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Abstract

Indoor Place Recognition for Situation Awareness Using Deep Learning Models

and 3D Point Cloud Computation

by

Amir Ashrafi

With the increasing number of sensing devices in smart buildings for temperature,

humidity, air quality, etc. acquiring information with regards to the state of the

building and the location where a user is present has become very important

recently in multiple domains including design, construction, facility management,

and emergency response. This concept has been defined as Situation Awareness

(SA) which can be obtained and improved by visualizing the information properly.

The very first step to visualize such information is to identify the accurate location

and orientation of the user in the indoor space. For accurate indoor localization,

we are proposing to use a 3D point cloud model to train an end-to-end deep neural

network which then is implemented on a head-mounted Augmented Reality (AR)

platform (Microsoft HoloLens) to spatially localize users within an indoor space.

To achieve this, a point cloud 3D model with more than 190 million points of a

17,000 sq. ft. open office space with diverse specifications such as office rooms,

hallways, open areas, and crowded spaces were collected and registered by laser

scanners. After pre-processing and generating submaps with different sizes, they



are ultimately turned into global descriptor vectors to match with the input queries

that come from the user’s ambient scanning with the HoloLens. Also, a real-time

framework is designed to run on the HoloLens in which it captures the scanned

3D mesh around the user in real-time then sends the query to the neural network

model by utilizing RESTful web service. Finally, the best sub-map candidates that

match the queried 3D point cloud will be fetched to localize the user accurately.

As result, we were able to reach 90% recall for the average top 1% of the results

in the range of 1-meter threshold.
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Chapter 1

Introduction

Decades have passed since the term Situation Awareness (SA) has been intro-

duced from aviation psychology for addressing the operational functions of pilots

during the flight in terms of their understanding from a dynamic environment [12].

SA could be translated into the cognitive activities that are the necessary inputs

for decision making and increase the overall performance [12, 13] of individuals.

[33] defines situation awareness as:

”Continuous extraction of environmental information, integration of this in-

formation with previous knowledge to form a coherent mental picture, and the use

of that picture in directing further perception and anticipating future events.”

In other words, first we need to know where we are located, compare the real-time

spatial information with historical information, and finally plan the future steps.
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Endsley [13] introduced the general SA flowchart which describes the set of

information needed to create SA and how factors and operators connect to the SA

cycle. We adapted the chart and slightly changed it based on the context and ob-

jectives of this research which is shown in figure1.1. In this chart, the surrounding

environment perception is shown as the first step. After data acquisition, useful

knowledge will be put together to show the user what is happening around them.

Then, based on the information requested, future projection of environment sta-

tus could be taken into account in order to help the operator effectively make

decisions within the detected situation. Finally, the performance could be mea-

sured and proper feedback will be inserted into the environmental conditions. For

instance, consider a user walks into an unknown building, for example an airport.

The first step is the perception of the surrounding environment that translates

the spatial features into localization information as well as identifying any special

contextual features. In this example, a user may use the mobile device to capture

the spatial features in order to identify his/her location in the terminal and receive

relative information about their surrounding gates and airport facilities. In the

meanwhile, SA system measures the performance of the application and the user

to adapt itself to the environment.

In this research, we study the initial steps into SA for indoor environments;

specifically, we introduce a robust SA framework for individuals in an indoor envi-
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Figure 1.1: Situation awareness framework adapted and slightly changed from [13]

based on our designed system.

ronment who intend to acquire spatial information as they walk through an indoor

space. For instance, a user enters a new building and is trying to learn more about

the design of the space, the residents of that building, and identify different areas

where he/she can meet certain people. To achieve this, there is a need for a robust

situational awareness system to identify where the user is located within the space

and provide virtual information according to his/her spatial coordinates. This

system could be generalized into various applications that involve data extrac-

tion associated with the indoor spaces of buildings. For example, first responders

could benefit from having access to different building systems and sensor infor-

mation to quickly localize occupants in need or wayfinding applications in new
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buildings that they have never been inside before [8]. Similarly, facility managers

could benefit from such SA systems in identifying building system components,

access real-time and historic sensor information for different systems (e.g., HVAC,

lighting), or visualize previous work-orders or design documents [18, 6, 38].

The first state of the SA cycle as shown in the figure 1.1is to perceive the sur-

rounding environment. In order to accomplish this, we need to accurately identify

the location of an individual within the indoor space. The most common tool

being used for localization is GPS in outdoor environments. However, outdoor

localization techniques that vastly rely on the Global Positioning System (GPS)

cannot be used within an enclosed space with a ceiling because the satellite sig-

nals will be sabotaged by the obstacles. There is a vast number of applications

of indoor localization which include reliable and effective methods to localize oc-

cupants, devices, or mobile robots in a building. Therefore, other methods have

been proposed to improve indoor localization. Signal-based methods have signif-

icantly improved over the past years to identify the user’s approximate location;

however, there exist some limitations with these methods such as errors that are

accumulated over time as a result of the presence of obstacles (e.g., interior walls)

or limited access points in large indoor environments. In addition, it’s well implied

that installing the hardware equipment (access points such as routers, Bluetooth

beacons) throughout the building is expensive and requires constant maintenance
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[41]. To address these limitations, vision-based approaches have shown promising

results[25]; however, these methods are not robust enough in some situations in

which there are too many occlusions in the scene. Furthermore, the majority of the

presented vision-based approaches only consider 2D images without considering

the depth information which helps to detect occlusions and neutralize the effects

of lights. Also, with emerging 3D point cloud building models that are produced

during the design and construction of buildings with different tools such as drones

and stationary/hand-held laser scanners, we are provided with the opportunity

to build localization models that do not require excruciating on-site 2D image

capturing to make the database in order to be used in deep learning. Besides, a

3D point cloud is more precise than a 2D image in terms of having depth informa-

tion to avoid occlusions, invariance against lighting conditions, and picture quality.

In this work, we are proposing to use a 3D point cloud model with more than

190 million points of a 17,000 sq. ft. open office space to train an end-to-end deep

neural network model which then is implemented on a head-mounted Augmented

Reality (AR) platform (Microsoft HoloLens). We chose to utilize a head-worn AR

device because of valuable opportunities it gives us such as, visualization benefits

to improve productivity and comfort, live feedback both visually and stereo au-

dibly to help to make decisions fast and effective, and futuristic modality of this

5



device which could be a prototype phase for advanced technology in the future.

To achieve this, we trained our dataset which includes more than 40000 sub-maps

extracted from the 3D point cloud which are ultimately turned into global descrip-

tor vectors to match with the input queries from the user. A real-time system is

then designed to be running on the HoloLens which is based on the user’s loca-

tion where spatial data could be fetched and shown to the user. To accomplish

this, we have developed a query-based system implemented on HoloLens, which

includes four cameras capable of capturing real-time 2D and depth information

from an indoor space. This system captures the scanned 3D mesh around the

user in real-time and matches it to the best sub-map candidate from the 3D point

cloud. Then the result would be the user’s position coordinates relative to the 3D

point cloud coordinate system.

Our objective in this work is to utilize 3D point clouds for localizing the user

in an indoor environment. The selected space to evaluate the proposed approach

includes different levels of complexity such as different architectural and struc-

tural design features, different types, colors, and shapes of furniture and objects,

as well as different size and use cases of spaces which could be challenging. We

have addressed these issues by (1) fine-tuning the 3d point cloud place recognition

models, followed by testing and validating the novel neural network models on a
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3D point cloud generated from an AR headset (HoloLens 2). (2) Then through

a case study, we present how we can refine the developed models for applying to

the Microsoft HoloLens 2. This system could be used in numerous applications

such as facility management, construction, tourism, or EMS (Emergency Medical

Services) to successfully localize the user within indoor environments which have

various complexity in terms of interior designs, occupancy levels, occupant activ-

ities (movement), etc. After localization, accessing building information locally

such as sensors data and navigation services through augmented reality devices

could help the user get the perception of their environment through visualiza-

tion more thoroughly and comfortably especially in Microsoft HoloLens. The

figure 1.2shows a prototype of our visual assistance application that runs on the

HoloLens consisting of visualization of the sensors data that are being extracted

based on the User’s location as well as the visual location on the mini-map.
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Figure 1.2: A prototype view of our Microsoft HoloLens application that shows

the sensor’s information in the left panel and the location of those sensors in the

right panel after localization.
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Chapter 2

Related Works

In this section, at first, we discuss the indoor localization literature such as vi-

sual recognition methods such as 3D BIM (Building Information Model) or point

cloud models. We then review how augmented reality technologies are studied to

facilitate localization and visualization in indoor applications. These applications

exist in various fields, for instance, in design and construction and facility manage-

ment, [3] assessed some works that have been done for supporting the operator

on-site to connect the as-is conditions to previously collected 3D model. This

would help to update the missing data depicted in the model by updating the

information periodically and provide associated spatial data related to the place

that a user is located for example in maintenance and repair operations.

For accomplishing this connection between the current status and known knowl-

9



edge, we need to start with indoor localization techniques that have been proposed

over the past decades since GNSS (Global Navigation Satellite System) is not re-

liable and accurate for geo-referencing in an indoor environment [40]. [31] catego-

rized three main technologies for indoor localization which consists of signal-based

(WiFi, ultra-wideband, Bluetooth, RFID, ultrasound), motion-based (IMU), and

image-based. Signal-based methods rely on installing a hardware infrastructure

to make localization possible because of required access points to fulfill coverage

of the environment[41]. Regarding the methods of signal-based localization which

were implemented with the help of an augmented reality platform, [2] utilized

Wi-Fi RSSI (Received signal strength indication) to train RSS fingerprint data

on an RNN (P-MIMO LSTM) model. In this work, AR was used to align the

floorplan on the real scene for creating a grid to collect the RSS data based on

its coordination. Also, using signal strength data coming from RFID devices [36]

or Bluetooth beacons [35] to estimate the user’s location on a room-level scale;

however, these approaches have shown to not be accurate and reliable because

of signal fading resulting from passing through walls and obstacles which cause

harsh signal strength fluctuations [41]. Also, because of lacking a user’s visual

angle view, the signal-based methods are not suitable for estimating the user’s

orientation. The motion-based method which is mostly based on IMU sensors

(gyroscope, accelerometer, and magnetometer), is another approach to track the
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wearable relatively unlike the other localization methods that are absolute [16].

Therefore, this method is usually fused with other approaches such as Wi-Fi or

image-based methods to increase the accuracy of identifying the user’s location

and orientation [40].

Image-based or visual place recognition methods are the most commonly studied

area of research. [25] classified these methods based on environment data (mark-

er/camera pose, image/feature database, and 3D model), sensing devices (static

and mobile cameras plus other sensors), detected elements (artificial markers, real

features), and localization method (traditional image analysis, artificial intelli-

gence).

The first approach is using natural/artificial markers (ArUco markers, indoor

signs) to localize the user based on pre-known marker coordinates located in dif-

ferent areas in the indoor space. [17] presented a marker-based method for indoor

localization to overlay a virtual room-scale model on the real room scene through

an augmented reality device (HoloLens) in order to visualize in-situ information.

In another work, [10] introduced analyzing the video frames with well-known

markers such as room names or signs. They used a hand-held AR device to cap-

ture and visualize the augmented information on the screen. However, it’s not

clear how the user’s relative position to the marker and the room was determined

in the paper. Furthermore, this method cannot be generalized for all indoor envi-
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ronments, especially those with different natural or artificial signs (e.g. Exit signs

or different ArUco markers) [25].

The second approach is marker-less which divides into two main branches for place

retrieval representations; hand-crafted representations (traditional) and deep-learning

representations [24]. In hand-crafted representation, we have two main categories;

local descriptors and global descriptors representation [24]. Local descriptor fo-

cuses on the patterns that happen in a path of the image and tries to highlight

ones that differ from the neighborhood. On the other hand, a global descriptor

tries to encode the integrated characteristics of an image as a whole[24]. Within

the deep-learning representations, [37] proposed weighted parallel ICP (iterative

Closest Point) to first speed up the ICP for dataset and model processing, sec-

ond dividing the point cloud into two groups, line, and corner. Their method

includes detecting features from corners and lines then matching those with the

2D blueprint’s viewpoint. Nonetheless, it would be problematic in complex indoor

spaces that do not have defined corners or edges for example rounded designs or

with discontinuous patterns. [1] utilized deep CNN (Convolutional Neural Net-

work) for training synthetic images obtained from the indoor 3D models to regress

the camera pose and location. The device for this approach is a hand-held camera

that sends query images to the model to find the camera pose and orientation.

Their deep network model is trained over virtual trajectories that went through

12



the BIM and created synthetic images for the learning process. Although effec-

tive, the authors reported a number of shortcomings such as image quality could

impact the result including blurriness or taking images from turning points. In

addition, due to the changes in the environment over time such as changes in

furniture types or their location, 3D BIM was shown to not be robust enough to

be updated easily and effectively in terms of adding or removing the real changes

in a building.

In another study [38] introduced a DenseNet CNN approach for segmentation and

localization at the same time by entering one image as a query then associating

a digital twin which consists of a digital building model that has the building’s

components to store the data. The segmentation part helps to detect the facility

to connect it to the digital component and the camera pose is used for localization.

However, This approach would accumulate the noise within the data generated

from the segmentation and localization approaches and impacts on the results. For

example in bad lighting conditions, segmentation error could be increased. Re-

garding local data association, [6] made an AR use case for facility management

in which the system sent an image query to a CNN-based model, to retrieve the

user’s perspective and orientation from a 3D BIM model. As result, the matching

image would connect to a 2D blueprint for acquiring the pipes to overlay on the

floor. The accuracy of the system is reported as check-marked detected regions in
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which the pipes visualizations are assigned. This approach could be challenging

where two places are similar in structure or if the BIM model is not fully accurate

to represent the structural and architectural features as well as the dynamic ob-

jects (e.g. furniture, crowd) in the real images. In Another study, [39] proposed

a multi-modal approach by combining the Wi-Fi and image-based methods to

locate the user. In the training phase by using indoor geometric reasoning, a 2D

floorplan was extracted from an input image as well as a point cloud using SfM

(Structure from Motion). Then by matching the point cloud and the floorplan,

a database of the POIs (Place of Interest) was created. Finally, in the operating

phase, first rough location estimation occurs with a Wi-Fi signal to reduce the

search location then by getting an image from the scene, the candidate PCs are

fetched from the database. However, the user should be aware of how they are

capturing the image in making the dataset (there should be a flat facade in the

view). Besides a Wi-Fi infrastructure should be available for the start, and similar

to previous Wi-Fi methods, random fluctuation of the signals due to occlusions

and noises would affect the rest of the system.

To address the challenges mentioned above, we are proposing to use point

cloud as the reference and query input to our model in order to localize the user

with respect to the global coordination of the building. This would alleviate the

problems that 2D images are susceptible against such as, light impact, the image

14



Figure 2.1: Microsoft HoloLens 2

quality, user’s condition, and depth information that are in the way of connecting

the real user’s viewpoint to the building 3D model. On the other hand, in 3D

scanning, we are able to build this information by using Microsoft HoloLens spatial

mapping capability in which utilizes the spatial anchors to remember the same

place in real-time. This feature not only helps to reduce the amount of effort in

scanning for a query, but also helps to update the changes in the scene.
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Chapter 3

Methodology

Framework

We utilized the Microsoft HoloLens 2 to implement this indoor place recogni-

tion model for testing the real data collected from a user walking around an indoor

space. Microsoft HoloLens 2 includes multiple sensors such as IMU, ToF depth,

Infrared camera, visible light camera, and regular camera for recording. However,

the most important aspect of this AR platform is its ability to do the spatial

mapping from the surrounding area. This feature allows the device to create a 3D

mesh from the space and build a world anchor reference for future access. In the

presented case study, a user would wear the device and walk through an indoor

open office space. By scanning the area with a spatial mapping feature, we could

gather real-time meshes to build an AR-based 3d building model as our testbed

16



Figure 3.1: Our system framework includes three main phases; Data gathering,

deep learning model, case study as an application.

4.1(b). The significance of this capability is that by walking and scanning The

environment, dynamic conditions like the crowd or random visual elements which

are not part of the main structure would be removed automatically. This process

is done by scanning over time and updating the impurity of real-time data. Af-

ter collecting the mesh models, 3D submaps are generated and pre-processed as

same as the original laser data to be used as a testbed to see how effectively and

accurately the deep models work for a complex indoor space. Furthermore, these

models have been improved by the Transfer Learning method in which by trans-

ferring an outdoor localization model and retrained it with our indoor dataset we

could improve the localization results.

For demonstrating our work in this research, a framework is shown in figure 3.1

which includes three main phases: (1) data; (2) Model; and (3) case study. The

17



data phase represents the collection of point cloud data with a stationary laser

scanner and registering them to make our point cloud BIM model. Then our

dataset was prepared by generating submaps with pre-processing that includes

downsampling, normalization, and label assigning (refer to Chapter 4). The model

phase represents the indoor localization deep neural network training, evaluation,

and also improvements with Transfer Learning (refer to section 3.0.1). At last, we

have our case study phase which represents the HoloLens2 testbed that has been

collected in mesh scanning data by a person walks through an indoor environment.

Then mesh is converted to point cloud to be registered and pre-processed in order

to make the HoloLens testsets evaluated with the trained model (refer to Chapter

4). In the next section, we will go through the deep neural network models

architectures and metric learning to see how one point cloud input gets processed

and translated into a global descriptor vector. Then we propose a semi-real-time

system that developed on a HoloLens UWP application that connects to a local

server to localize itself by sending queries to the model.

3.0.1 Benchmark Models

The developed model in this study was inspired by multiple state-of-the-art

neural network models which were initially designed for 3D point cloud object

detection and large-scale place recognition in outdoor environments. These mod-

18



els apply the LIDAR (Light Detection And Ranging) scanners dataset to train

their models as a trajectory-based approach for driving cars outside. Building

on existing work, we trained our models to identify user locations given the spa-

tial conditions. The problem within indoor environments is more complex than

outdoor conditions as there are much fewer features points that we can train our

models due to the smaller sizes of the submaps generated which result in less

information each submap encapsulates. In addition, the structural differences in

various places in an indoor environment are very diverse.

PointNet : Qi et al. [27] introduced PointNet which consumes unordered 3D

point cloud raw points as inputs instead of usually transferred them into a 3D

voxel grid or images. Each point is described by its coordinates (x, y, z) and

other features like color (RGB) values or normal values. However, PointNet and

other inspired models reflected in this research only rely on the three coordinates

as a point representation. Qi et al. indicated that their key approach is using a

single symmetric function called max pooling. To achieve this, the system selects

the maximum value for each patch of the entire feature map to detect the most

important aspects of the local changes by aggregating the local point features

which are invariant to the small translations and noises. After the max-pooling

layer, a fully connected layer is designed to convert the optimal values into the

19



Figure 3.2: PointNet Architecture.

global descriptor for classification or segmentation problems. Figure3.2.

demonstrates the PointNet network architecture.

NetVLAD: The NetVLAD [4] model proposes before pointNet which led into

3D point cloud based place recognition advances in computer vision. The most

significant purpose of this work was using two convolutional neural network base

architectures including AlexNet [22] and VGG-16 [30] (cropped before the last

convolution+ReLU [26] layer) to aggregate the local descriptors from the entire

input 2d image and compress them into a single global descriptor vector (VLAD

core which is inspired by [20, 5]). The NetVLAD architecture is shown in figure

3.3. [20] stated that VLAD core is the aggregation of the difference between

20



Figure 3.3: NetVLAD Architecture.

descriptor d and its corresponding visual word ck for k clusters centers. The

output of VLAD is represented by V as follows:

V (j, k) =
N∑
i=1

ak(di)(di(j)− ck(j)), (3.1)

In the equation (1), we have ak which is an indicator of a descriptor di asso-

ciation to a cluster center ck for which value one is the closest association and

value zero is the farthest. [4] showed that for using the VLAD core in an end-

to-end place recognition, this layer should be differentiable in back-propagation

operation. Therefore, instead of using the hard assignment ak as zero or one, [4]

introduced a replacement of ak with a soft assignment of descriptors to clusters

which would be differentiable with respect to all parameters and the input:

āk(Di) =

exp

(
−α ‖di − ck‖2

)
∑

k′ exp

(
−α ‖di − ck′‖2

) (3.2)

Equation (2) indicates assigning the weights in correspondent with the distance
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to the cluster centers which could be between zero and one unlike the rigid ai

formula proposed by [20]. Unless by putting α to +∞, the original VLAD is

reproduced. After simplifying the equation (2) and insert it into the original

VLAD core equation (1), the following results are identified:

V (j,K) =
N∑
i=1

exp

(
2αdick − αc2k

)
∑

k′ exp

(
2αdick′ − αc2k′

)(di(j)− ck(j)) (3.3)

{2αck} is defined by the wk, {−αc2k}, bk, and ck parameters which are trained

throughout the network, whereas the original VLAD core has ck as the only pa-

rameter to be trained. According to figure 3.3, we can see the CNN layers pro-

duce the output by training the {wk} and {bk} parameters with the {di} input

descriptors: yk(di) = wT
k xi + bk, then this CNN output goes through the softmax

normalized exponential function σk(Z) = exp (zk)∑
k′ exp (zk′ )

. After the softmax level, we

have soft assignment result āk(Di) which eventually is embedded into the VLAD

core. Finally, there is an extra intra-normalization step iteallaboutvlad introduced

to address a common issue in the context of image search, called burstiness [19].

This phenomenon happens when there are several similar visual elements (e.g.

windows on a building, images taken from the same view, similar patterns on

walls, ceiling, or floor, etc.) in the same image or amongst different images. The

repeating patterns in the images have significant influences on similarity mea-

sures between images in which the most important aspects of the images would
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be overlooked. Therefore the VLAD original approach was using Signed Square

Root (SSR) to L2-normalize the entire descriptor vector of an image. However,

[5] used L2-normalization within each VLAD blocks which is sum of residuals

(di(j)− ck(j)) for each cluster k. This helps us alleviate the burst impact on the

point cloud descriptors where there are many repeating patterns like indoor walls

with similar features.

3.0.1.1 PointNetVLAD

[32] proposed the point cloud-based retrieval for large-scale place recognition.

The novelty of this work comes from combining the two aforementioned mod-

els that we discussed earlier to reach their goals. So far, we have learned that

PointNet[27] takes 3D point cloud as input and after extracting the D-dimensional

local feature descriptors following the max-pooling layer, it classifies with labels

per submap or labels for each point (segmentation). Uy and et al. [32] connects

the labels to the NetVLAD network for extracting global feature descriptors from

the point cloud instead of the 2d image. According to the figure 3.4, after the

fusion, a fully connected layer is added to decrease the vector with a high di-

mension (D x K). This reduction has been done for mitigating the computation

complexity in order to be used for k nearest neighbor search to find the most sim-

ilar and non-similar submaps in a training tuple. These descriptor vectors will be

used for finding the best match for which the distance function d(.), the Euclidean

23



Figure 3.4: PointNetVLAD Architecture.

distance, is the smallest amongst other vectors.

Metric Learning : PointNetVLAD proposed a function f(.) which was trained

in an end-to-end network to map a 3d point cloud input to a vector of global

descriptors. In this research, we created training tuples similar to [32] in which

we have a tuple for each input point cloud as T = (Pa, Pp, {Pn}). Pa is the anchor

point cloud which is the focused point cloud as the center of the tuple, then we

have Pp as a positive point cloud that has similarity with the anchor, and there

are a subset of negative point clouds {Pn} which are dissimilar to the anchor. This

work has been done by introducing a modification version of the two well-known

loss functions called the triplet loss and the quadruplet loss. Triplet loss which

[29] introduced focuses on how we can ensure that an input image is closer to all

images with same context than it is to the different images. This optimization

tries to minimize the following statement:
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min

N∑
i

[
‖f(pai )− f(ppi )‖

2
2 − ‖f(pai )− f(pni )‖22 + α

]
+

(3.4)

s.t.

‖pai − p
p
i ‖

2
2 + α < ‖pai − pni ‖

2
2 , ∀(p

a
i , p

p
i , p

n
i ) ∈ T (3.5)

In the equation (4) and (5), we have α which is a margin that is a determining

factor between positives and negative pairs. This optimization would result in

many triplets that are eligible due to the constraint. Therefore it would not be

helpful in the training process because of the vast amount of triplets which causes

a slow convergence. So instead of using these many triplets, hard negatives (closest

negatives to the anchor) were used by removing the margin α from the equation (5)

and decrease the training to the mini-batches that contain hard positive/negative

samples from any anchor in the dataset.

[9] proposed the quadroplet loss that not only considers the relative distances

between positive and negative images within the concentrated batch in training,

but also by considering the new constraint in which it maximizes the additional

distance between the randomly sampled negative image from the dataset that is

dissimilar to the tuple T and the hardest negative in the tuple:
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N∑
i

[
‖f(pai )− f(ppi )‖

2
2 − ‖f(pai )− f(pni )‖22 + α

]
+

(3.6)

+
N∑
i

[
‖f(pai )− f(ppi )‖

2
2 − ‖f(pni )− f(pn∗i )‖22 + β

]
+

(3.7)

[32] created the ”Lazy” versions of these both losses in which it minimize the

distance between the global descriptor vector of anchor and the positive submap

δp = d(f(Pa), f(Pp)), and maximize the distance between the negatives submaps

and the anchor descriptor vector δni
= d(f(Pa), f(Pni

∈ {Pn}) by calculating the

squared Euclidean distance. The term ”Lazy” comes from switching the summa-

tions to the max operation which automatically detects the hard negative within

the tuple.

LT = argmaxni
([δp − δni

+ α]+) (3.8)

This applies to the quadruplet as well in which the second term is finding the

hard negative outside of the tuple and getting their distance to prevent undesirable

reduction of distance between the hard negative in the tuple and another dissimilar

point cloud outside of the tuple.

LQ = argmaxni
([δp − δni

+ α]+) (3.9)

+ argmaxn∗([δp − δn∗ + β]+) (3.10)
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In our models, we used lazy quadruplet loss as our metric learning same as

[32].

3.0.2 Semi Real-Time System

To accomplish the semi real-time localization model on the HoloLens 2, we

designed and implemented a query-based system which is depicted in figure 3.5

sequence diagram. This system is developed based on Model-View-Controller

(MVC) software design pattern [7] that divides the program into three intercon-

nected components. As shown in figure 3.5, the three modules Deep Network

Model, Pre-processing in MATLAB, and PCD Edit and Conversion represent the

Model component of the architecture. Then we have the control program and

RESRful service API represents the Controller component of the architecture.

This module takes the role of the central part of the program which controls

the connections and data transfer between the user interface (HoloLens) and the

server. At last, we have a UWP (Universal Windows Platform) application in the

HoloLens, designed in the Unity software, which represents the View component

of the architecture. Figure3.5 starts with the user’s request for starting the scan

by the HoloLens’ augmented hologram. Then at the same time, the control pro-

gram is always running and watching for an update on either the user side or the

server side. Therefore, after detecting a request in the UWP app, the control pro-
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gram fetches the .obj scan file via RESTful API and sends it to the pre-processing

segment. In the pre-processing segment, a .obj which contains the scanned mesh

data converts to a 3D point cloud and gets sent to the MATLAB code in order to

get downsampled and normalized. Then the submap query gets sent to the deep

neural network for getting the best-matched submaps coordinates. After that, the

control program takes the results from the model and sends them to the UWP

app. In the final state, the UWP app is in waiting mode to detect any uploaded

results in the HoloLens file storage. After obtaining the results, they can be vi-

sualized as augmented information on the AR screen. This semi real-time system

has been tested in which it takes around 10-15 seconds for the whole process to

be completed and the spatial information such as sensors data visualized on the

user’s AR screen.
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Figure 3.5: Semi real-time system schema is a sequence diagram of every process

that a query goes through.
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Chapter 4

Data Collection and Experiments

We made an indoor point cloud model which was collected by two Faro Focus

stationary laser scanners. This type of laser scanner is able to capture an accu-

rate point cloud with less than a 6mm error rate up to 350m range. Additionally,

Faro Focus utilizes advanced features in image capturing in different light and

temperature conditions. For this study, we have collected and registered a 3D

point cloud model with more than 194.1 million points from a 17,000 sq. ft. open

office space which is located on the second floor of Olsson Hall at the University

of Virginia campus figure 4.1(a). Also for our case study, we collected the mesh

scans from a person wearing the Microsoft HoloLens2 and walk through an indoor

environment. After that, we converted the mesh data into point clouds before

registering them together in order to make the final 3D point cloud BIM model.
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This map is shown in figure 4.1(b) which is made of more than 1.7 million points.

Submap Generation : After registering the point clouds, we will have the final

maps as shown in the figure 4.1. In previous work such as [32], each submap is

generated based on the overlapped or disjoint frames that LIDAR collected over

time for each run. However, in this work, we consider using the whole building

point cloud, corner to corner, to make our submaps instead of just using trajec-

tories taken by LIDARs. In order to accomplish this, we have assigned one of the

corners of the building to the origin point (0,0) in order to have a global refer-

ence map as ground truth. Then we chose a 1mX1m regional margin from one

of the corners and randomly selected a starting centroid point to crop the point

cloud in fixed-sized regions with their centroids as labels. We repeat this process

multiple times to make the dataset cover all areas with more than 40,000 submaps.

Submap Preprocessing : After generating submaps from the 3D point cloud

maps, they should be pre-processed to be ready for use as inputs to our neural

network models. For the first part, the ceiling and floor were removed by a voxel

grid filter in each submaps and for the second part, the ceiling and floor were

part of them to see how much this information could affect the accuracy of the

results which whether might play as a noise factor in the learning process or help
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a) Laser scanner 3D point cloud map
b) HoloLens2 3D point cloud map

Figure 4.1: Our 3D point cloud referenced maps. (a) is the laser scanner-collected

map and (b) is the HoloLens2-collected map as our case study
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Figure 4.2: Three sample submaps from our dataset show the level of complexity

and differences in structural architecture. The right side shows their pre-processed

submaps
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Table 4.1: The number of submaps distributions between training and testing in

different input submap sizes.

Training Testing

Input Size BL and TR BL and TR

Laser Scanner

3mX3m 37720 -

6mX6m 37927 -

HoloLens2

3mX3m - 4528

6mX6m - 1294

to enhance the localization. By optimizing the scale value regarding the number

of points in each submap, we could come up with a fast downsampling rate to sig-

nificantly reduce iterations to converge to the 4096 points. After downsampling,

each submap normalized with zero mean with having values between -1 and 1

in order to be on the same scale for the deep neural networks. You could see

a sample of the submap pre-processing in figures 4.2 that depicted the dynamic

nature of an inside space such as noisy objects (office desks and chairs), crowd,

narrow hallways, etc. After downsampling, new average values of axes (x, y) are

calculated to be set as new submaps labels.

Dataset Splitting and Evaluation : Laser scanner dataset that has 20 subsets
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of joint (overlapped) submaps (each created with a random starting point with

different labels), is split into training reference map and testing reference map

as shown in figure 4.3(a). Then the laser dataset is used for training the indoor

localization model. Whilst the model is being trained, evaluation loss is calculated

with the specified random regions data points shown in figure 4.3(a) every 200

batches in each epoch. Then after the training has been done, we evaluated the

trained model with the case study HoloLens2 disjoint (non-overlapped) testset

in two different sizes shown in 4.3(b)and(c) which have been created in 20 runs

with different labels. One of the sample test subset of each size is shown in

figures 4.3(b) and (c). Table 4.1 shows the exact distribution of the training and

testing submaps from the referenced maps. However, because of using various

sizes of submaps, the number of disjoint submaps are different in testsets. The

laser scanner referenced map has been cropped with intervals of 1 meter between

each submap for trainsets. But HoloLens2 referenced map has been cropped in 3

and 6 meters intervals between submaps for testsets of sizes 3mX3m and 6mX6m

respectively in order to not having any overlapped submaps within each run.
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(a) Laser scanner Joint trainset (b) HoloLens2 disjoint 3mX3m testset (c) HoloLens2 disjoint 6mX6m testset

Figure 4.3: Data splitting: (a) represents a sample subset of the joint submaps

of laser scanner trainset with 1-meter interval in which 4 regions were randomly

selected for validating whilst training. (b) represents a sample subset of the dis-

joint submaps of HoloLens2 testset in 3-meter intervals. (c) represents a sample

subset of the disjoint submaps of HoloLens2 testset in 6-meter interval

s
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Chapter 5

Results and Discussion

In the results, we show that PN-VLAD, a large-scale point cloud-based place

recognition which initially was designed for localizing a vehicle equipped with a

LIDAR and camera system is applicable for indoor environments with various

structural and architectural design, crowd sizes, and objects (furniture). In this

section, we discuss the results of the proposed indoor localization method by test-

ing the submaps generated from the HoloLens mesh/point cloud testset and report

the average recall values of the top 1% results. Also, by the Transfer Learning

approach, we improved our results significantly and found out that retraining

outdoor and indoor localization models mutually could be useful to increase the

accuracy. Also, we checked whether adding more data points for each submap

such as floor and ceiling can be useful in results improvement.
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Table 5.1: Average top 1% recall(%) in baseline and transferred models tested on

HoloLens testset in the threshold range of 1 meter.

HoloLens

trained model Baseline Transferred

PN-VLAD

(3mX3m)

39.18 52.08

PN-VLAD

(6mX6m)

83.15 90.59

Networks and Input Size Variations The laser scanner data was trained by

PN-VLAD to build the baseline models (without floor and ceiling). The models

are trained with the same settings to produce a 256-dim global feature vector to

represent a submap. Due to the fixed-size vector, any raw submaps with distinct

input sizes do not make difference in computation speed or power. Models are

trained with quadruplet loss with the margins α = 0.5 and β = 0.2 alongside

Adam [21] optimizer. Number of cluster is set to be k = 64. We used batch

size of 2 tuples for each iteration in training that has one anchor input submap

pa for which we have 18 negatives and 2 positive submaps as same as [32]. We

compare the performance of our baseline model (trained models from the laser
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Figure 5.1: Average recall of the top submap candidates resulted from the

HoloLens testset data. The blue charts show the models with floor and ceil-

ing (improvement) in two sizes. The red charts show the models without floor

and ceiling.

(a) Baseline Network (c) Transferred Network
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scanner indoor data) with the transferred model in two input sizes in testing on

the HoloLens2 testset. Transferred states the Transfer Learning method in which

we would transfer a trained model with the same task but in a different domain

(or vice versa) which in this case we used the trained localization model on an

outdoor dataset Oxford [34] and retrained it with our indoor laser scanner dataset.

According to the table 5.1, transferred model improved the top 1% recall rate from

the baseline model in both input submap sizes 3X3 and 6X6 meters. Also, figure

5.1 shows the average recall values of the top 14 candidates in which we can see

the transferred networks in both sizes outperformed better in terms of the first

starting value in comparison with the baseline networks. The transferred model

in the 6m X 6m submap dataset receives the highest recall rate by 90.59% via the

testing of our HoloLens case study.

Models improvement To see if we can improve our models, we generated the

submaps without removing the ceiling and floor ( unlike the last section models

which did not include these features). As shown in table 5.2, both input submap

sizes improved in each model for each input size tested on the HoloLens test-

set which means adding static information from the environment to the submaps

could help discriminate between them and be recognized more accurately. Fig-

ure 5.1 is also shown the difference in which the improved models with floor and
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Table 5.2: Average top 1% recall (%) in baseline and transfer models tested on

HoloLens testset with floor and ceiling in the threshold range of 1 meter.

HoloLens

trained model Baseline Transferred

PN-VLAD

(3mX3m)

52.35 57.88

PN-VLAD

(6mX6m)

84.74 92.53

ceiling (blue charts) show the improvement from the models without floor and

ceiling (red charts) in both sizes. These results imply that in some indoor spaces

that we have limitations in scanning a wide area due to occlusions or being in

small space, more information from the environment such as floor and ceiling or

structural elements and static objects could enhance differentiating between the

generated submaps.

Comparison between various areas in our indoor space We also studied

the baseline and transferred models in different areas within our space as shown

in table 5.3 via the HoloLens test dataset in different submap sizes. According to

table 5.3, our models performed with high recall rates in all regions as illustrated
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Table 5.3: Average top 1% recall (%) in baseline and transferred models tested

on the HoloLens test data with floor and ceiling in various indoor areas.

Submap Size (3mX3m) (6mX6m)

trained model Baseline Transferred Baseline Transferred

Student Seating Areas 43.94 52.73 72.65 86.78

Hallways 43.21 50.32 84.25 89.90

Long Corridor 52.41 66.00 88.68 100.0

Cafeteria(Open Arena) 56.59 53.91 96.00 96.03

Hardware Lab 54.46 60.86 88.35 94.70

Conference Rooms 67.46 68.53 73.94 96.09

in figure 5.2. If we reduce the range of scanning for the 3x3 size of the input,

the results in both baseline and transferred models would decrease accordingly

for every indoor area in comparison with 6x6 scan size. For example hallways

(P8-P14 in the figure 5.2) and student seating areas (P1-P7 in the figure 5.2) have

the least amount of recalls amongst others in size 3 which shows in small and

crowded areas, the less information/points can affect the localization negatively.

Furthermore, we can see that student seating areas (P1-P7 in the figure 5.2) have

the least recall rates by 86.78% in comparison to others. As it is depicted in figure

5.2, in the seating areas, there are much more dynamic objects such as chairs and
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desks arrangement than other sections which can be challenging because dynamic

environments change over time.
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Figure 5.2: Various sections of the Link Lab. P1-P7: student seating areas, P8-

P14: hallways, P15: Long Corridor, P16: cafeteria(Open Arena), P17: hardware

lab, P18-P20: conference rooms, P21-P23: single office rooms.
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Chapter 6

Conclusion, Limitations, and

Future Works

In this work, we introduced an AR-based indoor localization system to be

used in applications such as facility management, construction management, and

emergency response. For accomplishing this purpose, we utilized laser scanners

to create a 3D point cloud of an indoor environment. Then as a visual place

recognition technique, a deep learning-based model PointNetVLAD [32] was used

to train different models to see what would give the best results according to the

given conditions. Furthermore, we improved the initial results both in the laser

scanner and our case study (on HoloLens 2) via transfer learning in which the

outdoor localization trained model was transferred and retrain with our dataset.
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By including additional information from static elements such as ceiling and floor,

we were able to improve the performance of each of our models to more than 90%

recall rate of the average top 1% of the results in a 1-meter threshold. Finally, we

studied various areas in our case study environment such as hallways, conference

rooms, or student seating area that includes a lot of dynamic objects and dense

crowds. Results showed that our baseline and improved models were successful

and consistent with the overall results of 85.20% and 93.75% for baseline and

transferred models respectively.

One of the limitations of this work is the size of our dataset. In compare the Ox-

ford Robotcar dataset, our dataset is small scale because of its closed-environment

characteristic which limits us in the number of disjoint submaps. As a future step

to address this limitation, the model should be tested in more indoor environ-

ments to see the generalizability of the proposed method. Additionally, one of

the laser scanner drawbacks is the laser reflection on the glass doors and walls

which can affect the point cloud quality around that area. For instance, in our

dataset, the single-occupancy offices shown in P21-P23 in figure 5.2 are made of

glass partition which the laser scanner does not provide an accurate map of the

space, and therefore, it is impossible for us to evaluate the model inside these

offices. Lastly, Simultaneous localization and mapping (SLAM) methods [28, 23],

commonly used for indoor localization of robotic systems in indoor environments,
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need to be evaluated and compared to the proposed PointNetVLAD method in

the context of our approach.

For recognizing the user’s direction and orientation, in our future works, we

will be considering using HoloLens’ capability of gaze tracking and its IMU sensors

as other useful information that could be added to the proposed framework for

better localization and orientation of the user. Additionally, in our future work,

we will integrate the user intention regarding their movement and gaze direction

so the situational awareness system could visualize some information in the AR

platform to help towards making decisions. Lastly, one limitation of HoloLens is

its computational capability, resulting in near-real-time (10-15 seconds) process-

ing of information in our designed system. This limitation can be addressed if

the processing is moved from the device (HoloLens) and our local server to the

Microsoft Azure cloud services which connects to the HoloLens directly and does

all the computation including submap processing and deep neural models.
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[16] F. Höflinger, R. Zhang, and L. M. Reindl. Indoor-localization system using

a micro-inertial measurement unit (imu). European Frequency and Time

Forum, page 443–447, 2012.
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Appendix A

Guideline for Future

We provide a guideline in which it’s described what actions we took to build

our indoor localization model for the future reference step by step as following:

1. We collected our 3D point cloud model with FARO Focus laser scanner.

Figure A.1: Faro Focus Laser Scanner in our

dataset location.

Figure A.2: Sample view of the laser scanner point

cloud data.
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2. For our case study, we collected the test data with Microsoft HoloLens2

via a user walks through the indoor environment and collects the triangular

meshes from around him/her. Then this mesh maps should be converted to

a 3D point cloud.

Figure A.3: Microsoft HoloLens 2.

Figure A.4: Sample view of HoloLens2 spatial mesh

data.

3. In the next step we registered the point cloud scan files with the Autodesk

ReCap software to have an integrated and accurate 3D model. Here you can

follow the guideline shows in Manual Registration for registering structured

(fixed-location e.g. Faro laser scanner) point cloud scan files.

4. For registering the HoloLens2 point cloud files, you should follow the guide-

line in Registering Unstructured Scans. As a summary, for registering un-

structured scans (photogrammetry, handheld, or mobile) which HoloLens is

part of, we should combine them with the structured scan files to get them
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registered then by removing structured data, finally, we have integrated un-

structured 3D point cloud of HoloLens.

Figure A.5: Laser scanner 3D point cloud map. Figure A.6: HoloLens2 3D point cloud map.

5. In Recap, we assigned one of the model’s corners as our origin point (0,0)

to be used for reference on a global scale.

6. For generating submaps, we used Open3D which is a python library for

processing 3D data. (refer to number 13, Generating Submaps folder in our

GitHub repository)

7. In Open3D, we assign a region of 1m X 1m for randomly selecting a start-

ing point in normal distribution for generating submaps for each run and

each subset.(refer to number 13, Generating Submaps folder in our GitHub

repository)
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8. Laser scanner 3D point cloud map was used for training subsets in which

the interval between submaps was set to 1 meter for both submap sizes 3

and 6 meters. HoloLens2 3D point cloud map used for testing in which

intervals were set to 3 and 6 meters for submap sizes 3mX3m and 6mX6m

respectively in order to generate disjoint submaps without overlapping areas

in each testing subset. (refer to number 13, Generating Submaps folder in

our GitHub repository)

9. After generating submaps, they have to be pre-processed to be entered into

the deep network. Therefore, by using the MATLAB point cloud downsam-

pling function we can downsample each point cloud to 4096 points. Then

each of them is normalized with zero mean and new (x,y,z) values between

-1 and 1. Also, new labels based on the new axes values are calculated

and assigned to each submaps. (refer to number 13, Submap pre-processing

folder in our GitHub repository)

10. Next, we made our training tuples ({pa, pp, pn}) consist of an anchor point,

positives points, and negative points by using k-nearest neighbors for every

submaps, at the same time we split the submaps into training and testing ref-

erences by defining random regions of 6mX6m and saved them in pickle files.

(refer to number 13, Generating Tuples/generate training tuples baseline.py

file in our GitHub repository)
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11. Then we trained the baseline deep model by loading the laser scanner tuples

in 10 epochs in which those testing regions were used for evaluation loss

calculation in every 200 batches. (refer to number 13, Main.py file in our

GitHub repository)

12. Then we generated the testing tuples ({pa, pp, pn}) for evaluating the trained

model (step 11). In this step, all the ground truths of queries are extracted

from the whole testset except the subset that includes the targeted query

in each iteration to avoid self-matching. This has been done by K-nearest

neighbors and we set 1-meter as our positive range (k). (refer to number 13,

Generating Tuples/generate test sets.py file in our GitHub repository)

13. Finally, we evaluated the trained model (step 11) with the HoloLens disjoint

queries testsets to see how good the trained model localize the queries that

come from a different device with a different way of collecting data which is

the mesh collection by a user walked through the indoor space. The mesh

data has to be converted to 3D point cloud data with the Open3D library.

In this step, the top global descriptor vectors which are the model outcomes

will be checked with the ground truths we calculated in the previous step

to see how many of the top results exist in the ground truths of the query.

(refer to number 13, evaluate.py file in our GitHub repository)

14. Our code can be found in our github repository. Also, all referenced maps
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including a laser scanner and HoloLens2 3D point cloud BIM models with

and without floor and ceiling can be found in our UVA box.
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