
Occam’s Razor in CS: Creating Value for Clients in the Simplest Way Possible

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Thomas Mullins Arnold

Spring, 2025

Technical Project Team Members

Thomas Arnold

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Occam’s Razor in CS: Creating Value for Clients in the Simplest

Way Possible

CS4991 Capstone Report, 2024

Thomas Arnold

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ybn4aq@virginia.edu

ABSTRACT

A major manufacturer with a major market

share in its industry found its manufacturers

and client-facing account managers working

without any communication, causing

unfulfilled orders and frustration for the end

customer. To solve this problem, my intern

team and I created a full-stack inventory

management and communication system

using the MERN (MongoDB, Express, React,

and Node) tech stack. This allowed plant

managers and account managers to be more

in sync with each other to provide the end

customer with maximum transparency.

Despite our manager’s request to incorporate

artificial intelligence (AI), I convinced the

team not to use AI because our solution did

not need AI and it would only slow us down.

Ultimately, ours was one of the only solutions

actually deployed by the end of the

internship, and our approach allowed us to

meet all of our stretch and scrum goals

throughout the summer. My conclusion: In an

ever-changing computer science world that

includes AI, often the best solution is still just

the simplest one. I would like to test this

theory further by doing more client projects

that avoid time-intensive and/or complex

technologies during development and

compare the two for deliverable hits.

1. INTRODUCTION

The term “Tutorial Hell,” infamous in the

world of computer science, refers to the ease

with which novice programmers get caught

up in the process of learning a new language,

methodology or technology instead of

spending valuable time creating software.

Computer science is a daunting profession to

get into, since there is a plethora of

programming languages, development

environments and application programming

interfaces (APIs), as well as an infinite

number of project ideas and a vast array of

ways to approach given project ideas, along

with seemingly limitless combinations of

tools.

There is a lot of pressure on new

programmers to be up-to-date with the latest

technologies. The problem with this is that

there are always hot new technologies being

created and iterated upon. This pressure

makes sense, as programmers would

understandably want to be fluent in hot

technologies to give themselves a better

chance at finding work or creating

deliverables so that stakeholders can be awed

by how “high tech” they are.

I argue that pushback is needed. The

computer science world has lost its way by

favoring overly complex and resource-

intensive technologies in lieu of attacking a

computational problem in the simplest way

possible. Often these complicated approaches

actually result in a sharp decrease in

performance.

2. RELATED WORKS

Gonsalves, et. al. (2023) interviews Ali

Shojaei, who discusses how using AI can

save precious development time, especially

on relatively menial tasks like referring to

documentation or debugging. Shojaei go on

to say that using AI during development can

similarly help eliminate human error.

However, he also suggests that merely using

AI as a “silver bullet solution” for the sake of

satisfying stakeholders can lead to poor

results in the end deliverable if developers do

not have the necessary knowledge. I would go

a step further to say that even if the

developers are knowledgeable in the field of

AI, incorporating AI as a buzzword in a

project is hazardous, and the time spent

incorporating the technology would be better

invested in just making the core features of

the project without AI (Gonsalves, et al,

2023).

Netflix’s UI/UX team (2017) delivered a

keynote in October 2017 that explained how

switching from React, a very popular web

development framework, to simple, vanilla

JavaScript saw a 50% decrease in their Time

to Interactive (TTI) metric, which measures

how fast a webpage loads. I believe this is a

perfect example of how using simple tools

can result in better results than using complex

alternatives. React is a framework that is

always in high demand due to its popularity

around the technology world. However,

learning React and conforming web design

choices to it requires a large time

commitment. I would argue, with support

from the Netflix report, that using the

simplest tools can often reduce bloat and

create a better user experience (Netflix UI

Engineering, 2017).

3. PROCESS DESIGN

This process compares and contrasts software

built with complex technologies to those built

with simple technologies. I argue that simple

software is easier to develop, manage, and

deploy, and that the benefits of simple

software development will be made evident to

anyone who subscribes to this belief.

3.1 Defense

The software of our modern world is

overwhelmingly complicated. It is almost

unfathomable just how many users use

software from companies like Amazon,

Apple, and Microsoft. A litany of issues come

up when referring to software of this scale:

How do we keep this software secure? How

do we scale up our software to accommodate

more users? How do we ensure that the

massive computational load is distributed

efficiently among servers? How do we

onboard new software engineers and get them

accustomed to our system?

In response to these questions, many

companies opt to use the latest software

development frameworks like React, Vue,

and now, AI. This response makes sense, as

companies are always looking for ways to

optimize their development pipeline and use

hot technologies in order to attract investors.

For that matter, a lot of what software

companies do is to appease investors, as is

evident with the rise of AI. Every major tech

company is now including some form of

artificial intelligence in their end products, for

better or for worse.

I argue that, in terms of making quality,

maintainable software, we should treat

direction from investors more lightly. Often,

investors are not very knowledgeable in

software development. Their job is to look at

the market trends and put cash into

companies that have a chance to grow. They

are usually not the people actually designing

the software they are investing in, so their

advice on what technologies to use should not

be taken as seriously as they are now. When

companies do fold to investor demands and

include complex technologies like AI into

their deliverables, the results can be mixed

and unpredictable. For example, Google has

recently adapted their generative AI service

Gemini into their titular search engine.

Adding a technology that is very prone to

hallucinations to a service that people use to

get reliable, truthful information has resulted

in a decrease in quality of the Google search

engine. When an internet user typed into

Google “I’m feeling depressed,” Gemini

suggested that the user “[jump] off the

Golden Gate Bridge.” When asked to name

African countries that begin with the letter k,

Gemini confidently stated that no such

country exists. Pairing this with the fact that

running a Gemini search query uses 10 times

as much water for cooling as a regular Google

search, one begins to ponder why Google

even chose to adopt AI in the first place.

Using more complex technologies,

frameworks and APIs in a codebase

necessarily requires more code to be written.

Although there is no direct function to relate

bugs and lines of code, it is undeniable that

more code naturally leads to more bugs and

security vulnerabilities appearing in software.

Especially when the code being written deals

with third party tools, you are at the mercy of

those developers to ensure that your own

code which relies on those tools runs

smoothly. If one is to use a third party API in

their program, at any point that API could

come offline or be introduced to a security

vulnerability, possibly crashing the original

software or otherwise compromising it.

Introducing more third-party APIs into a code

base also makes maintenance substantially

more difficult. Not only do new hires or

internal code checkers have to learn the ins

and outs of the homemade software, but they

must learn the third-party technology as well,

which eats away at precious development

time. If a blank project starts with leveraging

a substantial number of third party APIs, the

initial development time is dragged, as all the

developers will have to learn this new foreign

technology. Writing more code also comes

with a time and space tradeoff–the code files

themselves will take up more space and use

more resources to run.

These are not just theoretical hits–decreases

in software efficiency directly cost a company

more money to operate and maintain the

software. Of course, it is impossible to expect

software to not use some third-party tools and

technologies, especially software deployed on

a massive scale. I am not arguing against the

use of third-party technologies, or even

against the use of AI in all cases. It is

undeniable that tools like React have

revolutionized software development, and

OpenAI’s ChatGPT has changed the way we

interact with computers. However, we must

remember that the goal of software

development is to develop efficient software

that satisfies stakeholders’ needs–sometimes

adopting these tools can hurt the quality of

the software and/or the software development

cycle.

3.2 Evaluation

To evaluate how effective simple software is

at hitting deliverables, one only has to look at

the quality of the end deliverable and how

many key points were hit. For example, if a

manager asks a team of software engineers to

design a video streaming website, one can

easily fathom how to measure the quality of

the end product: Can the site stream videos?

Is it laggy on certain devices? Is the UI

accessible? Measuring the simplicity of

software is more difficult. However, I

generally define simple software as software

that avoids using as many third-party

technologies, APIs, frameworks, and tools as

possible.

How do engineers know that their solution is

simple? Unfortunately, there is no formulaic

way to answer this question; it all depends on

the context of the development of the

software. In the video streaming example, one

could examine how many third party APIs

were used. Then, one could consider how

necessary each of those APIs were: Could the

requirements satisfied by these APIs have

been developed in house? If so, how much

more or less time and money would it have

taken to do so?

A great way to evaluate my simple software

theory is to ask two teams of engineers to

develop a product, instructing one of them to

use as little third party tools as possible, and

applying no such restriction on the other.

Then, one would compare how many

deliverables were hit and the quality of the

two approaches. To test this theory

specifically as it pertains to AI, one could tell

the first team to include AI in the final

deliverable and prohibit the other from doing

so. Naturally, the development cycle of the

first team will be longer, but one still only

needs to evaluate the end deliverables of the

two teams to see differences in quality.

4. EXPECTED RESULTS

Adopting this simple approach to software

engineering could revolutionize the software

world. By eliminating time spent learning and

testing new tools, teams can directly develop

the software in meaningful ways. This will

make working on large, established code

bases more accessible for new software

engineers, as there will be less to learn before

they can write code. I believe that AI is

unnecessary in most software applications

that use it. It is expensive, both in terms of

money and resources needed to power the

systems, and it adds a massive roadblock to

the development of the software.

5. CONCLUSION

I implore tech companies to adopt my

philosophy about AI, as AI is known to be

unreliable and hallucinate information

anyways. For example, search engines should

opt not to use AI, as people are looking for

true information, not information regurgitated

from an AI model that uses significant

freshwater to power it. Of course, if this

methodology is adopted, the companies that

make these third party tools and AI models

will suffer, as fewer people would use them.

To this, I argue that markets drive innovation,

and if people are using companies’ tools less

and less, the company will be more inclined

to iterate upon and improve the design of

their tools, increasing the quality of future

software that does use them.

6. FUTURE WORK

An expanded verison of testing this theory

involves a company or software team

adopting the simple, AI-less approach for an

extended period of time, perhaps a year.

During this time, end users would be

surveyed on the quality of the software, how

likely they are to continue using the software,

and how likely they are to recommend to the

software to a friend. Then, after the company

or team has allowed themselves to produce

simple software for this period of time, the

survey data will be examined and contrasted

with previous user satisfication data. If a

company is doing this, they could look at the

earnings report or stakeholder satisfaction

during this period and contrast it with

relevant data before this period of time. This

would give the engineers and stakeholders the

clearest assessment on the effectiveness of

simple software.

REFERENCES

Gonsalves, F., Green, J., Parrish, A., Moxley,

T., Seeber, C., & Williamson, A. (2023,

Fall). AI—The good, the bad, and the

scary. Virginia Tech Engineer.

https://eng.vt.edu/content/eng_vt_edu/en/

magazine/stories/fall-2023/ai.html

Netflix UI Engineering [@NetflixUIE].

(2017, October 26). Removing client-side

React.js (but keeping it on the server)

resulted in a 50% performance

improvement on our landing page

https://t.co/vM7JhWhYKu [Tweet].

Twitter.

https://x.com/NetflixUIE/status/92337421

5041912833

https://eng.vt.edu/content/eng_vt_edu/en/magazine/stories/fall-2023/ai.html
https://eng.vt.edu/content/eng_vt_edu/en/magazine/stories/fall-2023/ai.html
https://x.com/NetflixUIE/status/923374215041912833
https://x.com/NetflixUIE/status/923374215041912833

