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Abstract

Visible light communications (VLC) using LED lights as transmitters is an emerg-

ing technology that can provide services such as illumination, localization, and map-

ping, in addition to communications. Since the visible light spectrum is unregulated,

and the cost of VLC systems is decreasing, the widespread deployment of VLC sys-

tems is imminent.

In this dissertation, we begin by introducing a powerful VLC-based indoor posi-

tioning method that uses probabilistic tracking filters and a pre-collected database

of optical power distribution, also known as a fingerprint map. In fingerprint-based

localization methods, the location-related data collection process needs to be done

a priori. This makes fingerprint-based localization algorithms difficult to use. We

propose three ways of automating or progressively building the fingerprint map. In

the first method, we utilize methods from geological science that are used to build a

map of a surveillance area, namely, ordinary Kriging and radial basis functions. In

the second method, we propose to equip the lamps with cameras to capture the light

intensity distribution. The fingerprint map can be extracted from these images. In

the final method, we rely on a large number of users that are connected to Wi-Fi to

collect the light intensity measurements for us. We test the effect of these different

data collection methods on agent tracking using Kalman and particle filters and find

that the localization accuracy remains on the order of the fingerprint map resolu-

tion despite collected data inaccuracies. We also investigate the effect of unexpected

failures in the VLC infrastructure on agent tracking. The root mean square error

(RMSE) of VLC-fingerprint tracking is around 6 centimeters for a fingerprint grid

step size of 10 centimeters.

To achieve accurate localization, prior belief in the landmark locations must be

absolute. In reality, the landmark locations may not be given a priori. We use
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a distance geometry based method to localize the LED landmarks. The method

does not require any prior information about either the LED or the agent location.

The resulting agent localization accuracy decreases proportionally to the landmark

localization error. The landmark localization RMSE is better than 20 centimeters for

our proposed method, and the agent tracking RMSE is around 10 centimeters.

After localizing itself, an agent needs to learn its environment. Indoor mapping is a

problem that has garnered much attention, and the widely accepted solution is to use

LIDAR. Although LIDAR provides excellent maps with high fidelity, they are bulky,

expensive, and signal processing intensive. In this dissertation, we propose a sparse

indoor mapping method that requires lightweight signal processing and inexpensive

sensor design. We utilize the channel state information (CSI) of the optical wireless

communication system and obtain the time-of-flight of the reflected light rays from

the CSI. The technique is able to generate a coarse outline of the indoor space with

respect to the agent position. With the use of an additional outlier rejection step,

the mapping RMSE reduces to less than 5 centimeters at high signal-to-noise ratio

values.
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Chapter 1

Introduction

Localization and mapping are critical tasks towards contextual understanding1 of

the environment that an agent interacts. An agent can be identified as a mobile

user electronic device, a robot, or any machinery that has sensing capabilities. These

devices or automata can perform several tasks, such as sensing, service, and surveil-

lance. Location-aware2 algorithms, which help to process location-related data from

remote sensing, create energy efficient, smart spaces, as well as provide location-based

services (LBS).

In this dissertation, we propose a suite of algorithms that enable the use of optical

wireless communication systems for inexpensive and accurate location and mapping

of indoor spaces. The outdoor localization problem is solved by the global positioning

system (GPS) that relies on orbital satellites [3]. However, localization of an agent

indoors is still an open problem since there is no consensus on a single technology

like GPS [4]. For indoors, the mapping problem is generally solved by light detection

and ranging (LIDAR) systems or camera sensors. Considering the limited resources

of a mobile device and high cost of LIDARs, there is a need for low-cost position-

1Contextual understanding refers to providing data related to the physical medium of an agent.
2The ability to localize oneself and make informed plans and decisions.

1
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ing and mapping methods that use cheap sensors and inexpensive signal processing

algorithms.

There are several competing technologies to solve the indoor localization and map-

ping problem, such as Wi-Fi, Bluetooth, ultra-wideband, imaging (still and video),

and ultrasound [4]. The advancement of semiconductor technology has made new,

low-cost devices such as light-emitting diodes (LED) and vertical-cavity surface-

emitting lasers (VCSEL) commonplace. These devices have made visible light another

candidate signal to solve the localization and mapping problem [5,6].

In this chapter, the motivation for developing an optical wireless-based indoor

localization and mapping system is introduced, and the research goals of this disser-

tation are summarized.

1.1 Background

GPS systems cannot be adopted indoors. Challenges for indoor positioning include

severe signal reflection, signal attenuation, non-line-of-sight (NLOS) conditions, fast

temporal changes, and requirements of high positioning accuracy [5].

A recent research report [7] shows that the market for indoor positioning applica-

tions will be around $4.4 billion by the end of 2019. Considering that people spend

most of their time indoors and hand-held mobile devices with ever-increasing capa-

bilities are everywhere, the indoor positioning and navigation market is expected to

grow in the future. The possible applications of indoor positioning and navigation

services can be listed as

• Location aware personalized advertising,

• Wayfinding/indoor navigation,
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• Human or asset tracking,

• Point of interest search, and

• Healthcare applications.

Potential deployment areas of such systems can be any indoor area such as airports,

hospitals, offices, shopping malls, and museums.

The problem of indoor positioning and navigation (IPN) consists of many steps

that are interconnected as shown in Fig.1.1. Indoor applications of IPN, especially

localization, include many open research issues. Furthermore, there is still a need for

smaller, cheaper, and energy efficient sensors for IPN applications.

The IPN problem has garnered much attention in the last decade. There are many

IPN-enabling signal media available, as shown in Fig. 1.2:

Computer vision : Computer vision (CV) systems use camera inputs, extract fea-

tures from these images, and use them to detect landmarks and locate the agent [8,9].

CV-based solutions require the camera to be on during the localization process. They

can, therefore, drain the battery on a mobile agent, and the signal processing can be

expensive.

Ultrasound : Ultrasound is an active sensing method that uses high-frequency

sound waves. It is one of the oldest localization solution, e.g., SONAR, [10]. The idea

is to calculate the time-of-flight (TOF) of the transmitted sound.

Inertial measurement unit : Inertial measurement unit (IMU) is a name given

to a combination of sensors such as accelerometer, gyroscope, and magnetometer.

These systems have been used since the dark ages in the form of an astrolabe and

compass. They are used both for outdoor and indoor applications [11].
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Mapping Localization

Motion and path planning

SLAM

Exploration Active localization

Positioning and
navigation

Figure 1.1: Complete positioning and navigation problem. Figure adopted from [1].
(SLAM is an abbreviation for simultaneous mapping and localization.)
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Figure 1.2: Technologies adopted for indoor positioning and navigation.
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Ultra wideband : RF signals with hundreds of MHz of bandwidth can be used as

active location devices, similar to radar, and called ultra wideband systems. The

effects of small scale fading are minimized for an ultra wideband system compared

with narrowband RF, which enables accurate distance estimation from the path loss

model [12].

Bluetooth : Bluetooth is a popular RF short-range connectivity standard. Its bea-

cons consume less energy than Wi-Fi access points, which make them a suitable

candidate for solving the indoor localization problem. Bluetooth fingerprinting is a

well-known technique [13].

Other RF techniques: Radio frequency systems can use the Wi-Fi infrastructure

[14] or RF-ID technologies [15]. The pervasive deployment of Wi-Fi favors these

approaches. On the other hand, the low cost and low energy requirements of RF tags

create localization solutions for industrial problems [16].

Optical wireless communications: Communication systems that use light to

transmit signals have been used in fiber-optic communications for a long time. The

use of free space optical systems indoors has been an active research topic since

the early 2000s. There are several advantages of optical wireless communication

(OWC) systems such as the deterministic nature of light propagation, unregulated

spectrum, wide-spread deployment of lighting fixtures indoors, and inexpensive and

low energy sensors, e.g., photodetectors (PD). Our work focuses on OWC solutions,

with an emphasis on a PD as the receiver, and systems that employ LED lighting

infrastructure and/or an agent-mounted laser diode.

The technologies discussed so far can be used in cooperation, as complementary,

or interchangeable with each other. The solutions used for localization are similar
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to each other. These method are generally divided into three types: multilateration-

multiangulation [17], proximity [18], and fingerprinting [19].

• Multilateration methods rely on estimating the distance to a landmark such as

a light-emitting diode (LED) lamp, with a known location. The types of mea-

surements used for distance estimation are the optical received signal strength

(RSS) and the time-of-flight (TOF). If the RSS is used, the propagation loss of

the channel is used to calculate the distance from at least three landmarks to

find the location of the agent [17].

• Multiangulation is similar to multilateration. This method uses angle-of-arrival

(AOA) measurement to locate the agent with respect to at least three landmarks

[20]. This technique requires a receiver array to estimate the angles.

• Proximity methods require a dense grid of landmarks, such as lighting fixtures,

with known positions, each transmitting its location information and a unique

identifier. The user location is estimated by the agent’s proximity to the LED

landmark locations [18,21].

• Fingerprint-based localization is the focus of research in this study. The word

fingerprint is used to represent a quantity measured at known locations and is

stored in a database, also known as a fingerprint map or site survey. Bayesian

filtering, pattern recognition, and correlation algorithms can be used to match

the online measurements with the a priori collected fingerprint map [19].
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In this dissertation, we tackle the problem of indoor localization and mapping

using OWC, as depicted in Fig 1.3. In the first part of our work, we focus on agent

localization. We use the optical RSS to build a fingerprint map. This map is used

as a look-up table in probabilistic tracking filters. In Fig.1.3, the blue encircled part

represents our localization focused research.

The localization problem we consider in this part of the work is not limited to

agent localization. Most localization problems assume that the landmark locations

are known beforehand: we also look at a scenario where the LED landmark locations

are unknown. We use a distance geometry based method that does not require any

prior information about the agent location.

Our second effort consists of building a sparse map of the surveillance area by

observing the channel state information, such as the RSS and channel impulse re-

sponse (CIR). Our OWC-based indoor mapping algorithms work in conjunction with

an inexpensive sensor, a PD, and simple signal processing algorithms. In Fig.1.3, the

green encircled part represents our mapping focused research.

The goal of this study is to propose a complete and versatile OWC-based indoor

mapping and localization system. A broad application spectrum ranging from LBS

to remote sensing can benefit from our proposed solutions.

1.2 Research Goals

The primary goal of this dissertation is to propose a complete localization and

mapping system that does not require expensive sensors, intensive computing, or

abundant deployment, and provides high accuracy. The following is a detailed de-

scription of the research metrics of this dissertation.
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Figure 1.3: Overview of the research described in this dissertation.

Requirement-oriented

The versatility of fingerprint-based solutions comes from the fact that they can

be tailored depending on the accuracy requirements. Fingerprint databases store a

priori collected location-related data. The granularity of the data collection dictates

the accuracy of the algorithm. In addition, while collecting this database, applica-

tions such as mapping, remote sensing, and occupancy detection can be realized by

collecting other features.

Accuracy

The primary goal of a localization algorithm is to pinpoint the agent location.

The main localization approaches used in this dissertation are fingerprint-based and

range-based approaches. Our metric of accuracy evaluation of the proposed solutions

is the root mean square error (RMSE) of the position estimate.
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Cost

A critical design criterion in this dissertation is low cost and low complexity. LED-

based lighting schemes for indoor spaces are expected to be widespread in the near

future, which will make LEDs ubiquitous. Unlike other technologies, OWC-based IPN

systems will not result in any additional infrastructure cost. In addition, user elec-

tronic devices have already embraced LEDs, VCSELs, and PDs. Landmark discovery

and mapping applications can benefit from these device-integrated transmitters.

Computational Cost

LIDARs and cameras adopted for mapping solutions use resource-hungry signal

processing algorithms that lead to high power consumption and computation such

as iterative cloud point or scan matching algorithms that require constant updates.

The signal processing and feature extraction processes in our methods are designed

for frugal energy consumption in mind, which leads to a rapid sparse map building

process.

1.3 Literature Review

As OWC research has advanced, visible light positioning (VLP) has become in-

creasingly popular. In this section, we describe recent works on VLP triangulation,

fingerprinting, and proximity, defined above. Indoor mapping applications that use

OWC channel state information (CSI) are new to the literature.

Indoor localization using OWC

The deterministic nature of light allows extracting distance and angle features

accurately from the measurements. Two main sensor types used in VLP research are
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cameras and PDs [5,22].

Distance between the transmitter and receiver is calculated using the VLC channel

model, and multilateration is used for finding the position of the agent in [17]. An

important assumption is that the positions of the transmitter and the receiver planes

are parallel to each other. A simplified approach when the relationship between the

irradiance angle and the incidence angle are not given a priori may lead to inaccurate

localization. The problem of a tilted receiver is considered in [23–25]. The estimation

of a tilted receiver requires a combination of AOA and RSS approaches.

The multiangulation approach is similar to multilateration. Multiangulation re-

quires complicated PDs or cameras to extract angular information or location of the

LED landmarks. A combination of multiple PDs that are facing different directions

can be used for multiangulation from the AOA measurements [14, 26, 27]. Another

sensor type commonly used in VLP research is a camera [20]. The high power con-

sumption of cameras makes them undesirable for mobile applications, and therefore

they are not considered in this dissertation.

Fingerprint approaches are more challenging to implement in real-life because

building and maintaining a fingerprint database that consists of the optical RSS is a

hard problem due to several challenges for VLP indoor positioning including people,

obstructions of line-of-sight (LOS), non-line-of-sight (NLOS) conditions, perturba-

tions in the transmitted optical power from the LEDs, other fast temporal changes,

and requirements of high positioning accuracy [5, 28]. Fingerprinting for RF-based

indoor localization such as Wi-Fi RSS is a well-studied problem [29, 30]. In the con-

text of VLP, fingerprint methods assign a unique frequency or code to each LED, so

that the optical RSS from the LEDs can be distinguished [19, 31, 32] at the receiver.

A common approach to locate the agent is to match the online measurement with the

fingerprint (offline) database using the nearest neighbor algorithm [33,34]. Although
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2D [19] and 3D [33] VLC fingerprinting localization solutions are available [30,32,35],

there are limited efforts in automated building and maintaining an optical finger-

print map in the literature. One of the critical contributions of this dissertation is to

automate or aid the fingerprint map building process.

Landmark discovery in OWC-networks

In a localization and mapping problem, the locations of the landmarks are used as

reference points (anchors) that the agent locates itself with respect to. This topic is

well studied under the auspices of wireless sensor networks [36]. In this dissertation,

we aim to localize unknown LED landmarks using a method called distance geometry

[36, 37]. While other methods, such as multilateration and nonlinear least squares,

require the locations of the measurements, distance geometry method does not require

any prior knowledge about the agent and the landmark locations.

Indoor mapping using channel state information:

In this dissertation, we use the location of a reflector as the primary basis for

map-building. The RF systems have been known since a long time to exploit the

use of channel state information for reflector location. The estimation of a reflector’s

location using multipath has been described in many studies using RF signals [38–

40]. There are growing interest and re-discovery of using non-line-of-sight (NLOS)

components of the RF signal for localization and obstacle detection [41–43].

In the context of using light, TOF sensors, e.g., LIDAR, are the most widely

used sensor type for indoor mapping applications [44]. LIDARs consist of an array

of light emitters (edge-emitting lasers or VCSELs) and receivers (PD) [45]. However,

these sensors are bulky, expensive, and resource intensive. In OWC systems, the

word “mapping” is generally used for building a database of fingerprints of channel
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features, such as CIR and RSS [19,31,34]. In this dissertation, our proposed solutions

for indoor mapping cover building a sparse physical map based on the LED landmarks

or wall locations.

1.4 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 describes the OWC channel model. The LED lamp models used are

introduced. OWC channel features used during the entire dissertation are explained.

Chapter 3 is an overview of the localization, tracking, and mapping algorithms,

which introduces the workhorse signal processing concepts used: the Kalman and

particle filters. Simultaneous localization and mapping methods such as extended

Kalman filter and graph optimization are explained. Finally, deterministic localiza-

tion methods such as multilateration and distance geometry are introduced.

In Chapter 4, we introduce our OWC fingerprint-based localization algorithm. We

introduce methods for automating the data collection process for fingerprint database

preparation. Furthermore, we discuss the effect of errors unbeknownst to the system

on the tracking performance.

Chapter 5 explains how an LED landmark can be localized without any prior

location information. We also discuss the advantages of the proposed method by

comparing it to traditional wireless sensor network localization approaches.

Mapping using the channel state information is described in Chapter 6. We begin

this chapter by introducing a mapping and localization method that relies on the LED

infrastructure. Next, we extend the problem and propose a solution that can reduce

the cost of traditional mapping approaches both computationally and economically.

Chapter 7 summarizes the whole dissertation and provides, concludes regarding
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the results. The contributions of this dissertation are explained. Future research

directions are also discussed.



Chapter 2

Optical Wireless Communications

Systems

The spectrum crunch for the RF wavebands, the unregulated spectrum of the

visible light, and the pervasive deployment of LEDs that ranges from ceiling mounted

luminaries to consumer electronic devices have led an ever-growing interest in optical

wireless communications (OWC) systems, also known as visible light communications

(VLC). The goal of this chapter is to give an overview of OWC systems and discuss

how these systems are adopted for our localization and mapping methods.

2.1 OWC Channel Model

For indoor VLC systems, the received optical signal can be represented as

Pr(t) = PT (t) ∗ h(t) + n(t), (2.1)

where the operator “∗” denotes convolution, PT (t) is the transmitted optical intensity,

and n(t) is the additive noise that includes thermal and shot noises. h(t) is the indoor

14
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channel impulse response that can be modeled as

h(t) = hLOS(t) + hNLOS(t), (2.2)

where hLOS(t) and hNLOS(t) are the line-of-sight (LOS) and non-line-of-sight (NLOS)

parts of the received light, respectively. The LOS part represents the light that is

received directly from the LED; the NLOS part is caused by multiple reflections

from the walls as shown in Fig. 2.1 (a). An example of an impulse response of an

indoor VLC channel is illustrated in Fig. 2.1 (b), in which the first peak is the LOS

part, and the NLOS components cause the other peaks with long tails. Given specific

information about an indoor environment, the impulse response can be approximated

by using ray tracing [46].

For commonly used light sources that have an unrestricted beam shape, e.g.,

LEDs, the intensity of the emitted light for a particular radiation angle φ can be

modeled using the Lambertian law [46]. The LOS link gain between a transmitter

and a receiver can thus be described as

hLOS =
(m+ 1)

2πd2
Ar cosm(φ) cos(ϕ) (2.3)

where d is the propagation distance and ϕ represents the incident angle at the receiver.

The parameter m represents the Lambertian mode, which depends on the LED’s

beamwidth semiangle. Ar is the photodetector (PD) active area. Note that the use

of a light diffuser would change the beam characteristics.

The channel gain of each NLOS ray can be calculated as

hNLOS =
∞∑
i=1

Hiς
i, (2.4)
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(a) (b)

Figure 2.1: Propagation of an optical wireless link. (a) shows the geometry of LOS
and NLOS propagation of light. (b) shows the LOS and NLOS parts of the impulse
response of the channel.

where ς is the wall reflection coefficient, and Hi represents the ith bounce link atten-

uation,

H0 =
(m+ 1)Ar cosm(φ0) cos(ϕ0)

2πd20

H1 = Ar
cos(φ1) cos(ϕ1)

πd21
...

Hk = Ar
cos(φk) cos(ϕk)

πd2k

, (2.5)

where dk represents the distance of the kth bounce link. φk and ϕk are the radiation

angle and incident angle at the kth bounce’s diffusion point, respectively [47].

The complete impulse response is represented as the superposition of the LOS

and the NLOS components with their appropriate gains and their delays based on

the propagation distance of the ray from the lamp to the receiver.
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Figure 2.2: Nondiffusing lamp, (a) side view, b) bottom view. c) Diffusing lamp side
view.

2.2 LED Transmitter Models

We use two different and commonly deployed LED lamp models [19]: nondiffusing

and diffusing lamps. The LED layout configuration of both lamps consists of three

layers, with 1, 8, and 16 LEDs, as shown in Fig. 2.2 (a) and (c). Fig. 2.2 (a) shows the

light rays from a nondiffusing 25-LED lamp. A nondiffusing lamp consists of LEDs

with fixed well-designed irradiance angles that do not change over time. The optical

power distribution of the nondiffusing lamp is deterministic. Fig. 2.2 (c) represents

the same 25-LED lamp but now using random irradiance angles (diffused model),

which results in a unique (observable but not necessarily predictable) optical power

distribution in the room.

The diffusing lamp model is a modification of the nondiffusing lamp. We introduce

random transmission angles to mimic the random refraction of light beams through

a crystal, as in a chandelier or a light diffuser [19]. The diffusing lamps are com-

monly used in large indoor spaces such as conference halls and museums. Classical

architectural lighting styles for these environments include chandeliers, which contain

many small moving crystal refracting elements that cannot be modeled as determin-

istic. In this dissertation, we address the ability to perform indoor positioning when

chandeliers or other diffused light sources are used for VLP lighting.
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In this dissertation, we modify the 25-LED lamp proposed in [48] to imitate the

behavior of a diffusing lamp. Each LED has a random inclination angle; the random

angle is used to model the refraction of light through a prism.

In Fig. 2.3, the difference between the power contours for deterministic and ran-

dom 25-LED lamps is shown. Note that the radiation pattern emitted by the 25-LED

lamp is practically identical to an equally bright single LED for 60◦ half angle emit-

ters. The room is 5×5×3 m3, with four LED luminaries on the ceiling, positioned at

(x, y, z) = (1.25, 1.25, 3), (1.25, 3.75, 3), (3.75, 1.25, 3) and (3.75, 3.75, 3). The trans-

mitted power from each LED is 20 milliwatts, yielding a total transmitted power of

500 mW per lamp. The random irradiance angles of the diffusing model have a normal

distribution with zero mean and standard deviation of 30◦. In Fig. 2.3 (a), (b) and

(e), the power distribution in the room floor when the deterministic lamp model is

used with different LED semiangles is shown, while Fig. 2.3 (b), (d) and (e) shows the

effect of random transmit angles when the proposed random (diffusing) model is used.

The refraction of light through the diffuser results in nonuniform power distribution

in the room.

2.3 Signal to Noise Ratio Analysis

There are two noise sources: shot and thermal noise in a classical signal-to-noise

ratio (SNR) analysis for an OWC system [47]. Shot noise depends on the direct

and ambient light. Thermal noise results from the electronic noise. Previous works,

like [17,49], assume these two are the main noise sources in the system.

In a real-world scenario, other unknowns affect the system; they are lumped to-

gether as uncertainty noise in this study. This uncertainty noise may be caused by

the shadowing of the LOS between the transmitter and the UE, uneven dimming of



19

Length of the room (cm)

W
id

th
 o

f 
th

e
 r

o
o
m

 (
c
m

)

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

lux

100

150

200

250

300

350

400

450

500

550

Length of the room (cm)

W
id

th
 o

f 
th

e
 r

o
o
m

 (
c
m

)

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

lux

250

300

350

400

450

500

550

600

650

700

(a) Semiangle 10◦ (b)Semiangle 10◦

Length of the room (cm)

W
id

th
 o

f 
th

e
 r

o
o
m

 (
c
m

)

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

lux

150

200

250

300

350

Length of the room (cm)

W
id

th
 o

f 
th

e
 r

o
o
m

 (
c
m

)

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

lux

300

350

400

450

500

550

600

650

(c) Semiangle 30◦ (d) Semiangle 30◦

Length of the room (cm)

W
id

th
 o

f 
th

e
 r

o
o
m

 (
c
m

)

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

lux

100

120

140

160

180

200

220

Length of the room (cm)

W
id

th
 o

f 
th

e
 r

o
o
m

 (
c
m

)

 

 

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

lux

140

160

180

200

220

240

(e) Semiangle 60◦ (f) Semiangle 60◦

Figure 2.3: Top-down power contours of the room floor for (a), (c), (e) the determin-
istic 25-LED lamps and (b), (d), (f) the random inclination angle (diffusing) lamp
model.
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the lamps, uncertainties during the construction of the fingerprint map, an unknown

inclination of the mobile device, etc. The SNR calculation for the system is modified

as

SNR =
ρ2P 2

r

σ2
shot + σ2

thermal + σ2
uncertainty

(2.6)

where ρ is the receiver responsivity, and Pr is the average received optical power

(RSS). Modeling the dependence of the uncertainty on Pr is beyond the scope of this

thesis; its variance σ2
uncertainty is taken to be a constant that defines the effective SNR.

2.4 Summary

This chapter introduces the fundamental concepts of the OWC channel. The

OWC channel equations play a critical role in accurate localization and mapping.

Equations (2.3) and (2.4) are used in later chapters to calculate the distance between

an OWC transmitter and receiver.



Chapter 3

Overview of Tracking and Mapping

Algorithms

Simultaneous localization and mapping (SLAM) is a general name for the prob-

lem of localizing an agent while building a map of the environment. The goal of this

dissertation is to answer three critical SLAM questions using an OWC system: local-

ization of the agent, initialization of the landmarks, and building a map that stores

quantitative features such as optical RSS, TOF, CIR, and physical features such as

locations of LEDs, walls, and obstacles. To achieve these goals, we adopt probabilis-

tic methods such as Kalman and particle filters, as well as deterministic methods

of multilateration and distance geometry. In this chapter, we briefly overview these

methods.

3.1 Agent Dynamic Models

Probabilistic tracking filters rely on accurate modeling of state dynamics of the

target. In this section, we introduce two state dynamic models used in our work

before introducing the probabilistic tracking filters.

21
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3.1.1 Constant Velocity Model for Hand-held Mobile De-

vices

The agent is not expected to make sudden changes or random accelerations during

its movement; for that reason, we use the well-known constant velocity model [50] for

our simulations. The state vector is defined as xt = [xt, yt, ẋt , ẏt]
T , where xt and yt

are the Cartesian coordinates of the agent at time sample index t. The corresponding

velocity components are represented by ẋt and ẏt. The state equation can be written

as

xt+1 =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

At



xt

yt

ẋt

ẏt


+ qt (3.1)

where At is the state transition matrix at time index t, ∆t is the sampling time, xt,

is propagated through, and qt ∼ N (0,Qt) is a Gaussian distributed random process

noise with covariance Qt as described in [51]. The process noise is used to model the

random acceleration between the measurements. ∆t is the sampling time.

3.1.2 Differential Drive Dynamic Model for Mobile Robot

The dynamic model of the robot that is used in the mapping simulations of this

dissertation is a differential drive model described in [52]. The state (pose) of the robot

is represented as xt =

[
xt, yt, θt

]T
, where xt and yt are the Cartesian coordinates of

the robot at time t, and θt is the heading angle.

Fig. 3.1 illustrates the motion of the mobile agent for two time steps. Assume

that the control input, ut = (v, w)T , is constant between t and t+ 1, where v is the
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Figure 3.1: Ackermann steering model for mobile agent motion

translational velocity and w is the angular velocity. If the agent is turning, the radius

of the turning circle can be found as

rt = | v
w
|. (3.2)

The new state of the agent can be calculated using


xt+1

yt+1

θt+1

 =


xt + rt(sin (∆θ + θt)− sin (θt))

yt + rt(cos (∆θ + θt)− cos (θt))

∆θ + θt

+ nt+1 (3.3)

where ∆θ is the turning angle. If the agent is moving on a straight line, the equation
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of motion can be written as
xt+1

yt+1

θt+1

 =


xt + v∆t

yt + v∆t

θt

+ nt+1 (3.4)

where nt+1 is the additive noise that is used to model the uncertainties or noise in

the system.

3.2 Probabilistic Tracking Filters

The definition of the word estimation is “the process by which we infer the value

of a quantity of interest x, by processing data that is in some way dependent of x”

according to [53]. We use state estimation to translate the optical measurements to

physical quantities in this dissertation.

3.2.1 Bayes Filter

Bayes’ rule allows us to estimate a value in a maximum a posteriori sense. If we

have prior information and observations, we can calculate the value that maximizes

the posterior distribution. Bayes’ rule can be recursively expanded for time series.

It allows us to calculate the posterior distribution using a priori information and

time-stamped measurements in predict, update, and normalize steps [51].

• Initialization : The recursion starts with a prior belief p(x0),

• State space model : xt ∼ p(xt|xt−1),

• Measurement model : zt ∼ p(zt|xt)
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We estimate the posterior state, xt, by using the measurement, zt,

p(xt−1|z1:t−1) −→ p(xt|z1:t) (3.5)

• Prediction step of the Bayes filter is calculated as follows:

p(xt,xt−1|z1:t−1) = p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1), (3.6)

= p(xt|xt−1)p(xt−1|z1:t−1), (3.7)

p(xt|z1:t) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (3.8)

• Update step of the Bayes filter is calculated using the predicted (prior) distri-

bution and the measurement as follows:

p(xt|z1:t) =
1

p(zt|z1:t−1)
p(zt|xt)p(xt|z1:t−1), (3.9)

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt. (3.10)

Recall that the measurements are conditionally independent.

3.2.2 Linear-Discrete Kalman Filter

In this section, we describe an extension of recursive Bayes filters that uses a

Gaussian approximation and matrix multiplications known as the Kalman filter (KF).

Introduced in the seminal paper [54], the KF is one of the most potent state estimation

tools. The KF is the best linear unbiased estimator in the minimum mean square

error (MMSE) sense when the process and the measurements are linear, and the

associated noise distributions are Gaussian.
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Unbiased estimator: Dropping the time indices, when the expected value of an

estimated quantity, E[x̂], e.g., the predicted state of the robot, and the expected value

of the quantity x, E[x], are equal, then the estimator is said to be unbiased :

E[x̂] = E[x]. (3.11)

Then, given the measurement, z, and the variance defined as E[||x− x̂||2], a minimum

variance unbiased estimation is defined as

x̂ = arg min
x̂

E[||x− x̂||2|z] = E[x|z], (3.12)

where E[||x− x̂||2] = trace(E[(x− x̂)(x− x̂)T]).

Linear State Space Representation:

To derive the KF, we first introduce a linear state space model

xt = At−1xt−1 + qt−1 (3.13)

zt = Htxt + rt, (3.14)

where t is the time index, x is the state of the agent, and z is the measurement. qt−1

and rt are the process and the measurement noise, with N (0,Qt−1) and N (0,Rt)

distributions, respectively. A is the state transition matrix. H is the measurement

matrix. The prior distribution of the initial state is assumed to be known and is given

as x0 ∼ N (x̂0, P̂0).

Similar to a general Bayes filter, the KF consists of predict and update states:
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• Prediction

x̂t|t−1 = At−1x̂t−1|t−1 + ut (3.15)

Pt|t−1 = At−1Pt−1|t−1A
T
t−1 + Qt−1 (3.16)

• Update

νt = zt −Htx̂t|t−1 (3.17)

St = HtPt|t−1H
T
t + Rt (3.18)

Kt = Pt|t−1H
T
t St

−1 (3.19)

x̂t|t = x̂t|t−1 + Ktνt (3.20)

Pt|t = Pt|t−1 −KtStK
T
t (3.21)

where ut is the control input, νt is the innovation, St is the innovation covariance,

and Kt is the Kalman gain, all at time t.

3.2.3 Extended Kalman Filter

In real life situations, the process and/or the measurement equations may be

nonlinear functions of the state. For example, the Euclidean distance is a nonlinear

function of the agent and landmark locations. The extended Kalman filter (EKF)

uses the Jacobian of the nonlinear equations in the system [51]. This leads to sub-

optimal filter performance. Assume that the dynamic model of the agent and the

measurement function are nonlinear in the following form:

x̂t|t−1 = a(x̂t−1|t−1,ut, t) + qt−1

zt = h(x̂(t|t− 1)) + rt

(3.22)
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The Jacobian of a and h in (3.22) is calculated as follows:

∇At =
∂a

∂x
=


∂a1

∂x1
. . . ∂a1

∂xm

...
. . .

...

∂an

∂x1
. . . ∂an

∂xm

 , ∇Ht =
∂h

∂x
=


∂h1

∂x1
. . . ∂h1

∂xm

...
. . .

...

∂hn

∂x1
. . . ∂hn

∂xm

 (3.23)

The EKF uses these expressions as follows:

• Prediction

x̂t|t−1 = a(x̂t−1|t−1,ut, t) (3.24)

Pt|t−1 = ∇At−1Pt−1|t−1∇AT
t−1 + Qt−1 (3.25)

• Update

νt = zt − h(x̂t|t−1) (3.26)

St = ∇HtPt|t−1∇HT
t + Rt (3.27)

Kt = Pt|t−1∇HT
t St

−1 (3.28)

x̂t|t = x̂t|t−1 + Ktνt (3.29)

Pt|t = (I−Kt∇Ht)Pt|t−1 (3.30)

As can be seen from (3.24-3.30), the main difference between the EKF and the linear

KF is the way the nonlinear system equations are linearized.

3.2.4 Particle Filter

The particle filter (PF) is a Monte Carlo algorithm that can estimate the internal

state of a dynamic system by using Bayesian statistical inference [55]. While the KF
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performs optimally with Gaussian distributed variables, the PF can handle nonlin-

earity and non-Gaussian noise. The motivation behind the PF is straightforward:

generate many candidate solutions, and choose the ones with the highest probability.

The candidate solutions (the state of the agent) are represented with weighted

particles. As the number of particles goes to infinity, the accuracy of estimation and

the number of particles are proportional.

• Initialization: Generate a set of weighted particles {(w(i)
t , x

(i)
t ) : i = 1, . . . , N},

where N is the number of particles, x
(i)
t represent particle i, and w

(i)
t is the par-

ticle weight, such that x
(i)
0 is drawn from a prior distribution x

(i)
0 ∼ p(x0), and

the weights of particles are equal, w
(i)
0 = 1

N
.

• Prediction: Propagate each particle through the state transition equation:

x
(i)
t = a(x

(i)
t−1, u

(i)
t ) (3.31)

Using the measurement model, update the particle weights:

w̃
(i)
t = w

(i)
t−1p(zt|x

(i)
t ) (3.32)

Normalize the updated weights:

w
(i)
t =

w̃
(i)
t∑N

i=1 w̃
(i)
t

(3.33)

The state estimate, x̂t, is calculated as

x̂t = E[xt] ≈
N∑
i=1

x
(i)
t w

(i)
t (3.34)

• Resampling: Systematic resampling algorithm is used in this step. The goal
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is to sample the particles uniformly with random offsets.

3.2.5 Discussion on Probabilistic Tracking Filters

The KF is optimal for a linear system with Gaussian noise. The EKF applies local

linearization in case of a nonlinear system and/or multimodal noise. In this case, the

estimation is sub-optimal. The approximation errors during the calculation of the

derivatives may introduce errors that may degrade the filtering performance.

The linearization step in the EKF decreases the uncertainty, although in reality the

uncertainty caused by random accelerations or environmental effects is still present.

If the system is highly nonlinear, the performance of the EKF may not be sufficient.

The PF, on the other hand, simulates the system by using particles that repre-

sent possible state values. The computational complexity of the PF increases as the

number of particles increases. However, it does not need a linearization step in the

process or measurement steps. The particles converge to a state if there is no motion

or measurement as time progresses. As the measurement noise decreases, the particle

weights tend to be uniformly distributed. Another problem of the PF is that there is

no way of estimating how many particles are needed in a problem. A comparison of

the KF and the PF is given in Table 3.1.

Table 3.1: Differences between the KF and the PF.

Kalman filter Particle filter
Maintains Mean and covariance Set of particles

Implements Predict and update
Predict and update
(calculate the likelihood of particles)

Constraints
Gaussian noise, linear system
dynamics, and measurement model

Large number of particles
required

Advantages
Computationally inexpensive,
sub-optimal nonlinear extensions:
EKF, unscented KF

No linearization required,
can operate with multimodal noise
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3.2.6 Extended Kalman Filter SLAM

Simultaneous localization and mapping (SLAM) is a general name given to a suite

of algorithms that are used to find the location of an agent, e.g., a robot, as well as

building a map of the environment without any prior knowledge of the environment.

There are several algorithms involved in solving the SLAM problem.

In this part of the dissertation, we explain the difference between extended Kalman

filter (EKF) SLAM and EKF-based localization algorithms. Unlike the localization

tasks above, the LED landmark locations are unknown a priori for SLAM tasks. The

fundamental difference between EKF-localization and EKF-SLAM is the processing

of the state and error covariance matrices related to the landmarks [52]. Recall

that since each LED has its unique code, the data association is not a problem for

measurement matching. Table 3.2 shows the main differences between EKF-SLAM

and EKF-localization.

Table 3.2: Differences between EKF-SLAM and EKF-Localization. Table is adopted
from [2].

Action EKF-SLAM EKF-Localization
Agent moves Agent motion EKF Prediction
A new landmark is detected Landmark initialization State augmentation
A known landmark is observed Map correction EKF Update

In the EKF-SLAM algorithm, the state of the agent and the map are merged

into one larger state vector defined as x̄ =

[
x, m

]
. The time index is dropped for

simplicity, and m =

[
`1, . . . , `k

]
represents the landmark locations for k landmarks.

The new state vector and the covariance matrix are given as

x̄ =

x

m

 P =

Pxx Pxm,

Pmx Pmm

 (3.35)

EKF-SLAM assumes that the initial location of the robot is known, so there is no
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uncertainty about the robot’s initial location with respect to the coordinate system.

The landmarks are not moving so their locations are chosen as constant and the

state transition matrix is augmented with an identity matrix, I, as a new landmark

is observed.

The EKF-SLAM method can be broken down into two main steps, described

below, using the same notation as for the EKF above.

• Prediction step of the EKF-SLAM can be written as

x̄t|t−1 =

∇Axt−1 0

0 Ik


 xt−1

mt−1

+

ut

0

 (3.36)

Pt|t−1 =

∇Axt−1Pxx
(t−1)∇AT

xt−1
∇Axt−1Pxm

(t−1)

(∇Axt−1Pxm
(t−1))T Pmm

 (3.37)

• Update step of the EKF-SLAM can be written as follows.

νt+1 = zt − h(x̄t,mt) (3.38)

St = Ht

Pxx Pxm

Pmx Pmm


t

HT
t + Rt (3.39)

Kt =

Pxx Pxm

Pmx Pmm


t

HT
t St

−1 (3.40)

x̄t|t = x̄t|t−1 + Ktνt (3.41)

Pt = Pt|t−1 −KtStK
T
t (3.42)
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Figure 3.2: Representation of a SLAM problem as a graph.

3.2.7 Graph SLAM

Graph SLAM represents the state of the agent, the landmarks, and the measure-

ments as a graph that consists of nodes and edges [56]. A node represents an agent

pose or a landmark location. An edge between two nodes represents a constraint

between them. The initial location of the agent, each of the movement of the agent,

and observation to the landmarks during the motion are constraints that are used

to build a graph. An example is shown in Fig. 3.2 where an agent, represented with

a triangle, moves for four times steps and observes two different circular landmarks.

The sum of all the constraints in the graph can be written in the form

JGraphSLAM = xT0 Ω0x0 +
∑
t

(xt − g(ut,xt−1))
TR−1t (xt − g(ut,xt−1))

+
∑
t

((zt − h(mt,xt))
TQ−1t (zt − h(mt,xt)) (3.43)
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where xT0 Ω0x0 is the initial location of the agent with absolute certainty, and Ω is

the information matrix. Dimensions of Ω depend on the number of constraints in the

graph. g(·) is the relative motion with a known control input of the agent, u is the

control input, and R is the covariance of the process noise. h is the measurement

model, and Q is the measurement noise. These constraints can be represented as an

information matrix, Ω, and an information vector, ξ as shown in Fig. 3.3. Ω keeps

a record of the relative robot poses and the observed and unobserved landmarks

during the movement of the robot. ξ stores the relative motion of the robot, i.e., the

displacement of the robot, and the measurements to the observed landmark. The

location of the agent and the map, x̄, can be recovered using

x̄ = Ω−1ξ. (3.44)

3.3 Deterministic Methods for Tracking and Lo-

calization

Deterministic localization methods rely on an accurate parameterization of the

relationship between the agent and landmark, as well as accurate measurements. In

this dissertation, we use a traditional localization method called multilateration, and

a relatively new approach called distance geometry.

3.3.1 Multilateration

The multilateration method relies on estimating the distances between the agent to

be localized and at least three landmarks with known locations, as shown in Fig. 3.4.

Once this set of locations and distance measurements are known, a least squares

solution to localize the agent can be applied [57]. Using more than three landmarks
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Figure 3.4: Illustration of a multilateration scenario.
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increases the robustness of the agent localization.

The solution to the multilateration problem in 2D is straightforward. We start by

writing the relationship between the LED landmarks and the agent:



(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...

(xk − x)2 + (yk − y)2


=



r21

r22
...

r2k


(3.45)

where (xi, yi) is the known ith LED landmark location, (x, y) is the unknown agent

location, and ri is the distance between the LED landmark and the agent. This

distance is obtained from the OWC channel model explained in Section 2.1. (3.45)

can be written in the form of Ax = b as follows



2(xk − x1) 2(yk − y2)

2(xk − x2) 2(yk − y2)
...

2(xk − xk−1) 2(yk − yk−1))


︸ ︷︷ ︸

A



r21 − r2k − x21 − y21 + x2k − y2k

r22 − r2k − x22 − y22 + x2k − y2k
...

r2k−1 − r2k − x2k−1 − y2k−1 + x2k − y2k


︸ ︷︷ ︸

b

(3.46)

where k is the number landmarks in the system. The position of the agent can be

estimated by x = (ATA)−1AT b, which is the least-squares solution.

3.3.2 Distance Geometry

Distance geometry is a method for localizing an agent. It was developed for

scenarios where there is no information about landmarks or agent locations, as well

as no odometer or inertial measurements. The only assumption is that one of the

landmarks is chosen as the anchor, e.g., the point of origin, where other elements are
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located in relation to the anchor. The information computed is the distance between

the landmarks and the agent, which is obtained from RSS measurements [37, 58].

The position of the agent, the LEDs, and inter-landmark distances, rmn, are un-

known. The localization algorithm requires at least 3(J + K) − 6 ≤ (J ×K), mea-

surements to avoid being under-determined, where J ≥ 3 is the total number of LED

nodes, and K ≥ 1 is the number of agents. Fig. 3.5 shows a typical scenario, where

an agent measures the distances to three LEDs J , as it moves for 3(J +K)− 6 time

steps. The node localization problem can be written in the form Ax = b for the

scenario given in Fig. 3.5 where J = 3 and K = 1:

x =



r212 + r223 − r213
r213
r212

(r212 + r223 − r213)
r22
r212

(r212 + r213 − r223)
r213
r212

r223
r212

r213r
2
12


, b =



D314

D315

D316

D317

D318

D319


,

A =



d234 d224 d214 D324D214 −D314D214 −1

d235 d225 d215 D325D215 −D315D215 −1

...
...

...
...

...
...

d239 d229 d219 D329D219 −D319D219 −1


,

(3.47)

where

Dijk = d2ik − d2jk, i, j = 1, 2, 3, k = 4, 5, . . . , 9. (3.48)

A and b contain distance measurements. x is a matrix of inter-node distances, which
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Figure 3.5: Distance geometry: a single agent moves and takes distance measurements
for six-time steps. The distances between the LEDs are unknown.

are given as

r12 =

√
x(2)
x(4)

+ x(3)
x(5)

2
,

r23 =

√
x(1) + x(3)

x(5)

2
,

r13 =

√
x(1) + x(2)

x(4)

2
,

(3.49)

where x(q) is the qth element of x.

Using the inter-node distances obtained, and assuming that the LED nodes are

located at S(1) = (0, 0), S(2) = (xS(2) , 0), and S(3) = (xS(3) , yS(3)), where x and y are

Cartesian coordinates using an arbitrary orientation in 2D, we obtain

xS(2) = r12,

xS(3) =
r212 + r213 − r223

2r12
,

yS(3) =

√
r213 −

(
r212+r

2
13−r223

2r12

)2

.

(3.50)
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3.4 Summary

In this chapter, a brief overview of probabilistic and deterministic localization and

mapping tools that are used is given. The probabilistic tracking filters described in

Section 3.2.3 and 3.2.4 are capable of estimating the state of the agent by forming

a relationship between the dynamic model of the motion, the measurements, and

the uncertainties in the system. The SLAM algorithms given in Section 3.2.6 and

3.2.7 extends the localization problem to the estimation of a map of the environment

where the agent is localized. The multilateration and the distance geometry methods

discussed in Section 3.3 can be used to localize an agent or a landmark depending on

the application. These methods are studied extensively under the name of wireless

sensor networks. They can be used in cooperation with SLAM algorithms to initialize

a previously unobserved landmark or to locate an agent with respect to other agents.

How these methods for indoor localization is discussed in the next chapters.



Chapter 4

Fingerprint-Based Localization for

VLP Systems

In this chapter, an indoor localization and tracking approach that uses the optical

RSS and probabilistic tracking filters is proposed. The system relies on prior knowl-

edge of the expected optical power intensity throughout the indoor space. We also

propose solutions on how to collect, build, and maintain this database of optical RSS

measurements, also known as fingerprint map.

Previous research efforts have considered VLC fingerprint-based positioning. Fin-

gerprint methods require a matching process where a measured quantity is assigned

to a position by looking up the possible position in the fingerprint map. A detailed

discussion of VLP fingerprint-based techniques is given in [59]. RSS-based fingerprint

maps are used with the EKF and the PF in [19, 60, 61]. k-nearest neighbors (k-NN)

and correlation are used for positioning and tracking using fingerprints in [62]. In [34],

an uplink VLP that uses diffuse components is proposed.

The research tasks in this chapter are given in Fig. 4.1. The main contributions

of this chapter can be summarized as follows.

40
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Figure 4.1: Overview of the completed research on VLP fingerprint localization.

The use of fingerprint map: The difference between our work and previous ap-

proaches is in the way we define the measurement equation for the tracking algorithm:

we measure the RSS directly, and apply a finite difference method to calculate the

Jacobian of the RSS measurements using the fingerprint map in the EKF update step,

assuming that a database of expected power distribution in the room is provided to

the users prior to tracking. Previous studies assume to know the orientation of the

transmitter and receiver to recover the channel model and calculate the derivatives

in the EKF. The fingerprint map is used similarly in the PF approach. The particles

are used to simulate the agent state, and the corresponding measurement at particle

locations are used to calculate the likelihood of the online measurement.

The investigation of fingerprint errors: The combined effects of LOS, NLOS,

and shadowing unbeknownst to the fingerprint database system on probabilistic fil-

tering methods have not been examined in the VLC-based literature. The results

show that variations in the SNR of a particular lamp do not affect the accuracy

dramatically, unlike for multilateration.
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The fingerprint collection: Another key contribution of this chapter is to propose

solutions to reduce the complexity of conducting the site survey. Site survey is defined

as the process in which the optical RSS is collected, updated, and maintained to keep

an up-to-date fingerprint map. We also show that the fingerprint maps obtained from

the proposed site survey methods can be used for indoor positioning and tracking.

4.1 Indoor Localization Using VLC Fingerprints

A fingerprint is defined as a measurable quantity at a known location, e.g., the

height of a hill with known coordinates. A fingerprint localization method consists of

two steps: the offline data collection step and the online measurement and localization

step.

VLC-RSS
dIstribution Fingerprint

database

Offline step

Online step

Real-Time
measurements

Fingerprint
processing algorithm

Position estimate
of the user

Figure 4.2: Step-by-step VLC fingerprint localization.

Fig. 4.2 illustrates our positioning method. The fingerprint database of RSS values

in the room is collected in an off-line phase, prior to tracking. The physical area of the

rectangular room at the height of a typical receiver is divided into a K×J grid. The

expected RSS from lamp m at grid point (i, j) is denoted as P
(m)
ij , where i = 1, . . . , K,

j = 1, . . . , J , and m = 1, . . . ,M . The spatial resolution of the grid is denoted by ∆x
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and ∆y in Cartesian coordinates. The resulting lengths of the orthogonal walls of the

room are K ×∆x and J ×∆y. The grid resolution can be chosen depending on the

positioning accuracy requirements [19,61,63].

The received power levels at the mobile receiver from the various lamps, used as

the only real-time measurements for the algorithm, and the power distribution in the

room are combined in the online phase using a probabilistic tracking filter. Next, we

discuss how the fingerprint map and probabilistic tracking filters are used.

4.1.1 Role of Fingerprint Maps in Probabilistic Tracking Fil-

ters

As discussed in Section 1.2, one of the goals this dissertation is to achieve high

accuracy positioning using the optical RSS measurements. The RSS measurements

by themselves do not give the location of the agent. We convert the optical RSS

measurements to the physical location using the probabilistic tracking filters instead.

We use probabilistic tracking filters to translate the online optical RSS measurements

to the agent’s location by employing a database of RSS measurements.

As described in Section 3.2.3, the EKF relies on calculating the Jacobian of the

measurements in the system. Equations (2.3) and (2.4) are highly nonlinear functions

that depend on the irradiance angle ϕ and incidence angle φ of the light. Calculating

and incorporating these angles is difficult since it is impossible to measure them

for each optical RSS measurement. Recall that a single PD is used as the sensor.

Instead, we use the fingerprint map to calculate the Jacobian, ∇H. The optical

power distribution stored as a fingerprint map is used to compute the Jacobian as

shown in Fig. 4.3 (a). First, the predicted agent position is calculated using (3.23).

The four adjacent optical RSS values of the predicted position in the fingerprint

map are obtained through the fingerprint map. Using a finite difference method, the
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(a) (b)

Figure 4.3: Use of fingerprint map in probabilistic tracking filters. (a) A finite dif-
ference method based linearization for the EKF, (b) Simulation of particles for the
PF.

derivatives are calculated to linearize the measurements as [19]

∇Hxt ≈
[
P(i+1,j) − P(i−1,j)

2∆x

P(i,j+1) − P(i,j−1)

2∆y

]
, (4.1)

where P (·) represents the optical RSS at the adjacent cardinal points. ∆x = ∆y rep-

resent the granularity of the fingerprint map. These values can be chosen depending

on accuracy requirements.

Fig. 4.3 (b) represents how the fingerprint database and the PF can be used

together. The PF simulates the system using particles [55]. The particles are prop-

agated through the state dynamic model, and the fingerprint database is used as a

look-up table for the particles. The likelihood of the particles and the online mea-

surement is calculated as discussed in Section 3.2.4. Each particle has a weight, and

the purpose is to pick the particles with the highest weights to estimate the state of

the agent [60].
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4.1.2 From Optical RSS to Range for VLC Multilateration

In VLC-multilateration, the measurements are the optical RSS received from at

least three LED landmarks at known locations. The deterministic nature of the light

propagation makes it easy to estimate the range between the LED landmark and the

agent under the LOS conditions. Assuming that the LED and the PD sensor on the

agent are parallel to each other, the distance, di, between the ith LED and the agent

can be estimated by modifying (2.3) accurately as follows

P
(i)
R = P

(i)
T

(m+ 1)

2πd2
cosm(φ) cos(ϕ)Ar (4.2)

di =

√√√√(m+ 1)Ar cosm(φ) cos(ϕ)P
(i)
T

2πP
(i)
R

(4.3)

The agent location can be estimated using the least squares solution explained in

Section 3.3.1.

Fig. 4.4 shows how susceptible the VLC-multilateration is to noise. Even at mod-

erate (25 − 40 dB) VLC-SNR values, the mean of the positioning error, µ, is 15

to 25 centimeters. In the next section, we compare the VLC-multilateration with

fingerprint-based localization.

4.1.3 Simulation Results for Fingerprint-Based Indoor Lo-

calization

One of the key assumptions for the set of results shown in this section is that we

are given perfect fingerprint maps that consist of the optical RSS for nondiffusing and

diffusing lamps introduced in Section 2.2. We investigate the relationship between

the RMSE and the fingerprint map resolution. We use two different resolutions:

∆x = ∆y = 1 decimeter (dm) and 1 centimeter (cm). We also test the performance of
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Figure 4.4: Cumulative distribution function of VLC-multilateration error for various
VLC-SNR levels for a 3 LED lamp scenario.

the EKF on two test trajectories obtained using the constant velocity model described

in Section 3.1. The performance metric used to evaluate the algorithm is the root

mean square error (RMSE) between the estimated and the true positions of the

mobile agent. Both light dimming and the uncertainties mentioned in Section 2.3 are

modeled as different SNR levels. Some key parameters used in the simulation for the

results in this chapter are given in Table 4.1.
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Table 4.1: Simulation parameters used in this chapter

Parameter Value
Room dimensions (L × W × H) 5× 5× 3 m3

Transmitted power per lamp 20 Watts
Lambertian mode 1
LED bulb elevation and azimuth −90◦ and 0◦

Lamp position (x, y, z)

(1.25, 1.25, 3) m
(3.75, 1.25, 3) m
(3.75, 3.75, 3) m
(1.25, 3.75, 3) m

PD height 0.75 m
PD field of view 70◦

PD aperture 1 mm2

PD elevation and azimuth 90◦ and 0◦

Room reflection coefficient 0.8
Standard deviation of the random
irradiation angles for diffusing lamp

40◦

Section 4.3.2
Image sensor lens aperture f/2.2
Image sensor focal length 29 mm
Image sensor field of view 73.4◦

Section 4.3.3

Wi-Fi APs positions
(1, 1, 1.5) m
(5, 1, 1.5) m
(5, 5, 1.5) m

Wi-Fi transmitted power (Pt) 40 mW
Reference distance (d0) m 1 m

A comparison of the fingerprint-based EKF method and the multilateration method

proposed in [17] is shown in Fig. 4.5 (a). The EKF method performs better than VLC-

multilateration for low SNR values. The performance of the deterministic 25-LED

lamp with the EKF and the multilateration method can be compared, but a fair com-

parison for the diffusing lamp cannot be made. The irradiance and incidence angles

are required for the multilateration method and recall that random power distribu-

tions affect the performance of VLC-multilateration. We also compare the perfor-

mance of a single LED lamp with the 25-LED lamp. The results show that when the
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Figure 4.5: Tracking performance of the EKF using a perfect fingerprint map. Per-
formance comparison of the proposed method and multilateration method when the
grid area is (a) 1 cm2, (b) 10 cm 2.

LED semiangle is large, the tracking performance is close because the power maps of

the 25-LED lamp and single LED lamp are similar.

Fig. 4.5 (b) shows a comparison of the multilateration and the EKF methods when

the grid area is 1 dm2 instead of 1 cm2 used in the results above. We observe that

the positioning performance is similar when the 25-LED and the diffusing lamps are

compared. The positioning accuracy is limited by the quantization error, yielding

almost identical results for the diffusing lamp model and the 25-LED lamp. As

the grid size increases, the number of power samples decreases, and the accuracy

of the Jacobian of h(·) reduces. When the SNR is high, multilateration performs

better because it does not depend on the motion model and is not affected by the

quantization error on the power map. The same conclusion holds for the tracking

performance for a single LED lamp and a 25-LED lamp.

Fig. 4.6 (a) shows the tracking performance when the fingerprint map contains

both the LOS and the NLOS components of light. It shows that the PF outper-

forms the EKF for both map resolutions. The linearization step in the EKF may
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Figure 4.6: Comparison of different localization methods and effect of grid granular-
ity: (a) Tracking performance of EKF vs. PF vs. VLC-multilateration, (b) RMSE
between the nearest tracking grid point and the nearest true trajectory grid point.

sometimes lead to miscalculation and introduce error [51]. The PF does not require

the linearization step; instead, it simulates the candidate representations (particles)

and looks at the likelihoods of the currently measured power level and the recorded

power levels at the positions of the particles. In other words, the PF deals better

with the nonlinearities than the EKF. Fig. 4.6 (a) also compares the performance of

the RSS-multilateration algorithm versus our proposed Bayesian algorithms. We plot

the results starting at the lowest SNR values used in [17]. The performance of the

multilateration algorithm is highly sensitive to noise. When solving the multilatera-

tion problem, an accurate calculation of the distance between the transmitter and the

receiver is needed. Noise in the system or even slight shadowing increases the error

of the multilateration dramatically. At higher SNR values, our techniques measure

only quantization error due to the grid.

To isolate the tracking errors due to just noise (without quantization errors),

Fig. 4.6 (b) shows the RMSE between the quantized positions for both the position

estimates and the measurements, which correspond to grid points. The results are as
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expected, i.e., the error decreases as the SNR increases. The PF again outperforms

the EKF.
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Figure 4.7: Different test trajectories and lamp types at VLC-SNR=45 dB.(a) Non-
diffusing LED lamp, S-shaped trajectory, (b) Nondiffusing LED lamp, linear trajec-
tory, (c) Diffusing LED lamp, S-shaped trajectory, (d) Diffusing LED lamp, linear
trajectory.

Figs. 4.7 (a) and 4.7 (c) show example tracking results for nondiffusing and dif-

fusing 25-LED lamp model for an S-shaped target trajectory, respectively. The posi-

tioning error for the constant velocity target shown in Fig. 4.7 (b) and (c) is higher

than for the S-shaped motion; the straight motion is subject to lower average SNR

because it is more often further from the LEDs.



51

4.2 Effects of Unknown Shadowing on Fingerprint

VLP

In general, fingerprint databases are collected for identical lamps under the same

conditions. However, different lamps may be affected by unknown shadowing in the

system, i.e., unforeseen obstructions in the LOS that may lead to varying SNR levels

for each lamp in real-time operation. Shadowing is considered catastrophic for most

VLC and VLP systems. In this section, the effect of shadowing on fingerprint-based

VLP tracking systems is discussed. The agent receives lower power from one of the

lamps than what is expected as shown in Fig. 4.8. We model the shadowing as an

additional path loss factor, α, on one of the four lamps [64].

Figure 4.8: Optical intensity distribution in a scenario where one of the lamps has
shadowing unbeknownst to the user.

A fingerprint map that is not updated over time does not have information about

fluctuations in the optical intensity distribution or error caused by faulty lamps. We

investigate this case and compare the performance of the Bayesian filters with the

multilateration methods.

Fig. 4.9 (a) shows the effect of shadowing on the performance of the EKF and the
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Figure 4.9: Effect of shadowing on tracking performance: (a) RMSE of position
estimate for different shadowing loss levels, SNR = 45 dB, and (b) sample tracking
using the EKF result when one lamp has unknown shadowing with a loss of 3 dB.

PF systems described above. As a comparison benchmark, the performance of the

multilateration algorithm is included using the same parameters as the EKF and the

PF algorithms. In this figure, we assume that the shadowing degrades the received

SNR, measured as a dB loss. Only one of the four lamps in the room has an unknown

shadowing loss, and the rest of the lamps operate normally at 45 dB SNR. From

the result, the multilateration algorithm is significantly affected by the shadowing,

as expected. However, the EKF and PF using the fingerprint map are robust to

shadowing since the fingerprint database is collected in advance.

Fig. 4.9 (b) shows a typical scenario where the EKF is used for tracking an S-

shaped user’s trajectory. In this experiment, the unknown shadowing for the labeled

LED lamp creates a bias in the estimated trajectory, especially if the user is close to

that lamp. The effect of the shadowed lamp on the tracking error reduces as the user

moves away.
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4.3 Fingerprint Database Collection Methods for

Indoor VLP

Fingerprinting-based algorithms have several advantages when compared to multilateration-

multiangulation and proximity methods, such as fingerprinting does not require time

synchronization [65], knowledge of the transmitted power or geometry between the

source and the receiver [17], and can operate when there is shadowing in the sys-

tem [60]. The disadvantage of a fingerprint VLP system is the necessity of a site sur-

vey, where the fingerprints are collected before the tracking, and updated over time

as the room conditions change over time. The site survey requires precise measure-

ments, which is an error-prone, time-consuming process, and needs to be updated

as the fingerprint data changes. Fast temporal changes caused by people moving,

background illumination, and random diffusion of signals can make the fingerprint

map inaccurate as time progresses. The quality of the fingerprint map directly affects

the positioning accuracy.

In this section, we introduce efficient solutions to reduce the complexity of con-

ducting the site survey, and show that the fingerprint maps obtained from the pro-

posed site survey methods can be used for indoor positioning and tracking. Although

the site survey problem is well-studied in wireless communications (under the name of

radio map building) [29,66–68], in VLC fingerprint-based indoor positioning studies,

the fingerprint map, which consists of the optical measured with the PDs, is assumed

to be collected manually [19, 31, 34, 60, 69, 70]. We tackle the site survey with three

different approaches to reduce the workload of building the fingerprint map. We test

the performance of the simplified/automated site survey methods with nondiffusing

and diffusing LED lamp models. We also test the performance of the probabilistic

tracking filters to show the effect of the built fingerprint map inaccuracy on the po-
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sitioning error. The EKF and the PF use the real-time measurements from the PD

of the agent and the generated fingerprint maps.

4.3.1 Manual Site Survey with Spatial Interpolation

A manual site survey is defined as the collection of the RSS by someone or some

agent that is tasked to measure the RSS in a predefined grid at a fixed height in the

room in the offline step. In this section, spatial interpolation methods, which are used

in geological sciences to map a terrain [71], are used to estimate the fingerprint map.

The goal of using interpolation is to reduce the number of offline measurements. In

reality, sampling the RSS at every grid point (offline measurements) in a room to build

a fingerprint map is difficult, as discussed in the introduction; hence, measurements at

unsampled locations are estimated using spatial interpolation [71]. We consider two

different spatial interpolation methods: ordinary Kriging and radial basis function.

Simulation parameters are given in Table 4.1, with only one LED lamp located at

(1.25, 1.25) m.

Ordinary Kriging

Ordinary Kriging interpolation provides an estimate at unsampled locations by

using the correlation between sampled locations. The ordinary Kriging procedure

consists of the following steps: exploratory data analysis, variogram modeling, and

creating the surface, as described in detail in [68,72].

In Fig. 4.10 (a) a uniform sampling scenario is considered, the percentage of

samples to entire data is %25. The black dots show the sample locations. Fig. 4.10

(b) shows the variogram. The idea of Kriging is to take into account both the distance

and the variation between sampling points. The goal is to minimize the variance and

minimize the mean of the prediction error. A variogram shows the distribution of
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Figure 4.10: Summary of Kriging interpolation method. (a) Sampling, (b) Variogram
modeling, (c) Surface construction, and (d) Variance of estimated surface.

variances spatially, and the idea is to pair every sample point with other sample points

to calculate the variance. The x-axis shows the distance between sample points, and

y-axis is the variance of these points. Fig. 4.10 (c) is the estimated fingerprint map.

Fig. 4.10 (d) shows the distribution of the variance over the surveillance area.

Radial basis function

Radial basis function (RBF) interpolation is the second method that we use for

estimating the fingerprint map based on a limited number of samples. The RBF ap-
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Figure 4.11: Heat map of (a) RBF interpolation and (b) cubic interpolation

proximates multivariable functions as linear combinations based on a single univariate

function [73]. A multiquadratic function is chosen as the kernel for RBF interpola-

tion in this section. The goal of RBF interpolation is to estimate a function in the

form of f(x) = c0 + c1x+
∑n

i=1 λiκ(|x− xi|), where xi are the sample locations, and

c0, c1 and λi are the coefficients. κ(|x− xi|) is a multiquadratic function in the form

of
√

1 + r2

σ2 , where σ2 is the variance. Fig. 4.11 compares the performance of RBF

and cubic interpolation for the same problem shown in Fig. 4.10. Recall that the

probabilistic tracking filters calculate the Jacobian or the likelihood by looking at the

fingerprint map. A fingerprint map that has a high variance in the data introduces

errors in the estimates.

We envision the use of spatial interpolation methods in two different scenarios.

In the first scenario, the PDs used for measuring the optical power (RSS) in the

surveillance area are stationary and uniformly distributed with known locations at

a typical height for an agent in the room, as shown in Fig. 4.12 (a). In the second

scenario, the PDs measure the RSS at known but nonuniformly distributed positions

(positioned for measuring convenience), given in Fig. 4.12 (b). The measurements

from the PDs are collected and processed by a central processor.
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Figure 4.12: Two PD placement setups of the RSS measurements for the spatial
interpolation method: (a) uniformly placed PDs, and (b) randomly placed PDs.
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Figure 4.13: Comparison of the RMSE of the normalized power for the fingerprint
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58

Fig. 4.13 shows a comparison of the root mean square error (RMSE) in creating

the power fingerprint map using Kriging and RBF interpolation methods for uni-

formly and randomly sampled scenarios as shown in Fig. 4.12 for a nondiffusing LED

lamp model. The simulation parameters are given in Table 4.1. The performance

of the Kriging method saturates after the ratio of used measurements is only 10%

of a complete manual site survey for the scenario simulated. The error in the Krig-

ing method reaches a saturation because the technique finds a fit automatically by

looking at statistical properties, which stabilize after just a few sample points as dis-

cussed in [68, 74]. The RBF performance improves as the number of measurements

is increased [75]. For RFF interpolation, uniform sampling significantly outperforms

random sampling, as expected for uniform illumination scenarios such as the one

tested here.
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Figure 4.14: Comparison of the RMSE of the normalized power of the fingerprint
maps that are built using spatial interpolation methods with the diffusing lamp model;
VLC-SNR = 60 dB.

In Fig. 4.14, the same data collection scheme and interpolation methods are tested

for the diffusing LED lamp model. The results show that even though the RSS
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distribution is randomized in the measurement area, we can still build a fingerprint

map with an RMSE of less than 2% of the normalized power. Note that, when enough

samples are collected, random spatial sampling slightly outperforms uniform sampling

when the light distribution is itself nonuniform.

The accuracy of the spatial interpolation methods and which one is more accurate

depending on the data [76]. Since in our test the light follows a structured, some-

what smooth distribution, the RBF method performs better than Kriging, as shown

in Figs. 4.13 and 4.14. In summary, RBF with uniform sampling has the lowest er-

ror among all methods tested. The results show that it is possible to use spatial

interpolation as a way of reducing the number of measurements for the manual site

survey.

4.3.2 Imaging Sensor-Based Site Survey

In this section, we propose an automated fingerprinting-based algorithm for an

indoor tracking system that uses light-emitting diodes (LED) equipped with imaging

sensors. The main contribution of this section is to offer a solution to eliminate

the manual site survey for fingerprinting. The fingerprint collection part requires a

calibration step that consists of the following: (i) a theoretic light power distribution

is calculated using the visible light communication channel model; (ii) the imaging

sensors mounted on the LED arrays capture the grayscale images; (iii) the captured

images and the theoretically calculated light power distribution are used to estimate

the light power map.

The reference or a priori fingerprint map P̃ is found theoretically using (2.3) and

(2.4) on a grid of size N × J in the room at a fixed predicted receiver height. The

reference fingerprint map is used to estimate the expected power map P̂ in the room.

Each LED array is equipped with a camera, as shown in Fig. 4.15, that is calibrated
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Figure 4.15: LED array equipped with an imaging sensor. (a) Side view. (b) Bottom
view.

for the room, and a mapping from the grayscale images, I, to P̂ is found by using

P̃ for the room. The goal is to find an optimal mapping that yields the best P̂

for the particular room. The system is able to decide the best way to update the

P̂ by calculating the RMSE between P̃ and P̂. Therefore, P̃ is not required when

the calibration step is complete. Only the estimated power map, P̂, is provided to

the agent. Linear or nonlinear regression, or an artificial neural network is used for

mapping from the grayscale pixel values to the light power levels. A PD on the agent

measures the light power in real-time.

Imaging Sensor Calibration–Fingerprint Estimation

The imaging sensor is calibrated based on an offline test. We calibrate the camera

to an a priori power map to estimate P̂ using P̃ and I. A gamma corrected linear

regression, nonlinear curve fitting, or artificial neural network (ANN) based regression

method is used to approximate this mapping. Gamma correction helps to find a linear

equation for the curve fitting function. Nonlinear regression is used for finding a higher

degree polynomial representation without using the gamma correction method. The
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ANN is a powerful tool used for function fitting and approximation.

To obtain the most up-to-date estimate of the fingerprint map in the room, images

are collected at predefined time intervals. These images are used to predict the

newest version of P̂, to replace the stale P̂ in a recursive manner. The optimal

update frequency, which is the time intervals chosen to repeat the regression process,

depends on the time-varying shadowing, the motion of the users, and changes in the

SNR levels.

Gamma Correction Method

Gamma correction, which is a nonlinear stretching function, helps us obtain a

uniform grayscale pixel value distribution. It changes the luminance values in a still

image [77]. The idea is to use the gamma correction method to find the simplest

function for estimating the power from the image, i.e., a line. The dynamic range of

the grayscale image is first adjusted to a gamma (γ) value [78]. When the grayscale

pixel values of the captured image are plotted versus the light power levels from P̃ in

mW, the distribution may not be exactly a straight line but is approximated using

the linear function

P̂ = a1I
γ + a0. (4.4)

P̂ is the estimated power map, I is the image from the camera, a0 and a1 are the

coefficients of the linear equation.

Nonlinear Regression Method

In real life, there may be nonlinearities that are not possible to correct using the

gamma correction. In such cases, where it is impossible to represent the transforma-

tion from the grayscale to the power with a linear function, a high order polynomial

is needed for the regression process; the polynomial may be of any order, m, that
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minimizes the RMSE:

P̂ = amIm + am−1I
m−1 + · · ·+ a1I

1 + a0 (4.5)

a0, . . . , am are the coefficients of the polynomial found through regression.

Artificial Neural Network Method

Artificial neural networks (ANN) are biological-neural-network-like systems that

consist of nonlinear equations that work in parallel [79]. Training is used to update the

weights of the algorithm during the calculations to decrease the error in estimating the

power map. ANNs can be used for curve fitting, especially for nonlinear problems.

Depending on the size of the power map, the ANN may be faster than regression

methods. The ANN used for this section is a shallow network, consisting of one

hidden layer with a sigmoid activation function. The input is the grayscale pixel

value from the image I, and the output is the power estimate, P̂.

Numerical Results

We tested the performance of the data fitting methods on two different resolution.

The resolution refers to the size of the grid elements (∆x = ∆y). In operational

mode, we capture the image and use the estimated functional relation to get current

P̂. In practice we do this every few minutes, depending on the refresh rate we need.

We simulate this by using a 20×20 cm2 paper and scale to what the room conditions

would be. The physical room receiving plane is divided into equal size N × J grid

rectangles.

Fig. 4.16 is a summary of the performance of the fitting methods discussed in

this section. The simulation parameters are given in Table 4.1. Fig. 4.16-(a) shows
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Figure 4.16: Performance of the three different function fitting methods is compared.
(a) shows the light power contours when ∆x = ∆y = 1 dm. (b) is the normalized
root mean square error of the methods, normalized to the received power.

the power contours when the image-based site survey is used when ∆x = ∆y = 1

dm. From Fig. 4.16-(a), we see that there is a bias introduced on each estimated

fingerprint map. The bias is a result of calibration error of the images discussed in

Section 2.3. The bias affects positioning performance directly. Fig. 4.16-(b) shows

the normalized RMSE between the true power and the estimated power of each grid

point. The results show that the performances of the three methods yield different

normalized RMSE depending on the grid position point for a 50 point by 50 point

grid.

We test the performance of the EKF tracking algorithm using the fingerprint map

obtained by the camera based method. Fig. 4.17 shows the RMSE for the EKF using

one of the different fingerprint maps generated using the algorithms explained in

Section 4.3.2. The performance of the true fingerprint map (the true power at every

grid point) has the lowest error for both map resolutions, as expected. The interesting

point is that the performance of the three image-based methods (linear, nonlinear and

ANN) are very similar. This is an expected result as the bias of the three methods is

similar, as seen in Fig. 4.16. The higher RMSE errors are due to the errors introduced
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Figure 4.17: Performance of the three different fingerprint maps and their effect on
agent tracking. (a) shows the effect of tracking on the EKF. (b) Multilateration vs.
the EKF.

during the image capture process. The fit functions cause information loss during the

data fitting process, and it is not possible to fit a function that satisfies the best fit for

every pixel value. If attempted, overfitting may occur, which limits the performance

and leads to inaccurate mapping from the image pixel values to power levels as the

illumination conditions change.

Fig. 4.17 (b) shows a performance comparison between the LED-EKF and the

LED-multilateration. The LED-multilateration algorithm’s RMSE is not comparable

at SNR values below 40 dB. This shows that when the uncertainty noise dominates

the system, the LED-multilateration is not accurate, unlike the LED-EKF algorithm.

4.3.3 Hybrid-Crowdsourced Site Survey

For indoor positioning, there are a variety of solutions proposed that utilize ultra-

sound, Wi-Fi, visible light communications (VLC), etc., as explained in Section 1.1;

however, none of them prevails over the other. The solution for creating and updating

the fingerprint map we offer in this section uses already deployed systems in the area.
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We rely on existing Wi-Fi and LED lighting systems and combine their advantages to

enhance positioning accuracy. Wireless RF access points (AP) are present in almost

every indoor space, like shopping malls, industrial plants, etc.

We propose a three-step solution. In the first step, the mobile unit uses the

Wi-Fi-based multilateration to estimate its rough position. In the second step, the

algorithm measures the received light intensity from orthogonally-coded LEDs and

assigns them to the position found by Wi-Fi based multilateration. As the user

moves, the light intensity measurements are updated. This is called the fingerprint

map learning process. The third step is to track the user using an extended Kalman

filter (EKF), as described in Section 4.1.1.

Fingerprint Map Learning

In this section, we explain how the fingerprint map is generated. The basic idea

is to use the rough location of the user obtained through Wi-Fi multilateration to

generate an optical power site survey and use the inherent smoothness expected from

optical power distributions to enhance the accuracy of the map.

Wi-Fi Signal Based multilateration

Wi-Fi access points are abundant in our target indoor areas, like shopping malls,

industrial facilities, and museums. Multilateration from Wi-Fi-based signals is widely

studied in the literature. Wi-Fi-based multilateration relies on accurate estimation of

the distance between the transmitter (AP) and the receiver, referred to as the agent

(agent). In [36], it is shown that modeling the path loss with the Friis free space

propagation model is not accurate. Therefore, we use the following equation given
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in [36] to model the propagation loss:

Pr(d)[dBm] = P0(d0)[dBm]− 10np log10

(
d

d0

)
+Xσ (4.6)

Pr(d) is the RF RSS at a distance d from the transmitter. P0(d0) is a known refer-

ence power at distance d0 from the transmitter. np is the propagation-environment-

dependent path loss exponent, and Xσ is a zero mean normal distributed random

variable that models the random effects in the propagation medium with a standard

deviation of σ. Given the received power, Pr, the distance between the AP and the re-

ceiver, d, can be estimated from (4.6). The unbiased estimate of the distance between

the transmitter and the receiver is given in [36] as:

d̂ = d0

(
Pr

P0(d0)

)−1/np

exp

− σ2

2
(

10
ln(10)

)2
n2
p

. (4.7)

When the distance between the transmitter and the receiver and the positions

of the transmitters are known, the agent positions can be estimated using the least

squares method. This method is known as multilateration.

The multilateration method using Wi-Fi signals does not by itself provide accurate

position estimation. The estimates will have errors caused by the random effects in

the propagation environment; these effects were captured by the random variable Xσ

in (4.6). Fig. 4.18 shows the effect of Xσ on the estimated distance in a typical room

for one AP. The AP is placed at (x = 0 m, y = 0 m) in the 5 m × 5 m room. To do

multilateration, at least three APs are needed.

In this section, we propose to use the estimated position from the Wi-Fi multilater-

ation of agents walking in the room to build our site survey. The Wi-Fi multilateration

estimates from many users walking in different parts of the room are needed to update
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Figure 4.18: Cumulative distribution function of Wi-Fi distance estimation RMSE
for various fading levels with respect to a Wi-Fi access point.

the entire fingerprint map. The assumption is that there are N user trajectories, and

multilateration is done for all N trajectories. Let the number of sampling points for

multilateration for each trajectory in the room be M ; this results in a multilateration

position estimate matrix of dimensions N ×M :

T̂ =



(x11, y11) . . . (x1M , y1M)

(x21, y21) . . . (x2M , y2M)

...
...

...

(xN1, yN1) . . . (xNM , yNM)


where (x, y) represents the Cartesian coordinates. T̂ is used to update the fingerprint

map. The received light intensity at the agent’s actual position is assigned to the

agent’s estimated position.
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Fingerprint Map Updating

The fingerprint map is a matrix in which the average received power values are

stored. The physical area of interest is divided into K × J rectangles. The matrix

of estimated power is denoted by P = [Pij], where i = 1, . . . , K and j = 1, . . . , J are

the indices of the Cartesian coordinates. The size of the map is application specific.

If high accuracy is needed for sensitive applications, like autonomous robots used in

industrial plants, a high-resolution map is needed.

We have examined two approaches of using the multilateration results to generate

P. The first is where the initial map is updated sequentially as users walk into the

room; the second is to use the matrix T̂ in a batch process. In the first approach,

the initial fingerprint map, P0, is a matrix of zeros with the same dimensions as P.

After the first user moves in the surveillance area, four steps are followed:

(i) The position of the agent is found by Wi-Fi multilateration as explained above.

(ii) The received light intensity is measured by the agent at the agent’s true position.

(iii) The multilateration positions and measurements are combined: The initial fin-

gerprint map is updated, and is a sparse matrix now; the nonzero values are

in the positions found by multilateration. The multilateration introduces posi-

tioning errors, which cause a mismatch in the power map. The light intensity

measurements will not be assigned to the true positions, but the positions found

from multilateration.

(iv) According to (2.3), the light distribution is a smooth function across the room

and from the light source to the floor. In this step, the power map data is

smoothed to create a smooth surface, which is updated in subsequent iterations.

The surface smoothing methodology chosen is to duplicate the nearest non-zero

value.
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The site survey in the second approach takes longer. In the second approach, we

wait until N users have collected multilateration measurements and optical RSS data

in the area. The data is used to update and learn the fingerprint map just like in the

first approach but in a batch process instead of sequential processing. A linear KF is

used to smooth the Wi-Fi multilateration results after step (i) of the first approach.

The KF reduces the error between the estimated position and measurements. This

also reduces the bias in the final map. The rest of the algorithm is the same as for

the first approach.

Once we have an initial surface from one of the approaches described above, the

survey map can be used by the EKF as described in Section 4.1.1. However, envi-

ronments are not static. We envision an adaptive implementation where the power

map surface is updated using new crowdsourced data. The mixing rule we use in this

work is given as:

P n
ij = αωP n−1

ij + (1− αω)P̃ n−1
ij (4.8)

P n
ij is the updated power values at index ij to be updated from the new trajectory

labeled as n. PN−1
ij is the power values in the surface from the previous crowdsourcing.

P̃N−1
ij is the measured power received from the LEDs at that moment. α ∈ (0, 1)

is the learning rate. It decides which one should be trusted more: the previously

computed surface or the measurements. ω is the VLC channel coherence, allowing

the previous power estimates more or less longevity. As the channel impulse response

changes this variable changes. In this dissertation, the VLC channel is chosen as

constant, ω = 1.

In the map learning process, the multilateration and light power measurements

are done in the agent, then uploaded via Wi-Fi to a central processor. After learning

the map P, assuming that the conditions change slowly, the map can be updated

based on user-sourced data.
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Simulation Results for Hybrid-Crowdsourced Site Survey

We assume that the VLC channel impulse response does not change in this section,

for simplicity. The power map is updated in batches. We do not update the map

every time a user is introduced, but the system waits until a predefined number of

trajectories are available. We assume that α is constant value so that we put equal

emphasis on the updated power map values and the real-time measurements.

Wi-Fi multilateration needs at least three APs with known positions. Equations

(4.6) and (4.7) are used to estimate the distance between the agent and each of the

APs, and the least square solution gives the estimated positions. In the simulations,

APs with identical path loss parameters are positioned on three corners of the room.
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Figure 4.19: Performance of methods (a), (b), (c) and (d) are compared as the σ of
the random effects in the Wi-Fi propagation medium increases.

Fig. 4.19 gives an overview of the performance of our algorithm using one of four

different methods:

(a) Wi-Fi multilateration: The distances from the three APs are estimated using
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(4.7). The estimated distances are used to solve the multilateration equations.

(b) Wi-Fi multilateration and smoothing with a KF: The estimated positions are

smoothed using a linear KF.

(c) Wi-Fi multilateration, VLC-EKF: The received light intensity powers at the

agents’ true positions are assigned to the UEs’ estimated positions by Wi-Fi

multilateration. This step constructs a fingerprint map of the light intensity

after smoothing. The fingerprint map is used for EKF-based tracking.

(d) Wi-Fi multilateration, KF smoothing, and VLC-EKF: The same as (c); the

only difference is the use of a linear KF to smooth the estimates from the Wi-Fi

multilateration.

The experiments show that as the random effects in the propagation medium, Xσ,

increase, the RMSE increases. The estimates can be more accurate by using a KF on

the estimated positions obtained with Wi-Fi multilateration, i.e., the performance of

(c) is improved in (d) by introducing a KF. This is because the KF decreases the error

introduced while building P by smoothing the Wi-Fi multilateration measurements.

In Fig. 4.20 (a), the effect of the number of agent-trajectories and its effect on

the tracking accuracy is shown when the method (c) is used. Fig. 4.20 (b) shows the

number of agent-trajectories needed to create a sufficient and accurate P that is to be

used in the VLC-EKF when the method (d) is employed. The agent-trajectories are

the source of crowdsourced visible light intensity used to build the map, P. It is clear

from the figure that for our particular simulation and room size, after 300 trajectories

the performance is indistinguishable. If we compare Figs. 4.20 (a) and (b), we can see

that method (d) is slightly better than (c) in terms of accuracy, especially for lower

SNR values like 25 to 30 dB. However, the difference is not significant for moderate

to high SNR values.
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Figure 4.20: Effect of the number of users on tracking accuracy. (a) The effect of the
number of crowdsourced-trajectories, N , on the tracking performance, when method
(c) is employed. The results show the 95% confidence interval levels. (b) The effect of
the number of crowdsourced-trajectories, N , on the tracking performance when (d)
is employed. The results show the 95% confidence interval levels.
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Figure 4.21: (a) RMSE vs. SNR when method (c) is employed. The value of Xσ has
almost no effect on the performance. The results show the 95% confidence interval
levels. (b) RMSE vs. SNR when method (d) is employed. The value of Xσ has almost
no effect on the performance. The results show the 95% confidence interval levels.
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Fig. 4.21 (a) shows the tracking accuracy results for method (c) as the Wi-Fi

fading parameter variance is changed. At low SNR, the performance is far worse

than methods (a), (b) and (d). However, as the SNR increases, the performance

converges to similar values as for (d). The question becomes which one of these

two methods to use. The latter one requires more calculations due to the use of a

linear KF applied on the Wi-Fi multilateration solutions, but yields higher accuracy,

especially for low SNRs. The first one sacrifices a little accuracy but does not use a

KF. Fig. 4.21 shows that the tracking performance is hardly affected by the value of

Xσ, if crowdsourcing method (d) is used. Thus, the error introduced from the Wi-Fi

multilateration during the crowdsourcing step does not affect the final performance.

The figure also shows that with a light intensity map P defined over a ∆x = 1 dm

grid, the RMSE reaches the quantization error (less than 0.5 dm) at higher SNR

levels.

As the main contribution in this section, we show that the accuracy can be in-

creased by combining a different modality that exists in every indoor space: visible

light. When we introduce the visible light measurements and its modified EKF, as

explained in Section 4.1.1, the tracking accuracy increases dramatically. Fig. 4.19

shows this improvement in tracking accuracy for low to moderate VLC-SNR levels.

At a low SNR (25 dB), the uncertainty noise dominates, and the performance of (c)

is worse than (d). This is because the error introduced while creating P limits the

system. However, if the SNR increases, for example to 45 dB, this error is reduced,

and the tracking performance of (c) becomes similar to (d). The results in Fig. 4.19

motivate the use of a linear Kalman filter between the Wi-Fi multilateration and

the P building process at the expense of increased computation. It also shows that

the results for (c) and (d) are not affected by Xσ, although Xσ affects the Wi-Fi

multilateration directly, and P indirectly.
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4.3.4 Performance Effect of Fingerprint Maps on Indoor Track-

ing

The purpose of the fingerprint map is to serve as a look-up table for the proba-

bilistic tracking filters. Therefore, the accuracy of the fingerprint map directly affects

the performance of indoor positioning and user tracking. As explained above, the

EKF uses the fingerprint map for a finite difference method-based linearization; on

the other hand, the PF uses particles to simulate the system and chooses the par-

ticles with the highest weights. This makes the PF more accurate than the EKF

but increases the number computations required, since the PF has to simulate often

hundreds of particles [51].

We investigate the effect of the fingerprint maps that are obtained from nondiffus-

ing and diffusing lamps on the tracking accuracy in a scenario where a discrete-time

constant-velocity model is used as the dynamic model of the user’s motion [50]. The

user follows an S-shaped trajectory as given in [60]. The parameters used in the

simulations are listed in Table 4.1.

In our results, the true power map is used as a benchmark to compare the other

fingerprint maps. Since the RSS map is collected or constructed on a grid (equidistant

discrete measurements), quantization error limits the agent tracking performance.

As the SNR increases, the positioning accuracy approaches the quantization limit.

In [34], a discussion on quantization and its effect can be found, and the quantization

error is shown to be ∆x/
√

6. This limit is drawn in Figs. 4.22–4.25.

Fig. 4.22 shows the effect of the accuracy of the fingerprint map obtained from a

nondiffusing lamp on the EKF tracking error. The fingerprint map obtained using

an LED mounted imaging sensor has the lowest accuracy; this method has a higher

location error because the polynomial regression fit is not accurate enough to map
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Figure 4.22: RMSE of agent position from EKF tracking based on fingerprint maps
obtained from nondiffusing lamps.

from each grayscale pixel value to the corresponding RSS value. At a typical VLC-

SNR = 40 dB, the positioning error is on the order of 15 cm. The hybrid-crowdsourced

method does not provide high positioning accuracy at low SNR values, where the

fingerprint map is not accurate because of the high uncertainty noise; at an SNR

of 40 dB, however, the accuracy is around 6 cm, practically the same as the ideal

fingerprint map. The agent tracking using a fingerprint map obtained using the RBF

method yields better performance than the Kriging method, for both uniform and

random placements of the PDs, because the RBF fingerprint maps have a much lower

error, as shown in Fig. 4.13. The fingerprint maps obtained using spatial interpolation

are obtained using 75% fewer measurements than a completely manual site survey.

At an SNR of 40 dB, the best positioning accuracy, 5 cm, is almost as low as if the

true power level was known at the grid points.

A PF with 500 particles is used to generate the corresponding results in Fig. 4.23

for the fingerprint maps obtained using a nondiffusing lamp. The same conclusions

hold for the tracking results with Kriging and RBF generated maps for Fig. 4.23 as
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Figure 4.23: RMSE of agent position from PF tracking based on fingerprint maps
obtained from nondiffusing lamps.

for Fig. 4.22. The fingerprint maps calculated using RBF yield a higher tracking

accuracy. Recall that the accuracy of the Kriging interpolated power map is lower

than the one obtained using RBF, and this effect can be seen in the tracking results

in Figs. 4.22 and 4.23. The tracking performance using the PF is similar to the EKF

also when the fingerprint map is obtained using the hybrid-crowdsourced method.

However, the performance of the image sensor-obtained map using the PF is better

than the EKF. There are two reasons for this: the noise on the imaging sensor can

be a multi-modal or non-Gaussian noise, for which the PF is known to be superior

to the EKF [55], and the PF is better than the EKF in dealing with bias introduced

from the image sensor method’s polynomial fit.

Fig. 4.24 shows the accuracy in agent tracking using an EKF when the fingerprint

maps are obtained using a diffusing lamp. The results for the imaging sensor-based

fingerprint collection method are not shown since the algorithm was tested using a sin-

gle LED, and not with a diffusing lamp. The performance of the hybrid-crowdsourced

method is poor at low SNR levels. The diffusing lamp creates a nonuniform yet unique
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Figure 4.24: RMSE of agent position from EKF tracking based on fingerprint maps
obtained from diffusing lamps.

power distribution in the surveillance area, which, when combined with high VLC

noise levels, leads to a high positioning error. As the SNR increases, the performance

of hybrid-crowdsourced performs almost as well as a perfectly collected fingerprint

map. The performance of the spatial interpolation methods is similar to the ones

obtained using a nondiffusing lamp. RBF interpolated maps perform better than

Kriging interpolated maps, as expected. At an SNR of 40 dB, the accuracy of the

spatial interpolation models is around 10 and 13 cm for RBF and Kriging interpola-

tion methods, respectively. Note that the interpolation methods are no longer able to

match the performance of the ideal fingerprint map because the optical power error

in building the fingerprint map in the diffuse lamp case remains above 0.1 mW.

Fig 4.25 shows the tracking performance of a PF for the fingerprint maps obtained

using a diffusing lamp. Results using the image sensor method are again not shown.

For the hybrid-crowdsourced method, the main difference between this case and the

nondiffusing lamp case shown in Fig. 4.23 is the slight degradation of the tracking

accuracy at all VLC-SNR levels. The PF uses simulated particles to collect measure-
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Figure 4.25: RMSE of agent position from PF tracking based on fingerprint maps
obtained from diffusing lamps.

ments, as discussed in Section 3.2.4. In this case, the randomness in the fingerprint

map and the high noise levels make the particle representation of the measurements

inaccurate. The performance of spatial interpolation methods yields an accuracy sim-

ilar to the ones of the EKF. The RBF interpolation maps provide higher accuracy

than the Kriging method, with random sampling slightly outperforming uniform sam-

pling, as expected since the tracking accuracy tends to mirror the fingerprint map

building accuracy.

4.3.5 Discussion of Site Survey Methods

In this section, we discuss the applicability of the different site survey methods

proposed.

A summary of the characteristics of the various methods is given in Table 4.2,

where the advantages and disadvantages of each are listed. The choice of the best site

survey approach depends on the indoor area of application. The effects of multipath

and user measurement upload requirements are also summarized. For example, the
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Table 4.2: Summary of Site Survey Methods

imaging sensor-based method is a promising solution for large open indoor areas

where pinpoint accuracy is not critical, like a warehouse, and where the environment

is not divided or obstructed by furniture or moving people. The hybrid-crowdsourced

method is a better choice for indoor spaces such as malls, airports or museums, where

the RSS information can be sourced from many users. The spatial interpolation

method fits the needs of both spaces. Note that, the spatial interpolation methods

can also be integrated with the imaging sensor-based or hybrid-crowdsourced site

survey methods.

4.4 Summary

In this section, we describe a fingerprint-based approach to solve the VLC-based

indoor positioning problem. We use LEDs and PDs to achieve high accuracy indoor

tracking and positioning with a flexible system. Landmarks are defined as stationary

VLP-enabled LED ceiling lamps. Once enough RSS and location data is collected

from devices and users, we can develop a cognitive1 RSS fingerprint database, which

is situation-aware2 to changes in the indoor area and can be used in a probabilistic

tracking filter for pinpoint positioning, occupancy detection, and rapid mapping.

1Users provide information about the system.
2Changes in the database can be detected by one of the site survey methods.



Chapter 5

Localization in Optical Wireless

Sensor Networks for IoT

Applications

Optical wireless communications (OWC) and the internet of things (IoT) are two

recent paradigms that are expected to be ubiquitous in the near future. In this

chapter, we introduce an early concept of how OWC can play a critical role in IoT

applications in the context of real-time location-based services. Agent localization and

tracking problems have been well studied in the OWC research community with the

key assumption that either the LED landmark locations are known or a fingerprint

map is available. However, in real-life situations, this may not hold. Imagine a

scenario, where an LED lamp location is changed, and its new position is not updated

in the database, or a portable landmark is used, i.e., an optical wireless positioning-

enabled (OWP) electronic device.

In this chapter, we begin our discussion by looking at traditional wireless sensor

network (WSN) localization methods. In the second half of this chapter, we focus

80
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our attention on the WSN method that can be adapted to the OWC-based landmark

localization problem. We consider a scenario where no a priori knowledge of the

LED and agent locations is available. The LEDs use different codes so they can

be distinguished. An agent that uses a single PD to measure the received optical

intensity is tasked with discovering the LED landmark locations as it moves around

the room. We use optical RSS measurements to compute the distance between the

agent and the LEDs, and form geometric relations to estimate their locations. Once

the LED locations are found, we can track the agent using the EKF. Moreover, the

joint LED localization and agent tracking process is enhanced by using measurements

that are collected by other members of the OWC-IoT network.

5.1 Discussion of Landmark Localization Methods

There are several methods of node location discovery in the WSN literature; this

problem is similar to landmark initialization in SLAM problems. We restrict our

discussion to the methods that use the RSS to calculate the distance. The disad-

vantage of distance-based methods that use the RSS is high sensitivity to noise and

obstructions in the OWC channel. Next, we discuss the most common WSN node

localization algorithms in the literature.

The multilateration method using a least-squares solution was described in Sec-

tion 3.3.1. Here, we assume that the locations of the agents are available, and the

goal is to localize the LED landmark.

The source localization can be modeled as a nonlinear problem in which the

Gauss-Newton method is used to find the position of a LED landmark from a set

of measurements at known locations. The Gauss-Newton method is a solution to

the nonlinear least-squares problem. Assume that the Euclidean distance between
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the LED landmark at horizontal coordinates (x, y) and the agents at (xk, yk) is rep-

resented by Dk =
√

(x− xk)2 + (y − yk)2. The goal is to find a (x, y) value that

minimizes the sum of the squares of residuals that is given as

S =
M∑
k=1

(Dk −
√

(x− xk+1)2 + (y − yk+1)2)︸ ︷︷ ︸
r

(5.1)

Gauss-Newton requires the calculation of the Jacobian, J, of S in (5.1) with respect to

(x, y). The iterations start at an initial guess of (x0, y0), Dk represents the Euclidean

distance at position index k, and the iteration is given as

Dk+1 = Dk − (JTJ)−1Jr (5.2)

0 1 2 3 4 5

Length of the room (m)

0

1

2

3

4

5

W
id

th
 o

f 
th

e
 r

o
o

m
 (

m
)

Agent

True Landmark

Est. Landmark

Init. Guess

Figure 5.1: Simulation of a single LED localization using the Gauss-Newton method.
True LED location is at (1.25, 1.25) meters.

Fig. 5.1 shows the nonlinear least squares solution using the Gauss-Newton method

to estimate a single LED landmark location. The initial guess of the landmark is at

(0, 0). Locations of the agent and the range to the landmark are assumed to be
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known at every sampling step.

The Min-Max localization method is a simple method where the idea is to mea-

sure the distance to a landmark from several locations. A vertex with a length of

the estimated distance from the agent location to the landmark is drawn as shown in

Fig. 5.2. The landmark location falls into the intersection of these boxes [80]. Fig. 5.2

represents a solution to localize the LED landmark using the Min-Max method.

-2 0 2 4 6

Length of the room (m)

-2

0

2

4

6

W
id

th
 o

f 
th

e
 r

o
o
m

 (
m

)

LED loc. uncertainty

LED loc. uncertainty

LED loc. uncertainty

LED loc. uncertainty

LED

Agents

Figure 5.2: Simulation of LED initialization using MinMax method.

In the weighted centroid localization (WCL) method, proposed in [81], the

agents or landmarks with known locations, Lj(x, y) send their location information

to all agents in the network. Traditional centroid localization algorithm uses the

arithmetic mean of these locations to localize an agent at Li(x, y). In the WCL

method, each agent location is weighted to improve localization accuracy. In the

context of OWC, an agent measures the RSS from an LED landmark. The location
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of the landmarks can be calculated as

Li(x, y) =

∑n
j=1(wijLj(x, y))∑n

j=1wij
(5.3)

wij =
1

Dijp
(5.4)

where wij is the weight of the distance measurement, and p is an exponent that affects

the weights with respect to distance. The weights are functions of the distance since

when the agent is close to a landmark, we expect to receive a higher RSS value. If

the agent is close to the landmark, the value of p is higher.
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Figure 5.3: Simulation of LED initialization using K-Means clustering method.

The use of the K-Means clustering algorithm for source localization is proposed

in [82]. The implementation to OWC-IoT sensor network can be explained as follows:

assume that there are n RSS measurements from an LED landmark, and the location

of the agent during these measurements are known. The centroid point of these RSS

points is the LED landmark location.

In the probability grid method, the surveillance area is represented as a grid [83].
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Each RSS measurement is associated with a grid and a weight. As the number of mea-

surements increase, the grid is filled with RSS measurements, and the largest number

of RSS measurements associated with the point corresponds to an LED landmark

location.

The method of Gaussian mixtures is proposed in [84], where the authors use the

Gaussian mixture model to represent the probability density function of the source–in

our case the LED landmark. A minimum mean square error estimator (MMSE) is

used to approximate this function. The source location is found by looking at the

Euclidean distance between this function and its MMSE estimate.

5.2 Distance Geometry

The main difference between the methods discussed above, and the distance geom-

etry method is the assumption that there is no information about the agent, such as

odometry or inertial measurement unit information in the distance geometry method.

The distance geometry method assumes that the nodes have fixed locations as de-

scribed in Section 3.3.2. The only available information is the transmitted power

level and the received measurement. Using the given information, the distance be-

tween node i and agent j can be estimated from (4.2), but the inter-LED distances

are still required to localize the LEDs with respect to a reference coordinate system.

The inter-LED distances, rmn, from LED m to LED n can be estimated using the

closed-form solution given in [37].

Fig. 5.4 shows a simulation scenario when there is a collaboration between the

agents, e.g., other mobile users, autonomous robots, or different electronic devices.

As the agent that follows the dashed trajectory moves, the RSS measurements sourced

from the other agents are used to estimate the LED locations. The measurements from
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Figure 5.4: One realization of the LED node localization algorithm at 65 dB OWC-
SNR. The LED locations are obtained using RSS measurements from the agents in
the surveillance area.

other agents help to overcome collinearity and avoid any under-determined solution

to the LED localization equations. The simulation parameters used are given in

Table 5.1.

5.2.1 Performance of LED Localization Algorithm

We test the performance of the LED localization algorithm for a typical room

scenario given in Fig. 5.4 using the simulation parameters listed in Table 5.1. In

Fig. 5.5, we compare the performance of a single agent that collects six measurements

versus six agents that collects one measurement each.

We assume that one of the LEDs is chosen as the reference node, S(1) = (0, 0),

used as the origin of an arbitrary coordinate system. Two important conclusions can

be drawn from the results in Fig. 5.5. First, the OWC-SNR level has a direct effect

on distance estimation, d̂ij, between the agent and the LED, as given in (4.2), as a

function of the RSS, Pij. As the OWC-SNR degrades, the distance estimation error
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Table 5.1: LED localization simulation parameters

Parameter Value
Room dimension
(L × W × H)

5× 5× 3 m3

Number of LEDs 3
LED lamp transmitted power (Pt) 20 Watts
LED Lambertian mode 1
LED bulb elevation and azimuth −90◦ and 0◦

LED bulb positions 1.25 m away from the walls
PD height 0.75 m
PD field of view (Ψc) 140◦

PD physical area (Ar) 1 mm2

30 40 50 60 70 80

OWC-SNR (dB)

10
-1

10
0

R
M

S
E

 o
f 
th

e
 L

E
D

 l
o
c
a
liz

a
ti
o
n
 (

m
)

Lamp 2, one UE

Lamp 2, six UEs

Lamp 3, one UE

Lamp 3, six UEs

Figure 5.5: Root mean square error (RMSE) of LED location estimates from the
RSS measurements sourced from a single user and six users vs. OWC-SNR using the
parameters in Table 5.1.

increases. The inaccurately estimated distances increase the LED localization error.

The second conclusion, more interesting for IoT device discovery, is that if we solicit

the help of IoT agents at unknown locations to provide us optical RSS measurements,

the LED node localization accuracy increases. The main reason is that a single agent

has little displacement in time and collinearity is likely to occur. Small displacement

may make the difference between observed RSS values too small to give an accurate
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solution to the LED localization equations as discussed in Section 3.3.2. Collinearity

may happen during the collection of the RSS measurements due to the path that

is followed by the agent. On the other hand, when six users are available, each of

them only needs one optical RSS measurement, and the measurements have enough

variations to avoid collinearity.

5.2.2 Real-Time Operation of Proposed Algorithm

In this section, we discuss how the proposed algorithm can be extended to a

real-world scenario. We describe our solution that relies on measuring at least four

RSS measurements from distinct LEDs. The layout of the LEDs inside a building

typically follows a uniform distribution with equal distances. This kind of LED layout

is common in OWC and OWP research as given in [85–87]. The purpose of this kind

of LED layout is to maximize the coverage area, and increase the OWC-SNR while

minimizing the interference. Fig. 5.6 shows a typical LED placement that is suitable

for an indoor area such as a museum, warehouse, or shopping mall. The distance-

based localization algorithm described in Section 3.3.2 does not require a uniform

node distribution as long as there are at least three LED nodes in the FOV of the

PD. However, the LED initialization algorithm requires one of the LED locations to

be the reference point, and since the LEDs are equidistant in this section, the location

of the LED with the weakest optical RSS can be found from the equal spacing.

In Fig. 5.6, S(1) is chosen as the reference point, from which the location of S(2),

S(3) and S(4) can be found. As the agent moves, new LEDs will be in the FOV of

the PD of the agent. Recall that since the LEDs use unique codes, the RSS from

different LEDs is distinguishable. When there is a new LED in the FOV, the vector

of all optical RSS from the LEDs is sorted, and the strongest three are chosen for the

node localization process. The LED with the weakest RSS can be located relative to
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Figure 5.6: Illustration of the real-time operation of LED node and user localizations
using only the distance measurements. The agent trajectory is shown as a dashed
blue line.

the estimated LED location trio, using the uniform layout of the LEDs. The same

steps are followed to make the algorithm general.

5.2.3 Agent Tracking Using LED Nodes

In this section, we describe the agent tracking algorithm. The fundamental dif-

ference between the well-known EKF-SLAM problem [52], distance-based sensor net-

works [58], and the method proposed in this section is the available information that

can be used in LED and agent localization. In a SLAM problem, we have odometry

information, and the state matrix has to be updated in every step to keep track of the

anchors. On the other hand, in a distance-based sensor network localization problem,

the node locations are known a priori. The user’s location is updated with respect to

node locations.

We have no odometry information or inertial measurements of the agents, the
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locations of the agents, or that of the LEDs. Recall that existing and new LED node

locations are updated as new RSS measurements become available, as discussed in

Section 5.2.2. We, therefore, do not need to include the LED position estimates in

our state vector, i.e., it requires no maintenance (adding or removing LED nodes),

unlike a SLAM problem. Once the locations of the LEDs in the FOV are found, the

problem reduces to a classical target tracking problem with known anchor locations.

5.2.4 Agent Tracking Simulation Results

Simulation results presented in this section cover the agent tracking problem when

there is a single agent, and when we have a collaboration between multiple agents.

The RMSE of the agent tracking using range measurements relative to the estimated

LED landmarks locations is shown.

The LED layout for simulation is as shown in Fig. 5.6. Simulation parameters

needed, different from or in addition to those given in Table 5.1, are given in Ta-

ble 5.2. The agent’s trajectory is modeled as a constant position model as discussed

in Section 3.1.

One realization of the simulation is shown in Fig. 5.7 at an OWC-SNR level of 65

dB. In the first scenario shown in Fig 5.7-(a), the RSS measurements are obtained

using only one PD on the agent. Fig. 5.7-(b) shows the second scenario, where several

agents collect the RSS measurements in the IoT network. These devices are assumed

Table 5.2: Agent tracking simulation parameters

Parameter Value
Room dimension
(L × W × H)

10× 5× 3 m3

UE process noise variance (Vk) 0.2 m2

Measurement noise
variance (Qk)

0.1 m2
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Figure 5.7: Scenarios simulated showing true and estimated agent path where (a)
RSS measurements are sourced from a single user, and (b) the RSS measurements
are collected from the IoT network. The red dots are the estimated LED locations
when the OWC-SNR is 65 dB. The LEDs are represented as yellow triangles.

to be randomly placed. Note that using multiple agents to collect the LED RSS

values improves the tracking performance.

As discussed in Section 5.2.2, the PD requires at least three LEDs in the FOV.

The LEDs are grouped into trios based on the observed optical RSS intensities. When

the agent first enters the indoor space, LEDs 1, 2, and 3 are in its FOV. As the agent

moves, the second set of three LEDs are observed, which are LEDs 4, 5, and 7. Since

the location of LED 4 is found from the first LED trio, LED 4 becomes the new

reference point; the translation of the reference frame from LED 1 to LED 4 can

easily be made by using the inter-LED landmark distances. The third set of LEDs is

5, 6, and 8. The same holds for these 3 LEDs: LED 5 is chosen as the reference in

this case.

In Fig. 5.8, we show the RMSE results for the agent tracking using each set of

LEDs. At high OWC-SNR levels, sourcing the RSS measurements from a single
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Figure 5.8: RMSE of the agent tracking. LED locations found with single agent
vs. six agents collaborating to source RSS measurements for the scenario shown in
Fig. 5.7.

agent or multiple agents performs similarly. At low and moderate OWC-SNR levels;

however, sourcing the RSS measurements from multiple agents increases the agent

tracking accuracy significantly. It can also be observed that different sets of LED

trios have different performance. The trajectory of the agent that is being tracked

affects the LED localization accuracy, which is directly related to the accuracy of the

agent localization. For example, in Fig. 5.7 (a), there is one agent in the surveillance

area, and thus the accuracy of LED localization is low. However, in Fig. 5.7 (b), there

are six agents to collect the optical RSS, which leads to accurate localization of the

LEDs, and the agent can be tracked with a lower error. For high SNR values, the

RMSE of the agent tracking is around 10 centimeters. However, for low SNR values,

the agent tracking RMSE suffers from inaccuracies in the distance estimation.
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5.3 Summary

We believe that OWC systems will play a central role in IoT services. In this

chapter, we show that OWC and IoT have the potential to improve LBS in the context

of wireless sensor networks. Localization is a key application that can maximize OWC

and IoT capabilities, such as increasing the data rate or collecting and exchanging

location-application related data. In this chapter, we propose a method of device

discovery and agent discovery for an OWC-based IoT network.

We investigate the case of unknown LED and user locations. We use distance

measurements that are obtained from the OWC channel model and use a geometric

solution to localize the LEDs. Once the LED locations have been found, any device

that is connected to this network can be located, and their relative position with

respect to each other can be derived. Our system is robust: even when one of the

agents in the system fails, other devices connected to the network can replace the

failed device without sacrificing localization accuracy.
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Table 5.3: Discussion of landmark localization methods

The major advantages, disadvantages, and requirements of node localization meth-

ods from our perspective are summarized in Table 5.3.



Chapter 6

OWC-Based Indoor Mapping

Using Channel State Information

Optical wireless communications (OWC) is an emerging communication paradigm

that can provide illumination, data communications, and localization services. In this

chapter, we extend the capabilities of OWC one step further by proposing a novel

approach that uses OWC channel state information (CSI) to build a “sparse” map of

the surveillance area using estimated wall locations. OWC-CSI, which consists of the

optical received signal strength and channel impulse response, is measured for wall

location estimation. The proposed algorithm uses the time-of-flight (TOF) of the rays

of the light to estimate the distance to the walls. The estimated wall locations are

used as virtual landmarks to build a sparse map of the indoor area. This technique

can be used to estimate the distance to walls and objects in robotics applications. We

propose two approaches to the indoor mapping problem: OWC-infrastructure-based

and OWC-infrastructure free.

95
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6.1 Indoor Mapping Using the OWC- Infrastruc-

ture Channel State Information

One practical application of OWC is to use the LED infrastructure to find the

position of a user, also known as indoor localization. OWC-based localization systems

can provide a high positioning accuracy [17, 19]. The primary goal of this section is

to propose an algorithm that can be used for indoor mapping or obstacle detection

while localizing the user and the LEDs by building a sparse map of the surveillance

area. One of the critical assumptions in this part of the chapter is that the LED

lamps are equipped with high-speed LEDs or laser diodes so that we can collect the

CSI accurately with a PD on the agent. The PD is chosen as the sensor instead of

a camera, often used in OWC localization applications, for two reasons: a PD can

provide a higher bandwidth compared to a camera [88,89], which is the primary goal

for data communications, and it consumes less power than a camera, which is critical

when considering the resource constraints on a mobile agent. Collected OWC-CSI

at each sampling step consists of two channel features: the optical received signal

strength (RSS) and the channel impulse response (CIR).

The approach we propose in this section is novel for OWC systems, but not so for

RF systems. Recently, there has been a growing interest and re-discovery of using

non-line-of-sight (NLOS) components of the RF signal for localization and obstacle

detection [41–43]. The estimation of a reflector’s location using multipath is described

in many studies using RF signals [38–40]. RF-based systems, which are widely used

for indoor localization, are the main competitor to OWC-based indoor localization

systems.

Sparse mapping using features obtained from images is a well-known method

known as simultaneous localization and mapping (SLAM) [90], described in Sections
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3.2.6 and 3.2.7. In this chapter, sparsity refers to localizing the wall locations with

respect to the LED locations. To the best of our knowledge, there is no published

effort to use OWC signals for mapping applications. The main contribution of this

chapter is to propose a novel mapping method that uses optical RSS and OWC-CIR.

6.1.1 System Description

In this section, the OWC-based indoor mapping algorithm is described in detail.

Fig. 6.1 shows the steps followed in the algorithm.

The OWC-CSI measurements consist of the optical RSS and features from the

OWC-CIR. The peaks of the CIR are used to estimate the TOF of the multiple

reflections of the light. Once the TOF is estimated, the total distance traveled by

the line-of-sight (LOS) and non-line-of-sight (NLOS) rays can be estimated. Specular

reflection geometry can be used to find a closed-form solution to obtain the wall-agent

distance. After the distance estimation step, the wall location is resolved using circles

of uncertainty that are centered at the agent location and have radii that are equal

to estimated wall-agent distances. The tangent points of these circles that follow a

straight line give us the wall location to build a map of the environment.

Fig. 2.1 (b) shows a typical OWC-CIR. The CIR is a superposition of the LOS

and the NLOS parts of the light. The first peak is the LOS component of the light,

whose time of travel is denoted by τc. The point that is labeled as the reflection from

the near wall is the second peak in the OWC-CIR. The time that this peak occurs is

denoted as τ
(1)
W . The third peak is for the far wall, and this TOF is given as τ

(2)
W . The

superscripts (1) and (2) denote the order of the walls by the distance to the agent;

extending to more walls is trivial.

The assumptions in this work are as follows: we expect the walls to be straight

over a length of at least the separation of the LEDs. The vertical height between the
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Figure 6.1: Flowchart of the indoor mapping algorithm that uses OWC-CSI in this
chapter.

agent and the LED, h, and the transmitted power from the LEDs, PT, are known

a priori ; this is a common assumption as the lamp designs are given and the room

height is a fixed architectural feature of the indoor area. We also assume that the

LED lamps contain a high-speed LED (white or infrared) to allow us to capture the

CIR with high temporal resolution. The agent is assumed to be moving in a hallway

with two walls. We also assume that the LED locations are unknown initially. A

method to localize the LEDs and the mobile agent is required. We use an extended

Kalman filter (EKF) SLAM algorithm as described in Section 3.2.6 to estimate the

LED and the agent location [52]. We first explain how to use the information obtained

from the channel, and then discuss the SLAM algorithm.

6.1.2 Channel State Information

The CSI in this section has two elements that are collected during the movement

of the agent, the optical RSS and the peaks of the CIR. The RSS, P
(i)
R , from LED
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i to an agent located at (xt, yt) at time step t is calculated using the OWC channel

model described by (2.3) and (2.4) in Section 2.1.

Assuming that the transmitted power P
(i)
T is the same for all the LEDs, the esti-

mated distance, di, between LED i and the agent is computed as described in Sec-

tion 4.1.2. Each LED has a unique code so the RSS can be identified from different

sources using correlation.

Fig. 6.2 shows the relationship between the required LED modulation bandwidth

and the ability to distinguish separable peaks in the CIR for a high SNR case. This

establishes the minimum discernible perpendicular distance between the wall and the

agent. The distance and the bandwidth are approximately inversely proportional. In

this section, a large bandwidth is assumed so that the distance between the agent

and the wall that the CIR can capture with high temporal resolution is as small as

10 centimeters.

6.1.3 LED Location Estimation Using SLAM

In this section, the LED locations are not known a priori. We need an approach to

estimate the LED locations. SLAM is a general name given to the problem of locating

the agent and the landmarks (the LEDs in our case.) There are several solutions to

the SLAM problem – we chose the EKF-SLAM algorithm as the solution to the agent

and LED localization tasks [52]. In this work, the agent is equipped with a PD that

can only measure the optical RSS and the CIR. The RSS measurement is used to

calculate the range between the LED. Since other measurements such as the azimuth

angle of the LED are not available, a range-only SLAM approach is used [91].

Fig. 6.3 shows one realization of a typical scenario in a L-shaped corridor envi-

ronment. The peak OWC signal-to-noise (SNR) ratio is 60 dB. The peak OWC-SNR

is described as the SNR value measured at the closest point of approach between the
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agent and the LED. The agent uses the differentially-steered vehicle dynamic model

for the EKF described in [52]. The agent’s state vector consists of x and y coordinates

and the heading angle. The simulation parameters are given in Table 6.1.

Fig. 6.4 shows the LED localization root mean square error (RMSE) for different

OWC-SNR levels. Low OWC-SNR levels have a negative effect on the LED local-

ization accuracy. The additive noise on the optical RSS, P
(i)
R , makes the estimation

of the distance, di, inaccurate. The second observation is that the LED localization

accuracy has a direct relationship with the agent’s location. For the agent trajectory

given in Fig. 6.3, the error on the agent localization estimates increases towards the

end of the agent movement (top right). This is related to the OWC-SNR. Recall that

the peak SNR is defined at the closest point of approach to the LED; when the agent

moves closer to the walls the OWC-SNR decreases. The agent localization error and

the OWC-SNR error increase the LED localization error.

Table 6.1: Simulation parameters for infrastructure-based SLAM

LED parameters
Parameter Value
Room dimension
(L × W × H)

10× 2× 3 m3

Number of LEDs 9
LED lamp transmitted power
(PT)

20 W

LED Lambertian mode (m) 1
LED bulb elevation and azimuth −90◦ and 0◦

LED bulb positions
1 m away from walls
and 2 m apart

Agent parameters
Parameter Value
PD field of view (Ψc) 70◦

PD physical area (Ar) 1 mm2

Standard deviation of
agent velocity

0.01 dm/sec.

Standard deviation of
agent angular velocity

0.05◦
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Figure 6.4: RMSE of the LED locations that are obtained using the range-only SLAM
algorithm for the scenario in Fig. 6.3. The LEDs are numbered from the lower left to
top right.

6.1.4 Geometric Solution to Distance Estimation

Once the LEDs and the agent are localized, the CSI can be used to estimate the

distance between the agent and the walls. Fig. 6.5 shows the geometry of a reflected

light ray.

TOF information obtained from the CIR tells us the total distance that is traveled

by the reflected light. The reflection of the light from the walls is diffuse so many

rays contribute to the CIR. Specular reflection geometry is used in this section to

identify the peak of the CIR, where we assume that the angle of arrival and the angle

of reflection are equal, and denoted by α. This gives the shortest path traveled by

the light ray. We find the distance a (and consequently b), the perpendicular distance

between the wall and the LED in 2D, as shown in Fig. 6.5. Using the notation given
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Figure 6.5: Specular reflection geometry used in this section. We assume that the
LEDs are located in the middle of the hall, a+ b.

in the figure, the resulting equations are:

d2 + d3 = c× τ (1)W

d4 + d5 = c× τ (2)W

(d2 + d3)
2 = (2a+ b)2 + h2

(d4 + d5)
2 = (3a+ 2b)2 + h2,

(6.1)

where b equals to
√
d2 − h2, d is found from (4.2), and c is the speed of light.

The solution of the specular reflection geometry yields an accurate result for the

agent location when the agent is on a plane that includes the LED and is perpendicular

to the wall. Thus, as the agent moves down the hall, we capture the optical RSS from

an LED when the distance between the agent and the LED is minimum, i.e., when

the RSS reaches a maximum. To find the maximum RSS, we store the optical RSS

values and find the TOF from the CIR at only the peak RSS locations. Although the

LEDs are located in the middle of the hall in Fig. 6.5 for notation convenience, we

can obtain the distances a and b using (6.1) regardless of the LED location on the
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ceiling, as long as the maximum RSS is detected.
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Figure 6.6: Peak RSS locations that give the most accurate solution to (6.1). The
velocity of the agent is 6 cm/sec.

Fig. 6.6 shows an example of the optical RSS captured by the agent for two LEDs.

The points marked with red triangles are the peak RSS points where the OWC-CIR

is captured and translated to the distance a using (6.1).

6.1.5 Wall Location Estimation

The estimated distances using (6.1) give the perpendicular distance between the

agent and the walls. However, there is still uncertainty on the exact wall location:

the wall can be anywhere on a circle that is centered at the agent’s location with a

radius obtained from the estimated distance, a or a + 2b (see Fig. 6.5). Recall that

we assume that the agent moves in a hallway with two walls.

The ambiguity of the exact wall locations can be used to resolve the circles men-

tioned above. A history of at least three LED locations is stored, and the a and

a + 2b values obtained are used to find the exterior tangent points between the cor-

responding circles. The wall-location-to-distance association is illustrated in Fig. 6.7.
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at the agent location with a radius a. Dashed line circles are for the far wall with a
radius of a+ 2b.

The agent has a peak optical RSS at each of the nine LEDs during its movement, as

shown in Fig. 6.6.

The solution to (6.1) at each of these points gives a, the perpendicular distance

between the near wall and the agent, and a + 2b is the distance to the far wall with

respect to the agent’s location. The tangent points between successive small circle

and successive big circle are found using simple geometry. The tangent points from

at least three circles are then connected; the connections that follow a straight line

represent a wall.

In Fig. 6.8, the connected tangent points are shown as estimated walls. Green

lines are estimated walls from the small circle tangent points. Red lines are estimated

from the big circle tangent points. Grey lines are from points that do not follow a

straight line when connected and are thus rejected as irrelevant artifacts.
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107

Fig. 6.9 shows the RMSE of the wall location estimation versus OWC-SNR for 100

random agent locations. The RMSE is high for low SNR values because the proposed

algorithm relies on detecting the peak points in the CIR that correspond to reflections

from walls, and lower SNR values corrupt the OWC-CIR; the detected peak points

are not accurate representations of the true peaks from specular reflections.

The performance of the far wall is better than the near wall for the highest SNR

value (80 dB) tested in this section. While solving (6.1) for the far wall, d4 + d5 =

c× τ (2)W yields a more accurate distance estimate than for the near wall because of the

fast speed of light compared with the short distances in the small indoor surveillance

area.

6.2 Sparse Environment Recognition and Position-

ing Using OWC-CIR

In this section, a novel indoor mapping and localization method is proposed.

State-of-the-art indoor mapping systems rely on complex and expensive sensing such

as light detection and ranging (LIDAR) and cameras. In this section, we propose a

novel approach for simultaneous localization and mapping (SLAM) front-end, sparse

environment recognition and positioning, which uses an agent mounted laser diode

(LD) as the primary signal. The main advantages, such as low power requirement, re-

duced sensor cost, and low computational complexity, come from the limited number

of lasers and no moving parts, compared to a LIDAR. In our approach, an upward

facing laser emits light; an upward facing photodetector (PD) measures the optical

intensity of the reflected light from the ceiling and the walls. The indoor optical chan-

nel impulse response (CIR) is detected using these optical intensity measurements.

The distance to the walls with respect to the agent location is calculated from the
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CIR. For the SLAM back-end, we use the well-known graph optimization based algo-

rithm described in Section 3.2.7. The results show that the root mean square error

of wall localization is sub-decimeters (when using a random sampling and consensus

step) for mapping and localization.

Map building

Agent
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Channel feature
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Wall distance
estimation

Data association

O
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on
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G
raphSLAM

 back-end

Figure 6.10: Flowchart of the OWC-based SLAM algorithm proposed in this section.

In a SLAM problem, it is common practice to divide the problem into two: front-

end and back-end. The steps followed in the OWC-based front-end and the outputs

of the graph SLAM-based back-end are shown in Fig. 6.10.

The proposed method can build an indoor map rapidly, and even detect obstacles.

For the agent localization, the estimated wall locations can be used as virtual land-

marks to find the user’s location. In the front-end, the measurements are processed

to extract the signal features. The OWC-CIR is used to compute the distance to

the walls in the front-end. The measurements are used in the back-end of the SLAM

algorithm that uses a graph optimization method.

Our method relies on the estimation of reflector locations, and these locations

serve as virtual landmarks in the agent localization process. The constructed map

is in 3D and consists of estimated reflection locations from the objects, e.g., walls,

and the vertical height of the surveillance area. This sparse map can be used for
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rapid indoor mapping for robotic applications or mapping using hand-held mobile

devices. The proposed method is similar to well-known ORB-SLAM [9], in the sense

that estimated key points (wall locations) are used as anchor points, and the map

construction process is sparse.

Unlike mapping methods that use a camera or AOA-range pairs, only distances to

the walls at unknown locations, which are obtained from the TOF of the peak points

in the CIR, are used. The wall location uncertainty can be represented with circles

that have radii of estimated distances to the walls. We look at the point where the

Euclidean distance is minimum between the circles.

6.2.1 OWC Front-End

In this study, we develop a novel front-end solution to the SLAM problem that

computes the wall location by using the OWC-CIR. We start by describing the sensor

shown in Fig. 6.11.

LD PD

B
ff

Incident 
light

Emitted 
light

Figure 6.11: Sensor used in this study consist of a LD and a PD.

Our sensor consists of an LD and a PD, and is able to detect the OWC-CIR

accurately. The sensor is assumed to be parallel to the ceiling. B denotes the distance

between the center points of the LD and the PD, and f is the focal length of the lens.

The light emitted from the LD is reflected from a surface and measured by the PD.
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To simplify calculations, we assume that B is sufficiently small, the LD and the PD

can be thought as located at the same spot.

6.2.2 OWC Channel Model and Impulse Response

d1

d2

Sensor

D

ϕ1

ϕ2

φ2

NLOS

Field of
view

φ1

Ceiling

Wall

Figure 6.12: Channel geometry for calculating the OWC-CIR used in this study.

In this study, the light reflected from the ceiling and the walls is used as shown in

Fig. 6.12. The pulse emitted from the upward facing LD hits the ceiling, and the PD

measures the returned pulse. The non-line-of-sight (NLOS) channel gain, hNLOS(t),

can be calculated as discussed in Section 2.1. According to this, we can no longer

assume that the effective light source is a point source because it is a reflection of the

ceiling. If the LD divergence angle is chosen narrow enough, the light shined on the

ceiling can act like a Gaussian light source as given in [92].

Fig. 6.13 shows a typical normalized impulse response of an indoor OWC channel

that is used in this study. The maximum amplitude peak point corresponds to the

agent-ceiling-agent part of the light, and the TOF is denoted by τ . τwi
is the TOF



111

Figure 6.13: Typical normalized OWC impulse response with the multipath from
ceiling and walls.

of the reflected light from the ceiling to the wall and back to the sensor, where i

is the index of the wall creating the reflection. Recall that there is no LOS in Fig.

6.13, because the transmitter and the receiver are placed on the agent as shown in

Fig. 6.12.

The accurate detection of the peak points in the OWC-CIR is related to the

divergence angle of the LD, and the distance between the ceiling and the sensor. If

the divergence angle is too large, then the spot on the ceiling is too wide to calculate

an accurate impulse response. A large divergence angle may lead to inaccuracies in

the detection of the peak points of the OWC-CIR.

Fig. 6.14 (a) shows the relationship between the LD divergence semiangle, θ, and

the spot radius, r, and can be calculated as r = D tan θ. The room height, D, can

be calculated from the TOF of the first peak in the CIR. The spot size on the ceiling

depends on LD’s divergence semiangle.
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Figure 6.14: (a) Beam divergence at distance D for an LD with a semiangle of θ. (b)
The relationship between the LD divergence angle and the beam shape in time at the
PD.

Fig. 6.14 (b) shows the effect of the LD divergence semiangle on the spread of the

light pointed to the ceiling. The distance, D, between the sensor and the ceiling is

3 meters. The spreading creates a circular light source, instead of a point source as

discussed above. The circular beam shape is divided by the speed of the light, and

the x-axis represents the delay of the light due to this circular light source in time.

Only narrow sources allow accurate detection of the peak points in the OWC-CIR as

in Fig. 6.13.

The convolution of the beam spread in Fig. 6.14 (b) and the OWC-CIR in Fig. 6.13

is shown in Fig. 6.15 for two different agent locations and several transmitted pulse

of width values. The second peak that represents the nearest wall reflection is shown
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Figure 6.15: Effect of LD beam divergence angle on peak detection process. Five
OWC-CIRs are shown for various LD beam divergence angles for two different per-
pendicular distance values to the wall: (a) 1 m, and (b) 0.3 m.

in Fig. 6.15. A zoomed in part of the OWC-CIR measured by an agent at 1 m away

from the wall is shown in Fig. 6.15 (a). It is seen that the for all the beam divergence

angles, the second peak in the OWC-CIR can be detected. Fig. 6.15 (b) shows a

zoomed in part of the OWC-CIR for an agent located at 0.3 m away from the wall.

The results show that a narrow divergence angle, θ, yields better results for peak

detection. The wider divergence angles spread the pulse in time, which makes the

first and the second peaks indistinguishable.

6.2.3 Wall Location Estimation

In an OWC system, only real non-negative signals can be transmitted, unlike

RF systems. Hence, we are limited to optical intensity measurements. In this sec-

tion, we describe a way of estimating the distance to the wall using the optical RSS

measurements.

Fig. 6.16 illustrates the translation of the OWC-CIR in the signal domain to the

physical domain. We take advantage of the specular reflection points on the walls. A
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Figure 6.16: Geometric model of two upwards facing sensors. Sensors, Γ1 and Γ2, are
placed equidistant from the center of the agent, a2 ≥ a1.

specular reflection is defined as the point where the incoming and departure angles

of the light are equal, and this is the shortest length ray. As shown in Fig. 6.16, we

assume that the point that corresponds to a peak in the CIR is associated with a

specular reflection point, which is located at D/2. As discussed in Section 6.2.2, the

time that corresponds to the peak points in the CIR is used to calculate the distance

traveled by the reflected light. If we know the total distance traveled by specular

reflection, we can calculate the distance to a reflecting surface using a closed-form

geometric equation. This geometry, also known as the two ray multipath [93], is used
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to calculate the distance between the agent and the wall in R2:

D = τ × c

d1 =
c× τw1

2

a1 =

√(
d1 − D

2

)2

d2 =
c× τw2

2

a2 =

√(
d2 − D

2

)2

(6.2)

TOF information is obtained by looking at the OWC-CIR peak point time indices.

d1 and d2 are the distances from the ceiling to specular reflection points, and also the

distance from the specular reflection points to the sensors. c is the speed of light.

τ, τw1 , and τw2 are the time of peak points in the CIR. a1 and a2 are the distance of

the sensor locations to the wall. Recall that for simplicity we only show a single wall;

extension to multiple wall locations estimation is trivial.

6.2.4 Link Budget Analysis

In this section, we calculate the minimum transmitted power that is required to

satisfy the OWC-SNR level for accurate detection of the second peak point in the

OWC-CIR. In an OWC, the noise is comprised of two effects: thermal and shot noise.

We add a third term as explained is Section 2.3. The total noise variance is the sum

of variance the thermal, shot, and uncertainty noise:

σ2
total = σ2

thermal + σ2
shot + σ2

uncertainty

σ2
thermal = 4κTKB/RL

σ2
shot = 2qPRB

(6.3)
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where κ is Boltzmann’s constant, TK = 300 K is the temperature in Kelvin, B = 350

MHz is the receiver bandwidth. RL = 50 Ω is the resistor value in the receiver circuit.

q is the electron charge.

As discussed in Section 2.3, the SNR is the ratio of the received optical power to

the noise power in the system. If we only consider the contribution of thermal and

shot noise calculated using the parameters above, SNR of the first peak is 50 dB. For

the second peak, the SNR is 35 dB at a sensor located 0.5 m away from the wall.

Fig. 6.17 shows the contribution of the uncertainty noise on the accuracy of peak

detection. From the results, it can be seen that the minimum required SNR value

for an acceptable accuracy level is 40 dB. Note that we are interested in the TOF

of the second peak, so the receiver needs to accumulate several pulses to achieve the

desired performance given the parameters listed above. To achieve that performance,

the minimum required transmitted power is calculated to be at least 20 mW with a

pulse repetition frequency of 50 KHz [94].

SNRτW1
=
νP 2

τW1
ρ

σ2
total

(6.4)

where ν is the number of pulses received, and ρ is the PD responsitivity.

6.2.5 Effect of Transmitter Bandwidth on Wall Location Es-

timation

Another important design parameter of this work is the transmitter bandwidth.

The OWC-CIR needs to be measured with high spatial resolution so that the peaks

in the CIR can be identified accurately.

Fig. 6.18 shows the RMSE of the wall localization error versus the transmitter

bandwidth for various distances to the wall. The results show that the transmitter
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Figure 6.17: Relationship between peak detection and SNR

bandwidth and the perpendicular distance between the wall and the sensor can be a

limiting factor on the accuracy. When the sensor is 50 cm away from the wall, the

required bandwidth is more than 350 MHz, however, if the sensor is closer to the wall,

20 cm, the required bandwidth to capture the OWC-CIR accurately is more than 1

GHz. Considering the capabilities of new semiconductor devices such as VCSELs,

the required bandwidth values are realistic [95].

6.2.6 Resolving Wall Locations Ambiguity

In this study, a sensor located on the agent is denoted by Γi, where i denotes the

sensor index. There are two sensors with an offset of u from each other as shown in

Fig. 6.16, i = 2. At each time step t, the LD transmits a coded pulse, and an impulse

response is received indicating all main reflections, including the ceiling bounce and

the diffuse bounces from the walls. From these measurements, we can find the TOF

from which we can compute the distance to the walls.

Recall that we are using PDs, and there is no AOA or visual information regarding
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Figure 6.18: Effect of distance and transmitter bandwidth on wall localization RMSE.

the relative wall locations. The agent does not know where the walls are, or which

wall the agent is moving towards with respect to the sensor. The problem of data

association is a major challenge to overcome for accurate mapping.

Fig. 6.19 illustrates the steps followed to estimate the wall locations. Our approach

uses the fact that we estimate two distance values from the sensors by using two PDs.

Once the measurement from a sensor to a wall, ai, is available, we estimate the

distance to a wall resulting in a circle of ambiguity. The center of each circle is

the sensor on the agent, Γi(x, y), where x and y are the Cartesian coordinates with

respect to the midpoint between the sensors on the agent. If the agent has two sensors,

there will be two circles as shown in Fig. 6.19. Using the history of m consecutive

measurements as the agent moves, the circle planes are stacked vertically. We see that

the points on these two circles with minimum Euclidean distance give us wall location

estimates. This method is used to solve the data association problem of estimated

distance and the reflected wall problem location in 2D coordinates. We estimate the

room height using the ceiling bounce. We end up with a sparse 3D representation of
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Figure 6.19: Resolving the wall position uncertainty using a history of circles and
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the surveillance area.

We can further improve the wall localization estimation by rejecting erroneous

wall location estimates. The random sampling consensus (RANSAC) algorithm can

be used to fit the best possible line to the history of the estimated wall location

points [96].

6.2.7 Graph SLAM Back-End

In this section, we use the graph optimization SLAM [56] described in Section

3.2.7 to build a map of the environment and locate the agent. The estimated wall

distances are used to localize the agent. Our goal is to build a graph that consists of

nodes and edges from the motion of the agent and the measurements.

Once the problem is represented as a graph, we can optimize this graph to locate

the agent and build a map of the space indoor that represents of wall locations. The

nodes of the graph correspond to the displacement of the agent between t− 1 and t,

and the distances to observable walls during t− 1 and t are represented as the edges,

where t represent the time index. The edges represent the spatial constraints between
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the nodes.

The state of the agent is represented by xt = [xt, yt], where x and y are the

Cartesian coordinates of the agent, and t represent the time index. At each time

step, the control input to the agent, ut, is known. The distance between the wall and

the agent at time step t is denoted by zt. We use this information to construct the

information matrix and vector defined in Section 3.2.7. A more detailed explanation

of the graph-SLAM algorithm can be found in [56].

6.2.8 Simulation Results

We test the proposed joint mapping and localization algorithm on different tra-

jectories for the same room conditions. Table 6.2 gives the parameters used in our

simulations.

Associating the estimated distances to the corresponding walls using only the

OWC-CIR is a challenging task since it is impossible to estimate the direction of

arrival of the multipath light signal with a single PD. The method described in Sec-

tion 6.2.6 is developed to resolve this problem. Fig. 6.20 shows the simulation result

for the proposed data association algorithm for a linear trajectory.

Fig. 6.20 shows how to use the circles that are centered on the sensors with radii

a and b for wall location estimation. In this simulation scenario, we assume that the

agent is equipped with two sensor packages, Γi, with an offset of 0.4 m. The simulation

parameters are given in Table 6.2. The estimated wall positions correspond to the

point where the Euclidean distance between yellow and red circles is a minimum. The

circle radii are estimated from the OWC-CIR as described in Section 6.2.3. Note that

as the agent moves towards the center of the room, the error of the wall estimation

increases. This error is due to quantization introduced during the calculation of the

CIR in simulations.
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Table 6.2: Simulation parameters for infrastructure-free SLAM

Parameter Value
Room Dimension 10× 10× 3 m3

Agent Dimension 0.5× 0.5× 0.1 m3

Sensor offset 0.4 m
Agent velocity variance 1 (cm/s)2

Agent angular velocity
variance

0.25◦

LD beam divergence 14◦

LD transmit power (Pt) 20 mW
LD rise time 1 ns
LD lens refractive index 1.5
Optical concentrator gain 2
Pulse repetition rate (ν) 50 KHz
PD aperture 1 mm2

PD responsitivity 0.95 A/w
Room reflection coefficient (ρ) 0.8
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Figure 6.20: Estimated distance-to-wall association using a history of circles for dif-
ferent sectors of an agent movement.
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Figure 6.21: Wall localization and user tracking using the proposed mapping and
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are the computed wall locations after RANSAC. Estimated user trajectory is shown
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Fig. 6.21 shows a realization of the wall location estimation and user tracking

for a linear agent trajectory. This kind of trajectory is the worst case scenario for

our mapping and localization method because the agent is equidistant from the walls

during its movement. Recall that the detection of the peak points in the OWC-CIR

is used to find the wall locations, and the detection of the CIR peaks is hard when

there are no distinct peak points. Also, since we simulate the CIR using a computer,

quantization error is introduced.

In Fig. 6.22, we test the performance of the mapping and localization method for

a different user trajectory where this time the user moves closer to the walls, which

yields a better CIR in terms of easier peak distinction and detection. This yields a

wall localization RMSE under 3 centimeters after applying the RANSAC algorithm.

For the results shown in Fig. 6.23, the peaks in the CIR stemming from the

first and second closest walls are used to estimate the wall location. Recall that, in

Fig. 6.21 and Fig. 6.22, we assume that the reflection from the closest wall is used to
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find the wall locations. The RMSE of the agent tracking is 8 centimeter for the test

trajectory. The mapping accuracy is lower in this case compared to mapping using

the first peak point. The RMSE of wall localization is around 10 centimeters before

the RANSAC. The detection of peaks becomes challenging as the optical RSS of the

reflected light decreases, and this makes finding the peak points in the CIR harder as

the number of peak points used for mapping is increased.
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Figure 6.24: RMSE of wall location estimation for scenario shown in Fig. 6.22 before
and after the RANSAC with various inlier probability values.

We test the performance of the RANSAC for different inlier probabilities as shown

in Fig. 6.24. Inlier probability can be defined as the probability of a point that has

a squared error less than a predefined error threshold (10−7 in this study). Before

RANSAC, the RMSE of the wall error localization error can go as high as 10 cm. The

high error and the perpendicular distance to the wall of the agent are correlated. As

the agent moves too close to the wall, the detection of the peaks from the OWC-CIR

becomes impossible. On the other hand, if the agent moves too far from the wall,

the peaks cannot be detected accurately; this leads to a high wall localization RMSE.

However, after we apply the RANSAC algorithm, the error decreases dramatically.
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This can be observed for walls 3 and 4 in Fig. 6.24. The results are obtained from

the test case given in Fig. 6.22. With a low inlier probability, the accuracy of wall

mapping can be less than 3 centimeters.

6.3 Summary

In this chapter, we propose an indoor mapping and localization method that uses

the OWC-CIR to estimate the TOF information. The method can be infrastructure

dependent or infrastructure free. This new approach is suitable for mobile devices

with limited power and processing capacity, such as mobile robots or hand-held elec-

tronic devices, thanks to its low power sensors and light-weight signal processing

algorithms.



Chapter 7

Conclusions and Future Work

This dissertation has addressed three main research tasks: fingerprint-based in-

door localization, landmark and device discovery, and mapping using the OWC chan-

nel features. The goal is to propose a complete solution for the OWC-based indoor

localization and mapping problem.

7.1 Research Contributions

The research contributions of each chapter are as follows.

Fingerprint-based localization

• The problem of linearizing the OWC channel model is a challenging task. This

makes using probabilistic tracking filters hard to use for OWC-based indoor po-

sitioning. We solve the channel linearization problem by using a finite difference

method that relies on a database of a priori measurements instead of using the

channel model directly, as in multilateration solutions. [19,60].

• In the ideal case, the LEDs transmit the same power, and the fingerprint

126
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database is built for identical lamps transmitting identical power. In real-world

scenarios, one or more of the LED lamps can be broken or operate faultily. We

investigate the effect of unexpected RSS measurements in [60].

• The main drawback of fingerprint-based localization is the site survey process,

in which location-related measurements are collected. In this dissertation, we

propose three solutions to overcome this difficulty of fingerprint-based localiza-

tion. We propose to use geospatial interpolation methods to build a fingerprint

map with a limited number of measurements. An LED lamp that is equipped

with a camera can be used to capture the light distribution in the room. The

image from this camera is used to build a fingerprint map [61]. Already-existing

Wi-Fi infrastructure and the users in the surveillance area can help us to build

and update the fingerprint map as proposed in [63].

• In a general localization problem, the locations of reference points are assumed

to be always known a priori. In real-world problems, however, the locations of

the LEDs may be different from the architectural plan or may change over time

due to remodeling or changes in the plan. This necessitates a LED landmark

discovery step. We propose a method that relies on distance measurements

in [97].

• We propose two approaches to build a physical map of an indoor area that can

be used instead of the commonly employed LIDARs. In the first method, we

assume that the light bulbs are equipped with high speed white or IR LED. We

use the PDs on the agent to build a map of the environment from the OWC

channel state information. The algorithm relies on detecting the TOF of the

light rays [6].

In the second mapping method, we use the same building blocks as a LIDAR:
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laser diodes (LD). These elements attached to the agent are used to build a

map of the environment again using the OWC channel state information. The

main contribution of this method is its low cost, lightweight signal processing,

and low energy consumption compared to a LIDAR.

7.2 Conclusions

In VLC fingerprint-based indoor localization systems, conducting the site survey

is challenging, requiring highly accurate offline measurements that require exhaust-

ing manual labor. This is why VLC fingerprint-based algorithms are not currently

attractive for real-life applications of indoor positioning systems.

In this dissertation, we propose three different solutions for fingerprint collection

in VLP systems: spatial interpolation that reduces the complexity of manual site

surveying, an imaging sensor-based algorithm, and a hybrid-crowdsourced technique

that uses Wi-Fi.

The first approach uses an interpolation method that relies on the smoothness of

the indoor lighting and requires fewer measurements than a completely manual site

survey. The interpolation methods provide almost as high an accuracy as an ideal

fingerprint map. However, these methods require RSS measurements with known

locations. The second method, an imaging-based technique, requires equipping the

light sources with a camera and a calibration function to transfer from the image

domain to the optical RSS domain. Camera-based fingerprint data collection is the

simplest to apply; however, the accuracy is the lowest among the algorithms tested.

The third method, the hybrid-crowdsourced approach, uses Wi-Fi to help locate the

users and relies on the smoothness of the indoor lighting. It uses both the Wi-Fi APs

and LEDs for positioning. In the case of LED failure, the Wi-Fi trilateration can still
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act as a rough positioning system. Our results show that the proposed site survey

methods can provide highly accurate fingerprint maps, comparable to a perfectly

collected fingerprint survey.

In this dissertation, probabilistic tracking filters are used to track the UE. The

fingerprint maps help calculate the Jacobian of the measurement function in the EKF

and the likelihood of the particles and measurements in the PF. Our results show that

the accuracy of the fingerprint map has a substantial influence on the accuracy of the

tracking filter’s estimate of the UE position. Comparing the probabilistic tracking fil-

ters, the performance of the PF is slightly better than the EKF, as expected. However

considering the complexity of the PF, the EKF is a viable solution to the problem.

The main issue with the EKF is the linearization of the measurement function, the

granularity of the finite difference method for estimating the Jacobian that is related

to the fingerprint map resolution affects the tracking accuracy. When the grid step

size in decimeters, the RMSE of the agent position is around 5 centimeters.

Another important conclusion can be made for LED localization for future of

VLC internet-of-things (IoT) networks. Most of the methods used in wireless sensor

networks (WSN) require the location of the agent to localize the landmark. The

method that we focused on in this dissertation does not have this constraint. It can

localize the landmarks by calculating the distance to at least three landmarks in the

FOV of the PD. Although this distance-based geometric method has drawbacks such

as susceptibility to noise and collinearity, we believe that this method can be used in

cooperation with other WSN methods. A complete free space optical WSN system

can be built. LED localization can be below 1 decimeter. The accuracy depends on

the VLC channel SNR and the measurement locations.

In the context of indoor mapping, a novel mapping and localization method is

introduced that uses low-power LDs and PDs as the sensors. The primary goal is to
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measure the OWC-CIR as accurately as possible and extract the light reflection TOF

from the CIR. Our new approach is suitable for mobile devices with limited power and

processing capacity, such as mobile robots and hand-held electronic devices, thanks

to its low power sensors and light-weight signal processing algorithms. The accuracy

of wall localization is around 2 to 5 centimeters after the RANSAC step.

7.3 Future Work

Visible light positioning (VLP) is an emerging IoT research area that has garnered

attention for its positioning accuracy capabilities because of the predictable signal

characteristics of visible light. The versatility of VLC systems helps to develop several

indoor positioning algorithms that use either a PD- or a camera-based positioning

system. VLC has the potential to link all “things”, such as mobile phones, computers,

gaming consoles, and home appliances to create an energy-efficient, RF-interference-

free indoor localization network by using the LED lights and indicators. This VLC-

based network of location-aware things can provide position information and situation

awareness everywhere in an indoor space, such as smart-buildings. With the help

of pervasive LEDs and PD equipped devices, sensing can be smart and efficient to

provide detection, tracking, and mapping. We think that in the future it is possible

to use LEDs and PDs to achieve high accuracy indoor tracking and positioning with

a flexible system that requires no prior position information of the VLP enabled

devices. The system will locate the position of the devices with respect to each other

from the LED received signal strength (RSS) detected by a PD in a “landmark”

discovery step. Landmarks can be defined as stationary VLP-enabled devices. Once

enough RSS and location data is collected from devices and users, a cognitive RSS

fingerprint database, which is situation-aware to changes in the indoor area, can be
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used in a probabilistic tracking filter for pinpoint positioning, occupancy detection,

remote sensing, and rapid mapping.
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