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Abstract

In 2009, the National Research Council issued Strengthening Forensic Science in the

United States: A Path Forward about the need for more scientific rigor in forensic science.

Since then, there has been an effort to make the methods used to analyze forensic evidence

more objective, in part through the use of statistics to interpret the forensic evidence. With

Lindley (1977) as a guide, this research focuses on two aspects of statistics in forensic science.

The first is the creation of large databases that can be used for the development and im-

plementation of statistical methods. We propose a theoretical framework for fully-resourced

databases that contain sufficient information to be used for these purposes and demonstrate

their use in statistical inference, specifically how the databases can be used to systematically

obtain prior information in the Bayesian framework. Recommendations are provided for

the type of information that can be included in such databases in the context of fingerprint

evidence.

The second aspect is quantifying and interpreting the weight of evidence when multiple

candidates are examined as the source of a mark recovered from a crime scene. We propose

accounting for the dependencies that exist in the weight of evidence for multiple candidates by

imposing a constraint on the set of plausible models and examine the asymptotic properties

under the constrained model. This research is used to inform guidelines for the examination

of multiple candidates identified by a fingerprint matching system such as the Automated

Fingerprint Identification System (AFIS).

iii



Acknowledgments

I would like to express appreciation for my advisor, Professor Spitzner for helping me get

thus far in my academic journey. He has encouraged me to challenge myself as a researcher

and always be willing to explore new ideas.

Thank you to my committee members - Professor Kafadar, Professor Holt, and Dr. Iyer

- for their time and willingness to give guidance and support throughout my dissertation

research.

Thank you to the faculty of the Statistics Department for their teaching and encour-

agement over the years. I learned a lot in each of my classes, and that is in large part to

the dedication and enthusiasm each professor brought to the classroom. I would also like to

thank Karen Dalton for her unending support and encouragement.

I would like to thank the friends and family who have been with me throughout this

journey. To my parents who taught me the value of working hard no matter the task and

have supported me through each new undertaking throughout my life. To my friends in A10

Northside, for their continued encouragement and support throughout this journey. They

have always known how to make me laugh and smile just when I need it most.

I am most grateful for my husband Matt for his unconditional love and support. He

has encouraged me throughout this journey, and I am deeply appreciative for his above and

beyond patience and thoughtfulness, especially in the final stages of the Ph.D.

i



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statistical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Generating Data From Fingerprint Images . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Foundations for a Fingerprint Database: Univariate Measurements 12

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Description of Databases . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Using a Database for Statistical Inference . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Inference Using a Fully-Resourced Database . . . . . . . . . . . . . . 17

2.3.3 Inference Using a Sub-Resourced Database . . . . . . . . . . . . . . . 20

ii



2.4 Variance Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Sub-Resourced Database . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Fully-Resourced Database . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Numerical Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Sub-Resourced Database . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Fully-Resourced Database . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Foundations for a Fingerprint Database: Multivariate Measurements 32

3.1 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Inference Using a Sub-Resourced Database . . . . . . . . . . . . . . . . . . . 33

3.3 Inference Using a Fully-Resourced Database . . . . . . . . . . . . . . . . . . 35

3.4 Numerical Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Sub-Resourced Database . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Fully-Resourced Database . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Sources of Variability in Fingerprints 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 ACE-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Variability in Multiple Fingermarks Produced by the Same Source . . . . . . 52

iii



4.3.1 Investigator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Surface & Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Variability in Multiple Fingerprints from the Same Source . . . . . . . . . . 60

4.5 Creating a Fully-Resourced Database . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Application: Fingerprint Database 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Database Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Fingerprint Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Translating Images to Numerical Summaries . . . . . . . . . . . . . . . . . . 70

5.3.1 Neumann et al. (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Preparing Data for Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 One-Sample Framework . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Fitted Values: Sub-Resourced Case . . . . . . . . . . . . . . . . . . . 82

5.5.3 Fitted Values: Fully-Resourced Case . . . . . . . . . . . . . . . . . . 84

5.5.4 Weight of Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

iv



6 Dependencies in the Weight of Evidence for Multiple Candidates 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Interpreting Evidence in the 2004 Madrid Train Attack . . . . . . . . . . . . 96

6.3 Dependencies in the Weight of Evidence for Multiple Candidates . . . . . . . 99

6.3.1 Two Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.2 Three Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.3 𝐾 Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Consistency of the Bayes Factor . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Accounting for Multiple Candidates in the Bayes Factor . . . . . . . 108

6.4.3 Candidate Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Guidelines for Interpreting the Weight of Evidence . . . . . . . . . . . . . . . 114

7 Conclusion and Future Research 117

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A MINDTCT 120

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Assessing Image Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

v



Chapter 1

Introduction

1.1 Motivation

In 2009, the National Research Council issued Strengthening Forensic Science in the

United States: A Path Forward [51] about the need for more scientific rigor in forensic

science. In this report, the council stated the need for research in the various disciplines in

forensic sciences, which could lead to a better understanding of the sources of variability in

forensic evidence and the potential biases that can occur in analyses. Given that forensic

evidence is often used in the courtroom, establishing more scientific rigor in forensics is

especially important, because “it has become apparent, over the past decade, that faulty

forensic feature comparison has led to numerous miscarriages of justice” [21, pg. 44].

A decision in the case Daubert v. Merrell Dow Pharmaceuticals state that the judge

should act as the “gatekeeper” in determining if evidence meets criteria for scientific validity

and whether evidence “rests on reliable foundation.” [21]. In a 2016 report, the President’s

Council of Advisors on Science and Technology (PCAST) identify criteria for a judge to

consider in making a determination in regards to the scientific validity of forensic evidence:

“(1) whether the theory or technique can be (and has been) tested; (2) whether the theory or

technique has been subjected to peer review and publication; (3) the known or potential rate

1



of error of a particular scientific technique; (4) the existence and maintenance of standards

controlling the technique’s operation; and (5) a scientific technique’s degree of acceptance

within a relevant scientific community” [21, pg. 41]. To achieve these criteria, forensic

methods need to become more objective by reducing the amount of human judgment involved

in the process. In addition to allowing for a better estimate of the error rate, objective

methods tend to be more accurate, repeatable and reliable than subjective ones [21]. One

way to achieve more objectivity is by quantifying the evidence that is used to make decisions

in different parts of the forensic examination. For example, PCAST suggested one way to

make fingerprint analysis more objective is through the development of areas such image

analysis.

To invest in the research and development of more objective forensic science techniques,

large databases that contain examples of forensic evidence are required. [21] stated that the

creation of such databases was “the most important resource to propel the development of

objective methods.” [21, pg. 11] Similarly, the Organization of Scientific Area Committees

(OSAC)[44], included “the identification of types of databases will be needed to support

proposed approaches” in a list of needs to encourage more statistical development in feature

comparison methods. The importance of databases is a key motivation for our research.

While databases could be developed containing various types of forensic evidence, our focus

is on databases for pattern evidence - markings produced when as a result of one object

coming into contact with another [4]. We propose a theoretical framework for the creation of

of databases that contain enough information to be used for statistical inference. We discuss

the development of these databases in chapters 2 and 3.

1.2 Statistical Challenges

Suppose we have 𝑋, a numerical summary of pattern evidence produced by a known

source and 𝑌 , a numerical summary of pattern evidence produced by an unknown source.

Throughout this document, one of our main objectives will be to quantify an assessment of

whether 𝑋 and 𝑌 were produced by the same source. We state this inquiry in the following
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hypotheses:

𝐻0 : 𝑋and 𝑌 were produced by the same source

𝐻1 : 𝑋and 𝑌 were produced by the different sources
(1.1)

Given 𝐻0, 𝐻1, and 𝐸 = {𝑋, 𝑌 }, we use [33] to quantify the strength of all information in

support of 𝐻0.
𝑃 (𝐻0|𝐸)

𝑃 (𝐻1|𝐸)
=

𝑃 (𝐻0)

𝑃 (𝐻1)
× 𝑃 (𝐸|𝐻0)

𝑃 (𝐸|𝐻1)
(1.2)

The prior odds, 𝑃 (𝐻0)
𝑃 (𝐻1)

, calculated primarily using non-fingerprint evidence. Therefore, in

this document, we are most interested in analyzing the Bayes factor in (6.2).

𝑃 (𝐸|𝐻0)

𝑃 (𝐸|𝐻1)
=

∫︀
𝑃 (𝐸|𝐻0, 𝜑)𝜋(𝜑|𝐻0)𝑑𝜑∫︀
𝑃 (𝐸|𝐻1, 𝜑)𝜋(𝜑|𝐻1)𝑑𝜑

(1.3)

One major challenge in calculating (6.2) is obtaining 𝜋(𝜑|𝐻𝑖), the prior information for the

parameters under hypothesis 𝐻𝑖. We propose developing a sufficiently resourced database

that could be used to obtain this prior information using previous cases that are similar to

the current one. This database is discussed in more detail in Chapter 2.

Other statistical methods, such as [40] and [41], have used databases that contain a large

amount of information about different individuals that can be used to calculate 𝑃 (𝐸|𝐻1).

For example, the Federal Bureau of Investigation’s Next Generation Identification database

contains the fingerprints and other information for millions of individuals [23]. The challenge,

then, is in the availability of the data needed to calculate 𝑃 (𝐸|𝐻0). Databases typically do

not contain replicates of evidence (e.g. as multiple fingerprints) produced by a single source

(e.g. individual finger). Moreover, it is often difficult to produce prints to represent all of

the possible scenarios that could occur in a crime scene. There are some databases created

under experimental conditions that contain multiple prints produced by the same source.

These can be used to provide some measure of the variability that exists between multiple

prints produced by the same source; however, they do not necessarily cover all conditions

that may occur in practice.
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In order to quantify the variability between multiple prints and marks produced by the

same source, Neumann et al. [41] uses a distortion model to simulate thousands of “pseudo-

marks” from a single configuration of minutiae. The pseudo-marks produced by the model are

a result of linear or rotational translation of the original marks. These translations simulate

the distortions that could occur in the minutiae configuration from various motions, such as

sliding or turning, that could occur when a mark is produced under uncontrolled conditions.

The model is only meant to account for distortions that occur when a finger makes contact

with a flat surface, therefore, it is not meant to account for the additional distortion of the

minutiae configuration when a mark is left on a curved surface, such as a door knob.

The distortion model is based on the thin-plate splines of Bookstein [8]. In [8], the

translation of each point is captured in a bending-energy matrix. Neumann et al. [40] creates

sets of these bending-energy matrices for the different types of translations by training the

bending-energy matrices on a database of fingerprints from the University of Lausanne which

contains 3520 fingerprints consisting of 704 images each of 25 unique fingers. This leads to

one of the challenges with using the model in practice. Without availability to such a data

set as the one used by Neumann et al. [40], it is very difficult to replicate such a distortion

model.

Another challenge is that in Neumann et al. [40] and Neumann et al. [41], the distortion

model is only used to simulate prints needed to calculate 𝑃 (𝐸|𝐻0) but it is not used to sim-

ulate prints for the calculation of 𝑃 (𝐸|𝐻1), thus giving unequal treatment to the numerator

and denominator of the likelihood ratio in Neumann et al. [41]. Given the large number of

prints that can be used to calculate 𝑃 (𝐸|𝐻1), however, applying a distortion model to each

print could make calculating the probability computationally intensive. We propose that the

criteria for databases we present in chapters 2 and 4 could help alleviate these challenges,

because they would require databases have the information necessary to calculate 𝑃 (𝐸|𝐻0)

without the use of simulated data.

A challenge arises in the interpretation of the Bayes factor in (6.2) when more than one

candidate is examined as the source of a fingermark. Typically the calculation of the Bayes
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factor does not account for other candidates being examined, therefore the evidence from

each candidate is interpreted independently [6, 40, 41]. These independent interpretations

could cause one to overstate the weight of evidence in support of a match, because they do

not account for the additional uncertainty that arises when new candidates are introduced.

One suggestion to minimize this issue is for examiners to use different thresholds for

making a conclusion from the evidence depending on the number of candidates that are

considered [16]. While this could provide some structure that could be used for interpreting

evidence, without criteria on how to change such thresholds, it is still relatively subjective.

We propose taking advantage of Bayesian methods by placing a constraint on the model set

up that reflects that at most one unique candidate can be the source of a fingermark. By

placing this constraint on the models, we can can capture the dependencies in the evidence

for multiple candidates when we calculate the weight of evidence. This approach eliminates

the need for creating decision thresholds that are based on the number of candidates, since

the impact of multiple candidates will be accounted for in the Bayes factor. This is discussed

in more detail in Chapter 6.

1.3 Terminology

We intend for the framework we propose to be applicable for multiple types of forensic

evidence such as tool marks, shoe prints, and bullet casings; however, the focus on this doc-

ument is on the analysis of fingerprint evidence. With that in mind, we present terminology

that will be used throughout the remainder of the document.

A fingermark (mark) is the impression produced in a uncontrolled environment such as a

crime scene, and a fingerprint (print) is an impression produced in a controlled environment

such as a lab or police station. This terminology was first used in the 1892 text Finger-

prints by Sir Francis Galton who is credited with developing the first method to quantify

fingerprint identification [49]. Since then, it has been the terminology commonly used by

British examiners [40]; forensic practitioners in the United States use the terms latent print
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and exemplar print to refer to a mark and print, respectively. The individual refers to the

person who produced the mark, and the source refers to the specific finger that produced a

mark. Therefore, there can be up to 10 different sources for a given individual. Figure 1-1

shows a fingermark and fingerprint that were determined by the FBI to have been produced

by the same source.

Figure 1-1: A fingermark recovered from a 1969 murder victim’s car and the fingerprint of a
suspect derived from the FBI’s fingerprint database. It was eventually determined that the
mark and print were produced by the same individual [25].

Figure 1-2: Types of minutia - ridge ending and bifurcation

A friction ridge (ridge) is the raised part of the skin on a finger, and a furrow is the
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depression between two ridges. In most fingerprint images, such as the images in Figure

1-1, the ridges appear dark and the furrows appear light. The ridges create the general

pattern that is often used to compare a mark and print. At the end of each ridge are

minutiae, features that are often analyzed for comparisons during the forensic examination

process. (This process is described in more detail in Chapter 4.) There are numerous types

of minutiae; however, we focus on two types of minutiae that occur most often - ridge ending,

the point at which an ridge ends, and a bifurcation, the point at which a ridge splits into two

different ridges. An example of each type of minutia is shown in Figure 1-2. Fingerprints

can be classified based on their overall ridge pattern - arch, loop, and whorl (shown in Figure

1-3). This classification is often used as a first step in comparison. While some methods use

patterns to assess evidence, we focus on those based on an examination of minutiae.

Figure 1-3: Arch, loop and whorl are three categories of patterns that can be found in a
fingerprint image. There are many variations within each category. For example, the loop
shown above is a right slant loop, since the ridges flow to the right side of the impression.
A variation on this loop pattern is a left slant loop in which the ridges flow to the left side
of the impression. (Image from [28])

1.4 Generating Data From Fingerprint Images

We focus on how data summarized from pattern evidence can be used for statistical

analysis, not how the numerical summaries are generated. Therefore, we intend for our

framework to be used with any technique that generates a numerical summary from pattern

evidence. We present some methods that are used to generate vectors of data from fingerprint

images to help the reader have a more complete picture of the variety of data that could be
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used in this framework. The data generated from [41] consists of three different numerical

summaries from minutiae - shape, direction, and type. We describe each of these below.

A configuration of 𝑘 minutiae is identified (usually by an examiner), and the center of

the configuration is calculated using the arithmetic mean of the Cartesian coordinates of the

minutiae. This is shown in Figure 1-4. Then, 𝑘 triangles are created by connecting each

minutiae to the centroid and adjacent minutiae (shown in Figure 1-4). The fingerprint is

then summarized in a vector containing information about the shape, direction and type

from these 𝑘 minutiae.

Figure 1-4: Left: Identifying a group of 𝑘 minutiae in a fingerprint image. Middle: Identifying
the centroid in the group of minutiae. Right: Creating 𝑘 triangles by connecting each minutia
to the centroid and to adjacent minutiae. (Image from [41])

Once the minutiae configuration is established, the shape is calculated for each of the 𝑘

triangles. The shape includes two elements - the form factor and the aspect ratio. The form

factor is the ratio between the area of the triangle and its perimeter, and the aspect ratio

is the ratio between the diameters of the circumcircle and incircle in the triangle (shown in

Figure 1-5).

Figure 1-5: Left: Shape - Aspect ratio for a single triangle. Right: Direction - Angle
measured counterclockwise from the axis to the direction of the minutia. (Image from [41])
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To establish the orientation of the configuration of 𝑘 triangles, the aspect ratio is used

to determine the first triangle. The first triangle is the one that has the minimum aspect

ratio; the rest of the triangles are numbered consecutively going counterclockwise. Once

the triangles are numbered, the aspect ratio data is removed and the shape data consists

only of the form factor. Using empirical evidence, they determine there is some dependency

between the form factor of a given triangle and its adjacent triangles; however there is no

dependency otherwise. Therefore, the distribution of shape of minutiae configurations from

a single source can be modeled using a univariate Gaussian density for the first triangle and

bivariate Gaussian densities for the subsequent triangles. Kernel density estimation is used

to model the distribution of shape data from multiple sources.

The direction is calculated for each of the 𝑘 minutiae. It is the angle measured coun-

terclockwise from an axis to the direction of the minutia (shown in Figure 1-5). The axis

extends from the centroid to the minutiae location. Using empirical evidence, the authors

assume independence between the directions for the minutiae, which simplifies the density

functions. Based on the histogram of density estimates for direction, they determine that the

distribution is skewed to the right under the null and alternative hypotheses. Therefore, they

approximate the distributions of the minutiae directions using non-parametric distributions

based on von Mises kernels.

The final piece of data derived from the 𝑘 minutiae is the type of each minutia using a

similar method as [40]. The type is a categorical variable that can be one of the following

categories: ridge ending, bifurcation, unknown. The authors assume that the type of each

minutia is dependent on the location of the minutiae in the overall ridge flow pattern but not

by other minutiae. The densities for the distribution of type depend on the type of minutiae

and an examiner’s ability to correctly identify it. They establish a table of probabilities based

on a survey of 200 latent print examiners in which each examiner was asked to identify the

type of a series of minutiae on fingermarks. When analyzing a mark, the probability can

be understood as the probability the minutia is type 𝑙 given an examiner marked it as 𝑚.

They assume there is no uncertainty in an examiner’s determination of minutia type when

examining a fingerprint.
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In addition to the types of numerical summaries described in [41], another category of

summaries are based on data from the Automated Fingerprint Identification System (AFIS).

These are “black box” systems that produce scores indicating how closely fingerprint images

in the database match an image of a fingermark that was input into the system. The AFIS

systems are proprietary, so it is not clear exactly how these scores are calculated; however,

they can be used to give an indication about how closely each candidate print matches the

mark in question. Some statistical methods, such as those in [19] and [18], and [6] use the

AFIS scores to calculate the weight of evidence in support of 𝐻0 from (1.1).

1.5 Outline of the Dissertation

In Chapter 2, we propose a framework for an ideal database that contains enough in-

formation to sufficiently be used for statistical analysis. We also discuss the inference that

can be conducted in the less ideal databases that are more often found currently. Many

numerical summaries of fingerprint evidence are in multivariate vectors, so in Chapter 3, we

extend our framework to the multivariate case and show its applicability for a wider variety

of data.

Once we have provided a foundation for the databases, we apply them more specifically

to the context of fingerprint evidence. In Chapter 4, we discuss the potential sources of

variability that could exist in multiple prints produced by the same source. We describe the

fingerprint collection process in both controlled and uncontrolled conditions, and use this to

provide guidelines for the types of factors to consider for each “instrument” represented in a

database.

In Chapter 5, we apply the results from chapters 2 - 4 to a demonstration of how the

database could be used in practice. We apply the shape metric from [40] use the information

from the database to obtain prior information regarding whether two prints being compared

were produced by the same source. This demonstration helps us gain insight in regards to

the design of the database along with some potential advantages of our proposed framework.
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Once we have fully described our proposed database, we move on the question of quan-

tifying the weight of evidence from (1.2). Using the investigation of Brandon Mayfield and

Ouhnane Daoud in the 2004 Madrid terrorist attack [42] as a guide, we discuss the depen-

dencies that exist in the interpretation of the weight of evidence when multiple candidates

are examined as the potential source of a fingermark. We extend this analysis from two

candidates to the scenario when many candidates are examined and use the results to pro-

vide some general guidelines to consider when examining a list of candidates, such as those

produced by AFIS.

We conclude the dissertation in Chapter 7 with a summary of the work presented in this

document and suggestions for future research directions.
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Chapter 2

Foundations for a Fingerprint Database:

Univariate Measurements

2.1 Motivation

In a 2016 report, the President’s Council of Advisors on Science and Technology (PCAST)

recommended steps that could be taken to improve the scientific validity of forensic science.

The report was written in response to a 2015 inquiry by President Obama about the progress

that had been made to address the criticisms posed in the 2009 report by the National Re-

search Council [51] and the areas for improvement that remained. One of the recommenda-

tions made by PCAST was the development of databases that could be used by researchers

for methodological development. In regards to the importance of databases, [21] states,

The most important resource to propel the development of objective methods would

be the creation of huge databases containing known prints, each with many cor-

responding “simulated” latent prints of varying qualities and completeness, which

would be made available to scientifically-trained researchers in academia and in-

dustry. [pg. 103]
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Similarly, PCAST included the “development of forensic feature databases, with adequate

privacy protections, that can be used in research” [21, pg. 130] in its list of recommendations

to create a national research and development strategy for forensic sciences. While this

recommendation refers specifically to simulated latent prints (fingermarks), we assume, if

unrealistic, a scenario of being able to obtain multiple fingermarks from the same source.

In this chapter, we will establish a theoretical foundation to describe the way databases

can be used in forensic research. Though our present focus is on fingerprint analysis, we

intend to propose a framework that can be more fully applied to multiple forensic contexts,

most especially to other types of pattern evidence. Additionally, our focus is not on the ways

fingerprint images are processed to produce data that can be used for statistical analysis,

rather we focus on how that data can be used for statistical inference. Therefore, we intend

for this framework to work in conjunction with any method that is used to generate data

from fingerprint images, such as those described in section 1.4.

We begin the chapter by describing the inference problem and the role databases have in

helping us solve that problem in section 2.2. Then in section 2.3, we describe how databases

can be used to obtain prior information using a technique inspired by empirical Bayes meth-

ods. We offer an alternative approach for obtaining prior information based on variance

decomposition in section 2.4, and in section 2.5, we demonstrate our proposed methods us-

ing simulated data. The focus of this chapter is in inference for univariate data; we extend

the ideas from this chapter to the multivariate case in Chapter 3.

2.2 General Setup

Suppose there is a fingermark recovered from a crime scene and a fingerprint produced

by a person of interest. We call 𝑌1 the numerical summary from the mark that was recovered

from the scene using Instrument Y and 𝑋1 the numerical summary derived from the print

produced using Instrument X in a controlled environment such as a lab or police station.

The “instrument”, then, refers to a combination of personnel, equipment, and investigation

13



techniques used to recover a fingermark or produce a fingerprint. We will define “instruments”

more specifically in Chapter 4. Ultimately, the goal of our analysis mimics that of a latent

print examiner - to establish if 𝑋1 and 𝑌1 were produced by the same source. Let 𝜃𝑋 be the

error-free numerical summary from the fingerprint and 𝜃𝑌 the error-free numerical summary

from the fingermark. Using equation (1.2), we quantify the weight of evidence in support of

𝐻0 based on the following hypotheses:

𝐻0 : 𝜃𝑋 = 𝜃𝑌

𝐻1 : 𝜃𝑋 ̸= 𝜃𝑌

(2.1)

As with any tool used for measuring, Instrument X and Instrument Y have some mea-

surement error. Additionally, because Instrument Y captures marks produced under un-

controlled conditions at a scene, we expect that the measurement error in Instrument Y is

larger than the error in Instrument X. Understanding the differences in the measurement

error for each instrument can help us better distinguish between discrepancies due to mea-

surement error and those that indicate that 𝑋1 and 𝑌1 were produced by different sources.

One of our primary objectives, therefore, is to use our inferential framework to quantify the

measurement error for each instrument.

Databases can help us in this endeavor in a key way. An ideal database would contain

many measurements from previous investigations that were produced by the instrument.

These measurements could help us quantify the prior information 𝜋(𝜑|𝐻𝑖) under hypothe-

sis 𝐻𝑖 from (1.3). Though this information could be determined by forensic experts, using

databases to collect the information is a more systematic approach. Moreover, only one fin-

germark and fingerprint are investigated, i.e. 𝑛𝑋 = 𝑛𝑌 = 1; therefore, any prior information

will have a strong impact on the Bayes factor.

Ideally, one could use a database to obtain information about measurement error for the

instrument in question, measurement error across a variety of instruments similar to the

one in question, and information about the marks that are typically found in cases with
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circumstances similar to the one being investigated, in order to find the prior information

about the parameters of 𝑃 (𝐸|𝐻0) and 𝑃 (𝐸|𝐻1), where 𝐸 = {𝑋1, 𝑌1}. If all of these pieces of

information can be derived from the database, we call it fully-resourced ; otherwise, if certain

pieces of information are missing, we refer to it as sub-resourced. A sub-resourced database

does not have enough information about the variability in measurements error across instru-

ments similar to the ones in the current investigation. Not having this information about

variability could cause the weight of evidence for a match to be overstated.

Current databases do not often contain the type of information required for a fully-

resourced database in the proposed framework. Some databases, such as those used in the

Fingerprint Verification Competitions [13], include repeated impressions produced by the

same source; however, all of the impressions were produced under controlled conditions.

Moreover, we will define “instrument” to include specific characteristics about the surface on

which an impression was made. (This is discussed in detail in Chapter 4.) In many current

databases, since the impressions are made under controlled conditions, there is little to no

variation in the surfaces represented in the database. Given these limitations, many current

databases do not have sufficient information to define the “similar instruments” required for

the fully-resourced case.

2.2.1 Description of Databases

Let 𝑆𝑋 be the set of instruments in the database that are similar to Instrument X

and 𝑆𝑌 be the set of instruments in the database similar to Instrument Y. In the ideal,

fully-resourced database, 𝑆𝑋 and 𝑆𝑌 consist of many instruments; however, in the sub-

resourced case, 𝑆𝑋 and 𝑆𝑌 contain only the instruments in the current investigation, i.e.

𝑆𝑋 = {𝑋} and 𝑆𝑌 = {𝑌 }. For each instrument 𝑆, we have a collection of measurements

𝑈𝑆,𝑖𝑗. Let 𝑖 = 1, . . . , 𝑔𝑆, such that 𝑔𝑆 is the total number of sources measured by instrument

𝑆, and 𝑗 = 1, . . . , 𝑟𝑆,𝑖 such that 𝑟𝑆,𝑖 is the total number of replicated measurements of source

𝑖 measured by instrument 𝑆. Finally, let 𝑛𝑆 =
∑︀

𝑖 𝑟𝑆,𝑖 be the total number of pattern

measurements in the database produced by instrument 𝑆.
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2.3 Using a Database for Statistical Inference

2.3.1 Model Setup

To illustrate our framework, we will use a scenario in which 𝑋1 and 𝑌1 are univariate

Gaussian data derived from fingerprint images. Though we are presenting the framework

using univariate Gaussian distributions, we aim to generalize the framework beyond this

scope. We have chosen to start with a Gaussian structure for the data, because it is appli-

cable for many types of numerical summaries of fingerprint images. Even if the numerical

summaries do not follow a Gaussian distribution, the standard values of these summaries

can be used in this framework. At this point, we assume independence between elements in

the vector of numerical data; in Chapter 3, we extend the framework to the more general

multivariate Gaussian case where the correlation structure can be derived completely from

the information in the database.

When 𝑋1 and 𝑌1 are produced by the same source, 𝑋1 ∼ 𝐺(𝜃, 𝜎2
𝑋) and 𝑌1 ∼ 𝐺(𝜃, 𝜎2

𝑌 ),

where 𝜃 is the true measurement of 𝑋1 and 𝑌1, and 𝜎2
𝑋 and 𝜎2

𝑌 are the variability in in-

struments X and Y, respectively. We can think of 𝜎2
𝑋 and 𝜎2

𝑌 as the measurement error of

instruments X and Y. The prior knowledge about 𝜃, 𝜎2
𝑋 and 𝜎2

𝑌 can be described as

𝜃 ∼ 𝐺(𝜃0, 𝜎
2
0) 𝜎2

𝑋 ∼ logN(𝜇𝑋,0, 𝜏
2
𝑋,0) 𝜎2

𝑌 ∼ logN(𝜇𝑌,0, 𝜏
2
𝑌,0) (2.2)

where 𝜇𝑋,0 and 𝜇𝑌,0 are the means of the respective log Normal distributions, and 𝜏 2𝑋,0 and 𝜏 2𝑌,0

are the variances. ”A commonly used prior distribution for variance parameters is inv-𝜒2
𝜅(𝜆),

the scaled inverse chi-squared distribution with 𝜅 degrees of freedom and a scale parameter

𝜆. This distribution is often chosen, because it is the conjugate prior distribution for the

variance parameter in the Gaussian likelihood function. Since the prior distribution of the

𝜃’s does not depend on 𝜎2
𝑋 or 𝜎2

𝑌 , we do not have a conjugate model and therefore gain no

conjugacy benefits from using the scaled inverse chi-square distribution. ”Moreover, we found

using this distribution was not computationally feasible. Therefore, we use the lognormal
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(as the approach in [7]) to make the computations more manageable as we implement the

framework.

In contrast, when 𝑋1 and 𝑌1 are produced by different sources, 𝑋1 ∼ 𝐺(𝜃𝑋 , 𝜎
2
𝑋) and

𝑌1 ∼ 𝐺(𝜃𝑌 , 𝜎
2
𝑌 ), where 𝜃𝑋 and 𝜃𝑌 are the true measurements of 𝑋1 and 𝑌1, respectively, and

𝜎2
𝑋 and 𝜎2

𝑌 are defined as before. The prior information about 𝜃𝑋 , 𝜃𝑌 , 𝜎2
𝑋 and 𝜎2

𝑌 can be

described similarly as in (2.2)

𝜃𝑋 ∼ 𝐺(𝜃0, 𝜎
2
0) 𝜃𝑌 ∼ 𝐺(𝜃0, 𝜎

2
0) 𝜎2

𝑋 ∼ logN(𝜇𝑋,0, 𝜏
2
𝑋,0) 𝜎2

𝑌 ∼ logN(𝜇𝑌,0, 𝜏
2
𝑌,0) (2.3)

where the mean and variance parameters for the log-Normal distributions are defined as

before.

Using this basic construction, we can obtain prior information about the within instru-

ment variability, 𝜎2
𝑋 and 𝜎2

𝑌 , and use this to answer the inferential questions in section 2.2.

We begin with the ideal fully-resourced database, then show what can be measured using a

sub-resourced database.

2.3.2 Inference Using a Fully-Resourced Database

Let 𝑆0
𝑋 = 𝑆𝑋 − {𝑋} be the set of instruments in the database similar to Instrument

X but excluding Instrument X. 𝑆0
𝑌 = 𝑆𝑌 − {𝑌 } is defined similarly. Let 𝑈𝑆,𝑖𝑗, be the

individual measurements in database 𝑆, and D0 = {𝑈𝑆,𝑖𝑗 : 𝑆 ∈ 𝑆0
𝑋 ∪𝑆0

𝑌 }, the complete set of

measurements in 𝑆0
𝑋 and 𝑆0

𝑌 . Given (2.3) each 𝜃𝑆,𝑖 ∼ 𝐺(𝜃0, 𝜎
2
0), 𝜎2

𝑆 ∼ logN(𝜇𝑋,0, 𝜏
2
𝑋,0) for 𝑆 ∈

𝑆𝑋 , and 𝜎2
𝑆 ∼ logN(𝜇𝑌,0, 𝜏

2
𝑌,0) for 𝑆 ∈ 𝑆𝑌 . We assume the 𝑈𝑆,𝑖𝑗’s, 𝜃𝑆,𝑖 and the 𝜎𝑆’s are

independent for all 𝑖 = 1, . . . , 𝑔𝑆 and 𝑗 = 1, . . . , 𝑟𝑆,𝑖.

Since our goal is to use the database to obtain prior information, we use D0 to calculate

the parameters for the prior distributions. To do so, we take inspiration from empirical Bayes

techniques and obtain prior information by maximizing the likelihood equation, written in

general and analytically in (2.4) and (2.5), respectively. Standard techniques for multi-

parameter maximization can be used to achieve this. It is worth noting, however, a key
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difference between our method and empirical Bayes methods. In the usual empirical Bayes

techniques, the data is used to fit the parameters of the prior distribution and that same

data is then analyzed. In our method, D0, the data used to fit the parameters of the

prior distributions, does not include the data that is then analyzed as part of the current

investigation.

𝐿(𝜃0, 𝜎
2
0,𝜇𝑋,0, 𝜏

2
𝑋,0, 𝜇𝑌,0, 𝜏

2
𝑌,0|D0) =∏︁

𝑆∈𝑆0
𝑋

∫︁ {︃
𝜋𝑋(𝜎2

𝑆)

𝑔𝑆∏︁
𝑖=1

∫︁ {︃
𝜋(𝜃𝑆,𝑖)

𝑟𝑆,𝑖∏︁
𝑗=1

𝜋(𝑈𝑆,𝑖𝑗|𝜃𝑆,𝑖, 𝜎2
𝑆)

}︃
𝑑𝜃𝑆,𝑖

}︃
𝑑𝜎2

𝑆

×
∏︁
𝑆∈𝑆0

𝑌

∫︁ {︃
𝜋𝑌 (𝜎2

𝑆)

𝑔𝑆∏︁
𝑖=1

∫︁ {︃
𝜋(𝜃𝑆,𝑖)

𝑟𝑆,𝑖∏︁
𝑗=1

𝜋(𝑈𝑆,𝑖𝑗|𝜃𝑆,𝑖, 𝜎2
𝑆)

}︃
𝑑𝜃𝑆,𝑖

}︃
𝑑𝜎2

𝑆

(2.4)

𝐿(𝜃0, 𝜎
2
0, 𝜇𝑋,0, 𝜏

2
𝑋,0, 𝜇𝑌,0, 𝜏

2
𝑌,0|D0) =∏︁

𝑆∈𝑆0
𝑋

∫︁
𝜏
− 1

2
𝑋,0(2𝜋)−

∑︀𝑔𝑆
𝑖=1(

1
2
+

𝑟𝑆,𝑖
2

)(𝜎2
𝑆)−
(︀
1+

∑︀𝑔𝑆
𝑖=1

𝑟𝑆,𝑖−𝑔𝑆
2

)︀ 𝑔𝑆∏︁
𝑖=1

(𝜎2
𝑆 + 𝑟𝑆,𝑖𝜎

2
0)−

1
2

× exp

{︃
− 1

2

[︃
1

𝜏 2𝑋,0

(log(𝜎2
𝑆) − 𝜇𝑋,0)

2 +

𝑔𝑆∑︁
𝑖=1

(︃
𝜃0
𝜎2
0

+

∑︀𝑟𝑆,𝑖
𝑗=1 𝑈

2
𝑆,𝑖𝑗

𝜎2
𝑆

−
(𝜃0𝜎

2
𝑆 + 𝜎0

∑︀𝑟𝑆,𝑖
𝑗=1 𝑈𝑆,𝑖𝑗)

2

(𝜎2
𝑆 + 𝑟𝑆,𝑖𝜎2

0)2

)︃]︃}︃
∏︁
𝑆∈𝑆0

𝑌

∫︁
𝜏
− 1

2
𝑋,0(2𝜋)−( 1

2
+
∑︀𝑔𝑆

𝑖=1

𝑟𝑆,𝑖
2

)(𝜎2
𝑆)−
(︀
1+

∑︀𝑔𝑆
𝑖=1

𝑟𝑆,𝑖−𝑔𝑆
2

)︀ 𝑔𝑆∏︁
𝑖=1

(𝜎2
𝑆 + 𝑟𝑆,𝑖𝜎

2
0)−

1
2

× exp

{︃
− 1

2

[︃
1

𝜏 2𝑌,0
(log(𝜎2

𝑆) − 𝜇𝑌,0)
2 +

𝑔𝑆∑︁
𝑖=1

(︃
𝜃20
𝜎2
0

+

∑︀𝑟𝑆,𝑖
𝑗=1 𝑈

2
𝑆,𝑖𝑗

𝜎2
𝑆

−
(𝜃0𝜎

2
𝑆 + 𝜎0

∑︀𝑟𝑆,𝑖
𝑗=1 𝑈𝑆,𝑖𝑗)

2

(𝜎2
𝑆 + 𝑟𝑆,𝑖𝜎2

0)2

)︃]︃}︃
(2.5)

Once we have completely specified the prior distribution using D0, we can update the

densities of 𝜎2
𝑋 and 𝜎2

𝑌 using D𝑋 and D𝑌 , the set of measurements collected using Instrument

X and Instrument Y. The density function 𝑝(𝜎2
𝑋 |D𝑋) takes form in (2.6); 𝑝(𝜎2

𝑌 |D𝑌 ) can be

written in a similar fashion.
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𝑝(𝜎2
𝑋 |D𝑋) ∝

𝑔𝑋∏︁
𝑖=1

∫︁ {︃
𝜋(𝜃𝑋,𝑖)

𝑟𝑋,𝑖∏︁
𝑗=1

𝜋(𝑈𝑋,𝑖𝑗|𝜃𝑋,𝑖, 𝜎
2
𝑋)

}︃
𝑑𝜃𝑋,𝑖

∝ 𝜋𝑋(𝜎2
𝑋)𝜏

− 1
2

𝑋,0(2𝜋)−
∑︀

𝑖

𝑟𝑋,𝑖+1

2 (𝜎2
𝑋)−

∑︀
𝑖

𝑟𝑋,𝑖−𝑔𝑋
2

[︃
𝑔𝑋∏︁
𝑖=1

(︃
𝜎2
𝑋 + 𝑟𝑋,𝑖𝜎

2
0

𝜎2
0𝜎

2
𝑋

)︃− 1
2
]︃

× exp

{︃
− 1

2

[︃
(log(𝜎2

𝑋) − 𝜇𝑋,0)
2

𝜏 2𝑋,0

+

𝑔𝑋∑︁
𝑖=1

(︃
𝜃20
𝜎2
0

+

∑︀𝑟𝑋,𝑖

𝑗=1 𝑈
2
𝑋,𝑖𝑗

𝜎2
𝑋

−
(𝜃0𝜎

2
𝑋 + 𝜎2

0

∑︀𝑟𝑋,𝑖

𝑗=1 𝑈𝑋,𝑖𝑗)
2

(𝑟𝑋,𝑖𝜎2
0 + 𝜎2

𝑋)2

)︃]︃}︃
(2.6)

We can now use the prior information obtained from the database to calculate the Bayes

factor. Let 𝑀0 be the model under 𝐻0 (𝑋1 and 𝑌1 from the same source), and 𝑀1 the model

under 𝐻1. The Bayes factor is

𝐵𝐹01(𝑋1, 𝑌1) =
𝜋𝑀0(𝑋1, 𝑌1)

𝜋𝑀1(𝑋1, 𝑌1)

=

∫︀ ∫︀ ∫︀
𝜋(𝑋1|𝜃, 𝜎2

𝑋)𝜋(𝑌1|𝜃, 𝜎2
𝑌 )𝜋(𝜃)𝑝(𝜎2

𝑋 |D𝑋)𝑝(𝜎2
𝑌 |D𝑌 )𝑑𝜃𝑑𝜎2

𝑋𝑑𝜎
2
𝑌∫︀ ∫︀ ∫︀ ∫︀

𝜋(𝑋1|𝜃𝑋 , 𝜎2
𝑋)𝜋(𝑌1|𝜃𝑌 , 𝜎2

𝑌 )𝜋(𝜃𝑋)𝜋(𝜃𝑌 )𝑝(𝜎2
𝑋 |D𝑋)𝑝(𝜎2

𝑌 |D𝑌 )𝑑𝜃𝑋𝑑𝜃𝑌 𝑑𝜎2
𝑋𝑑𝜎

2
𝑌

=

∫︀ ∫︀
𝐴𝑝(𝜎2

𝑋 |D𝑋)𝑝(𝜎2
𝑌 |D𝑌 )𝑑𝜎2

𝑋𝑑𝜎
2
𝑌∫︀ ∫︀

𝐵 𝑝(𝜎2
𝑋 |D𝑋)𝑝(𝜎2

𝑌 |D𝑌 )𝑑𝜎2
𝑋𝑑𝜎

2
𝑌

(2.7)

such that

𝐴 = (𝜎2
𝑌 𝜎

2
0 +𝜎2

𝑋𝜎
2
0 +𝜎2

𝑋𝜎
2
𝑌 )−

1
2 exp

{︃
− 1

2

[︃
𝑋2

1

𝜎2
𝑋

+
𝑌 2
1

𝜎2
𝑌

+
𝜃20
𝜎2
0

− (𝑋1𝜎
2
𝑌 𝜎

2
0 + 𝑌1𝜎

2
𝑋𝜎

2
0 + 𝜃0𝜎

2
𝑋𝜎

2
𝑌 )2

𝜎2
0𝜎

2
𝑋𝜎

2
𝑌 (𝜎2

𝑌 𝜎
2
0 + 𝜎2

𝑋𝜎
2
0 + 𝜎2

𝑋𝜎
2
𝑌 )

]︃}︃

𝐵 =
(︁ 1

2𝜋

)︁
(𝜎2

0+𝜎2
𝑋)−

1
2 (𝜎2

0+𝜎2
𝑌 )−

1
2 exp

{︃
−1

2

[︃
𝑋2

1

𝜎2
𝑋

+
𝑌 2
1

𝜎2
𝑌

+
𝜃20
𝜎2
0

−(𝑋1𝜎
2
0 + 𝜃0𝜎

2
𝑋)2

𝜎2
0𝜎

2
𝑋(𝜎2

0 + 𝜎2
𝑋)

−(𝑌1𝜎
2
0 + 𝜃0𝜎

2
𝑌 )2

𝜎2
0𝜎

2
𝑌 (𝜎2

0 + 𝜎2
𝑌 )

]︃}︃

”The scale in Table 2.1 is a guide for interpreting the Bayes factor to assess the original

question - what is the weight of evidence from 𝑋1 and 𝑌1 in support of 𝐻0? This scale

was originally presented by Kass and Raftery [32] and is often used as a standard for inter-

preting Bayes factors. Given the wealth of information in the fully-resourced database, this
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assessment can be made having a better understanding of the variability we expect from

the instruments similar to those in the current investigation. Currently, such fully-resourced

databases are rare, so we move to the sub-resourced case which better reflects the information

that is often available in current practice.

2log(B01) Evidence in support of H0

0 to 2 Neutral
2 to 6 Positive
6 to 10 Strong
> 10 Very strong

Table 2.1: Interpretation of Bayes factors based on [32]. The negative of this scale can be
interpreted similarly as evidence in support of 𝐻1.

2.3.3 Inference Using a Sub-Resourced Database

In a sub-resourced database, 𝑆𝑋 = {𝑋} and 𝑆𝑌 = {𝑌 }, therefore, we do not have D0

from which we can obtain prior information. Thus, we are unable to get information about

the distribution of 𝜎2
𝑋 and 𝜎2

𝑌 . The best we can do is calculate estimates of the variability

within each instrument in the current investigation, �̂�2
𝑋 and �̂�2

𝑌 , but there is no sense of

the uncertainty associated with these estimates. Using a similar approach as before, we

maximize the likelihood function in (2.8) (shown analytically in (2.9)) using multi-parameter

maximization techniques to calculate the desired parameters and estimates.

𝐿(𝜃0, 𝜎
2
0, 𝜎

2
𝑋 , 𝜎

2
𝑌 |D𝑋 ,D𝑌 ) =

𝑔𝑋∏︁
𝑖=1

∫︁ {︃
𝜋(𝜃𝑋,𝑖)

𝑟𝑋,𝑖∏︁
𝑗=1

𝜋(𝑈𝑋,𝑖𝑗|𝜃𝑋,𝑖, 𝜎
2
𝑋)

}︃
𝑑𝜃𝑋,𝑖

×
𝑔𝑌∏︁
𝑖=1

∫︁ {︃
𝜋(𝜃𝑌,𝑖)

𝑟𝑌,𝑖∏︁
𝑗=1

𝜋(𝑈𝑌,𝑖𝑗|𝜃𝑌,𝑖, 𝜎2
𝑌 )

}︃
𝑑𝜃𝑌,𝑖

(2.8)
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𝐿(𝜃0, 𝜎
2
0, 𝜎

2
𝑋 , 𝜎

2
𝑌 |D𝑋 ,D𝑌 ) =

(2𝜋)−
∑︀

𝑖

𝑟𝑋,𝑖
2 (𝜎2

𝑋)−
∑︀

𝑖

𝑟𝑋,𝑖−𝑔𝑋
2
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𝑔𝑋∏︁
𝑖=1

(︃
𝜎2
𝑋 + 𝑟𝑋,𝑖𝜎

2
0

𝜎2
0𝜎

2
𝑋

)︃− 1
2
]︃

× exp

{︃
− 1

2

𝑔𝑋∑︁
𝑖=1

(︃
𝜃20
𝜎2
0

+

∑︀𝑟𝑋,𝑖

𝑗=1 𝑈
2
𝑋,𝑖𝑗

𝜎2
𝑋

−
(𝜃0𝜎

2
𝑋 + 𝜎2

0

∑︀𝑟𝑋,𝑖

𝑗=1 𝑈𝑋,𝑖𝑗)
2

𝜎2
0𝜎

2
𝑋(𝑟𝑋,𝑖𝜎2

0 + 𝜎2
𝑋)

)︃}︃

× (2𝜋)−
∑︀

𝑖

𝑟𝑌,𝑖
2 (𝜎2

𝑌 )−
∑︀

𝑖

𝑟𝑌,𝑖−𝑔𝑌
2

[︃
𝑔𝑌∏︁
𝑖=1

(︃
𝜎2
𝑌 + 𝑟𝑌,𝑖𝜎

2
0

𝜎2
0𝜎

2
𝑌

)︃− 1
2
]︃

× exp

{︃
− 1

2

𝑔𝑌∑︁
𝑖=1

(︃
𝜃20
𝜎2
0

+

∑︀𝑟𝑌,𝑖

𝑗=1 𝑈
2
𝑌,𝑖𝑗

𝜎2
𝑌

−
(𝜃0𝜎

2
𝑌 + 𝜎2

0

∑︀𝑟𝑌,𝑖

𝑗=1 𝑈𝑌,𝑖𝑗)
2

𝜎2
0𝜎

2
𝑌 (𝑟𝑌,𝑖𝜎2

0 + 𝜎2
𝑌 )

)︃}︃

(2.9)

We can then calculate the Bayes factor in (2.10) and interpret it using Table 2.1.

𝐵𝐹01(𝑋1, 𝑌1) =

∫︀
𝜋(𝑋1|𝜃, �̂�2

𝑋)𝜋(𝑌1|𝜃, �̂�2
𝑌 )𝜋(𝜃)𝑑𝜃∫︀ ∫︀

𝜋(𝑋1|𝜃𝑋 , �̂�2
𝑋)𝜋(𝑌1|𝜃𝑌 , �̂�2

𝑌 )𝜋(𝜃𝑋)𝜋(𝜃𝑌 )𝑑𝜃𝑋𝑑𝜃𝑌
(2.10)

𝐵𝐹01(𝑋1, 𝑌1) =

(︃
(𝜎2

0 + �̂�2
𝑋)(𝜎2

0 + �̂�2
𝑌 )

(�̂�2
𝑌 𝜎

2
0 + �̂�2

𝑋𝜎
2
0 + �̂�2

𝑋 �̂�
2
𝑌 )

)︃ 1
2

× exp

{︃
− 1

2

[︃
(𝜎2

0𝑋1 + �̂�2
𝑋𝜃0)

2

𝜎2
0�̂�

2
𝑋(𝜎2

0 + �̂�2
𝑋)

+
(𝜎2

0𝑌1 + �̂�2
𝑌 𝜃0)

2

𝜎2
0�̂�

2
𝑌 (𝜎2

0 + �̂�2
𝑌 )

− (𝜎2
0�̂�

2
𝑌𝑋1 + 𝜎2

0�̂�
2
𝑋𝑌1 + �̂�2

𝑋 �̂�
2
𝑌 𝜃0)

2

𝜎2
0�̂�

2
𝑋 �̂�

2
𝑌 (𝜎2

0�̂�
2
𝑌 + 𝜎2

0�̂�
2
𝑋 + �̂�2

𝑋 �̂�
2
𝑌 )

− 𝜃20
𝜎2
0

]︃}︃

The Bayes factor calculated from (2.10) should be interpreted with some caution. Though

we are able to obtain estimates of the measurement error for each instrument, we do not have

a full understanding of the variability in that estimate. This may be especially important

when trying to evaluate close non-matching prints in which it is more difficult to determine

the discrepancies that indicate the prints are from different sources rather than discrepancies

due to usual measurement error.
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2.4 Variance Decomposition

In the previous section, we described a method of obtaining information from a database

based on maximizing the appropriate likelihood function. There are a relatively small number

of parameters being fitted in the univariate Gaussian case, thus optimization can be done

relatively smoothly. This is not necessarily the case when we move to more complex data

structures, such as the multivariate Gaussian case in Chapter 3. Therefore, in this section, we

propose an alternative procedure for gathering information about parameters of interest from

databases that is based on Analysis of Variance (ANOVA). Once we obtain the parameters,

we can calculate the Bayes factors and any available prior information as in the previous

section.

Though we are utilizing an ANOVA decomposition to quantify sources of variation, we are

not interested in testing as is common in traditional ANOVA analyses. Thus, we are not as

concerned that our data will not meet some of the usual assumptions such as equal variance

across groups. We begin with the ANOVA decomposition for a sub-resourced database

followed by the fully-resourced case.

2.4.1 Sub-Resourced Database

As we discussed in the previous section, a sub-resourced database does not contain mea-

surements from instruments similar to instruments 𝑋 and 𝑌 . Therefore, we only have the

data from 𝑆𝑋 and 𝑆𝑌 to obtain the desired parameters and estimates of variability. We can

calculate 𝜃0, prior parameter for the source means by simply taking the mean of all measure-

ments in 𝑆𝑋 and 𝑆𝑌 ; however, calculating the variance parameters will require that we break

down the different components of variation within measurements by the same instrument.

For a given instrument 𝑆, we can decompose the variance in the collection of measurements

produced 𝑆 using Table 2.2. Using the same notation as before, 𝑔𝑆 is the number of sources

measured by 𝑆, 𝑟𝑆,𝑖 is the number of measurements for the 𝑖𝑡ℎ source, and 𝑛𝑆 is the total

number of measurements produced by 𝑆.
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DF SS MS

Between 𝑔𝑆 − 1
∑︀
𝑖

𝑟𝑆,𝑖(�̄�𝑆,𝑖 − �̄�𝑆,..)
2 𝑆𝑆𝐵/(𝑔𝑆 − 1)

Within 𝑛𝑆 − 𝑔𝑆
∑︀
𝑖

∑︀
𝑗

(𝑈𝑆,𝑖𝑗 − �̄�𝑆,𝑖)
2 𝑆𝑆𝑊/(𝑛𝑆 − 𝑔𝑆)

Total 𝑛𝑆 − 1
∑︀
𝑖

∑︀
𝑗

(𝑈𝑆,𝑖𝑗 − �̄�𝑆,..)
2

Table 2.2: ANOVA decomposition for a single instrument, such that 𝑖 = 1, . . . , 𝑔𝑆, 𝑗 =
1, . . . , 𝑟𝑆,𝑖, and 𝑛𝑆 =

∑︀
𝑖

𝑟𝑆,𝑖 is the total number of measurements for instrument S. 𝑆𝑆

represents the sum of squares and 𝑀𝑆 is the mean square.

Using this decomposition, we can calculate �̂�2
𝑆, the estimated variability in the measure-

ments produced by 𝑆, using the classical result that the sample variance can be estimated

using the mean square error. Therefore, we estimate the measurement error for instruments

𝑋 and 𝑌 using 𝑀𝑆𝑊 , the within mean square.

To fit 𝜎2
0, we need to take into account measurements from both 𝑆𝑋 and 𝑆𝑌 . Thus we

calculate 𝜎2
𝑆 using (2.11) which is an estimate of the variation between sources in databases

𝑆𝑋 and 𝑆𝑌 ..

𝜎2
0 =

𝑆𝑆𝐵𝑋 + 𝑆𝑆𝐵𝑌

𝑛𝑋 + 𝑛𝑌 − 2
(2.11)

2.4.2 Fully-Resourced Database

Using a fully-resourced database, we can utilize information from D0 = {𝑈𝑆,𝑖𝑗 : 𝑆 ∈

𝑆0
𝑋∪𝑆0

𝑌 } to calculate the desired parameters as before. Similar to the sub-resourced case, we

can calculate 𝜃0 using the sample mean across all measurements in a database. To calculate

the parameters associated with the sources of variability, we use ANOVA to decompose the

variability observed in a single database 𝑆𝑑 as shown in Table 2.3. Now, 𝑆𝑆𝐵 measures the

sum of squares between instruments in a database 𝑆𝑑 and 𝑆𝑆𝑊 measures the sum of squares

within a single instrument.

”To calculate 𝜎2
0 in (2.12), the variation between sources in D0 is pooled (similar to

(2.11)).
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DF SS MS

Between 𝑁𝑆𝑑
− 1

∑︀
𝑠

𝑛𝑆(�̄�𝑠 − �̄�.)
2 𝑆𝑆𝐵/(𝑁𝑆𝑑

− 1)

Within
∑︀

𝑠 𝑛𝑆 −𝑁𝑆𝑑

∑︀
𝑠

∑︀
𝑖

(𝑈𝑠,𝑖 − �̄�𝑠,.)
2 𝑆𝑆𝑊/(

∑︀
𝑠 𝑛𝑆 −𝑁𝑆𝑑

)

Total
∑︀

𝑠 𝑛𝑆 − 1
∑︀
𝑠

∑︀
𝑖

(𝑈𝑠,𝑖 − �̄�.)
2

Table 2.3: ANOVA decomposition for a database. 𝑠 = 1, . . . , 𝑁𝑆𝑑
is the number of instru-

ments in the database, and 𝑖 = 1, . . . , 𝑛𝑆 is the number of measurements for instrument
S.

𝜎2
0 =

𝑁𝑆𝑑∑︀
𝑖=1

𝑆𝑆𝐵𝑖

𝑁𝑆𝑑∑︀
𝑖=1

(𝑛𝑆𝑖
− 1)

(2.12)

To complete the prior information that is obtained from a fully-resourced database, we

find the parameters (𝜇𝑋,0, 𝜏 2𝑋,0) and (𝜇𝑌,0,𝜏 2𝑌,0) that are used to derive prior information

about 𝜎2
𝑋 and 𝜎2

𝑌 , respectively. We write the equations in terms of Instrument X ; the same

structure is used for Instrument Y.

Our aim is to derive the prior distribution of within instrument variation for the instru-

ments in 𝑆0
𝑋 , so we use the decomposition in Table 2.2 to estimate the within instrument

variation. Given the 𝑖𝑡ℎ instrument in 𝑆0
𝑋 , 𝑆2

𝑖 = 𝑆𝑆𝑊𝑖

𝑛𝑆𝑖
−1

and

𝜇𝑋,0 = mean{log(𝑆1), . . . , log(𝑆𝑁)} 𝜏 2𝑋,0 = variance{log(𝑆1), . . . , log(𝑆𝑁)} (2.13)

such that 𝑁 is the number of instruments in 𝑆0
𝑋 .

2.5 Numerical Demonstration

One of the main objectives of the following simulation is to understand how the methods

perform under different configurations of the proposed database. We are most interested in
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how the number of unique sources in the database, the number of replications for each source,

and the number of similar instruments (in the fully-resourced case) affect the performance of

our framework in fitting the desired parameters to obtain prior information. Other aspects

to be explored through these simulations is the general performance of our method and the

computational feasibility of the approach if it were to be put into practice. We also want to

compare the performance of the optimization-based approach to the one based on variance

decomposition. We begin by looking at the sub-resourced case in section 2.5.1 and then

move onto the the fully resourced case in section 2.5.2.

2.5.1 Sub-Resourced Database

To test the performance of the sub-resourced database methods described in sections

2.3 and 2.4, we simulate databases 𝑆𝑋 and 𝑆𝑌 using the following parameters: 𝜃0 = 10,

𝜎2
0 = 1000, 𝜎2

𝑋 = 9, and 𝜎2
𝑌 = 100. Different settings are tested for the number of sources in

each database,𝑔𝑆, and the number of repeated measurements for each source, 𝑟𝑆,.. There were

four different levels for the number of unique sources in each database: 100,500,1000,5000.

These levels were chosen based on some of the database sizes used by [40], [41], [12], and

others. There were three different levels used for the number of repeated measurements

for each source: 5, 20, and 70. Five repeated measurements was chosen based on [12] who

did not see much different in results in their analysis of the effects of database size using

five repeated measurements versus larger numbers of repeated measurements. Moreover, for

metrics (such as an AFIS score) which produce one numerical summary value for an entire

fingerprint, it will be difficult to obtain large numbers of repeated measurements for each

source. Therefore, having a framework that can work well with few repeated measurements

will be more feasible to implement in practice. We also test having 70 repeated measurements

for fingerprints in database 𝑆𝑋 , since examiners typically work around 70 - 80 minutiae on a

fingerprint. For similar reasons, we tested 20 repeated measurements for the fingermarks in

𝑆𝑌 . In these scenarios, the metric used to translate fingerprint images into numerical data

would need to have a separate measurement for each minutiae, such as the metrics in [41].
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For each case, the simulation results were generated using the following process:

1. Databases 𝑆𝑋 and 𝑆𝑌 were simulated using the source and replication specifications

for that case. The observations were generate using the form described in section 2.2

and the following parameters: 𝜃0 = 10, 𝜎2
0 = 1000, 𝜎2

𝑋 = 9, and 𝜎2
𝑌 = 100.

2. The parameters 𝜃0 and 𝜎2
0 were fit using each proposed method. The fitted values are 𝜃0*

and 𝜎2
0* in the results tables. Similarly, 𝜎2

𝑋 and 𝜎2
𝑌 were estimated using each proposed

method; the estimated values are �̂�2
𝑋 and �̂�2

𝑌 in the results tables. Nelder-Mead, a

simplex optimization method, was used to find the fitted and estimated values for the

maximization approach. This represents how the historical data from the databases

could be used in practice.

The simulation results are shown in tables 2.4, 2.5, and 2.6. In general, both approaches

perform very well. Both methods have the worst parameter fits in Case 4, when both the

number of unique sources and the number of repeated measurements for each source are

small. Additionally, the optimization method has some sensitivity to the starting value, as

shown by the uneven level of performance among the seven cases explored. In each case,

multiple starting values were used and the parameters corresponding the overall maximized

likelihood function are shown in the results. Using this multiple starting values made this

approach very slow compared to the variance decomposition method. Other maximization

techniques could be used in order to improve the performance of the optimization method;

however, the high level of performance and very fast run time of the variance decomposition

method make it more desirable to implement in practice.

2.5.2 Fully-Resourced Database

To understand how our proposed methods perform for a fully-resourced database, we test

different configurations of the number of unique sources, 𝑔𝑆, and the number of instruments

in each database, 𝑁𝑆. The levels 100, 1000, and 5000 are used to assess the effect of the

number of unique sources on the performance, and the levels 4, 10, and 20 are used to assess
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Case 𝑔𝑋 𝑔𝑌 𝑟𝑋 𝑟𝑌 𝜃0 𝜃0*: Opt. 𝜃0*: Decomp.
1 5000 5000 5 5 10 10.431 10.435
2 500 500 5 5 10 10.848 10.828
3 500 500 70 20 10 7.667 7.121
4 100 100 5 5 10 13.177 13.163
5 100 100 70 20 10 13.151 13.249
6 1000 500 5 5 10 9.181 9.185
7 1000 500 70 20 10 10.562 10.953

Table 2.4: Simulation results fitting 𝜃0 using a sub-resourced database. “Opt” results are
based on the likelihood maximization method in section 2.3.3; “Decomp” results are based
on the variance decomposition method in section 2.4.1.

Case 𝑔𝑋 𝑔𝑌 𝑟𝑋 𝑟𝑌 𝜎2
0 𝜎2

0*: Opt. 𝜎2
0*: Decomp.

1 5000 5000 5 5 1000 990.623 1001.326
2 500 500 5 5 1000 949.570 961.294
3 500 500 70 20 1000 1029.078 978.985
4 100 100 5 5 1000 1029.248 1040.854
5 100 100 70 20 1000 1002.615 1029.498
6 1000 500 5 5 1000 916.095 1221.777
7 1000 500 70 20 1000 988.770 1125.080

Table 2.5: Simulation results fitting 𝜎2
0 using a sub-resourced database. “Opt.” results are

based on the likelihood maximization method in section 2.3.3; “Decomp.” results are based
on the variance decomposition method in section 2.4.1.

the effect on performance based on number of instruments. We are especially interested in

how the number of instruments affects the performance of our methods, as this will provide

guidance when we define “instrument” in Chapter 4. For each case, we used 5 repeated

measurements, since the results from the sub-resourced case suggested this did not have as

much of an effect on the performance as the number of unique sources. Moreover, as shown in

Table 2.10, the optimization approach runs very slowly, so having a large number of repeated

measurements would make this approach not practical to be used in real analysis.

For each case, the simulation results were generated using the following process:

1. Databases 𝑆0
𝑋 and 𝑆0

𝑌 were simulated using the source and replication specifications

for that case. The observations were generated using the form described in section

2.2 and the following parameters: 𝜇𝑋, 0 = log(9), 𝜏 2𝑋,0 = log(10), 𝜇𝑌,0 = log(100),

𝜏 2𝑋,0 = log(10).
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Case 𝑔𝑋 𝑔𝑌 𝑟𝑋 𝑟𝑌 𝜎2
𝑋 �̂�2

𝑋 : Opt �̂�2
𝑋 : Decomp. 𝜎2

𝑌 �̂�2
𝑌 : Opt 𝜎2

𝑌 : Decomp
1 5000 5000 5 5 9 8.927 8.926 100 99.551 99.587
2 500 500 5 5 9 8.826 8.826 100 100.668 100.638
3 500 500 70 20 9 8.941 8.942 100 97.880 97.846
4 100 100 5 5 9 8.606 8.605 100 96.137 96.162
5 100 100 70 20 9 9.106 9.106 100 98.481 98.465
6 1000 500 5 5 9 8.839 8.836 100 100.782 100.813
7 1000 500 70 20 9 8.975 8.976 100 100.519 100.537

Table 2.6: Simulation results estimating 𝜎2
𝑋 using a sub-resourced database. “Optimization”

results are based on the likelihood maximization method in section 2.3.3; “Decomposition”
results are based on the variance decomposition method in section 2.4.1.

2. Using the data in 𝑆𝑋,0 and 𝑆𝑌,0, the parameters 𝜃0 𝜎2
0, 𝜇𝑋,0,𝜏 2𝑋,0, 𝜇𝑌,0,and 𝜏 2𝑌,0were fit

using each proposed method. The fitted values are indicated with an * in tables 2.7,

2.8, and 5.20. Nelder-Mead, a simplex optimization method, was used to find the fitted

and estimated values for the maximization approach.

3. New means for the sources in 𝑆0
𝑋 and 𝑆0

𝑌 are generated using Gaussian distributions

and the fitted values 𝜃0* and 𝜎2
0*. Similarly, new error variances for the instruments

in 𝑆0
𝑋 and 𝑆0

𝑌 are generated using a log Normal distribution and the fitted values

𝜇𝑋,0*,𝜏 2𝑋,0*, 𝜇𝑌,0*,and 𝜏 2𝑌,0*.

4. Using each proposed method, the fitted values were obtained as before; these values

are 𝜃0 and 𝜎2
0, 𝜇𝑋,0,𝜏 2𝑋,0, 𝜇𝑌,0, 𝜏 2𝑌,0 in tables 2.7, 2.8, and 5.20.

5. Comparing the fitted values, then, helps us assess how well the proposed method is

describing the patterns in the data.

The following parameter values were used to generate 𝑆0
𝑋 and 𝑆0

𝑌 , the databases of

historical data used to generate the parameters: 𝜃0 = 10, 𝜎2
0 = 1000, 𝜇𝑋,0 = log(9), 𝜏 2𝑋,0 =

log(10), 𝜇𝑌,0 = log(100), 𝜏 2𝑌,0 = log(10). The results are shown in tables 2.7, 2.8, and 5.20.

As in the sub-resourced case, we can assess the performance of each approach using by

comparing the * values to the fitted values for each parameter (for example, 𝜃0* to 𝜃0).

In general, the decomposition method tends to perform better than the optimization

method. As in the sub-resourced case, Nelder-Mead was used to fit the parameters, which
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Optimization Decomposition
Case 𝑁𝑆 𝑔𝑆 𝜃0* 𝜃0 𝜎2

0* 𝜎2
0 𝜃0* 𝜃0 𝜎2

0* 𝜎2
0

1 4 100 8.718 8.399 1060.221 1146.218 9.231 8.351 1078.022 1145.506
2 4 1000 9.745 10.937 1011.091 766.882 9.735 9.950 1038.449 1050.251
3 4 5000 9.991 12.451 999.349 607.666 9.987 9.652 1031.675 1074.921
4 10 100 10.458 11.105 1101.185 1115.684 9.964 10.654 1110.004 1223.417
5 10 1000 10.311 1.077 967.277 1427.911 10.304 10.046 1007.157 1056.734
6 10 5000 9.818 7.766 1004.410 975.221 9.812 9.956 1018.829 1026.635
7 20 100 9.438 9.253 978.615 990.765 9.535 9.168 1022.196 1001.942
8 20 1000 10.159 9.787 1009.077 1108.724 10.135 10.013 1036.780 1043.462
9 20 5000 10.141 2.984 1026.941 1003.889 10.130 9.948 1070.711 1119.043

Table 2.7: Simulation results fitting 𝜃0 and 𝜎2
0 using a fully-resourced database. “Optimiza-

tion” results are based on the likelihood maximization method in section 2.3.3; “Decomposi-
tion” results are based on the variance decomposition method in section 2.4.1.

Optimization Decomposition
Case 𝑁𝑆 𝑔𝑆 𝜇𝑋,0* 𝜇𝑋,0 𝜏 2𝑋,0* 𝜏 2𝑋,0 𝜇𝑋,0* 𝜇𝑋,0 𝜏 2𝑋,0* 𝜏 2𝑋,0

1 4. 100 3.218 3.314 2.330 1.598 3.040 2.041 3.087 4.805
2 4 1000 2.288 4.637 68.738 0.289 1.621 1.203 7.312 4.307
3 4 5000 3.690 4.142 4.947 1.115 3.080 2.877 3.270 1.183
4 10 100 1.809 2.748 1.496 1.223 1.318 0.844 3.144 2.460
5 10 1000 21.900 4.729 97.071 2.628 1.815 2.213 3.967 2.655
6 10 5000 3.488 3.077 35.524 0.178 1.311 1.359 2.542 2.886
7 20 100 2.035 2.206 0.811 0.486 1.585 2.034 2.226 2.288
8 20 1000 3.296 3.820 13.665 5.122 2.204 2.112 3.305 3.051
9 20 5000 -3.525 2.480 130.038 2.828 1.998 1.360 2.984 3.609

Table 2.8: Simulation results fitting 𝜇𝑋,0 and 𝜏 2𝑋,0 using a fully-resourced database. “Opti-
mization” results are based on the likelihood maximization method in section 2.3.3; “Decom-
position” results are based on the variance decomposition method in section 2.4.1.

has some sensitivity to the starting value. The variance decomposition method has less

variability in its performance, which does make it more ideal for implementing in practice.

Case 1 which has both a low number of unique sources and a low number of instruments

seems to have the worst performance of the tested cases. This indicates that our methods

should not be used with very small databases. As expected, the methods perform better

when there are larger amounts of available data; however, very large databases are not

required. The cases in which there are 10 instruments perform as well as when there are 20;

therefore, when creating a database,the most important aspect to take into consideration is

the number of unique sources.
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Optimization Decomposition
Case 𝑁𝑆 𝑔𝑆 𝜇𝑌,0* 𝜇𝑌,0 𝜏 2𝑌,0* 𝜏 2𝑌,0 𝜇𝑌,0* 𝜇𝑌,0 𝜏 2𝑌,0* 𝜏 2𝑌,0

1 4 100 4.169 4.248 0.912 0.039 3.870 3.423 1.609 1.034
2 4 1000 4.410 0.240 0.973 1.503 4.086 4.533 1.660 0.800
3 4 5000 4.249 0.708 38.052 2.413 4.134 4.825 3.196 2.737
4 10 100 4.676 4.411 1.934 1.824 4.663 4.326 3.939 7.004
5 10 1000 4.333 2.480 1.740 3.617 4.371 4.022 1.749 4.334
6 10 5000 3.170 2.459 194.920 1.692 3.975 3.559 3.673 2.421
7 20 100 4.433 4.711 2.122 1.262 4.150 4.164 3.246 2.584
8 20 1000 4.399 4.019 1.476 1.284 4.106 3.942 2.292 2.536
9 20 5000 7.925 1.498 86.902 0.894 4.946 4.277 3.307 3.895

Table 2.9: Simulation results fitting 𝜇𝑌,0 and 𝜏 2𝑌,0 using a fully-resourced database. “Opti-
mization” results are based on the likelihood maximization method in section 2.3.3; “Decom-
position” results are based on the variance decomposition method in section 2.4.1.

Finally, Table 2.10 shows the number of minutes required to fit the parameters for each

method. The run time for the optimization approach was substantially impacted by the

number of sources in each database; however, there is negligible impact on the variance

decomposition approach. Given our assessment that having a larger number of sources

is desirable in practice, the optimization approach may not be as feasible in practice as

the decomposition. To determine the effect the chosen optimization method had on the

performance on our approach, we tested cases for the fully-resourced database using Broyden-

Fletcher-Goldfar-Shanno (BFGS), a gradient based optimization technique, and simulated

annealing, a Markov Chain Monte Carlo optimization technique. In both cases, there was

not much improvement in the performance or run time Thus given the results of this analysis,

we propose using the ANOVA decomposition based approach in practice, given its level of

accuracy and very small run time.

2.6 Conclusion

In this chapter, we provided a theoretical foundation for the information that can be

gained from sub- and fully-resourced databases, and we demonstrated this framework with

univariate data. From the numerical analysis, we have shown that an ANOVA decomposition
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Case 𝑁𝑆 𝑔𝑆 Optimization Decomposition
1 4 100 1.452 0.000
2 4 1000 34.240 0.002
3 4 5000 156.388 0.012
4 10 100 6.749 0.000
5 10 1000 504.490 0.005
6 10 5000 538.277 0.025
7 20 100 24.532 0.001
8 20 1000 131.365 0.010
9 20 5000 547.354 0.061

Table 2.10: Total time (in minutes) to fit parameters for a fully-resourced database.

performs comparable to the optimization approach with far less run time. In order to

implement this framework in a realistic scenario, there are two elements that need to be

explored further. The first is extending the framework to the multivariate case. While there

are some metrics, such AFIS scores, that translate a fingerprint image into univariate data,

the majority of data translation methods (such as those discussed in 1.4), translate the image

into a multivariate vector. In the next chapter, we extend our framework to the multivariate

case, with a focus on an approach that makes use of the Multivariate Analysis of Variance

(MANOVA) decomposition. The second is to clearly define an “instrument”. In order to

fully understand what contributes to this variability and what constitutes an “instrument”,

we need to understand the potential factors that could contribute to variations in images

of fingerprints or fingermarks produced by the same source. In Chapter 4, we describe the

fingerprint investigation process in order to understand these potential factors. To make

this theoretical framework feasible in the practical realm, we also provide recommendations

for the sources of variability that should be included for a database to be considered fully-

resourced.
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Chapter 3

Foundations for a Fingerprint Database:

Multivariate Measurements

In the last chapter, we presented a framework for obtaining prior information from a

database using a univariate measurement. We now extend our framework to the multivariate

Gaussian case with a focus on the ANOVA-inspired variance decomposition approach. The

model is set up in section 3.1; section 3.2, includes the statistical inference from a sub-

resourced database; the fully-resourced database is discussed in section 3.3. In section 3.4.1

is a demonstration of the method using simulated data, and we conclude in section 3.5.

3.1 Model Setup

We refer the reader to section 2.2 for a description of the inferential questions and the gen-

eral structure of databases. We begin here with the data structure, which is the multivariate

analog to the model described in section 2.3.1.

Let X1 be a vector of 𝑑𝑋 measurements produced by Instrument X. X1 ∼ 𝐺(𝜃𝑋 ,Σ𝑋),

such that 𝜃𝑋 is a vector of length 𝑑𝑋 and Σ𝑋 is a 𝑑𝑋 × 𝑑𝑋 covariance matrix . Similarly,

Y1 is a set of 𝑑𝑌 measurements from Instrument Y, such that Y1 ∼ 𝐺(𝜃𝑌 ,Σ𝑌 ). We assume
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that 𝑑𝑋 = 𝑑𝑌 , so we drop the subscript and denote the length of each vector using 𝑑. When

X1 and Y1 are from different sources, the source means are generated from

𝜃𝑋 ∼ 𝐺(𝜃0,Σ0) 𝜃𝑌 ∼ 𝐺(𝜃0,Σ0) (3.1)

When X1 and Y1 are form the same source, 𝜃𝑋 = 𝜃𝑌 = 𝜃, such that 𝜃 ∼ 𝐺(𝜃0,Σ0).

The prior information for each covariance matrix, Σ𝑋 and Σ𝑌 , is calculated using the

separation strategy of [7]. The covariance matrix Σ is decomposed into a diagonal matrix

of the standard deviations S and a matrix of the correlations R as shown in (3.2).

Σ = SRS (3.2)

Therefore, the prior information for Σ is 𝑝(S,R) = 𝑝(R|S)𝑝(S). We will define 𝑝(S,R) in

way such that 𝑝(R|S) = 𝑝(R), i.e. the standard deviations and correlations can be handled

independently. This provides more flexibility than the commonly used inverse Wishart distri-

bution which requires a single scale matrix for both the variances and the correlations. Using

[7], we will model the prior information for S using 𝑑 independent log-Normal distributions,

such that 𝑆𝑖, the 𝑖𝑡ℎ element on the diagonal of S can be generated from logN(𝜇𝑆𝑖,0, 𝜏
2
𝑆,0);

we will use an inverse Wishart prior for R. Let 𝜇𝑆𝑖,0 be log of the 𝑖𝑡ℎ diagonal of S and

𝜏 2𝑆,0 = 𝑉 𝑎𝑟(𝑆1, . . . , 𝑆𝑑), the variance of the log of the diagonal elements of S. We discuss

how to calculate 𝜇𝑆𝑖,0, 𝜏
2
𝑆,0 from the database in section 3.3.

3.2 Inference Using a Sub-Resourced Database

Similar to the univariate case, a sub-resourced database does not contain measurements

from instruments similar to instruments X and Y, therefore we only have the data from

𝑆𝑋 and 𝑆𝑌 , the set of measurements produced by instruments X and Y. We calculate the

parameter 𝜃0 by find the mean of all measurements in 𝑆𝑋 and 𝑆𝑌 . To calculate the param-

eters associated with variance, we will use Multivariate Analysis of Variance (MANOVA), a
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DF SSCP

Between 𝑔𝑆 − 1
∑︀
𝑖

𝑟𝑆,𝑖(Ū𝑆,𝑖. − Ū𝑆,..)(Ū𝑆,𝑖. − Ū𝑆,..)
𝑇

Within 𝑛𝑆 − 𝑔𝑆
∑︀
𝑖

∑︀
𝑗

(U𝑆,𝑖𝑗 − Ū𝑆,𝑖.)(U𝑆,𝑖𝑗 − Ū𝑆,𝑖.)
𝑇

Total 𝑛𝑆 − 1
∑︀
𝑖

∑︀
𝑗

(U𝑆,𝑖𝑗 − Ū𝑆,..)(U𝑆,𝑖𝑗 − Ū𝑆,..)
𝑇

Table 3.1: MANOVA decomposition for a single instrument, such that 𝑖 = 1, . . . , 𝑔𝑆, 𝑗 =
1, . . . , 𝑟𝑆,𝑖, and 𝑛𝑆 =

∑︀
𝑖

𝑟𝑆,𝑖 is the total number of measurements for instrument S. The sum

of squares is now denoted as SSCP to indicate it is a matrix of sum of squares and cross
products.

variance decomposition approach similar to the one described in Section 2.4.1.

Let 𝑈𝑆,𝑖𝑗 be the 𝑗𝑡ℎ measurement on the 𝑖𝑡ℎ mark produced by instrument S. Given there

are 𝑛𝑆 measurements in the database produced by Instrument S, we decompose the sources

of variability among the 𝑛𝑆 measurements as shown in Table 3.1.

The variability within each instrument Σ𝑋 and Σ𝑌 can be estimated using the analog to

the univariate within mean squares as shown below. As in the univariate case, we can only

estimate the covariance matrices, Σ̂𝑋 and Σ̂𝑌 ; we have no additional instruments from which

we can obtain information about the variability in measurement error from such instruments.

Lastly, we obtain Σ0, shown below, by pooling the SSCPB for 𝑆𝑋 and 𝑆𝑌 .

Σ̂𝑋 =
𝑆𝑆𝐶𝑃𝑊𝑋

𝑛𝑋 − 𝑔𝑋

Σ̂𝑌 =
𝑆𝑆𝐶𝑃𝑊𝑌

𝑛𝑌 − 𝑔𝑌

Σ0 =
𝑆𝑆𝐶𝑃𝐵𝑋 + 𝑆𝑆𝐶𝑃𝐵𝑌

𝑛𝑋 + 𝑛𝑌 − 2

Using our calculated values for 𝜃0, Σ0, Σ̂𝑋 and Σ̂𝑌 and D𝑋 and D𝑌 , the set of measure-

ments in 𝑆𝑋 and 𝑆𝑌 , we can quantify the weight of evidence in support of 𝐻0 using a Bayes

factor, as before.
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DF SSCP

Between 𝑁𝑆𝑑
− 1

∑︀
𝑠

𝑛𝑆(Ū𝑠. − Ū..)(Ū𝑠. − Ū..)
𝑇

Within
∑︀
𝑠

𝑛𝑠 −𝑁𝑆𝑑

∑︀
𝑠

∑︀
𝑖

(U𝑠𝑖 − Ū𝑠.)(U𝑠𝑖 − Ū𝑠.)
𝑇

Total
∑︀
𝑠

𝑛𝑠 − 1
∑︀
𝑖

∑︀
𝑗

(U𝑠𝑖 − Ū..)(U𝑠𝑖 − Ū..)
𝑇

Table 3.2: ANOVA decomposition for a database. 𝑠 = 1, . . . , 𝑁𝑆𝑑
is the number of instru-

ments in the database, and 𝑖 = 1, . . . , 𝑛𝑆 is the number of measurements for instrument
S.

𝐵𝐹01(X1,Y1,D𝑋 ,D𝑌 ) =

∫︀
𝜋(X1|𝜃, Σ̂𝑋)𝜋(Y1|𝜃, Σ̂𝑌 )𝜋(𝜃)𝑑𝜃∫︀ ∫︀

𝜋(X1|𝜃𝑋 , Σ̂𝑋)𝜋(Y1|𝜃𝑌 , Σ̂𝑌 )𝜋(𝜃𝑋)𝜋(𝜃𝑌 )𝑑𝜃𝑋𝑑𝜃𝑌

=

(︃
|Σ0||Σ−1

𝑋 + Σ−1
0 ||Σ−1

𝑌 + Σ−1
0 |

|Σ−1
𝑋 + Σ−1

𝑌 + Σ−1
0 |

)︃ 1
2

× exp
{︁
− 1

2

[︁
B𝑇

𝑋A𝑋B𝑋 + B𝑇
𝑌A𝑌B𝑌 −B𝑇

0A0B0 − 𝜃𝑇0 Σ
−1
0 𝜃0

]︁}︁
(3.3)

such that

A𝑋 = Σ−1
𝑋 + Σ−1

0 B𝑋 = (Σ−1
𝑋 + Σ−1

0 )−1(Σ−1
𝑋 𝑋1 + Σ−1

0 𝜃0)

A𝑌 = Σ−1
𝑌 + Σ−1

0 B𝑌 = (Σ−1
𝑌 + Σ−1

0 )−1(Σ−1
𝑌 𝑌1 + Σ−1

0 𝜃0)

A0 = Σ−1
𝑋 + Σ−1

𝑌 + Σ−1
0 B0 = (Σ−1

𝑋 + Σ−1
𝑌 + Σ−1

0 )−1(Σ−1
𝑋 𝑋1 + Σ−1

𝑌 𝑌1 + Σ−1
0 𝜃0)

3.3 Inference Using a Fully-Resourced Database

We now present the ideal case, in which we have sufficient information in the database to

obtain full prior information about Σ𝑋 and Σ𝑌 . We decompose the variation for a database

𝑆𝑑 in Table 3.2.

The parameter 𝜃0 can be calculated finding the mean of all observations in the database
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𝑆𝑑, and Σ0 can be found using the estimates of variability between sources in each database.

Σ0 =

𝑁𝑆𝑑∑︀
𝑖=1

𝑆𝑆𝐶𝑃𝐵𝑖

𝑁𝑆𝑑∑︀
𝑖

(𝑛𝑆𝑖
− 1)

To find the parameters for the prior distributions of the covariance matrices, we make use

of the separation strategy in (3.2). We separate the covariance matrix for within instrument

variability in database 𝑆0
𝐾 into Σ𝑆0

𝐾
= S𝑆0

𝐾
R𝑆0

𝐾
S𝑆0

𝐾
. The estimate of the covariance matrix

can be obtained by pooling together the estimates of the within source variability for each

instrument in the database.

Σ̂𝑆0
𝐾

=

𝑁
𝑆0
𝐾∑︁

𝑖=1

𝑆𝑆𝐶𝑃𝑊𝑖

𝑔𝑆𝑖
− 1

(3.4)

Therefore, we calculate 𝜇𝑆0
𝐾 ,𝑖 and 𝜏𝑆𝐾0 ,0 using the following:

𝜇𝑆0
𝐾 ,𝑖 = log(�̂�𝑖) 𝜏 2𝑆0

𝐾
= 𝑉 𝑎𝑟{log(�̂�𝑖), . . . , log(�̂�𝑖)} (3.5)

such that �̂�𝑖 is the standard deviation obtained from the 𝑖𝑡ℎ diagonal of the estimated co-

variance matrix Σ̂𝑆0
𝐾
. To model the prior information for the correlation matrix R𝐾 , we use

the inv-Wishart(𝜈𝑆0
𝐾
,Λ−1

𝑆0
𝐾

) with the degrees of freedom, 𝜈𝑆0
𝐾
, and scale matrix Λ−1

𝑆0
𝐾

as shown

in (3.6).

𝜈𝑆𝐾0 = 𝑁𝑆0
𝐾
− 1 Λ−1

𝑆0
𝐾

= �̂�
−1

𝑆0
𝐾
Σ̂𝑆0

𝐾
�̂�

−1

𝑆0
𝐾

(3.6)

Note that the degrees of freedom 𝜈𝑆𝐾0 must be the at least as large as 𝑑, the dimension

of the data. Therefore, it in order to conduct inference on high-dimensional data, it may be

necessary to define the set of “similar instruments” in a broad way such that many instruments

can be included.
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𝑝(Σ𝐾 |D𝐾) ∝𝑝(𝑆𝐾)𝑝(R𝐾)

𝑔𝐾∏︁
𝑖=1

∫︁ {︃
𝜋(𝜃𝐾,𝑖)

𝑟𝐾,𝑖∏︁
𝑗=1

𝜋(𝑈𝐾,𝑖𝑗|𝜃𝐾,𝑖,Σ𝐾)

}︃
𝑑𝜃𝐾,𝑖 (3.7)

Lastly, we can calculate the Bayes factor in (3.8).

𝐵𝐹01(X1,Y1,D𝑋 ,D𝑌 ) =∫︀ ∫︀ ∫︀
𝜋(X1|𝜃,Σ𝑋)𝜋(Y1|𝜃,Σ𝑌 )𝜋(𝜃)𝑝(Σ𝑋 |D𝑋)𝑝(Σ𝑌 |D𝑌 )𝑑𝜃𝑑Σ𝑋𝑑Σ𝑌∫︀ ∫︀ ∫︀ ∫︀

𝜋(X1|𝜃𝑋 ,Σ𝑋)𝜋(Y1|𝜃𝑌 ,Σ𝑌 )𝜋(𝜃𝑋)𝜋(𝜃𝑌 )𝑝(Σ𝑋 |D𝑋)𝑝(Σ𝑌 |D𝑌 )𝑑𝜃𝑋𝑑𝜃𝑌 𝑑Σ𝑋𝑑Σ𝑌

(3.8)

Given the challenges of integrating out Σ𝑋 and Σ𝑌 from the numerator and denominator,

we use [14] to calculate the Bayes factor in (3.8). We describe the process in more detail in

the next section.

3.4 Numerical Demonstration

3.4.1 Sub-Resourced Database

We begin by exploring the performance under the sub-resourced database under different

specifications of the data in 𝑆𝑋 and 𝑆𝑌 . In each example, we use five repeated measurements

based on the numerical results from the univariate analysis. Here we are most interested in

exploring the performance based on the specifications related to the multivariate structure

of the data. In each of the results tables, we have the following data specifications: 𝑑 is the

length of the vector of numerical data, 𝑔 is the number of sources in the database, and 𝑟 is

the correlation between elements in the numerical vector.

Table 3.3 shows the performance of our approach using the sub-resourced database to fit

the parameters 𝜃0 and Σ0 and estimate Σ𝑋 and Σ𝑌 . Under each database configuration,

the table shows 𝑑(𝑎𝑐𝑡𝑢𝑎𝑙, 𝑓𝑖𝑡𝑡𝑒𝑑) the distance between the actual and fitted values. The last
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column of the table shows the deviance of the log-likelihood function calculated 2(log𝐿𝑎𝑐𝑡𝑢𝑎𝑙−

log𝐿𝑓𝑖𝑡𝑡𝑒𝑑). From the results, we see that regardless of the dimension of the data or the

correlation structure, the framework performs better when there are more unique sources

in the database. This result is not surprising given the results from the univariate case in

Chapter 2.

d(actual,fitted) Deviance
Case 𝑑 𝑔 𝑟 𝜃0 Σ0 Σ𝑋 Σ𝑌 log𝐿

1 5 100 0.2 12.226 1013.120 9.420 101.297 -47.805
2 5 100 0.5 8.870 1101.285 9.215 71.862 -44.996
3 5 100 0.8 13.740 1118.346 20.866 260.886 -56.557
4 5 1000 0.2 2.358 567.104 3.979 26.928 -52.581
5 5 1000 0.5 1.109 530.954 2.203 39.640 -38.375
6 5 1000 0.8 0.838 713.652 1.594 19.050 -31.919
7 5 10000 0.2 0.637 177.205 1.126 10.748 -40.559
8 5 10000 0.5 1.422 178.802 1.128 10.700 -55.422
9 5 10000 0.8 0.942 352.502 2.952 7.006 -39.081
10 10 100 0.2 18.046 5080.907 40.660 410.284 -182.116
11 10 100 0.5 21.096 4556.417 32.070 474.462 -181.906
12 10 100 0.8 30.302 6578.181 93.076 667.223 -192.205
13 10 1000 0.2 6.155 2096.153 7.999 123.934 -173.619
14 10 1000 0.5 12.594 1893.803 18.970 161.531 -199.556
15 10 1000 0.8 7.624 1195.027 25.787 198.277 -159.033
16 10 10000 0.2 2.072 858.992 3.737 32.362 -147.218
17 10 10000 0.5 2.416 689.080 5.039 52.913 -151.675
18 10 10000 0.8 1.509 419.314 2.276 63.811 -161.800
19 20 100 0.2 29.481 23867.231 148.958 1682.057 -685.193
20 20 100 0.5 31.727 20074.769 142.960 1794.017 -659.323
21 20 100 0.8 25.910 17739.539 96.308 6214.074 -687.663
22 20 1000 0.2 11.390 8956.786 43.629 563.018 -651.184
23 20 1000 0.5 9.479 7344.097 47.411 610.242 -616.865
24 20 1000 0.8 8.069 5481.657 72.474 1030.002 -661.339
25 20 10000 0.2 2.595 2216.803 16.656 149.442 -587.042
26 20 10000 0.5 2.036 2017.998 26.277 220.360 -562.199
27 20 10000 0.8 2.241 7982.408 35.021 197.442 -627.206

Table 3.3: Results from the sub-resourced database. 𝑑 is the length of the vector of numerical
data, 𝑔 is the number of sources in the database, and 𝑟 is the correlation between elements in
the numerical vector. 𝑑(𝑎𝑐𝑡𝑢𝑎𝑙, 𝑓𝑖𝑡𝑡𝑒𝑑) is the distance between the actual and fitted values,
and the deviance of the likelihood is calculated 2(log𝐿𝑎𝑐𝑡𝑢𝑎𝑙 − log𝐿𝑓𝑖𝑡𝑡𝑒𝑑).
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3.4.2 Fully-Resourced Database

We now look at the performance of our method in a fully resourced database. The

results are show in tables 5.16, 3.5, 3.6, and 3.7. For each of the cases, we keep the number

of sources constant (𝑔 = 1000) so we can explore different cases of the number of instruments

in databases 𝑆0
𝑋 and 𝑆0

𝑌 shown under the column 𝑁 in the tables. In general, the parameter

values are fit reasonably well. In table 5.16, we see some large values for the distance of the

Σ0 in some scenarios. These large values are due to instances of large error for one or a small

few of the fitted values. In general, there does not seem to be a clear advantage of using a

database with a lot of similar instruments 𝑁 verses a database with a few, so there will be

some flexibility when we recommend a database structure in Chapter 4.

Since the value of 𝜈 is required to be at least as large as the dimension of the data, we

used the maximum of (𝑑,𝑁 − 1) to calculate these values. Given this calculation of the

parameter, it is not surprising that the distance between the actual and predicted values of

𝜈 in tables 3.5 and 3.6 are 0 given the actual value of 𝜈 used to generate the correlation

structure for each instrument.

3.4.3 Sensitivity Analysis

Now that we have assessed the performance of our approach for data that follows a multi-

variate Gaussian distribution, we now consider its robustness by examining its performance

for data that do not meet the underlying assumptions. To do so, we conduct the analysis

using a fully-resourced database that contains data simulated from multivariate 𝑡 distribu-

tions. In general, the multivariate 𝑡 distribution has more variability and heavier tails than

the multivariate Gaussian distribution, especially for small degrees of freedom. This anal-

ysis will provide an indication of the performance of our approach when the data follow a

potentially heavier-tailed distribution like multivariate 𝑡.

The results of the sensitivity analysis are shown in Table 3.8. In each case, the database is

created using simulated data that follow different specifications of the number of instruments,
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number of sources, and degrees of freedom used to specify the multivariate 𝑡 distribution.

In every case, the covariance matrix for the multivariate 𝑡 distribution is specified such

that the correlation between each of the 𝑑 components is 0.5 the standard deviation is

two. Additionally, we assume three replicates for each source in the database. The data

are simulated using the using the rmvt function in the mvtnorm R package. Once we have

simulated the data, we use the variance decomposition approach from Section 3.3 to fit the

parameters that specify the prior distributions of the model parameters.

We use the fitted parameters to simulate data under the model specifications described

in Section 3.1. We then compare the distribution of the original data, call it 𝐶1, and the

distribution of the data simulated using the fitted parameters, call it 𝐶2. We use a non-

parametric rank-order test by Munzel and Brunner [37] to determine whether there is a

statistically significant difference between the two distributions. If we determine there is no

statistically significant difference between the two distributions, then we can conclude that

our approach is robust to some violations of the multivariate Gaussian assumption under

the specifications of the relevant test scenario.

Comparing Multivariate Distributions

Since we are using [37] to compare the distributions 𝐶1 and 𝐶2, we describe the test in

terms of two treatment levels. We want to test the hypotheses 𝐻0 : 𝐶1 = 𝐶2 vs. 𝐻1 : 𝐶1 ̸= 𝐶2.

Let Y* = {Y11, . . . ,Y1𝑛1 ,Y21, . . .Y2𝑛2} be the set of all observations in the original and

newly simulated data sets. Each Y𝑖𝑗 = {𝑌𝑖𝑗,1, . . . , 𝑌𝑖𝑗,𝑑}, such that 𝑖 = 1, 2 specifies the

distribution, 𝑗 = 1, . . . , 𝑛𝑖 is the observation number, and 𝑑 is the dimension of the data.

Additionally, let 𝑍 be a (𝑛1 + 𝑛2)-length vector containing values {1, 2} that indicate which

distribution an observation is from.

For each of the 𝑑 components of Y*, we rank the observations and store the ranks

in R, a 𝑑 × (𝑛1 + 𝑛2) matrix. The ranks for the elements in a single Y𝑖𝑗 are stored in

R𝑖𝑗 = (𝑅
(1)
𝑖𝑗 , . . . , 𝑅

(𝑑)
𝑖𝑗 ), a vector of length 𝑑. Using R, we define the following SSCP matrices
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𝐻 =
2∑︁

𝑖=1

(R̄𝑖. − R̃..)(R̄𝑖. − R̃..)
𝑇

𝐺 =
2∑︁

𝑖=1

(︂
1 − 𝑛𝑖

𝑛1 + 𝑛2

)︂
1

𝑛𝑖 − 1

𝑛𝑖∑︁
𝑗=1

(R𝑖𝑗 − R̄𝑖.)(R𝑖𝑗 − R̄𝑖.)
𝑇

(3.9)

such that R̄𝑖. = 1
𝑛𝑖

𝑛𝑖∑︀
𝑗=1

R𝑖𝑗 and R̃.. = 1
𝑛1+𝑛2

2∑︀
𝑖=1

𝑛𝑖∑︀
𝑗=1

R𝑖𝑗

We calculate the test statistic 𝑇𝐴 = tr(𝐻)

tr(𝐺)
such that 𝑇𝐴 follows the 𝐹 distribution

with estimated degrees of freedom 𝑓1 and 𝑓2 shown in (3.10). The p-value is calculated

as 𝑃 (𝐹𝑓1,𝑓2
≥ 𝑇𝐴).

𝑓1 =
tr(𝐺)2

tr(𝐺2)
𝑓2 =

4
2∑︀

𝑖=1

1
𝑛𝑖−1

𝑓1 (3.10)

Results

Cases 1-36 in Table 3.8 show the model comparisons under different specifications of the

database containing data simulated from a multivariate 𝑡 distribution, and Cases 37 - 42 show

the performance when the data was simulated from a multivariate Gaussian distribution. In

each case, we compare the distributions 𝐶1 and 𝐶2 by randomly selecting the same 90

observations from each distribution. This value was chosen to remove the effect of sample

size in calculating and interpreting the p-value (Case 1 consists of 90 observations).

The 25𝑡ℎ percentile (𝑄1), median (𝑄2), 75𝑡ℎ (𝑄3), and middle 95% of values p-values

are shown in Table 3.8. To obtain the summary statistics in the table, we conduct 100

iterations of simulating data from 𝐶2, randomly selecting 90 observations from 𝐶1 and 𝐶2,

and calculating the test statistic and p-values in [37].

The results from this analysis provide some insights about the performance of our approach.

Overall, if the number of observations of the database is small, the distribution specified by the

fitted parameters does not adequately describe the structure of the data, even when the data follow
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a multivariate Gaussian distribution. We see this in the cases in which there are 3 instruments and

10 sources (cases 1, 7, 13, 19, 25, 31, 37) and when there are 10 instruments and 10 sources (cases

4, 10, 16, 22, 28, 34, 40). Moreover, for each specification of the multivariate 𝑡 distribution, the fit

was generally the worst when the parameters were fit using a database with ten instruments and

ten sources in each instrument.

The distributions specified by the fitted parameters describes the data well when the database is

sufficiently large, even when there are large departures from the multivariate Gaussian assumption,

such as when 𝑑𝑓 = 1. However, when there are large departures from the Gaussian distribution,

the results from the model should still be interpreted with caution. Finally, from the table we

see that the number of sources measured by each instrument has a larger effect on the model

performance than the number of instruments. Thus, when creating a database, it is preferable to

combine instruments that have very few sources in a thoughtful way, since it is preferable to have a

large number of sources measured by each instrument than a large number of instruments. We will

discuss database design more in Chapter 4.

3.5 Conclusion

In this chapter, we extended the theoretical framework for a database to the context of mul-

tivariate Gaussian measurements. Similar to the univariate scenario, we demonstrated how such

a database could be used for statistical inference and obtaining information that can be used to

quantify the weight of evidence in support of 𝐻0 from (1.2). Now that we have a foundation for the

databases, we apply the framework in the context of fingerprint evidence. In the next chapter, we

explore the possible sources of variability between multiple prints and marks produced by the same

source with the goal of providing recommendations for what constitutes a fully resourced database.

We also provide guidelines in regards to defining “instrument” in the database.
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d(actual,estimate)
Case 𝑑 𝑁 𝑟 𝜃0 Σ0

1 3 3 0.2 2.518 30742.364
2 3 3 0.5 7.980 1257.725
3 3 3 0.8 7.406 2984.550
4 3 10 0.2 25.345 25977.259
5 3 10 0.5 8.739 2655.473
6 3 10 0.8 1.276 422.001
7 3 15 0.2 0.934 291.097
8 3 15 0.5 3.581 680.675
9 3 15 0.8 1.772 622.490
10 8 3 0.2 7.665 3417.851
11 8 3 0.5 19.573 10108.923
12 8 3 0.8 21.586 61966.657
13 8 10 0.2 28.519 29978.134
14 8 10 0.5 2.228 8673.962
15 8 10 0.8 17.078 51569.327
16 8 15 0.2 2.670 2424.598
17 8 15 0.5 5.680 8407.143
18 8 15 0.8 76.674 1592057.886
19 15 3 0.2 43.176 49286.872
20 15 3 0.5 128.719 401749.520
21 15 3 0.8 46.644 73367.167
22 15 10 0.2 117.603 1338501.253
23 15 10 0.5 20.124 578507.443
24 15 10 0.8 10.838 560874.050
25 15 15 0.2 20.007 149864.841
26 15 15 0.5 16.507 268414.414
27 15 15 0.8 2.988 51575.923

Table 3.4: 𝑑(𝑎𝑐𝑡𝑢𝑎𝑙, 𝑓𝑖𝑡𝑡𝑒𝑑): Distance between the actual and fitted values of 𝜃0 and Σ0

using a fully-resourced database.
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d(actual,estimated)
Case 𝑑 𝑁 𝑟 𝜇𝑋,0 𝜏 2𝑋,0 𝜈𝑋,0 Λ𝑋,0

1 3 3 0.2 2.839 0.402 0.000 0.283
2 3 3 0.5 0.694 1.336 0.000 0.318
3 3 3 0.8 0.605 0.399 0.000 0.632
4 3 10 0.2 0.449 0.539 0.000 0.143
5 3 10 0.5 0.404 0.418 0.000 0.395
6 3 10 0.8 0.600 0.609 0.000 0.672
7 3 15 0.2 0.665 0.299 0.000 0.085
8 3 15 0.5 0.418 0.457 0.000 0.468
9 3 15 0.8 1.099 0.416 0.000 1.001
10 8 3 0.2 1.897 3.412 0.000 2.135
11 8 3 0.5 4.306 11.567 0.000 7.749
12 8 3 0.8 0.981 1.870 0.000 8.175
13 8 10 0.2 1.153 2.543 0.000 3.148
14 8 10 0.5 1.922 2.611 0.000 3.171
15 8 10 0.8 1.523 1.989 0.000 7.460
16 8 15 0.2 2.517 2.072 0.000 2.405
17 8 15 0.5 1.437 1.681 0.000 5.328
18 8 15 0.8 1.437 1.441 0.000 5.718
19 15 3 0.2 3.759 4.072 0.000 5.848
20 15 3 0.5 4.951 8.757 0.000 15.192
21 15 3 0.8 6.393 8.265 0.000 27.573
22 15 10 0.2 2.249 4.762 0.000 7.015
23 15 10 0.5 3.079 3.169 0.000 17.812
24 15 10 0.8 4.535 4.533 0.000 23.458
25 15 15 0.2 3.499 3.813 0.000 6.546
26 15 15 0.5 2.158 2.056 0.000 14.080
27 15 15 0.8 3.282 3.770 0.000 26.426

Table 3.5: 𝑑(𝑎𝑐𝑡𝑢𝑎𝑙, 𝑓𝑖𝑡𝑡𝑒𝑑): Distance between the actual and fitted values for the prior
parameters for Σ𝑋 .
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d(actual,estimate)
Case 𝑑 𝑁 𝑟 𝜇𝑌,0 𝜏 2𝑌,0 𝜈𝑌,0 Λ𝑌,0

1 3 3 0.2 5.990 1.936 0.000 1.076
2 3 3 0.5 2.136 0.843 0.000 0.834
3 3 3 0.8 3.082 4.964 0.000 1.510
4 3 10 0.2 3.578 1.184 0.000 0.370
5 3 10 0.5 3.607 1.586 0.000 0.789
6 3 10 0.8 2.889 1.087 0.000 1.170
7 3 15 0.2 3.123 4.080 0.000 0.354
8 3 15 0.5 2.898 0.875 0.000 0.545
9 3 15 0.8 2.785 0.893 0.000 0.954
10 8 3 0.2 9.409 4.722 0.000 14.991
11 8 3 0.5 8.494 10.068 0.000 10.156
12 8 3 0.8 7.071 3.120 0.000 6.911
13 8 10 0.2 8.120 5.448 0.000 5.614
14 8 10 0.5 9.118 2.916 0.000 9.907
15 8 10 0.8 7.069 4.932 0.000 10.911
16 8 15 0.2 9.433 2.509 0.000 4.750
17 8 15 0.5 7.816 1.707 0.000 6.662
18 8 15 0.8 7.086 3.414 0.000 10.411
19 15 3 0.2 7.846 15.247 0.000 69.067
20 15 3 0.5 13.440 24.765 0.000 94.938
21 15 3 0.8 9.812 19.598 0.000 112.371
22 15 10 0.2 9.335 34.487 0.000 153.512
23 15 10 0.5 11.319 24.755 0.000 127.036
24 15 10 0.8 14.485 38.530 0.000 117.333
25 15 15 0.2 16.261 21.004 0.000 66.304
26 15 15 0.5 13.001 17.219 0.000 60.357
27 15 15 0.8 7.542 13.481 0.000 84.451

Table 3.6: 𝑑(𝑎𝑐𝑡𝑢𝑎𝑙, 𝑓𝑖𝑡𝑡𝑒𝑑): Distance between the actual and fitted values for the prior
parameters for Σ𝑌 .
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Deviance
Case 𝑑 𝑁 𝑟 Σ𝑋 Σ𝑌

1 3 3 0.2 13.701 22.721
2 3 3 0.5 -2.409 5.234
3 3 3 0.8 16.540 14.720
4 3 10 0.2 0.309 2.047
5 3 10 0.5 0.125 -1.927
6 3 10 0.8 17.040 6.582
7 3 15 0.2 18.762 36.184
8 3 15 0.5 0.577 1.507
9 3 15 0.8 -2.463 -0.428
10 8 3 0.2 49.007 30.583
11 8 3 0.5 60.029 144.468
12 8 3 0.8 3.797 34.512
13 8 10 0.2 342.969 399.808
14 8 10 0.5 77.051 80.123
15 8 10 0.8 -32.335 -1.594
16 8 15 0.2 8.732 18.350
17 8 15 0.5 -6.662 7.392
18 8 15 0.8 24.993 46.269
19 15 3 0.2 33.163 186.498
20 15 3 0.5 317.985 684.693
21 15 3 0.8 246.651 579.534
22 15 10 0.2 993.380 1475.957
23 15 10 0.5 1279.637 1658.334
24 15 10 0.8 695.483 1328.097
25 15 15 0.2 548.787 724.326
26 15 15 0.5 863.752 971.863
27 15 15 0.8 274.616 543.093

Table 3.7: Deviance in the likelihood calculated as 2(log𝐿𝑎𝑐𝑡𝑢𝑎𝑙 − log𝐿𝑓𝑖𝑡𝑡𝑒𝑑).
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p-values
Case 𝑁 𝑔 𝑑𝑓 𝑄1 𝑄2 𝑄3 Middle 95%

1 3 10 1 0.001 0.024 0.134 (0.000, 0.607)
2 3 100 1 0.070 0.259 0.484 (0.001, 0.958)
3 3 1000 1 0.080 0.370 0.612 (0.003, 0.935)
4 10 10 1 0.000 0.001 0.029 (0.000, 0.603)
5 10 100 1 0.085 0.251 0.581 (0.005, 0.944)
6 10 1000 1 0.080 0.219 0.528 (0.009, 0.942)
7 3 10 10 0.000 0.035 0.249 (0.000, 0.703)
8 3 100 10 0.198 0.344 0.653 (0.008, 0.927)
9 3 1000 10 0.206 0.435 0.739 (0.018, 0.979)
10 10 10 10 0.000 0.000 0.016 (0.000, 0.221)
11 10 100 10 0.088 0.300 0.558 (0.005, 0.886)
12 10 1000 10 0.225 0.478 0.744 (0.019, 0.925)
13 3 10 100 0.002 0.022 0.235 (0.000, 0.924)
14 3 100 100 0.127 0.322 0.567 (0.005, 0.931)
15 3 1000 100 0.152 0.375 0.646 (0.043, 0.946)
16 10 10 100 0.000 0.000 0.000 (0.000, 0.286)
17 10 100 100 0.065 0.266 0.555 (0.001, 0.904)
18 10 1000 100 0.230 0.437 0.689 (0.025, 0.922)
19 3 10 1000 0.001 0.015 0.136 (0.000, 0.657)
20 3 100 1000 0.136 0.351 0.650 (0.006, 0.959)
21 3 1000 1000 0.209 0.425 0.634 (0.031, 0.972)
22 10 10 1000 0.000 0.002 0.032 (0.000, 0.667)
23 10 100 1000 0.098 0.309 0.573 (0.003, 0.88)
24 10 1000 1000 0.285 0.506 0.662 (0.012, 0.925)
25 3 10 10000 0.004 0.052 0.245 (0.000, 0.674)
26 3 100 10000 0.151 0.367 0.657 (0.005, 0.973)
27 3 1000 10000 0.244 0.492 0.798 (0.060, 0.972)
28 10 10 10000 0.000 0.000 0.012 (0.000, 0.744)
29 10 100 10000 0.109 0.326 0.585 (0.000, 0.875)
30 10 1000 10000 0.212 0.394 0.740 (0.031, 0.911)
31 3 10 1𝑒5 0.019 0.111 0.375 (0.000, 0.841)
32 3 100 1𝑒5 0.117 0.297 0.599 (0.006, 0.903)
33 3 1000 1𝑒5 0.295 0.496 0.677 (0.043, 0.958)
34 10 10 1𝑒5 0.000 0.004 0.048 (0.000, 0.395)
35 10 100 1𝑒5 0.098 0.306 0.619 (0.002, 0.977)
36 10 1000 1𝑒5 0.288 0.474 0.714 (0.025, 0.958)
37 3 10 Gaussian 0.001 0.057 0.222 (0.000, 0.687)
38 3 100 Gaussian 0.080 0.283 0.646 (0.002, 0.933)
39 3 1000 Gaussian 0.196 0.443 0.700 (0.009, 0.908)
40 10 10 Gaussian 0.000 0.001 0.022 (0.000, 0.504)
41 10 100 Gaussian 0.047 0.180 0.411 (0.001, 0.824)
42 10 1000 Gaussian 0.127 0.469 0.758 (0.007, 0.936)

Table 3.8: Results of sensitivity analysis assessing the robustness of the proposed framework
under different scenarios. 𝑁 : number of instruments, 𝑔: number of sources measured by
each instrument, 𝑑𝑓 : degrees of freedom for the multivariate 𝑡 distribution. For each case,
the dimension 𝑑 = 3, and there are 𝑟 = 3 replicates for each source. The median standard
error for these results is 0.027.
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Chapter 4

Sources of Variability in Fingerprints

4.1 Introduction

In chapters 2 and 3, we introduced a theoretical foundation for fully-resourced databases and

demonstrated their advantages over the more commonly available sub-resourced databases. In

this chapter, we apply the ideas of such a database in the context of fingerprints and provide

recommendations on factors that can be used to define the “instrument” introduced in Chapter 2

based on the sources of variability between multiple marks produced by the same source.

The factors that contribute to variability in fingerprints (or fingermarks) produced by the same

source can be divided into two categories: controllable and uncontrollable. The controllable fac-

tors are those that could be replicated and thus could be used to define an instrument in the

database. Because uncontrollable factors cannot be easily replicated, they cannot be accounted for

in a database; however, they are included in measurement error. In section 4.2, we describe finger-

print examination process to provide context around the process in which a fingerprint database

could be used. In section 4.3, we discuss the potential sources of variability that could exist between

marks produced by the same source through the lens of a crime scene investigation. In section 4.4,

the potential sources of variability between prints produced by the same source are explored, and

in section 4.5 are recommendations of the sources of variability that should be accounted for in a

fully-resourced database.
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4.2 ACE-V

In an forensic examination, the main objective for a latent print examiner is to determine

whether a mark from a crime scene and a print produced in a controlled environment are from the

same source. In order to make such an assessment, the examiner must understand the cause of any

discrepancies found between the mark and the print. According to The Fingerprint Sourcebook [29],

a manual produced by the U.S. Department of Justice in 2011,

There is no such thing as a perfect or exact match between two independent prints

or recordings from the same source. Each print is unique; yet an examiner can often

determine whether unique prints originated from the same unique source. [pg. 9-8]

Forensic examiners rely on knowledge and expertise, set protocol, and experience to determine

whether the discrepancies indicate the mark and print are from different sources, or if they are from

the same source and the discrepancies exist due to the conditions under which the mark and print

were produced. Before we describe potential sources of discrepancies considered by examiners, we

outline ACE-V, the process examiners use to analyze and compare a print and mark to determine

if they were produced by the same source. ACE-V stands for Analysis, Comparison, Evaluation,

and Verification; we describe each of these steps in detail below. In general, there is not one set of

formal guidelines that every department adheres to regarding the ACE-V procedures and documen-

tation. The Scientific Working Group on Friction Ridge Analysis (SWGFAST, now known as the

Organization of Scientific Area Committees [OSAC])) has produced Standard for Documentation

of ACE-V ; however, this standard is not widely enforced [52]. Our description is based on notes

from [29] and the description of the process given by two latent print examiners from the Virginia

Department of Forensic Sciences. Therefore, we describe the process in general terms, keeping in

mind that it can vary by department.

ACE-V: Analysis The goal of the analysis phase is to determine if each mark recovered

from the crime scene is of high enough quality to be used for comparison. If there are multiple

overlapping marks, a separate assessment is made for each mark. To make the assessment, the

examiner determines if a discernible pattern exists in the mark and a possible explanation about

why the pattern exists. They make note of three levels of detail:
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∙ Level I : Overall flow and pattern of the mark

∙ Level II : Details about individual ridges

∙ Level III : Additional features that may not show in the print. These features may include

interesting shapes, widths (which vary due to pressure), pores, creases, etc.

One feature that is especially useful for comparison is the continuous ridge, a ridge that contains

no minutiae. Another feature that may be seen on a mark is a dot, a ridge in which its width is

equal to its length. These are often not as useful as a continuous ridge, because it may be difficult

to determine what is actually a dot versus residue or some other distortion.

As the examiner inspects the mark, they document relevant features using a system indicating

the quality level of each feature. The examiner then determines whether the mark is “suitable”

for examination based on the quantity and quality of information that can be garnered from the

mark. Examiners must use Level I or Level II details to determine suitability, since Level III detail

is the most unreliable. Because the goal of this phase is to merely determine whether a mark is

suitable for comparison, the examiner may not identify all of its features. They often document just

enough features to meet the criteria for making a determination regarding suitability. If a mark is

determined to be suitable, the examiner proceeds with the next phase - comparison. Otherwise, the

process ends.

Comparison During this phase, a side-by-side comparison is made between the mark and the

fingerprints on a ten-print card from a person of interest. The examiner looks both for similarities

and dissimilarities between the mark and each print. They start with the overall ridge flow pattern

and target groups, unique clusters of minutiae identified in the mark, to determine which fingerprint

to more thoroughly examine first.

Since a side-by-side comparison is used, the fingerprint is notated based on the mark; there is

no independent analysis of the print. At this point, the examiner also identifies any features in the

mark not documented during the analysis. A study by [52] found that there is a high rate of change

in feature markups between the analysis and comparison phases. This result is expected, since many

examiners identify only enough detail to determine whether a mark is suitable for comparison in

the analysis phase, anticipating that there may be more features to document during comparison.
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ACE-V: Evaluation Once the examiner compares a mark and print, a conclusion is made

regarding whether or not the mark and print are from the same source. The conclusion is reached

considering a guidelines and standards set by The Organization of Scientific Area Committees

(OSAC, formerly SWGFAST). There are three possible conclusions: identification (formerly indi-

vidualization), exclusion, and inconclusive.

An exclusion must be made based on at least two target groups and a focal point (like an anchor

point). These criteria are needed because there may be an area in the mark that is not shown in

the print and vice versa. For example, the mark may be of the side of a finger, but the prints on

the ten-print card typically do not include the side of the finger. Moreover, because the marks are

produced in uncontrolled conditions, the mark will likely contain only part of the finger, and it is

sometimes unclear which part of the finger it is. Often, the data supporting an exclusion decision

include spatial information in relation to the anchor point.

A decision of inconclusive is made when either the mark or print do not provide enough infor-

mation to make a conclusion. The examiner will specify if the inconclusive decision is based on the

mark or based on the print. If the decision is based on the print, a request can be made to re-do

the ten-print card of the person in question.

ACE-V: Verification Not all forensic labs regularly conduct the verification. During this

step, the verifying examiner may know the original decision (identification, exclusion, inconclusive);

however, they will independently conduct the analysis and comparison phases to reach their own

conclusion. A blind verification, in which the verifying examiner does not know the original con-

clusion, is preferable to reduce bias in the assessment. One risk of not using blind verification is

the analysis by the verifying examiner can be incomplete and inaccurate [48], since the verifying

examiner knows the previous conclusion. After the 2004 Madrid train bombing investigation by the

FBI (discussed in more in Chapter 6), one recommendation to reduce the risk of erroneous identifi-

cations was to keep the original examiner’s documentation “sealed or withheld from the [verifier].”

[48].
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4.3 Variability in Multiple Fingermarks Produced by the

Same Source

Fingermarks are obtained from a crime scene by forensic crime scene investigators or police

officers trained in collecting evidence. Because the fingermarks were produced under uncontrolled

and often times volatile situations, there are many potential causes for distortion or other unusual

patterns observed on the fingermark. Latent print examiners must consider these causes when

comparing the fingermarks to a print from an identified individual. According to [53], “a criticism

of the latent print community is that the examiners can too easily explain a ‘difference’ as an

‘acceptable distortion’ in order to make an identification.” Chapter 9 of [29] gives a list of reasons

for which distortion (variability) could be observed in marks and prints produced by the same

source. Using this list as a guide, we identify five basic factors from which variability in fingermarks

produced may derive: investigator, surface, equipment, source and scene. In order to design a

database that sufficiently resourced, it is important to understand each of these factors in detail

and how they are related not only to the variability seen in marks produced by the same source

but also the distribution of that variability, i.e. how the amount of variability may change as the

factors change.

4.3.1 Investigator

We start with the investigator who collects fingermark evidence from a crime scene, because

as a forensic practitioner, (s)he is the most important “instrument” in this portion of the process

[15]. The investigator makes decisions regarding the type of evidence to collect and the equipment

and methods used to collect it. Our primary focus is understanding the causes of distortion in a

fingermark, so an investigator’s decision regarding which pieces of evidence to collect is beyond the

scope of this research. However, the appropriateness of the equipment and process the investigator

uses to obtain fingermark evidence form an item could significantly impact the appearance and

quality of the fingermark.

Various factors such as experience, training, level of knowledge, mood at the time of the in-

vestigation, and confirmation bias can affect the decisions made by an investigator [17, 15]. The
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method to collect evidence is largely based on the surface on which a mark is found; therefore, the

investigator must rely heavily on their knowledge and previous experience to make accurate and

timely decisions in each step of the evidence collection process. Though there is not a lot of research

specific to the performance crime scene investigators, there is research assessing the performance

of forensic practitioners more broadly. Because crime scene investigators use similar information

to make decisions in their work as other forensic practitioners, the conclusions about the broader

forensic community are still helpful in our understanding of how the investigator potentially affects

fingermark evidence. Thus, we examine the variability in fingermarks that stems from the differ-

ences in the investigators’ ability to accurately make these decisions. There are two factors that can

be used to describe this ability: an investigator’s experience and their ability to make the correct

decisions. Edmond et al. [17] refers to this as being an expert versus having expertise.

Edmond et al. [17] describes an expert as someone who has had thousands of hours in the field

due to years of experience, compared to a novice who has very little time in the field. Because

the expert has extensive prior experience, they tend to draw on the knowledge they’ve gained from

previous investigations to make decisions. Moreover, they have developed strategies and an instinct

about how to proceed in an investigation, which leads them to the correct decision. In contrast, the

novice relies more heavily on formal textbook training rather than instinct, because their instinct

is often inaccurate.

Though these distinctions between experts and novices exist in the decision-making process,

there is conflicting evidence regarding the differences in the performance between these two groups.

Some studies suggest that practitioners with more experience perform better than novices on mea-

sures of performance [55, 31]; however, others find little relationship between the amount of ex-

perience and measure of performance [45, 47]. Experience alone should not be used to establish

scientific validity [21]; therefore, in addition to experience, we should also account for the expertise,

i.e. the level of knowledge and skill, of the investigator.

Some of the conflict between experience and expertise may be due to the quality of feedback

an investigator has received throughout their career [17]. Therefore, we should consider the quality

of training and feedback investigators receive when determining expertise [15]. There are training

sources available for investigators, yet there is no national standard in regards to training, making

it unclear as to the the best practices for measuring the quality of training. Holder et al. [29]
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recommends latent print examiners complete competency testing when they first arrive at an agency

to ensure each examiner has the minimum requirements to be successful at the job and proficiency

tests throughout their tenure to measure the quality of their performance. A similar structure of

testing cold be used for investigators to differentiate the levels of expertise between investigators.

There are some online proficiency tests available, such as [38]; however, there is no standardized

test used by investigation units around the nation.

4.3.2 Surface & Scene

Aside from the investigator, the surface on which a mark is found is the most important factor

contributing to the variability in marks produced by the same source. The condition of the surface on

which the mark was made, including the texture, surface area, shape and curvature, condensation,

contaminants and other factors, affect the quality of the recovered mark [29]. The different properties

of a surface can be categorized as the following: type, texture, curvature, substance, and color.

Each of these factors can not only affect the appearance of the mark but they determine the type

of equipment and processes the investigator uses to retrieve the mark.

Surface There are three basic types of surfaces: porous, non-porous, and semi-porous. De-

pending on the type of surface, different techniques are used to process and photograph the mark.

Porous surfaces, such as paper, cardboard and wood, are absorbent; the mark tends to absorb

into the surface making it somewhat durable. Because of the absorption, chemicals (rather than

powders) are often used to process marks on these surfaces [50]. Non-porous surfaces, such as glass,

metal, and lacquered wood, are not absorbent; therefore, marks produced on these surfaces are

more fragile. Because the marks on these surfaces are more susceptible to damage, powders are

commonly used to process and retrieve the marks [29]. Lastly, semi-porous surfaces both absorb

and repel residue from fingermarks. These surfaces include objects such as glossy cardboard or

magazine covers. When processing marks on these surfaces, the investigator determines if the mark

has absorbed into the surface and chooses the appropriate recovery process accordingly.

The texture of a surface affects how well a mark can make contact with it. A finger typically

does not make full contact with a highly textured surface, therefore a mark recovered from one of

these surfaces will typically not have as much detail than one recovered from a smooth surface.
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Additionally, the mark will have many irregularities in its appearance, since the texture of the

surface will show through the image of the mark [29]. In addition to texture, the color determines

the equipment that should be used to create as much contrast in the image as possible between

the mark and the surface. Finally, additional substances on the surface, such as blood or grease,

determine how the mark can be recovered. For example, if the mark is impressed into the substance,

it cannot be easily lifted and a photograph of the mark is the only documentation of the mark the

examiner has to use for comparison.

Scene One of the factors a latent print examiner should consider when analyzing a mark is

the condition of the scene starting from the point in time the mark was created to the time the

mark is recovered. This includes environmental factors, such as the temperature and humidity [29].

If the surface is under conditions such as extreme temperatures or high humidity, the mark will

be potentially degraded by the time it is recovered [43]. In addition to the environmental factors,

the examiners should consider whether there are overlapping marks either from the same source or

different sources. Depending on the level of overlap, the mark may not be suitable for comparison.

4.3.3 Equipment

Photography & Lighting Police first used photographs in investigations to help them identify

the faces of repeat offenders [29]. Since then, the use of photographs have been a regular part of

crime scene investigation, because they are objective recordings that give an accurate and detailed

depiction of a crime scene, often capturing details that witnesses don’t remember [11]. A photograph

should always be taken of the surface on which a mark is found, even if the mark can be recovered

from the surface or the surface is on an object that can be taken into a forensic examination lab

[29]. Sometimes a mark cannot be recovered from a surface, such as when a mark is embedded in a

substance such as grease or the surface is fragile such as a wall with peeling paint. In those instances,

a photograph of the mark is the primary source of evidence examined in the lab. Photographs are

most effective at capturing marks on flat surfaces, because there are complications with depth

perception in photographs of marks on textured or irregularly shaped surfaces [29].

Photography can be done digitally or using film. In film photography, the grain size and film

format affect the level of detail that can be seen in the photograph. In general, large film with
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smaller grain size produce higher resolution images that show finer levels of detail [29]. Currently, the

overwhelming majority of photographs are taken using digital photography. In digital photography,

the resolution determines the level of detail that can be seen in the photograph. Photographs

with higher resolution show finer levels of detail which may be useful in the examination process.

SWGFAST set guidelines that a photograph of a mark must have a resolution of at least 1000 pixels

per inch (ppi) for it to be used as evidence. In addition to resolution guidelines, digital photos of

marks must be stored in uncompressed file formats such as .TIFF or .RAW, so image detail is not

lost in the compression process. If a mark is on a flat surface that can be transported to a lab,

the mark may also be documented by scanning the object directly. The resolution standards for

scanned images are the same as for photographed images [29].

Though an investigator does not need to be an expert photographer, it is important that the

proper equipment is used based on the type of evidence that is being photographed and the type

of process used to expose the mark [29]. One major consideration when photographing a mark is

the type of lighting used. The lighting can come from a variety of sources, such as a photographic

lab lamp, electronic flash, forensic light source, and many others. Additionally, various lighting

techniques can be used based on the surface on which the mark is found. For example direct

reflection lighting should be used on flat surfaces, because it creates a high contrast in which a mark

processed with black, gray or silver powder will appear dark on a light background. In contrast,

oblique lighting, lighting placed at a low angle, should be used to photograph marks that are in

surfaces such as grease, blood or wax, since the type of lighting exposes detail in the mark by

creating shadows [29]. These are just two of the many lighting techniques an investigator can use,

which are primarily on the surface being photographed. Because it is the investigator’s responsibility

to choose the appropriate lighting technique, we conclude that much of the variability in multiple

marks due to the photography and lighting can be understood by differences in the surface and

investigator expertise.

Processing Powders & Chemicals Often a mark cannot be easily seen on a surface, so

processing using powders or chemicals is done to make it more visible. If a surface is non-porous, a

powder can be used to make a mark more visible. Once the surface is photographed, the investigator

applies the powder to the mark using a brush, and any excess powder is removed by lightly tapping

the surface [46]. The type of powder used is determined by the color and texture of the surface. Gray

powders are used on dark surfaces, black powders are used on light surfaces, and there are some
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bi-chromatic powders that can be used on both [27]. Fluorescent powder can be used for surfaces

that are colors for which it is difficult to see a mark in a photograph; the fluorescent powder makes

the print more clear under an ultraviolet light [27]. In addition to color, if the mark is on a sensitive

surface, a special powder such as a magnet-sensitive powder can be used to expose the mark. This

type of powder is less sticky than the traditional powders; therefore, marking it more likely to only

stick to the mark [27].

Chemicals are often used to process marks on porous surfaces, because the oils from the mark

tend to absorb into the surface [27]. There are many types of chemicals that can be used to

process a mark; however, we will focus on some of the most commonly used chemicals. Ninhydrin

(Ruhemann’s Purple) is commonly used on surfaces such as wood and paper [50]. Within an hour

of it being sprayed onto a surface, the mark will appear in a blue or purple color [27] making it

visible for photographing and lifting. Ninhydrin is not good to use on wet surfaces; however, Small

Particle Reagent (SPR) can be used to process surfaces that are wet or greasy. Cyanocrylate (Super

Glue) can be used to process marks on non-porous surfaces, such as glue or metal, which may not

respond well to powder [50]. Once it is sprayed, the mark appears as a white adhesive forms on the

surface [27].

[50, p. 139] provides a table about the best chemicals to use based on the surface. Ultimately,

it is up to the investigator to know the best material to use depending on the surface, thus much of

the variability due to the type of powder or chemical used to process the mark may be understood

by the surface and the expertise of the investigator.

Lifters Once the mark has been exposed through the processing material, the investigator lifts

the mark to be taken into the forensic examination lab. Similar to the photography and processing

steps, the method used to lift the mark is determined by the surface on which the mark is located.

According to [29], there are four main types of lifting material that are used by investigators:

transparent tape, hinge lifters, rubber-gelatin and lifting sheets.

Transparent tape can be frosted or clear. The investigator rolls out tape and captures the mark

by pressing the tape on the mark. [50] provides some best practice guidelines for using this method

so that the mark is not smudged or contain extra lines from the tape. Once the mark is captured,

the tape is placed on a backer, a card that should be a contrasting color from the powder. There

are special tapes, such as the stretchable polyethylene tape, that are used to lift marks from texture
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surfaces. These types of tape are thicker than the usual lifting tape, so they are able to effectively

capture the mark from the contours of the surface [29].

Rubber-gelatin lifters are used to obtain marks from fragile or irregularly shaped surfaces, such

as a wall with peeling paint or a doorknob. These lifters are more pliable and less sticky that the

conventional transparent tape, therefore, they are less likely to damage the fragile surface when

lifting the mark. Once the mark is lifted, a plastic sheet is placed over the rubber [29]. The final

type of lifter is a lifting sheet, also known as a flexible lifter [50]. This type of lifting material is

used when the mark is being obtained from a deceased person. [50] provides best practices on using

these lifters so the investigator accurately captures the mark without distorting it.

4.3.4 Source

One of the main factors contributing to the variability in multiple marks produced by the same

source is the source itself. That variability can be divided into two aspects: the contact between

the source and surface and the condition of the source.

Contact Between Source and Surface In a crime scene, there is little control in the way

the source comes into contact with a surface. Differences in the pressure and movement of the

source cause discrepancies between repeated marks. The National Academies Press [51] stated

that every impression left by the same finger would be different because of “inevitable variations

in pressure, which change the degree of contact between each part of the ridge structure and the

impression medium.” Maceo [35] studied the variation in the impressions in an experiment that

included repeated impressions made by the two index fingers from one individual. Based on this

experiment, the harder the source pressed onto the surface (more pressure), the more area of the

source that made contact with the surface. When the pressure was very high, the edge of the source

made contact with the surface and was thus included in the mark. The edge of the source did not

make contact when little pressure was applied. The National Academies Press [51] also observed

differences in the details within the image for different levels of pressure. As the pressure increased,

the ridges appeared wider and the furrows appeared more narrow. Increased pressure also reduced

the depth of the furrows, making finer details, such as dots, appear larger.

Along with pressure, a finger can move multiple ways as it creates an impression: horizontally,
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vertically, and in rotation. Fagert and Morris [22] conducted an experiment studying the effects of

movement using 30 fingers from 27 individuals. The individuals were recorded performing different

types of movements as they created inked impressions on a glass surface. They measured the degree

of movement for minutiae in the impressions after each type of motion. One general finding from

their work was that regardless of the direction of the motion, the further minutiae were from the

core, the more they moved as the finger moved.

When the finger moved horizontally as it created the impression, the minutiae appeared shifted

in the direction of the motion [35, 22]. Under the experimental conditions of [22], the lower part

of the finger made more contact with the surface than the upper part. Therefore, the minutiae

on the lower part of the finger showed more horizontal movement than those on the upper part.

Maceo [35] also found that the increased pressure affected the amount of displacement of each

minutiae. In general, for translation movement, the harder the pressure, the harder it is to move

the “stick region”, i.e. the core. Therefore, under high pressure, more extreme movement is required

to move the sticking region which results in more distortion of the impression. Besides translating

the minutiae, [35] found that furrows expand on the leading side (e.g. to the left of the core when

moving left) and compress on the trailing side. They also found some smearing from the initial

contact between the source and the surface.

Vertical movement causes similar translation in the minutiae as horizontal movement. Up and

down movement of the finger produces up and down displacement of the minutiae, respectively.

There were some incidences of horizontal displacement seen in the arched areas of the mark [22].

Maceo [35] also made conclusions regarding vertical movement that were similar to the findings

about horizontal movement. When the finger was pushed up, the furrows on the top half of the

finger (between the core and tip) expanded and the furrows at the bottom compressed. The opposite

occurred when the finger was pushed down. Additionally, there was some smearing from the finger’s

original contact with the surface.

Rotation of a finger causes minutiae displacement that’s congruent to where the minutiae lie

on a circle [22]. In general, the minutiae around the core stay in a similar spot while the minutiae

around the ridges show a curved displacement [35]. Additionally, there is some relationship between

the rotation direction and the pattern type of the finger [35]. If the finger has a right slant loop, the

displacement is more flexible in regards to ridge flow when there is counter-clockwise rotation than
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clockwise rotation. Fingers with a whorl pattern show similar displacement when rotating clockwise

and counter-clockwise.

Condition of the Source In addition to movement, the condition of the source can affect the

quality of a mark and contribute to variability between marks from the same source. These factors

could be related to the circumstances in which the mark was produced, such as residue on the

finger from dirt, sweat or grease on the source. The factors could also be due to more permanent

conditions of the skin. Friction ridges maintain the same pattern from the third month of fetal

development barring disease or mutilation [27]. Even if the pattern remains the same, the ridges

could flatten from aging, occupation, health or disease [29].

4.4 Variability in Multiple Fingerprints from the Same

Source

Fingerprints are created under controlled conditions, such as a police station, and the FBI

provides detailed protocol regarding how these prints should be collected [24]. Each agency follows

these or similar guidelines when capturing fingerprints. Because the prints are captured under

controlled conditions, if a print is not of preferred quality when it is originally created, it can be

retaken. If a source reproduces a fingerprint, the original fingerprint card should be retained for

documentation purposes, but it is not used for comparison [50]. Therefore, the variability between

multiple prints by the same source is largely reduced [40]; however, there are some factors that could

contribute to the minimal variability seen between prints by the same source: the method in which

in the print is captured and the source.

Method There are two primary methods used to capture fingerprints: ink and digital live scan.

When capturing a print using ink, a black ink made specifically for capturing prints should be used.

Other types of ink (e.g. printer ink) are too thin and may smear easily [29]. The ink is applied to

the source either by using an ink roller or through contact between the source and an ink pad made

of ceramic or resin. The source is then pressed onto a ten-print fingerprint card, such as the Henry

Ten-Print Card, that is made of card stock to create the impression [29]. The right hand makes up

fingers 1-5 on the card and the left hand fingers 6-10. On each hand, the fingers are individually
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captured in the following order: thumb, index, middle, ring, little. At the bottom of the card are

a plain impression from each hand,a print made of the four fingers pressed down simultaneously.

[27, 29, 50]. The purpose of the plain impression is to ensure each finger is individually captured in

the correct order. The inked ten-print card is scanned into the Automated Fingerprint Identification

System (AFIS) or Next Generation Identification (NGI) database, so it can be used for comparison.

Fingerprints can also be captured using a high-resolution digital live scan instead of ink. The

main advantage of using the live scan over ink is that the prints are automatically transmitted to

AFIS and NGI [27]. This reduces the potential of damage to the print from handling. The sequence

of prints captured digitally is the same as described for prints captured using ink.

Whether the print is captured through ink or digitally, there is a certain technique that should

be used to ensure a high quality print is captured. Similar to collecting evidence at a crime scene,

the individual’s hands should always be photographed before any prints are captured [50]. The

purpose of the photograph is to document any debris or defects on the source that may appear in

the impression. When rolling the print, the operator should have full control of the hand and the

subject should be relaxed. This means that the operator controls what part of the finger is captured

in the impression and the pressure used [27, 50]. The print should be rolled using one smooth and

continuous motion from one side of the nail to the other side. The most common reason a print is

rejected by NGI is because the impression does not fully extend across both sides of the fingernail

and from the top of the finger to the first joint [27]. Therefore, to ensure that every potentially

relevant part of the print is captured, the resulting print should extend from the tip to just below

the first joint of the finger [27].

Source Individuals should wash their hands using soap and water before the print is captured.

Alcohol can also be used if there is residue that is hard to remove [50]. There is protocol the agency

should follow to reduce the effect of the source being too wet or too dry, so these are less of a factor

in variability in fingerprints. The main variability that can come from a source is any modification

to the source, such as visible scars and injuries. If the individual has a temporary injury, such as

a wound that will eventually heal, it is preferable to wait until the injury has healed to create the

impressions [27]. However, if the print must be captured at the present time, the injury should be

documented in the appropriate block of the fingerprint card [27].
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4.5 Creating a Fully-Resourced Database

Given the different sources of variability described in sections 4.3 and 4.4, we provide recom-

mendations on the factors to consider when creating a fully-resourced database. To create such a

database, we are only able to account for variability due to the controllable factors - those that

could be replicated in an experimental design; variability due to uncontrollable factors are included

in measurement error. In regards to prints, the main source of controllable variability is whether or

not the print is captured using ink or digital live scan. As stated earlier, because of the controlled

conditions under which the print is captured, there is very little variability between prints from the

same source. Therefore, to keep the database manageable, it is not necessary to account for different

conditions under which fingerprints are produced. By eliminating fingerprints from the database,

we treat Instrument X that captures fingerprints in controlled conditions (such as a digital live

scan) as having no measurement error. Thus when comparing whether a fingermark and fingerprint

were produced by the same source, the weight of evidence for in (3.8) would take the form of (4.1).

𝐵𝐹01(X1,Y1,D𝑋 ,D𝑌 ) =∫︀
𝜋(Y1|𝑋1,Σ𝑌 )𝑝(Σ𝑌 |D𝑌 )𝑑Σ𝑌∫︀ ∫︀

𝜋(Y1|𝜃𝑌 ,Σ𝑌 )𝜋(𝜃𝑌 |𝜃0,Σ0)𝑝(Σ𝑌 |D𝑌 )𝑑𝜃𝑌 𝑑Σ𝑌

(4.1)

The recommendations for creating a database, therefore, are focused on accounting for variability

between multiple fingermarks produced by the same source. In section 4.3, we examined five factors

that contribute to differences between fingermarks: investigator, surface, equipment, source, and

scene. The source and scene are factors that can not be easily replicated, since they are unique to

the specific circumstances under which a mark was originally made. Thus, these are uncontrollable

factors that would be included in the measurement error. The equipment, investigator, and surface

are all controllable factors that can be used to develop a fully-resourced database. As discussed in

section 4.3.3, the investigator uses properties of the surface to determine which equipment to use

to recover the mark. Given this, in the spirit of making a database manageable, we recommend

considering two factors in the creation of a fully-resourced database; investigator expertise and

surface.

∙ Investigator Expertise: The investigator makes decisions regarding the procedure and equip-

ment to use, so these factors are confounded with investigator. The relationship between
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experience and expertise is not well defined, so we use both in defining the investigator aspect

of an instrument. The database should include three levels of investigator: novice, proficient

and expert. There is currently no national requirement related to proficiency testing for inves-

tigators, so we use the International Association of Identification (IAI) certification program

[5] as a guide for defining each level. An investigator who has less than one year of experience

is classified as a novice, since there is a one year minimum requirement to receive any certifica-

tion. An investigator who has at least one year of experience and passes proficiency test that

is of the same level as the test for the IAI’s Certified Crime Scene Investigator certification

is categorized as proficient. Lastly, an investigator with at least six years of experience and

scores at least a 75% on a proficiency exam equivalent to the IAI’s Certified Senior Crime

Scene Analyst certification exam is categorized as an expert. Otherwise the examiner with

at least six years of experience is categorized as proficient. Since we are merely trying to

categorize the investigators for the sake of defining an instrument rather than assess them for

certification, the requirements we have established are not as rigorous as those required for the

IAI certification; however, these tests are a good guide since they are a standard recognized

by investigators in the field. We don’t include investigators who fail the proficiency exams,

since these examiners are likely to have errors in their coursework that would make the data

unreliable to use for our purposes.

∙ Surface: The surface on which a mark is found is the main source of variability in the

appearance of multiple marks. Guides for investigators such as the “Latent Print Overview”

from the Division of Forensic Sciences in the Georgia Bureau of Investigation [1] focus mainly

on the texture and porousness of the surface when explaining how to recover fingerprints from

a crime scene. Therefore, we use these elements to help define the surface aspect of instrument

in the database. The database should include marks from the same source produced on

surfaces with different textures (categorized as low and high) porousness (categorized as non-

porous, semi-porous, and porous).

The database structure shown in Figure 4-1 is based on a blocked experimental design. The

levels of investigator are used to define the “blocks”, and the levels of texture and porousness are

used to define the “treatment” groups within each block. (Note, the block design is merely used as

a way to organize the data; it is not intended to define any randomization scheme or assignment of

treatments. Therefore, this design has no effect on the analysis described in previous chapters.) The
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groups shown in Figure 4-1 are used to determine which instruments are “similar” to the instruments

used in the current investigation. For example, Group 1 consists of all instruments that include a

novice investigator collecting prints from a non-porous surface with low texture. This group could

include marks recovered by an investigator with six months of experience from glass windows, metal

surfaces such as door knobs, and ceramic surfaces such as pottery or dishes. Using these categories

as a guide, we recommend that a lab define the instruments to be included in their database, based

on the surfaces that are relevant to the lab’s range of casework.

Figure 4-1: Proposed database structure based on a blocked experimental design.

The fingermark images in the database will be collected from previous casework. In order for

a fingermark to be included in the database, we would require information about the surface from

which the fingerprint was recovered along with information indicating the level of expertise of the

investigator. As mentioned before, there are currently no standardized proficiency exams from

which we could measure the expertise of examiners with over one year of experience. To get around

this limitation, the initial database could be created using the casework of those investigators who

currently have some level of IAI certification. This is not ideal, since the group of investigators

who seek and obtain certification are not representative of all investigators; however, this issue

would be reduced going forward as the database is updated. Annual proficiency exams could be
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calibrated against the exams given for the IAI certifications, and investigators associated with the

new casework entered into the database would have their expertise classified based the results of

the proficiency exams.

After initially creating the database, one may wish to combine the data from multiple instru-

ments and classify it all under one instrument. Therefore, when defining the instruments in the

database, multiple instruments could be combined and classified as a single instrument. This could

be done if one or more instruments in the database have very low sample size, for example. Since

one of the main uses of the database is to understand measurement variability, we recommend that

two (or more) instruments could be combined and redefined as a single instrument if they have mea-

surement variability that do not differ in a statistically significant way. For example, suppose there

are two instruments - Instrument 1: Expert Investigator, Flat and Highly-Textured Wood Surface

and Instrument 2: Proficient Investigator, Flat and Highly-Textured Wood Surface, in other words,

the level of expertise for the investigator are the only differentiating properties between these two

instruments. Additionally, suppose the measurement error for both instruments show no statisti-

cally significant difference. We can combine these two instruments to define a single instrument as

Combined Instrument: Proficient/Expert Investigator, Flat and Highly-Textured Wood Surface.

One potential issue with combining instrument is the practical significance of the newly defined

instrument. When combining instruments, one should be mindful that the combined instrument is

defined in such a way that the analysis from the database provides useful and practical information.

Therefore, even if two instruments have very similar measurement error, it may not be advisable to

combine them into a single instrument if newly defined instrument can’t be used to make decisions

in a useful way. For example, if Instrument 1: Expert Investigator, Flat and Highly-Textured Wood

Surface and Instrument 2: Novice Investigator, Curved and Smooth Brass Surface have similar

measurement errors, we advise against combining these instruments, since the newly combined

instrument would not be defined in such a way that insights about such an instrument could be

used in a meaningful way.

The fingerprints in the database should come from a collection of cases that are representative

of the casework in the lab. For example, if gun homicides make up 𝑋% of the investigations from

which a lab processes fingerprints, then approximately 𝑋% of the cases represented in the database

should be gun homicides. This is due to the fact that there are different amounts of variability across
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crimes and thus the information in the database should reflect actual casework. Moreover, since the

statistical methods in chapters 2 and 3 are based on ANOVA decomposition, we recommend that

the number of unique sources and the number of replicates of each source be as balanced as possible

across instruments. Since the prints in the database will initially come from previous casework, this

may not be feasible in practice. Based on the analysis in Chapter 3, our methods can still be used

even if this balance does not hold.

Though the database would be publicly available, users would go through a registration process

and be approved by an administrator before gaining access to the database. Users would then login

to access the database and could download data from the database onto their machine. This process

is modeled after the one used for the NIST Ballistics Toolmark Research Database [2] which requires

registration and login for use.

As more latent print examiners use statistical methods in their work, they could also access the

database to obtain prior information. Similar to researchers, examiners would be required to register

and login order to access the data. Additionally, examiners would need to include documentation

regarding the data they retrieved from the database for the calculation of prior information. Some

items to document would be the group number describing the set of similar instruments used in the

calculations, a brief note regarding the reason that group was chosen, the fitted parameter values

from the framework, and the Bayes factor that was considered in their decision-making. We discuss

some guidelines for reporting this Bayes factor in Chapter 6.

4.6 Conclusion

Using the crime scene investigation process, we identified the controllable and uncontrollable

factors that contribute to the variability in multiple fingermarks produced by the same source.

These factors informed recommendations for creating a fully-resourced database that meets the

criteria for our framework and could be implemented in practice. Now that we have described both

the theoretical and practical aspects of our framework, we put these together in the next chapter

to show how it can be used from start to finish when comparing a fingermark and fingerprint to

determine if they were produced by the same source.
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Chapter 5

Application: Fingerprint Database

5.1 Introduction

In this chapter, we apply the ideas from chapters 2 - 4 to a scenario in which a print and a mark

are compared to determine if they were produced by the same source. One of the main objectives of

this chapter is to gain practical insights about database design and how it can be used based on a

demonstration using simulated fingerprints. Moreover, we will apply the metrics from section 1.4 to

translate the images in the database to multivariate vectors of data. Lastly, we will use fingerprints

from the database to show a complete demonstration of how information from the database is used

in calculating the Bayes factor to quantify the weight of evidence that two prints are from the same

source. At this point, we have shown our results in a more general form, so the results from this

chapter will provide the opportunity to be more specific about how our framework applies.

5.2 Database Creation

Currently in practice, there is no such database like the one we’ve described that is publicly

available. Additionally, there are few collections of fingerprints that include multiple impressions

produced by the same source. The databases that most closely meet these criteria are the Fingerprint

Verification Competition (FVC) databases [13]. These include multiple fingerprints produced by
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each source under different conditions such as varying pressure, moisture on the source, rotation,

etc. These variations are related to the source; therefore, we account for the variability represented

in these databases in measurement error. Using the specifications in Section 4.5, an instrument is

defined based on the investigator and surface, which are not accounted for in the FVC competition

databases.

Additionally, our proposed database includes information from previous casework that is repre-

sentative of the situations that exist in practice. The FVC competition databases are not necessarily

concerned with covering the crime scene scenarios that happen in practice, thus it is unclear if these

databases achieve any such representation. Since the main objective of the database is to use it

to understand variability, it is important that the database include information that accurately

represents the variability in practice.

These discrepancies between what was included in each database and how we define our pro-

posed database tended to exist for the publicly available databases that include multiple prints

produced by the same source. Therefore, we created a database using simulated fingerprints for this

demonstration.

5.2.1 Fingerprint Simulation

Using the insights from chapters 3 and 4, we created a database that contains four instruments,

each with 500 sources. As described in Section 4.5, the database only includes fingermarks recov-

ered from a crime scene, since we can assume there is negligible variation between multiple prints

produced by the same source under controlled conditions. We used the Anguli Fingerprint Simu-

lator [3] to generate the fingerprints and their subsequent fingermarks for the database. As shown

in Figure 5-1, the user can change the settings for noise, translation, number of scratches, and

rotation to simulate fingerprints under different conditions. To simulate these marks in databases

𝑆𝑌 and 𝑆0
𝑌 , high levels of the noise and translation were used with wide ranges to account for the

large measurement error for instruments in 𝑆𝑌 and 𝑆0
𝑌 . For some instruments in 𝑆0

𝑌 , higher levels

for the number of scratches setting were used to simulate prints that were produced on textured

surfaces. The metric used for this demonstration accounts for different orientations of a fingerprint

(described fully in section 5.3), therefore, to reduce the complexity of the feature detection process,
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Figure 5-1: Anguli fingerprint generator window. (Image from [3]).

Figure 5-2: Fingerprint impressions from the same source simulated using Anguli. Left:
Fingerprint simulated using low levels of noise, translation and scratches. R: Fingermark
simulated using higher levels of noise, translation and scratches.

the rotation was held constant for all instruments. Figure 5-2 shows examples of simulated prints

produced under various settings in Anguli.

In addition to the simulated fingermarks for 𝑆0
𝑌 and 𝑆𝑌 , fingerprints were simulated that mimic

the fingerprints examiner would use to compare the suspect of interest to the fingermark from the

scene. Since these fingerprints represent those that are produced under controlled conditions, very

low levels of noise, scratch and rotation were used in Anguli.
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5.3 Translating Images to Numerical Summaries

Fingerprint images are stored in the database, therefore they must be translated into numerical

summaries to be used with the framework presented in chapters 2 and 3. This process contains two

parts: (1) feature extraction and (2) using a metric to translate features into numerical summaries.

In practice, a fingerprint examiner identifies the important features in a fingerprint image during

the Analysis and Comparison steps of ACE-V. Features deemed important could include minutiae,

general ridge flow pattern, region identification (core, delta, etc), or any other features that are

needed to calculate the numerical summaries. The metric used in this demonstration only requires

minutiae, so we focus specially on minutiae detection. To find the minutiae, we used MINDTCT, a

fingerprint feature extraction program produced by the National Institute of Standards and Tech-

nology (NIST). Each fingerprint image is input into the program, and file is returned that contains

the minutiae location (described using 𝑋 and 𝑌 coordinates), minutiae angle, type, and quality .

Within MINDTCT is a set of criteria to minimize the number of false minutiae identified, so we

will assume that the points identified by the program are genuine minutiae. A detailed description

of MINDTCT is in Appendix A.

To translate the fingerprint images to numerical data, we will use the shape and type from

Neumann et al. [41] and a measurement of the direction produced by MINDTCT that is similar to

the direction metric calculated in Neumann et al. [41]. Before obtaining data from the database,

we calculate the metrics from the fingerprint of the candidate of interest, since this will be used

to inform what information is drawn from the database. In practice, the examiner documents the

minutiae on the fingermark of interest and selects 𝑘 minutiae to be used to quantify the weight

of evidence. For our demonstration, we select 𝑘 minutiae from the fingermark to use. Once the

minutiae from the fingermark are chosen, we calculate the numerical data from the 𝑘 minutiae using

the following process:

1. The configuration of 𝑘 minutiae is selected from the fingermark out of the minutiae that

have a quality score of at least 20. This threshold helps provide further assurance that

the minutiae used in the calculations are useful features of the fingerprints and not other

extraneous marks. The center of the configuration is calculated using the arithmetic mean of

the 𝑋 and 𝑌 coordinates of the 𝑘 minutiae. Once the centroid is established, 𝑘 triangles are
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created by connecting each minutia to the centroid and two adjacent minutiae.

2. Shape is calculated for each of the 𝑘 triangles. The shape includes two elements - the form

factor and the aspect ratio. The form factor is the ratio between the area of the triangle

and its perimeter, and the aspect ratio is the ratio between the diameters of the triangle’s

circumcircle and incircle.

3. The aspect ratio is used to establish the orientation of the configuration. The first triangle is

the one with the minimum aspect ratio; triangles 2, . . . , 𝑘 are numbered consecutively going

counterclockwise. The aspect ratio data is removed.

4. The direction of the minutiae is calculated using the angular data provided by MINDTCT as

shown by angle (A) in Figure 5-3. All angles are calculated relative to the same orientation,

i.e. the horizontal axis pointing to the right is 0∘. For a ridge ending, the angle is calculated

using a line that extends outwards from the ridge ending. For a bifurcation, the angle is

calculated using a line that extends into the “valley” of the bifurcation, i.e. away from the

bifurcated ridges. This differs from the direction metric in Neumann et al. [41] (shown in

Figure 1-5), in which each angle is calculated using an axis that’s drawn based on a minutia’s

location relative to the centroid of the configuration.

5. The final vector of data used to describe the fingermark is

𝑌 = [𝑦1,𝑆 , . . . , 𝑦𝑘,𝑆 , 𝑦1,𝑇 , . . . , 𝑦𝑘,𝑇 , 𝑦1,𝐷, . . . , 𝑦𝑘,𝐷]

such that 𝑦𝑖,𝑆 is the form factor data, 𝑦𝑖,𝑇 is the type data, and 𝑦𝑖,𝐷 is the direction data for

the 𝑖𝑡ℎ minutia.

We choose the 𝑘 minutiae from the fingerprint that will be used as a reference to pull the relevant

information from the database. The minutiae chosen from the fingerprint are the set of 𝑘 minutiae

that most closely align with the minutiae from the fingermark. In order to determine the minutiae

that most closely align with the fingermark, we use the following process:

5. Identify all possible minutiae configurations of size 𝑘 using the minutiae with a quality score

of at least 20. As before, using this threshold provides further assurance that the minutiae

chosen are useful features of the fingerprint rather than extraneous details. There will be
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Figure 5-3: Calculation of direction angle used in this demonstration from the MINDTCT
output. Left: Angle calculation for a ridge ending. Right: Angle calculation for a bifurcation.
In each picture, (A) is the angle output by MINDTCT that is used in this demonstration.
(B) is the angle calculation used in IAFIS. Image credit: [54].

(︀
𝑛
𝑘

)︀
combinations, where 𝑛 is the number of minutiae identified by MINDTCT that meet the

threshold, so this also helps reduce the number of configurations being considered in a way

that makes the calculations computationally feasible without losing important information

from the fingerprints.

6. For each configuration, the numerical summary of data is calculated using the process de-

scribed in steps 1 - 4 above. The resulting data for each minutiae configuration is

𝑋𝑖 = [𝑥𝑖1,𝑆 , . . . , 𝑥𝑖𝑘,𝑆 , 𝑥𝑖1,𝑇 , . . . , 𝑥𝑖𝑘,𝑇 , 𝑥𝑖1,𝐷, . . . , 𝑥𝑖𝑘,𝐷]

where 𝑋𝑖 is the numerical summary of the 𝑖𝑡ℎ minutiae configuration.

7. The distance between the summary from each configuration 𝑋𝑖 and 𝑌 is calculated using

𝑑(𝑋𝑖, 𝑌 ) = 𝑑(𝑋𝑖.,𝑆 , 𝑌.,𝑆) + 𝑑(𝑋𝑖.,𝑇 , 𝑌.,𝑇 ) + 𝑑(𝑋𝑖.,𝐷, 𝑌.,𝐷)

such that
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𝑑(𝑋𝑖.,𝑆 , 𝑌.,𝑆) =
√︁

(𝑋𝑖1,𝑆 − 𝑌1,𝑆)2 + · · ·+ (𝑋𝑖𝑘,𝑆 − 𝑌𝑘,𝑆)2

𝑑(𝑋𝑖.,𝑇 , 𝑌.,𝑇 ) =

𝑘∑︁
𝑗=1

1[𝑋𝑖𝑗,𝑇 ̸= 𝑌𝑗,𝑇 ]

𝑑(𝑋𝑖.,𝐷, 𝑌.,𝐷) =
√︁
(𝑋𝑖1,𝐷 − 𝑌1,𝐷)2 + · · ·+ (𝑋𝑖𝑘,𝐷 − 𝑌𝑘,𝐷)2

8. The minutiae configuration that minimizes the distance to 𝑌 is selected. We call this config-

uration 𝑋.

The numerical summary 𝑋 is then used to identify the 𝑘-minutiae configurations to use for each

mark in the database. For each mark in the database, we use the same process that was used to

select 𝑋. This time, 𝑋 is the reference print we use to identify the configurations. Additionally, since

this process is being done for thousands of marks in the database, we want to ensure that what we

are doing is computationally feasible. The number of possible minutiae configurations can become

quite large, so for computational efficiency, we randomly select 10,000 minutiae configurations to be

considered if the number of configurations is too large. Since we are still using a very large subset

of the minutiae configurations, the gains in computational efficiency are more substantial than the

potential information lost from the minutiae configurations that are not selected.

As it stands, our proposed model is built for data that follow a multivariate Gaussian distribu-

tion. Thus, we will incorporate the form factor and direction data in our framework to calculate

the weight of evidence. Our current framework is not built to handle categorical data, therefore,

we will not use type in the calculation of the weight of evidence. The information from type was

used to select the best minutiae configuration, so this data was taken into account in the analysis.

In Chapter 7, we discuss future work to extend the framework to categorical data.

The raw direction data is circular defined on the interval (0∘, 360∘]. A common approach for

modeling circular data is the von-Mises distribution, which does not fit into our framework. Thus,

instead of using the raw directions from each of the fingermarks in the database, we will consider

the direction relative to the reference print. The following formula is used to quantify the direction
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for the 𝑖𝑡ℎ minutia.

𝑌𝑖,𝐷* =

⎧⎪⎨⎪⎩
−[(𝑋𝑖,𝐷 − 𝑌𝑖,𝐷) mod 360] 𝑌𝑖,𝐷 ≤ 𝑋𝑖,𝐷

(𝑋𝑖,𝐷 − 𝑌𝑖,𝐷) mod 360 𝑌𝑖,𝐷 > 𝑋𝑖,𝐷

(5.1)

Using the data in this form, we not only capture how much the minutiae angle from a fingermark

deviates from the minutiae angle of the reference print, but we also capture in which direction the

angle deviates. Since this is circular data, we should be mindful of the endpoint, since 0∘ = 360∘.

Since our data is defined on the interval (0∘, 360∘], any minutia with a direction pointing horizontally

and to the right is recorded as 360∘. The distributions of 𝐷* by minutia position (component) when

𝑘 = 5 is shown in Figure 5-5.

5.3.1 Neumann et al. (2015)

Since the metric used in this demonstration is largely based on [41], we will describe how they

use shape, direction, and type data in their calculation of the weight of evidence. We also discuss

some differences between the way they apply the metric compared to our application of it in order

to provide some context for our results.

Given a fingermark 𝑌 recovered from a crime scene, a person of interest Mr. X, and 𝑋, a

fingerprint from Mr. X, Neumann et al. [41] calculates a likelihood ratio based on the following

hypotheses:

𝐻0 : 𝑋 and 𝑌 were both produced by Mr. X

𝐻1 : 𝑋 was produced by Mr. X, and 𝑌 was produced by another individual in the relevant population

They use 𝑘 minutiae from the fingerprint and fingermark for the analysis. The 𝑘 minutiae chosen

from the fingerprint are the configuration of 𝑘 minutiae out of all possible 𝑘 minutiae configurations

from Mr. X that most closely aligns with the fingermark. We will call the data from the 𝑘 minutiae

configurations 𝑌 (𝑘) and 𝑋(𝑘). Using this data, they begin with the following basic form for the

likelihood ratio to quantify the weight of evidence in support of 𝐻0.
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𝐿𝑅 =
𝑃 (𝑌 (𝑘)|𝐻0, 𝑣 = 1)𝑃 (𝑣 = 1|𝐻0) + 𝑃 (𝑌 (𝑘)|𝐻0, 𝑣 = 0)𝑃 (𝑣 = 0|𝐻0)

𝑃 (𝑌 (𝑘)|𝐻1, 𝑣 = 1)𝑃 (𝑣 = 1|𝐻1) + 𝑃 (𝑌 (𝑘)|𝐻1, 𝑣 = 0)𝑃 (𝑣 = 0|𝐻1)
(5.2)

Let 𝑉 be an indicator variable, such that 𝑉 = 1 if the print from the individual is sufficiently similar

to the fingermark, and 𝑉 = 0 otherwise. “Sufficiently similar” is determined based on the matching

algorithm from the 3M Cogent AFIS system used by Neumann et al. [41]. In general, under 𝐻0,

𝑋 and 𝑌 will be deemed “sufficiently similar”; therefore, they make the simplifying assumption

𝑃 (𝑣 = 1|𝐻0) = 1 and 𝑃 (𝑣 = 0|𝐻0) = 0. Additionally, the relevant population used to calculation

the denominator of (5.2) is chosen based on AFIS’s matching algorithm, so they make another

simplifying assumption that 𝑃 (𝑣 = 0|𝐻1) = 0. Incorporating these assumptions, (5.2) becomes

𝐿𝑅 =
𝑃 (𝑌 (𝑘)|𝐻0, 𝑣 = 1)

𝑃 (𝑌 (𝑘)|𝐻1, 𝑣 = 1)
× 1

𝑃 (𝑣 = 1|𝐻1)
(5.3)

To select the relevant population, AFIS selects the 𝑘-minutiae configuration from an individual if it

determines that is similar to the mark. Therefore, to calculate 𝑃 (𝑣 = 1|𝐻1), they use the number

of individuals selected by AFIS divided by the total number of fingerprints in the database. To

calculate 𝑃 (𝑌 (𝑘)|𝐻0,𝑣=1)

𝑃 (𝑌 (𝑘)|𝐻1,𝑣=1)
, they use the shape, direction, and type information described in Section

1.4. Using the assumption that within a specified location of a fingerprint, the shape, direction and

type are considered independent. Therefore, the likelihood ratio in (5.3) can be calculated as

𝐿𝑅 =
𝑃 (𝑌

(𝑘)
𝑆 , 𝑌

(𝑘)
𝐷 , 𝑌

(𝑘)
𝑇 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝑆 , 𝑌

(𝑘)
𝐷 , 𝑌

(𝑘)
𝑇 |𝐻1, 𝑣 = 1)

× 1

𝑃 (𝑣 = 1|𝐻1)

=
𝑃 (𝑌

(𝑘)
𝑆 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝑆 |𝐻1, 𝑣 = 1)

×
𝑃 (𝑌

(𝑘)
𝐷 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝐷 |𝐻1, 𝑣 = 1)

×
𝑃 (𝑌

(𝑘)
𝑇 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝑇 |𝐻1, 𝑣 = 1)

× 1

𝑃 (𝑣 = 1|𝐻1)

(5.4)

Based on empirical analysis, they assume independence between each of the 𝑘 minutiae when cal-

culating the density for each component. The form of the likelihood ratio then becomes

𝐿𝑅 =

𝑘∏︁
𝑖=1

𝑃 (𝑌
(𝑘)
𝑆,𝑖 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝑆,𝑖 |𝐻1, 𝑣 = 1)

×
𝑘∏︁

𝑖=1

𝑃 (𝑌
(𝑘)
𝐷,𝑖 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝐷,𝑖 |𝐻1, 𝑣 = 1)

×
𝑘∏︁

𝑖=1

𝑃 (𝑌
(𝑘)
𝑇,𝑖 |𝐻0, 𝑣 = 1)

𝑃 (𝑌
(𝑘)
𝑇,𝑖 |𝐻1, 𝑣 = 1)

× 1

𝑃 (𝑣 = 1|𝐻1)
(5.5)
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As previously described, the shape component is based on 𝑘 triangles rather than the 𝑘 minutiae.

To calculate the numerator of the shape component in (5.5), [41] uses a univariate Gaussian density

for the first triangle and bivariate Gaussian densities for the subsequent triangles. Kernel density

estimation is used to calculate the denominator of the shape component. They use a non-parametric

distribution that is based on von-Mises kernels to calculate the numerator and denominator of the

direction component. Lastly, to calculate the type component of the likelihood ratio, they establish

a table of probabilities based on a survey of 200 latent print examiners in which each examiner was

asked to identify the type of a series of minutiae on fingermarks. The probability is the probability

the minutia is type 𝑙 given an examiner marked it as 𝑚. They assume there is no uncertainty in an

examiner’s determination of minutia type when examining a fingerprint.

We now discuss some of the differences between our demonstration and the use of the metric to

that in Neumann et al. [41]. The first difference is in the relevant set from which the 𝑘 minutiae

used in the examination are selected. Neumann et al. [41] starts with an individual and considers

all of the 𝑘-minutiae configurations across that individual’s ten fingers (sources). Therefore, there

are
10∑︀
𝑖=1

(︀
𝑛𝑖
𝑘

)︀
possible 𝑘-minutiae configurations, where 𝑛𝑖 is the number of minutiae marked on the

𝑖𝑡ℎ source from the individual. It is then the responsibility of the examiner to choose the 𝑘-minutiae

configuration that most closely matches to the 𝑘-minutiae configuration identified in the fingermark

𝑌 during comparison. We begin with a source rather than an individual, thus we start with only
(︀
𝑛𝑖
𝑘

)︀
possible 𝑘−minutiae configurations. Our framework could be modified to consider the individual

rather than the source by marking fingermarks based on the unique individual instead of the unique

source.

Neumann et al. [41] quantifies the strength of evidence using what they call an approximate

likelihood ratio. To account for the variability that exists between multiple marks produced by the

same source in the numerator, a distortion model [40] (see section 1.2 for detail about the model)

is used to simulate multiple impressions from the same source that have different appearances due

to causes of variability such as those presented in Chapter 4. The evidence that the print and mark

are from different sources is calculated in the denominator in which the variability between multiple

prints produced by different sources is understood based on a distribution created using prints from

different sources collected from the database. Because the relevant population is determined by a

matching algorithm in AFIS, the set of prints used to calculate the evidence in the denominator

consists of those most similar to the mark in question.
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This process of calculating the approximate likelihood ratio contains the two biggest differences

to account for when considering the context in which the shape metric is used. Neumann et al.

[41] uses the fingerprint database to obtain a set of relevant prints that can be used to quantify the

between source variability. Moreover, because AFIS scores are used to identify these prints, they are

naturally the ones that most closely match the fingermark. In our framework, prints in the database

are used to calculate parameters for the prior distributions on the variance parameters connected

to the between source variability. The sources used to understand variability are not necessarily

those in the database that most closely match the 𝑘−minutiae configuration from the fingermark

being investigated. As discussed earlier, our aim is to obtain information from fingermarks that

were produced under situations that are representative of what would be seen in casework and

provide a good representation of the variations of surface and investigator that would be seen in

casework. Lastly, the denominator of (5.5) does not account for within fingerprint variability in

order to simplify the calculations. Because our database requires there be multiple prints from each

source, the within source variability can be understood using the information from the database.

5.4 Preparing Data for Analysis

Because our current framework is not designed for categorical data, we will use the shape (aspect

ratio and form factor) and direction components with a mind towards quantifying the weight of

evidence that a mark and print were produced by the same source. The underlying assumption

of our proposed framework described in Chapter 3 is that the data follow a multivariate Gaussian

distribution; therefore, we will asses how well the data in our database meet this assumption and

apply an appropriate transformation if necessary.

To determine if the data follow a multivariate Gaussian distribution, we will use the multivariate

distribution comparison test and examine the summary statistics as those described in Section 3.4.3.

To obtain the multivariate Gaussian distribution in each iteration, we will simulate multivariate

Gaussian data using the mean and covariance estimated from the data in the database.

We begin by examining the form factor. Based on the test statistics and p-values in Table 5.1, it

is clear the data do not follow a multivariate Gaussian distribution and a transformation is required.
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𝑄1 𝑄2 𝑄3 Middle 95%
𝑇𝐴 9.193 10.689 13.042 (5.603, 17.883)
P-value 0.000 0.000 0.000 (0.000, 0.001)

Table 5.1: Test statistic, 𝑇𝐴, and p-value calculated using the test in [37] comparing the
distribution of the form factor data to a multivariate Gaussian distribution.

To transform the data, we apply a univariate Box Cox transformation [9] to each component of

the form factor. Figure 5-4 shows the distributions of the original and transformed data for each

component along with 𝜆, the power used to transform the data. We use these plots to visualize

differences between the original and transformed data.

Figure 5-4: Original and transformed values of form factor.

We now apply the multivariate distribution comparison test to the transformed data. Based on

the summary of the test in Table 5.2, we conclude that the transformed data meets the multivariate

Gaussian assumption.

𝑄1 𝑄2 𝑄3 Middle 95%
𝑇𝐴 0.320 0.617 1.046 (0.133, 2.139)
P-value 0.374 0.617 0.826 (0.091, 0.950)

Table 5.2: Test statistic, 𝑇𝐴, and p-value calculated using the test in [37] comparing the
distribution of the form factor data to a multivariate Gaussian distribution.
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We now repeat the same process to examine the aspect ratio data. Based on the results of

the multivariate comparison test in Table 5.3, the original aspect ratio data does not follow a

multivariate Gaussian distribution and should be transformed.

𝑄1 𝑄2 𝑄3 Middle 95%
𝑇𝐴 27.150 29.588 32.535 (20.765, 40.583)
P-value 0.000 0.000 0.000 (0.000, 0.000)

Table 5.3: Test statistic, 𝑇𝐴, and p-value calculated using the test in [37] comparing the
distribution of the form factor data to a multivariate Gaussian distribution.

We apply the Box Cox transformation and assess the whether the transformed distribution

follow the multivariate Gaussian distribution in Table 5.4.

𝑄1 𝑄2 𝑄3 Middle 95%
𝑇𝐴 2.360 3.131 4.036 (1.189, 5.654)
P-value 0.003 0.015 0.053 (0.000, 0.313)

Table 5.4: Test statistic, 𝑇𝐴, and p-value calculated using the test in [37] comparing the
distribution of the form factor data to a multivariate Gaussian distribution.

Based on these results, though the distribution of the transformed data appears to be a little

closer to the multivariate Gaussian distribution, important departures indicate that even the trans-

formed data likely cannot be treated as multivariate Gaussian. Since the form factor and aspect

ratio are both describing the shape of the minutiae configurations, we conduct a test to determine

whether the true correlation between form factor and shape is significantly different from zero. The

estimated correlation, test statistic, and p-value calculated from a 𝑡 distribution with 𝑛− 2 degrees

of freedom are shown in Table 5.5. Since there is non-zero correlation between the form factor

and aspect ratio, the additional information gained from including the aspect ratio in the model is

not worth the additional uncertainty in the results due to the violations of the model assumptions.

Therefore, we will use the form factor to represent shape in the calculation in the weight of evidence.

𝑟 𝑡 p-value
-0.452 -64.006 < 2𝑒-16

Table 5.5: Estimated correlation: 𝑟, Test statistic: 𝑡, and p-value.

Lastly, we examine the distribution of the direction data. From the results of the multivariate

distribution comparison test show in Table 5.6, we determine that a transformation is required. We
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use a transformation from Yeo and Johnson [56], an extension of the Box Cox transformation that

can accommodate observations that are less than or equal to 0. Given the original observation 𝑌𝑖

and the power parameter 𝜆, the transformed value 𝑌
(𝜆)
𝑖 is calculated using (5.6).

𝑌
(
𝑖 𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑌𝑖+1)𝜆−1
𝜆 𝜆 ̸= 0, 𝑌𝑖 ≥ 0

log(𝑌𝑖 + 1) 𝜆 = 0, 𝑌𝑖 ≥ 0

− (−𝑌𝑖+1)2−𝜆−1
(2−𝜆) 𝜆 ̸= 2, 𝑌𝑖 < 0

− log(−𝑌𝑖 + 1) 𝜆 = 2, 𝑌𝑖 < 0

(5.6)

The values of 𝜆 for each component are stated above the histograms in Figure 5-5. When the

original observation is positive, the transformed value from Yeo and Johnson [56] is obtained by

applying the usual Box Cox transformation. Based on the results of the multivariate comparison

test in Table 5.7 and the size of the database, we determine that the transformed data can be used

in our framework. Figure 5-5 shows the original and transformed direction data by component.

𝑄1 𝑄2 𝑄3 Middle 95%
𝑇𝐴 13.755 15.396 17.248 (10.981,20.142)
P-value 0.000 0.000 0.000 (0.000,0.000)

Table 5.6: Test statistic, 𝑇𝐴, and p-value calculated using the test in [37] comparing the
distribution of the form factor data to a multivariate Gaussian distribution.

𝑄1 𝑄2 𝑄3 Middle 95%
𝑇𝐴 1.020 1.395 2.027 (0.450, 3.223)
P-value 0.074 0.224 0.402 (0.007, 0.807)

Table 5.7: Test statistic, 𝑇𝐴, and p-value calculated using the test in [37] comparing the
distribution of the form factor data to a multivariate Gaussian distribution.

We will use the transformed values of the form factor and direction to fit the parameters to

specify the prior distributions in Section 3.3 and calculate the weight of evidence. Given the results

of the comparison tests shown in this section and the size of the database used in this demonstration,

we can use the transformed data to calculate of the weight of evidence in our framework.
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Figure 5-5: Original and transformed values of direction.

5.5 Results

5.5.1 One-Sample Framework

In chapters 2 and 3, we described the statistical foundation based on a two-sample problem in

which the numerical summaries X1 and Y1 both had variability that needed to be accounted for in

our calculations. As discussed in section 4.5, there is negligible variability in fingerprints produced

in controlled environments; therefore, we are not accounting for the variability in fingerprints in our

database. This not only has the benefit of making a database more feasible to build and maintain,

but this also simplifies the formulation of the statistical framework from a two-sample framework

to a one-sample one. We will describe the pertinent changes to our framework and then show the

results of a demonstration using the sub- and fully-resourced databases in the next two sections.

Suppose X1 is the multivariate numerical summary from a fingerprint produced under controlled

conditions and Y1 is the multivariate numerical summary from a fingermark recovered from the
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scene. As before, we are testing the following hypotheses

𝐻0 : X1 and Y1 were produced by the same source

𝐻1 : X1 and Y1 were produced by different sources
(5.7)

We have a similar model set up as the one shown in Section 3.1. Let Y1 ∼ 𝐺(𝜃𝑌 ,Σ𝑌 ). As before,

we assume the source means are generated from the distribution 𝜃𝑌 ∼ 𝐺(𝜃0,Σ0).

We use the same separation strategy described in Section 3.1 to obtain prior information about

the covariance matrix Σ𝑌 in the fully-resourced case. In both the sub- and fully-resourced cases, we

calculate the relevant estimated values and fitted parameters using the ANOVA approach presented

in sections 3.2 and 3.3. As expected, the only difference in the ANOVA calculations under this set

up, is the parameters 𝜃0 and Σ0 are fit using only data from databases 𝑆𝑌 (in the sub-resourced

case) and 𝑆0
𝑌 (in the fully-resourced case).

There is also a change in the formulation of the Bayes factor used to calculate the weight of

evidence in support of 𝐻0 in (5.7). The Bayes factor in the sub-resourced case is shown in (5.8).

𝐵𝐹01(X1,Y1,D𝑋 ,D𝑌 ) =
𝜋(Y1|X1, Σ̂𝑌 )∫︀

𝜋(Y1|𝜃𝑌 , Σ̂𝑌 )𝜋(𝜃𝑌 )𝑑𝜃𝑌

(5.8)

The Bayes factor in the fully-resourced case is shown in (5.9).

𝐵𝐹01(X1,Y1,D𝑋 ,D𝑌 ) =

∫︀
𝜋(Y1|X1,Σ𝑌 )𝑝(Σ𝑌 |D𝑌 )𝑑Σ𝑌∫︀ ∫︀

𝜋(Y1|𝜃𝑌 ,Σ𝑌 )𝜋(𝜃𝑌 )𝑝(Σ𝑌 |D𝑌 )𝑑𝜃𝑌 𝑑Σ𝑌
(5.9)

5.5.2 Fitted Values: Sub-Resourced Case

For this demonstration, we use 𝑘 = 5 minutiae. Since this is the sub-resourced case, we use

information from 𝑆𝑌 , the set of marks that were collected using the same instrument as the one in

the current investigation. We begin by looking at the average fitted values of the aspect ratio in

Table 5.8 to check that the minutiae configurations are as expected. The aspect ratio is used to

orient each configuration, so we expect for the first value to be the smallest on average. This is true

in the table; therefore, we have confidence that the minutiae configurations are as expected for this
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demonstration.

1 2 3 4 5
2.876 4470.515 11738.851 1968.611 939.716

Table 5.8: Average fitted values of the aspect ratio.

We will be using the transformed values of form factor and direction to calculate the weight

of evidence, so we show the fitted values of 𝜃0 and Σ0 and the estimates Σ̂𝑋 and Σ̂𝑌 for the

transformed data. The fitted values for 𝜃0 for the form factor and direction are in Table 5.9.

Component 1 2 3 4 5
Form Factor 4.659 3.071 2.405 2.412 3.315
Direction -5.747 16.376 12.133 0.361 9.732

Table 5.9: Fitted values of 𝜃0.

In Table 5.10, we have the fitted values for standard deviation of Σ0 and in Tables 5.11 and 5.12,

we have the fitted values of the correlation structure Σ0. The values of standard deviation provide

an indicator of the variation in the mean value of form factor for each source, which provides

a measurement of the variability between the different fingermarks in 𝑆𝑌 . The fitted values of

correlation indicate how the 𝑘 form factor measurements relate to one another. We see similar

results in the estimated values of standard deviation and correlation from Σ̂𝑌 in tables 5.13, 5.14,

and 5.15.

One benefit of using our framework to obtain the fitted and estimated values for Σ0 and Σ𝑌 is

that we don’t need to make any assumptions about the correlation structure beforehand. We can use

the relevant data from the database to obtain all information about these variance and covariance

matrices. This is especially useful for the correlation structure, which often times assumptions

about the structure are made based on prior knowledge or numerical data exploration. In Neumann

et al. [41], they assume independence in the form factor values for non-adjacent triangles based on

numerical results with 𝑘 = 12 minutiae. We have found that for smaller 𝑘, there is non-negligible

correlation between non-adjacent triangles, and thus the assumption does not always hold.
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Component 1 2 3 4 5
Form Factor 0.979 0.907 0.677 0.708 0.980
Direction 25.078 12.177 27.708 17.736 22.875

Table 5.10: Fitted standard deviations from Σ0.

1 2 3 4 5
1 1.000
2 0.491 1.000
3 0.261 0.515 1.000
4 0.216 0.214 0.458 1.000
5 0.559 0.281 0.211 0.477 1.000

Table 5.11: Form Factor: Correlation matrix from Σ0

1 2 3 4 5
1 1.000
2 -0.106 1.000
3 -0.244 0.297 1.000
4 0.041 0.028 0.110 1.000
5 0.204 -0.101 -0.128 -0.074 1.000

Table 5.12: Direction: Correlation matrix from Σ0

1 2 3 4 5
Form Factor 1.416 1.395 1.067 1.086 1.499
Direction 30.864 13.765 34.376 25.838 29.403

Table 5.13: Fitted standard deviations from Σ̂𝑌 .

1 2 3 4 5
1 1.000
2 0.483 1.000
3 0.249 0.452 1.000
4 0.203 0.160 0.480 1.000
5 0.550 0.216 0.195 0.449 1.000

Table 5.14: Form Factor: Correlation matrix from Σ̂𝑌

5.5.3 Fitted Values: Fully-Resourced Case

With a fully-resourced database, we have the database 𝑆0
𝑌 that include fingermarks from in-

struments similar to Instrument Y from which we can gather more complete information about

measurement variability. Using the data contained in these databases, we fit the values for 𝜃0 and
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1 2 3 4 5
1 1.000
2 0.106 1.000
3 0.045 0.145 1.000
4 0.067 -0.024 0.141 1.000
5 0.096 -0.094 -0.032 -0.038 1.000

Table 5.15: Direction: Correlation matrix from Σ̂𝑌

Σ0 as before in the sub-resourced case, and we also fit values for 𝜇𝑌 , 𝜏 2
𝑌 , 𝜈𝑌 , and Λ−1

𝑌,0 for both the

shape and direction components.

Table 5.16 contains the fitted values for 𝜃0. Similar to the fitted values in the sub-resourced case,

on average, the first triangle has the largest form factor and the remaining triangles have relatively

the same average value for form factor. We also see the phenomenon in the direction data that

showed in the sub-resourced case; on average, the direction of the second minutiae differed from the

reference print much more than for the other minutiae.

1 2 3 4 5
Form Factor 4.736 3.115 2.450 2.431 3.385
Direction -7.418 15.859 15.259 -0.002 9.761

Table 5.16: Fitted value for 𝜃0 calculated using fully-resourced database.

Next, we look at the standard deviation and correlation structures of Σ0 shown in tables5.17,

5.18, and 5.19. From the fitted values we can conclude that knowing the triangle number does

not provide much information about the variability between sources, since the values are about

the same for each triangle. The correlation structure in Tables 5.18 and 5.19 are similar to what

we observed in the sub-resourced case, where we observed non-negligible correlation between non-

adjacent triangles. In general, we also see the strongest correlation between adjacent triangles.

1 2 3 4 5
Form Factor 0.980 0.885 0.676 0.705 0.991
Direction 23.438 12.790 26.180 17.079 20.340

Table 5.17: Fitted values for the standard deviations of Σ0 calculated using a fully-resourced
database.

Tables 5.20 and 5.21 contains the fitted values for the parameters of the logNormal distribution
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1 2 3 4 5
1.000
0.512 1.000
0.287 0.507 1.000
0.275 0.174 0.446 1.000
0.609 0.281 0.237 0.509 1.000

Table 5.18: Form Factor: Correlation structure of Σ0 calculated using the fully-resourced
database

1 2 3 4 5
1 1.000
2 -0.097 1.000
3 -0.129 0.224 1.000
4 -0.037 0.036 0.194 1.000
5 0.251 -0.057 -0.088 -0.119 1.000

Table 5.19: Direction: Correlation structure of Σ0 calculated using the fully-resourced
database

that describes the form of the standard deviations. The scale matrix of the inverse Wishart prior

distributions for the correlation structure is in Table 5.22. The correlation structure in the scale

matrices reflect what we’ve seen in other correlation matrices in this demonstration. Using these

parameter values, we can now fully describe the measurement variability of an instrument. Being

able to fit the the values in tables 5.20 and 5.22 show the main advantage of the fully-resourced

database over the sub-resourced database. We will see how this affects the interpretation of the

weight of evidence in Section 5.5.4.

1 2 3 4 5
𝜇𝑌,0 0.414 0.396 0.112 0.129 0.442
𝜏 𝑌,0 0.163 0.163 0.163 0.163 0.163

Table 5.20: Form Factor: Fitted values for 𝜇𝑋,0 and 𝜏 𝑌,0 calculated using a fully-resourced
database.

In order to quantify the weight of evidence that a print and mark are from the same source, we

use Carlin and Chib [14]. Before describing the details of the algorithm, we discuss the calculation

of 𝑝(Σ𝑌 |𝐷𝑌 ), the updated prior information for Σ𝑌 for a component.

The form for 𝑝(Σ𝑌 |𝐷𝑌 ), such that 𝐷𝑌 numerical data from fingermarks in 𝑆𝑌 , is the same as

shown in (3.7) described in Chapter 3. We use a variation on the method in Barnard et al. [7] that

takes advantage of the separation strategy (described in detail in Section 3.3) in a Gibbs sampling
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1 2 3 4 5
𝜇𝑌,0 3.532 2.701 3.603 3.313 3.407
𝜏 𝑌,0 0.359 0.359 0.359 0.359 0.359

Table 5.21: Direction: Fitted values for 𝜇,0 and 𝜏 𝑌,0 calculated using a fully-resourced
database.

1 2 3 4 5
1 1.000
2 0.469 1.000
3 0.240 0.481 1.000
4 0.182 0.131 0.420 1.000
5 0.561 0.210 0.171 0.437 1.000

Table 5.22: Form Factor: Fitted value for Λ−1
𝑌,0, the scale matrix of the inv-Wishart prior

distribution of the correlation structure of Σ𝑌 .

framework. As a starting value for the algorithm, we calculate Σ̂𝑌 , the estimate of the covariance

matrix calculated using data in 𝑆𝑌 . Then, for iterations 𝑖 = 1, . . . , 𝑛, where 𝑛 is the total number

of iterations, we do the following:

1. Use the separation strategy from Section 3.3 to identify the diagonal matrix of standard

deviations. Let 𝑑𝑖𝑎𝑔(S) = [𝑆1, . . . , 𝑆𝑘].

2. For 𝑖 = 1, . . . , 𝑘,

i. Update the 𝑖𝑡ℎ element in 𝑑𝑖𝑎𝑔(S) by sampling 𝑆𝑖* ∼ log𝑁(𝜇𝑌,0𝑖, 𝜏
2
𝑌,0𝑖). 𝜇𝑌,0𝑖 is the 𝑖𝑡ℎ

element of the fitted value 𝜇𝑌,0, and 𝜏2𝑌,0𝑖 is the 𝑖𝑡ℎ element of the fitted value of 𝜏2𝑌,0.

ii. Calculate the updated covariance matrix

Σ𝑌 * = SRS

iii. Calculate 𝑝(Σ𝑌 * |𝐷𝑌 ).

3. Using the updated covariance matrix, Σ𝑌 * (the most current covariance matrix after updating

all standard deviation values), use the separation strategy to identify the correlation matrix
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1 2 3 4 5
1 1.000
2 0.071 1.000
3 0.017 -0.004 1.000
4 0.031 -0.034 0.136 1.000
5 0.029 -0.037 -0.014 -0.016 1.000

Table 5.23: Direction: Fitted value for Λ−1
𝑌,0, the scale matrix of the inv-Wishart prior

distribution of the correlation structure of Σ𝑌 .

R. Let

R =

⎡⎢⎢⎢⎢⎢⎢⎣
1 𝑟12 𝑟13 . . . 𝑟1𝑘

𝑟21 1 . . . 𝑟2𝑘
...

...
. . .

...

𝑟𝑘1 𝑟𝑘2 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦
4. We want to ensure that the covariance matrix stays positive definite, therefore we must

carefully update the values in the correlation matrix. To ensure that each updated ma-

trix remains positive definite, we follow the sampling scheme from Barnard et al. [7]. Let

𝑅(𝑟) be the updated correlation matrix such that 𝑅[𝑖, 𝑗] = 𝑅[𝑗, 𝑖] = 𝑟 and 𝑓(𝑟) = |𝑅(𝑟)|.

For 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑘 such that 𝑗 > 𝑖,

i. Calculate 𝑓(0), 𝑓(1), and 𝑓(−1).

ii. Find the roots of 𝑎𝑟2 + 𝑏𝑟 + 𝑐 such that

𝑎 = [𝑓(1) + 𝑓(−1)− 2𝑓(0)]/2

𝑏 = [𝑓(1)− 𝑓(−1)]/2

𝑐 = 𝑓(0)

These roots define the interval from which the new correlation 𝑟𝑖𝑗* can be drawn to ensure

the covariance matrix remains positive definite.

iii. Draw updated value 𝑟𝑖𝑗* from the a uniform distribution defined on the interval specified

in the previous step. Let R[𝑖, 𝑗] = R[𝑗, 𝑖] = 𝑟𝑖𝑗* .
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iv. Calculate the updated covariance matrix

Σ𝑌 * = SRS

v. Calculate 𝑝(Σ𝑌 * |𝐷𝑌 ).

Once the prior information for the covariance matrix Σ𝑌 is updated, we use Carlin and Chib [14]

to calculate the Bayes factor. This method was chosen because it does not require integration and

it runs efficiently, which is important when considering implementing our framework in practice. In

this algorithm, we have two models that align with our hypotheses and write the Bayes factor as

shown below

𝑀0 : 𝜃𝑌 = X vs. 𝑀1 : 𝜃𝑌 ̸= X

𝐵𝐹01 =
𝑃 (𝑀0|Y)/𝑃 (𝑀1|Y)

𝑃 (𝑀0)/𝑃 (𝑀1)

(5.10)

To calculate the Bayes factor in 5.10, we use Gibbs sampling to calculate 𝑃 (𝑀0|Y). For each

iteration, we do the following:

1. Generate the model parameters for 𝑀0. Under this model, the parameters are 𝜃𝑌 = X and

Σ𝑌 . The value of X is determined from the process described in Section 5.2 and Σ𝑌 is drawn

from the following:

𝑃 (𝜃𝑌 ,Σ𝑌 |𝑀0) = 𝜋(𝑌 |𝜃𝑌 ,Σ𝑌 ,𝑀 = 0)𝑝(𝜃𝑌 ,Σ𝑌 |𝑀 = 0)

= 𝐺(𝑌 |X,Σ𝑌 )𝑝(Σ𝑌 |D𝑌 )
(5.11)

2. Generate the model parameters under 𝑀1. Under this model,

𝑃 (𝜃𝑌 ,Σ𝑌 |𝑀1) = 𝜋(𝜃𝑌 ,Σ𝑌 |𝑀 = 1)

= 𝐺(𝜃𝑌 |𝜃0,Σ0)𝑝(Σ𝑌 |D𝑌 )
(5.12)
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3. Calculate the conditional posterior probability for 𝑀0.

𝑃 (𝑀 = 0|𝜃𝑌 ,Σ𝑌 ,𝑌 ) =

𝐺(Y|X,Σ𝑌 )𝑝(Σ𝑌 |D𝑌 )𝑃 (𝑀0)

𝜋(Y|X,Σ𝑌 )𝑝(Σ𝑌 |D𝑌 )𝑃 (𝑀0) +𝐺(Y|𝜃𝑌 ,Σ𝑌 )𝐺(𝜃𝑌 |𝜃0,Σ0)𝑝(Σ𝑌 |D𝑌 )𝑃 (𝑀1)

(5.13)

such that 𝜋(𝑀0) and 𝜋(𝑀1) are the prior probabilities for the respective models. In this

demonstration, we use 𝑃 (𝑀0) = 𝑃 (𝑀1) = 0.5; however, in practice, these prior probabilities

could be determined using non-fingerprint evidence from the investigation.

4. Randomly draw a model 𝑀0 or 𝑀1 based on the probabilities 𝑃 (𝑀 = 0|𝜃𝑌 ,Σ𝑌 ,𝑌 ) and

1− 𝑃 (𝑀 = 0|𝜃𝑌 ,Σ𝑌 ,𝑌 )

In this demonstration, we used 10,000 iterations; we did not see sensitivity in the result from

changing the number of iterations. Once all the iterations of the Gibbs sampling is complete, the

posterior probability of 𝑀0 is estimated as the following:

𝑃 (𝑀0|Y) =
# occurences of 𝑀0

# of iterations
(5.14)

Using this value, the Bayes factor can be calculated using the formula in (5.10).

5.5.4 Weight of Evidence

We now examine the weight of evidence calculated using sub- and fully-resourced databases.

Table 5.24 shows the weight of evidence in support of the hypothesis that a print and mark are

produced by the same source. Under each scenario, the fingerprint under investigation is the same;

it is the left-most impression in figures 5-6 and 5-7. Fingermarks 1 and 2 shown in Figure 5-6 were

produced by the same source as the fingerprint. Fingermarks 3 and 4 shown in Figure 5-7 were

produced by sources that differ from the print.

For each comparison, we calculate the weight of evidence using three different models based on

the numerical summaries calculated in sections 5.3 and 5.4: form factor only, direction only, and

form factor and direction. The results from these three models provide an indication of how much
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Figure 5-6: Left to right: Fingerprint produced under controlled conditions and two finger-
marks recovered from an uncontrolled condition such as a crime scene. All three impressions
were produced by the same source.

the weight of evidence is dependent on the metrics used in the model. From the results in the Table

5.24, we see that the weight of evidence can change depending on the model. This phenomenon

is most prevalent when a sub-resourced database is used. We can use the information from each

of the three models to quantify insights about some of the similarities and differences between

the mark and print that may be highlighted by examiners in the comparison phase of ACE-V.

For example, the minutiae directions in Fingermark 3 and the fingerprint are much more similar

than the shape of the triangles in their minutiae configurations. The weight of evidence from the

individual components provide additional support for some of the considerations (such as the one

in the example) examiners use to make their final conclusions.

Though we can gain insights from the individual models, the model that includes both the

form factor and direction provides a more holistic measure of how the fingerprint and fingermark

compare. Thus, when considering which metric to use as an input into the modeling framework,

we suggest using one that includes multiple numerical descriptions of a fingerprint impression. We

also suggesting using a metric that is calculated in a transparent way, so that its components can

be used to better understand any interesting similarities and/or differences observed between the

print and mark. For example, AFIS scores are often proprietary, and it is unclear how they are

calculated. Therefore, they cannot be used to glean additional information about the comparison of

a mark and print aside from how closely they match. If such a metric must be used, we recommend

also calculating the weight of evidence using a more transparent metric to provide more statistical

backing to the examiners’ conclusions.
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Figure 5-7: Left to right: Fingerprint produced under controlled conditions and two finger-
marks produced under uncontrolled conditions such as a crime scene. All three impressions
were produced by different sources.

Sub-Resourced Fully-Resourced
Form Factor Direction Both Form Factor Direction Both

Fingermark 1 -14.798 4.091 -10.707 1.933 8.647 5.042
Fingermark 2 -7.155 2.859 -4.296 3.195 11.421 5.583
Fingermark 3 -15.930 2.069 -13.86 1.017 5.3006 3.245
Fingermark 4 -2.010 -23.315 -25.325 3.686 1.2411 1.810

Table 5.24: Weight of evidence (2 log𝐵𝐹01) in support of the hypothesis that the fingermark
was produced by the same source as the fingerprint.

In general, the magnitude of the weight of evidence is less when calculated using the fully-

resourced rather than the sub-resourced database. This is due to the fact that the variability in the

fingermarks is more completely accounted for when using a fully-resourced database. Another thing

to note is that we calculated positive weight of evidence even when the mark and print were from

different sources. This result is not surprising since the minutiae configurations examined from the

fingerprint and fingermark are ones that most closely match. In practice, we recommend using a

numerical summary that more clearly highlights the unique features in a fingerprint and fingermark.

Choosing a Numerical Summary

In addition to the transparency of the calculation, measures of performance can be used to choose

the model (determined by the numerical summary (or summaries) included in the framework) used

to quantify the weight of evidence. We recommend using the following performance characteristics

from Meuwly et al. [36]:
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∙ Accuracy : How well the weight of evidence aligns with the truth. For example, if the finger-

print and fingermark are from the same source, the model with the highest value for weight

of evidence would be deemed the most accurate.

∙ Discriminating Power : How well the model distinguishes between fingerprint and fingermark

comparisons in which different conclusions are true.

∙ Calibration: How meaningfully the model results can be interpreted regardless of which con-

clusion is true. Models that have better discrimination power have better calibration.

One way to evaluate the performance characteristics is by using a log-likelihood-ratio cost (Cllr)

[10], a measure of how well the weight of evidence corresponds with a correct conclusion. The

models should be evaluated using a set of real fingerprints and marks with known sources that

represent what is seen in casework [36]. The Cllr for accuracy can be decomposed into the Cllr

for discriminating power and the Cllr for calibration, so accuracy can be used to choose a model.

Because the Cllr is a cost measure, the model with the lowest value of Cllr is the one that is most

accurate. If one wishes to include multiple models in their assessment of the weight of evidence,

we recommend using a weighted average of 2 log𝐵𝐹01 in which the weights are based on the model

accuracy as determined by the Cllr. The weights should be assigned such that the most accurate

model has the largest when in the aggregate calculation of weight of evidence.

5.6 Conclusion

From the results of this demonstration, we recommend that examiners use a fully-resourced

database to quantify the weight of evidence when reporting their conclusions. This would provide

more context around their conclusion than just a binary “match/no match”. In addition to their

conclusion and the important similarities and differences in the features that led to such conclusion,

examiners could report the weight of evidence 2 log𝐵𝐹01 in support of the print and mark being

produced by the same source. By presenting this weight of evidence, those interpreting the evidence

to make a decision (such as a jury or judge, for example), can use this weight of evidence to assess

their confidence in the examiner’s conclusion. This helps provide more transparency in the process,

and provides a mechanism in which examiners can provide “probative” value for the conclusions as

suggested by Dror and Mnookin [16].
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As shown in this demonstration, using a sub-resourced database can make the weight of evidence

appear artificially strong. As discussed in Chapter 2, the sub-resourced database is the type most

commonly found in practice at this point. Therefore, in order to truly quantify the weight of

evidence, the fully-resourced database should be used. We have shown that the weight of evidence

as measured by the fully-resourced database more accurately accounts for the variability that exist

in the measurements and therefore could be more accurately interpreted by a party using the results,

such as a jury. Additionally, since we have confidence that the weight of evidence calculated from

a fully-resourced database incorporates more aspects of measurement variability, we can be even

more confident in an examiner’s conclusion when the magnitude of the weight of evidence is high.

Thus far in this text, we have only considered the case in which one candidate is investigated as

the potential source of a fingermark recovered from a crime scene. However, in practice, examiners

often analyze multiple candidates as the potential source of a mark. In the next chapter, we explore

the statistical properties of this phenomenon with the goal of providing more practical guidelines

examiners can use when analyzing multiple candidates.
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Chapter 6

Dependencies in the Weight of Evidence

for Multiple Candidates

6.1 Introduction

On March 11, 2004, terrorist bombings occurred on commuter trains in Madrid, Spain. On

March 19, 2004, Brandon Mayfield, an attorney living in Portland, Oregon, was identified by the

Federal Bureau of Identification (FBI) as the source of a fingermark recovered from the scene of

the attack, and on May 6 he was arrested as a material witness to the attack. On May 19, the

Spanish National Police (SNP) identified Ouhnane Daoud as the source of the fingermark. On May

20, Mayfield was released from prison after the FBI compared Daoud’s fingerprints to the mark,

and on May 24, all charges against Mayfield were officially dropped [42]. This is one of the most

infamous instances of an erroneous identification in modern forensic science. Due to the magnitude

of the error by the Latent Print Unit in the FBI, the Office of Inspector General (OIG) in the U.S.

Department of Justice conducted a review to investigate how the erroneous identification was made.

The Office of Inspector General concluded that some of the main sources of error included the large

amount of similarities between Mayfield’s and Daoud’s fingerprints, the original examiner’s reliance

on minute Level III detail to make the identification, and the lack of adequately explaining the

differences between the mark and Mayfield’s print [42]. In addition to the investigation by the OIG,

the FBI implemented corrective actions to the Latent Print Unit after a review of the Mayfield
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investigation by an international committee of latent print examiners and forensic experts [48].

Identification errors this one have caused increase criticism about the scientific validity of meth-

ods used to analyze forensic evidence [51, 21]. Though understanding the source of the errors that

occurred is important for assessing the reliability of forensic evidence, we are interested in exploring

another aspect of the Mayfield case, specifically the weight of evidence in support of the hypothesis

that Mayfield was the source of the fingermark found at the scene. As more evidence about Daoud

was examined by the FBI, the weight of evidence in support of Mayfield as the source of the mark

decreased. In fact, it decreased to the point that he was eventually cleared as the source of the

mark. We propose a way to quantify this phenomenon by measuring the weight of evidence in a way

that accounts for the dependencies that exist when multiple candidates are examined as potential

sources.

We begin by by exploring different ways to consider dependencies in the weight of evidence of

multiple candidates and how these could be applied to the Mayfield case in section 6.2. Then, we

demonstrate our proposed method mimicking a two candidate scenario in section 6.3.1 and extend

the analysis three or more candidates in sections 6.3.2 and 6.3.3. In section 6.4 we show some of

the asymptotic properties of our proposed method, and in section 6.5 we conclude with guidelines

for interpreting the weight of evidence when multiple candidates are examined.

6.2 Interpreting Evidence in the 2004 Madrid Train At-

tack

Brandon Mayfield was the fourth candidate retrieved in a search using the FBI’s Integrated Au-

tomated Fingerprint Identification System (IAFIS). The search was conducted using seven minutiae

points marked on an image of one of the fingermarks recovered from the crime scene by SNP [48].

Before comparing Mayfield’s fingerprint to the mark, the initial latent print examiner had likely

conceptualized high prior odds that Mayfield was the source of the mark, given that he was ranked

high on the candidate list produced by an IAFIS search in a database containing millions of prints.

Examiners have expectations of the system’s efficiency and ability to identify matches [15] and have

the potential to be influenced in their decision making based on a candidate’s rank on the list of
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IAFIS candidates [16, 17]. Given the large size of the FBI database, it would not have been unusual

to retrieve a non-match very similar to the fingermark, yet it is unclear how much this possibility

was included in the examiner’s assessment.

Once the initial identification was made, Mayfield’s prints were examined by a second latent

print examiner who verified the original conclusion. The second examiner was informed that the

original examiner made an identification to Mayfield [48]. This piece of information coupled with

the fact that the original examiner was an experienced supervisor who was highly respected [48],

likely increased the second examiner’s estimation of 𝑃 (𝐻0)
𝑃 (𝐻1)

. After the second examiner verified the

original conclusion of identification, the Latent Print Unit chief officer confirmed the identification

[42]. Because of the FBI’s identification determination, the SNP requested Mayfield’s prints for

examination in April 2004. They reached a “negativo” (negative) conclusion in regards to Mayfield

being the source of the mark [42]; [48] specifies that the conclusion was “inconclusive.” Members

from the FBI Latent Print Unit met with the SNP to discuss the differences in their analysis;

however, about a week prior to the meeting, the FBI stated that they were “absolutely confident”

in their original conclusion that Mayfield was the source of the fingermark [42].

The original FBI examiners did not have detailed knowledge about Mayfield’s personal and

professional life when the original identification was made. However, by the time the SNP released

the April 13 Negativo Report, the examiners in the FBI Latent Print Unit were aware of more

personal details about Mayfield obtained from the Portland division of the FBI. They had been

informed that Mayfield practiced Islam, had contacts with suspected terrorists, and had once acted

as an attorney for a convicted terrorist [42]. Office of the Inspector General, Oversight and Review

Division [42] concludes that this knowledge about Mayfield’s personal life wasn’t the primary cause

for the FBI’s lack of careful review after the SNP report; however, there is evidence that it could

have been an influence. An examiner admitted that had the details about Mayfield been more

“mundane”, there may have been more urgency to more carefully review the original conclusions

and possibly catch the errors made [42]. For the examiners in the FBI Latent Print Unit who hadn’t

seen the original fingerprint analysis, the combination of the FBI’s original identification conclusion,

the SNP’s “negativo” conclusion and the additional details about Mayfield’s personal would lead

them to assess the prior odds differently than the original examiner.

At each stage of the Mayfield investigation, the new examiners reviewing the evidence had a
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different set of information that influenced their determination of the prior odds of Mayfield being

the source of the fingermark. Lund and Iyer [34] describe a similar scenario in which multiple people

are independently deriving their own estimates of the prior odds. Though they talk about “decision

makers” mainly in reference to non-experts (e.g. jurors, judges, attorneys) who use the information

from forensic experts to make decisions, many of the challenges they present about assigning weights

to prior probabilities can also be true of forensic experts. Therefore, we use their framework can be

used to describe the Mayfield case. There is a relevant population, a set of scenarios, 𝐻0 : {𝐻0𝑖}𝑎𝑖=1

in which the examiner may consider Mayfield the source of the fingermark and a set of scenarios

𝐻1 : {𝐻1𝑗}𝑏𝑗=1 in which the examiner would not consider Mayfield the source. Before comparing

Mayfield’s print to the mark, each examiner assigned a probability to each scenario regarding their

belief in its plausibility. As demonstrated in the Mayfield case, can be problematic, because each

examiner may use different information to define their relevant population and prior belief about

each scenario.

These issues were demonstrated in the Mayfield case, as each examiner had different information

on which to base their relevant population. Similarly, when the SNP conducted its original analysis,

Mayfield was not in the examiners’ relevant population, since his fingerprints were not in their

database. One could argue this affected the amount to which the examiners in the SNP believed he

was the source of the mark. Similarly, the eventual culprit, Daoud, was not in the FBI’s relevant

population, since he was not in the FBI database. The original FBI examiners would have assigned

the scenario of Daoud being the source of the fingermark zero in the original analysis. However, [34]

argue that any situation could be indisputable if sufficient data is provided, so no scenario is truly

assigned prior probability of exactly zero. This is true in the case of Daoud who the FBI eventually

determined was the source of the mark after the data derived from analyzing his fingerprint.

In Chapter 2, we proposed a a framework for using a database to systematically derive prior

information rather than rely on information from practitioners. In the Mayfield case, this could have

involved deriving information from international terror cases involving a bomb in which evidence

was retrieved from a textured surface, such as a bag. An advantage to this is that each examiner

would have started their analysis with the same prior information. One limitation; however, would

be in which information in the database could be used to inform prior belief. It has the potential

to lead to scenarios in which examiners are given information which could introduce bias into the

examination. This type of contextual bias leads examiners to make decisions that confirm their prior
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beliefs, a type of confirmation bias [17]. Confirmation bias leads an examiner to find information

consistent with their prior-held beliefs, potentially leading the examiner to base their conclusion on

evidence that is of poor quality or disputable or to miss information that could possibly contradict

those prior beliefs [17]. In Mayfield’s case, the original FBI examiners placed over-sized emphasis

on Level III details which are often considered too variable to rely on for identification. In the

process, they discounted other Level III details showing discrepancies between Mayfield’s print and

the fingermark [42], which in part lead to the false identification.

While systematically deriving prior information could have helped reduce some of the factors

that contributed to the error, there is still another substantial element in this investigation to

consider: the relationship in the weight of evidence between Mayfield and Daoud.

6.3 Dependencies in the Weight of Evidence for Multiple

Candidates

6.3.1 Two Candidates

We now consider the challenge of interpreting the weight of evidence in a way that takes into

account the fact that multiple candidates are examined. Because Mayfield was the fourth ranked

candidate produced by IAFIS, there were at least three other candidates examined by the original

FBI examiners. Considerations for interpreting evidence when multiple candidates are examined

(for example, the list of candidates derived by IAFIS) will be discussed in section 6.3.2. Our current

focus, then, is on the relationship in the weight of evidence derived from the examinations of two

candidates, such as in the case of Mayfield and Daoud.

Only one unique source can be the one that produced a particular fingermark, so there exists

some dependency in the weight of evidence when multiple candidates are considered as potential

sources. Given the model in (1.2) to quantify the weight of evidence for each candidate, there are

two places in which we can account for this dependency: in the prior odds, 𝑃 (𝐻0)
𝑃 (𝐻1)

, or the Bayes

factor, 𝑃 (𝑋,𝑌 |𝐻0)
𝑃 (𝑋,𝑌 |𝐻1)

. In the previous section, we discussed the limitations of updating the prior odds as

new information becomes available. Given these limitations, we propose a framework that accounts
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for the dependencies in the Bayes factor. This approach provides a structure in which changes in

the weight of evidence when new candidates are introduced are accounted for in the quantification

and interpretation of evidence, rather than depending on examiners to change their interpretation

and decision criteria. It also better aligns the real-world scenario in which the introduction of an

additional candidate does not occur until after the print from the original person of interest has been

examined, thus accounting for dependencies in a way in which the data from original candidate does

not change even when the additional candidate is introduced. This approach is more objective, thus

working towards a goal for improving forensic sciences by yielding “greater accuracy, repeatability,

and reliability” [21] in how evidence is interpreted.

The key difference our proposed framework and other multiplicity methods is that the primary

objective of our framework is not to draw conclusions but rather provide an interpretation for the

weight of evidence in support of 𝐻0. For example, frequentist techniques such as the Bonferonni

correction, are aimed at reducing the Type I error rate when multiple comparisons are made in hy-

pothesis testing. Moreover, these methods assume 𝐻0 is true and the data is statistically significant

if it provides sufficient evidence against 𝐻0. In contrast, we do not impose a notion of truth on

either hypothesis and thus will interpret the results as evidence in support of 𝐻0.

We demonstrate our framework using a univariate scenario; however, it can be easily extended

to the multivariate case. An extension to the multivariate case would only affect the continuous

portion of the model set up, not the discrete portion on which we will impose a constraint. Suppose

we know the measurement of an unknown source. We call the measurement 𝑌 . If we collected

multiple measurements from the source using the same instrument, we expect there to be variability

in the values, since every instrument has some amount of measurement error. Therefore, we say

that repeated measurements follow some distribution centered at the true measurement 𝜃𝑌 with

a variance 𝜎2
𝑌 . For this demonstration, we will use 𝑌 ∼ 𝐺(𝜃𝑌 , 𝜎

2
𝑌 ). We identify two candidates

and measure each to determine if they are the source that was originally measured. Let 𝑋1 and

𝑋2 be the measurements of the two candidates, such that 𝑋1 ∼ 𝐺(𝜃𝑋1 , 𝜎
2
𝑋) and 𝑋2 ∼ 𝐺(𝜃𝑋2 , 𝜎

2
𝑋).

To account for the variability in measurements between sources, the values 𝜃𝑋1 and 𝜃𝑋2 are each

generated from a Gaussian distribution centered at 𝜃0 with variance 𝜎2
0.

When the two candidates are examined, there are four possible outcomes: (1) Candidate 1 is

the source of the mark, (2) Candidate 2 is the source, (3) neither Candidate 1 nor Candidate 2 are
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the source, (4) both Candidate 1 and Candidate 2 are sources of the mark. We can represent each

scenario as a separate model:

𝑀1 : 𝜃𝑋1 = 𝜃𝑌 and 𝜃𝑋2 ̸= 𝜃𝑌

𝑀2 : 𝜃𝑋1 ̸= 𝜃𝑌 and 𝜃𝑋2 = 𝜃𝑌

𝑀3 : 𝜃𝑋1 ̸= 𝜃𝑌 and 𝜃𝑋2 ̸= 𝜃𝑌

𝑀4 : 𝜃𝑋1 = 𝜃𝑌 and 𝜃𝑋2 = 𝜃𝑌

(6.1)

We quantify the weight evidence in support of model 𝑀𝑘 representing the true outcome using

a Bayes factor [32]. Given 𝐻0 : 𝑀𝑘 is the true model vs. 𝐻1 : 𝑀𝑘 is not the true model, the Bayes

factor

𝐵𝐹01 =
𝜋𝑘(𝑋1, 𝑋2)

1− 𝜋𝑘(𝑋1, 𝑋2)
=

𝑃 (𝑀𝑘|𝑋1, 𝑋2)/(1− 𝑃 (𝑀𝑘|𝑋1, 𝑋2))

𝑃 (𝑀𝑘)/(1− 𝑃 (𝑀𝑘))
(6.2)

such that 𝑃 (𝑀𝑘)
1−𝑃 (𝑀𝑘)

are the prior odds and 𝑃 (𝑀𝑘|𝑋1,𝑋2)
1−𝑃 (𝑀𝑘|𝑋1,𝑋2)

are the posterior odds. From [32], the

posterior probability for model, 𝑀𝑘, 𝑘 = 1, . . . , 4 is

𝑃 (𝑀𝑘|𝑋1, 𝑋2) =

[︃
4∑︁

𝑡=1

𝑃 (𝑀𝑡)𝜋𝑡(𝑋1, 𝑋2)

𝑃 (𝑀𝑘)𝜋𝑘(𝑋1, 𝑋2)

]︃−1

(6.3)

and the marginal density of the data under model 𝑀𝑡 is

𝜋𝑡(𝑋1, 𝑋2) =

∫︁
𝑃 (𝑋1, 𝑋2|𝜃𝑋1 , 𝜃𝑋2 ,𝑀𝑡)𝑃 (𝜃𝑋1 , 𝜃𝑋2 |𝑀𝑡)𝑑𝜃𝑋1𝑑𝜃𝑋2 (6.4)

We can interpret 𝐵𝐹0𝑘 in a similar way as the likelihood ratio that is often used in the forensic

science literature as described in [6].

In our model framework, we propose introducing a constraint on (6.1) by setting 𝑃 (𝑀4) = 0.

In order to understand how this constraint affects the interpretation of the weight of evidence, we

begin with the interpretation of evidence under (6.1) with no constraints.

Given the two candidates under examination, suppose 𝑋𝑖 (𝑖 = 1, 2) is the measurement from the

primary candidate of interest. We interpret the weight of evidence in support of the 𝑖𝑡ℎ candidate

being the source of the mark, 𝐻0 : 𝜃𝑋𝑖 = 𝜃𝑌 . Suppose 𝑖 = 1, then using the models in (6.1) the

weight of evidence in support of 𝐻0 is
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𝐵𝐹01 =
𝑃 (𝑋1, 𝑋2|𝐻0)

𝑃 (𝑋1, 𝑋2|𝐻1)
=

𝜋1(𝑋1, 𝑋2) + 𝜋4(𝑋1, 𝑋2)

𝜋2(𝑋1, 𝑋2) + 𝜋3(𝑋1, 𝑋2)
(6.5)

and to interpret 𝐵𝐹01, we use the scale of evidence in Table 2.1.

Model (6.5) is the weight of evidence under the “No Constraints” condition in which there are no

restrictions imposed on the model structure in (6.1), in other words 𝑃 (𝑀𝑘) > 0 for all 𝑀1, . . . ,𝑀4.

This is equivalent to the likelihood ratios described in [6, 40, 41] where the weight of evidence in

support of each candidate is interpreted independently of any other candidates under consideration.

Because we assume that Candidate 1 and Candidate 2 are two unique sources, it is not possible

for both to be the source that produced the measurement 𝑌 . We represent this constraint in our

model framework (6.1) by setting 𝑃 (𝑀4) = 0. 𝑃 (𝑀𝑘), 𝑘 = 1, 2, 3 are derived as before. This is

similar to Neath and Cavanaugh [39]’s approach for eliminating impossible outcomes in the multiple

comparisons problem. Under this constraint, 𝑃 (𝐻0|𝑋1, 𝑋2) = 𝑃 (𝑀1|𝑋1, 𝑋2) and the weight of

evidence in support of 𝐻0 is now

𝐵𝐹01 =
𝜋1(𝑋1, 𝑋2)

𝜋2(𝑋1, 𝑋2) + 𝜋3(𝑋1, 𝑋2)
(6.6)

Table 6.1 shows the weight of evidence for two candidates interpreted under the model framework

with no constraints and our proposed framework with the constraint. Each column shows the the

strength of evidence in support of the 𝑖𝑡ℎ candidate being the source of the mark calculated as

2 log𝐵𝐹 . Under the “No Constraints” condition, the Bayes factor 𝐵𝐹 is calculated using (6.5), and

𝐵𝐹 is calculated using (6.6) under the “Constraints” condition. Each row of the table represents a

different scenario in which two candidates are examined.

Scenarios 1 and 20 illustrate two interesting phenomena that occur under the constraint. In the

first scenario, the evidence for 𝑋2 is strongly against 𝑋2 being the source of the mark when it is

interpreted independently. When this evidence is interpreted accounting for the evidence from 𝑋1,

a very strong candidate, the evidence against 𝑋2 becomes stronger while there is little impact on

the interpretation of the evidence for 𝑋1. Scenario 20 illustrates how the interpretation of evidence

changes when both candidates under consideration are strong (similar to the case of Mayfield and

Daoud). Though the evidence for each candidate is independently interpreted as strong, the evidence
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No Constraints Constraints
Scenario 𝑋1 Strength 𝑋2 Strength 𝑋1 Strength 𝑋2 Strength

1 6.000 -5.889 5.897 -11.986
2 6.000 -4.394 5.789 -10.491
3 6.000 -3.469 5.675 -9.566
4 6.000 -2.773 5.554 -8.870
5 6.000 -2.197 5.424 -8.294
6 6.000 -1.695 5.286 -7.792
7 6.000 -1.238 5.138 -7.335
8 6.000 -0.811 4.978 -6.908
9 6.000 -0.401 4.804 -6.498
10 6.000 0.000 4.614 -6.097
11 6.000 0.401 4.403 -5.696
12 6.000 0.811 4.167 -5.286
13 6.000 1.238 3.900 -4.859
14 6.000 1.695 3.592 -4.402
15 6.000 2.197 3.227 -3.900
16 6.000 2.773 2.781 -3.324
17 6.000 3.469 2.206 -2.628
18 6.000 4.394 1.395 -1.703
19 6.000 5.889 0.008 -0.208
20 6.000 6.000 -0.097 -0.097

Table 6.1: 𝑋𝑖 Strength = 2 log𝐵𝐹𝑖0. Each row of the table represents a new scenario in which
two candidates are examined. Columns 2 and 3 (“No Constraints”) show the 2 log𝐵𝐹𝑖0 when
the evidence for each candidate in the scenario is interpreted independently. Columns 4 and
5 (“Constraints”) show the interpretation of the evidence when the candidates are examined
accounting for the existence of the other candidate.

for both candidates is interpreted as weakly against under the constrained framework. This last

scenario is especially important to consider when thinking about the interpretation of evidence in

cases in which the candidates examined are selected based on a match score such as AFIS. In these

cases, all the candidates tend to closely match the fingermark and thus would each have fingerprint

evidence that is independently interpreted as strong.

6.3.2 Three Candidates

Examiners use programs such as AFIS to retrieve a candidate list of potential matches for a

fingermark. Dror and Mnookin [16] and Busey et al. [12] discuss this process extensively pointing out

how the size of the database increases the potential for retrieving non-matches that are very similar
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to the fingermark. As we observed in the previous section, examining multiple candidates that

closely match the mark has a significant effect on the interpretation of evidence for each candidate.

We now extend our analysis to the case in which three candidates are examined, focusing on the

effect of examining multiple candidates that are similar to the fingermark in question.

Following the two candidate scenario, we assume that at most one unique candidate can be the

source of the mark. The possible models are in (6.7).

𝑀1 : 𝜃𝑋1 = 𝜃𝑌 𝜃𝑋2 ̸= 𝜃𝑌 𝜃𝑋3 ̸= 𝜃𝑌

𝑀2 : 𝜃𝑋1 ̸= 𝜃𝑌 𝜃𝑋2 = 𝜃𝑌 𝜃𝑋3 ̸= 𝜃𝑌

𝑀3 : 𝜃𝑋1 ̸= 𝜃𝑌 𝜃𝑋2 ̸= 𝜃𝑌 𝜃3 = 𝜃𝑌

𝑀4 : 𝜃𝑋1 ̸= 𝜃𝑌 𝜃𝑋2 ̸= 𝜃𝑌 𝜃3 ̸= 𝜃𝑌

(6.7)

Table 6.2 shows similar phenomena as seen in Table 6.1. The interpretation of evidence for each

candidate changes once the constraint is imposed. Additionally, this impact on the interpretation of

evidence depends on the strength of the other two candidates. Scenario 16 shows the largest effect

on the interpretation of evidence for the candidates being examined. When all the candidates are

independently interpreted as close matches, the interpretation of evidence then goes against each

candidate under the constrained model. When candidates are generated using a program such as

AFIS, they are likely close matches to the fingermark under investigation. Therefore, this scenario

in Table 6.2 and scenario 20 in Table 6.1 are ones that are likely to occur in practice. To better

understand how the weight of evidence can be interpreted for a list of candidates produced by AFIS,

we now generalize our framework to 𝐾 candidates.

6.3.3 𝐾 Candidates

When 𝐾 candidates are examined, the set of possible models is

104



No Constraints Constraints
Scenario 𝑋1 Strength 𝑋2 Strength 𝑋3 Strength 𝑋1 Strength 𝑋2 Strength 𝑋3 Strength

1 6.000 -5.889 -5.889 5.800 -11.991 -11.991
2 6.000 -2.197 -5.889 5.347 -8.299 -12.017
3 6.000 -2.197 -2.197 4.978 -8.326 -8.326
4 6.000 0.000 -5.889 4.562 -6.102 -12.079
5 6.000 0.000 -2.197 4.305 -6.128 -8.387
6 6.000 0.000 0.000 3.803 -6.190 -6.190
7 6.000 0.000 2.773 2.416 -6.444 -3.417
8 6.000 2.773 -5.889 2.760 -3.329 -12.333
9 6.000 2.773 -2.197 2.652 -3.356 -8.642
10 6.000 2.773 2.773 1.605 -3.672 -3.672
11 6.000 4.394 -5.889 1.384 -1.708 -12.697
12 6.000 4.394 -2.197 1.329 -1.734 -9.005
13 6.000 4.394 0.000 1.204 -1.795 -6.808
14 6.000 4.394 2.773 0.722 -2.050 -4.035
15 6.000 4.394 4.394 0.111 -2.414 -2.414
16 6.000 6.000 6.000 -1.435 -1.435 -1.435

Table 6.2: 𝑋𝑖 Strength = 2 log𝐵𝐹𝑖0. Each row of the table represents a new scenario in
which three candidates are examined. Columns 2 - 4 (“No Constraints”) show the 2 log𝐵𝐹𝑖0

when the evidence for each candidate in the scenario is interpreted independently. Columns
5-7 (“Constraints”) show the interpretation of the evidence when the candidates are examined
accounting for the existence of the other two candidates.

For 𝑖 = 1, . . . ,𝐾,

𝑀𝑖 :

⎧⎪⎨⎪⎩
𝜃𝑋𝑖 = 𝜃𝑌

𝜃𝑋𝑗 ̸= 𝜃𝑌 𝑗 = 1, . . . ,𝐾 such that 𝑖 ̸= 𝑗

𝑀𝐾+1: 𝜃𝑋1 ̸= 𝜃𝑌 𝜃𝑋2 ̸= 𝜃𝑌 . . . 𝜃𝑋𝐾
̸= 𝜃𝑌

(6.8)

When interpreting AFIS scores, the absolute score is not necessarily the most important indicator

but rather the score relative to other candidates [12]. Therefore, if the 𝑖𝑡ℎ candidate is the primary

candidate of interest, we will measure the other candidates in relation to Candidate 𝑖. Let 𝑟𝑘 = 𝑋𝑖
𝑋𝑘

be the ratio between measurements 𝑋𝑖 and 𝑋𝑘. Generalizing (6.6) to 𝐾 candidates, the general
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form of 𝐵𝐹10, i.e. evidence against 𝐻0 : 𝜃𝑋𝑖 = 𝜃𝑌 is

𝐵𝐹10 = exp

{︃
− 1

2

[︃
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2

𝜎2
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2

𝜎2
𝑋

]︃}︃

×

(︃
(𝜎2

𝑋 + 𝜎2
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− 1
2 +

𝐾∑︁
𝑘=1

exp
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2

[︃(︀
𝑋𝑖
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− 𝜃𝑌
)︀2

𝜎2
𝑋

−
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𝑋𝑖
𝑟𝑘

− 𝜃0
)︀2

𝜎2
𝑋 + 𝜎2

0

]︃}︃)︃ (6.9)

Suppose there is strong evidence in support of Candidate 𝑖 being the source of the mark. Using

(6.9), we can calculate the evidence in support of 𝐻0 : 𝜃𝑋𝑖 = 𝜃𝑌 as 1
𝐵𝐹10

. In addition to Candidate

𝑖, suppose we obtain a list of 15 candidates produced by AFIS. Since AFIS is designed to obtain

the sources in the database that most closely matches the fingermark, we let 𝑟𝑘 = [0.70, 0.95] for

𝑘 = 1, . . . , 15. AFIS ranks the candidates in decreasing order of similarity to the mark, so we

presume the level of similarity to Candidate 𝑖 mirrors the AFIS rankings, thus 𝑟1 > 𝑟2 > · · · > 𝑟15.

Figure 6.3.3 shows how the interpretation of evidence from the 𝑖𝑡ℎ candidate changes as an each

additional candidate is introduced. This is similar to what was observed in sections 6.3.1 and 6.3.2

- even if the initial evidence support of 𝐻0 can be interpreted as strong, this changes substantially if

other sources similar to Candidate 𝑖 are examined. The figure shows that if at least three candidates

from a list of AFIS results are examined, any conclusion that Candidate 𝑖 is the source of the

fingermark should be made with caution. 6.5.

6.4 Theoretical Properties

We have illustrated a framework in which the weight of evidence can be interpreted in way that

accounts for the evidence from multiple candidates. In this section, we explore more underlying

properties the phenomena we have observed in the previous two sections in an effort to provide

recommendations for how this framework can be applied in practice.

6.4.1 Consistency of the Bayes Factor

Various authors have written about the asymptotic properties of Bayes factors [26], including

their consistency in measuring the weight of evidence. If a true model for the data exists, and it is
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Figure 6-1: Weight of evidence in support of 𝐻0 : 𝜃𝑋1 = 𝜃𝑌 vs. the number of candidates
from AFIS considered. The first point is the independent case, in which Candidate 1 is
the only candidate examined. For each additional candidate, we assume all higher ranked
candidates have also been examined. All of the additional candidates were simulated so that
they have a ratio to 𝑋1 between 0.7 and 0.95. We treat Candidate 1 as the closest match
to the fingermark 𝑌 , therefore it is the first candidate produced by AFIS. The additional
candidates are in order of their similarity to Candidate 1.

model 𝑀0, then the Bayes factor is consistent if 𝐵𝐹01 ∞ as 𝑛 → ∞. Under our model set up, we

show this holds true when we assume independence between candidates. The Bayes factor is

𝐵𝐹01 =
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(6.10)

As 𝑛 → ∞, (𝜎2
𝑋 + 𝑛𝜎2

0)
1
2 → ∞ and 𝜎2

0

𝜎2
𝑋+𝑛𝜎2

0
�̄�2 → 0. When 𝑀0 is the true model, �̄� → 𝜃𝑌 as

𝑛 → ∞ by the Law of Large Numbers. Therefore, 𝑒
−𝑛

2

(︀
−2�̄�𝜃𝑌 +𝜃2𝑌 +

𝜎2
0

𝑛𝜎2
0+1

�̄�2
)︀
→ 𝑒

𝑛
2
𝜃2𝑌 as 𝑛 → ∞.

This quantity approaches ∞ at a much faster rate than (𝑛𝜎2
0 + 1)

1
2 approaches zero; therefore,

𝐵𝐹01 → ∞ as 𝑛 → ∞ when 𝑀0 is the true model. 𝐵𝐹10 = 1
𝐵𝐹01

. When 𝑀0 is the true model, we

have shown that 𝐵𝐹01 approaches ∞. Therefore, 𝐵𝐹10 = 1
𝐵𝐹01

→ 0 as 𝑛 → ∞. It easily follows

that 𝐵𝐹10 → 0 as 𝑛 → ∞, since 𝐵𝐹10 =
1

𝐵𝐹01
.
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We generalize (6.9) to have 𝐾 candidates and thus the Bayes factor for evidence against 𝐻0 is

𝐵𝐹10 = exp
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By the Law of Large Numbers, (�̄�1−𝜃𝑌 )
2 → 0 as 𝑛 → ∞. Additionally, (1+𝑛𝜏2) → ∞ and 𝑒−

𝑛
2 → 0

as 𝑛 → ∞. Therefore, 𝑃 (𝑋1, . . . , 𝑋𝐾 |𝑀1) → 1 as 𝑛 → ∞ and 1 − 𝑃 (𝑋1, . . . , 𝑋𝐾 |𝑀1)) → 0.

Similarly, 𝐵𝐹10 = 1
𝐵𝐹01

→ 0 as 𝑛 → ∞. Thus, we have shown that the Bayes factor is a consistent

estimator of the weight of evidence in support of 𝑀1.

6.4.2 Accounting for Multiple Candidates in the Bayes Factor

Suppose 𝐾 candidates are examined. Let X = 𝑋1, . . . , 𝑋𝐾 be numerical summaries of evidence

from the 𝐾 candidates. The 𝑖𝑡ℎ candidate is the one of primary interest, therefore in this section

we will look at the interpretation of the weight of evidence for 𝑋𝑖. Before exploring the properties

of the weight of evidence, we define some quantities that will be used throughout.

Suppose there are only two models 𝑀𝑖 : 𝜃𝑋𝑖 = 𝜃𝑌 and 𝑀0 : 𝜃𝑋𝑖 ̸= 𝜃𝑌 , then the Bayes factor for

𝑋𝑖 is

𝐵𝐹𝑖0 =
𝑃 (𝑀𝑖|X)/𝑃 (𝑀0|X)

𝑃 (𝑀𝑖)/𝑃 (𝑀0)
(6.12)

As seen before, 2 log𝐵𝐹𝑖0 is the interpretation of evidence for 𝑋𝑖 when the evidence from each

candidate is interpreted independently. If we suppose there are 𝐾 + 1 models 𝑀0, . . . ,𝑀𝐾 , then

the Bayes factor for model 𝑀𝑖 is

𝐵𝐹𝑖 =
𝑃 (𝑀𝑖|X)/(1− 𝑃 (𝑀𝑖|X))

𝑃 (𝑀𝑖)/(1− 𝑃 (𝑀𝑖))
(6.13)

In the exploration of 𝐵𝐹𝑖, the form of 𝑃 (𝑀𝑖|X) in (6.14) will be used.
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𝑃 (𝑀𝑖|X) =

[︃
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1 +
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1 +

𝐾∑︁
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𝑘 ̸=𝑖

𝑃 (𝑀𝑘|X)

𝑃 (𝑀𝑖|X)

)︃]︃−1

(6.14)

Using (6.12) - (6.14), we will decompose 𝐵𝐹𝑖 into two components: 𝐵𝐹𝑖0 and 𝐷𝐹𝑖. 𝐵𝐹𝑖0 quantifies

the weight of evidence for 𝑋𝑖 as seen in (6.12), and 𝐷𝐹𝑖 quantifies the effect of evidence from the

additional 𝐾 − 1 candidates under examination.

Starting with the numerator of (6.13), we can write the posterior odds as

𝑃 (𝑀𝑖|X)

(1− 𝑃 (𝑀𝑖|X))
=

𝑃 (𝑀𝑖|X)[︁
𝑃 (𝑀𝑖|X) + 𝑃 (𝑀0|X) +

𝐾∑︀
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘|X)
]︁
− 𝑃 (𝑀𝑖|X)

=
𝑃 (𝑀𝑖|X)

𝑃 (𝑀0|X) +
𝐾∑︀
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘|X)

=
𝑃 (𝑀𝑖|X)/𝑃 (𝑀0|X)

1 +
𝐾∑︀
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘|X)/𝑃 (𝑀0|X)

=
[𝑃 (𝑀𝑖)/𝑃 (𝑀0)]𝐵𝐹𝑖0

1 +
𝐾∑︀
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)
𝑃 (𝑀0)

𝐵𝐹𝑘0

(6.15)
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The prior odds in the denominator of (6.13) can be written as

𝑃 (𝑀𝑖)

(1− 𝑃 (𝑀𝑖))
=

𝑃 (𝑀𝑖)[︁
𝑃 (𝑀𝑖) + 𝑃 (𝑀0) +

𝐾∑︀
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(6.16)

Thus from (6.15) and (6.16), 𝐵𝐹𝑖 is equivalent to the following:

𝐵𝐹𝑖 =
𝑃 (𝑀𝑖|X)/(1− 𝑃 (𝑀𝑖|X))

𝑃 (𝑀𝑖)/(1− 𝑃 (𝑀𝑖))

=

[𝑃 (𝑀𝑖)/𝑃 (𝑀0)]𝐵𝐹𝑖0

[︃
1 +

𝐾∑︀
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)
𝑃 (𝑀0)

𝐵𝐹𝑘0

]︃−1

[𝑃 (𝑀𝑖)/𝑃 (𝑀0)]

[︃
1 +

𝐾∑︀
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)
𝑃 (𝑀0)

]︃−1

= 𝐵𝐹𝑖0

[︃
1 +

𝐾∑︁
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)

𝑃 (𝑀0)

]︃⧸︃[︃
1 +

𝐾∑︁
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)

𝑃 (𝑀0)
𝐵𝐹𝑘0

]︃

= 𝐵𝐹𝑖0 ×𝐷𝐹𝑖

(6.17)

such that

𝐷𝐹𝑖 =

[︃
1 +

𝐾∑︁
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)

𝑃 (𝑀0)

]︃⧸︃[︃
1 +

𝐾∑︁
𝑘=1
𝑘 ̸=𝑖

𝑃 (𝑀𝑘)

𝑃 (𝑀0)
𝐵𝐹𝑘0

]︃
(6.18)

By decomposing 𝐵𝐹𝑖 as shown in (6.17), the strength of evidence from 𝑋𝑖 can be interpreted

in a way that precisely indicates how closely 𝑋𝑖 matches 𝑌 , the measurements from the fingermark

in question, and the effect of evidence from other candidates as quantified in the dependency factor

in (6.18).

The dependency factor measures the relationship between the prior information and the strength

of evidence of the additional 𝐾 − 1 candidates. Therefore, it is worth noting the interpretation of
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𝐷𝐹𝑖 may be understood as the strength of the effect on 𝐵𝐹𝑖 from the additional candidates. For

example, if 𝐷𝐹𝑖 < −6, then the presence of the additional candidates strongly weakens the strength

of evidence for 𝑋𝑖, and the 𝐵𝐹𝑖0 is not a reliable interpretation of the evidence from 𝑋𝑖. It is not

always the case that 𝐷𝐹𝑖 weakens 𝐵𝐹𝑖. If the additional 𝐾 − 1 candidates have weak fingerprint

evidence but were examined due to strong prior information from non-fingerprint evidence, then

𝐷𝐹𝑖 > 1 and 𝐵𝐹𝑖 increases thus strengthening the evidence for 𝑋𝑖.

From (6.17), the strength of 𝑋𝑖, i.e. the weight of evidence for Candidate 𝑖, can be interpreted

as the following 2 log(𝐵𝐹𝑖) = 2 log𝐵𝐹𝑖0+2 log𝐷𝐹𝑖., such that each component is interpreted using

the scale in Table 2.1. Table 6.3 shows the decomposition of 𝐵𝐹1 from Table 6.2.

Scenario 𝐵𝐹20 𝐵𝐹30 𝐵𝐹1 𝐵𝐹10 𝐷𝐹1

1 -5.889 -5.889 5.800 6.000 -0.200
2 -2.197 -5.889 5.347 6.000 -0.653
3 -2.197 -2.197 4.978 6.000 -1.022
4 0.000 -5.889 4.562 6.000 -1.438
5 0.000 -2.197 4.305 6.000 -1.695
6 0.000 0.000 3.803 6.000 -2.197
7 0.000 2.773 2.416 6.000 -3.584
8 2.773 -5.889 2.760 6.000 -3.240
9 2.773 -2.197 2.652 6.000 -3.348
10 2.773 2.773 1.605 6.000 -4.394
11 4.394 -5.889 1.384 6.000 -4.616
12 4.394 -2.197 1.329 6.000 -4.671
13 4.394 0.000 1.204 6.000 -4.796
14 4.394 2.773 0.722 6.000 -5.278
15 4.394 4.394 0.111 6.000 -5.889
16 6.000 6.000 -1.435 6.000 -7.435

Table 6.3: Each row represents a different scenario in which 𝑋2 and 𝑋3, the evidence for the
two additional candidates, are of varying strength when interpreted independently. This is
represented by 𝐵𝐹20 and 𝐵𝐹30 in columns two and three. The weight of evidence for 𝑋1 is
broken into components 𝐵𝐹10, the weight of evidence from 𝑋1 that doesn’t account for the
other candidates, and 𝐷𝐹1, the dependency factor that quantifies the effect of candidates
two and three.
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6.4.3 Candidate Selection Criteria

The next area of interest is in understanding how 𝐵𝐹𝑖 changes as the number of candidates

𝐾 increases. Suppose 𝑁 candidates (𝑁 large) are selected using a database search such as AFIS.

Out of the 𝑁 candidates, the examiner chooses to examine only the 𝐾 candidates who meet some

threshold, 𝜖𝐾 , that is based on prior information largely determined by non-fingerprint evidence.

Suppose the 𝐾 candidates are arranged in decreasing order based on 𝐵𝑘0, 𝑘 = 1, . . . ,𝐾, where 𝐵𝑘0

is the strength of 𝑋𝑘 not accounting for other candidates. Using this ordering, the Bayes factor for

the 𝑘𝑡ℎ strongest candidate be summarized using a parametric form

𝐵𝑘 = 𝐵𝐹10𝑒
−𝑎(𝑘−1) ≈ 𝐵𝐹𝑘0 (6.19)

such that 𝑎 < 1. From (6.19), the total weight of evidence from the 𝐾 candidates can be approxi-

mated as the following

𝐾∑︁
𝑘=1

𝐵𝐹𝑘0 ≈
𝐾∫︁
1

𝐵𝑘𝑑𝑡 (6.20)

If
∞∫︀
1

𝐵𝑘𝑑𝑡 is finite, then it can be approximated by an infinite sum (shown in ??) that quantifies

the weight of evidence including candidates beyond those that meet the original threshold.

lim
𝐾→∞

𝐾∑︁
𝑘=1

𝐵𝐹𝑘0 ≈
∞∫︁
1

𝐵𝑘𝑑𝑡 (6.21)

We now use (6.21) to explore more precisely how the evidence changes as the threshold for prior

information changes. Given each 𝑋𝑘 ∼ 𝐺(𝜃𝑋𝑘
, 𝜎2

𝑋), 𝑌 ∼ 𝐺(𝜃𝑌 , 𝜎
2
𝑌 ), and 𝜃𝑘 ∼ 𝐺(𝜃0, 𝜎

2
0), we show

below what happens as 𝐾 increases, i.e. as the threshold of criteria for which new candidates can

be considered becomes more lax.

The weight of evidence against 𝑀𝑖 : 𝜃𝑋𝑖 = 𝜃𝑌 is
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𝐵𝐹0𝑖 = exp

{︃
− 1

2

[︃
(𝑋𝑖 − 𝜃0)

2

𝜎2
𝑋 + 𝜎2

0

− (𝑋𝑖 − 𝜃𝑌 )
2

𝜎2
𝑋

]︃}︃

×

(︃
(𝜎2

𝑋 + 𝜎2
0)

− 1
2 +

𝐾∑︁
𝑘=1

exp

{︃
− 1

2

[︃
(𝑋𝑘 − 𝜃𝑌 )

2

𝜎2
𝑋

− (𝑋𝑘 − 𝜃0)
2

𝜎2
𝑋 + 𝜎2

0

]︃}︃)︃ (6.22)

such that 𝑋𝑘 is the numerical summary of the 𝑘𝑡ℎ additional candidate. This is an example of the

Bayes factor in (6.13) that accounts for the dependencies between models. 𝐾 increases as 𝜖 → 0,

thus more candidates are examined. Moreover, since the threshold 𝜖𝐾 is based on prior information

that includes some fingerprint evidence (such as AFIS scores), 𝑁 increases as 𝜖𝐾 → 0. Therefore,

we explore theoretical properties under the scenario in which 𝜖𝐾 → 0, 𝑁 → ∞, and 𝐾 → ∞.

Property 1. As 𝜖𝐾 → 0, the weight of evidence in support of 𝑀𝑖 approaches 0.

Proof. To prove the property, we will show 𝐵𝐹0𝑖 → ∞ as 𝜖𝐾 → 0. To do so, it is sufficient to

determine

lim
𝐾→∞

𝐾∑︁
𝑘=1

exp

{︃
− 1

2

[︃
(𝑋𝑘 − 𝜃𝑌 )

2

𝜎2
𝑋

− (𝑋𝑘 − 𝜃0)
2

𝜎2
𝑋 + 𝜎2

0

]︃}︃

Let

𝑓(𝑋𝑘) = exp

{︃
− 1

2

[︃
(𝑋𝑘 − 𝜃𝑌 )

2

𝜎2
𝑋

− (𝑋𝑘 − 𝜃0)
2

𝜎2
𝑋 + 𝜎2

0

]︃}︃
.

∙ Case 1: 𝑓(𝑋𝑘) > 1. This occurs when
(︀ (𝑋𝑘−𝜃𝑌 )2

𝜎2
𝑋

− (𝑋𝑘−𝜃0)2

𝜎2
𝑋+𝜎2

0

)︀
< 0. This could be true in the

scenario in which 𝑋𝑘 is close to 𝜃𝑌 , i.e. there is strong evidence in support of 𝑋𝑘 being the

source of the mark.

∙ Case 2: 0 < 𝑓(𝑋𝑘) < 1. This occurs when
(︀ (𝑋𝑘−𝜃𝑌 )2

𝜎2
𝑋

− (𝑋𝑘−𝜃0)2

𝜎2
𝑋+𝜎2

0

)︀
> 0. This could be true

in the scenario in which 𝑋𝑘 is far from 𝜃𝑌 , i.e. there is strong evidence against 𝑋𝑘 being the

source of the mark.

In both cases, 𝑓(𝑋𝑘) > 0, and in Case 1, 𝑓(𝑋𝑘) is unbounded. Therefore,

lim
𝐾→∞

𝐾∑︁
𝑘=1

exp

{︃
− 1

2

[︃
(𝑋𝑘 − 𝜃𝑌 )

2

𝜎2
𝑋

− (𝑋𝑘 − 𝜃0)
2

𝜎2
𝑋 + 𝜎2

0

]︃}︃
= ∞

113



.

Using Property 1, we conclude that 𝐷𝐹𝑖 → 0 and 2 log𝐷𝐹𝑖 → −∞ as more candidates are

examined. The practical implication of this is when the criteria for examination becomes increasingly

lax, the interpretation of evidence for Candidate 𝑖 should only be made in the context of all the

other candidates examined.

6.5 Guidelines for Interpreting the Weight of Evidence

We now turn from our exploration in the previous section to practical guidelines for examiners

in regards to analyzing evidence from multiple candidates.

The first guideline is that examiners should report 2 log𝐵𝐹𝑖 along with their stated conclusion

about whether or not Candidate 𝑖 is the source that produced the fingermark in question. Dror

and Mnookin [16] suggest that examiners include probative value when reporting their conclusions

to express some level of uncertainty in the results. By stating 2 log𝐵𝐹𝑖 along with the decision,

examiners are providing an indication of the strength of evidence that was used to make the decision.

Additionally, because 𝐵𝐹𝑖 is calculated by taking into account the total number of candidates

examined, this statistic provides a more holistic assessment of the uncertainty in the examiner’s

decision than the likelihood ratio statistics in [40], [41], and [6] (see section 1.2 for a discussion of

these statistics).

Building upon the first guideline, in addition to reporting 2 log𝐵𝐹𝑖, examiners should report each

of its components - 2 log𝐵𝐹𝑖0 and 2 log𝐷𝐹𝑖. The statistic 2 log𝐵𝐹𝑖0 provides a measure of strength

of the evidence from Candidate 𝑖 that was used by the examiner to make the decision. This measure

is necessary, because if the fingerprint evidence is used as part of a larger case, it will be important

to understand how strong that fingerprint evidence is on its own without taking into account all

the other candidates examined. As a complement to that, reporting 2 log𝐷𝐹𝑖 is important to

provide a clear measure of the strength of fingerprint evidence from the other candidates. This

statistic also takes accounts the issues with multiplicity that arise when multiple candidates are

examined. Dror and Mnookin [16] state that examiners should adjust their decision criteria when

there are multiple candidates to account for these dependencies (similar to a Bonferroni correction).
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Reporting 2 log𝐷𝐹𝑖 provides a way to account for these dependencies using one standard quantity

rather than changing decision-making criteria as the number of candidates changes.

There are multiple scales to consider for interpreting the Bayes factors in Section 6.4.2. Jeffreys

[30] introduced a scale for interpreting the Bayes factor in which 𝐵𝐹01 > 100 is considered decisive

evidence in support of 𝐻0; however, Evett [20] argued that 𝐵𝐹01 should be at least 1,000 in order

to be considered decisive in the forensic context. We recommend interpreting the Bayes factors as

2 log𝐵𝐹 , since they can be interpreted on the same scale as some likelihood ratio test statistics

[32], such as −2(log𝐿(𝜃|𝐻0)− log𝐿(𝜃|𝐻1) where 𝐿(𝜃|𝐻𝑖) is the likelihood function under hypothesis

𝐻𝑖. Given the development of forensic methods based on likelihood ratios [40, 41, 6], having the

common scale can provide a link to the methods we’ve proposed to existing ones. At this point, we

recommend examiners use Kass and Raftery [32] (shown in Table 2.1) as a guide for interpreting

the Bayes factors, since it is an established scale that can provide common language between the

statistics and forensic communities. Since this scale was not originally developed to be used in

a forensic context, the accuracy, discrimination, and calibration performance characteristics from

Section 5.5.4 could be used to modify the scale specifically for forensic evidence. Ultimately, a

common scale should be established in the forensic community, so that evidence can be interpreted

in a consistent way.

In section 6.4, we showed the effect lowering the threshold of prior information required to

seriously consider a candidate for examination. While this idea of shrinking the threshold for viable

prior information to zero is not sensible in practice, it does provide insight that can lead to a value

of 𝜖𝐾 that sufficiently accounts for the relevant prior information but is not so inclusive that the

candidate list is too large to be manageable in practice. The threshold for 𝜖𝐾 should be based on

two components: fingerprint evidence and non-fingerprint evidence. The fingerprint evidence should

be based on a match score, such as the score produced by AFIS. Often, this is the only metric used

to determine the candidates that will be examined, which increases the chance of an erroneous

decision. This is due to the fact that candidates selected by AFIS are those who fingerprints most

closely match the fingermark and thus many are close non-matches [16].

To reduce this chance of erroneous conclusions, in addition to fingerprint evidence, non-fingerprint

evidence should be included in determining the threshold 𝜖𝐾 . Past casework can examined to as-

sess the strength of the non-fingerprint evidence from cases that are similar to the one in question.
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Since this non-fingerprint evidence largely relies on other investigative work, it is recommended

that this assessment be done within each forensic agency in order to get a true measure of the

prior information available for that agency. For example, it would be expected that the FBI has

more access to non-fingerprint evidence than a local police station; therefore, the FBI may have a

different threshold for 𝜖𝐾 than the local police station.

Given the effect considering multiple candidates could have on the interpretation of evidence

from the candidate of interest, there is the potential for examiners to “game the system” and examine

as few candidates as possible. There are practical constraints that limit the number of candidates

an examiner can analyze; however, we should eliminate situations in which an examiner exhibits

confirmation bias and only considers one or very few candidates in order to interpret evidence in

way that suits a prior belief about the primary candidate of interest. By using a threshold of prior

information,𝜖𝐾 , to generate the candidate list, there is less subjectivity on the part of the examiner

in determining which candidates to examine.

Finally, based on the insights from the demonstration in Chapter 5, examiners should consider

multiple models when quantifying the weight of evidence. Using the performance characteristics

in Section 5.5.4, examiners can determine which model most accurately quantifies the weight of

evidence.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

Using Lindley [33] as a guide, we have proposed an objective framework for obtaining prior

information and interpreting the strength of fingerprint evidence. In Chapter 2, we presented

a theoretical framework for a fully-resourced database that can be used for statistical research

and obtaining prior information. Through the use of simulated results, we showed how an ideal,

fully-resourced database can be used to understand the instrument-to-instrument variability among

similar instruments that can not be understood in a sub-resourced database. We extended this

framework to multivariate measurements in Chapter 3, so it can be used with a wide variety of

metrics used to convert fingerprint images into numerical summaries of data.

In Chapter 4, we used the crime scene investigation processes to explore the potential causes

of variability that exist between multiple prints and marks produced by the same source. We

determined the categories of factors that are controllable and could be accounted for in a database

versus the uncontrollable factors that are included in the measurement error. Using these factors,

we provided recommendations for the definition of “instrument” based on the investigator expertise

and qualities of the surface such as texture and shape. We recommended the use of broad categories

when defining “instrument” in order to keep the database manageable and widely applicable.

We combined the results from chapters 2 - 4 in a demonstration using a database created from

117



simulated fingerprints. Using the shape metric from [41], we quantified the weight of evidence that a

print and mark were produced by the same source using information from a sub-resourced and fully-

resourced database. Through this demonstration, we showed the value of using a fully-resourced

database to quantify the weight of evidence along with the flexibility of our framework. We also

demonstrated a solution to the practical challenge of transforming different types of data to fit into

a multivariate Gaussian framework.

In Chapter 6, we closely examined the interpretation of the weight of evidence and the depen-

dencies in the weight of evidence that exist when multiple candidates are considered the potential

source of a mark. Using a Bayesian approach, we proposed accounting for these dependencies by

imposing the realistic constraint on the model structure that at most on candidate can be the source

of a mark. We explored some of the properties of this framework using the case of two candidates,

and then generalized it to a scenario with 𝐾 candidates. After discussing some of the theoretical

properties that arise as a result of these dependencies, we proposed guidelines regarding how ex-

aminers can carefully account for the changes in the weight and interpretation of evidence as new

candidates are introduced. The recommendations are written primarily for the scenario in which a

latent print examiner obtains a list of candidates from a database such as AFIS.

7.2 Future Research

There are future directions to explore based on the results from this research. The first area

of future research is to extend the framework presented in chapters 2 and 3 beyond the Gaussian

data context. For example, minutiae type (ridge ending or bifurcation) is often included in a data

summary, so the framework could be extended to the context of statistical inference using the

multinomial model. Angular data is also commonly used in numerical summaries of fingerprints,

so this framework could also be formulated to better accommodate inference for data that follow

von-Mises distributions.

In regards to the dependencies in the weight of evidence, there are more questions to be explored.

In our analysis, we assumed that each candidate was unique; however, this may not necessarily

be true (for example, candidates selected from a database containing only fingermarks). New

model structures can be explored that impose constraints in a systematic way that allow for such
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possibilities. Understanding this model structure could be useful in the context of analyzing data

produced by “latent-to-latent” searches in which the original source of the mark in the database is

not necessarily known.

The “latent-to-latent” phenomenon could be extended to the scenario in which multiple finger-

marks with unknown sources are recovered. Clustering could be used to group the fingermarks in

order to determine whether any of the marks were produced by the same source.

Finally, this research has been conducted in the context of examining fingerprint evidence; how-

ever, the ideas from this work can be more widely applied to other areas of forensic evidence,

specifically other areas of pattern evidence. An immediate step in this direction would be in explor-

ing the feasibility of our approach in other forensic contexts, such as shoe prints and tool marks,

given the data generating techniques in these areas and sources of variability in the impressions

from shoes and tools, respectively.

119



Appendix A

MINDTCT

A.1 Overview

To translate the fingerprint images into data that can be used for analysis, we use the Biometric

Image Software (NBIS) developed by NIST. NBIS is a free and open-source software that performs

a variety of functions such as fingerprint pattern classification, feature detection and image quality

assessment, and image quality assessment. For the purpose of this project, we are most interested

in feature detection, so we’ll focus on the package MINDTCT, whose main task is to detect minutiae.

MINDTCT reads in an image of a fingerprint and outputs files containing quantified information

about the print including an assessment of fingerprint quality, coordinates and orientations of minu-

tiae, and a ridge flow map. Once a fingerprint image is read in, the program takes the following

general steps:

Assess Image Quality ⇒ Binarize Image ⇒ Detect Minutiae

⇒ Remove False Minutiae ⇒ Output Results

Since image quality is important for detecting minutiae, we describe this element of the program in

detail. We guide the reader to the documentation ([54]) for the remaining details.
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Figure A-1: Left thumbprint classified as whorl pattern produced by a male subject. Image
input into MINDTCT (left); minutiae detected by MINDTCT (right)

.

A.2 Assessing Image Quality

Immediately after reading in a fingerprint image, MINDTCT assesses the quality of the image. The

image quality assessment helps the user determine the reliability of the feature detection results.

The image quality measure is also used to calculate a minutiae quality score. MINDTCT produces an

image quality map that provides a quality for each block of pixels in the fingerprint image. The

ratings range from “0” to “4”, with “0” being the lowest quality and “4” the highest. The rating is

computed using an algorithm that considers the ridge flow direction, color contrast, and curvature

of the ridges in a fingerprint image.

Direction Map

Clearly locating the ridges in a fingerprint image is an important first step in detecting minutiae.

Low ridge flow in a block of the image typically indicates that part of the image is part of the

background or is too low quality to reliably detect minutiae. To detect the ridges in the image,

MINDTCT produces a direction map that indicates the direction of the ridges in an 8-pixel × 8-pixel

block that exists in a 24-pixel × 24-pixel window. The window is shifted as each block is assessed

121



to ensure that there is a smooth ridge flow pattern once all of the blocks have been analyzed.

Additionally, all pixels in the same block are given the same ridge flow direction.

To determine the direction for a given block, the surrounding window is incrementally rotated

16 times using a Discrete Fourier Transform (each rotation is about 11.25∘). At each orientation,

the pixels along each row are summed and the vectors are convolved onto four waveforms that each

have different frequencies. A measure consisting of the sine and cosine values of each waveform are

added together to create a single measure of how well the orientation fits the waveforms. Once this

value is calculated for each orientation, the orientation with the best fit, i.e. the highest measure,

is the ridge flow direction for that block.

Once the program makes a determination of the ridge flow for a specified block, the ridge flow

is captured in a separate copy of the original fingerprint image. The program repeats this process

for each block in a way such that the windows highly overlap thus ultimately creating a smooth

direction map of the ridge flow patterns.

Contrast Map

Areas in the fingerprint image with low color contrast are often the background or parts of the

fingerprint that have been severely smudged, so MINDTCT will not attempt to detect minutiae in these

areas. As part of the image quality assessment, MINDTCT creates a map that determines whether a

part of the image has high or low color contrast. Pixel blocks are determined in a similar fashion as

described in section A.2. The color intensity is calculated for each pixel, and a distribution of these

intensities is computed for the block. The pixel intensity measures how much gray can be seen in a

given pixel. For the 256 grayscale fingerprint images, a pixel with intensity of zero appears black,

and a pixel with intensity 256 appears white.

To stabilize the distribution of pixel intensities within a block, only the central 80% of the

distribution is used to determine level of contrast. If the range of the central 80% is less than

five, then the block is labeled as having low color contrast. The threshold of five was determined

empirically based on the 256 grayscale. If a block has a pixel intensity of five, then there are only

ten shades of gray in the block, which would make it difficult to reliably detect meaningful features

such as minutiae.

122



High Curve Map

The final element in assessing image quality is the ridge curvature. Identifying these areas is

important, because areas with high ridge curvature, such as the core and delta, are often useful

when comparing fingerprints. Additionally, it is more difficult minutiae in these areas. MINDTCT

produces a high curve map that indicates such areas in the fingerprint image. The identification of

an area having “high curvature” is based on two criteria: vorticity and curvature. The vorticity of

a block measures the total change in ridge direction around all of its surrounding neighbors. The

curvature of a block measures the maximum change in its ridge direction and that of its surrounding

neighbors. Even if an area of the fingerprint is considered to have high curvature, MINDTCT is still

able to detect minutiae. The minutiae detected in these areas, however, receive lower quality scores

than minutiae detected in other areas.

All of these elements, ridge flow direction, color contrast and curvature, are used to compute

the quality score between 0 and 4. In general, the map can be used to assess the reliability of the

minutiae detected by the program. In the case that entire image is of sufficiently low quality, the

program will not conduct the remaining steps to detect minutiae and instead produces an error

message.
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