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Abstract

Since its discovery by Kashaev, the influential Volume Conjecture has attracted

much attention towards the ongoing effort of relating diagrammatic and quantum

invariants of links in S3 to the geometry of the link complement. The conjecture has

inspired similar open problems which extend it in multiple directions, either to links in

more general 3-manifolds or to quantum invariants of other topological objects. This

thesis presents contributions to these efforts on both fronts. First, for D a reduced

alternating link diagram on a surface Σ, we bound the twist number of D in terms of

the coefficients of a polynomial invariant. To this end, we introduce a generalization

of the homological Kauffman bracket defined by Krushkal. Combined with work of

Futer, Kalfagianni, and Purcell, this yields a bound for the hyperbolic volume of a

class of alternating surface links in terms of these coefficients. Second, we prove an

instance of Yang’s volume conjecture for the relative Turaev–Viro invariants, which

are defined for a compact, orientable 3-manifold M via a partially ideal triangulation.

We consider the case where M is a punctured S3 obtained from a knotted trivalent

graph Γ belonging to a particular family. We evaluate the limit of relative Turaev–Viro

invariants by utilizing techniques relating them to the Reshetikhin–Turaev TQFT and

colored Jones polynomials, and we show that this limit equals the volume of O, where

O is the outside of Γ, as defined by van der Veen.
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1 Introduction

Since its introduction, the Jones polynomial [Jon85] has been of key interest in the

ongoing effort to find explicit relations between quantum invariants of a link and the

geometry or topology of the link complement. Kashaev’s Volume Conjecture [Kas95]

posits that such a relationship exists between the colored Jones polynomials, which

are an infinite family of invariants generalizing the classical Jones polynomial, and

the hyperbolic volume of the link complement. The conjecture in its modern form is

stated as follows:

Conjecture 1.1. [MM01, Conjecture 5.1] Let L be a hyperbolic link and let Jn(L) be

the n-th colored Jones polynomial of L evaluated at q = e
πi
n . Then

lim
n→∞

2π

n
ln |Jn(L)| = Vol(S3 \ L). (1)

Following its formulation, the conjecture has been verified for several infinite families

and stray examples of hyperbolic links (see [Mur11]), though a general proof remains

open. The conjecture was extended to encompass all knots and links by means of the

Gromov norm, also known as the simplicial volume, in [MM01]. In the subsequent

years, the conjecture has been generalized to a variety of settings such as knotted

trivalent graphs (KTGs) by van der Veen in [Vee09] and to links in the thickened torus

by Boninger in [Bon21]. Moreover, the volume conjecture has inspired similar open

problems for related topological invariants such as Chen–Yang’s volume conjecture for

the Turaev–Viro invariants, a sequence of 3-manifold invariants denoted TVr(M).
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Conjecture 1.2. [CY18, Conjecture 1.1] Let M be a hyperbolic 3-manifold. Then

for r running over odd integers and TVr(M) evaluated at q = e
2πi
r ,

lim
r→∞

2π

r
ln(TVr(M)) = Vol(M). (2)

The volume conjecture and its generalizations are plagued by a common difficulty.

Due to the computational complexity of the colored Jones polynomials and related

quantum invariants of links, these conjectures have been verified for only a scattering

of examples whose quantum invariants are readily known. As an alternative approach

to bridging the gap between quantum invariants and volume, Dasbach and Lin [DL07]

proved a "volume-ish theorem", which depends only on the classical Jones polynomial

as opposed to its colored versions.

Theorem 1.3. [DL07, Volume-ish Theorem] For an alternating, prime, non-torus

knot K, let

VK(t) = ant
n + · · ·+ amt

m,

be the Jones polynomial of K. Then,

2vtet(max(|am−1|, |an+1|)− 1) ≤ Vol(S3 \K) ≤ 10vtet(|an+1|+ |am−1| − 1), (3)

where vtet ≈ 1.01494 is the volume of an ideal regular hyperbolic tetrahedron.

This result was obtained in two steps: first, the authors bound the coefficients in

terms of the twist number of the link diagram, and second, work of Lackenby, Agol,

and Thurston in [Lac04] bounds the volume in terms of the twist number. In a similar

fashion to the volume conjecture, an active area of research is focused on extending

these steps to more general settings. Futer, Kalfagianni, and Purcell [FKP08] extended
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both steps to adequate links, and the latter step has been extended to alternating

links in higher-genus surfaces by Kalfagianni and Purcell in [KP20].

1.1 Statement of Results

This thesis contains two main results, both of which fall within this widened realm of

the volume conjecture. First, we extend Dasbach–Lin’s volume-ish theorem to the

setting of reduced alternating links in thickened surfaces. The difficulty, however, is

that the classical Jones polynomial does not capture sufficient information about the

embedding of links in surfaces. In this paper, we present a new polynomial which is a

three-variable generalization of the homological polynomial defined by Krushkal in

[Kru11].

Our polynomial, denoted 〈D〉Σ, is a Laurent polynomial in Z[A±1, Z,W ] defined by

a state-sum. Here, A is the usual Kauffman polynomial variable, while Z and W

record homological information about the embedding of D on the surface. We will

be interested in coefficients of terms having certain fixed degrees in the A variable

with minimal degrees in the Z and W variables. The coefficients for the second

largest and second smallest degree terms in A are denoted α′(1) and β′(1), while those

for the third-largest and third-smallest are denoted α′′(0) and β′′(0), respectively. The

precise definitions of the polynomial and coefficients are given in Sections 3.2, 4.1.

The purpose of the first main theorem is to extend the volume-ish theorem to the

setting of links in thickened surfaces by bounding these coefficients in terms of the

twist number, generalizing the method in [FKP08].
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Main Theorem 1. Let Σ be a closed, orientable surface and let D be a reduced

alternating link diagram on Σ such that every twist region of D has at least three

crossings. Let ? = α′(1) + β′(1) − α′′(0) − β′′(0) + 2. Then,

1

3
tw(D) + 1− g(Σ) ≤ ? ≤ 2tw(D). (4)

Combined with the result in [KP20], Main Theorem 1 yields the following volume

bounds.

Corollary 1.4. Let Σ be a closed orientable surface of genus at least one, and let L

be a link that admits a twist-reduced weakly generalized cellularly embedded alternating

projection D onto Σ× {0} in Y = Σ× [−1, 1]. Then the interior of Y \ L admits a

hyperbolic structure. If Σ is a torus, then we have

voct

4
? ≤ Vol(Y \ L) < 30vtet?, (5)

where vtet ≈ 1.01494 is the volume of a regular ideal tetrahedron, and voct ≈ 3.66386

is the volume of a regular ideal octahedron.

If Σ has genus at least two, then we have

voct

4
· (?− 6χ(Σ)) ≤ Vol(Y \ L) < 18voct · (?+ g(Σ)− 1). (6)

The second main result deals with Chen–Yang’s conjecture for the Turaev–Viro

invariants, or more precisely, a relative version of the invariants defined by Yang

in [Yan21]. The relative invariants, denoted by TVr(M, T ,b(r)), are defined for a

compact, oriented 3-manifoldM with a partially ideal triangulation T whose edges are

colored by the sequence b(r). The precise definitions of these parameters are found in
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Section 5.2. Attempts to directly verify either Conjecture 1.2 or Yang’s corresponding

conjecture for the relative invariants (Conjecture 5.14 in this paper) are hindered by

the sheer computational complexity of the quantum ingredients which comprise the

Turaev–Viro invariants. Detcherry, Kalfagianni, and Yang [DKY18] identified the first

examples satisfying Conjecture 1.2, where M is chosen to be the complement of the

figure-eight knot or Borromean rings. They do so by re-expressing the Turaev–Viro

invariants ofM in terms of the colored Jones polynomials of the link, which are readily

known for these examples. In the second main theorem, we extend their methods to

the relative setting, but the natural choice of the manifold M in this setting is no

longer a link complement. Rather, it is a manifold related to the "outside" of a knotted

trivalent graph (KTG), the analogue of a link complement for KTGs introduced by

van der Veen [Vee09].

In addition to having outsides, the notion of a colored Jones polynomial also extends

to the setting of KTGs. The colored Jones evaluation of a KTG Γ is denoted by 〈Γ〉i,

where i is a sequence of colors on the edges of Γ, and is akin to the colored Jones

polynomial of Γ. Given a KTG in S3, one may obtain an "augmented" version of it as

defined in [Vee09]. These augmented KTGs are designed with the express purpose of

having hyperbolic outsides with volumes which are easy to compute, not unlike the

simple links used in [DKY18] to study Conjecture 1.2. Augmented KTGs also have

the benefit of having colored Jones evaluations which are more easily expressed than

those of ordinary KTGs. Both the notions of augmented KTGs and outsides will be

discussed in greater detail in Section 5.5. By using this augmented KTG to choose a

particular manifold M , a triangulation T , and colorings b(r), we show that one may

compute TVr(M, T ,b(r)) in terms of particular evaluations of Γ, which we denote by

〈Γ〉i,n. The result is stated as follows:
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Figure 1: The triangle move.

Main Theorem 2. Let r ≥ 9 be an odd integer and Γ ⊂ S3 an augmented KTG

with vΓ vertices. Let M , T , and b(r) be defined as in Section 6.1, and let vinn be the

number of inner vertices of T . Then,

TVr(M, T , b(r)) = 2vΓ+vinn−1(η′r)
2−2vΓθ(n, n, n)−vΓ [n+ 1]−vinn

∑
0≤i≤r−3,

i even

|〈Γ〉i,n|2 , (7)

where η′r =
2 sin( 2π

r
)√

r
, and 〈Γ〉i,n is the colored Jones evaluation of Γ where the augmen-

tation rings are colored by i = (i1, . . . , i|A|) and all other edges by n.

By applying this result to a special family of augmented KTGs, we are able to verify

the relative version of the Chen–Yang conjecture for a particular choice of (M, T ,b(r)).

The KTGs in question are precisely those which can be obtained from the tetrahedron

graph by a finite sequence of "triangle moves" (see Figure 1). These are a special

instance of augmented KTGs having zero augmentation rings. In other words, we will

prove the following corollary:
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Corollary 1.5. Let Γ ⊂ S3 be a KTG which can be generated from the tetrahedron

graph using t triangle moves (and some number of half-twist moves, which change the

framing of an edge), and let M , T , and b(r) be defined as in Section 6.1. Then,

lim
r→∞

2π

r
log(TVr(M, T , b(r))) = (2t+ 2)voct = Vol(OΓ), (8)

where OΓ is the "outside" manifold of Γ, as defined in [Vee09]. Thus, the relative

Chen–Yang conjecture (Conjecture 5.14 in this paper) holds for (M, T , b(r)).

1.2 Layout of Thesis

We begin with a brief introduction of hyperbolic geometry in Section 2. The remainder

of the thesis is split into two halves, each focusing on one of the main theorems.

Section 3 contains background details for Main Theorem 1. It is divided into Section

3.1 covering links in thickened surfaces, Section 3.2 containing the definition of the

polynomial 〈D〉Σ, and Section 3.3 on state graphs, which will play a key role in the

proof to come. Section 4 contains the proof of Main Theorem 1, which is split into

two parts. First, in Section 4.1 we define the coefficients α′(1), β′(1), α′′(0), and β′′(0) and

compute them in terms of combinatorial information coming from the state graphs.

Second, in Section 4 we employ a variety of homological arguments to bound these

quantities in terms of the twist number of the diagram D and the genus of the surface

Σ. The proof is followed by a brief discussion in Section 4.3, which compares Main

Theorem 1 to related results.

The second half of the thesis focuses on Main Theorem 2 and is structured in much

the same way. Section 5 contains background details for several different quantum

invariants which will be used in the proof. We begin with Section 5.1 where we use
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skein theory to define the Jones–Wenzl projectors and state the definition of the colored

Jones evaluation of a KTG. With this foundation, we define the relative Turaev–Viro

invariants in Section 5.2 and the Reshetikhin–Turaev invariants in Section 5.3, where

we also prove a result relating the two. In the proof, we will also make use of the

Reshetikhin–Turaev topological quantum field theory (TQFT), which is covered in

Section 5.4. Lastly, in Section 5.5, we define KTGs, their outsides, and augmentation,

all of which are centrally important to Main Theorem 2 and its corollaries. Section 6

is devoted to the proof of Main Theorem 2. In Section 6.1, we start by defining the

quantities M , T , and b(r) and proceed with the proof. This is followed by the proof

of Corollary 1.5 in Section 6.2 and a discussion in Section 6.3.
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2 Background on hyperbolic geometry

C

Figure 2: Left: A truncated tetrahedron. Right: An ideal tetrahedron in H3.

As previously discussed, the main theorems of this paper have applications to hyper-

bolic geometry when combined with results from the literature. For this reason, we

start with some basic definitions and terminology. The details of this section can all

be found in [Thu97] and [Pur20].

Hyperbolic 3-space, denoted H3, is defined to be the upper half-space {(x + iy, t) ∈

C×R | t > 0} equipped with the metric ds2 = dx2+dy2+dt2

t2
. A key feature of H3 is the

boundary at infinity, ∂H3 = C∪{∞} which is infinitely far away from any point in H3.

Under this upper half-space model, the geodesics are lines or semicircles intersecting

C transversely at right angles, and the isometries uniquely correspond to elements of

PSL(2,C).

Ideal polyhedra are the building blocks of hyperbolic manifolds. An ideal polyhedron

P ⊂ R3 is a Euclidean polyhedron whose vertices are truncated by the removal of

small closed neighborhoods. We refer to the new edges and faces produced by this

as truncation edges and truncation faces, respectively, which can be seen in Figure

2. When an ideal polyhedron P is embedded in H3, we send the truncation faces to

∂H3 and arrange for the non-truncation faces to be totally geodesic so that P inherits
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the hyperbolic metric. A hyperbolic 3-manifold is a 3-manifold M with local charts

(U, φ), where φ is a map φ : U ⊂M → φ(U) ⊂ H3, such that the transition maps are

hyperbolic isometries. The simplest way to show that a manifold admits a hyperbolic

structure is to decompose M into ideal polyhedra and let the open neighborhoods

U be the interiors of these polyhedra. Then one only needs to check that after the

polyhedra are embedded in H3, the face pairings are isometries. This condition is

encapsulated by Thurston’s edge gluing equations [Pur20, Theorem 4.7] which demand

that the sum of dihedral angles around any given edge is 2π.

Whether or not the hyperbolic structure on a given manifold is complete depends on

whether a second collection of edge gluing equations given by Thurston is satisfied

[Pur20, Theorem 4.10]. One tactic used in the literature to show that a given manifold

has a complete hyperbolic structure, which will be referenced in Section 5.5, is to let

the polyhedral decomposition consist solely of regular ideal octahedra glued in pairs,

which trivially satisfy the gluing equations.

For a hyperbolic manifold M , the boundary of M is comprised of the truncation faces

sent to ∂H3 along with any unglued totally geodesic faces. A cusp of a hyperbolic man-

ifold is a regular neighborhood of the truncation faces. IfM is complete, the hyperbolic

structure induces a Euclidean structure on the boundary of cusps. Consequently,

orientable complete hyperbolic manifolds can only have toroidal or annular cusped

boundary components. This makes link complements some of the simplest manifolds

which can admit complete hyperbolic structures, and we refer to a link with such a

complement as hyperbolic. Indeed, as a consequence of Thurston’s hyperbolization

theorem, all knots can be classified as either torus, satellite, or hyperbolic [Thu82,

Corollary 2.5], and most prime knots with up to 19 crossings are hyperbolic [Bur].
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Another classical result which is paramount to the study of hyperbolic links is Mostow–

Prasad rigidity.

Theorem 2.1. [Pra73] Let M1 and M2 be complete hyperbolic n-manifolds, n ≥ 3 with

finite volume. Then any isomorphism of fundamental groups φ : π1(M1)
∼−→ π1(M2) is

realized by a unique isometry.

As a consequence, ifM is the complement of a hyperbolic link L, then we may think of

its hyperbolic structure (and by extension, any well-defined feature of said structure)

as a geometric link invariant. In particular, we may consider V ol(M) which we refer

to simply as the hyperbolic volume of L.
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3 Quantum invariants of links in thickened

surfaces

RI)

RII)

RIII)

Figure 3: The Reidemeister moves.

3.1 Links in thickened surfaces

Definition 3.1. A link L in a 3-manifold M is a smooth embedding of circles
k⊔
i=1

S1
(i) ↪→M . Here, k is the number of components of the link.

Throughout Sections 3 and 4, we will let Σ be a closed, orientable surface and we

will let M be Σ × [−1, 1]. We will implicitly view Σ as Σ × {0} ⊂ M , but since

these sections deal primarily with link diagrams, these results will hold for Σ in any

compact, orientable, irreducible 3-manifold. Links are considered up to isotopy, or

smooth deformation.
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A B
Figure 4: A crossing, an A-resolution, and a B-resolution.

Definition 3.2. For a link L ⊂ Σ× [−1, 1], a link diagram D for L on Σ is the image

of L under the projection Σ× [−1, 1]� Σ, which we may view as a 4-valent graph Γ

on Σ. The vertices of Γ correspond to double points of the projection. These vertices

are then equipped with crossing information which denotes the relative heights of the

two points in the preimage.

A classical theorem of Reidemeister, which also holds for links in thickened surfaces,

states that two links are isotopic if and only if their diagrams differ by a sequence of

Reidemeister moves, seen in Figure 3, as well as planar isotopy.

There are two possible ways to resolve each crossing. Resolving a crossing means

replacing D with a new diagram having one fewer crossing which differs from D only in

a neighborhood of that crossing. We call these the A-resolution and the B-resolution,

referring to Figure 4. As we resolve crossings, we may draw an arc connecting the

strands of the new diagram. These are commonly called "surgery arcs," as performing

surgery along such an arc provides a convenient way to switch between the A and B

resolutions of a crossing.

If all crossings are resolved, then all that remains of D is a collection S of disjoint

simple closed curves on Σ. We call S a state, and denote the set of all states by S.

Note that |S| = 2c(D) where c(D) is the number of crossings of D.

We will be considering only link diagrams which are alternating and reduced. A

link diagram on a surface is reduced if it is cellularly embedded and if it contains no
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Figure 5: A nugatory crossing.

nugatory crossings. By cellularly embedded, we mean that the complementary regions

of the graph Γ are disks. A crossing is nugatory if there exists a separating curve in Σ

that intersects D only at that crossing as in Figure 5.

3.2 Definition of the polynomial

The polynomial we will be studying is a generalization of the homological Kauffman

bracket, defined by Krushkal in [Kru11]. Let i : S → Σ be the inclusion map.

"Homological" refers to the use of the induced map i∗ : H1(S) → H1(Σ), which

provides additional information about the embedding of each state. Throughout this

paper, we use Z coefficients unless otherwise indicated.

Definition 3.3. [Kru11] Let α(S) and β(S) respectively denote the number of A-

resolutions and B-resolutions used to obtain the state S. The homological Kauffman

bracket is a Laurent polynomial 〈D〉HΣ ∈ Z[A±1, Z] defined by the state-sum

〈D〉HΣ =
∑
S∈S

Aα(S)−β(S)(−A2 − A−2)k(S)Zr(S), (9)

where

k(S) = dim(ker{i∗ : H1(S)→ H1(Σ)}),

r(S) = dim(im{i∗ : H1(S)→ H1(Σ)}).
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Here k(S) is called the kernel of the state, while r(S) is called the homological rank

of the state. We write

〈D | S〉HΣ = Aα(S)−β(S)(−A2 − A−2)k(S)Zr(S), (10)

for the contribution of the state S to 〈D〉HΣ .

The proof that 〈D〉HΣ yields an invariant of links in thickened surfaces will follow from

the proof of invariance for 〈D〉HΣ , which is given below. For alternating links, [Thi87]

shows that the classical Jones polynomial can be viewed as a specialization of the

Tutte polynomial for a related graph. In [Kru11], a homological version of the Tutte

polynomial is defined for surface graphs, and then the homological Kauffman bracket

is obtained as a specialization of the graph polynomial. More recently, in [FK22],

Fendley and Krushkal define a more general version of this graph polynomial for

graphs on the torus. More specifically, for a graph with homological rank equal to

one, a third variable W is introduced which counts the number of components of the

graph which are homologically essential. Inspired by this generalization, we present a

version of this polynomial for link diagrams and extend it to higher-genus surfaces.

Definition 3.4. Define c̄(S) to be zero if r(S) 6= 1. If r(S) = 1, then define c̄(S)

to be one-half the number of homologically essential loops in S. The more general

homological Kauffman bracket which will be used throughout this paper is given by

〈D〉Σ =
∑
S∈S

Aα(S)−β(S)(−A2 − A−2)k(S)Zr(S)W c̄(S), (11)
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D

SA S SB

Figure 6: Top: A link diagram on the torus. Bottom: The all-A state SA, one of two
intermediate states, and the all-B state SB.

and we similarly write

〈D | S〉Σ = Aα(S)−β(S)(−A2 − A−2)k(S)Zr(S)W c̄(S), (12)

for the contribution of a state.

Example 3.5. As an example, consider the two component link diagramD in the torus

depicted in Figure 6. For the all-A and all-B states, we can see that k(SA) = k(SB) = 1

and r(SA) = r(SB) = 0. For the two remaining intermediate states, which differ by

diagonal reflection, we have that k(S) = 1 and r(S) = 1 for both. Furthermore, each

intermediate state has exactly two homologically essential loops, so c̄(S) = 1. This

yields 〈D〉Σ = −A4 − 2A2ZW − 2− 2A−2ZW − A−4.

Remark 3.6. The terms of second/third largest/smallest degree in the A variable

referenced in the definition of ? refer to the possible degrees of A, so that coefficients

taking the value zero are allowed. These possible terms are described explicitly in

Propositions 4.5 and 4.8 in Section 4.1. Terms are also allowed to coincide. For

instance, in Example 3.5 the third smallest and third largest degree terms are both

−2.
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+ −
Figure 7: A positive crossing and a negative crossing.

To show that a quantity is an invariant of links in thickened surfaces, it suffices to

check invariance under the Reidemeister moves in Figure 3. Since the Reidemeister

moves are local in nature, taking place in disks contained in Σ, the following argument

is identical to the one commonly seen in the classical planar setting. As in that case,

we can see here that 〈·〉Σ is invariant under RII by computing

〈 〉Σ = A〈 〉Σ + A−1〈 〉Σ

= A
(
A〈 〉Σ + A−1〈 〉Σ

)
+ A−1

(
A〈 〉Σ + A−1〈 〉Σ

)
= A2〈 〉Σ + 〈 〉Σ + (−A2 − A−2)〈 〉Σ + A−2〈 〉Σ

= 〈 〉Σ,

and the argument that 〈 〉Σ = 〈 〉Σ is completely symmetrical. Invariance under

RIII follows from invariance under RII and planar isotopy by observing

〈 〉Σ = A〈 〉Σ + A−1〈 〉Σ

= A〈 〉Σ + A−1〈 〉Σ

= 〈 〉Σ.

Presently, 〈·〉Σ is not invariant under RI since 〈 〉Σ = −A3〈 〉Σ and 〈 〉Σ =

−A−3〈 〉Σ. However, this can be rectified by orienting D and observing that RI alters

the writhe of D. The writhe of an oriented diagram is defined by
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SA D

l

Figure 8: Arcs on opposite sides of l contradict the fact that D is alternating.

w(D) = c+(D) − c−(D), where c+(D) and c−(D) are the numbers of positive and

negative crossings, respectively (see Figure 7). To obtain invariance under the first

Reidemeister move, a homological version of the Jones polynomial may be obtained

by setting

JΣ(t, Z,W ) = (−A)−3w(D)〈D〉Σ
∣∣
A=t−

1
4
. (13)

Note that the substitution and renormalization of 13 do not affect the polynomial

coefficients, so 〈D〉Σ will suffice for our purposes.

Remark 3.7. In [BK22b, Proposition 1.7], the authors note that any checkerboard

colorable link L bounds an unoriented surface embedded in Σ × I, namely, either

the white or black checkerboard surface obtained by attaching half-twisted bands to

the white or black regions, respectively. Therefore, [L] = 0 in H1(Σ × [−1, 1];Z2).

Under the projection, L is Z2-homologous to the sum of all loops in any fixed state

S. Thus, [S] = 0 in H1(Σ;Z2) as well. As a result, if r(S) = 1, then there must be

an even number of essential loops in S, so we conclude that 〈D〉Σ ∈ Z[A±1, Z,W ] for

checkerboard colorable diagrams. In particular, since alternating, cellularly embedded

link diagrams are checkerboard colorable by [BK22b], this will hold for the class of

links considered in Theorem 1.
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Figure 9: A crossing of a checkerboard colorable diagram.

3.3 State graphs and the twist number

Let SA denote the all-A state, and let SB denote the all-B state, each obtained

by selecting only that type of resolution. If D is alternating, and l is any loop in

either SA or SB, then all surgery arcs attached to l must lie on the same side of

l as seen in Figure 8. For S ∈ S, let A(S) denote the collection of surgery arcs

for S. Consider U = S ∪ A(S). Observe that we can recover the underlying 4-

valent graph Γ by contracting each arc of U to a point. This contraction induces a

homeomorphism between the complementary regions of U and the complementary

regions of Γ. Therefore, if D is cellularly embedded, the complementary regions of U

must be disks. As a result, the side of l containing no edges must be one of these disk

regions. In other words, every loop of SA and SB is contractible. Therefore, we can

use the states SA and SB to define the following graphs on Σ.

Definition 3.8. The all-A state graph GA is a graph embedded on Σ whose vertices

correspond to the loops of SA and whose edges correspond to the surgery arcs seen in

Figure 4. The all-B state graph GB is defined similarly for SB.

Remark 3.9. Note that as a consequence, we can conclude that reduced alternating

diagrams are checkerboard colorable, i.e., that the complementary regions can be

colored white and black so that every vertex appears as in Figure 9. We simply color

regions containing vertices of GA white and regions containing vertices of GB black.



20

Figure 10: A twist region.

Our goal will be to express certain coefficients of 〈D〉Σ in terms of combinatorial

information coming from GA and GB. This will enable us to form a connection between

the coefficients and the twist number of D.

Definition 3.10. Let D be a reduced link diagram on a surface Σ. By definition, the

complementary regions of D are n-gons with n ≥ 2. A twist region is a connected

sequence of bigons arranged crossing-to-crossing of maximal length, as in Figure 10.

A single crossing which is adjacent to no bigon regions is also considered to be a twist

region.

Definition 3.11. A reduced diagram D on Σ is twist-reduced if for any disk E

meeting D transversely in four points adjacent to two crossings as in Figure 11, either

E contains a (possibly empty) sequence of bigons, or there exists a disk E ′ in Σ \ E

adjacent to the same two crossings which contains a (possibly empty) sequence of

bigons.

The number of twist regions of a twist-reduced diagram D is called the twist number

of D and is denoted tw(D).

E

E

E′ E′E

OR

· · ·

· · · · · ·

=⇒

Figure 11: A twist-reduced diagram.
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4 Proof of Main Theorem 1

The goal of this section is to express certain coefficients of 〈D〉Σ in terms of com-

binatorial information coming from GA and GB. In Section 4.2, this combinatorial

information will lead to a proof of Main Theorem 1, which we restate here for the

convenience of the reader.

Main Theorem 1. Let Σ be a closed, orientable surface and let D be a reduced

alternating link diagram on Σ such that every twist region of D has at least three

crossings. Let ? = α′(1) + β′(1) − α′′(0) − β′′(0) + 2. Then,

1

3
tw(D) + 1− g(Σ) ≤ ? ≤ 2tw(D). (4)

4.1 Computation of coefficients

Let vA and vB denote the number of vertices in GA and GB (alternatively, the number

of loops in SA and SB), respectively. Since all the loops in SA and SB are contractible,

they are homologically trivial. This shows the states SA and SB contribute

〈D | SA〉Σ = Ac(D)(−A2 − A−2)vA , (14)

〈D | SB〉Σ = A−c(D)(−A2 − A−2)vB , (15)

to 〈D〉Σ. For a polynomial p ∈ Z[A±1, Z,W ], we write degAmax(p) and degAmin(p) for

the maximal and minimal degrees of p in the variable A, respectively. Note from the

above, that
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degAmax〈D | SA〉Σ = c(D) + 2vA, (16)

degAmin〈D | SB〉Σ = −c(D)− 2vB. (17)

In fact, these degrees are precisely the maximal and minimal degrees in A of the

polynomial 〈D〉Σ. Boden and Karimi show this for 〈D〉HΣ in [BK22b, Proposition 2.8]

by proving that reduced alternating diagrams on surfaces are homologically adequate.

We summarize their definition and outline the proof below, as the ideas introduced

will be useful in proving Propositions 4.3, 4.5, and 4.8 appearing in this section.

Definition 4.1. [BK22b] A diagram D is homologically A-adequate if, for any state S

with exactly one B-resolution, we have k(S) ≤ k(SA). A diagram D is homologically

B-adequate if, for any state S with exactly one A-resolution, we have k(S) ≤ k(SB).

A diagram D is called homologically adequate if it is both homologically A-adequate

and homologically B-adequate.

Proposition 4.2. [BK22b, Proposition 2.8] Reduced alternating diagrams are homo-

logically adequate.

Proof. Let D be a reduced alternating projection of a link L onto a closed, orientable

surface Σ, and let S ′ be a state with exactly one A-resolution. A surgery from a state

S to S ′ is one of the following three types:

(a) a merge, where the total number of loops is reduced- in this case either k(S ′) =

k(S)− 1 and r(S ′) = r(S), or k(S ′) = k(S) and r(S ′) = r(S)− 1.

(b) a split, where the total number of loops is increased- in this case either k(S ′) =

k(S) + 1 and r(S ′) = r(S), or k(S ′) = k(S) and r(S ′) = r(S) + 1.
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(c) a single cycle smoothing (defined in [BK22b, Section 2]), where the total number

of loops remains the same- in this case k(S ′) = k(S) and r(S ′) = r(S).

The key difference between the surface case and the planar case in [DL06] and [Sto06]

is the possibility that the kernel is preserved between states, as well as the potential

for single cycle smoothings. However, as the authors of [BK22b] point out, single cycle

smoothings cannot occur for checkerboard colorable diagrams. Also since every loop

in SA is trivial, any merge would reduce the kernel. The only remaining possibility

for the first surgery is a split.

A split occurs when one surgers along an arc in SA running between a loop and itself.

This arc corresponds to a simple closed curve γ in GA intersecting D at a single

crossing. By the definition of reduced, γ must be homologically essential, otherwise

the crossing would be nugatory. Again, since the loops in SA are trivial, it follows that

the new loop resulting from the split is homologous to γ ⊂ Σ. Thus, k(S ′) = k(SA)−1

and r(S ′) = r(SA) + 1 = 1. The proof for B-adequacy is completely symmetrical.

In [BK22b, Lemma 2.6] it is shown that for homologically adequate diagrams, SA

and SB are the unique states which contribute maximal and minimal degree terms of

〈D〉HΣ . We adapt this result to 〈D〉Σ and restate it in terms of the leading coefficients.

Proposition 4.3. [BK22b, Lemma 2.6] Let D be a homologically adequate diagram on

a closed, orientable surface Σ. Then 〈D〉Σ has unique terms of maximal and minimal

degree in the variable A of the form

(−1)vAAc(D)+2vA , (18)

(−1)vBA−c(D)−2vB . (19)
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Proof. Let S be any state with at least one B-resolution. Suppose β(S) = n ≥ 1

and let e1, · · · , en be the edges of GA that correspond to B-resolved crossings in S,

ordered arbitrarily. Surgering along the edges one at a time produces a sequence of

states SA = S0, S1, · · · , Sn = S. By homological adequacy, k(S1) ≤ k(S0). Even if all

of the remaining surgeries increase the kernel, we will have k(S) ≤ k(S0) + (n− 1).

Since S contributes

〈D | S〉Σ = Ac(D)−2n(−A2 − A−2)k(S)Zr(S)W c̄(S), (20)

we have

degAmax(〈D | S〉Σ) = c(D)− 2n+ 2k(S)

≤ c(D)− 2n+ 2(k(S0) + n− 1)

= c(D) + 2vA − 2. (21)

Therefore, only SA will contribute a term of A-degree c(D) + 2vA. This term appears

in (14), and the proof for the minimal degree term is similar.

This proposition directly corresponds to the classical results of Kauffman [Kau87],

Thistlethwaite [Thi87], and Murasugi [Mur87] which led to a proof of the first and

second Tait conjectures using the Jones polynomial. The main purpose of [BK22b]

was to extend these results to the setting of homologically adequate links in thickened

surfaces.

In the classical planar case, Dasbach and Lin in [DL06] as well as Stoimenow in [Sto06]

compute more coefficients. These coefficients have more complicated expressions in

terms of data coming from the graphs GA and GB. We will extend their work to
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links in surfaces using the more general homological Kauffman bracket. First, we set

some terminology. Typically, the term "loop" is used for an edge of a graph which is

incident to only one vertex. Since we will be using the word "loop" to refer to the

simple closed curves in a state, we will instead call such an edge a self-edge. An edge

which is incident to two distinct vertices is called a simple edge.

Definition 4.4. Let e be a self-edge in either GA or GB. We may view e as a well-

defined element [e] of H1(Σ) up to a choice of orientation. We define an equivalence

relation ∼∗ on self-edges, where e1 ∼∗ e2 if [e1] = ±[e2] and if they are adjacent,

meaning incident to the same vertex.

Similarly, let e1 and e2 be simple edges in either GA or GB which are incident to the

same pair of vertices. The edges e1 and e2 form a cycle in the graph which may also

be viewed as an element of H1(Σ) up to orientation. We define an equivalence relation

∼ on simple edges, where e1 ∼ e2 if they form a null-homologous cycle.

Let e∗A and e∗B denote the number of distinct equivalence classes of self-edges in GA

and GB, and let ẽA and ẽB be the number of distinct equivalence classes of simple

edges in GA and GB, respectively.

Proposition 4.5. Let D be a reduced alternating diagram on a closed, orientable

surface Σ. Then, the terms of 〈D〉Σ having the second-highest degree in the A variable

are of the form

(−1)vA (α′(1)W + α′(2)W
2 + · · ·+ α′(N)W

N) Z Ac(D)+2vA−2, (22)

where

α′(1) = e∗A, (23)
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and the terms having the second-lowest degree are of the form

(−1)vB (β′(1)W + β′(2)W
2 + · · ·+ β′(M)W

M) Z A−c(D)−2vB+2, (24)

where

β′(1) = e∗B, (25)

for some N , M ≥ 1.

Proof. We look first at all states which contribute to the second-highest A-degree,

ignoring Z- and W -degrees for a moment. We should note here that in the binomial

expansion of (−A2 − A−2)vA in 〈D | SA〉Σ, all degrees of the variable A will be of

the form c(D) + 2vA − 4k for some k, so SA will not make a contribution. Let

S ∈ S be any state with β(S) = n ≥ 1, and let SA = S0, S1, · · · , Sn = S be a

sequence of states yielding S as before. By (21), we need to consider states such that

k(S) = k(S0) + (n− 1).

Recall that by homological adequacy, k(S1) ≤ k(S0) but for any other surgery,

k(Si+1) ≤ k(Si) + 1. In order for k(S) to be maximal, these must all be equalities,

in which case the corresponding degree in the A variable will be c(D) + 2vA − 2. We

will see that such states have homological rank one, thus proving (22).

We now turn our attention to α′(1), so assume further that c̄(S) = 1. Our goal is to

understand to what types of surgeries the edges e1, · · · , en correspond. Recall from

the proof of Proposition 4.2 that if the first surgery is to preserve the kernel, then

it must be a split. This means that e1 is a self-edge for a loop l and that surgering

l along e1 produces parallel loops l1 and l2 in S1 which are both homologous to e1.

Thus, c̄(S1) = 1. Note that if there is no such sequence, i.e., if r(S) = 0 for all states
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S adjacent to S0, then there are no self-edges. Hence, α′(1) = e∗A = 0 and we are

done. Otherwise, each remaining surgery in such a sequence must be a split where

k(Si+1) = k(Si) + 1, r(Si+1) = r(Si), and c̄(Si+1) = c̄(Si).

Next, we will show by induction that the remaining edges are in the same equivalence

class as e1. Suppose that for all j ≤ i, ej is adjacent to e1 and i∗(H1(Sj)) =

i∗(H1(S1)) = 〈e1〉 ⊂ H1(Σ). Let l′ be the loop in Si corresponding to the vertex

incident to ei+1. There are two possibilities.

Case 1 Suppose l′ is null-homologous. Because r(Si+1) = r(Si) = 1 and c̄(Si+1) =

c̄(Si), surgering l′ along ei+1 must produce two homologically trivial loops, as opposed

to two parallel essential loops. Note that this would violate homological adequacy

if l′ had been a loop originating in S0, since changing the order of edge surgeries so

that ei+1 is done first would increase the kernel. Thus, l′ must have been created by a

previous surgery, so ei+1 must have been adjacent to ej for some j ≤ i. Therefore,

i∗(H1(Si+1)) = 〈e1〉 ⊂ H1(Σ) and the inductive step holds.

Case 2 Suppose [l′] = [e1]. Since c̄(Si) = c̄(S1) = 1, Si has two essential loops, one of

which is l′. Thus, ei+1 must have been adjacent to ej for some j ≤ i. Furthermore, the

other essential loop homologous to e1 is unaffected by the surgery. Since r(Si+1) =

r(Si) = 1, surgering l′ along ei+1 must produce one null-homologous loop and one

loop homologous to e1. This gives i∗(H1(Si+1)) = i∗(H1(Si)) = 〈e1〉 and thus, the

inductive step holds.

Therefore, i∗(H1(S)) = 〈e1〉 ⊂ H1(Σ) and all the edges are adjacent to e1. Changing

the order of edge surgeries so that ei is done first will still yield the same state S,

implying [ei] = [e1] for all i. This means precisely that ei ∼∗ e1 for all i.
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GA GA

S S

Figure 12: Left: Surgering along self-edges in the same equivalence class. Right:
Surgering along merely homologous self-edges.

Let S be a state whose B-resolutions occur within a single equivalence class of self-

edges. Let eAi be the i-th of these classes, and let ki be the number of self-edges in

that class. The total contribution of these states is

e∗A∑
i=1

ki∑
j=1

(
ki
j

)
Ac(D)−2j(−A2 − A−2)vA+j−1ZW

=

e∗A∑
i=1

ki∑
j=1

(
ki
j

)
Ac(D)−2j(−1)vA+j−1(A2 + A−2)vA+j−1ZW

=

e∗A∑
i=1

ki∑
j=1

(
ki
j

)
Ac(D)−2j(−1)vA+j−1(A2vA+2j−2 + lower-order terms)ZW

=

e∗A∑
i=1

ki∑
j=1

(
ki
j

)
(−1)vA+j−1Ac(D)+2vA−2ZW + lower-order terms

=

e∗A∑
i=1

(−1)vAAc(D)+2vA−2ZW + lower-order terms

=(−1)vAe∗AA
c(D)+2vA−2ZW + lower-order terms,
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proving (23). The second-to-last equality follows from the fact that
k∑
j=0

(−1)j
(
k
j

)
= 0.

To compute the coefficient β′(1), an analogous argument holds for states whose A-

resolutions lie in the same equivalence class of self edges.

Remark 4.6. In the calculation above, note that in order for c̄(S) to equal one, the

self-edges in S must be adjacent. In general, c̄(S) counts the number of vertices which

house edges that are homologous, but not equivalent under ∼∗. This is illustrated

in Figure 12. The numbers N and M in the statement of the proposition are the

maximum numbers of these vertices, taken over the set of all homology classes of

self-edges.

Since it is possible for a diagram to have no self-edges, we cannot establish a meaningful

lower bound for any combination of α′(1) and β′(1). It is then necessary to look at more

coefficients.

Definition 4.7. Let e1 and e2 be adjacent self-edges in either GA or GB whose

homology classes have intersection number int([e1], [e2]) = ±1. We call the unordered

double (e1, e2) a transverse pair of self-edges.

If (e1, e2) is a transverse pair, it is possible that there exists a third self-edge e3

such that [e3] = ±[e1] ± [e2]. In this case, we call the unordered triple (e1, e2, e3) a

self-triangle.

The equivalence relation, ∼∗, on self-edges also induces equivalence relations on trans-

verse pairs and self-triangles. Let t∗A and t∗B denote the number of equivalence classes

of transverse pairs of self-edges, and let τ ∗A and τ ∗B denote the number of equivalence

classes of self-triangles in GA and GB, respectively. See Figure 13 for an example of a

transverse pair and a self-triangle.
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GA GA

Figure 13: Left: A transverse pair. Right: A self-triangle.

Proposition 4.8. Let D be a reduced alternating diagram on a closed, orientable

surface Σ. Then, the terms of 〈D〉Σ having the third-highest degree in the variable A

are of the form

(−1)vA(α′′(0) + α′′(2)Z
2)Ac(D)+2vA−4, (26)

where

α′′(0) = vA − ẽA+ t∗A −τ ∗A and α′′(2) =

(
e∗A
2

)
− t∗A, (27)

and the terms having the third-lowest degree in the variable A are of the form

(−1)vB(β′′(0) + β′′(2)Z
2)A−c(D)−2vB+4, (28)

where

β′′(0) = vB − ẽB+ t∗B −τ ∗B and β′′(2) =

(
e∗B
2

)
− t∗B . (29)

Note that these coefficients contain elements of both second and third coefficients

from the planar case in [DL06] and [Sto06]. The reason for this is the possibility for

the kernel to be preserved at the first surgery, whereas in the planar case the number

of loops can only decrease at the first surgery. For the first surgery, only self-edges

preserve the kernel, which is why the terms for self-triangles and pairs of self-edges

appear here, while corresponding terms for simple edges do not.
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Proof. By (20), the third-highest possible degree of 〈D〉Σ in the variable A is c(D) +

2vA − 4. Notice that this time, SA will make a contribution. We get

〈D | SA〉Σ = Ac(D)(−A2 − A−2)vA

= (−1)vAAc(D)(higher-order terms + vAA
2vA−4 + lower-order terms)

= higher-order terms + (−1)vAvAA
c(D)+2vA−4 + lower-order terms.

On the other hand, states of the form described in the previous proposition will not

contribute anything (the degrees of A in the binomial expansion are of the wrong

form: c(D) + 2vA − 2− 4k, for some k).

Now suppose that S is a state with degmax(〈D | S〉Σ) = c(D) + 2vA − 4. As in the

proof of the previous proposition, let e1, · · · , en be a sequence of edges of GA, and

SA = S0, S1, · · · , Sn = S the sequence of states obtained by surgering along each edge

in order. As before, we seek to determine which types of surgeries could have yielded

S. By homological adequacy, k(S1) ≤ k(S0). There are two cases, depending on

whether the first surgery reduces the kernel or preserves the kernel.

Case 1 If k(S1) = k(S0) − 1, then e1 is a simple edge, whose surgery merges two

trivial loops l1 and l2 in S0 into a single trivial loop l′. Then r(S1) = 0. In order

for the remaining surgeries to yield the desired degree of A, they must all be splits

which increase the kernel. In particular, e2 must split a trivial loop in S1 into two

null-homologous loops. By homological adequacy, this initial loop must be l′ and

furthermore, in GA, e2 must have been a simple edge connecting the same two vertices

as e1. It follows that e1 and e2 must have formed a null-homologous curve. This

means precisely that e1 ∼ e2. By reordering the sequence of edges we see that ei ∼ e1

for all 2 ≤ i ≤ n.
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S0 S1
e1

e2 e2γ1 γ2

l

Figure 14: A state in case 2a.

The total contribution of states whose B-resolutions occur within a single equivalence

class of simple edges is

ẽA∑
i=1

ki∑
j=1

(
ki
j

)
Ac(D)−2j(−A2 − A−2)vA+j−2

= (−1)vA−1ẽAA
c(D)+2vA−4 + lower-order terms,

where the equality follows from the same steps used in the proof of Proposition 4.5.

Case 2 If k(S1) = k(S0) then e1 was a self-edge as in the proof of the previous

proposition, and r(S1) = 1. In order for the state S to contribute to the desired degree

of A, there must be a j, 1 < j ≤ n such that k(Sj) = k(Sj−1), and for all i 6= 1, j we

have k(Si) = k(Si−1) + 1 while the homological rank is preserved. Note that the j-th

surgery could either be a merge resulting in r(Sn) = r(Sj) = 0 or a split resulting

in r(Sn) = r(Sj) = 2. First, let us deal with the scenario that the j-th surgery is a

merge.

Case 2a We first claim that in such a scenario, all of the edges had to be adjacent

self-edges. Indeed, the proof of the previous proposition implies that ei for 1 ≤ i < j

are all homologous and that H1(Si) = 〈e1〉 (but we cannot yet conclude they are

adjacent). However, since r(Sj) must be zero, surgery along ej must be a merge
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which reduces the homological rank. This is only possible if Sj−1 contains exactly two

essential loops l1 and l2, making c̄(Sj−1) = 1. We saw that this can only happen if

the ei are adjacent, and therefore belong to the same equivalence class for 1 ≤ i < j.

Surgery along ej merges l1 and l2 into a single null-homologous loop l′, so ej must have

been adjacent to ei for some i < j. At this point, all loops in Sj are null-homologous,

so the remaining surgeries must split off more null-homologous loops. By a similar

homological adequacy argument as in the proof of the previous proposition, ei for

j < i ≤ n also must be adjacent to the previous edges.

Now that we know all edges in such a state must be incident to a single vertex v in

G, it will suffice to look at a local neighborhood of the loop l in SA corresponding to

v. Without loss of generality, assume that j = 2. As seen in Figure 14, e1 splits l into

two arcs, γ1 and γ2 which correspond to the loops l1 and l2. Since surgery along e2

merges l1 and l2, it must connect γ1 and γ2 outside of the disk region bounded by l.

(This can only happen if g(Σ) > 0.) In this way, we see that e1 and e2 are transverse.

Now, let us address the edges ei, 2 < i ≤ n whose surgeries increase the kernel. As

seen in Figure 15, e1 and e2 divide l into four arcs, γk, k = I, II, III, IV . The loop

l′ ∈ S2 is a boundary component of a regular neighborhood of l ∪ e1 ∪ e2, which may

be viewed as the union of corresponding arcs γ′k and two parallel copies of each of the

edges e1 and e2. Consider e3. By homological adequacy, the endpoints of e3 must lie

in different arcs. This leaves us with two possibilities.

Case 2a(i) Suppose that e3 connects two adjacent arcs. Since k(S3) = k(S2) + 1,

surgery along e3 splits off a null-homologous loop from l′. In other words, e3 along

with an arc in l′ forms a null-homologous loop, independent of the choice of arc. As

seen in Figure 15, this arc may be taken to be one of the edges ei, i = 1, 2. Thus,

e3 ∼∗ ei. If all remaining ei, 3 ≤ i ≤ n behave this way, then S is a state whose
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S0 S2

S2 S2

e1

e2

γIγII

γIII γIV
l

e1 e1

e2

e2

γ′Iγ′II

γ′III γ′IV

l′

e1 e1

e2

e2

e3

l′

e1 e1

e2

e2
e3

l′

Figure 15: Bottom left: A state in case 2a(i). Bottom right: A state in case 2a(ii).

B-resolutions appear within a single equivalence class of the transverse pair (e1, e2),

which we denote by (e1, e2)∗. The total contribution of such states is

∑
(e1,e2)∗

ke1∑
i=1

ke2∑
j=1

(
ke1
i

)(
ke2
j

)
Ac(D)−2(i+j)(−A2 − A−2)vA+i+j−2

= (−1)vA t∗A A
c(D)+2vA−4 + lower-order terms,

where ke1 and ke2 denote the number of edges in the equivalence classes of e1 and e2,

respectively.

Case 2a(ii) Suppose that e3 connects two opposite arcs. This time, the arc in l′ is

a combination of e1 and e2. This means precisely [e3] = ±[e1]± [e2] ∈ H1(Σ). Thus

(e1, e2, e3) is a self-triangle. Note that if such an e3 exists, no edge can connect the

other pair of opposite γk in l. Otherwise, if there did exist such an edge e′, consider

the intersection number int(e′, e3) = int(e′, e1) + int(e′, e2). Since GA is embedded
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in Σ, we would have int(e′, e1) = int(e′, e2) = int(e′, e1) + int(e′, e2) = ±1 which is

impossible. Therefore, for 3 < i ≤ n ei falls under case 2a(i) or 2a(ii) and as such

belongs to the equivalence class of either e1, e2, or e3. Then S is a state whose

B-resolutions appear within a single equivalence class of the self-triangle (e1, e2, e3),

which we denote by (e1, e2, e3)∗. The total contribution of such states is

∑
(e1,e2,e3)∗

ke1∑
i=1

ke2∑
j=1

ke3∑
k=1

(
ke1
i

)(
ke2
j

)(
ke3
k

)
Ac(D)−2(i+j+k)(−A2 − A−2)vA+i+j+k−2

= (−1)vA−1τ ∗AA
c(D)+2vA−4 + lower-order terms

Case 2b Lastly, we address the other scenario described at the beginning of case 2,

where the j-th surgery is a split which increases the homological rank rather than the

kernel. The only possibility left is that ej is a self-edge which is neither transverse nor

homologous to e1. Once again, all other edges must belong to the equivalence class

of either e1 or ej. Letting e∗1 and e∗2 denote the two classes, the total contribution of

these states is

∑
e∗1 6=e∗2

not transverse

ke1∑
i=1

ke2∑
j=1

(
ke1
i

)(
ke2
j

)
Ac(D)−2(i+j)(−A2 − A−2)vA+i+j−2Z2

= (−1)vA

((
e∗A
2

)
− t∗A

)
Ac(D)+2vA−4Z2 + lower-order terms

Combining the contributions from SA, case 1, and case 2a, we get α′′(0) = vA− ẽA+ t∗A

−τ ∗A as claimed. Likewise, case 2b gives α′′(2) =
(
e∗A
2

)
− t∗A. An analogous argument

holds for β′′(0) and β′′(2).
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4.2 Bounds on the twist number

The goal of this section is to prove Main Theorem 1. Let e′A = e∗A+ẽA and e′B = e∗B+ẽB.

We consider the quantity

? = α′(1) + β′(1) − α′′(0) − β′′(0) + 2 (30)

= e′A + e′B − vA − vB + 2 + τ ∗A + τ ∗B− t∗A − t∗B .

We now seek to bound ? in terms of the twist number of the diagram. We follow

the method used for the planar case in [FKP08]. As transverse edge pairs (and by

extension self-triangles) do not arise in the planar case, we deal with these terms first.

Proposition 4.9. Suppose Σ has genus g. Then,

− 2g ≤ τ ∗A + τ ∗B− t∗A − t∗B ≤ 0. (31)

Proof. The second inequality is immediate from the fact that every self-triangle consists

of three self-edges which are all pairwise transverse. Furthermore, no pair can be part

of any other self-triangle since the third self-edge is already determined by the pair.

For the first inequality, we will show that τ ∗A + τ ∗B ≤ g. Suppose without loss of

generality that GA contains a self-triangle class (e1, e2, e3)∗ at a vertex corresponding

to the loop l. Figure 16 shows the result of surgering l along e1, e2, and e3 to obtain

the state S, where e′1, e′2, and e′3 are the surgery arcs dual to these edges. In place of

the self-triangle, there is a region R which is a punctured torus. Note that Σ \R then

consists of two punctured surfaces with total genus g − 1. Iterating this argument, we

immediately see that GA can have at most g self-triangle classes.
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SA S
e1

e2

e3

e′1

e′2

e′3

Rl

Figure 16: The result of surgering along a self-triangle. The red and blue loops bound
separate punctured surfaces.

More is true, however. Notice that e′1, e′2, and e′3 are the only surgery arcs joining

these punctured surfaces. Thus, when we complete the remaining surgeries to obtain

SB, the arcs e′1, e′2, and e′3 become identified with simple edges of GB. By reordering,

this will also be the case for the other edges making up (e1, e2, e3)∗. Therefore, the

remaining surgeries induce an isotopy on R taking it to a punctured torus in Σ which

contains no self-edges of GB. We have shown that the presence of a self-triangle class

in either GA or GB obstructs the existence of a potential set of transverse self-edge

classes (and by extension a self-triangle) in the other. Iterating this argument, we

have τ ∗A + τ ∗B ≤ g as claimed.

Recall that across both state graphs, there are a total of 3(τ ∗A+τ ∗B) classes of transverse

pairs coming from self-triangles. By an analogous argument, in GA there are at most

g − (τ ∗A + τ ∗B) pairs which are not part of any self-triangle. By contrast, these do not

obstruct a transverse pair in GB: for an example, see the left-hand graph depicted in

Figure 13 and note that it is isotopic to its dual.

Therefore, the same bound holds for GB. By adding across both state graphs, we have

t∗A + t∗B ≤ 3(τ ∗A + τ ∗B) + 2g − 2(τ ∗A + τ ∗B) (32)

= 2g + τ ∗A + τ ∗B.
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long short
Figure 17: Left: The long resolution of a twist region. Right: The short resolution of
a twist region.

This implies

τ ∗A + τ ∗B− t∗A − t∗B ≥ −2g, (33)

as desired.

In [FKP08], the authors bound the quantity analogous to ? from above by recategorizing

the vertices and edges based on how twist regions inD reveal themselves in two different

ways in each of the state graphs.

Definition 4.10. Referring to Figure 17, we call these long and short resolutions.

Edges are also called long and short if they come from that type of resolution. Let

e′long denote the number of equivalence classes of long edges across both GA and GB,

and let e′short denote the number of equivalence classes of short edges across both

graphs.

Notice that short edges coming from the same twist region are all in the same

equivalence class. This is the exact same property exhibited by the "reduced edges"

in [FKP08] which leads to Proposition 4.6, the upper bound in the planar case. We

adapt this proposition and its proof to the current setting.
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Proposition 4.11. [FKP08, Proposition 4.6] Let D be a reduced alternating diagram

on a closed, orientable surface Σ. Then,

e′A + e′B − vA − vB + 2 ≤ 2 tw(D). (34)

Proof. Let vbigon denote the number of bigon vertices across both GA and GB. Bigon

vertices are incident to exactly two edges and correspond to the vertices in the long

resolution of a twist region. Let vn-gon to be the total number of remaining vertices.

Every vertex and edge across both state graphs falls into exactly one of two categories,

so we can regroup e′A + e′B − vA − vB = e′short + e′long − vbigon − vn-gon.

For R a twist region, write c(R) for the number of crossings in R. Notice that

R consists of c(R) − 1 bigon regions. Adding across all twist regions, we obtain

vbigon = c(D)− t(D). Next observe that, except for (2, q)-torus link diagrams on S2,

both GA and GB will contain at least one n-gon vertex, making vn-gon ≥ 2. However,

(34) can still be seen to hold for (2, q)-torus link diagrams, which have t(D) = 1.

From the earlier observation that the edges in a short resolution are equivalent, we

have e′short ≤ t(D). Additionally, each crossing can have at most one long resolution,

so e′long ≤ c(D). We have

e′short + e′long − vbigon − vn-gon ≤ t(D) + c(D)− (c(D)− t(D))− 2 + 2

= 2t(D),

as desired.
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For the lower bound, only a slight modification of the methods used in the planar

case is required. Let us first summarize the argument, which appears in Section 4.3

of [FKP08]. The authors first assume that there are no single-crossing twist regions,

so that each region contains at least one bigon. Recall that D may be viewed as a

4-valent graph Γ. They obtain a new 3-valent graph P by collapsing strings of bigons

in Γ to red edges. A 2-valent graph, Φ may be obtained by deleting the red edges.

Figure 18 depicts these graphs.

The authors call the regions of P "provinces" and the regions of Φ "countries." In

[FKP08], the graphs are all constructed on the Turaev surface of D, but since we only

deal with alternating links, the graphs P and Φ embed naturally on Σ. Note that P

inherits the cellular embedding of D, so all provinces are disks, while countries may

be nontrivial regions. For each country, its provinces correspond to n-gon vertices

of either GA or GB. The red edges which divide countries into provinces are dual

to sets of parallel short edges which connect the two provinces. Recall that if short

edges are dual to the same red edge, then they are in the same equivalence class. The

converse is not true, however; there may exist short edges dual to distinct red edges

which will become identified. The key to the authors’ argument is to realize that

these different short edges must lie in the same country. So, to find a lower bound the

authors investigate the number of short edges in each country that will survive when

we pass to equivalence classes. We now prove an analogue of their result [FKP08,

Lemma 4.8].
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Γ P Φ
Figure 18: The graphs Γ, P , and Φ.

Proposition 4.12. Let D be a reduced alternating diagram on a closed, orientable

surface Σ such that every twist region of D has at least two crossings. Let N be a

country of D, and let e′short(N) denote the number of equivalence classes of short edges

contained in N and e∗∂(N) the number of self-edge equivalence classes in N which are

homologous to a boundary component of N . Let tw(N) denote the number of twist

regions in N and let |∂N | denote the number of loops in Φ which bound N . Then we

have

e′short(N) ≥ tw(N) + 1− |∂N |+ e∗∂(N). (35)

Proof. Consider the dual graph of N , defined to be a connected ribbon graph G whose

vertices are the provinces of N , edges are dual to the red edges in N , and boundary

components are the loops in Φ which bound N . In [FKP08], the authors obtain a

lower bound by finding a spanning tree of G, or alternatively by cutting N along red

edges until a disk remains. In our case, it suffices to do the same with a spanning

quasi-tree of G.

A quasi-tree is a ribbon graph with exactly one boundary component. We can obtain a

spanning quasi-tree by removing edges as long as they reduce the number of boundary

components of the graph, which corresponds to cutting N along dual red edges. Thus,

it suffices to cut N along |∂N | − 1 red edges.

Note that if G is a quasi-tree, then N cannot contain any short edges which are in

the same equivalence class, yet are dual to different red edges. Otherwise, these short

edges form a null-homologous curve separating N , forcing there to be at least two
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boundary components. Also note that there can be no self-edges which are homologous

to a boundary component of N for the exact same reason. Recall that a cellularly

embedded diagram must be connected, so that all self-edges are short.

Thus, any classes we are left with correspond to a unique one of the remaining

tw(N) + 1− |∂N | red edges left in the country. Adding back in the self-edge classes

which were removed, we obtain the desired inequality.

The final step in [FKP08] is to find a bound on the number of countries. A small

but important modification is needed here. In the planar case, the authors show that

every component of Φ contains at least three vertices. As we will see, this does not

hold in the surface case, and this issue must be resolved in order to avoid canceling

the term for the twist number in the lower bound.

Proposition 4.13. Let D be a reduced alternating diagram on a closed, orientable

surface Σ such that every twist region of D has at least two crossings. Then,

e′short ≥
1

3
tw(D) + 1− g(Σ). (36)

Proof. Let φ be a component of Φ which may be thought of as a simple closed curve

in Σ. Since D is reduced, φ must contain at least two vertices, or else it would bound

a monogon region corresponding to a nugatory crossing. We call φ "bad" if it has

exactly two vertices and "good" if it has at least three. Let |Φ|bad denote the number

of bad curves and |Φ|good the number of good curves, and |Φ| the total number of

curves.

Suppose φ is bad. Then because P is cellularly embedded, the two red edges incident

to the vertices of φ must lie on opposite sides of φ. Otherwise, φ would bound a

bigon region, and all bigons were collapsed in the construction of P . Also note that
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Φ inherits the checkerboard coloring of D, so we see that these are indeed distinct

red edges which lie in separate countries. By following along φ, we see that on each

side of φ the red edge forms a border between a province and itself. Thus, the red

edge is dual to a self-edge which represents the same homology class as φ in H1(Σ).

This is illustrated in Figure 19. By homological adequacy, we have that this self-edge

along with φ are homologically essential. In a country N , there can be at most two

essential boundary components which are homologous. To see this, recall that these

two homologous curves separate Σ, so a third one would separate N . Therefore,

for each bad curve there are two boundary-homologous classes of self-edges in the

neighboring countries, and there is at worst a 2:1 correspondence between bad curves

and a given self-edge class. Therefore, e∗∂ ≥ |Φ|bad where e∗∂ =
∑
N

e∗∂(N).

The total number of vertices in P is at least three times the number of good edges.

Since every red edge has two vertices, this gives us that tw(D) ≥ 3
2
|Φ|good. Let n(D)

denote the number of countries in Φ. By summing (35) over all countries, we get

e′short ≥ tw(D) + n(D)− 2|Φ|+ e∗∂

≥ tw(D) + n(D)− 2|Φ|+ |Φ|bad

= tw(D) + n(D)− |Φ| − |Φ|good

≥ 1

3
tw(D) + n(D)− |Φ|

≥ 1

3
tw(D) + 1− g(Σ).

The last inequality follows from the fact that if we cut Σ along the simple closed

curves in Φ, at most g of these cuts are non-separating.

We combine these results into a proposition mirroring [FKP08, Theorem 4.10].
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φ

P

Figure 19: A bad loop. The boundary-homologous self-edges are drawn in green.

Proposition 4.14. Let D be a reduced alternating diagram on a closed, orientable

surface Σ such that every twist region of D has at least three crossings. Then,

? ≥ 1

3
tw(D) + 1− g(Σ). (37)

Proof. When every twist region has at least three crossings, no two long edges can

be in the same equivalence class. By summing over every twist region as in the

proof of Proposition 4.11, we see that vbigon = c(D)− t(D) and e′long = c(D). Recall

that the n-gon vertices become provinces in P , and the twist regions become red

edges. Therefore, by summing over countries, we can compute χ(Σ) = vn-gon− tw(D).

Putting this all together,

? = e′A + e′B − vA − vB + 2 + τ ∗A + τ ∗B− t∗A − t∗B

= e′short + e′long − vbigon − vn-gon + 2 + τ ∗A + τ ∗B− t∗A − t∗B

= e′short + c(D)− (c(D)− tw(D))− vn-gon + 2 + τ ∗A + τ ∗B− t∗A − t∗B

= e′short − χ(Σ) + 2 + τ ∗A + τ ∗B− t∗A − t∗B

≥ e′short − χ(Σ) + 2− 2g(Σ)

= e′short

≥ 1

3
tw(D) + 1− g(Σ).
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Combining (34) and (37), we obtain a proof of Theorem 1.

In [KP20], the authors bound the hyperbolic volume of the complement of a "weakly

generalized" alternating link in terms of the twist number. A weakly generalized

alternating link is a link in a compact, irreducible, orientable 3-manifold with a

projection onto a surface Σ with some additional properties that guarantee the

complement admits a complete hyperbolic structure. They also require the diagram

to be twist-reduced as in Definition 3.11.

Theorem 4.15. [KP20, Theorem 1.4] Let Σ be a closed orientable surface of genus at

least one, and let L be a link that admits a twist-reduced weakly generalized cellularly

embedded alternating projection D onto Σ×{0} in Y = Σ× [−1, 1]. Then the interior

of Y \ L admits a hyperbolic structure. If Σ is a torus, then we have

voct

2
· tw(D) ≤ Vol(Y \ L) < 10vtet · tw(D), (38)

where vtet ≈ 1.01494 is the volume of a regular ideal tetrahedron, and voct ≈ 3.66386

is the volume of a regular ideal octahedron.

If Σ has genus at least two,

voct

2
· (tw(D)− 3χ(Σ)) ≤ Vol(Y \ L) < 6voct · tw(D). (39)

Direct substitution of (4) into these volume bounds yields Corollary 1.4.
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4.3 Discussion of results

The above results first appeared in the author’s paper [Wil22]. We should note that

while that paper was in preparation, related results were independently obtained

for different choices of polynomials. Champanerkar and Kofman [CK22] use the

homological Kauffman bracket (see Definition 3.3), while Bavier and Kalfagianni

[BK22a] define a polynomial 〈D〉0 which agrees with the classical Kauffman bracket,

but is defined over states consisting only of contractible loops. In contrast to Theorem

1, both of these results contain strict equalities between coefficients and the twist

number, rather than inequalities. There is, however, an associated cost. In [CK22]

the authors must use a homological version of the twist number, and in [BK22a]

the notion of "reduced" is stronger which eliminates many of the terms making up

? in (30). Although we achieve only inequalities, our approach has the advantage of

recovering the classical twist number without requiring these further conditions.
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5 Quantum invariants of 3-manifolds

5.1 Skein theory and quantum invariants

Now, let us return to the planar setting where we may discuss the topic of quantum

invariants. For a link L ⊂ S3 we may set Σ = S2 in Definition 3.4 to recover the

classical Kauffman bracket. For the remainder of the paper, we will change to the

variable q = A2. The Kauffman bracket state-sum becomes

〈D〉 =
∑
S∈S

q
1
2

(α(S)−β(S))(−q − q−1)|S|, (40)

where |S| is the number of loops in the state S. Skein theory, introduced in [Prz91],

provides a convenient framework for studying the Kauffman bracket and defining the

colored Jones polynomials and related quantum invariants.

Definition 5.1. Let Σ be a compact orientable surface, with or without boundary.

If ∂Σ 6= ∅, let ∂Σ contain a (possibly empty) finite set of n marked points. The

Kauffman bracket skein module of Σ, denoted either S(Σ) or S(Σ, n), is defined to be

the Z[q±
1
2 ]-module consisting of formal linear sums of isotopy classes of link diagrams

on Σ under the quotient by the Kauffman relations:

1. D t (a trivial closed curve) = (−q − q−1)D,

2. = q
1
2 + q−

1
2 .

When ∂Σ 6= ∅, the link diagrams are assumed to intersect ∂Σ at the marked points if

n > 0.
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1 2 n-1 n 1 i i+1 n

· · · · · · · · ·

1 ei

Figure 20: Left: The identity diagram 1. Right: The generator ei, i = 1 . . . n− 1.

Note that S(S2) is one-dimensional, being generated by the empty diagram. The

Kauffman relations can be seen to give a recurrence relation that is equivalent to (40).

Another skein module of key importance is S(D2, 2n), the skein of the disk containing

2n marked points on its boundary. The set of crossing-less link diagrams in D2 forms

an (additive) basis for S(D2, 2n). The disk is normally depicted as a square with

n marked points on the top edge and n on the bottom. This module has a natural

multiplicative structure which turns it into an algebra.

Definition 5.2. The n-th Temperley–Lieb algebra, TLn is the algebra over S(D2, 2n)

with multiplication given by vertical stacking of the square diagrams, extended linearly.

A (multiplicative) basis is given by the set of diagrams {1, e1, . . . , en−1} depicted in

Figure 20. The generators ei, i = 1, . . . , n− 1 are commonly called "turn-backs."

Under the vertical stacking operation, the generators satisfy the relations

1. e2
i = (−q − q−1)ei,

2. eiej = ejei if |i− j| ≥ 2, and

3. eiei±1ei = ei.
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n-1

n-1

n-1

n-1

n-2f (n−1)

f (n−1)

f (n−1)

Figure 21: The recursive construction of f (n). A strand labeled by an integer k
represents k parallel strands.

A few polynomials in Z[q±
1
2 ] will appear frequently in the coefficients for elements of

TLn in the following sections. They are called quantum integers and are defined for

k ∈ Z by [k] = qk−q−k
q−q−1 . Likewise, we also have the quantum factorial [k]! =

∏k
i=1[i] with

the convention that [0]! = 1. The Temperley–Lieb algebra is home to distinguished

elements called the Jones–Wenzl projectors, which serve as building blocks of all

quantum invariants. They are characterized by two defining properties.

Definition 5.3. The n-th Jones–Wenzl projector f (n) ∈ TLn is the unique element

such that

1. When f (n) is expressed in terms of the additive basis of crossing-less diagrams,

the coefficient of the identity diagram is 1, and

2. eif (n) = f (n)ei = 0 for all i = 1, . . . , n− 1.

Note that as a consequence, the Jones–Wenzl projectors are idempotents, i.e., (f (n))2 =

f (n). More generally for any m < n, if we view f (m) as an element of TLn by inserting

it into any set of consecutive m strands, then f (n)f (m) = f (m)f (n) = f (n). Uniqueness

follows as a corollary of this idempotence property, and existence follows from a

recursive construction of the projectors. We may define f (1) = 1, the identity on one

strand, and for n > 1, we may define f (n) by the the formula in Figure 21. See [Lic97,
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Lemma 13.2] for an inductive proof that the projectors defined in this way satisfy the

above two properties.

When q is a complex root of unity, additional properties are satisfied by the Jones–

Wenzl projectors that makes them conducive for defining topological invariants.

Several of these properties appear throughout Sections 5.2, 5.3, and 6. This basic

recipe, adapted to a variety of topological objects and settings, yields quantum

invariants, including the colored Jones polynomials, the Turaev–Viro invariants, and

the Reshetikhin–Turaev invariants. The first of these, the colored Jones polynomials,

are not only the subject of the classical volume conjecture, but will also be of importance

to us in the following sections when they are extended to the setting of knotted trivalent

graphs. For now, we define the colored Jones polynomials for framed links.

Definition 5.4. A framed link L in a manifold M is a smooth embedding of annuli
k⊔
i=1

(S1 × [0, 1])(i) ↪→ M such that L is identified with the S1 × {0}. We refer to the

S1 × {1}, as the framing curves of L.

Definition 5.5. Let L be a framed link with k components, and let a = (a1, . . . , ak)

be a k-tuple of nonnegative integers. For i = 1, . . . , k, cable the i-th component of L

by ai; that is, replace the component with ai parallel copies embedded on the framing

annulus. Next, take a diagram for the cabled link and insert a copy of f (ai) into the

ai strands. The result is an element of S(S2), which we denote by L(a1, . . . , ak). The

a-colored Kauffman bracket of L, written either 〈L〉a or 〈f (a1), . . . , f (ak)〉L, is defined

by

〈L〉a = 〈L(a1, . . . , ak)〉, (41)

where the Kauffman bracket is extended to S(S2) linearly. When it is understood that

all nonnegative integer colors are equal, say, to the number n, we will simply write
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n-2

n-2

f (n−1)

Figure 22: The partial trace of a Jones–Wenzl projector.

〈L〉n for short. For n a nonnegative integer, we obtain the n-colored Jones polynomial,

we take the n-colored Kauffman bracket and normalize by setting

Jn(L) = (−q)−(n
2+2n

2
)w(D)〈D〉n

∣∣
q=t−

1
2
. (42)

Remark 5.6. The fact that the colored Jones polynomials are truly polynomials follows

from the construction and properties of the Jones–Wenzl projectors. In particular,

when inserted into a link diagram, the idempotence property turns the right-hand

picture in Figure 21 into a partial trace, seen in Figure 22. Observe that this partial

trace satisfies the second property of Definition 5.3. Namely, it is killed by the turn-

backs e1, . . . , en−3 in TLn−2. Thus, by uniqueness, we have that the partial trace is

a scalar multiple of f (n−2). As in the proof of [Lic62, Lemma 13.2], we may show

inductively that the multiplicative factor is [n]
[n−1]

for n > 1. This cancels the factor
[n−1]

[n]
, yielding a modified expression for f (n) which is clearly polynomial. The same

does not necessarily hold when the colored Jones invariant is extended to KTGs.
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P0-2)

P2-3)

Figure 23: Top: The 0-2 Pachner move. Bottom: The 2-3 Pachner move. Aside
from the inner vertex introduced by the 0-2 move, the vertices may or may not be
truncated.

5.2 The Relative Turaev–Viro invariants

Quantum invariants do not exist solely for links and graphs. The Turaev–Viro

invariants, introduced in [TV92], are quantum invariants defined for compact, oriented

3-manifolds in terms of their triangulations.

Definition 5.7. Let M be a compact, oriented 3-manifold whose boundary may be

empty or nonempty. A partially ideal triangulation T of M is a collection of Euclidean

tetrahedra, some of whose vertices are truncated, together with face pairings given by

affine homeomorphisms. Furthermore, if M has nonempty boundary, then ∂M must

be comprised of only the truncation faces.

Vertices and edges of T which are not contained in truncation faces are called inner.

We denote the sets of inner vertices and inner edges by V and E, respectively, and

the set of tetrahedra by T .
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i j

k
l

m

n

Figure 24: A tetrahedron with edges corresponding to an admissible 6-tuple.

Two triangulations may differ in terms of their combinatorial data, but we consider

them to be equivalent if the respective gluings yield the same 3-manifold up to

homeomorphism. Much like the Reidemeister moves for links, two triangulations are

equivalent if and only if they are related by a finite sequence of the two Pachner

moves of Figure 23, as shown in [Pie88]. Several ingredients will be required to obtain

invariance under these moves, which we define first.

Definition 5.8. Let r ≥ 3 be an integer. A coloring of a partially ideal triangulation

T is an assignment a : E → {0, 1, 2, . . . , r − 2}.

A triple of colors (i, j, k) is r-admissible if

1. i+ j ≥ k, j + k ≥ i, and k + i ≥ j,

2. i+ j + k is even, and

3. i+ j + k ≤ 2(r − 2).

A 6-tuple of colors (i, j, k, l,m, n) is r-admissible if each of the triples (i, j, k), (i,m, n),

(j, l, n), and (k, l,m) are r-admissible. Note that these triples correspond to the faces

of a tetrahedron, as seen in Figure 24.
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Finally, we say that a coloring of a partially ideal triangulation T is r-admissible if

every tetrahedron is colored with an admissible 6-tuple.

Remark 5.9. Definition 5.8 corresponds to the SU(2)-version of the Turaev–Viro

invariants. For r ≥ 3 an odd integer, an SO(3) coloring is an assignment to even labels

only, i.e., a map a : E → {0, 2, 4, . . . , r − 3}. The definition of SO(3) r-admissibility

mirrors that of of the SU(2)-version.

The building blocks of the Turaev–Viro invariants are defined as follows. For an

admissible triple (i, j, k), we define

∆(i, j, k) =

√
[s− i]![s− j]![s− k]!

[s+ 1]!
, (43)

where s = i+j+k
2

. For an admissible 6-tuple (i, j, k, l,m, n), we define the quantum

6j-symbol

∣∣∣∣∣∣∣
i j k

l m n

∣∣∣∣∣∣∣ =
√
−1
−λ

4∏
k=1

∆(fk)

min{Q1,Q2,Q3}∑
z=max{T1,T2,T3,T4}

(−1)z[z + 1]!∏4
i=1[z − Ti]!

∏3
i=1[Qi − z]!

, (44)

where

• λ = i+ j + k + l +m+ n

• f1 = (i, j, k), f2 = (i,m, n), f3 = (j, l, n), and f4 = (k, l,m),

• T1 = i+j+k
2

, T2 = i+m+n
2

, T3 = j+l+n
2

, and T4 = k+l+m
2

, and

• Q1 = i+j+l+m
2

, Q2 = i+k+l+n
2

, and Q3 = j+k+m+n
2

.

Note that the fi and Ti terms correspond to the four triangular faces of a tetrahedron,

as in Figure 24. Likewise, the Qi terms correspond to the three quadrilaterals which
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separate pairs of opposite vertices. As we will see later in the proof of Proposition

5.17, ∆(i, j, k) and the 6j-symbol are strongly related to the quantum evaluations of

the theta and tetrahedron graphs. We take a moment to recall these, whose values

first appeared in [MV94].

Definition 5.10. For an r-admissible triple (i, j, k), there is a unique way of cabling

the edges of the theta graph by the i-th, j-th, and k-th Jones–Wenzl projectors and

matching up the resulting strands at each vertex. Denote the resulting sum of links

by . We define

θ(i, j, k) :=
〈 〉

= (−1)s
[s+ 1]![s− i]![s− j]![s− k]!

[i]![j]![k]!
, (45)

where the Kauffman bracket is extended linearly.

Likewise, for an r-admissible 6-tuple (i, j, k, l,m, n), there is a unique way of cabling

the edges of the tetrahedron graph by the corresponding projectors, which we denote

by . The value of the cabled tetrahedron is

〈 〉
=

∏
a,b

[Qb − Ta]!

[i]![j]![k]![l]![m]![n]!

min{Q1,Q2,Q3}∑
z=max{T1,T2,T3,T4}

(−1)z[z + 1]!∏4
i=1[z − Ti]!

∏3
i=1[Qi − z]!

. (46)

Finally, we are ready to state the definition of the Turaev–Viro invariants. The proof of

invariance under the Pachner moves appears in [CY18, Theorem 2.6] and results from

certain symmetries of the 6j-symbols. We omit this proof since we will be primarily

concerned with the relative version of these invariants (see Definition 5.13), which are

not strictly 3-manifold invariants as they will depend on the choice of triangulation T .
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Definition 5.11. Let M be a compact, oriented 3-manifold, and fix any partially

ideal triangulation T of M . Let r ≥ 3 an integer, and q be a 2r-th root of unity such

that q2 is primitive. The SU(2)-version r-th Turaev–Viro invariant of M is defined by

TVr(M) = η2|V |
r

∑
a∈Ar

|E|∏
i=1

(−1)ai [ai + 1]

|T |∏
s=1

∣∣∣∣∣∣∣
asi asj ask

asl asm asn

∣∣∣∣∣∣∣ , (47)

where ηr =
2 sin(π

r
)√

2r
. The sum is taken over the set Ar of all r-admissible colorings of

T , and {asi , . . . , asn} are the colors assigned by a to the edges of the tetrahedron ts

corresponding to Figure 24.

For odd r ≥ 3, the SO(3)-version is defined by

TV ′r (M) = (η′r)
2|V |

∑
a∈A′r

|E|∏
i=1

(−1)ai [ai + 1]

|T |∏
s=1

∣∣∣∣∣∣∣
asi asj ask

asl asm asn

∣∣∣∣∣∣∣ , (48)

where η′r =
2 sin( 2π

r
)√

r
and A′r is the set of all SO(3) r-admissible colorings of T .

In [CY18], Chen and Yang computed the Turaev–Viro invariants for several manifolds

with simple triangulations. After observing behavior reminiscent to that of the volume

conjecture, they formulated Conjecture 1.2, which we recall.

Conjecture 1.2. [CY18, Conjecture 1.1] Let M be a hyperbolic 3-manifold. Then

for r running over odd integers and TVr(M) evaluated at q = e
2πi
r ,

lim
r→∞

2π

r
ln(TVr(M)) = Vol(M). (2)

The first cases of this conjecture were proven in [DKY18] for M being the figure-eight

knot complement or the Borromean rings complement. The authors also proved the
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following result relating the SU(2)- and SO(3)-versions, which also holds for the

relative version of the invariants.

Proposition 5.12. For r ≥ 3 odd, TVr(M) = 2b2(M)TV ′r (M), where b2(M) is the

second Z2-Betti number of M .

As the two versions differ by only a constant, we may use either version when studying

Conjecture 1.2. We will find, however, that it is often more convenient to work with

even colors only, so we will work with the SO(3)-version throughout Section 6.

As a potential route to proving Conjecture 1.2, Yang [Yan21] defined a relative version

of the Turaev–Viro invariants and proposed an analogous conjecture. Yang defined

the relative invariants for ideal triangulations without inner vertices, but we revise

the definition to allow for inner vertices.

Definition 5.13. Let M be a compact, oriented 3-manifold, and fix any partially

ideal triangulation T of M . Let r ≥ 3 an integer, and q be a 2r-th root of unity such

that q2 is primitive. The SU(2)-version of the r-th relative Turaev–Viro invariant of

(M, T ) with the coloring b = (b1, . . . , b|E|) on the edges is defined by

TVr(M, T ,b) = η2|V |
r

∑
a∈Ar

|E|∏
i=1

H(ai, bi)

|T |∏
s=1

∣∣∣∣∣∣∣
asi asj ask

asl asm asn

∣∣∣∣∣∣∣ , (49)

where,

H(ai, bi) = (−1)ai+bi
q(ai+1)(bi+1) − q−(ai+1)(bi+1)

q − q−1
. (50)

For odd r ≥ 3, the SO(3)-version is defined by

TV ′r (M, T ,b) = (η′r)
2|V |

∑
a∈A′r

|E|∏
i=1

H(ai, bi)

|T |∏
s=1

∣∣∣∣∣∣∣
asi asj ask

asl asm asn

∣∣∣∣∣∣∣ , (51)
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Conjecture 5.14. [Yan21, Conjecture 1.3] Let {b(r)} be a sequence of colorings of

(M, T ). For each i ∈ {1, . . . , |E|}, let

θi =

∣∣∣∣∣2π − lim
r→∞

4πb
(r)
i

r

∣∣∣∣∣ , (52)

and let θ = (θ1, . . . , θ|E|).

Let M be a compact, oriented 3-manifold. Then for r running over odd integers and

TVr(M, T , b(r)) evaluated at q = e
2πi
r ,

lim
r→∞

2π

r
ln
(
TVr(M, T , b(r))

)
= Vol(MEθ), (53)

where MEθ is M with the hyperbolic polyhedral metric on (M, T ) with cone angles θ.

Note that choosing the colors to all be zero recovers Conjecture 1.2 since TVr(M) =

TVr(M, T , (0, . . . , 0)) and all cone angles are 2π, making MEθ = M . In [Yan21], Yang

verifies Conjecture 5.14 for all (M, T ,b(r)) yielding manifolds MEθ having sufficiently

small cone angles and nonempty boundary. This opens a potential route to proving

Conjecture 1.2 for hyperbolic manifolds with totally geodesic boundary, provided that

one is able to show that the cone angles can be deformed from sufficiently small to

2π. However, we will show that the relative Turaev–Viro invariants have a separate

use. There are many non-compact, 3-manifolds which can be given relatively simple

hyperbolic structures, albeit with only partially geodesic boundaries. These manifolds

are non-compact, and as such are out of the scope of the classical Turaev–Viro

invariants as well as Conjecture 1.2. Despite this, we are able to realize them as one

of the resulting manifolds MEθ and study them via the relative invariants. What we

speak of are the "outsides" of KTGs, first introduced in [Vee09]. To avoid distracting
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the reader from the topic of quantum invariants, we will postpone the discussion of

KTG outsides to Section 5.5.

5.3 The Reshetikhin–Turaev invariants

To study KTG outsides via the relative Turaev–Viro invariants, we will adapt the

approach taken in [DKY18], which is twofold. First, we relate the Turaev–Viro

invariants to the Reshetikhin–Turaev invariants through a theorem of Roberts. Second,

we express the Reshetikhin–Turaev invariants in terms of the colored Jones evaluation

of the KTG. Following [Vee09], we will strategically choose the sequence of colors b(r)

in Theorem 5.14 to yield a simpler computation, but this will also have the effect of

making MEθ homeomorphic to the outside of a KTG. Before this, let us state the

definition of the Reshetikhin–Turaev invariants as well as Roberts’s Theorem, both

appearing in [Yan21].

The Reshetikhin–Turaev invariants are a family of 3-manifold invariants that are

defined in terms of surgery. A 1-surgery on a 3-manifold M is the process of removing

embedded copies of S1 ×D2 from M and gluing in copies of D2 × S1 via homeomor-

phisms on the shared toroidal boundary components to obtain a new manifold M ′. A

convenient way to encapsulate the data necessary to describe a surgery is through a

framed link.

The link, itself, determines the core circles of each S1 ×D2 being removed, while the

framing determines the boundary homeomorphisms by demanding that the framing

curves bound disks in each D2×S1 being attached. By the Lickorish–Wallace Theorem

[Wal60], [Lic62], given any closed oriented 3-manifold M , there exists a framed link

L′ ⊂ S3 which yields M via surgery. Two framed links yield the same manifold this
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Figure 25: The handle slide, which takes place in any 2-holed annular neighborhood
of two link components.

way if and only if they differ by a finite sequence of two moves: the addition or removal

of ±1-framed unknots and the handle slide, seen in Figure 25.

Definition 5.15. Fix an integer r ≥ 3 and a 4r-th root of unity q. Let M be a closed

oriented 3-manifold containing an embedded framed link L, and let a : {L1, . . . , Lk} →

{0, 1, . . . , r − 2} be a coloring of L, where k is the number of components of L. Let

L′ ⊂ S3 be the framed link yielding M via surgery, and let L′′ ⊂ S3 be the preimage of

L ⊂M before this surgery. The SU(2)-version of the r-th relative Reshetikhin–Turaev

invariant is

RTr(M,L, a) = ηr〈Ωr, . . . ,Ωr, f
(a1), . . . , f (a|L|)〉L′∪L′′〈Ωr〉−σ(L′)

U+
, (54)

where Ωr = ηr
∑r−2

i=0 (−1)i[i + 1]f (i), U+ is the +1-framed unknot, and σ(L′) is the

signature of the linking matrix of L′.

For odd r ≥ 3, the SO(3)-version is defined for a : {L1, . . . , L|L|} → {0, 2, . . . , r − 3}

by

RT ′r(M,L, a) = η′r〈Ω′r, . . . ,Ω′r, f (a1), . . . , f (a|L|)〉L′∪L′′〈Ω′r〉
−σ(L′)
U+

, (55)

where Ω′r = η′r
∑r−3

i=0, i even[i+ 1]f (i).
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Invariance follows from the fact that 〈a〉U− = 〈a〉−1
U+

for all colors a, taken into account

by the normalization factor, and the fact that the elements Ωr and Ω′r are specially

designed to allow for handle slides, which do not affect the link signature (see [Lic97,

Chapter 13]).

Remark 5.16. Immediately from the definition, some key properties of the classical

Reshetikhin–Turaev invariants carry over to the relative version as well. In particular,

we have that RTr(S2 × S1, ∅) = 1 and RTr(S
3, ∅) = ηr, and more generally that

RTr(S
3, L, a) = ηr〈a1, . . . , a|L|〉L. For a connected sum, we have

RTr(M1#M2, L1 ∪ L2, (a1, a2)) = η−1
r RTr(M1, L1, a1)RTr(M2, L2, a2), (56)

where the links L1 and L2 are disjoint from the 2-spheres used to construct the

connected sum. Analogous properties hold for the SO(3)-version.

The classical Turaev–Viro invariants are related to the Reshetikhin–Turaev invariants

by a theorem of Roberts [Rob95, Theorem 3.7], itself an extension of an earlier result

by Turaev and Walker. In [Yan21], Yang sketches the proof of a generalization of

Roberts’s theorem to the relative setting. We state this version of the theorem as well

as the full proof.

Theorem 5.17. [Yan21, Theorem 1.2] At q = e
πi
r ,

TVr(M, T , b) = (ηr)
(vinn−χ(M))RTr(D(M ′), D(E), b), (57)

and at q = e
2πi
r for odd r,

TV ′r (M, T , b) = (η′r)
(vinn−χ(M))RT ′r(D(M ′), D(E), b), (58)



62

where M ′ is the 3-manifold obtained by puncturing M at every inner vertex of T ,

D(M ′) = M ′ ∪∂M ′ (−M ′) denotes the double of M ′, and D(E) denotes the framed

link obtained by doubling the edges of T , which inherits the coloring b.

Proof. We will prove only the SO(3)-case, since that is what the results of Section 6

will deal with, but the SU(2)-case is similar. First, we will identify a link L(M, T ,b),

called a chain-mail link, whose quantum evaluation realizes the r-th relative Turaev–

Viro invariant.

Consider the handle decomposition ofM dual to T , whose 0-handles are balls contained

in the interior of each tetrahedron, and whose 1-, 2-, and 3-handles are regular

neighborhoods of the faces, edges, and inner vertices, respectively. Let H be the

handlebody consisting of the union of the 0- and 1-handles. Let {δ1, . . . , δ|F |} be

meridians of the 1-handles and {ε1, . . . , ε|E|} be the attaching circles for the 2-handles,

pushed slightly into H, and give these curves the blackboard framing with respect

to H. Let {γ1, . . . , γ|E|} be small 0-framed trivial loops linking the respective {εi}.

Cable the {δi} and {εi} by Ω′r, and cable γi by the bi-th Jones–Wenzl projector. Let

L(M, T ,b) be the union of the framed, cabled δ-, ε-, and γ- curves. Refer to Figure

26 for an illustration of L(M, T ,b).

Note that since the 3-handles are not used in the construction of the chain-mail link,

we have L(M, T ,b) = L(M ′, T ,b). We set

CM ′
r(M, T ,b) = (η′r)

d0+d3〈L(M, T ,b)〉|
q=e

2πi
r
, (59)

where d0 and d3 are the numbers of 0- and 3-handles in the dual handle decomposition,

respectively. In [Rob95], it is shown that the non-relativized version of (59) does not

depend on the handle decomposition used in its construction. This will not be the case
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Figure 26: The chain-mail link corresponding to the handle decomposition dual to a
partially ideal triangulation.

for the relativized chain-mail link, which is defined only for handle decompositions

dual to partially ideal colored triangulations, but this will not pose an issue provided

we stick to using only that handle decomposition.

Referring to Definition 5.10, when the edges of a triangular face f are colored (i, j, k),

we will write θ(f) as shorthand for θ(i, j, k), and when the edges of a tetrahedron

t are colored (i, j, k, l,m, n), we will write 〈t〉 as shorthand for
〈 〉

. We claim

that CM ′
r(M, T ,b) = (η′r)

χ(M)TV ′r (M, T ,b). To see this, consider Figure 26 and the

relations in Figure 27. By applying the fusion rule to every δ-curve followed by the
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Ω′r

a a

i

j

k

i
j
k

i
j
k

Figure 27: Top: The Hopf link relation. Bottom: The fusion rule.

Hopf link relation to every εi, γi pair, we obtain

CM ′
r(M, T ,b) = (η′r)

d0+d3

∑
a∈A′r

|E|∏
i=1

(η′r(−1)ai [ai + 1])

(
(−1)bi

[(ai + 1)(bi + 1)]

[ai + 1]

)
·

|F |∏
j=1

(η′r)
−1

θ(fj)

|T |∏
s=1

〈ts〉

= (η′r)
d0−d1+d2+d3

∑
a∈A′r

|E|∏
i=1

H(ai, bi)

|F |∏
j=1

θ(fj)
−1

|T |∏
s=1

〈ts〉

= (η′r)
χ(M)+2|V |

∑
a∈A′r

|E|∏
i=1

H(ai, bi)

|T |∏
s=1

(
4∏

k=1

θ(fts,k)
− 1

2

)
〈ts〉 ,

where the last equality is obtained by matching each face to the two tetrahedra in

which it appears (fts,k denotes the k-th face of the tetrahedron ts). Observe that once

we know a face lies in a certain tetrahedron ts, we can rewrite the value of the theta

symbol in (45) as
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θ(fts,1) = θ(i, j, k) = (
√
−1)T1

[T1 − i]![T1 − j]![T1 − k]![T1 + 1]!

[i]![j]![k]!

= (
√
−1)T1

[Q3 − T2]![Q2 − T3]![Q1 − T4]![T1 + 1]!

[i]![j]![k]!
,

where the quantities Ta and Qb were defined below (44) with reference to Figure 24.

We may obtain similar expressions for the remaining three theta symbols θ(fts,k), k =

2, 3, 4. Therefore,

CM ′
r(M, T ,b) = (η′r)

χ(M)+2|V |
∑
a∈A′r

|E|∏
i=1

H(ai, bi)·

∏
t∈T

(
√
−1)−λ

[ati ]![atj ]![atk ]![atl ]![atm ]![atn ]!√∏
a,b

[Qb − Ta]!
4∏

k=1

[Tk + 1]!

〈t〉

= (η′r)
χ(M)+2|V |

∑
a∈A′r

|E|∏
i=1

H(ai, bi)

|T |∏
s=1

∣∣∣∣∣∣∣
asi asj ask

asl asm asn

∣∣∣∣∣∣∣
= (η′r)

χ(M) TV ′r (M, T ,b),

where the second-to-last equality is obtained by evaluating the tetrahedron graph as

in 46.

On the other hand, by investigating the 3-manifold obtained by surgery on L(M, T ,b),

we will also be able to conclude that CM ′
r(M, T ,b) = (η′r)

vinnRT ′r(D(M ′), D(E),b).

Following [Rob95, Theorem 3.7], we begin by constructing two relevant 4-manifolds

with homeomorphic boundaries, W1 and W2. Let V1 be obtained by attaching |F |

4-dimensional 1-handles to B4 along the δ-curves in S3 = ∂B4, and let V2 be obtained

by attaching 2-handles instead. Note that we can alternatively view V1 as the result
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of removing |F | copies of D2 × D2 from the inside of B4, while V2 is the result of

gluing |F | copies of D2 ×D2 to the outside of B4. Thus, ∂V1
∼= ∂V2

∼=
|F |
#
i=1

S2 × S1.

We complete the constructions by letting W1 and W2 be obtained by attaching 4-

dimensional 2-handles along the ε-curves in V1 and V2, respectively, and disjointly

from the previously attached handles. Thus, we have ∂W1
∼= ∂W2 as well.

Now, we can identify W1 by comparing its handle decomposition to the one for M

which is dual to T . Write

M = H0
1 ∪ · · · ∪H0

|T |∪ H1
1 ∪ · · · ∪H1

|F |∪ H2
1 ∪ · · · ∪H2

|E| ∪H3
1 ∪ · · · ∪H3

vinn , (60)

and

W1 = G0
1 ∪ G1

1 ∪ · · · ∪G1
|F |∪ G2

1 ∪ · · · ∪G2
|E|, (61)

where Hd
k is a 3-dimensional d-handle and Gd

k is the corresponding 4-dimensional

d-handle. Since Gd
k
∼= Hd

k × I with consistent gluings, we can see that W1
∼= (M ′ ×

I)\(B3×S1)\(|F |−g(H)). The reason for the |F |−g(H) copies of B3×S1 is the presence

of the redundant 1-handles for W1, only g(H) = 1 + |T | of which are required to

produce H × I, where H is the handlebody previously defined for M . Therefore,

∂W1
∼= ∂W2

∼= D(M ′)#(S2 × S1)#(|F |−g(H)) = D(M ′)#(S2 × S1)#(|T |−1).

Since gluing 4-dimensional 2-handles (as we did in the construction ofW2) corresponds

to surgering along a link in the boundary, D(M ′)#(S2 × S1)#(|T |−1) is indeed the

3-manifold obtained by surgering along L′, the sublink of L(M, T ,b) consisting of the

δ- and ε-components. As shown in [Rob95, Theorem 3.7], we have σ(L′) = 0. Note

that after surgery, γi becomes isotopic to the core of the 2-handle attached along εi,

which is the double of the edge ei. Hence, we have by Definition 5.15 that



67

CM ′
r(M, T ,b) = (η′r)

|T |+vinn−1RT ′r(D(M ′)#(S2 × S1)#(|T |−1), D(E),b)

= (η′r)
vinnRT ′r(D(M ′), D(E),b),

where the last equality holds by the properties in Remark 5.16 and the fact that the

framed link D(E) and the copies of (S2 × S1) are disjoint.

5.4 The Reshetikhin–Turaev TQFT

A second fact of central importance is the relationship between the relative Reshetikhin–

Turaev invariants and the colored Jones polynomial resulting from the TQFT frame-

work of [Bla+95]. This relationship was first explored in [DKY18], where the authors

used it to explicitly compute the Turaev–Viro invariants of some link complements,

which aided in verifying Conjecture 1.2 for these cases. We take a moment to review

the key properties of the TQFT underpinning the relative SO(3) Reshetikhin–Turaev

invariants.

Definition 5.18. The SO(3)-version of the Reshetikhin–Turaev topological quantum

field theory (TQFT) is a map V ′r assigning a closed oriented surface Σ containing a

colored framed link L to a finite-dimensional C-vector space V ′r (Σ, L, a). By a "framed

link" in a surface, we mean a collection of oriented closed intervals L1, . . . , Ln, and a

coloring a = (a1, . . . , an) of such a link places ai distinct points on the interval Li. V ′r

satisfies the following axioms:
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1. V ′r (∅) = C.

2. V ′r (−Σ,−L, a) = V ′r (Σ, L, a).

3. V ′r (Σ1 t Σ2, L1 t L2, (a1, a2)) ∼= V ′r (Σ1, L1, a1)⊗ V ′r (Σ2, L2, a2).

4. V ′r is functorial with respect to cobordisms. In other words, if M is a compact,

oriented 3-manifold containing an a-colored framed KTG Γ and ∂M = Σ1 tΣ2,

then V ′r induces a linear map

Z ′r : V ′r (Σ1,Γ ∩ Σ1, a′1)→ V ′r (Σ2,Γ ∩ Σ2, a′2),

where a′1 and a′2 are induced by a. In particular, if ∂M = Σ, then we have a

unique vector Z ′r(M,Γ, a) := Z ′r(1) ∈ V ′r (Σ,Γ ∩ Σ, a′).

5. There is a non-degenerate hermitian sesquilinear pairing 〈·, ·〉′r such that if

∂(M1,Γ1) = ∂(M2,Γ2) = (Σ,Γ1 ∩ Σ), then

RT ′r(M1 ∪Σ (−M2),Γ1 ∪ (−Γ2), a′) = 〈Z ′r(M1,Γ1, a1), Z ′r(M1,Γ1, a2)〉′r,

provided the colors agree Γ1 ∩ Σ.

The SU(2)-version is defined analogously.

When considering KTGs, the most important of these vector spaces to us will be the

TQFT of the 2-sphere containing a 2- or 3-component framed link respectively colored

by (i, j) or (i, j, k), which we will denote as either V ′r (S2(i, j)) or V ′r (S2(i, j, k)), and

also the TQFT of the solid torus, V ′r (D2 × S1). Fortunately, these vector spaces are

well-understood.
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Figure 28: The colored graphs which generate the TQFTs of Proposition 5.19.

Proposition 5.19. [Bla+95, Theorem 1.15, Corollary 4.10] We have

rank(V ′r (S2(i, j))) =


1 if i = j

0 if i 6= j

,

rank(V ′r (S2(i, j, k))) =


1 if (i, j, k) is r-admissible

0 otherwise
, and

rank(V ′r (D2 × S1)) =
r − 1

2
.

Furthermore, when i = j, V ′r (S2(i, j)) is generated by Ui := Z ′r(B
3, I, (i)), where I

denotes the axis of B3. Likewise, when (i, j, k) is admissible, V ′r (S2(i, j, k)) is generated

by Ui,j,k := Z ′r(B
3, Y, (i, j, k)), where Y denotes the tripod graph. Lastly, V ′r (D2 × S1)

is generated by the basis {ei} given by ei := Z ′r(D
2×S1, S1×{0}, (i)), where S1×{0}

denotes the core of D2 × S1. Furthermore, this basis is orthonormal with respect to

〈·, ·〉′r. A visual depiction of these generators can be seen in Figure 28.

5.5 Knotted Trivalent Graphs

In this section, we discuss KTGs and related topics which are relevant to Main

Theorem 2.
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Figure 29: The KTG isotopy moves.

Definition 5.20. A (framed) knotted trivalent graph (KTG) is a smooth embedding

of a trivalent graph Γ ↪→ S3, which is the spine of an embedded ribbon surface. Edges

without vertices are allowed, so in particular, all framed links are considered to be

KTGs.

Similarly to links, we consider KTGs up to isotopy. The moves of Figure 29 together

with the Reidemeister moves determine whether two given diagrams represent isotopic

KTGs. When drawing KTG diagrams, we adopt the convention of [Vee09] where

instead of drawing the ribbon surface, we use a gray marker to indicate a half-twist

along an edge. For instance, the top left diagram in Figure 29 depicts two positive

half-twists.
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Figure 30: Top left: The positive half-twist, which changes the framing of an edge.
Top right: The triangle move. Bottom left: The unzip move. Bottom right: The
augmented unzip move.

Van der Veen proved in [Vee09, Theorem 1] than any KTG can be obtained from the

standard tetrahedron graph by a sequence of positive/negative half-twist, triangle,

and unzip moves, which are depicted in Figure 30. These generating moves are useful

in computing quantum evaluations of KTGs as they correspond to the well-known

relations of Figure 31, which may be found in [Lic62]. These relations can all be

proven skein theoretically. For example, to prove the half-twist relation, one may

observe that all but one state of the cabled diagram contain a turn-back, and thus

equal zero by Definition 5.3. Observe that the third relation of Figure 31 is the most

computationally taxing, which in general turns the quantum evaluation of a KTG into

a multi-sum taken over all admissible colorings of a different KTG with some colors

predetermined. Augmented KTGs were introduced in [Vee09] in order to simplify this

computation under certain conditions. They are obtained as follows:

Definition 5.21. An augmented KTG is the result of taking any sequence of KTG

generating moves and replacing all of the unzip moves with augmented unzip moves, as

seen in the bottom-right of Figure 30. We call the new link components introduced by
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Figure 31: Reversing the KTG generating moves.

the augmented unzip move augmentation rings. Write A for the set of augmentation

rings.

Observe that the result of unzipping a half-twisted edge is two crossing strands. Note

that this is the only way to generate non-nugatory crossings.

In general, the boundary of a KTG complement is a higher-genus surface, and as such

the complement cannot be given a complete finite volume hyperbolic structure if the

boundary is made to be entirely cusped or entirely geodesic. Instead, we associate

to a KTG Γ its outside O(Γ), defined in [Vee09, Definition 14], which has a partially

ideal boundary.

Definition 5.22. The outside of Γ, O(Γ), is a 3-manifold obtained by removing an

open ball around every vertex of Γ and a closed solid cylinder around every edge

(or a closed solid torus for an edge without vertices) from S3. KTG outsides are
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implicitly given a boundary pattern consisting of a simple closed curve around every

puncture of the thrice-punctured 2-sphere boundary components of O(Γ). If a KTG

outside admits a complete hyperbolic structure, then that structure is unique up to

homeomorphism provided we restrict ourselves to homeomorphisms which preserve

the boundary pattern.

In [Vee09], it is shown that all augmented KTGs have hyperbolic outsides comprised

of regular hyperbolic octahedra. The precise value of the volume will be useful to us

when proving Corollary 1.5, so we state the full result here.

Proposition 5.23. [Vee09, Theorem 2, part 2] Let Γ be an augmented KTG whose

sequence of generating moves contains t triangle moves. Then, Vol(O(Γ)) = (2t+2)voct,

where voct ≈ 3.66386 is the volume of a regular ideal hyperbolic octahedron.

Van der Veen introduced augmented KTGs and their outsides with the express purpose

of stating and proving a version of the volume conjecture for augmented KTGs. The

colored Kauffman bracket and colored Jones polynomial may be extended to KTGs

as follows: edges of the KTG Γ are assigned an SU(2) or SO(3) coloring a. If a

is admissible, there is a unique way of cabling the edges of Γ by the corresponding

Jones–Wenzl projectors, and we define 〈Γ〉a by taking the Kauffman bracket of the

resulting sum of framed links, extended linearly. Otherwise, if a is not admissible, we

define 〈Γ〉a to be zero. We state van der Veen’s conjecture here for the completeness

of discussion.
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Conjecture 5.24. Let Γ be a KTG and let Jr(Γ) = 〈Γ〉r
(〈U〉r)s , where U is the zero-framed

unknot and s is the number of split components of Γ. Then, for r running over odd

integers and Jr(Γ) evaluated at q = e
πi
r ,

lim
r→∞

2π

r
ln(|Jn(Γ)|) = Vol(O(Γ)). (62)

In [Vee09, Theorem 2, part 3], it is proven that all augmented KTGs (with a sufficiently

large number of additional redundant augmentation rings) satisfy Conjecture 5.24.

Note that the KTGs which can be generated solely by triangle moves are a special

case of augmented KTGs having zero augmentation rings. For this reason, one may

view Corollary 1.5 as a partial extension of this result to the setting of the relative

Turaev–Viro invariants. We are finally ready to prove Main Theorem 2.
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6 Proof of Main Theorem 2

The goal of this section is to prove Main Theorem 2, which we restate here.

Main Theorem 2. Let r ≥ 9 be an odd integer and Γ ⊂ S3 an augmented KTG with

vΓ vertices and |A| augmentation rings. Let M , T , and b(r) be defined as in Section

6.1, and let vinn be the number of inner vertices of T . Then,

TVr(M, T , b(r)) = 2vΓ+|A|−1(η′r)
2−2vΓθ(n, n, n)−vΓ [n+ 1]−vinn

∑
0≤i≤r−3,

i even

|〈Γ〉i,n|2 , (7)

where η′r =
2 sin( 2π

r
)√

r
, and 〈Γ〉i,n is the ation of Γ where the augmentation rings are

colored by i = (i1, . . . , i|A|) and all other edges by n.

6.1 Triangulations via augmented KTGs

Recall from Definition 5.13 that the three parameters required by Yang’s relative

Turaev–Viro invariants are a compact, oriented 3-manifold M , a partially ideal

triangulation T of M , and a sequence of colorings b(r) of the edges of T . Given an

augmented KTG Γ, we will show that Γ can be enhanced into a triangulation by

adding extra edges and inner vertices as necessary.

Proposition 6.1. Let Γ ⊂ S3 be an augmented KTG. Let ν(V (Γ)) be an open regular

neighborhood of the vertices of Γ and ν(A(Γ)) an open regular neighborhood of the

augmentation rings. Consider the manifold M = S3 \ (ν(V (Γ))t ν(A(Γ))). The edges

of Γ form a framed link L = M ∩ E(Γ) ⊂ M . Let L′ ⊂ M be the (unframed) spine

of L. Then, there exists a partially triangulation T of M such that L′ is spanned by

E(T ).
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Proof. It suffices to first show that we can add extra edges and inner vertices to obtain

a polyhedral decomposition P of M with no monogon or bigon faces. Once this has

been done, we can break the polyhedra into tetrahedra by the process of "coning to

a vertex" as described in [Pur20, Chapter 4.1]. Simply choose any vertex v and add

edges between v and all other non-adjacent vertices. Next, create more edges and faces

as necessary to ensure that every pair of edges meeting v is contained in a triangular

face and every triple of triangles meeting v is contained in a tetrahedron. Split off the

resulting tetrahedra and continue exhaustively.

We may assume that Γ lies on the plane S2 ⊂ S3 away from augmentation rings and

crossings. Our polyhedral decomposition will consist of two identical polyhedra, one

lying above S2 and the other below. We will obtain P by induction on |A|, flattening

Γ as we go. For the base case |A| = 0, Γ is precisely one of the graphs referenced by

Corollary 1.5, ignoring the possible presence of half-twists which do not influence our

triangulation. Such graphs are already planar and are free of monogons and bigons,

since the triangle move introduces a new triangular face and increases the edge-count

of neighboring faces. We define P by replacing the trivalent vertices of Γ with ideal

(i.e., truncated) ones, and we are done.

For the induction step, suppose that Γ is obtained from Γ′ by performing a single

unzip move on the edge e. Let D be a collection of disjoint embedded disks which are

bounded by the augmentation rings of Γ and minimally intersect the rest of Γ. Let

d ∈ D be the disk produced by the new unzip move. Then the interior of d intersects

Γ in exactly two points. To flatten Γ, first cut S3 along d and remove any half-twists

that may have been produced by the unzip by performing half-rotations, as in the top

image of Figure 32.
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Figure 32: Top: Removal of half-twists. Bottom: Contracting and augmentation ring
to an ideal vertex.

Next, re-glue along d and add two inner vertices where int(d) intersects Γ and three

edges where d intersects S2. To better see the new faces we have created, cut along

S2 and unfold each half-disk, collapsing the arcs of the augmentation ring to ideal

vertices. The result is two pairs of triangular faces, one such pair being depicted in the

bottom image of Figure 32. The exact face-pairing map on these four faces depends

on whether the number of removed half-twists was odd or even.

With these new faces, the polyhedral decomposition of Γ′, which exists by assumption,

may be extended to one on Γ after one final step. If the edge e ∈ E(Γ′) intersected

another disk d′ ∈ D at one of our previously created inner vertices before the unzip,

then after unzipping, two parallel strands will intersect d′ and we replace the original

inner vertex with two. In the end, we have created two new triangular faces and some

number of rectangular faces between the parallel strands, and the edge-counts of all

other faces could only have been increased. Therefore, we have obtained a polyhedral

decomposition of M with no monogon or bigon faces.
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Note that the above polyhedral decomposition is similar to the one appearing in

[Pur20, Proposition 7.8]. A key difference, however, is that we do not collapse strands

of the KTG to ideal vertices, but rather leave them as edges of T , possibly split-up

by new inner vertices (this is what is meant by E(T ) spanning L′). Now that we have

defined M and T , the final parameter needed for the relative Turaev–Viro invariants

is the sequence of colorings of T . For an odd integer r, let n = r±1
2

with the sign

chosen so that n is even. Note that when r ≥ 9, (n, n, n) is an r-admissible triple.

Define the coloring b(r) on T by assigning the color n to the edges which span L′ and

0 to all other edges (i.e., the dotted ones in Figure 32 as well as any created in the

coning process). We are now ready to prove Main Theorem 2.

Proof of Main Theorem 2. By Proposition 5.12 and Theorem 5.17, we have that at

q = e
2πi
r ,

TVr(M, T ,b(r)) = 2b2(M)(η′r)
vinn−χ(M)RT ′r(D(M), D(E),b(r))

= 2vΓ+|A|−1(η′r)
vinn−vΓRT ′r(D(M), D(E),b(r)). (63)

Applying the color 0, we get

RT ′r(D(M), D(E),b(r)) = RT ′r(D(M), D(L′), (n, . . . , n)). (64)

Here, note that we implicitly view D(L′) as a banded link in D(M) by taking the

blackboard framing with respect to the planar projection, and doubling it along the

boundary 2-spheres of M . However, D(L′) and D(L) are isotopic in D(M), so we

have

RT ′r(D(M), D(L′), (n, . . . , n)) = RT ′r(D(M), D(L), (n, . . . , n)),
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thereby recovering the original framing of L. By the TQFT axioms in Definition 5.18,

we have that

RT ′r(D(M), D(L), (n, . . . , n)) = 〈Z ′r(M,L, (n, . . . , n)), Z ′r(−M,−L, (n, . . . , n))〉′r

(65)

= |Z ′r(M,L, (n, . . . , n))|2.

Since Γ was an augmented KTG, we have that Z ′r(M,L, (n, . . . , n)) ∈ V ′r (∂M,L ∩

∂M, (n, . . . , n)) = V ′r (S
2(n, n, n))⊗vΓ⊗V ′r (S2(n, n))⊗vinn⊗V ′r (D2×S1)⊗|A| by Definition

5.18. Proposition 5.19 tells us that V ′r (∂M,L ∩ ∂M, (n, . . . , n)) is generated by

{U⊗vΓ
n,n,n ⊗ U⊗vinn

n ⊗ ei}, where i = (i1, . . . , i|A|) is taken over the SO(3) colorings of A.

By Definition 5.18 and Remark 5.16, the first two types of generators satisfy

|Un|2 = 〈Z ′r(B3, I, (n)), Z ′r(−B3,−I, (n))〉′r

= RT ′r(B
3, U, (n))

= η′r [n+ 1], and

|Un,n,n|2 = 〈Z ′r(B3, Y, (n, n, n)), Z ′r(−B3,−Y, (n, n, n))〉′r

= RT ′r(B
3, θ, (n, n, n))

= η′r θ(n, n, n),

where U denotes the zero-framed unknot and θ denotes the theta graph. Writing

Z ′r(M,L, (n, . . . , n)) =
∑

0≤i≤r−3,
i even

λi U
⊗vΓ
n,n,n ⊗ U⊗vinn

n ⊗ ei, (66)
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we have

|Z ′r(M,L, (n, . . . , n))|2 = (η′r θ(n, n, n))vΓ(η′r [n+ 1])vinn
∑

0≤i≤r−3,
i even

|λi|2 (67)

by the orthogonality of {ei}. To find λj for fixed j, we write

λ′j = λj (η′vΓ+vinn
r θ(n, n, n)vΓ [n+ 1]⊗vinn) and consider

λ′j =

〈 ∑
0≤i≤r−3,

i even

λi U
⊗vΓ
n,n,n ⊗ U⊗vinn

n ⊗ ei, U
⊗vΓ
n,n,n ⊗ U⊗vinn

n ⊗ ej

〉′
r

=

〈
Z ′r(M,L, (n, . . . , n))

⊗ Z ′r(−B3,−Y, (n, n, n))⊗vΓ ⊗ Z ′r(−B3,−I, (n))⊗vinn

⊗ Z ′r

 |A|⊔
j=1

−(D2 × S1),

|A|⊔
j=1

−(S1 × {0}), j

〉′
r

= RT ′r

(
M ∪

vΓ+vinn⊔
k=1

B3 ∪
|A|⊔
j=1

−(D2 × S1),

L ∪
vΓ⊔
k=1

Y ∪
vinn⊔
k=1

I ∪
|A|⊔
j=1

−(S1 × {0}), (n, . . . , n, j1, . . . , j|A|)

)

= RT ′r(S
3,Γ, (n, . . . , n))

= η′r〈Γ〉n,

which yields the desired result.

Remark 6.2. Observe that in the above proof, we only make use of b(r) when it comes

to the zero-color of the extra edges added in Proposition 6.1, not the color n for the

original edges of Γ. Indeed, a corresponding version of Main Theorem 2 does hold for

any admissible coloring of Γ. We choose to present the theorem for the all-n coloring
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purely because the all-n coloring will be significant to the proof of Corollary 1.5 in

the next section. We also remark that Proposition 6.1 and Main Theorem 2 hold for

(non-augmented) planar KTGs as well. We state only the result, but the proof follows

from Theorem 5.17 and the TQFT strategy used above.

Proposition 6.3. Let r ≥ 3 be an odd integer and Γ ⊂ S2 a planar KTG with vΓ

vertices colored admissibly by b(r)
Γ . Let M and T be defined as in Section 6.1, and

let vinn be the number of inner vertices of T . Let b(r) be the admissible coloring of T

induced by b(r)
Γ . Then,

TVr(M, T , b(r)) = 2vΓ−1(η′r)
2−2vΓθ(n, n, n)−vΓ [n+ 1]−vinn |〈Γ〉b(r)|2 . (68)

6.2 Proof of Corollary 1.5

In this section, we use Main Theorem 2 to verify Conjecture 5.14 for certain choices

of (M, T ,b(r)). Let us consider a KTG Γ ⊂ S3, which can be generated from the

tetrahedron graph without unzip moves, and let M , T , and b(r) be defined as in

Section 6.1. Note that Γ is already an augmented KTG having zero augmentation

rings and vinn = 0. In this scenario, the conclusion of Main Theorem 2 simplifies to

TVr(M, T ,b(r)) = 2vΓ−1(η′r)
2−2vΓθ(n, n, n)−vΓ |〈Γ〉n|2 , (69)

so all that remains is to compute |〈Γ〉n|2 and evaluate the limit in (52).

Proof of Corollary 1.5. Let S be a sequence of generating moves for Γ. Write θ+, θ−,

and t for the number of positive half-twist, negative half-twist, and triangle moves in

S, respectively. By reversing the generating moves in S using the relations of Figure
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31, we obtain

〈Γ〉n =
(
(−1)

n
2 q

n2+2n
4

)θ+−θ−θ(n, n, n)−t

〈 〉t+1

. (70)

By (69), we must consider

lim
r→∞

2π

r
log(2vΓ(η′r)

2−2vΓθ(n, n, n)−vΓ |〈Γ〉n|2). (71)

at q = e
2πi
r where r ranges over odd integers greater than or equal to 9. By substituting

in (70) and observing that η′2−2v
r grows sub-exponentially, this limit equals

lim
r→∞

2π

r
log

∣∣∣∣∣∣θ(n, n, n)−t−vΓ

〈 〉t+1
∣∣∣∣∣∣
2 . (72)

The growth rates of certain 6j symbols have been studied extensively in the literature.

In [Bel+22, Lemma 3.16], the authors show

lim
r→∞

2π

r
log

(∣∣∣∣
〈 〉 ∣∣∣∣) = voct, (73)

where voct ≈ 3.66386 is the volume of a regular ideal hyperbolic octahedron. We claim

that |θ(n, n, n)| grows sub-exponentially.

Recall from Definition 5.10 that the value of the n-colored theta graph is

θ(n, n, n) = (−1)
3n
2

[3n
2

+ 1]!([n
2
]!)3

([n]!)3
. (74)
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Writing k = n
2
, this becomes

θ(n, n, n) = (−1)3k [3k + 1]!([k]!)3

([2k]!)3

= (−1)3k [k]![2k + 1] · · · [3k + 1]

([k + 1] · · · [2k])2
. (75)

We have different relations depending on the exact value of n = r±1
2
. If n = r−1

2
, then

for all j ∈ Z we have

[k + j] =
sin(2π

r
( r−1

4
+ j))

sin(2π
r

)

=
sin(π

2
+ 2π

r
(−1

4
+ j))

sin(2π
r

)

=
sin(π

2
− 2π

r
(−1

4
+ j))

sin(2π
r

)

=
sin(2π

r
( r+1

4
− j))

sin(2π
r

)

= [k +
1

2
− j]. (76)

Note that (76) implies that [2k + j] = −[2k + 1− j]. Using these, (75) simplifies to

θ(n, n, n) = (−1)4k+1 [k]!

[1
2
][3

2
] · · · [k − 1

2
]
[k]. (77)

Likewise, if n = r+1
2
, then for all j ∈ Z we have

[k + j] = [k − 1

2
− j], (78)

and in this case, (75) simplifies to

θ(n, n, n) = (−1)4k+2 [k]!

[−1
2

][1
2
] · · · [k − 3

2
]

[k − 2][k − 1][k]

[1
2
]2

. (79)
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In either case, notice that (77) and (79) contain products of the form
∏k

j=1
[j]

[j− 2±1
2

]
.

By L’Hôpital’s Rule,

lim
r→∞

[j]

[j − 2±1
2

]
= lim

r→∞

sin(2π
r
j)

sin(2π
r

(j − 2±1
2

))

= lim
r→∞

−2π
r2 j

−2π
r2 (j − 2±1

2
)

cos(2π
r
j)

cos(2π
r

(j − 2±1
2

))

=
j

j − 2±1
2

(80)

for fixed j. Observe also that the term-wise sequences are monotone increasing.

Therefore, we have

lim
r→∞

2π

r

k∑
j=1

log

(
[j]

[j − 2±1
2

]

)
≤ lim

r→∞

2π

r

k∑
j=1

log

(
j

j − 2±1
2

)

= lim
r→∞

2kπ

r
Ave
{

log

(
j

j − 2±1
2

)}k
j=1

, (81)

where Ave{sj}kn=j denotes the average of the finite sequence {sj}kn=j . As the sequence{
log
(

j

j− 2±1
2

)}∞
j=1

converges to zero as j → ∞, its average also converges to zero as

k →∞. Thus, the limit in (81) vanishes as claimed. Next, we claim that the same

happens for the remaining terms in (77) and (79). Indeed, by L’Hôpital’s Rule we

have in particular that

lim
r→∞

2π

r
log([k]) = lim

r→∞
2π

d
dr

[k]

[k]

= lim
r→∞

2π
π
2
(∓ 1

r2 ) cos(2π
r

( r±1
4

))

sin(2π
r

( r±1
4

))
+

2π
r

cos(2π
r

)
r

2π
sin(2π

r
)

= 0. (82)
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We can similarly show that the terms [k − 1] and [k − 2] in (79) also grow sub-

exponentially. We conclude that

lim
r→∞

2π

r
log(TV ′r (M, T ,b(r))) = (2t+ 2)voct. (83)

To prove Corollary 1.5, we must show this is the volume of the manifold MEθ , which

is M equipped with the hyperbolic polyhedral metric (M, T ) having cone angles

θ = (θ1, · · · , θ|E|) determined by the choice of coloring. For b(r) = (n, . . . , n) these are

θi =

∣∣∣∣2π − lim
r→∞

4πn

r

∣∣∣∣ = 0. (84)

Recall that a geodesic edge with cone angle zero is precisely an annular cusp. Thus,MEθ

is homeomorphic to the outside of Γ, OΓ. By Proposition 5.23, we have Vol(MEθ) =

(2t+ 2)voct, which agrees with (83).

6.3 Discussion of results

In the case where the KTG Γ is planar, such as in the statement of Corollary 1.5,

Conjecture 1.2 can be viewed as a Turaev–Viro analogue of the volume conjecture for

polyhedra stated in [CGV15, Conjecture 1.3]. The volume conjecture for polyhedra

asserts that taking the limit of the colored Jones evaluations of a planar KTG at the

classical root of unity q = e
πi
r yields the volume of a single hyperbolic polyhedron with

cone angles determined in the same manner as in Conjecture 5.14. Since a polyhedral

decomposition of MEθ can be obtained by taking two copies of such a polyhedron,

one above and one below the projection plane as in the proof of Proposition 6.1,

the volumes predicted by the two conjectures differ by a factor of 2. In this light,
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Corollary 1.5 can be viewed as an analogue of [CGV15, Theorem 1.4], albeit for only

the all-n coloring. In addition to focusing on different roots of unity, the two methods

of proof are vastly different. Rather than using Turaev–Viro invariants or TQFTs,

the authors of [CGV15] prove their result using the shadow state-sum formulation

of the colored Kauffman bracket, a result first appearing in [KR89] which was later

expanded upon by Turaev [Tur91].

Indeed, shadow-state sums do provide an alternate method of proof for the planar

version of Main Theorem 2 (Proposition 6.3), in lieu of using Theorem 5.17 and the

Reshetikhin-Turaev TQFT. Recall that in general, the relative Turaev–Viro invariants

depend on the choice of triangulation T and colors {b(r)}, and as such are not 3-

manifold invariants. However, it can be shown using handle slides that the chain-mail

link constructed in the proof of Theorem 5.17 is unaffected by the addition or removal

of zero-colored edges and the coning procedure used in Proposition 6.1. Consequently,

one can instead construct the chain-mail link using the handle decomposition dual to

the standard polyhedral decomposition of S3 corresponding to Γ. Since this consists

precisely of two polyhedra with faces identified in pairs, one may apply the fusion rule

to the ε-curves rather than the δ-curves as we did in the proof of Theorem 5.17. The

relations of Figure 31 then lead one to recover the shadow-state sum formula. This

connection has previously been observed by Kevin Walker from a TQFT perspective,

but it is still interesting to note that Yang’s chain-mail link realizes this formula.
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