
Fermilab GlideinWMS Deployment: Automation with Docker, Kubernetes, and Helm

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Aidan Himley

Spring 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Fermilab GlideinWMS Deployment: Automation with Docker,
Kubernetes, and Helm

CS4991 Capstone Report, 2023

Aidan Himley

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

ah8uqq@virginia.edu

ABSTRACT
Fermi National Accelerator Laboratory’s
(Fermilab’s) Glidein Workflow Management
System (GWMS) is a complex software
system that requires expertise to deploy and
operate. To streamline the deployment
process, I created tools to automate the
installation of the software and simplify the
configuration options. I used Docker to create
portable container images of various parts of
GWMS, Kubernetes to automatically set up a
group of containers and the networking
between them, and Helm to easily customize
the Kubernetes cluster. I also made extensive
use of shell scripting within the containers to
automate features such as credentials
management that could not be pre-defined at
the image level. My project resulted in easily-
deployed containers for the Frontend and
Central Manager parts of the system. Further
work is needed to containerize the other
components of GWMS and to ensure the
configuration options provided are sufficient
to fit the users’ use cases.

1. INTRODUCTION
GWMS is used by the High Energy Physics
community to facilitate large amounts of data
processing by matching computational jobs
with worker machines in a distributed
computing network (Fermilab, n.d.). It is built
on top of another system, HTCondor, which
provides the basic features necessary to
submit jobs, add worker machines to the pool

of available resources, and find suitable
matches between them (HTCondor, n.d.). The
role of GWMS is to extend the functionality
of HTCondor through the use of placeholder
jobs called glideins. Use of GWMS can
improve on HTCondor alone by offering
increased automation of worker machine
discovery and management, as well as
enhanced job management features such as
reordering and monitoring.

The installation process for GWMS is long
and complex. It requires detailed knowledge
of the configuration options and
authentication methods available, and it must
be installed on a particular operating system.
By automating and containerizing the
installation process, I aimed to enable new
users to quickly deploy GWMS and reduce
the dependency on specific operating
systems, overall lowering the barrier to entry.

2. RELATED WORK
Among the prior work done on GWMS
containerization, Davila (2022) provided a
basic Docker container for the GWMS
Frontend. I built upon this framework by
adding installation steps and network
configuration.

I also referenced the technical documentation
for the software tools I used to build my
solution. I used the tutorials and reference
materials from the Kubernetes documentation

to learn how to create networked clusters of
containers (Kubernetes, n.d.). Similarly, I
used the Helm documentation to learn how to
create customizable templates for Kubernetes
clusters (Helm, n.d.).

3. PROJECT DESIGN
For several components of the GWMS
architecture, my work comprised the
development of Docker images, a Kubernetes
cluster, and a Helm chart.

3.1. Overview of GWMS Architecture
Both HTCondor and GWMS consist of
several separate components, usually installed
on separate devices. HTCondor components
include submit hosts, where users submit
their jobs; worker nodes, which run the jobs;
and the Central Manager, which collects a
pool of jobs and worker nodes. The GWMS
components are the Frontend, which queries
the Central Manager to discover user jobs;
and the Factory, which generates glideins and
submits them to worker nodes. The main
components and flow of information are
illustrated in Figure 1. The installation of any
one of these components is highly complex –
for example, the Frontend installation
instructions are many pages long (Open
Science Grid, n.d.).

A major reason for the complexity of
installation is that all components must
communicate over a network with at least one
other – for example, the Frontend must
communicate with the Central Manager to
find jobs and the Factory to request glideins,
and glideins must communicate with the
Central Manager to receive jobs. Therefore,
each component must be configured to know
where the others are. In addition, the network
between components cannot be considered
secure, so components must also be able to
verify the authenticity of messages from
others. During the setup process, components
must be told which peers to trust and which

Figure 1. Overview of GWMS Architecture
(Fermilab, n.d.)

authentication methods to use, and credentials
must be shared between components.

My general approach to the solution was to
place GWMS and HTCondor components in
containers, specifically the GWMS Frontend
and HTCondor Central Manager. Because
much of the setup required involves
networking and authentication, I also built
tools with Kubernetes and Helm to
automatically manage groups of containers.

3.2. Docker Images
Docker is a software system that allows
programmers to bundle their software with all
of its dependencies, including the operating
system, in a software object called a
container. From the perspective of the
software running in the container, the
container is the computer on which it is
running, which it has entirely to itself. To
create containers, programmers write a text
file specifying an operating system to use and
a sequence of commands to apply to set up
the environment. Docker applies these
instructions to create a pre-built file called an
image that represents the starting state of a
container. Images are completely static and

are instantiated to create running containers,
which can then be modified by the software
running in them.

The first step in my project was to provide
images for the HTCondor Central Manager
and GWMS Frontend. An image for the
Central Manager had already been created by
the Open Science Grid, which I used
unmodified. A GWMS Frontend prototype
image had been provided by Davila (2022),
which I modified to further automate
deployment. I added directories in the
filesystem to hold credentials that would be
generated at runtime, added a credentials
management utility in the installation
instructions, and removed a pre-generated
password. Because images are static, the
password must be generated at container
creation instead of image creation to avoid all
container instances using the same password.
I also uploaded the resulting image file to a
public repository.

3.3. Kubernetes Cluster
My next step was to create an automated way
to set up the networking between components
and container configuration that cannot be
done at the image layer, including credentials
management. For this step, I used
Kubernetes, a tool for managing clusters of
containers and their interface with the host
machine (the computer on which the
containers run). To use Kubernetes,
programmers describe the cluster
configuration in text files called manifests,
which Kubernetes reads to create a running
cluster.

To enable networking between components, I
wrote manifest files to connect the network
ports used by the Frontend and Central
Manager to the same ports of the host
machine. That way, any messages to the host
machine intended for a Frontend or Central
Manager would be forwarded to the

appropriate container, enabling the two
containers to communicate with each other
and any components outside the host
machine.

To perform the container configuration, I
used Kubernetes features that allow for
running arbitrary shell scripts (sequences of
instructions) within the containers at startup.
For each component, I created a setup script
that generates a random password for use by
HTCondor, then uses that password to create
idtokens, a method of authenticating with
other components. Finally, the setup script
places the generated idtokens in a directory
which is configured in the manifest files to be
shared between containers, so that each
component can trust the other.

3.4. Helm Chart
Certain values in the Kubernetes manifest
files are guaranteed to change from user to
user, most notably the IP address and
hostname of the host machine. However,
Kubernetes manifests are entirely static, with
to specify configuration variables. To provide
an easy way to configure these values, I used
Helm, a software system in which
programmers write templates for Kubernetes
manifests and a variables file that specifies
values used to fill in the fields of the
templates. I replaced every appearance of the
relevant values in the Kubernetes manifests
with a Helm template variable, then wrote a
Helm variables file with those values to
provide a single place where users can
configure the most common options.

4. RESULTS
My work produced a Helm chart for installing
a Kubernetes cluster with a GWMS Frontend
and HTCondor Central Manager. The
components are as capable as traditional
installations at communication with outside
hosts and submitting jobs.

The time required to install the cluster is
dependent on the user’s familiarity with
Kubernetes. In the best case, Kubernetes is
already installed on the host machine, and the
installation process is very easy, consisting of
a single download, a few straightforward
configuration options, and a single command
to install. In the worst case, the user must also
install Kubernetes, a process which is
nontrivial but which allows the user to
quickly deploy the cluster any number of
times once completed. In either case, the
amount of manual credentials configuration
required is significantly reduced, from dozens
of steps to only two, with the rest automated.

5. CONCLUSION
I produced a Docker image, Kubernetes
cluster, and Helm chart to automate most of
the installation and setup of the GWMS
Frontend and HTCondor Central Manager.
These tools significantly reduce the
complexity of the deployment process,
allowing end users in the High Energy
Physics community to use an important tool
for data processing while investing less time
and technical expertise getting the tool to
work.

6. FUTURE WORK
Further work is needed to containerize the
other components of GWMS, in particular the
GWMS Factory and HTCondor worker node.
The HTCondor submit host requires more
manual interaction by end users than the other
components, so it is not as good of a
candidate for containerization. Research is
needed to determine the best way to deploy a
submit host that can communicate with
containerized components and makes sense
for the end users.

In addition, more communication with end
users is needed to ensure the supplied
solution fits their infrastructure and
configuration needs. Modifications may be

necessary to allow deployment across
multiple physical devices, alternative
authentication methods, and easier access to
commonly used configuration options.

REFERENCES
Davila, D. (2022, April 20). GWMS

Containers. Retrieved February 25, 2023,
from GitHub website:
https://github.com/glideinWMS/container
s/tree/51e422dd34f8cfb90e9e18f24bb6a2
0d9d7a6b63/frontend

Fermilab. (n.d.). GlideinWMS. Retrieved
February 25, 2023, from
https://glideinwms.fnal.gov/doc.prd/index
.html

Helm. (n.d.). Docs Home. Retrieved February
25, 2023, from https://helm.sh/docs/

HTCondor. (n.d.). HTCondor Manual.
Retrieved February 25, 2023, from
https://htcondor.readthedocs.io/en/latest/

Kubernetes. (n.d.). Kubernetes
Documentation. Retrieved February 25,
2023, from Kubernetes website:
https://kubernetes.io/docs/home/

Open Science Grid. (n.d.). GlideinWMS VO
Frontend Installation. Retrieved February
25, 2023, from https://osg-
htc.org/docs/other/install-gwms-frontend/

