
Friend Finder
University of Virginia CS Capstone Spring 2021

Pablo Weber
 University of Virginia
 pw9ev@virginia.edu

Matthew Hunt
 University of Virginia
 mjh3nv@virginia.edu

ABSTRACT
Many universities offer dormitories to incoming

college students to facilitate the transition to a new home.
This provides a natural ecosystem for connecting with peers,
as students share the same living-space. When students
move out of dorms and into off-campus housing there is a
noticeable disconnect between students as they become
more spread out and isolated in distant apartment complexes.
Not only are apartment complexes generally far from
campus and each other, the nature within an apartment
complex is quite different from dorms; students go from
knowing everyone on their floor to possibly only the 2 or 3
people they live with, if they live with anyone at all. From
personal experience, apartments do little to enable residents
to meet and interact with each other, especially in
comparison to university-run dorms. On top of this, the
current pandemic disables residents from physically
interacting with each other. And so it is reasonable to believe
that a virtual, technological social environment could fulfill
this apparent void in student life.

Current social networks, applications, and media
are targeted at enabling people to find who they know, stay
updated, and share information about their lives. People can
to an extent also find new people that might know someone
they know. Platforms like Facebook allow users to create
virtual groups and subscribe to specialized topics and
people. However, what most current social apps are missing
in order to solve the aforementioned problem is taking
current location and residence into account. Modern dating
apps allow people to find potential matches based on relative
distance and various matching algorithms. These apps solve
privacy and security concerns by obfuscating precise
location. An app for off-campus university students would
function in a similar way, allowing students to connect based
on the combination of building and distance, but for the
purpose of forming platonic relationships. The web
application would be built using a modern front-end
framework, such as React, and a cloud-based backend
infrastructure supporting a social network. This application
would help students living off grounds to connect with
nearby people they would otherwise not be interacting with.

1 Introduction
Student housing is usually depicted and thought of as

being a community where young and eager students are able
to meet and connect. This is true for most people when living
in dormitories, in fact, it’s where many students make their
first few friends in college. Indeed, you are more often than
not paired with a roommate, common rooms are provided
and widely used, you share the laundry room with others,
and people tend to leave their doors open in order to meet
new people. Because of all of these shared spaces, it is very
easy to meet people and make new friends. However, when
students move out of university-provided housing and into
apartments, many find themselves having a hard time
meeting new people. This is because apartment buildings are
inherently private by nature. There are very little shared
spaces, and almost no one leaves their door open due to the
lack of trust that was once present when living in dorms. The
only time one sees their neighbors is when passing by them
in the hallway or when sharing the same elevator as them.
There is very little opportunity for meeting new people. In
fact, the only way that one can currently actively meet their
neighbors is to knock on their door. This is problematic for
a few reasons. First of all, the neighbor might not even be
home. Second, you could be inadvertently disturbing your
neighbor, say for example if they were sleeping or even
taking a test. Third, you have no idea who could be behind
that door, they could be someone dangerous or someone you
simply wouldn’t want to be friends with. Lastly, other than
your direct neighbors, it might seem strange to knock on
random doors in your apartment building.

Having lived in apartments for 3 years now and

experienced difficulty making friends with those living
closest to us, we felt the need to create a solution. We wanted
to create a platform that allowed people living in apartments
to connect specifically with others living in close proximity
to them. This would be based not only on distance alone, but
also on the specific apartment complex, floor, room number,
or personality matching algorithms.

Friend Finder

2 Background
We chose to create our platform via the format of a web

app. We chose to go this route instead of a mobile app
because a web app does not need to be downloaded or
manually updated, is easier to maintain, does not require app
store approval, and most importantly, is platform
independent and thus much more accessible – which is what
we really tried to focus on.

The app is built using a React front end (React being a
JavaScript library), and a Dgraph backend/database. The app
is hosted on Heroku. The client communicates with the
database through a GraphQL API generated by Dgraph.

3 Related Work
A similar idea within the same social space is the popular

app Bumble. While Bumble is primarily known and used as
a dating platform (“Bumble Dating”), it does also have a
lesser-known Bumble Social section which allows users to
connect with each other for purely amicable reasons. While
this is similar to our application, it differs in that it matches
people purely based on raw distance. Our idea is to match
people based on a combination of factors such as apartment
complex, floor, room number, ensuring that users are able to
meet people that are specifically residing in the same
building or even floor as them. Additionally, we chose
technologies that make it possible to match users on a variety
of other factors such as similar interests and shared
connections. Many people in the business sector make
connections on LinkedIn through recommended friends and
degrees of connection. LinkedIn relies on an internal graph-
based database that allows deep levels of connection degrees
to be computed efficiently. Database read times and joins
have been though about for decades now, with many
companies adopting NoSQL technologies optimized for
reads. In a social network like Bumble or LinkedIn, there is
not much data that constantly needs to be updated, but rather
the relationships between them, so it makes sense to model
off native graph technology. Bumble Social is not widely
used because it is simply overshadowed by the main purpose
of the app, Bumble Dating. What’s more, the Bumble Social
section is fairly hidden and hard to get to within the app. It
is for this reason that we wanted to create a dedicated,
apartment-based application to meet new people. Often
times users only use applications for their primary purpose
and do not realize lesser emphasized features.

4 System Design
The product of the project the team worked on is a

publicly accessible web application. This could also be
deployed to an end-user’s mobile device with a few changes
to the front-end and networking layer. All the data and
application-layer processing belonging to the application
runs on servers in the cloud. Like many modern-day internet
applications, the system design relies heavily on the ideas
behind the client-server architecture. Client computers
request information necessary for the application from the
servers, which is then displayed and formatted once
received. Some implementations differ on which computer
creates the user interface file, but applications using this
architecture will request and fetch application and user data
from a backend server and database. It is therefore natural to
break the system design commentary into frontend and
backend sections.

The data for the application is stored in a graph database,

Dgraph. Graph databases are good for hierarchical,
directional data schemas. Dgraph takes advantage of the
power of native graph processing by precomputing
relationships into an index-free adjacency file in the database
engine’s memory. This means the graph’s nodes can be
traversed by going through these adjacency pointers and that
query times are independent of the graph’s size. Rather, they
are instead proportional only to the amount of the graph
searched. This makes native graph databases an excellent
choice for social networks, where the application may be
required to find friends-of-friends. Additionally, it can be
useful for making recommendations based on items’
similarities, which could be how many friends two users
have in common. Furthermore, the database can precompute
the geo-spacial distances between nodes containing location
data in an effective manner and use that in combination with
graph algorithms to find shortest paths. Based on these
features, a NoSQL graph database was chosen over a
traditional RDMS system. The database is used to store user
and resident information. A user can put in their living space,
and it will form a relationship between the two in the
database. The system is also set up to allow users to find and
add friends. This could be through geo-search, a similarity-
based algorithm, or through mutual friends.

The second part of the backend is the GraphQL server.

This API layer defines a data schema for the system to use
and a mechanism for the client to retrieve data in a RESTful
manners. Dgraph requires developers to simply define in
GraphQL, along with Dgraph directives, which types of data

Friend Finder

to use and how they are related. Once this is defined and
deployed, the database automatically starts storing data in
the correct structure, and CRUD data accessibility query
patterns are generated. Updates to the schema are frictionless
and much easier to manage than most SQL systems. The
GraphQL server sits in-between the client and server to relay
data requests and responses in a simple manner. GraphQL is
seen as an improvement to plain REST systems because it
allows clients to only request for specific data fields of
resources it needs, rather than entire resources. The client
adheres to the syntax that matches the data schema, makes
calls to the API, and receives JSON data in return. The API
calls can create, update, delete, and read data over HTTP or
even gRPC. Additionally, it can establish a subscription
connection using the WebSocket protocol, which allows a
client to receive updates to certain data without it requesting
it. This allows the application to be real-time with live
updates if needed. Authorization to access the API, and
therefore the database as well, can be achieved by using a
cloud service such as OneGraph or Auth0, or by using JSON
Web Tokens (JWTs). For simplicity’s sake, this was left out
of the prototype.

The frontend client was developed using the React

JavaScript library and the Apollo Client for React. React is
a good tool for rapidly developing fast, reactive single-page
applications (SPAs). Relying on modern JavaScript, React
keeps track of client data and interface state. Once a device
has downloaded the required HTML for the web application
and the JavaScript functionality to go along with it, it does
not need to download any more files for layout purposes.
Rather than making direct database connections and
returning a layout file based on that, the architecture handles
rendering processing on the client computer, supplemented
by requests for data through the API layer. Furthermore, data
can be cached on the client computer using the functionality
provided by the Apollo GraphQL client, which can save trips
to the database. The client relies on a token-based
authorization mechanism, where it stores access tokens that
grant use to login authentication services and the servers
storing the application data. Certain content within the
application will not be accessible if the client does not have
a token stored, and all network connections will be denied if
a token is not valid. On top of the React and Apollo libraries,
a variety of others were used such as Firebase – for
uploading profile images to cloud storage, Facebook &
Google social login – for quickly signing up for the
application, Material UI – for pre-made Google Material
Design-compliant user interface components, and Jest – a
JavaScript testing framework.

The application prototype was developed by running all

the servers locally. The Dgraph database and GraphQL
engine was run from a local Docker container, while a React
bundler kept source code updated and running on localhost.
Source code versioning was managed through Git, and code
sharing through GitHub. GitHub was connected to TravisCI
for continuous integration, which itself was connected to
Heroku for deploying the static web app.

5 Procedure
The first step in using the platform is signing up and

creating an account. We used both Facebook and Google’s
respective SSO to ensure an easy and seamless sign-up
process. The Google SSO in the prototype is strictly through

Friend Finder

virginia.edu Google email accounts. Once a user has an
account, they would be able to fill in their apartment details:
building, floor, and room number. Of course, the user would
have the option to either show or hide any of the latter. In the
prototype, users can also upload a photo of themselves to our
cloud storage and choose a username. The user would also
have the ability to add any of their roommates in the fully
developed application. Next, the user can begin meeting
people. After navigating to the “discover” page, a user will
be shown a stack of “cards”. These cards each represent a
potential friend that is near – either in the same apartment
complex, or even the same floor. Or it could show similar
users based on connections or interests. A card would show
relevant information about a person in the form of a “bio”.
The application might have preset “ice breaker” questions to
answer or options to choose from, which have been shown
scientifically to make meeting new people easier. The user
can either swipe left or right on a card. Swiping left signifies
that the user is not interested in meeting the person on the
card. On the other hand, swiping right means that the user
would like to connect with the person. If a user swipes right
on a person that also swiped right on them, then a match is
made. The user will then have the ability to message the
person they matched with. Users can also view a match’s
roommates and connections, and can choose to privately
message them if they accept the request. Users can also view
the other users who live on a match’s floor. This not only
helps the user to familiarize themselves with the faces on
their floor, but also helps build a sense of community within
the apartment complex and virtually within the app.

If at any point a user feels uncomfortable when

messaging another user, or for really any reason at all, they
have the ability to unmatch with that particular user. This
means that they match will be deleted, and the user will have
no further access to the information of the person they
unmatched with. In the “profile” section of the application,
users can update their profile picture(s), bio, phone number,
address, and roommates. The ability to update one’s address
is important because students tend to change apartment
complex every year. Users also have the ability to filter the
users that are shown on the stack in the “discover” section.
These can be filtered by not only building and floor, but also
things like hobby, school (ie. SEAS, College…), and age.
Perhaps they could select a matching algorithm for the
database to use.

6 Results
To make sure that the application was functioning

properly, we had a few of our friends sign up and make
accounts so that they could experience it on their end. They
were able to see accounts that we pre-populated into our
database, but we did not have enough time to put in the
connection functionality. As of now, the prototype just
shows all the users in the app in a stack of cards, with another
screen for updating basic profile information. As of now, the
React Webpack dyno on Heroku is hosted for free and takes
a few seconds to spin up from sleep. The beta testers noted
that the UI was simple but effective, and that they thought
the app could potentially be a great way to meet people in
one’s apartment building. We could imagine how much
quicker it would be to meet, see, and talk to people that live
nearby than the way it is during the pandemic.

7 Conclusion
In conclusion, the aim of our project is to make it easier

for people living in apartments to meet other people living
in the same area as them. We accomplished this by creating
a web application that shows a user potential friends nearby
that may have something in common with them. From there,
the user can choose to connect with the people that they
would like to become more familiar with. This improves on
the current way of meeting one’s (direct or indirect)
neighbors which involves either knocking on their door or
hoping to meet them in the hallway or elevator. It allows
users to not only expand the number of people that they can
become friends with, but also makes the process much
smoother and less intimidating, as everything is virtual. Our
platform improves on the only other viable option out right
now, Bumble Social, by matching users not only based on
raw distance, but also by specific apartment building, level,
and room number. This allows the user to specifically meet
people who reside in the same apartment complex as them,
ie. their neighbors. We believe that our platform will help
solve the problem of social isolation that is common in
apartment buildings, and help people make more friends
with the people that live nearest to them.

Here is a link to the website, which takes a few seconds
to start up: https://cs-capstone.herokuapp.com/ . If someone
is curious about the prototype database schema, here is a link
our fully unprotected GraphQL endpoint: https://long-
rain.us-west-2.aws.cloud.dgraph.io/graphql .

Friend Finder

8 Future Work
If we had more time to work on the project, there are a

few features that we could add. We could allow users to
browse by building or apartment, so they only see people
living in their own building or people across the street. Once
matched with someone, we could incorporate a virtual video
chat feature, which seems to be trending in technology. We
could organize users into group messages or matches as well.
Users within a group within a building could manage sharing
real resources like cooking materials or social events in real
life. More research could be done investigating what
visualizations of profiles lead to the most friendships.
Research could also be done into what graph database
algorithms are good for determining the users that show up
in the application.

