
The Use of Automated Provers to Provide Stronger Guarantees About the Correctness of
Code in Safety Critical Applications

(Technical Topic)

Understanding the Transition and Acceptance of Formal Software Verification Methods
(STS Topic)

A Thesis Project Prospectus
In STS 4500
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By
Garrett Burroughs

April 2, 2024

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signed: _______________________________

Advisors

Kathryn A. Neeley, Department of Engineering and Society

Matthew B. Dwyer, Department of Computer Science

Introduction

When it comes to creating software, writing code that performs the required task is only a

small portion of the development process. A significant amount of time and development cost is

spent in the testing and verification of the software, and as software complexity continues to

increase, so will the amount of testing that is required (Dustin, 2009, Foreword). As time goes

on, developers aim to create new strategies that make the testing process easier and more

efficient, with unit testing libraries (eg. JUnit, NUnit) currently being the most used testing

strategy according to a survey of canadian developers (Garousi 2013, p. 24).

Continuous testing, regression testing, and the periodic application of verification and

validation analysis have been identified as the primary means to control software technical

quality (Barbareschi, 2022, p. 1079). These testing strategies rely on the developer providing a

sample input, as well as the expected output of the program, and then testing to see if the

program acts as intended. For example, in order to test a program that is supposed to compute the

absolute value, a test case for such a program might be that the program should output 5 when

the input is -5. An example of two tests written for such a program in python can be seen in

figure 1.

Figure 1. Automated tests that test the functionality of an absolute value program. In this test, it is expected

that the absolute value of -5 will be 5, and the absolute value of 5 will be 5. If these conditions match, the test is

considered to have passed.

1

The test inputs are provided to the program, and the program’s output is compared to the

expected output. While this testing methodology can be very useful, it can only verify that the

program works for the provided test inputs, and only indicates that no problems were found

when testing. For example, if the above tests pass, there is no guarantee that the program will

give 6 for the input of -6.

Despite the inherent limitations of automated testing in software, it has been a useful tool

for many years. With the advent of AI powered developer tools such as ChatGPT and Github

Copilot, the landscape is rapidly changing. These tools are powerful in terms of speeding up the

software development process however, they often produce code that seems correct, and may

work for some inputs, but upon closer inspection contains various vulnerabilities and bugs

(Vaidya, 2023, p. 38). Due to the nature of the bugs in AI generated code, they may pass test

suites that do not cover a wide enough range of test inputs. The technical portion of this report

aims to further examine the problems with current testing strategies, as well as offer a potential

solution in the form of formal proof verification. The STS portion of this prospectus will

examine the adoption of such a verification method, and draw on the areas of social psychology

to better understand how such a change might be implemented.

The Use of Automated Provers to Provide Stronger Guarantees About the Correctness of

Code in Safety Critical Applications

As time has gone on, software has become more present in our day to day lives. Software

systems have found themselves in simple daily tasks such as calculating a navigation route, all

the way to life altering events like diagnosing cancer patients (Chazette et al., 2022, p. 457). As

software continues to reach its way into more safety critical applications, such as aviation

2

control, autonomous vehicles, and the medical profession, it is crucial that the software does not

contain any faults. Currently it is estimated that software failures have likely cost the U.S.

economy at least $25 billion and maybe as much as $75 billion (Charette, 2005, p. 45). When

considering safety critical operations, the cost of software failure goes from dollar amounts to

human lives. For this reason, there are already rigorous requirements put in place for software

quality in safety critical systems.

For example, the FAA provides many guidelines on the review process that software

software used in airborne applications needs to go to; however, one of the main technical metrics

is the amount of code coverage that the testing provides (FAA, 2018, p. 4-2). Code coverage

measures how much of the code in the program was executed while running the test. While high

code coverage can indicate a step in the right direction when writing tests, it only indicates the

amount of the system that is being tested, and says nothing about the quality of the tests being

run. One study found that “...even if the test suite satisfies a 100% code coverage, using all of the

five mentioned criteria, 7% to 35% of the faults may still be undetected” (Hemmati, 2015, p.

151). Even more concerning, a survey of developers found that “Developers claim to write unit

tests systematically and to measure code coverage, but do not have a clear priority of what makes

an individual test good” (Daka, 2014, p. 208). This highlights one of the main issues with current

testing practices, in that they are almost never able to indicate whether the program is working as

intended, but only that they failed to find any defects.

An alternate approach to automated testing, is the formal verification of programs. A

function contract specifies limitations on the function input, while also making guarantees about

the function’s output. A function is the smallest building block of a computer program, and

multiple functions are combined in order to create the full functionality of a software system. If

3

function contracts are defined using a formal logic system, then it is possible to attempt a

rigorous proof, whereupon conclusion, you can be certain that the function meets its contract

given any underlying assumptions about the hardware system hold true (Kirchner et al., 2015, p.

579). This contrasts the automated testing approach, where the formal verification is able to

indicate that the code written does match its intended function. An example of such a contract

can be seen in Figure 2. The specification of what it means to swap two values, as well as the

required conditions are all laid out in the ASCL formal specification language. If verified, then it

can be concluded that this function is correct for all valid inputs a and b, as opposed to an

automated testing approach which would only allow for a finite set of memory addresses to be

tested.

Figure 2. A C function annotated with a formal function contract written in ASCL. By providing an

unambiguous specification, a formal proof can ensure that the code correctly matches the specification, and

therefore carries out its intended function. (Kirchner et al., 2015, p. 577)

Historically, formal proof needed to be carried out by hand, causing it to be a time and

labor intensive task. More recently, static analysis tools such as Frama-C have improved to the

point where a large amount of the proof process can be offloaded to automatic proovers

(Blanchard, 2020, p. 8). Without the need for humans to carry out these proof tasks, formal

verification methods are no longer a time and labor intensive task, giving the benefits of a much

stronger guarantee about the program for all acceptable inputs.

4

While this technology is very powerful, and solves many of the problems that exist with

existing testing methods, the capabilities are still being developed, and there are not many

examples of it being used in larger codebases. Throughout my technical research, I plan to

conduct a case study of formal verification methods being used on a moderately sized code base

with about 1000 lines of code, to develop strategies for writing formal specifications based on

the code that needs to be verified, as well as document the strengths and weaknesses of using

formal methods on non-trivial use cases. This case study will serve as an example of how to

adopt these methods into already existing codebases.

Understanding the Transition and Acceptance of Formal Software Verification Methods

The formal verification of software systems provides many benefits over current

verification methods, however, the techniques are yet to be universally adopted. As with any

system, there are costs associated with the implementation. As it stands currently, there are many

software projects which employ no verification at all, with the mindset that the application is not

critical enough to warrant the extra time spent writing tests to ensure quality of code. An

example of this is the Cortext library (Hamil, 2020), which is a dependency of React (Facebook,

2024), a widely used web technology with over 23 million weekly downloads. When examining

the source code of Cortex, it does not contain any testing strategies. The main costs when

considering software verification are the time that it takes to carry out the verification, and the

cost to the entity developing the software. Figure 3 shows the overall effect of the use of formal

techniques on time, cost, and quality aggregated from a survey of software teams which adopted

formal verification methods (Woodcock et al., 2009, p.19:8).

5

Figure 3. The effect of formal techniques on time, cost, and quality Results from a survey asking the question

“Did the use of formal techniques have an effect on time, cost, and quality”. Despite an overwhelming indication

that formal methods are the same or better than existing solutions, they are still not widely adopted. (Woodcock et

al., 2009, p.19:8).

While the majority of respondents couldn’t tell if the adoption of the formal methods had

an impact on the time or cost to develop software, the responses that indicated improvement far

outweighed the responses that indicated worsening in both categories. In regards to code quality

it is clear that an overwhelming majority indicated that formal methods led to an improvement.

With data to show that the main concerns of adoption are ill founded, it is unclear why

there has not been a larger move towards the use of formal verification methods. One likely

reason is that the current verification methods are widely used and rooted in the software

development process, with developers having strong views on what the best practices are, as well

as organizations releasing guidelines and requirements for testing. Unit and functional/ system

testing are currently the two most common test types, with almost 200 out of about 300

respondents reporting that they use unit testing (Garousi 2013, p. 18). Drawing from the field of

social psychology, a certain proportion of a population is needed in order to shift the social

norms. This is called the social tipping point. As seen in figure 4, past a certain percentage, a

committed minority is able to change the views of the group as a whole (Centola et al., 2018, p.

1116).

6

Figure 4. Predicted tipping points in social stability. It only takes a small portion of a committed population

to have effects on the group as a whole, however, if below this point, consensus tends to stay very low (Centola

et al., 2018, p. 1116).

I plan to build upon this research in social psychology to gain a greater understanding of

how the idea of using formal verification methods might propagate through the software

engineering ecosystem. Due to current methods already being ingrained into both the social

norms of the software development process, as well as many companies such as salesforce

having requirements such as 85% code coverage to be deployed (Salesforce, 2022), a significant

shift in verification methodology has to take place. According to figure 3, due to the large

population of software engineers, and long standing practices, it is likely that there will need to

be a committed majority of at least 30% of developers adopting these new practices to propagate

throughout the population.

Similarly, these requirements need to be implemented by organizations that pass

regulations on software quality, such as the FAA outlining software requirements in airborne

7

software systems in ORDER 8110.49A (FAA, 2018, p. 4-2). I plan to take a TOC model of

analysis towards this, as there are many different technical, organizational, and cultural ideas at

play. Breaking down the interactions between the different actors may provide further insight

into how greater support can be garnered, and new regulations can be implemented where it

matters most.

Conclusion

Through the technical work of my project, I hope to gain a better understanding of

automated verification systems such as Frama-C to provide a way for software engineers to

speed up the development process without having to compromise on the quality of the software.

If the technical deliverable is successful, developers will have a better understanding of how to

adopt formal methods within their software systems. Throughout my STS research I hope to gain

a better understanding of how we might transition from the current methods of testing to more

rigorous formal verification methods. If the STS deliverable is successful, it will aid in a

successful transition from automated testing to formal verification. (1865 words)

8

References

Barbareschi, M., Barone, S., Carbone, R., & Casola, V. (2022, December 1). Scrum for safety: an
agile methodology for safety-critical software systems. Software Quality Journal, 30(4),
1067 - 1088.

Blanchard, A. (2020, July 1). A gentle introduction to C code verification using the Frama-C
platform. Zeste De Savoir.

Centola, D., Becker, J., Brackbill, D., & Baronchelli, A. (2018). Experimental evidence for
tipping points in social convention. Science, 360(6393), 1116–1119.

Charette, R. (2005, September 6). Why software fails [software failure]. IEEE. IEEE Spectrum,
42(9), 42-49.

Chazette, L., Brunotte, W., & Speith, T. (2022, December 1). Explainable software systems: from
requirements analysis to system evaluation. Requirements Engineering, 27(4), 457 - 487.

Dailler, S., Hauzar, D., Marché, C., & Moy, Y. (2018). Instrumenting a weakest precondition
calculus for counterexample generation. Journal of Logical and Algebraic Methods in
Programming, 99, 97–113.

Dalal, S., & Chhillar, R. S. (2012). Case studies of most common and severe types of software
system failure. International Journal of Advanced Research in Computer Science and
Software Engineering, 2(8).

Daka, E., & Fraser, G. (2014, November). A survey on unit testing practices and problems. In
2014 IEEE 25th International Symposium on Software Reliability Engineering (pp.
201-211). IEEE.

Dustin, E., Rashka, J., & Paul, J. (1999). Automated software testing: introduction, management,
and performance. Addison-Wesley Professional.

Facebook. (2024, April 26). React. NPM. https://www.npmjs.com/package/react

Federal Aviation Administration (FAA). (2018, March 29). ORDER 8110.49A, Software
Approval Guidelines. U.S. Department of Transportation

Garousi, V., & Zhi, J. (2013). A survey of software testing practices in Canada. Journal of
Systems and Software, 86(5), 1354-1376.

9

Hamill A. (2020, February 7). Cortex. Github. https://github.com/arhamill/cortex

Hemmati, H. (2015). How effective are code coverage criteria?. 2015 IEEE International
Conference on Software Quality, Reliability and Security. 151-156.

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles J., & Yakobowski B., (2015). Frama-C: A
software analysis perspective. Formal Aspects of Computing, 27(3), 573–609.

Milkoreit, M. (2022). Social tipping points everywhere?—patterns and risks of overuse. WIREs
Climate Change, 14(2).

Nylin, W. (2009). Foreword. Dustin, E., Garrett, T., & Gauf, B. (2009). Implementing automated
software testing: How to save time and lower costs while raising quality. Pearson
Education.

Salesforce. (2022, October 13). Instructions to test Apex code. Salesforce.
https://help.salesforce.com/s/articleView?id=000385650&type=1

Vaidya, J., & Asif, H. (2023). A critical look at AI-generated software: coding with the new AI
tools is both irresistible and dangerous. Ieee Spectrum, 60(7), 34-39.

Woodcock, J., Larsen P., Bicarregui, J., Fitzgerald, J. (2009, October). Formal methods: practice
and experience. ACM Computing Surveys Association for Computing Machinery, 41(4)

10

