant 

represents an association that is independent of the rs10047483 association (r2 = 0.104), it 

further highlights the complexity of this locus both in terms of the number of associations as 

well as target genes.  

To determine the effect of Ppp6r3 expression on bone, we characterized bone 

phenotypes in mice harboring a gene-trap allele (Ppp6r3tm1a(KOMP)Wtsi). Consistent with the 
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observation that the PPP6R3 eQTL SNPs were significantly associated with lumbar spine, 

but not femoral neck BMD, we observed that Ppp6r3 deletion had a significant effect on 

lumbar spine BMD, but we did not observe an overall effect on femoral BMD. Using μCT, 

we further characterized the effect of Ppp6r3 deletion on lumbar spine microarchitecture. We 

observed significant decreases in trabecular bone volume fraction (BV/TV) and volumetric 

BMD of the lumbar spine as a function of PPP6R3 genotype. While we did not observe 

significant effects of Ppp6r3 deletion on trabecular thickness or number, the direction of 

effects for those phenotypes suggests that the observed decrease in bone volume fraction 

and BMD may be explained by the cumulative effects of Ppp6r3 deletion on trabecular 

thickness and number. 

Our hypothesis regarding the directions of effect of Ppp6r3 expression on BMD 

based on the eQTL and eBMD/lumbar spine BMD GWAS were opposite to what we 

observed. There are several reasons that may explain this. First, our hypothesis was based on 

expression data in non-bone tissues and cell-types. Recent studies have shown that the 

direction of eQTL effects can differ between different cells and tissues within humans 232,233. 

Second, our hypothesis was based on human data, while our functional experiments were 

performed in mice. Third, we globally deleted Ppp6r3 in mice, as opposed to ablating it in a 

bone-specific knockout. Future studies of the PPP6R3 eQTL in bone cells as well as the 

generation of conditional Ppp6r3 knockouts will allow us to unravel the precise role of this 

association and PPP6R3 in the regulation of bone mass. 

As we and others have shown, the use of both TWAS and eQTL colocalization can 

prioritize putatively causal genes underlying GWAS associations. Here, we have shown the 

utility of this approach even in the absence of eQTL data from the most phenotype-relevant 
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tissue. However, it is important to highlight the limitations of our analysis. While studies 

have shown that many eQTL are shared among tissues, the lack of eQTL data in bone and 

bone cells means that bone-specific eQTL were missed. In addition, the use of multiple non-

bone tissues may have inflated the number of false positives based on coincidence of strong 

TWAS and eQTL colocalization signals that have no biological impact on bone. 

Furthermore, the lack of bone transcriptomic data may also explain the observed disparity 

between our hypothesized and observed direction-of-effect for PPP6R3. It is also important 

to note that due to the reliance of this approach on eQTL data, genes that affect BMD via 

non-expression related mechanisms were not captured. Another limitation of our approach 

arises from the definition of loci based on linkage disequilibrium (LD). We used a set of 

previously-defined approximately independent LD blocks, derived from a cohort of 

European individuals, in our fastENLOC analysis 234. The inexact nature of these data may 

lead to spurious colocalizations due to mismatches in LD structure between the reference 

LD blocks and the GWAS/eQTL populations. Additionally, because the GWAS and eQTL 

data have mismatching LD structures, due to their being derived from cohorts with different 

ancestries, our analyses, particularly the colocalization analyses, may suffer from reduced 

power 61 . This also raises the related issue of the reduced generalizability of our results in 

non-European individuals, which brings further attention to the necessity of performing 

GWASs and providing reference data in diverse and underrepresented populations. Finally, 

another issue arises when considering correlations in expression, and predicted expression, 

between genes in a locus, which may lead to spurious associations in TWAS analyses 70. 

In summary, we applied a combined TWAS/colocalization approach using GTEx 

and identified 512 putatively causal BMD genes. We further investigated PPP6R3 and 

demonstrated that it is a regulator of lumbar spine BMD. We believe this work provides a 
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valuable resource for the bone genetics community and may serve as a framework for 

prioritizing genes underlying GWAS associations using publicly available tools and data for a 

wide range of diseases. 

3.5 Methods 

fastENLOC colocalization: 

For each of the eBMD and fracture GWASs, we performed colocalization using 

fastENLOC, by following the tutorial and guidelines available at 

https://github.com/xqwen/fastenloc. 

Briefly, for each GWAS, we converted variant coordinates to the hg38 human 

genome assembly, using the UCSC liftOver tool (minimum ratio of bases that must remap = 

1) [https://genome.ucsc.edu/cgi-bin/hgLiftOver]. We calculated z-scores by dividing 

GWAS betas by standard errors. We then defined loci based on European linkage 

disequilibrium (LD) blocks, as defined based on the results of Berisa and Pickrell, 2015 234.   

Z-scores were then converted to posterior inclusion probabilities (PIPs) using torus 235. 

Finally, these data were colocalized with fastENLOC for all 49 GTEx V8 tissues, with the “-

total_variants” flag set to 14,000,000. Colocalization was performed using pre-computed 

GTEx multi-tissue annotations, obtained from https://github.com/xqwen/fastenloc. 

Finally, to identify protein-coding genes in the results, we utilized Ensembl’s 

“hsapiens_gene_ensembl” dataset using biomaRt (version 2.45.8). 

S-MultiXcan: 

We conducted a transcriptome-wide association study by integrating genome-wide 

SNP-level association summary statistics from an estimated bone mineral density GWAS 

https://github.com/xqwen/fastenloc
https://github.com/xqwen/fastenloc
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(Morris et al. 2018) with GTEx version 8 gene expression QTL data from 49 tissue types. 

We used the S-MultiXcan (Barbeira et al. 2019) approach for this analysis, to correlate gene 

expression across tissues to increase power and identify candidate susceptibility genes. 

Default parameters were used, with the exception of the “--cutoff_condition_number” 

parameter, which was set to 30. Bonferroni-correction of P-values was performed on the 

resultant gene set (22,337 genes), using R’s p.adjust function. This was followed by the 

removal of non-protein-coding genes. The analysis was also performed in the same manner 

using summary statistics from a fracture GWAS (CITE). Finally, to identify protein-coding 

genes in the results, we utilized Ensembl’s “hsapiens_gene_ensembl” dataset using 

biomaRt236,237. 

Creation of the “known bone gene” list: 

We generated a “known bone gene” set as follows: First, we downloaded Gene 

Ontology IDs for the following terms: “osteo*”, “bone”,and “ossif*” from AmiGO2 

(version 2.5.13) 190 . After removal of non-bone related terms, we extracted all mouse and 

human genes related to the GO terms, using biomaRt. From this list, we retained protein-

coding genes. 

We also used the "Human-Mouse: Disease Connection" database available at the 

Mouse Genome Informatics website, to download human and mouse genes annotated with 

the terms “osteoporosis”, “bone mineral density”, “osteoblast”, “osteoclast” and 

“osteocyte”. We used biomaRt to identify the gene biotypes, and retained protein-coding 

genes. We then used the MGI human-mouse homology table 

[http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt] to 
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convert all mouse genes to their human homologs. Finally, we removed genes that weren’t 

interrogated in both the colocalization and the TWAS analyses. 

Gene Ontology enrichment analyses: 

Gene ontology analysis was performed for the set of protein-coding genes passing 

the colocalization threshold RCP ≥ 0.1 and S-MultiXcan Bonferroni P-value ≤0.05, using 

the “topGO” package (version 2.40.0) in R 238. Enrichment tests were performed for the 

“Molecular Function”, “Biological Process” and “Cellular Component” ontologies, using all 

protein-coding genes that were subjected to colocalization and multiXcan analysis as 

background. Enrichment was performed using the “classic” algorithm with Fisher’s exact 

test. P-values were not adjusted for multiple testing. 

Linkage disequilibrium calculations: 

Linkage disequilibrium between variants was calculated using the LDlinkR (version 

1.0.2) R package, using the “EUR” population 239. 

 

PPP6R3 knockout mouse generation: 

The study was carried out in strict accordance with NIH’s Guide for the Care and 

Use of Laboratory Animals. Additionally, the University of Virginia Institutional Animal 

Care and Use Committee approved all animal procedures. Ppp6r3 gene trap mice were 

generated using targeted embryonic stem cell clones heterozygous for the Ppp6r3tm1a(KOMP)Wtsi 

gene trap allele obtained from the International Knockout Mouse Project 

(KOMP; [https://www.komp.org]). KOMP ES clones were karyotyped and injected using a 

https://www.komp.org/
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XYClone Laser (Hamilton Thorne, Beverly, MA) into B6N-Tyrc-Brd/BrdCrCrl (Charles River, 

Wilmington, MA) 8-cell stage embryos to create chimeric mice. Resultant chimeras were 

bred to B6N-Tyrc-Brd/BrdCrCrl mice to obtain germline transmission of the Ppp6r3 gene trap 

allele. From a breeding pair of two heterozygous mice, we generated our experimental 

population through HET x HET matings. Breeder mice were fed a breeder chow diet 

(Envigo Teklad S-2335 mouse breeder sterilizable diet, irradiated. Product # 7904), and 

experimental mice were fed a standard chow diet (Envigo Teklad LM-485 irradiated 

mouse/rat sterilizable diet. Product #7912).  

Genotyping of PPP6R3 mice: 

DNA for genotyping was extracted from tail clips as follows: tail clips were 

incubated overnight at 55º C in a solution of 200uL digestion/lysis buffer (Viagen Direct 

PCR (tail), Los Angeles, CA) and 1mg/mL proteinase K (Viagen, Los Angeles, CA). After 

overnight incubation, tails were heated at 85º C for 45 minutes, and solutions were 

subsequently stored at 4º C. 

For genotyping, PCR reactions were set up as follows. For each reaction, 1 μL of 

DNA was mixed with 24 μL of a master mix consisting of 19.5 μL nuclease-free H2O, 2.5 

μL 10x PCR reaction buffer (Invitrogen, Waltham, MA), 0.75 μL of mgCl2 (Invitrogen, 

Waltham, MA), 0.5 μL of 10mMol Quad dNTPs (Roche Diagnostics GmbH, Mannheim, 

Germany) 0.25 μL of Platinum Taq DNA polymerase (Invitrogen, Waltham, MA), and 0.25 

μL of each primer, diluted to 20 μMol. PCR primers were obtained from Integrated DNA 

Technologies, Coralville, IA.  
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Forward primer: 5’- CAC CTG GGT TGG TTA CAT CC -3’ 

Reverse primer: 5’- GAC CCT GCC TTA AAA CCA AA -3’ 

The following PCR settings were used:  

- Initialization: 94º C, 120s 

- Denaturation: 94º C, 30s (37 cycles) 

- Annealing: 54º C, 30s (37 cycles) 

- Elongation: 72º C, 35s (37 cycles) 

- Final elongation: 72º C, 300s 

PCR products were run on a 2% agarose gel for 150 minutes at 60 volts, to distinguish 

between wild-type, heterozygous and mutant Ppp6r3 mice. 

PPP6R3 Western blotting: 

Mouse spleens 20-40 mg in weight were suspended in 1% NP40 buffer (50 mM Tris 

(pH 8) 100 mM NaCl, 1 % NP40, 1 mM EGTA, 1 mM EDTA, Protease inhibitor cocktail 

(04-693-116-001, Roche), 1 mM PMSF, 50 mM NaF, 0.2 mM sodium vanadate).  The tissue 

was homogenized by RNase-free disposable pestles (ThermoFisher #12-141-364) and 

incubated for 10 min on ice. After brief sonication, the sample was centrifuged for 10 min at 

13,000 x rpm at 4C. The protein concentration in the extract was measured by Bradford 

assay. 100ug of sample protein was boiled 5 min in SDS sample buffer, loaded in each 

lane, resolved by gradient SDS– PAGE (Bio-Rad #456-1085) and immunoblotted as 

described in Guergnon et al 240. Primary antibodies were diluted 1:1000. (SAPS1 Ab: 

ThermoFisher #PA5-44275, SAPS3 Ab: ThermoFisher #PA5-58405, PP6C Ab: Sigma 

#HPA050940) 
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PPP6R3 functional validation: 

Experimental mice were sacrificed at approximately 9 weeks of age (mean age = 61 

days). At sacrifice, the right femurs were isolated, and femoral morphology (length and 

widths in AP and ML orientations) was measured with digital calipers (Mitoyuto American, 

Aurora, IL). Femurs were then wrapped in PBS-soaked gauze and stored at -20º C, until 

analysis. Lumbar vertebrae L3-L5 were also dissected at sacrifice and were wrapped in PBS-

soaked gauze and frozen at -20º C.  

Dual X-ray absorptiometry: 

Individual right femurs and the lumbar spine (L5 vertebrae) were isolated from 

surrounding soft tissues and frozen at -20º C in PBS. Dual X-ray absorptiometry (DXA) was 

performed on the femurs and lumbar vertebrae using the Lunar Piximus II (GE Healthcare) 

as described previously by Beamer et al 241 . In short, 10 isolated bones were placed in the 

detector field at a time and the samples were analyzed one by one, such that the region of 

interest (ROI) was set for one specimen at a time for data collection. The ROI for the 

femurs was on the entire isolated femur.  For the spine, was on the entire isolated L5.  Care 

was taken to ensure that the sample orientation was identical for all samples. 

 

Micro-computed tomography and image analysis: 

All μCT analyses were carried out at the μCT Imaging Core Facility at Boston 

University using a Scanco Medical μCT 40 instrument (Brütisellen, Switzerland). The power, 

current, and integration time used for all scans were 70 kVp, 113 μA, and 200 msec 

respectively. The L5 vertebrae were scanned at a resolution of 12 microns/voxel. Two 
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volumes of interest (VOIs) were selected for analysis:  1) the entire portion of the L5 

vertebra extending from 60 microns caudal to the cranial growth plate in the vertebral body 

to 60 microns cranial to the caudal growth plate; and 2) only the trabecular centrum 

contained in the first VOI. Semi-automated-edge detection (Scanco Medical) was used to 

define the boundary between the trabecular centrum and cortical shell to produce the second 

VOI. Gaussian filtering (sigma= 0.8, support=1) was used for partial background noise 

suppression. A scan of a potassium hydroxyapatite phantom allowed conversion of 

grayvalues to mineral density. For segmentation of bone tissue, the threshold was set at a 16-

bit gray value of 7143 (521 mgHA/ccm), and this global threshold was applied to all of the 

samples. For each VOI, the following were calculated: total volume (TV), bone volume 

(BV), bone volume fraction (BV/TV), bone mineral density (BMD), and tissue mineral 

density (TMD). BMD was defined as the average density of all voxels in the VOI, whereas 

TMD was defined as the average density of all voxels in the VOI above the threshold 173. For 

the second VOI, the following additional parameters were calculated:  trabecular thickness 

(Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), connectivity density 

(Conn.D), and structure model index (SMI) 173.   

Statistical analyses: 

To calculate the enrichment of bone genes in prioritized genes, we performed 

Fisher’s exact test, using R’s “fisher.test” function, with the alternative hypothesis set as 

“greater”.  

For the statistical analysis of the phenotyping results, we calculated least-squares 

means (lsmeans) using the “emmeans” R package (version 1.5.2.1) 242. Input for the lsmeans 

function was a linear model including terms for genotype, weight and age in days. For sex-
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combined data, we also added a term for sex. For all phenotypes, we also included a term for 

weight. Finally, for DXA phenotypes, we included a term for “CenterRectX” and 

“CenterRectY”. 

We used Tukey’s HSD test to test for significant differences in lsmeans, for each pair 

of genotype levels. Tukey’s HSD also controls the family-wise error rate. 

Analyses involving data from the International Mouse Phenotyping Consortium: 

For the IMPC data, we obtained data using their “statistical-result” SOLR database, 

using the “solrium” R package (version 1.1.4) 243. We obtained experimental results using the 

“Bone*Mineral*Density” parameter. We then pruned the resulting data to only include 

“Successful” analyses, and removed experiments that included the skull. To generate the 

Gpatch1 boxplot, we obtained raw data using from IMPC’s “statistical-raw-data” SOLR 

database for Gpatch1, and analyzed the data in the same manner as IMPC, using the 

“OpenStats” R package (version 1.0.2), using the method=”MM” and 

MM_BodyWeightIncluded = TRUE arguments 244. Finally, mouse genes were converted to 

their human syntenic counterparts using Ensembl’s “hsapiens_gene_ensembl” and 

“mmusculus_gene_ensembl” datasets through biomaRt. 

PhenomeXcan data analysis: 

We obtained all significant PhenomeXcan gene-trait associations from their paper 

[https://advances.sciencemag.org/content/6/37/eaba2083], and used data for the 

“3148_raw-Heel_bone_mineral_density_BMD” phenotype 73. Furthermore, we constrained 

our search to only include genes that were annotated by the authors as “protein_coding”. 

LSBMD/FNBMD GWAS analysis: 
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We obtained sex-combined LSBMD and FNBMD GWAS summary statistics from 

GEFOS [http://www.gefos.org/?q=content/data-release-2012], and then used a custom 

script that utilized the biomaRt R package to convert variants to their GRCh38 coordinates. 

3.6 Data availability 

eBMD and fracture GWAS summary statistics were obtained from GEFOS, as were 

the LSBMD and FNBMD GWAS summary statistics. GTEx eQTL data were obtained from 

the GTEx web portal. Data from the PhenomeXcan project were obtained from Pividori et 

al 73. Statistical data from the IMPC were obtained using an R interface to their SOLR 

database. Ppp6r3 experimental data are provided on our GitHub [https://github.com/basel-

maher/BMD_TWAS_colocalization]. Mouse-Human homologs were obtained from MGI 

[http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt]. 

We also obtained data from the MGI Human-Mouse:Disease Connection database 

[http://www.informatics.jax.org/diseasePortal]. Gene Ontologies were obtained from 

AmiGO2 [http://amigo.geneontology.org/amigo]. 

3.7 Code availability 

Analysis code and the raw data for our Ppp6r3 functional validation analyses are 

available on GitHub [https://github.com/basel-maher/BMD_TWAS_colocalization]. 
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4.1 Summary and conclusions 

In the field of bone genetics, GWASs have been very successful in identifying 

genomic loci associated with bone-related traits, with over 1,100 associated loci identified to 

date 16,19. While these findings have contributed to our understanding of the genetics 

underlying bone biology, our progress as a field has been hindered by two main 

shortcomings of bone-related GWASs: 1) GWASs in the bone field have overwhelmingly 

been focused on BMD as a trait, and 2) researchers have encountered difficulties in 

identifying the causal genes underlying GWAS associations. In this dissertation, we tackled 

these shortcomings, using both mouse and human data, by utilizing systems genetics 

approaches.  

 

4.1.1 Association mapping of bone-related traits 

By performing a GWAS for 55 bone-related traits in Chapter 2, we began to address 

the issue of the strict focus of bone-related GWAS on BMD. We utilized a powerful new 

mouse resource, the Diversity Outbred, in order to perform a GWAS for 55 bone-related 

traits. Due to the strict focus of bone-related GWASs on BMD in humans, our analysis 

begins to address a significant knowledge gap in our understanding of the genetics of bone. 

From the GWAS that we performed, we identified 28 QTL for 20 different bone-related 

phenotypes, which captured novel biology not yet implicated by human GWAS. Using 

transcriptomic data that we generated from our DO mouse cohort, in conjunction with 

genomic data from the fully sequenced DO mouse founder mice, we were able to identify 18 

putatively causal genes within six of the QTL loci. Through the use of fine mapping and the 



113 
 

characterization of a mouse knockout, we were able to demonstrate that Qsox1 was at least 

partially responsible for one of the identified QTL affecting cortical bone morphology.  

Our results not only provide a resource that serves to increase our understanding of 

the genetics of bone, but also illustrate the particular utility of the DO in identifying high-

resolution QTL and prioritizing some of the genes underlying these loci. One of the most 

exciting examples of the utility of the DO is demonstrated in our dissection of the locus on 

Chr. 1. Since our GWAS encompassed many traits, the Chr. 1 locus contained QTL for traits 

in two different phenotypic categories: cross-sectional size and TMD/cortical porosity. We 

were able to leverage the genetic diversity of the DO population in order to tease apart the 

locus and conclude that it comprised of at least two loci affecting different aspects of bone. 

These results demonstrate the unique power of the DO (and the utility of performing multi-

trait GWASs on the same population) in understanding complex trait genetics. 

 

4.1.2 Systems genetics analyses in mouse inform human BMD GWAS 

In conceiving the work presented in this dissertation, we hypothesized that systems 

genetics analyses in the mouse can inform human BMD GWAS. By using network-based 

approaches, we leveraged mouse transcriptomic data to identify putatively causal genes 

underlying human GWAS associations, thus tackling another shortcoming of bone-related 

GWAS. Using transcriptomic data from DO mouse cortical bone, we generated co-

expression networks, and then learned Bayesian networks underlying each co-expression 

network. We then used a method inspired by key driver analysis in order to identify 688 

genes (BANs) that were significantly connected to known bone genes in the Bayesian 

networks. In order to identify genes most likely to be responsible for BMD GWAS 



114 
 

associations, we then identified BANs likely to be regulated by human eQTL, using eQTL 

colocalization analysis. This led to the identification of 66 genes that were both associated in 

their expression with known bone genes, and also had eQTL that colocalized with BMD 

GWAS loci. Forty-seven (~71%) of these genes were novel, showing that our approach was 

both able to recall known biology and identify novel putatively causal genes underlying 

GWAS loci.  

To further illustrate the utility of our network-based approach, we then used the 

results of our co-expression network analysis, in addition to single-cell RNA sequencing, to 

generate hypotheses regarding the specific bone traits that some of these genes (e.g., 

SERTAD4 and GLT8D2) may affect, as well as the bone cell-types through which their 

effects may be exerted. The results of our network-based analyses reinforce the utility of the 

mouse as a model for informing human genetics via systems genetics methods, and provide 

an avenue for further work aimed at understanding the relationships between genes and 

specific traits, and the elucidation of the trait-relevant cell-types. 

Overall, the study performed in Chapter 2 demonstrates the power of the DO in 

performing high-precision genetic mapping analyses in the context of bone and the ability of 

systems genetic analyses in mouse to inform human GWAS. Thus, this work provides a 

powerful resource for the bone genetics field, as well as methodologies for informing human 

GWAS associations that are applicable across myriad complex traits. 
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4.1.3 A combined TWAS/eQTL colocalization approach informs BMD GWAS  

Recently, large-scale projects (e.g., GTEx) have produced a wealth of publicly 

available data that are amenable to systems genetics analyses. Great methodological and 

analytical strides have also been made, by many groups, to make use of these data. In 

Chapter 3, we sought to utilize publicly available data, using recently developed systems 

genetics methods, to further address the difficulty in identifying causal genes underlying 

BMD GWAS loci. 

By utilizing the GTEx eQTL reference data, we performed a combined 

TWAS/eQTL colocalization approach in order to identify 512 putatively causal genes 

underlying GWAS loci. These 512 genes were enriched in known bone genes, lending 

support to our results. Furthermore, we presented an example of a novel candidate GWAS 

gene, GPATCH1, which showed an effect on BMD in publicly available mouse knockdown 

data. We then narrowed down the list of 512 genes to identify 137 novel, higher-confidence 

candidate genes. We characterized the locus surrounding the gene with strongest support as 

a candidate gene, PPP6R3, and performed experimental validation of its effect on BMD in 

mice. We found that Ppp6r3 deletion decreased BMD.  

The work presented in Chapter 3 serves to provide support for the utility of systems 

genetics approaches, namely combined TWAS/eQTL colocalization, in identifying and 

prioritizing genes underlying GWAS associations. Specifically, the results of the study serve 

as a resource for further elucidating the genetic determinants of BMD. Perhaps more 

interestingly, however, our study provides support for the notion that systems genetics 

approaches can inform complex trait genetics even in the absence of data from trait-relevant 

cells and tissues. 
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4.2 Limitations 

4.2.1 Bone-specific -omics data  

As we have previously noted, while our approaches have been successful in utilizing 

eQTL data from non-bone tissues, we have likely missed many bone-specific genes due to 

the lack of tissue-specific eQTL data in bone, and may have suffered from an increased 

false-positive rate due to spurious non-bone related associations. While the overwhelming 

majority of eQTLs in LD with a disease mutation are not tissue-specific, genes with tissue-

specific eQTLs tend to be more highly enriched in disease-associated genes, suggesting that 

approaches utilizing eQTL data, such as TWAS and eQTL colocalization, may benefit from 

the use of tissue-specific eQTL datasets 51,245. To further illustrate this point in the context of 

bone, a recent small eQTL study in osteoclasts identified a significant proportion of 

osteoclast-specific eQTL, when compared to GTEx eQTL data 246. While our group and 

others are currently generating small-scale bone-specific eQTL data, more concerted efforts 

from large consortia, such as GTEx, are required for the progression of the bone genetics 

field 53–55. 

 

4.2.2 Single-cell -omics data  

Furthermore, due to the cellular heterogeneity exhibited in tissues comprising 

reference datasets, such as GTEx, and bulk “-omics” data in general, analyses of these data 

only reveal findings from an average reading across constituent cell populations, and may 

miss context-dependent eQTLs that are often relevant to complex phenotypes 247,248. While 

such data are highly informative, the fields of gene discovery and disease therapeutics can be 
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advanced by the use of cell-type specific data 249. For example, by using epigenomic 

annotations associated with regulatory region activity, Claussnitzer et al. identified 

preadipocytes as the cell-types of action underlying associations of the FTO locus with 

obesity. Using eQTL data in preadipocytes, they then identified two genes, IRX3 and IRX5, 

as causal, with strong eQTL at the preadipocyte level. However, when the analysis was 

repeated in whole-adipose tissue, they noted an absence of an eQTL signal, suggesting that 

the genetic locus likely functions in a cell-specific manner 250. Bone is no different; as we 

have shown above in our scRNA-seq analysis (Chapter 2), bone tissue is comprised of 

transcriptionally heterogeneous cell-types at different developmental stages. Ongoing studies 

have also demonstrated cellular heterogeneity in cultured osteoblasts, and have even 

identified new transcriptionally distinct bone cell-types 251,252. Therefore, we believe that 

increasing the availability of data from different bone-cell types at different developmental 

stages will surely increase our understanding of bone genetics and will, ultimately, enhance 

bone disease-related therapeutics. Currently, promising avenues for the generation of these 

data include projects aiming to provide reference maps of all human cells, such as the 

Human Cell Atlas 253, as well as recent developments in computational and experimental 

methods that aim to generate data on the cellular level, such as single-cell genomics, single-

cell assay for transposase-accessible chromatin using sequencing (sc-ATAC-seq), and cell-

type deconvolution of bulk transcriptomics data 254–256. While in their infancy, methods are 

also being developed to leverage scRNA-seq data to inform GWAS. In general, these 

methods aim to infer trait-relevant tissues and cell-types using GWAS summary 

statistics257,258. 
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4.2.3 Beyond steady-state transcriptomics data  

In our approaches, we have primarily focused on the use of steady-state, cis-eQTL 

data to inform GWAS and identify putatively causal genes. However, only a small 

proportion of expression variation can be attributed to cis-eQTL 245. It is likely that larger 

studies involving very large sample sizes may, providing the continued development of 

related computational approaches, be able to identify trans-eQTL that explain a large 

proportion of the variance in expression. However, since the effect sizes of trans-eQTL are 

very small, the contribution of such studies to the identification of causal genes is still to be 

seen. It is likely more beneficial to focus on applying the systems genetics approaches we 

have utilized to other regulatory data. For example, the GTEx project has recently made 

available splicing QTL data (although not in bone), which are amenable to systems genetics 

analyses 50. Data concerning non-eQTL regulatory mechanisms, such as chromatin 

accessibility QTL, protein abundance QTL, and methylation QTL, as well as approaches that 

utilize these data, such as cistrome-wide association studies (CWAS, an extension of TWAS), 

will likely contribute significantly towards the identification of bone-related genes and drug 

discovery 248. While some bone-relevant regulatory data is available, such as the data 

provided by the ENCODE project from primary osteoblasts 259, it is important to generate a 

wide variety of regulatory data, form large cohorts, encompassing myriad bone cell-types at 

different developmental stages.  

 

4.2.4 Non-European ancestries  

In our studies, we utilized GWAS and eQTL data generated in majority European-

ancestry populations. In order to increase both the power to discover novel biology 
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underlying bone traits and the extensibility of our findings to non-European populations, it 

is crucial to perform large-scale studies in non-European populations. To date, a few small 

bone-related association studies have been performed in non-European populations. While 

small in size, the emerging trend of performing such association studies in non-European 

populations is encouraging 260–266.  

 

4.2.5 Investigating the genetics of other aspects of bone 

Finally, a major challenge in the field of bone genomics is the focus on BMD as a 

phenotype. Although BMD is the most clinically-relevant predictor of osteoporosis, and is 

easily measured in large cohorts, studying non-BMD bone traits (such as bone strength and 

microarchitectural properties) will be extremely beneficial in increasing our understanding of 

bone development and in treating diseases of bone. Generating non-BMD data in large 

populations will be challenging, but technological progress is beginning to allow such 

studies22. 

 

4.3 Future directions 

 While the work presented in this dissertation provides a wealth of information 

regarding the genetics of bone traits, more work can be done to further our understanding of 

the genetics of bone. Much of this work can be performed as a continuation of our results. 

For example, our data provide some support for Ier5 as a causal gene underlying some of the 

Chr. 1 locus traits, particularly TMD.  Performing a knockout experiment, in mice, to test 

this hypothesis will serve to further unravel the genetics of the Chr. 1 locus. Another 
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extension of our results would be to further characterize the effects of PPP6R3 on bone, by 

generating a bone-specific knockout mouse, which may shed light on the discordance of our 

expected direction-of-effect with our observed results, and may also further elucidate the 

mechanisms by which PPP6R3 affects bone traits. 

 Another avenue for future work involves the refinement of our results and 

methodologies. Performing colocalization analyses using splicing QTL from GTEx, for 

example, may serve to further inform BMD GWAS by providing more support for the 

prioritized genes identified by our network-based approaches in Chapter 2, and our results 

from Chapter 3. Another refinement that would be very interesting involves the integration 

of prior data, in the form of whitelists (network edges that must exist, for example edges 

between transcription factors and the genes they regulate), in order to learn (possibly) more 

accurate network structures. Additionally, the structures of our Bayesian networks can be 

refined by bootstrapping or cross-validation. We were not able to perform these analyses 

due to cost and time constraints, and our results demonstrate the utility of our models as 

they stand, but performing these analyses may lead to more informative networks and, 

therefore, higher-confidence putatively causal genes. 

   Finally, some future directions are contingent on the generation of more data. For 

example, extending our multi-trait GWAS in Chapter 2 with more DO mice may result in 

more, as well as narrower, QTL for bone traits. Furthermore, the increased number of mice 

(of newer generations) in the GWAS cohort will allow us to further dissect complex loci, 

such the Chr. 1 locus. We are currently also generating RNA-seq data from cultured 

osteoblasts and osteoclasts in the DO. Performing the same analyses that we performed on 

cortical bone RNA-seq data will provide a wealth of information regarding cell-type specific 
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contributions to bone traits and BMD GWAS associations. Network-based analyses of these 

data can also be performed to further understand the coupling mechanisms between 

osteoblasts and osteoclasts. The most useful data to be generated for systems genetics 

analyses of bone, however, are bone-specific transcriptomic data in large cohorts. Once 

these data are generated, we will be better powered to identify genes underlying BMD 

GWAS, using the systems genetics approaches discussed herein. 

In conclusion, while BMD GWASs have provided a wealth of information to the field of 

bone genetics, the focus on BMD as a trait and the inherent difficulty in identifying causal 

genes underlying GWAS associations have been major obstacles towards our understanding 

of the genetic underpinnings of bone development, function, and disease. In this work, we 

have contributed a data resource encompassing GWAS associations of 55 bone-related traits 

in mouse, and have demonstrated and applied analytical methodologies, utilizing systems 

genetics approaches, to identify putatively causal genes underlying BMD GWAS in humans. 

However, this work barely scratches the surface of our understanding of the genetics of 

bone. In order to advance our understanding of the genetics of bone, concerted, 

collaborative efforts across myriad disciplines must be undertaken to provide more relevant 

and diverse data, and to generate more sophisticated analytical, experimental and 

computational approaches for the effective utilization of these data. Given the current rapid 

and highly-collaborative progressions observed in the scientific community at-large, we are 

highly optimistic in the future advancements that will be achieved in the field of bone 

genetics. 
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Appendix A 

Supplementary Data 

All supplementary data are available at: 

https://zenodo.org/record/4876547 
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Supplementary Data 2.1 Phenotypes collected in the DO. 

Supplementary Data 2.2 Raw measurements of the 55 mapped phenotypes. 

Supplementary Data 2.3 Correlations of mapped phenotypes with bone strength. 

Supplementary Data 2.4 Pairwise correlations of all 55 mapped phenotypes. 

Supplementary Data 2.5 Results of bulk RNA-seq differential expression between sexes. 

Supplementary Data 2.6 Results of bulk RNA-seq differential expression between individuals 
with high vs. low bone strength. 

Supplementary Data 2.7 Module membership. 

Supplementary Data 2.8 Modular Gene Ontology terms with a P-value ≤ 0.05. 

Supplementary Data 2.9 List of known bone genes. 

Supplementary Data 2.10 Bayesian networks. 

Supplementary Data 2.11 Significantly colocalizing genes. 

Supplementary Data 2.12 Homologous human BANs with colocalizing eQTL. 

Supplementary Data 2.13 Spearman correlations between WGCNA modules and 
phenotypes. 

Supplementary Data 2.14 Mineralization readouts for bone marrow stromal cells exposed to 
osteogenic differentiation media in vitro. 

Supplementary Data 2.15 Marker genes for scRNA-seq clusters. 

Supplementary Data 2.16 Syntenic DO loci. 

Supplementary Data 2.17 Variant effect predictor (VEP) output for 15 missense SNPs. 

Supplementary Data 2.18 Mapped eQTL. 

Supplementary Data 2.19 scRNA-seq cluster 1 genes. 

Supplementary Data 2.20 Founder mice for CRISPR/Cas9 analysis. 

Supplementary Data 2.21 Predicted amino acid sequences for Qsox1 deletion mutants. 

Supplementary Data 2.22 Oligonucleotide sequences for CRISPR/Cas9 analysis. 

Supplementary Data 3.1 2,156 protein-coding genes that are significant by TWAS. 

Supplementary Data 3.2 1,182 protein-coding genes that are significant in the colocalization 
analysis. 

Supplementary Data 3.3 The 512 protein-coding genes that are significant by both TWAS 
and colocalization. 
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Supplementary Data 3.4 Number of the 512 significantly colocalizing genes per GTEx 
tissue. 

Supplementary Data 3.5 The known bone gene list. 

Supplementary Data 3.6 The 66 genes that are significant by both TWAS and colocalization. 

Supplementary Data 3.7 Gene Ontology enrichments for the 512 protein-coding genes that 
are significant by both TWAS and colocalization. 

Supplementary Data 3.8 137 novel putatively causal BMD genes. 
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Supplemental Figure 2.1 Principal Component Analysis of bulk RNA-seq data. A) Scree 
plot showing the percentage of explained variance for the first 10 principal components. B) Individuals in PC1 
and PC2 space, colored by sex. C) Individuals in PC3 and PC4 space, colored by sex. D) Individuals in 
PC1 and PC2 space, colored by batch. E) Individuals in PC1 and PC2 space, colored by batch. F) 
Individuals in PC1 and PC2 space, colored by age (binarized, see Methods). G) Individuals in PC3 and 
PC4 space, colored by age (binarized, see Methods). 
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Supplemental Figure 2.2 Mineralization of bone marrow-derived stromal cells 
exposed to osteogenic differentiation media in vitro. During differentiation, cells from each 
individual DO mouse were assessed for accumulated mineralization by IRDye 680 BoneTag Optical Probe 
incorporation. The final values for mineralization shown here were computed by subtracting the average 
number of fluorescent units recorded in designated background wells from the number of fluorescent units 
recorded in the sample wells. In the cultures from DO mouse #50, there was a much higher percentage of 
marrow adipogenic lineage precursor cells and a small number of osteoblasts. Consistent with this observation, 
mouse #50 also demonstrated high levels of marrow adiposity. This is likely the basis of the poor in vitro 
mineralization observed for the cultures from this mouse. 
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Supplemental Figure 2.3 Sex-specific UMAP visulization of single cell RNA-seq 
expression data on bone marrow stromal cellls cultured in osteogenic differentiation 
media in vitro.  Each point represents a cell. A) Sertad4 expression in cells from a male DO mouse. B) 
Glt8d2 expression in cells from female DO mice (N=4). C) Sertad4 expression in cells from a male DO 
mouse. D) Glt8d2 expression in cells from female DO mice (N=4). In all panels, the color scales indicate 
normalized gene expression values. 
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Supplemental Figure 2.4 Significant QTL associations. Twenty-eight mapped QTL exceeding 
permutation-based LOD score thresholds (alpha=0.05) 
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Supplemental Figure 2.5 Overlap between BMD GWAS SNPs and QTL loci. A-J)Each 
panel corresponds to a QTL locus’s syntenic human region. Panels a-j represent each of the 10 loci 
sequentially. Red circles represent BMD GWAS SNPs in the locus. The horizontal lines represent the 
genome-wide significance threshold (P = 5x10-8). Not all genes are shown. 
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Supplemental Figure 2.6 ML mapping in a replication cohort. The top 
panel shows allele effects for the DO founders for ML in an interval on chromosome 1 
(Mbp). Y-axis units are best linear unbiased predictors (BLUPs). The bottom panel shows 
the QTL scan. 
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Supplemental Figure 3.1 LSBMD and FNBMD GWAS  SNPs in the PPP6R3 locus. A) 
GWAS SNPs for LSBMD in the PPP6R3 locus. SNPs in red are significant PPP6R3 eQTL in thyroid tissue. 
The dashed line represents the genome-wide significance level (P-value= 5 x10-8). B) GWAS SNPs for FNBMD 
in the PPP6R3 locus. SNPs in red are significant PPP6R3 eQTLin thyroid tissue. The dashed line represents the 
genome-wide significance level (P-value= 5 x10-8). C) Mirroplot of LSBMD SNPs and PPP6R3 eQTL. SNPs 
are colored by their LD with rs10047483 (purple), the most significant PPP6R3 eQTL in thyroid. In the 
LSBMD panel, the most significant SNP is highlighted in purple , as rs10047483 was not assayed. D) Mirroplot 
of FNBMD SNPs and PPP6R3 eQTL. SNPs are colored by their LD with rs10047483 (purple), the most 
significant PPP6R3 eQTL in thyroid. In the FNBMD panel, the most significant SNP is highlighted in purple , 
as rs10047483 was not assayed. 
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Supplemental Figure 3.2 Ppp6r3 functional validation. A) Weight. B) Anterior-posterior (AP) 
femoral width. C) Medial-lateral (ML) femoral width. D) Femoral length (FL). E) Tissue mineral density 
(TMD), as measured by μCT. In all panels, least-square means are plotted. P-values are contrast P-values, adjusted 
for multiple comparisons. Asterisks represent significance (P<=0.05). 
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