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The fields of artificial intelligence and computer vision have experienced revolutionary 

innovation in the past few years. Perhaps the most robust and applicable application within this 

field is zero-shot learning, where models are tasked with classifying categories of images they 

have never seen before. My technical work over the course of this semester focuses on 

improving the performance and usability of a state-of-the-art model for zero-shot learning called 

CLIP (Contrastive Language-Image Pretraining), recently released by OpenAI. In this paper, I 

explore in detail the success of different types of prompt engineering, which is used to provide 

auxiliary context to the model. Specifically, I explore the capabilities of CLIP by creating textual 

prompts that are augmented with external knowledge such as the use of hyponyms and entry-

level categories. In this paper, I demonstrate that these external types of information lead to 

improved accuracy, which provides initial recommendations about how transfer-learning by 

prompt engineering might look in the future. I also explore the use case of CLIP in predicting an 

encoder from Wikipedia text samples of classes belonging to a dataset of birds, and using this 

encoder to learn attributes of classes of unseen images. Ultimately, my work advances a rapidly-

progressing field within computer vision and points toward key areas of future innovation in 

zero-shot learning. 

 
INTRODUCTION AND RELATED WORK 

Computer vision technologies have achieved incredibly high accuracies in classifying 

known images. State of the art models today are excellent at identifying features of certain 

images and corresponding them with images from classes they have been trained on in the past. 

That said, this problem space does not solve many important real-world applications, as it is 

impossible to train models on images of every possible class. Zero-shot learning is a particularly 

interesting field within computer vision where models must classify categories of images that 
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they have not been trained upon at all (Wang et al., 2019, p. 1). Traditional computer vision 

relies on training models on large sets of images, to extract and represent features that they can 

later match with novel images. In zero-shot learning, though, test images may be from classes 

that models have never seen before, which presents a unique and open-ended problem that more 

closely encompasses real-world applications of computer vision.  

Introducing Zero-Shot Learning 

 Zero-shot learning was first proposed as a technique for solving the problem of data 

scarcity (Li et al., 2019, 8690). This relatively novel field accounts for the lack of 

generalizability in classical computer vision classification tasks by no longer requiring models to 

be trained on images from each class. Instead, zero-shot models relying on attributes or other 

information that describes classes to which images can belong (Xian et al., 2019, p. 2253). Wang 

et al. (2019) find that zero-shot learning models are perfect for scenarios where target classes are 

large, rare, changing, or bottlenecked in amount of labeled data for training (p. 2).  

 The field of zero-shot learning has tremendous applications that extend to a variety of 

fields. Given that zero-shot learning is a more generalized and robust form of computer vision 

classification tasks, the problem spaces that zero-shot learning can be applied to mirror and 

expand on those already being solved with many current computer vision approaches. 

Applications of zero-shot learning include computer vision in the form of videos, natural 

language processing, and more specific tasks like medical imaging (Wang et al., 2019, p. 27). 

Ultimately, zero-shot learning has the opportunity of revolutionizing a vast range of applications, 

which is why many researchers have started to focus in on innovating and progressing the new 

field.  
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Forms of Auxiliary Information for Zero-Shot Learning 

 For zero-shot learning to succeed in identifying images of unseen classes, auxiliary 

information is always necessary to convey properties that models would have learned had they 

been trained on these unseen classes (Wang et al., 2019, p. 4). Many current zero-shot learning 

approaches require structured lists of attributes that represent important features and qualities of 

image classes (Xian et al., 2019, p. 2253). With this information, models can learn to recognize 

and locate novel object instances with no prior training examples (Li et al., 2019, p. 8690). 

Structured lists of attributes are often compiled by datasets in the computer vision space that 

specifically look to solve instances of zero-shot learning problems. This is the case with the 

Animals with Attributes dataset that Xian et al. (2019) proposed, which has become a key 

benchmark dataset for much zero-shot learning innovation in the recent years (p. 2251).  

However, very few large-scale datasets provide these attribute lists with their images, as 

such attribute lists are difficult to collect and standardize. Further, when classifying objects of 

many visually similar classes, as the case with datasets of birds or flowers, image instances 

across classes might have only subtle differences (Reed et al., 2016, p. 50). Using natural 

language textual descriptions to describe classes offers far more flexibility in conveying 

important features in classes without having to standardize attributes. These textual descriptions 

are much more common and attainable than lists of attributes, which is a necessity for scalable 

zero-shot learning innovation. According to Reed et al. (2016), these natural language texts are 

especially advantageous on datasets where classes have subtle differences (p. 50). In these 

scenarios, attribute lists would not be able to capture and emphasize slight visual differences 

between different categories of images. Instead, detailed textual descriptions can succeed in 

highlighting specific and detailed differences that heavily structured attribute lists could never be 
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designed to include. Reed et al. demonstrate that natural language encodes only the salient visual 

aspects for distinguishing categories without including attributes that are shared among many 

classes, which is advantageous to zero-shot learning models (p. 49).  

Many zero-shot learning models work by learning semantic information across both seen 

images that the models have been trained on and auxiliary attribute information. Generally, 

instances of each class are often represented as a vector in a feature space, which allows 

objective comparisons between various images (Wang et al., 2019, p. 3). The dimensions of 

these engineered spaces are not designed by humans and are rather learned by machine learning 

models (Wang et al., 2019, p. 9). Rahman et al. (2018) propose an approach to embed vectors of 

image features and achieve high performance in a generalized zero-shot learning task where test 

images might be from seen or unseen classes (p. 5652). Li et al. (2019) take a similar approach to 

this embedding problem, and perform zero-shot learning with a language component that 

understands the meaning of textual descriptions (p. 8690). Once these embeddings are generated 

for each class, models can represent test images in the same embedding space and classify these 

test images according to the closest vector distance. 

Generalized Zero-Shot Learning 

In zero-shot learning tasks, images are trained on images from seen classes and tested on 

a strictly disjoint set of images from unseen classes. In other words, images at test time can only 

be classified to the set of unseen classes. A closely related field to this is generalized zero-shot 

learning, in which images can be assigned to either an unseen or seen class label with the highest 

compatibility score (Xian et al., 2019, p. 2253). This problem is much harder than classic zero-

shot learning as models often struggle to treat seen and unseen classes equally, given that they 

have been previously trained on the seen classes. Generalized zero-shot learning struggles 
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because there is a strong bias toward seen classes, and so almost every test unseen instance is 

categorized into a seen class (Rahman et al., 2018, p. 5653). As a result, while generalized zero-

shot learning accuracy scores are often far lower than their classic zero-shot learning 

counterparts, Xian et al. (2019) claim that the problem space offers a far more realistic version of 

computer vision (p. 2263). Recently, many researchers have been looking to develop powerful 

algorithms that perform and scale well in both classic and generalized zero-shot learning. 

 
IMPROVING CLIP ACCURACY WITH PROMPT-ENGINEERING 

 My technical work focuses on providing context in the form of a strategy called prompt 

engineering to a newly released machine learning model. Contrastive Language-Image Pre-

training (CLIP) is a state-of-the-art neural network model recently published by OpenAI that has 

achieved tremendous performance in the zero-shot learning problem space. The model learns 

visual concepts from natural language supervision and is pre-trained on image-text pairs sourced 

from across the internet (Radford et al., 2021, p. 1). While many similar models are trained on 

datasets of images belonging to classes that have attribute lists, CLIP’s approach of using over a 

million image and caption pairs online offers a promising alternative that is far more robust than 

traditional methods (Radford et al., 2021, p. 1). This approach allows CLIP to learn from a 

diverse and massive training space that spans a wide range of categories and classification tasks, 

whereas most models are only successful on one or a few related datasets and therefore do not 

scale well to different tasks.  

 With this revolutionary approach of training on image and natural language text pairs, 

CLIP achieves state-of-the-art accuracy on multiple diverse benchmark tasks, making it 

competitive with many different models in optical character recognition, action recognition in 

videos, geo-localization, and many other fine-grained object classification tasks (Radford et al., 



 
 

7 

2021, p. 1). This robustness in many different tasks makes CLIP applicable and effective to 

various use cases. The CLIP model jointly pre-trainings an image encoder and a text encoder that 

takes textual captions correlated to each image (Radford et al., 2021, p. 2). These encoders are 

trained to match images with captions such that CLIP can learn to recognize how patterns within 

images correspond to textual text that describes these images. Figure 1 below overviews this 

contrastive pre-training process. 

 

Figure 1: CLIP pre-training process. This image from Radford et al. (2021) demonstrates how 
CLIP trains a text encoder and image encoder to predict the correct image-text pairs of training 
examples (p. 2). 
  
 At test-time, CLIP is capable of serving as a zero-shot classifier. CLIP can achieve this 

by generating captions corresponding to each different class in a certain dataset, in the form “this 

is a photo of a [class name]”. Then, once CLIP sees a test image example, it can determine which 

class caption scores best against the image and classify that image accordingly. Figure 2 
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describes this process below. This approach is far more robust than most zero-shot classifiers 

because CLIP can be applied to a wide range of datasets and classify many different types of 

images by simply encoding captions of each class name in the dataset. 

 

Figure 2: CLIP as a zero-shot classifier. This image from Radford et al. (2021) demonstrates how 
at test time, CLIP takes an image as input and encodes captions corresponding to each class 
name. Then, it uses pre-trained encoders to determine which caption corresponds best with the 
image, thereby classifying that image in a zero-shot manner. (p. 2). 
 
 My technical research seeks to improve this approach by changing the form and content 

of the captions that CLIP feeds into its text encoder for each class. Radford et al. (2021) define 

this sort of approach as prompt engineering, in which the templates of captions corresponding to 

each class are modified to either provide extra context to the model or cater the templates to 

specific datasets (p. 7). Another related approach that Radford et al. released initial findings for 

is ensembling, in which the scores of multiple different templates are averaged together when 

matching classes to images (p. 8). This is useful for when images at test time can vary greatly in 
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style. For instance, scores of captions like “a big photo of a [class name]” and “a cartoon [class 

name]” might be averaged together such that the model can know test images might take 

different forms and styles. 

 This past semester, I implemented various prompt engineering and ensembling methods 

for the ImageNet dataset. ImageNet is a database of hundreds of thousands of images of various 

classes and is a very popular benchmark dataset for many computer vision tasks (Stanford Vision 

Lab, 2016). The dataset is organized according to a hierarchy of words defined by the WordNet 

dataset and so the classes follow these hierarchies (Stanford Vision Lab, 2016).  

As a first step for improving the performance of CLIP on ImageNet, I included 

hyponyms, which are names of parent classes according to the ImageNet hierarchy, in my 

prompts. With this improvement, my templates were now organized as “a photo of a [class 

name], which is a type of [hyponym name]”. After observing an increase in accuracy, I created 

an Amazon Mechanical Turk survey online to gather data on common human-generated category 

names to describe each class, and use these human-generated names instead of hyponym names. 

I then ensembled over a subset of templates predefined by CLIP to be able to recognize a diverse 

set of image types. Finally, I found that ensembling the top 5 human generated category names 

offered a strong improvement over simply using the best or most common category name. These 

results are defined in Table 1 on the following page. 
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CLIP Accuracies on ImageNet (%) 
  One Prompt Template Ensembled Templates 

No Extra Context 63.2 64.27 
Standard ImageNet Hyponyms 63.65 64.46 

MTurk Categories 63.41 64.51 
Ensembled Top-5 Mturk Categories 64.96 65.81 

 
Table 1: CLIP Accuracies. Radford et al. (2021) achieve an accuracy of 63.2% on CLIP. My 
various approaches to provide additional context in prompt templates and ensemble over results 
improves this accuracy. 
 
 As demonstrated in Table 1, averaging the scores of the top-5 human generated category 

names over an ensembled group of prompt templates achieves an accuracy that is 2.61% greater 

than that advertised in the Radford et al. (2021) paper where CLIP was initially released. While 

this improvement may seem marginal, my work offers a relatively low-effort increase on a state-

of-the-art benchmark. Further, these improvements are an initial effort that point toward an 

opportunity to use prompt engineering to further increase the accuracy of CLIP. Ultimately, 

prompt engineering and ensembling are techniques that I recommend should be researched in 

depth for a variety of datasets beyond only ImageNet. 

 
PREDICTING AN ENCODER WITH WIKIPEDIA DESCRIPTIONS 

 The second portion of my research semester involved using CLIP’s image encoder to 

predict a classifier for unseen classes using Wikipedia textual descriptions of classes. 

Specifically, I learned a classifier for the Caltech-UCSD Birds (CUB) dataset. This fine-grained 

dataset contains over eleven thousand images among two hundred classes of birds, and also 

defines certain attributes associated with these classes (Caltech-UCSD Birds 200, 2011). Due to 

the presence of these attributes, the CUB dataset is frequently used in research involving zero-

shot learning as classifying birds presents a challenging task given how similar species of birds 

are.  
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 I followed an approach similar to Ba et al. (2015) to predict a classifier. I first trained a 

simple logistic regression classifier for images belonging to seen classes in the CUB dataset. To 

do so, I encoded each image using CLIP’s pre-trained image encoder and used mean-pooling to 

reduce the dimension of each encoding. Training my logistic regression classifier ultimately 

generated a matrix of weights with each row corresponding to a class that the classifier had seen. 

Next, I trained a simple multi-layer perceptron (MLP) with one hidden layer on Wikipedia 

textual descriptions corresponding to each seen class. Specifically, I first calculated term-

frequency inverse-document-frequency (tf-idf) features of each Wikipedia textual description to 

standardize the representations of each textual description. I trained these feature vectors to map 

to each row of my logistic regression classifier, in effect creating a mapping function from 

Wikipedia descriptions to logistic regression weights. I then used my trained MLP to predict and 

learn logistic regression weights of the remaining unseen classes by feeding in textual Wikipedia 

descriptions corresponding to classes the logistic regression model had not seen before. Once 

these weights were predicted, I appended the weights to my original logistic regression classifier, 

thereby learning a classifier for both seen and unseen classes without training on any seen 

images.  

 To gauge the performance of my learned classifier, I compute accuracy scores of seen 

and unseen classes separately. Further, I compute area under the curve scores for precision-recall 

as well as receiver operating characteristic scores. These measures are commonly used to analyze 

the performance of classifier models beyond accuracy scores. The specific results I achieve are 

listed in Table 2 below and compared to the results achieved by Ba et al. (2015), which was a 

motivating paper for this part of my technical research. 
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Learning a ZSL Classifier for CUB 
   Accuracy ROC-AUC PR-AUC 
   Unseen Seen Unseen Weighted Seen Unseen Weighted 

Using CLIP  5% 0.972 0.513 0.88 0.924 0.033 0.746 
Ba et al. (2015)  10% 0.98 0.85 0.953 0.37 0.13 0.31 

 
Table 2: Learned Classifier Performance. The above table compares the performance of my 
CLIP implementation of a learned zero-shot classifier with the Ba et al. (2015) implementation. 
 
 As the above table demonstrates, the accuracy score of my CLIP implementation on 

unseen classes is worse than that of the Ba et al. (2015) paper. The weighted ROC-AUC score is 

also lower than what Ba et al. achieve, and the PR-AUC score is only higher because of there are 

far more seen classes which disguises the low unseen PR-AUC score. These low results may be 

due to the difficulty of mapping high dimensional vectors given a small training set. Since there 

was only one Wikipedia article per class, the number of samples that my multi-layer perceptron 

was trained on was the number of classes. Training multi-layer perceptrons on this few training 

examples can lead to the neural networks not learning and transferring patterns in the data. While 

the results demonstrated by my learned classifier do not meet or approach the state-of-the-art 

accuracies achieved by recent zero-shot learning models, the idea of learning a classifier from 

textual descriptions offers an interesting and novel approach to zero-shot learning that should be 

explored more in the future. 

 
CONCLUSION 

 Through my technical research this semester, I had the opportunity of working with a 

cutting-edge publicly released machine learning model that is already being used for 

revolutionary applications in computer vision. My technical work involving CLIP for zero-shot 

learning explores opportunities for improvement on the robust model. The findings I discover in 

both prompt engineering techniques to provide context information and using CLIP to predict a 
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classifier for zero-shot learning are both novel approaches that present promising directions for 

further research. These opportunities for future work may include expanding my findings of 

prompt engineering and ensembling on a wider range of datasets and using different machine 

learning techniques and architectures to more effectively predict a classifier for zero-shot 

learning. Ultimately, my work seeks to advance the rapidly-progressing field of computer vision 

and artificial intelligence.  
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