
A Framework for Automated Social Media Post Collection and Tailored Response
Generation

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ethan Chen

Spring, 2022.

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

A Framework for Automated Social Media Post Collection and Tailored
Response Generation

CS 4991 Capstone Report, 2022

Ethan Chen
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
ejc5bgf@virginia.edu

Abstract
I interned for a startup credit card company that
lacked the funding to staff sizable customer
service and marketing teams. The startup needed
a cost-efficient method to market its product and
to conduct customer service online. To address
the startup’s needs, I created a framework
capable of reading, storing, and crafting tailored
responses to posts on various social media
platforms.

I implemented the framework in the Python
scripting language, and designed the code to be
convenient to extend to other platforms. The
framework implemented Twitter functionality,
and implemented untested interaction with
Google Play Store reviews. More work needed
to be done to test program correctness, to
integrate existing standards into the program,
and to improve horizontal scalability.

1. Introduction
The credit card startup performed most of its
business online through web and mobile
applications. It did not have brick and mortar
locations. As such, most customer complaints,
feedback, and requests for support were posted
online on social media. The company needed a
low cost method of interacting with customers
across various platforms.

The startup tasked me with creating a program
to automate customer feedback collection and
response on social media platforms. The
program needed to be well documented,
maintainable, and extendable. The project would

improve customer service and feedback
collection with minimal labor overhead.

2. Related Works
I implemented my program using the Python 3
scripting language [6]. My code utilized many
built-in Python 3 modules. One third party
Python module I used was Tweepy. The Tweepy
library is a python wrapper. Tweepy allows
developers to utilize Twitter’s application
programming interface (API) through python
function calls [4]. The Twitter API can be used
to scrape tweets and mentions off of Twitter, and
to post tweets or replies onto the website [7]. I
also used the Google Play Store’s Reply to
Reviews API to collate and respond to reviews
on Google Play [5].

The two application interfaces enable the
programmatic retrieval and creation of posts. My
project builds upon Tweepy and the Reply to
Reviews API by consolidating their
functionalities under a single user interface, and
by allowing users to schedule posts and define
responses to feedback in advance.

3. Project Design
Several critical design decisions were made over
the course of the project. In section 3 I provide
an overview of the reasoning and
implementation of my code base.

3.1 In-Depth Requirements
I was tasked with creating an automated solution
for two platforms: Twitter and the Google Play
Store. Twitter and Google Play are structured

mailto:ejc5bgf@virginia.edu

differently. Twitter allows users to make posts
on their own profile page and leave comments
on others’ posts, while Google Play restricts user
interaction to app reviews.

However, managing separate frameworks for
each social media platform would be labor
intensive. It was my job to generalize the
functionality of the two platforms and to create a
single program capable of interacting with both
Google Play and Twitter.

There were several specific requirements for the
framework. First, the program had to
periodically gather user feedback and save it in a
database. The form of user feedback varies by
social media platform. On Twitter, feedback is
considered to be tweets that tag the company’s
handle. On Google Play, all reviews are
considered customer feedback. Second, the
framework had to be able to schedule posts.
Finally, the program was to respond to customer
feedback based on user-defined templates.

3.2 Program Architecture
The program was split into 8 modules. The
GooglePlayStoreInterface and TwitterInterface
are wrappers for the Google Play Store and
Twitter APIs. Other modules call the
GooglePlayStoreInterface and TwitterInterface
modules to retrieve or post data to Twitter or the
Play Store. The DatabaseInterface module
interacts with the local database.
DatabaseInterface handles database creation,
storage, and retrieval. Any module that wishes to
interact with the database instead interacts with
DatabaseInterface. LogHandler is responsible
for the creation and storage of program logs.
Logs are used for debugging. The
TemplateHandler handles the storage, retrieval,
parsing, and matching of response template files.
The ReplyUpdateHandler periodically calls the
TemplateHandler to generate responses to
reviews stored in the local database. The
DatabaseUpdateHandler automatically retrieves
user feedback from the
GooglePlayStoreInterface and TwitterInterface
for storage in the local database.

The design decision to split the program into
independent modules with well-delineated
responsibilities aided code organization and
documentation.

3.3 Reply Templates
Program users can create template files to
specify how the program responds to user
feedback. Templates have whitelist and blacklist
regular expressions. Templates also have a
priority rating. If the whitelist regular expression
is matched, the template is added to a pool of
possible templates used to respond to feedback.
If the blacklist regular expression is matched,
the template will not be used to generate a
response. The blacklist and whitelist features can
be used to prevent the program from responding
to feedback with slurs or profane language.

The priority rating is used to determine which
reply template is chosen from the pool of
applicable templates. The template with the
highest priority is chosen. If there are multiple
templates with the same priority score, a
template is chosen at random. The inclusion of
random choice was a deliberate design decision.
Randomness can be used to introduce variety
into generated responses.

The template text can include the $name$,
$week_day$, $month_day$, and $year$
variables. The four variables are populated
during reply generation, and are context
sensitive. The $name$ variable is substituted
with the name of the customer, $week_day$
turns into the current day of the week (in UTC),
$month_day$ turns into the current month, and
$year$ turns into the current year.

3.4 Post Templates
Program users can also create post templates to
schedule repeating posts. The Interval field is
used to specify whether the post is made on a
daily, weekly, monthly, or yearly basis. The
Schedule field is used to specify when the post is
made. Post templates can also make use of the
$week_day$, $month_day$, and $year$
variables.

3.5 Feedback Collection and Storage
DatabaseUpdateHandler regularly calls the
GooglePlayStoreInterface, TwitterInterface, and
DatabaseInterface modules to collect and store
customer feedback. However, since Google Play
Store reviews have different metadata compared
to Twitter tweets, different database schemas
were designed for each type of feedback. As a
result the data for each platform are stored in a
separate table on the local SQLite database.

4. Results
Both the Twitter and Google Play Store
functionalities were implemented. The portion
of the codebase for Twitter was fully tested.
However, the Google Play Store application
interface was untested when I left the company.
The Reply to Reviews API requires an approved
Play Store account and a published application.
The startup’s Play Store account was off the
table, as it was a bad idea to pollute the official
account with fake applications. I created my
own Play Store account and developed a test
Android application to publish to the platform.
However, my app was not approved by the end
of the summer.

I am unsure if my application was adopted by
the startup. I developed the code, but was not
responsible for deployment. There was still
testing work to be done when I left the startup. I
was not around long enough to discover what
became of my project.

5. Conclusion
I created a framework capable of interacting
with multiple social media platforms from a
single, unified user interface. Only one tool
needs to be modified and maintained to interact
with any social media platform.

The framework is capable of accepting
user-defined templates to procedurally schedule
posts and respond to user feedback. The usage of
templates helps developers avoid the
modification of source code when implementing
new responses and posts. The single user
interface and the implementation of templates
represent significant savings in the time and

labor costs of social media feedback collection
and response.

6. Future Work
The application needs to undergo more testing
before deployment. The Google Play Store
functionality of the application was untested.
Multithreading was also implemented in a
lackluster manner. I was not knowledgeable
about test-driven development at the time of my
internship, and multithreading testing was
carried out by hand. My testing does not meet
deployment requirements. Unit tests need to be
written to ensure the thread safety of the code
base.

Some aspects of the code need to be rewritten to
better fit within existing standards. The template
format I created was a simple text file. The
program should be modified to accept templates
in XML format. The database should not be
stored locally but instead on a cloud service like
AWS RDS. Additionally, the program should be
modified to be runnable on a service like AWS
Lambda for increased scalability.

7. UVA Evaluation
I had just finished my second year at the time of
my internship and had yet to take the majority of
my CS courses. As a result, there were some
major flaws in both the design and
implementation of my program. However, even
if I were to tackle the project after four years of
UVA CS, I still would not feel confident in my
ability to design and implement a good
framework. A large part of my anxiety stems
from my lack of design pattern knowledge.
Design patterns are as important as algorithms,
and UVA should integrate design pattern
education into the required curriculum.

I entered college planning on getting a computer
science degree and entering industry. My career
plan changed in my final year here. I became
aware of research as a career path and began to
involve myself in extracurricular research
projects. I think the UVA CS curriculum could

do a better job of introducing and preparing
students for research. The University of
Rochester has undergraduate CS seminars that
teach basic academic skills and introduce
students to a specific research area [1, 2, 3].
Seminar courses are often centered upon reading
research papers. I think that the UVA CS
program should implement such a course. It
would help draw students towards undergraduate
research.

References
[1] Chen Ding. 2002. CSC 200 Undergraduate
Problem Seminar, Spring 2002. University of
Rochester. Retrieved April 27, 2022 from
https://www.cs.rochester.edu/~cding/Teaching/2
00Spring2002/#Info
[2] Lane A. Hemaspaandra. 2015.
CSC200/200H: Undergraduate Problem
Seminar. Retrieved April 27, 2022 from
https://cs.rochester.edu/courses/200/spring2015/
150114-handout-KeyCourseInfoSyllabusVersion
1pt4pt0.pdf
[3] Fatemeh Nargesian. 2022. CSC 200/200H -
Spring 2022. Retrieved April 27, 2022 from
https://fnargesian.com/assets/pdf/courses/csc200
/CSC_200_Spring_2022.pdf
[4] Joshua Roesslein. 2022. Tweepy
Documentation. Retrieved February 23, 2022
from https://docs.tweepy.org/en/stable/
[5] 2021. Reply to Reviews. Google Play
Developer API. Retrieved February 23, 2022
from
https://developers.google.com/android-publisher
/reply-to-reviews
[6] 2022. The Python Standard Library.
Retrieved February 23, 2022 from
https://docs.python.org/3/library/
[7] Twitter API Documentation. Twitter
Developer Platform. Retrieved February 23,
2022 from
https://developer.twitter.com/en/docs/twitter-api

