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Abstract
This thesis addresses an important societal consideration in the application of Reinforce-

ment Learning (RL): the equitable distribution of its benefits across different demographic

groups. Specifically, we investigate how to incorporate group fairness into reinforcement

learning algorithms to ensure that their societal impact is just and fair. The thesis is

organized around two key contributions to group fairness in RL.

The first contribution focuses on multi-task group fairness in reinforcement learn-

ing. In many practical applications, such as recommender systems or fine-tuning large

language models, a single policy is required to perform multiple tasks in real-world en-

vironments. In this thesis, we introduce a multi-task fairness constraint and propose a

novel algorithm to solving this problem based on constrained optimization. Through

experiments in Mujoco, we demonstrate that our method better ensures group fairness

compared to the previous approach that lacks this multi-task fairness constraint.

The second contribution studies group fairness in the context of fine-tuning large lan-

guage models (LLMs) through Reinforcement Learning with Human Feedback (RLHF).

Current approaches to address bias in LLMs largely concentrate on mitigating harmful

language and often overlook group fairness considerations. In this work, we empha-

sis on demographic parity, a key group fairness definition that aligns with the broader

fair machine learning research. In this work, we identify reward models as a potential

source of bias in the RLHF process and propose a novel evaluation method based on

arXiv meta-data for group fairness in reward models. Our experiment on fine-tuning the

Phi-1.5 model further demonstrates that biases in reward models can propagate into the

fine-tuned LLMs during RLHF training.
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Chapter 1

Group Fairness in Reinforcement

Learning

In this chapter, we will first introduce the group fairness problem in Reinforcement Learn-

ing, followed by the two contributions under this problem. Then we describe the outline

of this paper.

1.1 Importance of Ensuring Group Fairness in Reinforcement

Learning

Learning-based algorithms have been applied more to real-world high-stakes social prob-

lems, such as bank loans, medical interventions, and school admissions. They are also ap-

plied in less high-stake scenarios, by making movie recommendations, suggesting prod-

ucts to buy, and question answering. In both cases, the deployment of learning-based

algorithms will make automated decisions that have a direct impact on our society. There-

fore, one critical issue is to ensure the algorithm has low social biases and delivers fair

outcomes for people from all demographic groups. However, since these social problems

are long-term in nature, an unconstrained algorithm may create a feedback loop over

time and enlarge the discrepancy between people from different social groups. Reinforce-

1



CHAPTER 1. GROUP FAIRNESS IN REINFORCEMENT LEARNING 2

ment Learning has demonstrated a superior performance in many of these tasks, which

are sequential-decision making problems in nature. When the fairness requirement is ac-

counted for in the RL algorithm, it has the promise of addressing the long-term fairness

issue and thus has an advantage over fair machine learning algorithms.

In this thesis, we study the problem of group fairness reinforcement learning. We focus

on the aspect of group fairness. It requires the algorithm to deliver similar outcomes for

people from different social groups, categorized by their sensitive information such as

gender, education, or social-economic status.

1.2 Multi-Task Group Fairness in Reinforcement Learning

For our first contribution, we developed a novel algorithm for multi-task group fairness in

reinforcement learning, and demonstrated that policies trained with this approach achieve

a smaller disparity in average rewards across social groups and therefore better ensures

group fairness.

Many real-world applications are multi-task in nature and it is critical to ensure group

fairness is achieved for all tasks. To the best of our knowledge, this is the first work

that accounts for the fairness problem in multi-task reinforcement learning problem. To

further motivate our problem, we discuss two application scenarios in the following.

Scenario 1: RL based Recommender systems. Consider an example in multi-task rec-

ommender systems, where an RL policy recommends contents catered to the preference

of the users and aims to achieve multiple tasks such as a high long-term user-engagement

and a high click-through-rate for advertisement content. The users’ sensitive information,

such as age, social economic status and gender, is taken by the policy as input features to

make recommendations. When there is no group fairness consideration during the algo-

rithm development, it is more likely for the algorithm to maximize the user-engagement

of the majority social groups, and creating a feedback loop by increasing the size of the

majority social groups. This is a realistic concern, as It is known that some social media

platforms such as TikTok has predominately younger demographics, while Twitter and
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Reddit have more male users. Ensuring the group fairness criteria over multiple tasks re-

quires to limit the user-engagement of the majority groups. With a more balanced social

group ratios in the system’s user pool, more content creators need to include the minority

group as their targeting audience and thus creating content that is more inclusive and

engaging for the minority group, potentially breaking the feedback loop.

Scenario 2: Finetuning LLM with RL In fine-tuning Large Language Models with Re-

inforcement Learning from Human Feedback(RLHF) over multiple tasks such as common

sense reasoning, question answering, and explanation generation, the training data is a

collection of human prompts as inputs for the LLM, which can also be regarded as the

states for the RL policy. Since the prompts are collected from people from diverse social

groups, inherent imbalance exists with respect to specific demographics in the dataset.

Consequently, the LLM fine-tuned with RL may disproportionally improve the quality

of responses of prompts from majority groups. A feedback loop exists if the deployed

updated LLM results in more active users from the majority groups, who may generate

new data for further LLM fine-tuning.

Motivated by these use cases, we designed a algorithm with a multi-task fairness

constraint that can achieve a smaller return difference between different social groups

and provide a proof for zero multi-task fairness constraint violation in the tabular case.

1.3 Group Fairness in Reward Models for Fine-tuning LLMs with

RLHF

For our second contribution, we introduced demographic parity into the group fairness

evaluation of reward models for fine-tuning LLMs with RLHF, and demonstrated that all

reward models evaluated are significantly biased.

As the state-of-the-art Large Language Models (LLM) acquire advanced capabilities

and are already assisting a large population of human users (Hu, 2023), it is important to

ensure the benefits from LLMs are equally, fairly and broadly distributed among people

from various demographic groups. This concern aligns with the broader ethical and re-
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sponsible AI initiatives (Goellner et al., 2024) and is listed as the top priority objective in

OpenAI’s charter (OpenAI, 2024), which seeks to prevent the concentration of technolog-

ical benefits from LLM towards specific groups of people that could otherwise exacerbate

existing societal disparities.

We formulate this concern as the group fairness problem in LLMs, which aims to en-

sure that LLM outputs do not disproportionately benefit specific demographic groups.

However, current bias and fairness research in LLMs faces significant limitations when

addressing group fairness in the following two aspects.

One of the limitations is that it does not account for the cases where different groups

have different questions for the LLMs. Traditionally, group fairness in fair machine learn-

ing classification is evaluated in settings where non-sensitive attributes, i.e. input features

of a person without the group attribute, are expected to be different for people from dif-

ferent demographic groups. In the case of LLMs, the prompt questions without the group

attribute, are the non-sensitive attributes. Users from different demographic groups often

generate distinct prompts due to diverse interests and challenges in their daily lives, as

evidenced by prior research on demographic-driven web searches (Weber and Castillo,

2010).

However, common methods in LLMs typically require users from different demo-

graphic groups to share the same prompt questions for fairness evaluation (Nangia et al.,

2020; Webster et al., 2021; Wang and Cho, 2019). Existing work has primarily focused on

ensuring that sensitive attributes (e.g. gendered pronouns like "he" or "she"), when added

to the same prompt, do not lead to different model outputs. While these efforts reduce

stereotypical language toward specific groups, they do not account for the challenges

posed by different prompt questions from various demographic groups. Furthermore, in

real-world interactions with LLMs, users often do not explicitly state their sensitive at-

tributes in prompts, making these methods inapplicable when demographic information

is implicit rather than explicitly mentioned.

In this regard, it’s essential to focus on how non-sensitive attributes in the prompt

questions may contribute to unfairness in LLM outputs. Although we can no longer di-
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rectly compare model outputs when the prompt questions are different, the comparisons

can be made based on the quality of the LLM output. In the context of LLMs, the model

outcomes are less about high-stakes decisions and more about user-perceived helpful-

ness, correctness, and coherence of generated text. These attributes can be conveniently

measured by the reward model used in Reinforcement Learning from Human Feedback

(RLHF) (Ouyang et al., 2022) as shown in Figure ??.

A second limitation in current research is the focus on evaluating fairness solely based

on the LLM’s final output. These approaches fail to identify the specific sources of bias

within the model’s development pipeline. Bias in LLM outputs can originate from various

stages of LLM training, including both the pre-training and fine-tuning phases. During

fine-tuning, bias can be introduced through the RLHF procedure, or the learned reward

model itself. A more granular evaluation of group fairness across various components of

the LLM training pipeline, such as pre-training, supervised fine-tuning, reward modeling,

and reinforcement learning, could offer valuable insights into the origins of these biases

and help develop more effective mitigation strategies toward LLMs that can benefit for

people from all demographic groups equitably.

Recognizing the above limitations, in this thesis, we first benchmark the group fairness

in reward models and demonstrate that the group unfairness in reward models propa-

gates to LLMs during the RLHF fine-tuning process.

1.4 Outline

The remainder of this thesis is organized as follows: Chapter 2 provides an overview

of key concepts, including Group Fairness, Constrained Markov Decision Processes, and

Reinforcement Learning from Human Feedback (RLHF). Chapter 3 introduces the first

major contribution: the algorithm of Multi-Task Group Fairness in Reinforcement Learn-

ing. Chapter 4 presents the second contribution, focusing on the evaluation of reward

models and the observed increase in bias in RLHF fine-tuned LLMs.



Chapter 2

Background and Related Work

2.1 Infinite-horizon Discounted Markov Decision Process

We formulate the long-term fairness problem as an infinite-horizon discounted Markov

Decision Process (MDP), defined by the tuple hS ,A, g, µ, r, Pi, where S is the state space,

A is the action state, µ : S ! [0, 1] is the initial state distribution, g 2 [0, 1) is the discount

factor, r : S ⇥A! [0, 1] is the reward function, and P : S ⇥A⇥S ! [0, 1] is the transition

function.

In this setting, a stationary policy p is defined as p : S ⇥A ! [0, 1]. The trajectory

t = {(st, at)}•
t=1 is sampled from pp(t), which is defined as pp(t) = µ(s1)P•

t=1p(at|st)

P(st+1|st, at). The infinite-horizon discounted return of policy p and reward r is defined as

J(p; µ, P, r) ·
= Et⇠pp(t)[Â

•
t=1 gtr(st, at)]. The value function is defined as Vp(s; µ, P, r) =

Et⇠pp(t)[Â
•
t=1 gtr(st, at)|st = s], and the state-action value function is defined as

Qp(s, a; µ, P, r) = Et⇠pp(t)[Â
•
t=1 gtr(st, at)|st = s, at = a]. The advantage function is then

defined by Ap(s, a; µ, P, r) = Qp(s, a; µ, P, r)�Vp(s, a; µ, P, r).

In this thesis, we address the multi-task reinforcement learning problem, where a

collection of tasks share the same state and action spaces, discount factor, and transition

function, but have different reward functions r 2 {rn}
N
n=1.

6
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2.2 Constrained Markov Decision Process

The focus of the Constrained Markov Decision Process (CMDP) is to find a policy that

maximizes return, only from the set of policies that obey the constraints. The constraints

in CMDP are specified by a set of constraint reward functions {Cm}
M
m=1, where Cm :

S ⇥A ! R, and a set of corresponding scalar constraint tolerance {qm}
N
m=1. The set of

policies that obey the constraints is denoted by

PC =̇ {p 2 P : 8m, J(p; µ, P, Cm)  qm} (2.1)

and to find an optimal policy in a CMDP is to solve the following optimization prob-

lem

p⇤ = arg max
p2PC

J(p) (2.2)

2.3 Group Fairness

For our definition of fairness, we adopt the demographic parity notion, also commonly

known as group fairness. It requires the outcomes experienced by individuals to be

independent of their particular social group membership, where each social group is

denoted as z 2 Z .

In the long-term group fairness problem, we ensure the expected return to be equal

across all groups. We assume all groups share the same state and action spaces, discount

factor, and reward functions, but each group has a different initial state distribution µz

and a different transition function Pz, and the long-term group fairness for a single task r

is defined as

J(pi; µi, Pi, r) = J(pj; µj, Pj, r) (2.3)
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In practice, we relax this constraint by introducing a positive slack variable e > 0 and

ensure the difference in return is within this tolerance

|J(pi; µi, Pi, r)� J(pj; µj, Pj, r)| < e, 8i  j; (i, j) 2 Z
2 (2.4)

2.4 Reinforcement Learning from Human Feedback (RLHF)

The RLHF pipeline typically involves three key stages: supervised fine-tuning, reward

modeling, and reinforcement learning.

Stage 1: Supervised Finetuning (SFT). In the first stage, a pre-trained language model

is fine-tuned using supervised learning on task-specific datasets, such as dialogue, sum-

marization, or instruction following, to create a reference policy denoted as pref.

Stage 2: Reward Modeling. The second stage, reward modeling, seeks to capture

human preferences of LLMs responses. Let x be a prompt given to an LLM and y be

the model’s output response for the prompt. For each given input x, LLM will generate a

pair of responses and human annotators are asked to express their preference between two

output responses, with y0 and y1 denote the chosen and rejected responses respectively.

These human preference data are used to train a reward model rq(x, y), which learns to

predict which response is better according to human judgment. Formally, the reward

model’s loss derived from the Bradley-Terry (BT) preference model (Bradley and Terry,

1952) can be expressed as:

loss(rq) = �E(x,y0,y1)⇠D [log (s (rq(x, y0)� rq(x, y1)))] ,

where s is the logistic function, and D is the dataset of human-annotated preferences.

Stage 3: Reinforcement Learning Finally, in the third stage, the learned reward model

is used in reinforcement learning to further optimize the model denoted as pf, where f

is the weights of the LLM. The policy is trained to maximize the reward from the human

feedback model while controlling for divergence from the initial supervised policy. The

objective function of the reinforcement learning stage is usually given by:
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max
f

Ey⇠pf(·|x)r(x, y)� bDKL(pf(y|x)kpref(y|x)), (2.5)

where b controls the learned policy’s deviation from the pretrained LLM as an initial

reference policy pref.

2.5 Bias in Large Language Models

Most research on fairness and bias in LLMs has focused on reducing harm and risk in

LLM generation through bias mitigation techniques. Techniques such as counterfactual

data augementation (Lu et al., 2020), data filtering and selection (Garimella et al., 2022),

designing specific prompting triggers (Venkit et al., 2023) and incorporating the notion

group fairness in constructing a bias evaluation dataset Bi et al. (2023), have proven effec-

tive to reduce stereotypical or harmful language targeted at various demographic groups.

Debiasing, however, is not sufficient for fairness, as these approaches primarily measure

fairness in terms of harmfulness reduction. A perfectly harmless LLM may still provide

unfair answers to the different prompts provided by various demographic groups.

Specifically, the evaluation and mitigation of counterfactual bias, often operationalized

by switching group attributes (e.g., gender) at the prompt level, is a prevalent approach in

assessing the fairness of large language models (LLMs). However, this approach typically

require users from different demographic groups to share the same prompt questions for

fairness evaluation (Nangia et al., 2020; Webster et al., 2021; Wang and Cho, 2019). While

these efforts reduce stereotypical language toward specific groups, they do not account

for the challenges posed by different prompt questions from various demographic groups.

Furthermore, in real-world interactions with LLMs, users often do not explicitly state their

sensitive attributes in prompts, making these methods inapplicable when demographic

information is implicit rather than explicitly mentioned.



Chapter 3

Multi-task Group Fairness in

Reinforcement Learning

We present our first contribution of the thesis in this chapter, and started by formulating

the multi-task group fairness problem in reinforcement learning as a constrained Markov

decision problem.

3.1 Formulating the Multi-Task Group Fairness in RL as a CMDP

Problem

We are now ready to formulate the Group Fairness in Multi-Task Reinforcement Learning

problem. We aim to ensure the long-term outcome experienced by different social groups

to be equal, so we are not restricted to using a single policy for all social groups. Let p

denotes a list of policies p. A social-group specific policy pz is used to solve for each

social group’s specific transition Pz, and our goal is to find a list of optimal policies p⇤

that obey the relaxed group fairness constraint across all tasks rn 2 {rn}
N
n=1

p⇤ = arg max
p

Â
i

Â
rn

J(pi; µi, Pi, rn)

s.t. max
rn

|J(pi; µi, Pi, rn)� J(p j; µj, Pj, rn)|  e, 8i  j; (i, j) 2 Z
2, rn 2 {rn}

N
n=1

(3.1)

10
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To practically tackle this problem, we first frame it as a CMDP problem and then use

the constrained policy optimization algorithm to solve it.

In practice, instead of finding the list of all policies at the same time, each group’s

policy pi is updated individually using a block coordinate descent approach, which may

not give us the optimal solution of the original problem. Under this setting, the objective

function can be simplified to only include the return of group i. Since the policies of other

social groups are not updated, the returns of reward function rn for other social groups

remain constant, denoted as J̄j(rn) =̇ J(p j; µj, Pj, rn), which can be excluded from the

objective function. Note that ensuring the maximum difference in return to be less than e

is equivalent to ensuring all differences in return to be less than e, so the constraint in (5)

can be written into N number of inequalities. Therefore, the objective and constraints can

be rewritten as the following

p⇤i = arg max
p

Â
n

J(pi; µi, Pi, rn)

s.t. |J(pi; µi, Pi, rn)� J̄j|  e, 8i  j; (i, j) 2 Z
2, rn 2 {rn}

N
n=1 (3.2)

All tasks in each social group will share the same distribution of trajectories pp(t)

because each social group shares the same policy, initial state distribution, and transition

function. Therefore, pulling out pp(t) as the common factor, the objective function can

be written as

Â
n

J(pi; µi, Pi, rn) = Â
n

Et⇠pp(t)[
•

Â
t=1

gtrn(st, at)] (3.3)

= Â
n

Â
t

µi(s1)P•
t=1p(at|st)Pi(st+1|st, at)[g

trn(st, at)] (3.4)

= Â
t

µi(s1)P•
t=1p(at|st)Pi(st+1|st, at)[g

t Â
n

rn(st, at)] (3.5)

= J(pi; µi, Pi, Â
n

rn) (3.6)

Removing the absolute value in the constraint functions, the number of inequalities in

the constraint will double from N to 2N as the following
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J(pi; µi, Pi, rn)  e + J̄j(rn), (3.7)

�J(pi; µi, Pi, rn)  e� J̄j(rn)

() J(pi; µi, Pi,� rn)  e� J̄j(rn), 8i, j with i  j; (i, j) 2 Z
2, rn 2 {rn}

N
n=1,

by the linearity of expectation.

Our problem can be formulated into a CMDP problem:

To formulate our problem into a CMDP problem, let the constraint reward function

be Cm(s, a) = rn(s, a) for the first N inequalities where m 2 1, 2, ..., N, and the corre-

sponding constraint tolerance qm = e + J̄j(rn). For the second N inequalities, we define

the constraint reward function as Cm(s, a) = �rn(s, a) and set the constraint tolerance to

qm = e� J̄j(rn), where m 2 N + 1, N + 2, ..., 2N.

Then, finding the optimal policy for a specific social group i is to solve the following

CMDP problem

p⇤i = arg max
p2PC

J(p; µi, Pi, Â
n

rn), (3.8)

where

PC =̇ {p 2 P : 8m, i  j; (i, j) 2 Z
2, J(p, Pj, Cm)  qm} (3.9)

3.2 Constrained Policy Optimization Methodology

Constrained Policy Optimization (CPO) is one method that solves the CMDP problem.

It has the advantage of maintaining constraint satisfaction throughout training, whereas

other methods such as Primal-Dual Optimization Chow et al. (2015) only achieve con-

straint satisfaction after policy converges. As one of the trust region methods, CPO aims

to maximize the next updated policy’s performance improvement from the old policy of

the current iteration: J(pk+1) � J(pk), while keeping the new policy’s costs within the

tolerances, J(pk+1; µ, P, Cm)  dm for all cost function Cm and all tolerances dm. To avoid
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the problem of off-policy evaluation for pk+1, in practice, only a lower bound for the per-

formance difference and an upper bound of the cost of the new policy that’s dependent

on dp is used in the optimization.

The proposed CPO method is as follows

pk+1 = arg max
pq2Pq

E
s⇠dpk
a⇠pq

[Apk
(s, a; µ, P, r)]

s.t. J(pk; µ, P, Cm) +
1

1� g
E

s⇠dpk

a⇠pq

[Apk
(s, a; µ, P, Cm)]  dm 8m

E
s⇠pk

h
DKL

⇣
pq(·|s)||pk(·|s)

⌘i
 d.

(3.10)

The original CPO algorithm relies on second-order Taylor approximation and invert-

ing a high-dimensional Fisher information matrix. A first-order method, FOCOPS, is

proposed by Zhang et al. (2020) for the CPO problem. To solve the group fairness prob-

lem, FOCOPS is required to handle more than one constraint. In the following Algorithm

1, we extended the FOCOPS algorithm for multiple constraints. In Algorithm 2, the multi-

objective group fairness reinforcement learning algorithm is proposed.
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Input: Initial policy parameters q0, initial value function parameters f0, initial cost

value function parameters {y0
m}

M
m=1, Cost functions {Cm}

M
m=1, Cost tolerances

{bm}
M
m=1.

Output: Final policy parameters qfinal, Final value function parameters ffinal, Final cost

value function parameters {yfinal
m }M

m=1.

1 Hyperparameters: Discount rates g, GAE parameter b; Learning rates an, aV , ap ;

Temperature l; Initial cost constraint parameter n; Cost constraint parameter bound

nmax. Trust region bound d.
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Algorithm 1: First Order Constrained Optimization in Policy Space (FOCOPS) for M constraints

Input: Initial policy parameters ✓0, initial value function parameters �0, initial cost value function parameters { 0
m
}
M

m=1, Cost
functions {Cm}

M

m=1, Cost tolerances {bm}
M

m=1.
Output: Final policy parameters ✓final, Final value function parameters �final, Final cost value function parameters

{ final
m

}
M

m=1.
1 Hyperparameters: Discount rates �, GAE parameter �; Learning rates ↵⌫ ,↵V ,↵⇡; Temperature �; Initial cost constraint

parameter ⌫; Cost constraint parameter bound ⌫max. Trust region bound �.
2 while Stopping criteria not met do
3 Generate batch data of H episodes of length T of

�
si,t, ai,t, ri,t, si,t+1, {cm,i,t}

M

m=1

�
from ⇡✓,

where i = 1 . . . , H, t = 1, . . . , T .
4 for m 2 1, 2, . . . ,M do
5 For cost function m, estimate cost-return by averaging over C-return for all episodes:

ĴCm =
1

M

MX

i=1

T�1X

t=0

�tcm,i,t

6 Store old policy ✓0  ✓ Estimate advantage functions Âi,t and {ÂCm
i,t

}
M

m=1, i = 1, . . . , H, t = 1, . . . , T using GAE.

Get V target
i,t

= Âi,t + V� (si,t) and V Cm,target
i,t

= ÂCm
i,t

+ V Cm
 m

(si,t), for m 2 1, 2, . . . ,M .

7 for m 2 1, 2, . . . ,M do

8 Update ⌫m by: ⌫m  proj
⌫m

h
⌫m � ↵⌫m

⇣
b� ĴCm

⌘i

9 for K epochs do

10 for each minibatch
n
sj , aj , Aj , {A

Cm
j

}
M

m=1, V
target
j

, {V Cm,target
j

}
M

m=1

o
of size B do

11 Update value loss functions: LV (�) =
1

2N

P
B

j=1

�
V� (sj)� V target

j

�2

12 for m 2 1, 2, . . .M do
13

LV C
m
( m) =

1

2N

BX

j=1

⇣
V 

Cm
m

(sj)� V Cm,target
j

⌘2

14 Update value networks: � �� ↵Vr�LV (�)
15 for m 2 1, 2, . . . ,M do
16

 m   m � ↵Vr mLV Cm ( m)

17 Update policy: ✓  ✓ � ↵⇡r̂✓L⇡(✓), where

r̂✓L⇡(✓) ⇡
1

B

BX

j=1

"
r✓DKL (⇡✓k⇡✓0) [sj ]�

1

�

r✓⇡✓ (aj | sj)

⇡✓0 (aj | sj)

 
Âj �

MX

m=1

⌫mÂCm
j

!#
1DKL(⇡✓k⇡✓0 )[sj ]�

if
1

HT

HX

i=1

T�1X

t=0

DKL (⇡✓k⇡✓0) [si,t] > � then

Break out of inner loop
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2 while Stopping criteria not met do

3 Generate batch data of H episodes of length T of
�
si,t, ai,t, ri,t, si,t+1, {cm,i,t}

M
m=1

�
from pq ,

where i = 1 . . . , H, t = 1, . . . , T.

4 for m 2 1, 2, . . . , M do

5 For cost function m, estimate cost-return by averaging over C-return for all episodes:

ĴCm =
1
M

M

Â
i=1

T�1

Â
t=0

gtcm,i,t

6 Store old policy q0  q

Estimate advantage functions Âi,t and {ÂCm
i,t }

M
m=1, i = 1, . . . , H, t = 1, . . . , T using GAE.

Get Vtarget
i,t = Âi,t + Vf (si,t) and VCm ,target

i,t = ÂCm
i,t + VCm

ym
(si,t), for m 2 1, 2, . . . , M.

7 for m 2 1, 2, . . . , M do

8 Update nm by: nm  proj
nm

⇥
nm � anm

�
b� ĴCm

�⇤

9 for K epochs do

10 for each minibatch
n

sj, aj, Aj, {ACm
j }M

m=1, Vtarget
j , {VCm ,target

j }M
m=1

o
of size B do

11 Update value loss functions: LV(f) =
1

2N ÂB
j=1

⇣
Vf
�
sj
�
�Vtarget

j

⌘2

12 for m 2 1, 2, . . . M do

13

LVC
m
(y) =

1
2N

B

Â
j=1

⇣
VCm

y

�
sj
�
�VCm ,target

j

⌘2

14 Update value networks: f f� aVrfLV(f)

15 for m 2 1, 2, . . . , M do

16

ym  ym � aVrymLVCm (ym)

17 Update policy: q  q � apr̂qLp(q), where

r̂qLp(q) ⇡
1
B

B

Â
j=1

"
rq DKL (pqkpq0)

⇥
sj
⇤
�

1
l

rqpq
�
aj | sj

�

pq0
�
aj | sj

�
 

Âj �
M

Â
m=1

nm ÂCm
j

!#
1DKL(pqkpq0)[sj]d

if
1

HT

H

Â
i=1

T�1

Â
t=0

DKL (pqkpq0) [si,t] > d then

Break out of inner loop
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Algorithm 2: Outline of the Multi-Task Fairness RL Algorithm

Input: Initial policy parameters ✓0
z
, 8z 2 |Z|, initial value function parameters �0

z
, initial cost value function parameters

 0
m,z

, 8z 2 |Z|,m 2 1, 2, ...,M , where M = (|Z|� 1)2N .

Output: Final policy parameters ✓final
z

, final value function �final
z

, and final cost function parameters { final
m,z

}
M

m=1,
1 for each group z
2 Initialize: Group fairness threshold ✏, M constraint funcitons C, M constraint thresholds b, m = 1. for k = 0, 1, 2, . . . do

// Calculate performance estimates of policies for all groups.
3 for z 2 |Z| do
4 for z1 2 |Z| do
5 for i 2 1, 2, . . . , H do
6 Sample the ith trajectory of length T for group z1: (si,t, ai,t, {rn,i,t}Nn=1, si,t+1), for t = 1, . . . , T .
7 for n 2 1, 2, ..., N do
8 Use the Monte Carlo Method to estimate the return J̄z(rn) of policy ⇡z at reward function rn:
9

J̄z(rn) =
1

H

HX

i=1

T�1X

t=0

�trn,i,t

10 if z 6= z1 then
11 Set the cost functions as the reward function and the negative reward function:

C[m] = rn

C[m+ 1] = �rn

Calculate the thresholds for M constraints:

b[m] = ✏+ J̄z(rn)

b[m+ 1] = ✏� J̄z(rn)

m = m+ 1

12 Update the parameters for policy, value function, and cost functions of group z by
✓k+1
z

, �k+1
z

, { k+1
m,z

}
M

m=1 = FOCOPS(✓k
z
, �k

z
, { k

m,z
}
M

m=1,C,b).
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18 3.3 Experimental Results

In the experiments, we compare our Multi-Task Group Fairness algorithm (MTGF) to a

Group Fairness in Reinforcement Learning (GFRL) algorithm. The original GFRL algo-

rithm imposes a fairness constraint on only one task, as it was designed for single-task

settings. Applying this algorithm to multiple tasks leaves other tasks unconstrained, lead-

ing to violations of the fairness threshold. To ensure a fair comparison, we alternate the

single-task constraint across the two tasks during training.

For the environments for experiments, we use the customized environment from the

work from (Satija et al., 2023), which are modified from the Half-Cheetah-v3 environment

from the OpenAI gym Brockman et al. (2016) to create three additional subgroups with

different dynamics: one BigFoot HalfCheetah with 2× the feet size of the default Half-

Cheetah-v3, , one TenFriction HalfCheetah with 10× friction than the default setting, and

another HugeGravity HalfCheetah with 1.5x gravity than the default setting.

Three experiments were conducted between two social groups as detailed in Table 3.1.

In each of the experiment, the algorithms is trained to control the locomotion of the orig-

inal HalfCheetah, and one of the following three customized HalfCheetahs: HugeGravity

HalfCheetah, TenFricion HalfCheetah, and BigFoot HalfCheetah.

Table 3.1: Summary of Experiments with HalfCheetah Variants Across Social Groups and
Tasks

Experiment Social Group A Social Group B Tasks

1 Original HalfCheetah HugeGravity HalfCheetah Backward, Forward Running

2 Original HalfCheetah BigFoot HalfCheetah Backward, Forward Running

3 Original HalfCheetah TenFriction HalfCheetah Backward, Forward Running

Results show that the Multi-Task Group Fairness algorithm achieved a smaller fairness

gap while having a comparable mean reward to the GFRL algorithm. Specifically, the

fairness gap for the original HalfCheetah and HugeGravity HalfCheetah for the backward

running task presented in Figure 3.5, and for the forward running task presented in

Figure 3.6; the fairness gap for the original HalfCheetah and BigFoot HalfCheetah for
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the backward running task presented in Figure 3.11, and for the forward running task

presented in Figure 3.12; the fairness gap for the original HalfCheetah and TenFriction

HalfCheetah for the backward running task presented in Figure 3.17, and for the forward

running task presented in Figure 3.18 together demonstrate that our MTGF algorithm

better ensures fairness than the GFRL algorithm.

Figure 3.1: Training the Original HalfCheetah on the Backward Running Task.
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Figure 3.2: Training the Original HalfCheetah on the Forward Running Task.

Figure 3.3: Training the HugeGravity HalfCheetah on the Backward Running Task.
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Figure 3.4: Training the HugeGravity HalfCheetah on the Forward Running Task.

Figure 3.5: Fairness Gap on the Backward Running Task between the Original HalfChee-
tah and HugeGravity HalfCheetah .
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Figure 3.6: Fairness Gap on the Forward Running Task between the Original HalfCheetah
and HugeGravity HalfCheetah.

Figure 3.7: Training the Original HalfCheetah on the Backward Running Task.
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Figure 3.8: Training the Original HalfCheetah on the Forward Running Task.

Figure 3.9: Training the BigFoot HalfCheetah on the Backward Running Task.
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Figure 3.10: Training the BigFoot HalfCheetah on the Forward Running Task.

Figure 3.11: Fairness Gap on the Forward Running Task between the Original HalfChee-
tah and BigFoot HalfCheetah.
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Figure 3.12: Fairness Gap on the Backward Running Task between the Original HalfChee-
tah and BigFoot HalfCheetah.

Figure 3.13: Training the Original HalfCheetah on the Backward Running Task.
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Figure 3.14: Training the Original HalfCheetah on the Forward Running Task.

Figure 3.15: Training the TenFriction HalfCheetah on the Backward Running Task.
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Figure 3.16: Training the TenFriction HalfCheetah on the Forward Running Task.

Figure 3.17: Fairness Gap on the Backward Running Task between the Original HalfChee-
tah and TenFriction HalfCheetah.
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Figure 3.18: Fairness Gap on the Forward Running Task between the Original HalfChee-
tah and TenFriction HalfCheetah.

3.4 Zero Multi-Task Fairness Constraint Violation

In this section, we present a result of zero multi-task fairness constraint Violation, stating

that assuming we have access to an initial fair policy, the fairness guarantees for any of

the subgroups throughout the learning duration for all tasks would not be violated with

high probability.

A multi-task finite-horizon Markov Decision Process (MDP) is defined as a tuple M =

(S ,A, H, P, {rm}
M
m=1, µ), where S is the state space, H number of steps in each episode,

and P(·|s, a) 2 DH
S

, 8s 2 S , 8a 2 A, where DS is the |S|-dimensional probability simplex.

The tasks within MDP are characterized by distinct reward functions {rm}
M
m=1, where

rm : S ⇥ A  [0, 1] specifies the reward function for each task m, and M is the total

number of tasks. The algorithm samples a total of K episodes from the environment. We

assume the initial state distribution µ is known to the agent and reward functions are

deterministic.
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In the context of group fairness, each group is denoted as z 2 Z and we assume all

groups share the same state space, action space, and reward functions, but each group has

a different initial state distribution µz and a different transition function Pz. The return of

policy p under transition Pz and initial transition distribution µz is denoted as Jp
z (r, Pz).

The fairness threshold for the acceptable performance difference between any two groups

is denoted as e : e 2 (0, H].

The multi-task group fairness RL problem is formulated as finding a list of optimal

policies p⇤ that obey the group fairness constraint across all tasks m 2 [M]:

p⇤ = arg max
p

Â
z

Â
rm

Jp(rm, Pz) (3.11)

s.t. max
m

(|Jp
i (rm, Pi)� Jp

j (rm, Pj)|)  e, 8i � j; (i, j) 2 Z2, 8m 2 [M]. (3.12)

To ensure the above problem is feasible, we assume there exist an initial strictly fair

policy p0 that our algorithm can use to safely sample data from the environment.

Assumption 1.1 (Initial strictly fair policy). The algorithm has access to a policy p that

satisfies the fairness constraints in Equation (3.12). We also assume
���Jp0

i (rm, Pi)� Jp0

j (rm, Pj)
���

 e0 < e, 8(i, j) 2 Z2, 8m 2 [M] and the value of e0 is known to the algorithm.

One key objective of our work is to ensure that our algorithm does not violate the

group fairness constraint in Equation (3.12) during training, where the fairness gap is

calculated by the absolute difference between the returns of two groups. We seek to con-

struct a set of policies that obey the group fairness constraint, and then find the policy

with maximum return within the set. However, the true transition P is unknown to our

algorithm and we can only estimate the fairness gap by sampling from the true environ-

ment to evaluate the returns of different groups. A poor estimation of the fairness gap

may result in selecting a policy whose true fairness gap violates the fairness constraint by

a large margin.

To address this issue, we aim to construct a conservative set of policies that will achieve

zero-fairness-constraint violation with high probability. Following the techniques from

Satija et al. (2023), we design an optimistic estimation of the fairness gap and then select
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policies whose optimistic fairness gap is less than or equal to the fairness threshold e to

construct the conservative set of policies.

Designing the optimistic fairness gap requires an optimistic reward r̄k
m,h and a pes-

simistic reward rk
m,h defined as:

r̄k
m,h(s, a) .

= rk
h(s, a) + |S|Hbk

h(s, a) (3.13)

rk
m,h(s, a) .

= rk
h(s, a)� |S|Hbk

h(s, a), (3.14)

where bk
h(s, a) is the confidence radius to account for the uncertainties from the tran-

sition probabilities.

Taking a model-based policy evaluation approach, the return of the policy is evaluated

using an estimated transition P̂k
z . The optimistic and pessimistic reward estimates then

allow us to calculate the difference between an optimistic return from one group and

a pessimistic return from the other group, which gives us the optimistic fairness gap.

Selecting policies that obey the fairness threshold for every task m, a set of safe policies

can be constructed as follows:

Pk
F

8
><

>:
p :

Jp
i (r̄

k
m, P̂k

i )� Jp
j (r

k
m, P̂k

j )  e, 8i � j; (i, j) 2 Z2, 8m 2 [M].

Jp
j (r̄

k
m, P̂k

j )� Jp
i (r

k
m, P̂k

i )  e, 8i � j; (i, j) 2 Z2, 8m 2 [M].

9
>=

>;
(3.15)

When the transitions are poorly estimated, it is possible that no policy obeys the con-

straint. In case the above policy set is empty, we can simply use the strictly fair policy p0

that will not violate the fairness constraint in the true MDP to sample more data for better-

estimated transitions P̂z. Executing p0 under the condition in the following is sufficient

to guarantee that Pk
F is non-empty in the otherwise condition.

Let the conservative set of policies Pk be defined as follows:
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Pk =

8
>>>>>><

>>>>>>:

{p0},

8
>><

>>:

if Jp0

i (r̄k
m, P̂k

i )� Jp0

j (rk
m, P̂k

j ) > (e + e0)/2, 8i � j; (i, j) 2 Z2, 9m 2 [M]

or Jp0

j (r̄k
m, P̂k

j )� Jp0

i (rk
m, P̂k

i ) > (e + e0)/2, 8i � j; (i, j) 2 Z2, 9m 2 [M]

PF, otherwise.

(3.16)

We now present a result stating that policies chosen from Pk do not violate the fair-

ness guarantees for any of the subgroups throughout the learning duration with high

probability.

Theorem 1.1(Fairness violation) Given an input confidence parameter d 2 (0, 1) and

an initial fair policy p0, the construction of Pk ensures that there are no fairness violations

at any episode in the learning procedure in the true environment with high probability

(1� d), i.e., for any p 2 Pk,

Pr(|Jp
i (rm, Pi)� Jp

j (rm, Pj)|  e) � 1� d, 8m 2 [M], 8k 2 [K], 8i � j; (i, j) 2 Z
2.

Besides zero fairness violation, we also care about achieving sub-linear regret. Under

the principle of optimism under the face of uncertainty, we set another exploration bonus

for reward function of each task m to achieve efficient exploration.

r̈k
m,h(s, a) = rk

m,h(s, a) + abk
h(s, a), (3.17)

where a = |S|H + 4|S|H
e�e0 2H .

At each episode k, we will solve the following optimization problem:

pk
2 arg max

p2Pk

M

Â
m

Â
z2Z

Jp(r̈m, P̂z) (3.18)

Theorem 1.2 (Regret Bound). For any d 2 (0, 1), with probability 1� d, for any task m,

executing pk from Equation (3.18) at every episode k 2 [K] incurs in a regret of at most

Reg(K; rm) = Õ

✓
|Z|H3

(e� e0)

q
|S|3|A|K +

|Z|2MH5|S|3|A|

min{(e� e0), (e� e0)2}

◆
,

where Õ(·) hides polylogarithmic terms.
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3.5 High Probability Good Event

Our subsequent analysis on performance guarantees depends on establishing a high prob-

ability "good" event E .

Let {Fk}k0 denotes the filtration with Fk = s
⇣
(Sk0

z,h, Ak0
z,h, Rk0

m,z,h)z2Z ,h2[H],m2[M],k02[k]

⌘
8k 2

[K], and F0 denotes the trivial sigma algebra. The sequence of deployed policy {pk}k2[K]

is predictable with respect to the filtration {Fk}k0.

Nk
z,h(s, a) denotes the number of times the state-action tuple (s, a) for group z was

observed at time step h in the episodes [1, . . . , k-1]. The expectation operator Eµz ,Pz ,p [·] is

the expectation with respect to the stochastic trajectory (Sh, Ah)h2[H] generated according

to the markov chain induced by (µz, Pz, p).

For each (z, s, a, h) 2 Z ⇥ S ⇥ A ⇥ [H], the empirical estimates of the transition is

defined as:

P̂k
z,h(s

0
|s, a)

Âk�1
k0=1 1(Sk0

z,h = s, Ak0
h = a, Sk0

z,h+1 = s0)

max(Nk
z,h(s, a), 1)

(3.19)

We define the event EG for the event sequence Gk 2 Fk�1, 8k 2 [K]:

EG(d)=̇
�
8K0 2 [K]. (3.20)

K0

Â
k=1

H

Â
h=1

Â
z,s,a

1(Gk)dpk

z,h(s, a)

max(Nk
z,h(s, a), 1)

 4H|Z||S||A|+ 2H|Z||S||A| ln K0
G
+ 4 ln

2HK
d

,

(3.21)

K0

Â
k=1

H

Â
h=1

Â
z,s,a

1(Gk)dpk

z,h(s, a)
q

max(Nk
z,h(s, a), 1)

 6H|Z||S||A|+ 2H
q
|Z||S||A| ln K0

G
+ 2H|Z||S||A| ln K0

G
+ 5 ln

2HK
d

, } ,

(3.22)

where K0
G
=̇ÂK0

k=1 1(Gk) and dpk
z is the occupancy measure of policy pk such that

dpk

z,h(s, a) = Eµz ,Pz ,pk [1(Sz,h = s, Ah = a|Fk�1)].

Let EW(d) be the event with the event sequence Gk = W, 8k 2 [K], where W is the

sample space. let E0(d) denote EG 0 , for the event that we choose the strictly safe policy p0,
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with the event sequence

G
0
1:K =

n
Jp0

(P̂k
i , r̄k

m)� Jp0
(P̂k

j , rk
m)  (e + e0)/2, 8i, j 2 Z

2, m 2 [M]
o

(3.23)

Our subsequent analysis on performance guarantees depends on establishing a high

probability "good" event E .

Good Event E is defined as:

E=̇
n
8k 2 [K], 8h 2 [H], 8z 2 Z , 8s 2 S , 8a 2 A, (3.24)

|Pk
z,h(s

0
|s, a)� P̂k

z,h(s
0
|s, a)|  bk

z,h(s, a), 8s0 2 S

o
\ EW(d/4) \ E0(d/4), (3.25)

where b̂k
z,h(s, a)

r
1

max(Nk
z,h(s,a),1)

C and C log(2|Z||S|2|A|HK/d)

Lemma C.1 Fix any d 2 (0, 1), the good event E occurs with probability at least 1� d.

Proof of Lemma C.1 For each (z, s, a, h) 2 Z ⇥ S ⇥A⇥ [H], we take K mutually inde-

pendent samples of next states from the distribution specified by the true MDP model:

{Sn
z (s, a, h)}K

n=1. (3.26)

Let P̂n
z,h be running empirical means for the samples

{Si
z(s, a, h)}n

i=1. (3.27)

We can define the failure event:

FP
n =̇{9z, s, a, s0, h : |Pz,h(s0|s, a)� P̂n

z,h(s
0
|s, a)| � b(n)}, (3.28)

We define a generated event E gen,

E
gen=̇

⇣
[

K
n=1(FP

n )
⌘C
\ EW(d/4) \ E0(d/4) (3.29)

Let nz,k(s, a, h) denote the quantity Nk
z,h(s, a) + 1. Then the problem in our setting can

be simulated as follows: for group z, at an episode k, taking action a in state s at time-step
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h, we get the sample (Snz,k(s,a,h)
z (s, a, h)). Therefore, the set

{Sn
z (s, a, h)}K

n=1 (3.30)

already contains all the samples drawn in the learning problem and the sample averages

calculated by the algorithms are:

P̂k
z,h(s

0
|s, a) = Pnk(z,s̃,a,h)

z (·|s, a, h). (3.31)

As a result, the E gen implies E , and it is sufficient to show that E gen occurs with

probability at least 1� d.

Using Lemma 8 and union bound, EW(d/4) \ E0(d/4) occurs with probability at least

1 � d/2. To see this, let A denotes EW(d/4) and let B denotes E0(d/4). By Lemma 5,

Pr(A) = 1� d/4 and Pr(B) = 1� d/4

Pr(A \ B) = Pr(A) + Pr(B)� Pr(A [ B) (3.32)

� Pr(A) + Pr(B)� 1 (3.33)

= 1� d/4 + 1� d/4� 1 (3.34)

= 1� d/2 (3.35)

For the failure event FP
n , by Hoeffding’s inequality in Lemma 3 and Union Bound, we

have:

Pr([K
n=1FP

n ) 
K

Â
n

Â
z2Z

Â
s2S

Â
a2A

H

Â
h

Â
s02S

exp(�n(b(n))2) (3.36)

=
K

Â
n

Â
z2Z

Â
s2S

Â
a2A

H

Â
h

Â
s02S

exp

0

@�n ·

s
1

max(n, 1) log(2|Z||S|2|A|HK/d)

2
1

A

(3.37)

= K|Z||S|
2
|A|H

d

2|Z||S|2|A|HK
(3.38)

= d/2 (3.39)
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The event ([K
n=1FP

n )
C occurs with probability at least 1� d/2. Combining the results

we have Pr(Egen) = Pr(([K
n=1FP

n )
C \ EW(d/4) \ E0(d/4))  1� d, which implies E occurs

with probability at least 1� d.

3.5.1 Proof for Theorem 1.1

Now, we are ready to present the proof for Theorem 1.1. Without loss of generality, let

{i, j} denote any pair of subgroups in Z2. Pk consists of either the singleton set {p0}

or the selected policies Pk
F defined in Equation (3.15). For p0, we have |Jp0

i (rm, Pi) �

Jp0

j (rm, Pj)|  e, 8m 2 [M] by definition of initial fair policy (Assumption 1.1). We will

now show that our construction of Pk
F also satisfies the zero constraint violation property

for any such pair of subgroups. For p 2 Pk
F, to show |Jp

i (rm, Pi)� Jp
j (rm, Pj)|  e, 8m 2

[M] holds under the good event, we will first show Jp
i (rm, Pi)� Jp

j (rm, Pj)  e, 8m 2 [M],

i.e. the return of group i is no more than the return of group j by e for all tasks m in part

1, and then show Jp
j (rm, Pj)� Jp

i (rm, Pi)  e, 8m 2 [M], i.e. the return of group j is no

more than the return of group i by e for all tasks m in part 2.

Part 1: In the first part of the proof, we will show that on the good event E , for any

k 2 [K] and policy p 2 Pk
F,

Jp
i (rm, Pi)� Jp

j (rm, Pj)  e, 8m 2 [M]. (3.40)

Proof. Using Lemma 1, we have:

Jp
i (rm, Pi)  Jp

i (r̄
k
m, P̂k

i ), 8m 2 [M]. (3.41)

Similarly, using Lemma 2, we get

�Jp
j (rm, Pj)  �Jp

j (r
k
m, P̂k

j ), 8m 2 [M]. (3.42)

Combining Equation (3.41) and Equation (3.42), we have:

Jp
i (rm, Pi)� Jp

j (rm, Pj)  Jp
i (r̄

k
m, P̂k

i )� Jp
j (r

k
m, P̂k

j ), 8m 2 [M]. (3.43)



CHAPTER 3. MULTI-TASK GROUP FAIRNESS IN REINFORCEMENT LEARNING 34

Note that from the definition of Pk
F in Equation (3.15), we know any policy in p 2 Pk

F

satisfies the constraint:

Jp
i (r̄

k
m, P̂k

i )� Jp
j (r

k
m, P̂k

j )  e, 8m 2 [M]. (3.44)

Therefore, we have the following relation:

Jp
i (rm, Pi)� Jp

j (rm, Pj)  Jp
i (r̄

k
m, P̂k

i )� Jp
j (r

k
m, P̂k

j )  e, 8m 2 [M]. (3.45)

Part 2: In the first part of the proof, we will show that on the good event E , for any

k 2 [K] and policy p 2 Pk
F,

Jp
j (rm, Pj)� Jp

i (rm, Pi)  e, 8m 2 [M]. (3.46)

Proof. Using Lemma 1, we have:

Jp
j (rm, Pj)  Jp

j (r̄
k
m, P̂k

j ), 8m 2 [M]. (3.47)

Similarly, using Lemma 2, we get

�Jp
i (rm, Pi)  �Jp

i (r
k
m, P̂k

i ), 8m 2 [M]. (3.48)

Combining Equation (3.47) and Equation (3.48), we have:

Jp
j (rm, Pj)� Jp

i (rm, Pi)  Jp
j (r̄

k
m, P̂k

j )� Jp
i (r

k
m, P̂k

i ), 8m 2 [M]. (3.49)

Note that from the definition of Pk
F in Equation (3.15), we know any policy in p 2 Pk

F

satisfies the constraint:

Jp
j (r̄

k
m, P̂k

j )� Jp
i (r

k
m, P̂k

i )  e, 8m 2 [M]. (3.50)

Therefore, we have the following relation:

Jp
j (rm, Pj)� Jp

i (rm, Pi)  Jp
j (r̄

k
m, P̂k

j )� Jp
i (r

k
m, P̂k

i )  e, 8m 2 [M]. (3.51)

Combining the results of Pk being the singleton set {p0} or Pk
F, we have for p 2 Pk,

|Jp
i (rm, Pi)� Jp

j (rm, Pj)|  e, 8m 2 [M], 8k 2 [K], (3.52)
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which holds for any pair of group {i, j} 2 Z2. Extending to all pairs of groups:

|Jp
i (rm, Pi)� Jp

j (rm, Pj)|  e, 8m 2 [M], 8k 2 [K], 8i � j; (i, j) 2 Z
2. (3.53)

3.5.2 Proof for Theorem 1.2

From the definition of the conservative set of policies in Equation (3.16), we will apply p0

when there exist one pair of groups (i, j) 2 Z2 and one task m 2 [M] such that the return

difference under a optimistic MDP and a pessimistic MDP is greater than or equal to e+e0

2 .

In this case, |Pk| = |{p0}| = 1. By the Assumption 1.1, we have e0 < e and therefore
e+e0

2 < e. When the return difference of applying p0 for all pair of groups (i, j) 2 Z2 and

for all task m 2 [M] is less than or equal to e+e0

2 , which is strictly less than e, then there

exist infinitely many policies that are close to p0 that can result in a return difference less

than e and thus satisfy the constraint in Equation (3.15). In this case, |Pk| = |Pk
F| > 1.

We can follow Liu et al. (2021) and break down the regret according to the above two

cases: |Pk| = 1 and |Pk| > 1. For all task m, the regret can be broken down in into three

terms. Providing upper bounds for each of the three terms by Lemma A.1, Lemma A.2

and Lemma A.3 will conclude our regret analysis.

Reg(K; rm) =
K

Â
k=1

1(|Pk
| = 1)(Jp⇤(rm, P)� Jp0

(rm, P)) (I)

+
K

Â
k=1

1(|Pk
| > 1)(Jp⇤(rm, P)� Jpk

(r̈m, P̂k)) (II)

+
K

Â
k=1

1(|Pk
| > 1)(Jpk

(r̈k
m, P̂k)� Jpk

(rm, P)) (III)

Lemma A.1(Similar to lemma C.6 in Satija et al. (2023)) On good event E ,

K

Â
k

1(|Pk
| = 1)  Õ

✓
|Z|2M4H4|S|3|A|

(e� e0)min{1, (e� e0)

◆
. (3.54)

Proof. For part I, we want to obtain an upper bound for ÂK
k (|P

k| = 1). We start by

giving an upper bound for ÂK
k 1(|Pk| = 1; (i, j), m), which denotes when two particular
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groups i, j led to the fairness violation in task m. In this case, when the fairness constraint

is violated with respect to p0, either group i’s return is much larger than group j’s return

as in the following Case A(i,j),m, or group j’s return is much larger than group i’s return

as in Case B(i,j),m.

Case A(i,j),m

Jpk

i (rm, Pi)� Jpk

j (rm, Pj) � (e + e0)/2 (3.55)

Case B(i,j),m

Jpk

j (rm, Pj)� Jpk

i (rm, Pi) � (e + e0)/2 (3.56)

(3.57)

We define K0 = ÂK
k 1(|Pk| = 1; (i, j), m).

✓
#� #0

2

◆
K0 =

K

Â
k=1

1(|Pk
| = 1; (i, j), m)

✓
#� #0

2

◆
(3.58)

=
K

Â
k=1

1(|Pk
| = 1; (i, j), m)

✓
# + #0

2
� #0

◆
(3.59)



K

Â
k=1

1(|Pk
| = 1; A(i,j),m)

✓
# + #0

2
� #0

◆
+

K

Â
k=1

1(|Pk
| = 1; B(i,j),m)

✓
# + #0

2
� #0

◆

(3.60)

For Case A(i,j),m:

K

Â
k=1

1(|Pk
| = 1; A(i,j),m)

✓
(# + #0)

2
� #0

◆
(3.61)

 1(|Pk
| = 1; A(i,j),m)

✓
(Jpk

i (rk, P̂k)� Jpk
j (rk, P̂k))� (Jpk

i (r, P)� Jpk
j (r, P))

◆
(3.62)

= 1(|Pk
| = 1; A(i,j),m)(Jpk

i (rk, P̂k)� Jpk
i (r, P))

| {z }
(A.1)

+ 1(|Pk
| = 1; A(i,j),m)(Jpk

j (r, P)� Jpk
j (rk, P̂k))

| {z }
(A.2)

,

(3.63)
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For the first term, we use Lemma 5 with the designed optimistic reward function from

Equation (3.13)

|r̄k
m,h � rm,h| = |abk

h| (3.64)

 (|S|H)bk
h, (3.65)

Plugging in a = |SH| in Lemma 5, the first term A.1 is bounded by

A.1 = Õ(H4
|S|

3
|A|+ H2

q
|S|3|A|K0) (3.66)

For the second term A.2, we use the following relation from the designed pessimistic

reward function from Equation (3.14)

|rh � rk
h| = |� (�abk

h)| (3.67)

 (|S|H)bk
h (3.68)

Applying Lemma 5,

A.2 = Õ(H4
|S|

3
|A|+ H2

q
|S|3|A|K0) (3.69)

Therefore,

K

Â
k=1

1(|Pk
| = 1; A(i,j),m)

✓
(# + #0)

2
� #0

◆
= Õ(H4

|S|
3
|A|+ H2

q
|S|3|A|K0) (3.70)

Since case A and case B are symmetric with respect to the two groups i and j, we can

follow the above steps and obtain the same big O notation for case B.

K

Â
k=1

1(|Pk
| = 1; B(i,j),m)

✓
(# + #0)

2
� #0

◆
= Õ(H4

|S|
3
|A|+ H2

q
|S|3|A|K0) (3.71)

Combining results for Case A and Case B, we will have the same big O notation for

K0.

(e + e0)
2

K0 = Õ(H4
|S|

3
|A|+ H2

q
|S|3|A|K0) (3.72)
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By Lemma 7 (Lemma D.6 in Liu et al. (2021)),

K0 =
K

Â
k

1(|Pk
| = 1; (i, j), m)  Õ

✓
H4|S|3|A|

(e� e0)min{1, (e� e0)

◆
(3.73)

Now, to obtain the upper bound for fairness violation by any possible pairs of groups

and for all tasks ÂK
k 1(|Pk| = 1), by the union bound we have

K

Â
k

1(|Pk
| = 1)  Â

i,j2Z2

M

Â
m

K

Â
k

1(|Pk
| = 1; (i, j), m) (3.74)

 |Z|
2MK0 (3.75)

 Õ

✓
|Z|2MH4|S|3|A|

(e� e0)min{1, (e� e0)

◆
. (3.76)

Lemma A.2 For al = |S|H + 8M2|S|H2

e�e0 , on good event E ,

K

Â
k=1

1(|Pk
| > 1)(Jp⇤(rm, P)� Jpk

(r̄m, P̂k))  0 (3.77)

Proof. When p⇤ 2 Pk, the inequality holds because of the reward bonus and the fact

that pk maximizes the optimistic CMDP from ??.

When p⇤ 62 Pk, we first show the difference in cost is less or equal to 0 for any pair of

groups i, j, then it holds for all groups.

Let Bgk denote an independent Bernoulli distributed random variable with mean gk.

We can define a probability mixed policy p̃k as:

p̃ = Bgk p⇤ + (1� Bgk )p
0 (3.78)

Let gk 2 [0, 1] be the largest coefficient that ensures the constraint is not violated by

the mixed policy p̃k,

Jp̃i (r̄k
m, P̂k

i )� Jp̃j(r̄k
m, P̂k

j )  e (3.79)

If Jp⇤
i (r̄k

m, P̂k
i )� Jp⇤

j (rm, P̂k
j ) < e, then gk = 1. Else, we will obtain a gk that make the

equality hold for (3.79).
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Denote the pessimistic cost of the difference in value between the two groups as:

J̃p
i,j := Jp

i (r̄
k
m, P̂k

i )� Jp
j (r

k
m, P̂k

j ), (3.80)

where p could be p⇤ or p0, and denote the difference in value in the true MDP as

Jp
i,j := Jp

i (rm, Pi)� Jp
j (rm, Pj) (3.81)

When the equality holds, we have

e = gk J̃p⇤
i,j + (1� gk) J̃p0

i,j

 gk J̃p⇤
i,j + (1� gk)

e + e0

2

= gk( J̃p⇤
i,j � Jp⇤

i,j ) + gk Jp⇤
i,j + (1� gk)

e + e0

2

 gk( J̃p⇤
i,j � Jp⇤

i,j ) + gke +
e + e0

2
� gk

e + e0

2

 gk( J̃p⇤
i,j � Jp⇤

i,j +
e� e0

2
) +

e + e0

2
Using Lemma 1 and Lemma 2, we have

Jpi (rm, Pi)  Jpi (r̄k
m, P̂k

i ), (3.82)

and

�Jp⇤j (rk
m, P̂k

j )  �Jp⇤j (rm, Pj). (3.83)

Adding (3.82) and (3.83),

J̃p⇤
i,j � Jp⇤

i,j � 0. (3.84)

Since e > e0, J̃p⇤
i,j � Jp⇤

i,j + e�e0

2 � 0. Therefore,

gk �
e� e0

e� e0 + 2( J̃p⇤
i,j � Jp⇤

i,j )
(3.85)

Using Lemma 3 and Lemma 4 , we have

Jp
i (r̄m, P̂k

i )� Jp
i (rm, Pi)  2(|S|H)Jp

i (bk
h(s, a), P̂k

i ), (3.86)
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and

Jp
j (rm, Pj)� Jp

j (rm, P̂k
j )  2(|S|H)Jp

j (bk
h(s, a), P̂k

j ). (3.87)

Adding (3.86) and (3.87),

J̃p
i,j � Jp

i,j  2(|S|H)
⇣

Jp
i (bk

h(s, a), P̂k) + Jp
j (bk

h(s, a), P̂k
j )
⌘

. (3.88)

Because pk is the optimal policy in the optimistic CMDP, we have:

Jpk

i (r̈m, P̂k
i ) + Jpk

j (r̈m, P̂k
j ) � Jp̂k

i (r̈m, P̂k
i ) + Jp̂k

j (r̈m, P̂k
j ) (3.89)

= Jp̃k

i (r̈m, P̂k
i ) + Jp̃k

j (r̈m, P̂k
j ) (3.90)

= gk(Jp⇤k

i (r̈m, P̂k
i ) + Jp⇤k

j (r̈m, P̂k
j )) + (1� gk)(Jp0k

i (r̈m, P̂k
i ) + Jp0k

j (r̈m, P̂k
j ))| {z }

�0

(3.91)

� gk(Jp⇤k

i (r̈m, P̂k
i ) + Jp⇤k

j (r̈m, P̂k
j )) (3.92)

�
e� e0

e� e0 + 2( J̃p⇤
i,j � Jp⇤

i,j )
(Jp⇤k

i (r̈m, P̂k
i ) + Jp⇤k

j (r̈m, P̂k
j )) (3.93)

�
e� e0

e� e0 + 4|S|H
⇣

Jp
i (bk

h(s, a), P̂k
i ) + Jp

j (bk
h(s, a), P̂k

j )
⌘ (Jp⇤k

i (r̈m, P̂k
i ) + Jp⇤k

j (r̈m, P̂k
j ))

(3.94)

To make Jpk

i (r̈m, P̂k
i ) + Jpk

j (r̈m, P̂k
j )  Jp⇤

i (rm, Pi) + Jp⇤
j (rm, Pj), it is sufficient to show

e� e0

e� e0 + 4|S|H
⇣

Jp
i (bk

h(s, a), P̂k
i ) + Jp

j (bk
h(s, a), P̂k

j )
⌘
⇣

Jpk

i (r̈m, P̂k
i ) + Jpk

j (r̈m, P̂k
j )
⌘
� Jp⇤

i (rm, Pi) + Jp⇤
j (rm, Pj),

(3.95)

which is equivalent to

(e� e0)
⇣⇣

Jp
i (r̈m,h(s, a), P̂k

i ) + Jp
j (r̈m,h(s, a), P̂k

j )
⌘
�

⇣
Jp⇤
i (rm, Pi) + Jp⇤

j (rm, Pj)
⌘⌘

(3.96)

� 4|S|H
⇣

Jp
i (bk

h(s, a), P̂k
i ) + Jp

j (bk
h(s, a), P̂k

j )
⌘ ⇣

Jp⇤
i (rm, Pi) + Jp⇤

j (rm, Pj)
⌘

(3.97)
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From the value difference lemma (Lemma 6), for any group z 2 Z ,

Jp⇤
z (r̈m, P̂k

z )� Jp⇤
z (rm, Pz) (3.98)

= E

"
H

Â
h=1

 
r̈m(sh, ah)� rm(sh, ah) + Â

s0
(P̂k

z,h � Pz,h)(s0|sh, ah)V
p⇤z
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z ). (3.101)

Using the above result for group i and j seperately, we have

Jp⇤
i (r̈m, P̂k

i )� Jp⇤
i (rm, Pi) � (al � |S|H)Jp⇤

i (bk, P̂k
i ). (3.102)
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j ). (3.103)

Adding the above two inequalities,
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Letting al = |S|H + 4|S|H
e�e0 2H,
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Since Jp⇤
i (rm, Pi) + Jp⇤

j (rm, Pj)  2H, the inequality (3.96) is satisfied. Now we’ve

shown the difference in cost is less or equal to 0 for any pair of groups i, j, which is

Jpk

i (r̈m, P̂k
i ) + Jpk

j (r̈m, P̂k
j )  Jp⇤

i (rm, Pi) + Jp⇤
j (rm, Pj)

Using the above result for consecutive pairs of subgroups {(1, 2), (2, 3), . . . , (|Z| �

1, |Z|), (|Z|, 1)}, and adding them together we get
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In our setting, we iterate through every group z from Z , therefore we have:
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Proof. Since we build the optimistic reward with bonus, we have |r̈m,h � rm,h|  al b
k
h.

By applying Lemma B.1,
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Combining the results for term (I), term(II) and term(III), we have
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k
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◆

(3.116)



Chapter 4

Group Fairness in Reward Models for

Fine-tuning LLMs with RLHF

4.1 Group Fairness in Reward Models

To define group fairness in reward models, we first present the definitions for social

groups and protected groups.

Definition 1 (SOCIAL GROUP). A social group G ✓ G is the population that shares

an identity trait, which may be fixed, contextual, or socially constructed. Examples in-

clude demographic attributes collected through the census, including age, gender, and

occupation.

Definition 2 (PROTECTED ATTRIBUTE). A protected attribute is the shared identity

trait that determines the group identity of a social group.

In traditional group fairness in machine learning classification, M could be accuracy,

true positive rate, or false positive rate. Instead of making fair high-stakes decisions,

quality of generation matters in the case of LLM. Helpfulness, correctness, and coherence

need to be the outcome a good fairness algorithm aims to equalize over. Therefore, a

reward model is a natural candidate for estimating such outcomes. We define group

fairness, or demographic parity, in the following:
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Definition 3 (Group Fairness of Reward Models). Consider a model M that evaluates

the quality of generated outputs from an LLM. Assume we have access to a set of prompts

XG, where the ground-truth quality of each prompt x ⇠ XG is equal. Let Ex⇠XG [M(x; q)]

be the outcome measured by the reward model given a distribution of prompts XG specific

to group G 2 G, where G represents a set of social groups, and each group G has a

different distribution of prompts XG. Group fairness requires (approximate) parity in the

average reward scores across all groups G 2 G, up to e, as measured by the reward model

M:
���Ex⇠XG [M(x; q)]�Ex⇠XG0

[M(x; q)]
���  e.

4.2 Benchmarking Reward Models

4.2.1 Constructing the Evaluation Dataset from The arXiv Metadata

The arXiv Metadata dataset, which use is under the Creative Commons CC0 1.0 Universal

(Public Domain Dedication) license, offers significant advantages to our fairness study.

The dataset primarily consists of titles and abstracts from expert-written papers. The

expert authorship ensures that the abstracts are high in quality, therefore receiving full

scores on attributes such as correctness and coherence should be a minimum requirement.

The reward model that satisfies group fairness should consistently deliver equal average

reward scores for prompts and responses across all social groups.

Selecting Social Groups arXiv naturally has human experts written papers from dif-

ferent domains such as Physics, economics, and computer science. Identifying social

groups by occupation, such as physicists, economists, and computer scientists, a total of

8 demographic groups exist in the 8 categories from arXiv: physics, mathematics, com-

puter science, economics, electrical engineering and system science quantitative-biology,

quantitative finance.

Evaluation Prompts and Responses We use expert-written texts from arXiv Metadata

to benchmark the group fairness in reward models. We utilize the title and abstract of

a paper from the arXiv Metadata to construct the prompts and responses required for
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evaluating the reward model. Specifically, the title of the paper is used to construct the

prompt with the question "Write an abstract for a paper with title <Title of the Paper>",

and we assume the expert-written abstract of the paper is the ground-truth response to

the prompt. A fair reward model would achieve the same average score for prompts and

responses for all 8 different categories.

The original arXiv Metadata dataset contains 200 thousand papers, of which less than

400 papers are from the economics category. To obtain larger sample size for each social

group, we use arXiv API to fetch metadata for each arXiv category. In constructing the

dataset, we only include paper listed as one category only. Papers under multiple cate-

gories are removed for a more distinct comparison of the differences in group means. A

total of 2000 titles and abstracts are curated for each category.

4.2.2 Experimental Setup

Simplifying the Distributions of Prompts To simplify the evaluation, we only do infer-

ence on prompts and responses that are unique to a specific group, assuming other groups

never raise these questions as prompts to LLMs. In addition, we assume the distribution

of prompts that all groups share is the same, therefore we are not evaluating on these

shared common prompts as they will not affect the difference in group mean.

Models We only include reward models that can compute a reward score based on a

single prompt and response message. LLM-as-a-Judge (Zheng et al., 2024) and pairwise

reward models are not included, as they require comparing two messages. The following

8 models from the RewardBench (Lambert et al., 2024) are selected in the evaluation:

GRM-llama3-8B-sftreg (Yang et al., 2024), ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024b,a),

Eurus-RM-7b (Yuan et al., 2024), FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023; Xiong et al.,

2024), Mistral-RM-for-RAFT-GSHF-v0 (Dong et al., 2023; Xiong et al., 2023), RM-Mistral-

7B (Dong et al., 2023; Xiong et al., 2024), Nemotron-4-340B-Reward (Wang et al., 2024c),

and tulu-v2.5-13b-preference-mix-rm (Ivison et al., 2024).

Recourses for Model Inference For the evaluation of the models, we utilized two
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NVIDIA A100 GPUs with 80 GB of memory for the tulu-v2.5-13b-preference-mix-rm

model. API calls were employed for the Nemotron-4-340B-Reward model, leveraging

external compute resources. For models with fewer than 8 billion parameters, such as

GRM-llama3-8B-sftreg and ArmoRM-Llama3-8B-v0.1, we used NVIDIA RTX 6000 GPUs.

Each model’s evaluation was completed within a maximum compute time of 3 hours.

Group Fairness Metrics

Normalized Maximum Group Difference The reward models are not trained to predict

scores on the same scale. Therefore, directly computing the difference in group means

is not a fair comparison. With this in mind, we propose a normalized maximum group

difference score as a metric for group fairness. For each reward model, we compute the

maximum difference in average rewards between any two social groups. This difference is

then normalized by dividing it by the mean of the reward scores across all social groups.

ANOVA as a Group Fairness Metric

To rigorously assess group fairness in the performance of reward models, we employ

Analysis of Variance (ANOVA) as a statistical method to determine whether there are

statistically significant differences between the means of rewards across different demo-

graphic groups defined in our study. ANOVA is instrumental in identifying whether

variations in reward scores are due to inherent differences among the groups or are a

result of random variations. This is critical in our context as it helps ensure that any

observed difference in reward outcomes are attributable to the model’s unfairness across

different groups.

4.2.3 Results Analysis

The plot for the average reward score of the selected 8 top-performing reward models

from RewardBench is shown in Figure 4.1. Notice that not all reward models are on the

same scale. For example, in the model design of ArmoRM-Llama3-8B-v0.1, a gating layer

is applied to the outputs of the regression layer, resulting average rewards for all social
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Figure 4.1: Average Reward Scores by Model and Subject across various domains.

groups close to zero.

Through a thorough analysis of the experiment results, we have made the following

conclusions:

The group unfairness in all reward models is statistically significant. The F-

statistics and p-values from the ANOVA test, detailed in Table 4.1, indicate that all re-

ward models have F-statistics exceeding 70, and p-values significantly lower than 0.0001,

confirming substantial differences in group means. Notably, ArmoRM-Llama3-8B-v0.1,

the second highest ranked model on the RewardBench leaderboard, has the smallest F-

statistic of 70.44. Although the lowest among the models tested, this value is considerably

high, indicating significant group differences given that an F-statistic of 1 would mean

no group difference. Furthermore, the Nemotron-4-340B-Reward model, which exhibits

the second lowest normalized maximum group difference, displays the second highest

in the F-statistics. This indicates that it has a low within-group variance, which means

there exists a significant group difference in the reward model’s output. These findings

affirm that the disparities are not due to randomness but reflect a significant systemic bias

within the models. Further exploration of these disparities’ specific characteristics could

guide targeted improvements to enhance group fairness in reward model training. Such
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Table 4.1: ANOVA results for various reward models, assessing the significance of group
differences in rewards.

Reward Model F-Statistics p-Value RewardBench Rank

ArmoRM-Llama3-8B-v0.1 70.44 9.46⇥ 10�101 2
GRM-llama3-8B-sftreg 134.63 1.75⇥ 10�193 8
Eurus-RM-7b 156.11 5.15⇥ 10�224 16
FsfairX-LLaMA3-RM-v0.1 232.98 < 1⇥ 10�300 12
RM-Mistral-7B 270.06 < 1⇥ 10�300 22
tulu-v2.5-13b-preference-mix-rm 384.86 < 1⇥ 10�300 19
Nemotron-4-340B-Reward 427.88 < 1⇥ 10�300 1
Mistral-RM-for-RAFT-GSHF-v0 518.15 < 1⇥ 10�300 23

findings confirm that the disparities are not merely by the randomness in the data but

reflect a significant systemic bias within the model.

The best performing reward models are the fairer reward models. To compare

the group fairness in the reward models, the normalized maximum group difference

is computed. The results are shown in percentages in Table 4.2. The top 2 models from

RewardBench Leaderboard, namely NemoTron-4-340B-reward and ArmoRM-Llama3-8B-

v0.1 exhibit smaller Normalized Maximum Group Differences, substantially outperform-

ing other models evaluated in this study, suggesting that the best reward models also

exhibit the better group fairness.

Table 4.2: Differences in average rewards between the maximum and minimum values for
each reward model, expressed as percentages. The score with the lowest absolute value is
in bold.

Model Normalized Maximum Group Difference (%) RewardBench Rank

Nemotron-4-340B-Reward 12.49% 1
tulu-v2.5-13b-preference-mix-rm 262.89% 19
GRM-llama3-8B-sftreg 82.09% 8
RM-Mistral-7B 110.63% 22
FsfairX-LLaMA3-RM-v0.1 -111.52% 12
Mistral-RM-for-RAFT-GSHF-v0 87.46% 23
ArmoRM-Llama3-8B-v0.1 9.78% 2
Eurus-RM-7b 39.53% 16
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Table 4.3: Multiple Comparison of Means by the Tukey HSD Test

Reward Model Significant Pairs / Total Pairs

GRM-llama3-8B-sftreg 23/28
ArmoRM-Llama3-8B-v0.1 23/28
Eurus-RM-7b 24/28
FsfairX-LLaMA3-RM-v0.1 26/28
Mistral-RM-for-RAFT-GSHF-v0 26/28
RM-Mistral-7B 25/28
Nemotron-4-340B-Reward 24/28
tulu-v2.5-13b-preference-mix-rm 25/28

Group unfairness exists in most pairs of demographic groups in every reward

model. The Tukey HSD Test, a post-hoc Analysis of ANOVA, shows that each reward

model has at least or more than 23 pairs of groups that shows significant differences in

the group mean out of a total of all 28 possible combinations of pairs for 8 groups. This

indicates that the significant findings from ANOVA are not a result of a significant dif-

ference between a only few groups, but rather widespread differences in group means

across the majority of group comparisons.

A systematic unfairness might exist in reward models To elucidate the variations in

average rewards across different demographic groups, we present a standardized com-

parison of average rewards by subject in Figure 4.2. This analysis reveals a consistent

pattern of disparate treatment for all demographic groups across most reward models.

For a better illustration, besides ArmoRM-Llama3-8B-v0.1 and Eurus-RM-7b, the 340B

Nemotron model exhibits a Pearson correlation of over 0.8 with all of the rest reward

models (in some case 0.99), as shown in Table 4.4. The congruence in average reward

score disparities across the majority of models suggests a systemic bias that may origi-

nate from similar methodologies in their training datasets and algorithms. These models

tend to undervalue outputs related to the "math" subject area while favoring those from

"electrical engineering and system science". This necessitates a more nuanced approach to

reward model training and evaluation, aiming to enhance its group fairness across people

from diverse demographic groups.
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Figure 4.2: Fairness Scores by Model and Subject across various domains.

Table 4.4: Pearson Correlation Coefficients of NVIDIA Nemotron Model with Other Mod-
els

Model Pearson Correlation Coefficient

tulu-v2.5-13b-preference-mix-rm 0.942
RM-Mistral-7B 0.991
Mistral-RM-for-RAFT-GSHF-v0 0.988
FsfairX-LLaMA3-RM-v0.1 0.945
GRM-llama3-8B-sftreg 0.820
Eurus-RM-7b -0.738
ArmoRM-Llama3-8B-v0.1 -0.255

4.3 Experiments on Fine-Tuning a LLM with biased Reward Model

with RLHF

We conducted an experiment on fine-tuning a pre-trained LLMs with a biased reward

model and demonstrated that the bias in reward model is introduced to the LLM during

the RLHF procedure.

Models For the pre-training model, we selected Phi-1.5 (Li et al., 2023), which has

performance comparable to state-of-the-art 7B models. We choose the FsfairX-LLaMA3-

RM-v0.1 (Dong et al., 2023) as the reward model for RLHF fine-tuning. The reward
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model has 8 billion parameters that are much larger than Phi-1.5, supposedly providing

high quality feedback to the pre-trained model.

Selected Social Groups Due to the computing resource constraint, we ran our ex-

periments on two groups: Computer Science (CS) group and Electrical and Electrical

Engineering and Systems Science (EESS) group. We followed the RLHF pipeline and su-

pervised fine-tuned the pre-trained Phi-1.5 on 1000 prompts and summaries as responses

from each group. This step is crucial as it ensures that the LLM is capable of the task of

generating summaries given a title of the paper.

RLHF Training For RLHF training, we curated 10000 prompt data from each group.

During training, the prompts from the groups were alternated by one another. The train-

ing is stopped at 800 steps. As shown in Figure 4.3, no apparent differences between the

two groups in terms of the reward exists during RLHF training.

11/11/24, 10:17 PM f0448ffe-c928-40a8-b087-254169fa1ad9 (832×632)

blob:https://wandb.ai/f0448ffe-c928-40a8-b087-254169fa1ad9 1/1

Figure 4.3: The Average Reward Plots of fine-tuning Phi 1.5 with FsfairX-LLaMA3- RM-
v0.1 reward model on CS Group and EESS Group.
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Evaluation Method LLM-as-a-judge (Zheng et al., 2023; Dubois et al., 2024) have

demonstrated that GPT-4 Evaluation has a high correlation to Human Evaluation, we

utilized GPT-4o-mini for the fairness evaluation. The fairness of the SFT fine-tuned model

and SFT + RLHF fine-tuned model is evaluated by GPT-4o based on their generations for

10000 prompts.

The current LLM-as-a-judge aims to compare two models’ generations given the same

prompts. To evaluate group fairness in LLMs, we re-propose LLM-as-a-judge to compare

the same model’s generation from the prompts of two demographic groups. The LLM

judge is presented with one prompt and model generation from the CS group and one

prompt and model generation from the EESS group and selects the better generation that

better addresses its prompt. The following template (Figure 4.4) is used for GPT-4o-mini

pairwise evaluation.

Mitigating biases during evaluation To achieve fair evaluations when comparing each

generation from the two demographic groups, it is essential to match the quality of the

generation being compared. If the model generations are sampled randomly without

controlling for quality, a high-quality output from one group could be unfairly compared

with a low-quality output from the other group. This mismatch skews the evaluation

results, as it doesn’t provide a fair basis for comparison. To prevent this, we first use

GPT-4o-mini to rate the quality of each individual generation from both groups on a scale

from 1 to 10. We then rank each group’s generations by score and pair corresponding

generations from both groups, matching from highest to lowest rank.

To mitigate order effects in GPT evaluations that tend to favor the first response, we

alternate assigning the roles of Assistant A and Assistant B between the CS group and the

EESS group for each successive question pair evaluated.

Metrics The win rate of each social group is calculated by dividing the number of

generations selected by the LLM judge by the total number of comparisons. The maxi-

mum fairness violation is then calculated by taking the absolute difference between each

group’s win rate and 50%.
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[System]
Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. You should choose
the assistant that follows the user’s instructions and answers the user’s question
better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses. Begin your
evaluation by comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the order in which the responses
were presented does not influence your decision. Do not allow the length of
the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. After providing your explanation, output
your final verdict by strictly following this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and no ties are allowed.

[User Question for assistant A]
Write an abstract for the paper with the title {A paper title from the CS group}
[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[User Question for Assistant B]
Write an abstract for the paper with the title {A paper title from the EESS group}
[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Figure 4.4: Template for GPT-4o-mini pairwise evaluation between two social groups.

Experimental Results Results from Figure 4.5 demonstrate that the RLHF training

process with a biased reward model will exacerbate bias in the LLMs, as the RLHF fine-

tuning increases the maximum fairness violation from 5.9 to 7.

Table 4.5: Comparison of Win Rates and Fairness Violations in SFT and RLHF for CS and
EESS Groups. The SFT Fine-tuning-only method demonstrates better fairness properties
and is highlighted in bold.

Method CS Win Rate (%) EESS Win Rate (%) Maximum Fairness Violation (%)

SFT 44.1 55.9 5.9
SFT + RLHF 43.0 57.0 7



Chapter 5

Conclusion

This thesis explored the challenge of ensuring group fairness in reinforcement learning

(RL) and in reward models used for fine-tuning large language models (LLMs) via re-

inforcement learning from human feedback (RLHF). We introduced a multi-task group

fairness problem in RL, formulating it as a constrained Markov decision process and pro-

viding an algorithm that achieves fairness across all tasks. Our experiments confirmed

reduced disparities in multi-group HalfCheetah environments without compromising av-

erage rewards. We also investigated fairness in reward models for LLMs and found

significant systematic bias, demonstrating that these biases propagate into LLM outputs

during RLHF training. This highlights the urgent need for fairness-aware approaches in

RL and reward modeling for LLMs.
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