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Abstract 

There is a growing importance of Natural Language Processing (NLP) as it allows human-machine interaction, drawing 

insights from text documents and unstructured data, machine translation, etc. Many tasks are involved in the NLP 

pipeline. Part-of-speech (POS) Tagging is a task within NLP that makes assignments of a tag to input tokens, such as, 

nouns, verbs, adjectives, adverbs, etc. Various tagging techniques have been developed to accomplish this task. Brill 

tagging is a classic rule-based algorithm for POS tagging. However, traditional CPU implementation of the tagger is 

inherently slow. In this work, we take the advantage of different existing computer hardware as well as the Micron 

Automata Processor, a new computing architecture that can perform massive pattern matching in parallel, and 

implement the second stage of Brill tagging in a fashion of template matching. The direct implementation is tested with 

a subset of Brown Corpus using 218 contextual rules. The result shows a significant speed-up for the second stage 

tagger. To illustrate the general utility of hardware acceleration for other NLP tasks, the 218 contextual rules are then 

converted into Regular Expressions (Regex), which is more widely in use in various situations for NLP, and compared 

as single-threaded, multi-threaded versions on CPU, Xeon Phi and the AP. The result shows a promising performance 

improvement of using the AP as a Regex accelerator. This work serves as a guide of using different accelerators for 

various computational linguistic tasks, particularly those that involve rule-based or pattern-matching approaches, as 

well as Regex matching. 
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I. Introduction 

Natural Language Processing (NLP) has seen a growing importance in its usage. It allows human-machine interactions, 

drawing insights from data contained in the emails, documents and other unstructured materials, translation between 

languages, etc. There are many tasks in the NLP pipeline and the performance of each stage is equally important as 

they ensure the quality of the final results for the task is being accomplished. Improving the speed and the accuracy for 

different NLP tasks has attracted many research interests. 

Part-of-speech (POS) Tagging is a process of making assignments of a tag to input tokens as noun, verb, adjective, 

adverb, etc [1]. It has an important role in Natural Language Processing (NLP) as it prepares the information needed for 

other tasks such as Question Answering [2], information retrieval [3], etc. POS tagging algorithms are commonly 

categorized into two groups: rule-based approaches and stochastic approaches. 

Brill Tagging is a classic rule-based POS tagging algorithm that is widely in use [32]. It is also called a 

transformation-based error-driven tagging algorithm [6]. After the tagger is trained, a two-stage tagging is then applied 

to new untagged corpora. The main idea is to first apply a baseline tagging method – tag each word to its most frequent 

tag based on training corpora, then update the tags based on some contextual rules. The algorithm provides a relatively 

high accurate tagging result in some applications [9]. However, it is inherently slow for both training and tagging 

because of its computational complexity [7]. It may require (RKn) elementary steps to tag an input of n words with R 

contextual rules requiring at most K tokens of context [8]. 

As the volume of the data increasing daily and thousands and millions of text documents generated every second, it is 

important to process information in a more efficient way. Speeding up various NLP tasks like Brill tagging can lead us 

one step closer towards this goal. Traditional single-threaded CPU programs start to fall short in the midst of this “Big 
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Data” era. People are now exploring multi-threaded programs such as MPI, OpenCL MapReduce programing 

framework, etc. In addition to the programming side of the problem, using hardware accelerators has also been an 

active topic such as implementing various algorithms on GPU, FPGA, etc.  

The Micron Automata Processor (AP) [10] is a novel non-Von Neumann semiconductor architecture that can be 

programmed to execute thousands of Non-deterministic Finite Automata (NFA) in parallel to identify patterns in a data 

stream. Our work shows that AP’s parallelism ability can significantly improve the efficiency of Brill Tagging 

compared to implementation on a single core CPU and reduce the tagging time by matching the input corpora to all the 

contextual rules from Brill tagging in parallel. The AP reduces the number of steps required for Brill Tagging from the 

original order of (RKn) to an order of (n). 

Here we propose two methods of implementing Brill tagging using the AP. The first is a direct implementation while 

the second one is to convert Brill rules into Regex. The motivation for this work is to provide speed-up for tasks within 

NLP, specifically, Brill tagging in our case. As Regex has a major role in NLP, being able to convert Brill tagging into 

Regex and thus speed-up the Regex representation could show the promising opportunity of combing the new 

architecture and traditional CPU to improve computational efficiency for certain tasks that are not limited to Brill 

tagging. 

Our goal is to implement different designs of Brill tagging on the AP and compare the computational time of the new 

implementations, the traditional CPU version, multicore CPU implementation as well as another high performance 

computing hardware – Xeon Phi. The results of this work should provide readers with some ideas of using the AP or 

the combination of different computer architectures to speed-up Regex related NLP tasks. 
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II. Background and Related Work 

A. POS tagging 

POS Tagging is a process of making assignments of a tag to input tokens as noun, verb, adjective, adverb, etc. It can be 

viewed as a preprocessing stage for other NLP tasks such as semantic parsing, question answering, information 

retrieval, etc. The task was initially done manually. Now these manually tagged corpora are usually used as training 

data for different taggers [11] [12].  

Nowadays, POS tagging algorithms are commonly categorized into two groups: rule-based approaches and stochastic 

(statistical) approaches. The state-of-art stochastic based approaches include hidden Markov models [14], maximum 

entropy Markov Models [13][27], conditional random field models [7], etc.  

In a hidden Markov model (HMM) POS tagger, the states of the model represent tags and outputs represent the words. 

The model has two assumptions: 1) current tag only depends on previous k tags; 2) each word in the sequence depends 

only on its corresponding tag. Transition and output probabilities are estimated from a tagged corpus. TnT tagging 

system is an example of a hidden Markov model [26]. 

Maximum entropy Markov models (MEMM) are discriminative models of the tags given the observed input word 

sequence. Maximum entropy modeling is more widely known as multinomial logistic regression. To use such model 

for POS tagging, the design of appropriate features and feature combinations is a key to success. When classifying each 

word, we rely on features from the current word, features from surrounding words, as well as the output of the classifier 

from previous words. As a comparison, HMM model includes distinct probability estimates for each transition and 

observation, whereas the MEMM gives one probability estimate per hidden state, which is the probability of the next 

tag given the previous tag and the observation [37]. Stanford POS tagger is based on MEMM model [38]. 
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However, MEMMs and other non-generative finite-state models based on next-state classifiers, such as discriminative 

Markov models, share a weakness called the label bias problem: the transitions leaving a given state compete only 

against each other, rather than against all other transitions in the model [7]. Conditional random field models are thus 

proposed. The critical difference between CRFs and MEMMs is that a MEMM uses per-state exponential models for 

the conditional probabilities of next states given the current state, while a CRF has a single exponential model for the 

joint probability of the entire sequence of labels given the observation sequence. Therefore, the weights of different 

features at different states can be traded off against each other. 

Brill tagging is one of the first and most widely used rule-based approaches and we will talk in detail in the following 

section. Another rule-based approach is RDRPOSTagger [25]. 

When performing a POS tagging task, choosing a standard tagset is important. A larger tagset provides more 

information about the corpora but it will be harder to tag each token accurately. On the other hand, a simple tagset is 

easy to tag but will leave out information about the corpora [24]. There are some commonly used tagsets available for 

POS tagging such as Brown Tagset (87 tags) [4], Penn Treebank Tagset (36 tags) [5].  

Limited efforts have been made in accelerating POS tagging. Nurwidyantoro and Winarko [34] implemented a 

MapReduce version of Maximum Entropy model for Bahasa Indonesia, in which the fastest result is achieved by using 

1,000,000-word corpus with 30 map processes. Kumar [33] proposed to use Globus Toolkit, a scientific grid computing 

middleware, to speed up POS tagging. 

B. Brill Tagging 

Brill tagging is one of the first and most widely used rule-based POS tagging algorithms. It is first trained on some 

training corpora. After the tagger is trained, the most frequent tag of a token for all tokens are recorded as well as some 
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contextual rules for updating the tags are generated. Then a two-stage tagging is performed on new untagged corpora. 

The first stage of the tagging is to apply the baseline tagging method, in which the most frequent tag of a given token 

will be assigned to the new input token.  

In the second stage, the initial tags are updated based on the rules generated from the training corpora. There are 218 

rules trained from Brown Corpus and 284 rules generated from Wall Street Journals. Two of the rules from Brown 

Corpus are listed in the following. These two rules will be used as examples throughout the rest of the paper. 

1). NN (noun) VB (verb) PREVTAG TO (to) [15] 

Explanation: If current word is tagged as NN, the preceding word is tagged as TO, then change the current tag 

into VB 

Example: to/TO conflict/NN with/IN [updated into] to/TO conflict/VB with/IN 

2) IN (preposition) RB (adverb) WDAND2AFT (current word and 2 words after) as as [16] 

Explanation: The Penn Treebank tagging style manual species that in the collocation as…as, the first as is 

tagged as an adverb and the second is tagged as a preposition. Since as is most frequently tagged as a 

preposition in the training corpus, the initial state tagger will mistag the phrase as tall as. 

Example: as/IN tall/JJ (adjective) as/IN [updated into] as/RB tall/JJ as/IN 

Our work focuses on the second stage of the tagging since the second stage is time-consuming on CPU because each 

rule exams the words and tags in a window spanning three positions before and after the focus word [17]. On the other 

hand, these contextual rules are in a form that can be implemented onto the AP easily. This brings the strong motivation 

of using AP for Brill Tagging. 
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C. Regular Expression1 

Informally, regular expressions are a compact language for representing patterns in strings of characters. We are 

primarily concerned with PCRE regular expressions although other flavors for pattern matching exist. This is simply 

because most practical applications and regex engines target this as a gold standard of expressiveness.  

Regular expressions were defined alongside regular languages, and in concert with Finite Automata theory (as we will 

discuss in the next section), and are only capable of matching, or recognizing strings in regular languages. There is a 

many-to-1 mapping between regular expressions and regular languages, meaning that any regular language has an 

infinite number of corresponding regular expressions, but every regular expression has only one corresponding regular 

language. Besides simple matching, PCRE Regexs add a few additional concepts that greatly expand the 

expressiveness of the language. 

Grouping Or: Parenthesis indicates a grouping of multiple different expressions. Each expression is separated by a ‘|’ 

indicating that any of the expressions within the parenthesis can match in parallel. For example, (gr(a|e)y) recognizes 

both the American and British spelling of the color gray. 

Wildcards: Wildcards are additions to represent arbitrary characters in an input string. The ‘.’ for example is meant to 

represent a single character of the input string, although this symbol is often omitted when used along with quantifiers. 

Quantifiers: Quantifiers act on the previous expression and define repeating characters or sequences. The symbol ‘?’ 

specifies that there are must be either zero or exactly one of the previous expression. For example, (colou?r) matches 

both the American and English spelling of the word color. The ‘*’ symbol, also known as the “Kleene star,” matches 

zero or any number of the previous expression. And the ‘+’ symbol matches at least one of the previous expression. For 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	   The	  content	  of	  this	  section	  comes	  from	  a	  class	  report	  co-‐authored	  by	  a	  computer	  science	  graduate	  student	  Jack	  Wadden.	  
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example, ((B|b)oo+!*) will recognize the exclamation of any ghost. Ranged or interval quantifiers put restrictions on 

the number of characters. For example, if we wanted to restrict the number of o’s in Boo to be between 2 and 10, we 

could represent this with the regular expression ((B|b)oo{1,9}!*). 

Character Classes: Character classes represent sets of characters and are shorthand for groupings of individual 

characters. For example, (gr[ae]y) and (gr(a|e)y) are equivalent. Character classes can also be described as ranges of 

characters. For example [a-z] is all lowercase characters, while [0-9] represents any digit. 

Anchors: The ‘^’ symbol anchors an expression to the beginning of a line or input sequence. For example (^[A-Z]) will 

recognize all lines that begin with an uppercase character. The ‘$’ symbol behaves in the same way but anchors an 

expression to the end of a line or input sequence. 

D. Finite Automata and Equivalence With Regular Expressions 

Theoretical computer science has long used finite automata as a simple introduction to computation theory. Informally, 

finite automata are a set of states linked together by transition rules. While not turing complete (i.e. strictly less 

powerful than Turing machines), finite automata represent recognition of regular languages.  

Deterministic Finite Automata (DFAs): Deterministic finite automata are formally defined as a 5-tuple containing a 

set of states, an alphabet of possible input symbols, a set of transition rules among states based on those symbols, a 

single start state, and a set of multiple accept states. For example, Fig. 1 shows a simple automaton to recognize all 

strings in the language represented by the regular expression ((AB)*). 
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Figure 1: A DFA Accepting All Strings in the Language ((AB)*). 

 

Because we were able to write a regular expression, and/or build a finite automaton to accept only strings of this form, 

we know that the set of strings accepted by ((AB)*) is a regular language. Regular expressions and finite automata are 

not able to recognize all strings. For example, the language (anbn) can only be recognized by augmenting automata with 

some sort of memory. 

Operation begins on an input stream of symbols from the defined alphabet; we begin in the “start” state, represented in 

Fig. 1 with an incoming arrow symbol. DFAs can only ever have one state active at any one point, therefore, it would 

make no sense to have multiple start states. At each step, a symbol is consumed off the input stream and a transition 

rule defines the next state (including the current state) to transition to. A string is recognized or accepted when 

execution terminates in an “accept” state, represented in Figure 1 by a double circle. 

Non-Deterministic Finite Automata (NFAs): Non-deterministic finite automata (NFAs) enhance the expressiveness 

of DFAs by allowing multiple states to be active at any one time. Whereas DFAs were only ever able to have one 

transition on any one input, and a single start state, NFAs can have any number of transitions to other states (in essence 

“forking”) on an input symbol, and can also have multiple starting states. NFAs also allow “epsilon” transitions, or 

transitions between states that do not consume input. In this survey, we only consider NFAs without epsilon transitions, 

as they can algorithmically be removed without changing the functionality of the underlying automata. 

Although they may seem more powerful, NFAs are surprisingly NOT more powerful than DFAs; in fact, they are 

identical in power and are only capable of recognizing the regular languages. NFAs can be converted to DFAs (and 

vice versa) by using a straightforward “powerset construction” algorithm outlined in Sipser [35].  

NFAs do allow more expressive power in that they generally are capable of representing a regular expression using 
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fewer states or transitions. However, NFAs must also keep track of many more active states and their potential 

transitions. Becchi calls this the “active set” of the NFA, which can theoretically be every single state in the NFA, but 

practically is usually much smaller. This difference between NFAs and DFAs (where NFAs use fewer states and 

transitions but generally require a larger set of transitions) manifests as a tradeoff between the size of the representation 

of the automata (where NFAs win handily) and the amount of bandwidth necessary to fetch transition rules and update 

the active set (where DFAs use constant bandwidth and NFAs bandwidth requirements). This means that, while DFAs 

and NFAs theoretically accept or reject strings after consuming each symbol, the increased bandwidth requirement of 

NFAs as the active set increases means that NFAs are often practically slower than DFAs. A more detailed summary of 

the pros and cons of NFAs vs. DFAs are outlined in the table below. 

 

Table 1: The Pros and Cons of NFAs vs. DFAs 

 Pros Cons 

DFA - Deterministic, constant bandwidth 

necessary to make transition on symbol 

consumption 

- One transition per input symbol 

- “Single threaded”, requiring only O(1) 

hardware for processing 

- Potentially exponential number of 

states compared to an NFA, i.e. 

space requirements increases O(2n). 

 

NFA - Requires exponentially fewer states 

than DFA (can be O(n)). 

- Requires O(n) parallel hardware for 

efficient parallel transitions from 

all active states 

- Must keep track of potentially large 

“active set” requiring large 

bandwidth to fetch state transition 

rules 
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Both NFAs and DFAs may be desirable execution models for different regular expressions, or even different parts of 

the same regular expression. For example, it may seem like an obvious improvement to use a hybrid finite automata 

(HFA) [36]. Hybrid automata might implement DFAs when the NFA active set may be very large, and the number of 

required states is a tractable size, while implementing NFAs when exponential state blowup of a DFA implementation 

is imminent. In the next section, we discuss a few different algorithms for transforming and improving automata to take 

advantage of the pros and cons outlined above. 

E. Hardware implementations of Finite Automata 

Before we explore implementations of finite automata on specialized hardware, we first consider a simple 

implementation on a standard single-threaded CPU. The basic algorithm for simulating any finite automata is outlined 

below: 

1. Initialize current active state/s to be the start state/s S (this is the active set) 

2. For each input symbol C 

a. For each active state s 

i. Lookup rule for s based on C in database D 

ii. Store new state into S’ 

b. S <- S’ 

Note that there is ambiguity over how many states are “start states” and how many states are in the active set S. This 

reflects the key difference between DFAs and NFAs, i.e. DFAs can only ever have one state in their active state set. 

Therefore, we only ever need to lookup one transition rule, and the innermost for loop only ever has a single iteration. 

This is the heart of the often-cited performance difference between NFAs and DFAs. DFAs are (much) larger with 

respect to the number of states, and therefore the practical size of database D, but the CPU only ever needs to fetch a 

single rule per transition. This tradeoff is shown in Fig. 2 below. 
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Figure 2: Generalization of tradeoffs between DFAs and NFAs. While DFAs generally require many 

more states than equivalent NFAs, their bandwidth requirements are small and constant. NFAs require 

higher bandwidth to fetch transition rules for all active states. 

 

With this basic model in mind, we explore other architectures and implementations of finite automata in hardware. 

These architectures generally fall into two categories: memory-based architectures, and logic-based architectures.  

Memory-based architectures store the finite automata in a traditional memory store, and fetch transition rules based on 

some input character and the number of states. Our naive CPU implementation can be considered a memory-based 

architecture.  

Logic-based architectures are based on the observation that automata can be laid out in digital logic, just as we usually 

graphically represent automata. For example, states can be thought of as single-bit registers, and transition rules are 

simple wire connections ANDed with the broadcast of the correct input symbol. Such architectures generally take 

advantage of reconfigurable FPGA logic, and offer a complex design space for optimization. 

Memory-Based Architectures operate just like the naive CPU implementation above. Transition rules are stored in 

some database and the correct rule is fetched and executed. Because automata are stored in memory, this scheme can 

offer massive density gains over logic-based designs for NFAs and DFAs. However, in the case of DFAs, the automata 
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may be so large that it will not fit in memory. In the case of NFAs, we then must simulate parallel execution, and 

provide enough memory bandwidth to fetch rules in parallel. Below we survey a few memory-based techniques in the 

literature. 

Kaneta and Yusaku’s work [39] implemented a memory-based design using the concept of bit parallelism [40]. There 

are three known simulation methods to run NFAs [40] - basic simulation method, dynamic programming and bit 

parallelism. The basic simulation method, similar to the naive CPU method described above, maintains a set S of active 

states during the simulation process with only state-0 active at the beginning. The input text will trigger the update of 

the active states based on the transition rules fetched from memory. This process continues until no further transition 

exists.   

The bit parallelism is a bitwise implementation of the basic simulation method. It uses bit vectors to represent whether 

a state is active or not with 0 meaning active and 1 otherwise. This implementation can take advantage of the fact that 

the same bitwise operations can be performed at once in parallel over the whole bit vector. Kaneta and Yusaku’s design, 

which takes advantage of this method, includes an input decoder, a collection of pattern matching modules, and an 

output encoder. This architecture targets three subclasses of Regex: 

Extended patterns (EXT): A Regex in linear form; 

Network expressions (NET): A Regex without the Kleene-star (A Regex formed by strings, concatenation 

and union) 

Extended network expressions (EXNET): A NET expression over extends patterns (may have 

Kleene-stars from EXT) 

Examples: 

R1 = ABABC => STR (Exact String) 

R2 = ([AB]+)(B.{1,3})([BC]?)(.*)C => EXT 

R3 = A(AB|B)(B|AB)C => NET 

R4 = A(AB|B?)(B?.*|AB)C => EXNET 

During the pre-processing mode, it loads the description of input patterns with packets, and during run-time mode, it 
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receives an input letter, makes a state transition for the target NFA using the pattern matching module, detects matches, 

and emits match information by receiving and sending packets. 

The pattern-matching module (PMM) is a core of the architecture. The authors give the example of constructing the 

class EXT. it first expands the EXT Regex into an expanded form that does NOT contain bounded repeat (a{x, y}). 

Note that this involves a linear blowup in states according to the size of the difference between x and y. It then assigns 

the unique numbers – the bit-positions – to all components of the expanded form. An NFA is then obtained from this 

expanded Regex and encoded into five bit-masks. During the matching process, the bit-mask indicates the set of active 

states and transitions are triggered by input letters. However, this architecture only targets the three subclasses of Regex 

described above. 

Lee [41] presented a bit-parallel memory-based hardware architecture implementing the Glushkov-NFA [42]. 

Glushkov-NFA is a particular family of automata, which are computed from regular expressions following the 

Glushkov algorithm. It produces an epsilon-free automata. The number of states in the automata grows linearly with the 

size of the corresponding regular expression [43]. This work also uses multi-striding with a stride of 4. The prototype 

was done using a Xilinx ML310 FPGA and achieved more than 4 Gbps throughput. However, only a few of the regular 

expressions from the Snort ruleset were tested, and the architecture is only suitable for regular expressions of small and 

moderate lengths because larger regular expressions that produce larger NFAs produce increasingly large and 

unmanageable bit-vectors.  

Vasiliadis and Polychronakis [44] introduce a memory-based GPU implementation of DFAs. It first converts a regular 

expression into an NFA using the Thompson algorithm - a construction algorithm that translates a given regular 

expression into an equivalent NFA - and then translates the NFA into a DFA using subset construction. Each DFA is 

represented as a two-dimensional state transition table that is mapped on the GPU memory with rows representing 
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transition rules for a particular symbol and the current state indexing into the row to identify the next state. Final states 

are negative numbers while all other states are positive. Each state also contains 256 pointers to other states. Input data 

is read one Byte at a time and current state is switched according to the state transition table. When a final state is 

reached, a match has been found and the corresponding offset is marked. The size of the DFA state transition table is 

number_of_states * 1024 bytes. The implementation improves the performance of pattern matching comparing to 

traditional CPU implementation by parallelizing input packet analysis. Each parallel GPU thread is given a different 

packet to process using the underlying DFA, reporting an impressive 5-30 Gbps throughput with larger packet sizes 

producing increasing speedups over the CPU. 

Cascarano and Rolando [45] designed one of the first approaches to pattern matching using GPUs called iNFAnt. This 

work shows a typical memory-based implementation of NFAs. It adopts an internal format for the finite state automata 

transition graph and all the transitions are stored in a list of (source, destination) tuples. The list is sorted by the 

triggering symbol (the input symbol that triggers the transaction) and stored in a global memory array. An ancillary 

data structure is used to record the first transition for each symbol. The design currently allows up to 65535 states and 

the maximum number of transitions only depends on global memory size. A bit-vector shows current and future (states 

that can be reached from the current input symbol) active states and is stored in the GPU scratchpad memory. It also 

adopts a special representation for self-looping states – once they are reached during a traversal and marked as active, 

they will never be reset. Each thread is assigned a different portion of the bit-vectors and each thread examines a 

different transition for the current symbol. When an input is processed, it accesses the transition table, finds the 

destinations and updates the bit-vector. 

This work utilizes multi-striding, which requires less iteration in traversal. Multi-striding yields a larger automata but 

global memory is adequate. However, as Yu and Becchi [46] pointed out, this implementation suffers unpredictable 
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performance and poor worst-case behavior because of the amount of computation needed to fully process the input 

stream. 

Yu and Becchi [46] thus proposed an improved implementation using GPUs by optimizing the way the state transitions 

are organized and laid out in memory. It clusters NFA states into groups that cannot be active at the same time. This 

design sharply reduces the processing performed on each input character. 

Zu and Yang [47] also implemented a similar GPU approach that is improved upon iNFAnt. Their design is based on 

the observation that while the number of NFA transitions on an input character can be large, the number of NFA states 

that can be active simultaneously, the “active set”, is much smaller. For the NFA of pattern set Snort36, the number of 

transitions to be processed for an input character can be over five times larger than the maximum number of 

simultaneously active states, thus most of the threads will find their obtained source state inactive. They then group the 

states that cannot be active at the same time and let each thread be responsible for only one of the active states. The 

number of threads needed for matching an input can be greatly reduced thus boosting the matching speed. They report a 

10Gbps matching speed. 

Logic-Based Architectures have the interesting property that transition rules do not reside in memory. Generally in 

this scheme, transition rules are explicitly laid out using wires between registers, and Boolean logic to compare input 

symbols. Therefore, they can implement parallel state transitions without going to memory. However, logic-based 

implementations can be less efficient in terms of area, as their size scales with the size of the automata corresponding to 

the target regular expression. Below we survey a few logic-based techniques in the literature. 

Roan and Hwang [48] shows a good example of logic-based implementation of pattern matching architecture. It 

contains M modules, where M is the number of Snort rules [49] for detection. These modules are based on the shift-or 

algorithm for exact string matching [50]. A shift register is used to perform this shift-or operation. Each module is 
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responsible for matching one single rule. During the operation time, the input is scanned one symbol at a time and the 

symbol is then broadcasted into all the modules. Within one single module, there are (m-1) flip-flops and m OR gates 

where m is the size of the pattern. These flip-flops can be viewed as states in a finite automaton. Their output indicates 

whether all the input symbols that have been processed so far are matched or not. Their input is an OR gate which has 

two inputs: 1) The output from previous flip-flop; 2) A bit indicating whether the current input character matches the 

transition symbol. They also implemented the multi-striding method to increase the throughput. 

Mitra, Najjar and Bhuyan ’s work [51] shows another example of logic-based design. They implemented 214 PCRE 

engines on a single FPGA chip based on Snort IDS rules [49] using a two-stage translation process. The first stage 

generates PCRE opcodes by compiling Snort IDS rulesets using the PCRE compiler. The PCRE opcodes are then 

translated to VHDL hardware blocks in the second stage. The basic building block for this engine is an NFA. The basic 

FPGA logic elements in an FPGA are LUTs that store given data. LUTs are connected to each other via routing 

network. The work implements a lookup table. The address of the LUT consists of current state of the automata and the 

current input data; the data at that address is the next state. When reading in an input, the engine uses the information of 

current state and the input data to find the LUT and transit into next state. The design requires only one compilation for 

each rule. Re-compilation is only necessary for new and updated rules. It reports a 12.9 Gbps throughput. 

Becchi and Crowley [52] also describe a logic-based FPGA implementation of NFAs using the techniques mentioned 

in the earlier sections – edge-compression, alphabet reduction and multi-striding. Each NFA state is represented by a 

flip-flop and each symbol by a bit that is set when the input character matches the symbol. The output of the flip-flop 

and the symbols on its outgoing transitions are AND-ed and routed toward the flip-flops encoding the target states. 

When one input character is processed, several parallel NFA state traversals can be triggered. The input character must 

first go through an alphabet-translation block because of the alphabet-reduction. They also adopt Single input 
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optimization and multiple outputs optimization to reduce the number of LUTs. Alphabet-reduction brings a lower LUT 

utilization while multi-striding leads to higher LUT and overall logic utilization. However, it brings the benefit of 

higher throughput. The larger the datasets, the smaller the utilization penalty and the larger the throughput 

improvement will be. The implementation takes the advantage of the reconfiguration capability and parallelism of 

FPGA. However, it has the limitation in the number of Regex deployable on a single chip. 

The Automata Processor is more similar to a logic-based architecture. 

III. Automata Processor 

The Automata Processor is not yet available. Results from this study were obtained using Micron’s SDK, which 

enables a researcher to design automata and simulate the on-chip process. The SDK enables researchers to obtain 

preliminary performance estimates of the hardware. 

A. Major Components of the AP 

There are three major components on the AP: State-Transition-Element (STE), Counter Element and Combinatorial 

Elements, among which STE is the core component.  

One STE can match an 8-bit user-specified symbol in a clock cycle and STEs can connect to each other via edges. Each 

STE has two states: activated and matched. Only activated STEs will be able to accept next input symbol to perform a 

match against the user-specified symbol within that STE. Once the symbol on an STE is matched, the STEs connect to 

it will be activated to accept next input symbol and match that against their user-specified symbols. 

Besides STEs, Counter Element is used to count numbers. It requires a user-specified threshold. Once the threshold is 

reached, the counter can produce a report or activate STEs that are connected to it. There are also Combinatorial 

Elements that function as logic gates such as AND, OR, NOR, etc. 
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B. Automata Representation 

We use circles to represent STEs, labels inside circles represent the user-specified symbol(s) that is(are) being matched, 

and an arrow-tipped circle represents a starting STE that accepts the whole input string and a double lined circle 

represents a reporting STE. Table 2 provides graphic illustrations of basic STE functions. 

Table 2: Graphic Illustrations of Basic STE Functions 

 

A starting STE: 

 It can either be start-of-data, which will 

only match the first symbol of the input 

data and matches against A;  

Or all-input-start, which accepts every 

symbol from the input and matches 

against Symbol A 

 

Matching - Activating: 

 Symbol A is matched on the first STE, 

and the second STE is activated 

 

Negation Matching – Activating: 

 Whenever Symbol A is NOT matched on 

the first STE, the second STE is activated 

 

Any Symbol Matching – Activating: 

 A “*” means to match any input symbols 

 

Self-activating: 

 The STE activates itself when the 

symbol A is matched 

 

Matching – Activating 2 STEs: 

 Symbol A is matched on the first STE, 

and both of the STEs on the right are 

activated 

 

A reporting STE: 

 Reports when the symbol A is matched 
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C. Programming and Execution Environment 

User can design their Automata structures using an XML-like language called ANML, which stands for Automata 

Network Markup Language.  The ANML code is then compiled and loaded onto the processor. 

Once the design code is loaded onto the chip, then a scanning-matching task is performed. The processor will take the 

input data as a stream and match them against the design at a rate of 128 MBps.  

The starting STEs can accept either the entire input data, or only the start of data. The reporting STEs will report if they 

are activated and matched. The output from the Emulator contains an offset number on which a reporting element is 

reported, as well as the ID of the reporting element for all the reported STEs. 

Since the real chip is not available yet, we test our design using an Emulator within the SDK from Micron. 

D. Hardware Resources 

One single AP chip contains 49,152 STEs among which 6144 can report. One chip also 768 Counter Elements and 

2304 Combinatorial Elements.  

There are 32 chips on an AP board which has 1,572,864 STEs that can work in parallel. This provides the high parallel 

computing ability of the Automata Processor [18]. 

 

IV. Experiment I - Direct Design Method2 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	   Section	  IV	  and	  V	  are	  based	  on	  a	  conference	  paper	  [54]	  published	  in	  2015.	  
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In this section, we are going to describe in detail of the software package we use, the input data for the AP 

implementation, our designs of Brill Tagging on the AP, the on-chip process and the post processing on CPU required 

for the AP design to achieve the same results as the CPU implementation. Fig. 3 shows the major steps involved in the 

AP implementation.  

Figure 3:  Major Steps of the AP implementation 

A. The Software Package and the Design 

The major software package we use is programed in C and downloadable from the web [19]. The software package is 

using Penn Treebank Tagset. Within the package, there are 218 contextual rules trained from Brown Corpus. As stated 

earlier, our work only focuses on the second stage tagging of Brill tagging. Also, notice that the original Brill Tagging 

contains Lexical rules as well as rules for tagging unknown words, but our work focuses solely on the contextual rules.  

B. The Input Data 

We use the C software package to run the first stage tagging and write the intermediate result into a separate file. This 

intermediate result will later serve as the input data for both the second stage tagging of the CPU implementation as 
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well as the input data for the AP implementation. Table 3 shows the sample input data. 

Table 3: Sample input data 

This/DT session/NN ,/, for/IN instance/NN ,/, may/MD 

have/VBP insured/VBN a/DT financial/JJ crisis/NN 

two/CD years/NNS from/IN now/RB ./. 

 

C. Design on the AP 

To be able to benefit from the parallel pattern matching ability of the AP, we need to consider how to implement an 

algorithm in a fashion of pattern/template matching. The 218 contextual rules can be essentially viewed as 218 

templates. Among the 218 rules, there are 19 different structures. The structures and their meanings [20][21] are listed 

in Table 4.  

Table 4: 19 Structures of 218 Rules 

Rule ID Rule Content Rule Meaning 

1 PREVWD Preceding word is … 

2 PREVTAG Preceding Tag is … 

3 PREV1OR2TAG One of the two preceding words 

is tagged as 

4 PREV1OR2OR3TAG One of the three preceding 

words is tagged as 

5 WDAND2AFT The current word is … and the 

word two after is … 

6 PREV1OR2WD One of the two preceding words 

is 

7 NEXT1OR2TAG One of the two following words 

is tagged as 

8 NEXT1OR2OR3TAG One of the three following 

words is tagged as 

9 NEXTTAG Following word is tagged as 

10 NEXTWD Following word is 

11 WDPREVTAG The preceding word is tagged 

as … and the current word is … 

12 WDNEXTTAG The current word is … and the 

following word is tagged as … 
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13 SURROUNDTAG The preceding word is tagged 

as … and the following word is 

tagged as … 

14 PREVBIGRAM The two preceding words are 

tagged as … and … 

15 NEXTBIGRAM The two following words are 

tagged as … and … 

16 CURWD The current word is … 

17 LBIGRAM The preceding word is … and 

the current word is … 

18 RBIGRAM The current word is … and the 

following word is … 

19 PREV2TAG The word two ahead is tagged 

as … 

 

Fig. 4 provides two example designs of Automata structure for the rules mentioned in Section II.B.  

NN VB PREVTAG TO 

IN RB WDAND2AFT as as 

We use “_” to represent white space. 

 
Figure 4:  Example Designs of Automata Structure for the Rules 
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Fig. 4(a) has the structure of Rule 2 while Fig. 4(b) has the structure of Rule 5.  

The reporting element ID contains a rule ID as well as the update tag. For our example here, for the first rule, the 

reporting element ID will look like: rule2_VB; while for the second rule, the reporting element ID will look like: 

rule5_RB. 

All the rules are designed in the same fashion as the examples. One feature of our design is that the reporting elements 

will always report at the end of a tag. This will simplify the post processing from the output when updating the tags for 

the first-stage-tagged corpus. We will explain the structure with an example input string in the following section. 

D. The On-chip Process 

Take Figure 1(a) as an example. We will explain the on-chip process for the structure with an example sentence. The 

sentence itself does not have meaning but it works as an illustration. 

… to/TO conflict/NN with/IN… as/IN tall/JJ as/IN…. 

The starting STE for the first rule has a symbol “*”. As explained in Section III.B, this means that the STE will be 

matched by any input symbols. At the end of every symbol cycle, it activates the second STE which will then accept 

next input symbol. The user-specified symbol on the second STE is “^/” – NOT “/”. Thus the second STE will be 

matched on any symbols that are NOT a “/”. It not only activates the third STE, it activates itself as well. The 

self-activating function will keep the second STE activated and accepting input symbols until a “/” appears. When that 

happens, the third STE will be matched and activate the forth STE. The process will keep going until all the STEs are 

matched and activated. Then the reporting STE will report on a white space. The second rule in Figure 1(b) works in 

the same manner. 
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Our design is in accordance with the input data. Every word in the input data is followed by a “/” and then its tag. Each 

word/tag pair ends with a white space. 

Note that during the whole process of matching one rule, at least one of the STEs in the structure needs to be in the 

activated state. Otherwise the process will be deactivated and it will need to start from the beginning. For example, if 

we have an input data: 

… to/TO conflict/NNP with/IN… 

Although the process is matched until the point of the second “N”, but since it is followed by a “P”, none of the STE is 

matched, thus none of the STE is activated to accept next input symbol (in this case is a white space). Thus the 

reporting STE will not report and the whole process is deactivated. It will need to start from the starting STE again. 

For our design, the starting STE is all-input-start. This means that the whole process of matching one rule will be 

initiated at every input symbol. There could be more than one process going on for one rule. For example, if the input 

data looks like: 

… to/TO to/TO conflict/NN with/IN… 

One of the processes for the rule will start from the first “t” and match until the point of the second “/”, then the process 

will be deactivated because “T” does not match “N”. At the same time, there will be another process for the rule that 

starts from “t” of the second “to” and match all the way till the white space after “NN” and cause a report. 

Since all the starting STEs can accept symbols in parallel, when the input data is scanned, all 218 rules are being 

matched simultaneously. It only takes one data pass to apply all 218 rules. 3073 STEs are used for 218 rules. 

E. Post processing 



	   27	  

The output from the emulator contains offset numbers on which reporting elements reported, as well as the ID of the 

reporting elements. 

We modify the final stage tagging code within the software package for our post processing purpose. 

In the original code, a word array and a tag array are created when reading in the first-stage-tagged file. In addition to 

that, our post processing requires another array indicating that for each character in the file, which word the character 

belongs. Table 5, Table 6 and Table 7 show the example sentence we used previously. 

… to/TO conflict/NN with/IN… as/IN tall/JJ as/IN…. 

 

 

 

Table 5: The Word Array 

Index of the 
Word Array 

… 4 5 6 … 

Array Content … to conflict with … 
Index … 15 16 17 … 
Array Content … as tall as … 

 

Table 6: The Tag Array 

Index of the 
Word Array 

… 4 5 6 … 

Array Content … TO NN IN … 
Index … 15 16 17 … 
Array Content … IN JJ IN … 

 

Table 7: The Character Position Array 

Characters … t o / T O _ 

Index of the 

Character 

Position Array 

… 11 12 13 14 15 16 

Array Content … 4 4 4 5 5 5 
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(Index of Word 

Array) 

Characters c o n f l i c 

Index 17 18 19 20 21 22 23 

Array Content 5 5 5 5 5 5 5 

Characters t / N N _ w i 

Index 24 25 26 27 28 29 30 

Array Content 5 5 5 5 5 6 6 

Characters t h / I N _ … 

Index 31 32 33 34 35 36 … 

Array Content  6 6 6 6 6 6 … 

Characters a s / I N _ t 

Index 56 57 58 59 60 61 62 

Array Content 15 15 15 15 15 15 16 

Characters a l l / J J _ 

Index 63 64 65 66 67 68 69 

Array Content 16 16 16 16 16 16 16 

Characters a s / I N _ … 

Index 70 71 72 73 74 75 … 

Array Content  17 17 17 17 17 17 … 

 

After all the arrays are created, the original code then reads in the contextual rule file which contains 218 rules. It then 

applies one rule at a time to the entire corpus. We modified this part of the code. Instead of reading in the contextual 

rule file, the code is now reading in the output file from the AP Emulator. Both rule ID and the update tag information 

can be achieved from the ID of the reporting STEs. The offset number indicates at which character position an entire 

rule is matched. Using the offset number, we can then look-up from the character position array the index of the word 

that needs to be updated. 

Continue from our previous examples: 

… to/TO conflict/NN with/IN… as/IN tall/JJ as/IN…. 

The report we get from AP looks like: 



	   29	  

Offset 28 Reporting Element ID: rule2_VB 

Offset 75 Reporting Element ID: rule5_RB 

By looking up the character position array, we will find that the words that are associated with the characters are word 

6 and word 17 respectively. Notice that this word index does not necessarily indicate the word’s tag that needs to be 

updated. For our first example, we want to update the tag for word 6. However, for the second example, we want to 

update the tag for word (17 - 2) (The first “as”) rather than word 17 itself. This is why we need to keep the rule ID as 

an indicator to find the actual word to update for each different rule. 

Table 8 shows the pseudo code of the CPU implementation for the second stage tagging and the AP post processing on 

CPU. The highlighted parts are the differences between the code as well as the execution time we compared for the two 

processes. 

Table 8: Pseudo Code for the CPU and AP Implementation 

CPU AP Post Processing on CPU 
Brill_Tagging_CPU { 

Create_word_array; 
Create_tag_array; 
 
Read_in_rule_file; 
for (each_rule) { 

if (condition_met) { 
Update_tags; 

} 
} 

} 

Brill_Tagging_AP { 
Create_word_array; 
Create_tag_array; 
Create_char_position_array; 
 
Read_in_AP_output_file; 
for (each_output) { 

Find_token_position; 
Update_tags; 

} 
} 

 

V. Test Data and Result for Experiment I 

We will first describe the dataset used to test the AP design. Then we will talk about the execution environment of 

running the CPU and AP implementation of Brill Tagging. Our results are presented at the end of this Section. 
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A. Test Data 

The dataset we use to test our design is a subset of Brown Corpus downloaded from NLTK website [22].  

Brown Corpus [4] is an American English corpus consists of 1,014,312 words. The Corpus is divided into 500 samples 

with over 2000 words each. Each sample begins at the beginning of a sentence. The Corpus represents a wide range of 

styles and varieties of prose such as political, sports, financial press, books for skills and hobbies, government 

documents, etc.  

We selected 5 files from 5 different categories including: news, editorial, reviews, religion and hobbies. We then 

combined the files into 5 different sizes: 20KB, 40KB, 60KB, 79KB, 99KB (approximately a linear growth) to test the 

impact of the size of the input data on the execution time for both the CPU and AP implementations. 

For the largest file, 99KB, we also tested it with different number of rules. We used a subset of 50, 100 and 150 rules 

from the 218 rules as well as all the whole 218 rules to test the impact of the number of rules on the execution time for 

both the CPU and AP implementations. 

B. Execution Environment 

For the CPU implementation, we used the C software package and run it on a dual core single processor (Intel Core i5) 

Macintosh machine with single thread. 

The execution time recorded for the CPU implementation is the wall clock time for the step of updating the tags based 

on each individual rule within the 218 contextual rule file. 

Since the actual chip is not available yet, the on-chip time for the AP implementation is estimated by the clock cycle 

number. It takes one clock cycle for the AP to match one character (one symbol), which is estimated as 7.5 
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nanoseconds per clock cycle. The number of clock cycles equals to the number of characters contained in a single file. 

The post processing for the AP implementation is also tested on the same Macintosh machine. The execution time 

included for the post processing is the wall clock time for the step of creating the extra character position array and the 

step of updating the tags based on the output report from the AP.  

C. Results of direct AP design vs. original CPU version 

We will talk about the results from three aspects in this section: execution time in terms of input data size, execution 

time in terms of number of rules and resources utilization of the AP chip. 

1) Execution time for different input data size 

Table 9 shows the execution time of the CPU and AP implementation for different sizes of input data. The speed-ups 

for all the corpora are within the range of 38.3X to 41.0X. This indicates that the size of the input data does not have a 

significant impact of the speed-up.  

Table 9: Execution Time for Different Sizes of Input Data 

Time in microsecond 20 KB 

(19874 char) 

40 KB 

(39721 char) 

60 KB 

(60420 char) 

79 KB 

(79182 char) 

99 KB 

(98811 char) 

CPU 26944 56130 86545 112289 138660 

AP On chip 19874 * 7.5ns 

 = 149 

39721 * 7.5ns 

= 298 

60420 * 7.5ns 

= 453 

79182 * 7.5ns 

= 594 

98811 * 7.5ns 

= 741 

Create Array 196 372 596 875 1031 

Post processing 350 747 1063 1462 1840 

Total 695 1417 2112 2931 3612 

Speed-up 38.8X 39.6X 41.0X 38.3X 38.4X 

 

2) Execution time for different number of rules 

Table 10 shows the execution time of the CPU and AP implementation for different number of rules. We see the 
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speed-up grow significantly as the number of rules grows. The AP implementation shows great advantage with larger 

number of rules. This is because the processor has the ability to matching all the rules in parallel. 

Table 10: Execution Time for Different Number of Rules 

99 KB (98811 char) 

Time in microsecond 

50 

rules 

100 

rules 

150 

rules 

218 

rules 

CPU 37823 60328 94709 245345 

AP 

On chip 98811 * 7.5ns = 741 

Create Array 1031 

Post processing 1093 1546 1775 1840 

Total 2865 3318 3547 3612 

Speed-up 13.2X 18.2X 26.7X 38.4X 

 

The growth of the execution times depends on the content of the corpora because even if the corpora have the same 

number of tokens, they may still trigger different number of updates with for same rule. In addition, different rules may 

trigger different number of updates for the same corpora. Here we simply assume that the execution times for the CPU 

and AP implementation have an approximately linear growth with the number of rules in order to show the asymptotic 

impact of the number of rules on the speed-up. Fig. 5 provides the regression lines for the speed-up of AP vs. CPU. 

 

Figure 5:  Execution Time in Relation to Number of Rules 
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1729 rules is the largest number of rules mentioned in the literature [23]. We can estimate that the speed-up could 

potentially be as large as 283.77X. 

3) Resources utilization of the AP chip 

Table 11 lists the number of STEs used for different size of rules.  

Table 11: STE Utilization for Different Number of Rules 

 
50 

Rules  

100 

Rules 

150 

Rules 

218 

Rules 

Number of STEs 784 1480 2161 3073 

Number of reporting STEs 50 100 150 218 

Average STEs per Rule 15.68 14.80 14.41 14.10 

 

Note that there are 49,152 STEs on one AP chip and 1,572,864 STEs on an AP board, the number of STEs consumed 

for our design is only a very small portion of AP’s full capacity.  

 

VI. Accuracy and Discrepancy for Experiment I 

Although accuracy of the tagger is not under the emphasis of our work, it is still a crucial part for POS tagging. We 

thus provide the accuracies of some state-of-art tagging algorithms for reference as well as a discussion of the accuracy 

difference between the CPU and AP implementation of Brill tagging. 

A. State-of-art POS Tagging Accuracy 

Association for Computational Linguistics (ACL) [28] is an international scientific and professional association for 

people who are interested in computational linguistics. It provides the accuracies of some state-of-art POS tagging 

systems with regard of Wall Street Journal Corpus [29]. Table 12 lists some of these accuracies.  
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Table 12: Tagging Accuracy for Different Tagging Techniques 

 
Brill 

Tagging  

Hidden 

Markov 

Model 

Maximum 

Entropy 

Markov Model 

Maximum Entropy 

Cyclic Dependency 

Network [31] 

All Tokens 

Accuracy 
96.5% [30] 96.46% 96.96% 97.32% 

 

B. Brill Tagging Discrepancy  

The CPU implementation of Brill Tagging applies one rule at a time to the entire corpus, while the AP implementation 

can match all the rules in parallel. However, this speed advantage of the AP will cause differences in updating tags. The 

two potential cases are mentioned in the following. 

1) Case 1:  

CPU Implementation: For a given word, after rule 1 is applied, rule 2 may not be triggered 

AP Implementation: Both rule 1 and rule 2 will be triggered as they are matched in parallel. 

2) Case 2:  

CPU Implementation: For a given word, after rule 1 is applied, rule 2 then is triggered 

AP Implementation: Only rule 1 will be triggered since tags are not updated after each rule. 

This difference has an impact on the accuracy of the AP implementation. We tested on 4 different files from the Brown 

corpus.  

To evaluate the accuracy, we obtained annotated Brown Corpus which using Brown Tagset. However, the 218 rules 

within the C software package are trained based on Penn Treebank Tagset. We thus compared the tags to the best of our 

knowledge but still left some tag differences categorized as unknown. In order to set an upper bound of the decreasing 
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in accuracy for the AP implementation, we count all the unknown differences as the CPU implementation is correct but 

AP implementation is wrong. Table 13 lists the discrepancies for different samples. 

 

Table 13: Tagging Discrepancies for Different Samples 

 
ca01 

(2242 words) 
cb01 

(2200 words) 
cc01 

(2415 words) 
cd01 

(2213 words) 

Difference (between CPU 
and AP implementation) 

9 7 10 16 

CPU Correct 5 2 6 6 

AP Correct 2 1 1 3 

Both Wrong 0 1 1 1 

Unknown 2 3 2 5 

Decreasing on Accuracy 
(assuming AP is wrong 
on the unknown ones ) 

0.223% 0.182% 0.290% 0.362% 

Average 0.264% 

 

One may use more rules on the AP implementation to achieve relatively higher accuracy and decent speed-up 

comparing to using the CPU implementation with fewer rules. This also leaves us the future work of conducting an 

overall accuracy comparison for the CPU and AP implementation of the tagger. 

In the core of Brill tagging is “pattern matching”, which is similar to Regular Expression (Regex) matching. This brings 

the thought of converting Brill rules into Regex. Since Regexes are widely in use in many areas within NLP, being able 

to do the conversion and thus speed-up the Regex representation could show the promising opportunity of combing the 

new architecture and traditional CPU to improve computational efficiency for certain tasks that are not limited to Brill 

tagging. With this motivation in mind, we conducted Experiment II. 
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VII. Experiment II - Convert Brill rules into Regular Expressions 

Regular expressions (Regex) are a compact language for representing patterns in strings of characters. They were 

defined alongside regular languages, and in concert with Finite Automata theory, and are only capable of matching, or 

recognizing strings in regular languages. There is a many-to-1 mapping between regular expressions and regular 

languages, meaning that any regular language has an infinite number of corresponding regular expressions, but every 

regular expression has only one corresponding regular language. 

Regex are widely in use in various machine learning or computer science disciplines. The structure of the rules for Brill 

tagging can be written into Regex. By converting the rules into Regex and then compare the matching speed on 

single-threaded and multi-threaded program on CPU, Xeon Phi and AP, we will have a better idea how these computer 

hardware perform for this specific task. It can also provide us with a clear idea of AP’s ability of processing Regex. 

In the original CPU design of Brill tagging, the first stage tagging will tag each word to its most frequent tag. Then the 

first-stage-tagged corpus will serve as the input document for the second stage tagging – update tags based on rules. 

The original code of the second stage tagging will first split the document into a word array and a tag array. The tag 

updating is done while the code is scanning through the input document, i.e. when the input string matches the rule 

condition, the corresponding tag will be updated in the tag array.  

On the other hand, the direct AP design framework for second-stage tagging first does the matching, reports the 

position where a tag needs to be updated, and then performs updating as a post processing (i.e. finds the index where 

the tag needs to be updated, and then updates the tag). In order to focus on the comparison of Regex matching on 

different computer architectures, we will adopt the framework of the direct AP design for second-stage tagging for all 

hardware to simplify the experiment, i.e. we will compare the Regex matching using single-threaded and 
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multi-threaded CPU, Xeon Phi and AP. In this framework, updating the tags will be a post-processing step that will be 

common for all of the implementations, so we ignore the post-processing in this experiment and only measure the time 

for the Regex matching part. 

A. Convert Brill Rules into Regex 

There are 19 different basic structures for the rules of Brill tagging we are using. All the structures can be written into 

Regex. We will use the two rules mentioned in the previous sections as our example: 

NN VB PREVTAG TO: / [^/]+/TO [^/]+/NN / 

IN RB WDAND2AFT as as: / as/IN [^/]+/[^ ]+ as/[^ ]+ / 

The Regex templates for the 19 structures are listed in Table 14. In the template, “PREVWD” looks for the previous 

word; “PREVTAG” looks for the previous tag; “CURRENTWD” looks for the current word; “CURRENTTAG” looks 

for the current tag; “NEXTWD” looks for the next word; “NEXTTAG” looks for the next tag. While converting the 

rules into Regex, these positions will be replaced by the corresponding words or tags. 

Table 14: Regex Template for the 19 Structures of the 218 Rules 

Rule ID Rule Content Regex Template 

1 PREVWD / PREVWD/[^ ]+ [^/]+/CURRENTTAG / 

2 PREVTAG / [^/]+/PREVTAG [^/]+/CURRENTTAG / 

3 PREV1OR2TAG /( [^/]+/PREVTAG [^/]+/CURRENTTAG | [^/]+/PREVTAG [^/]+/[^ ]+ 

[^/]+/CURRENTTAG )/ 

4 PREV1OR2OR3TAG /( [^/]+/PREVTAG ([^/]+/[^ ]+ ){1,2}[^/]+/CURRENTTAG | [^/]+/PREVTAG 

[^/]+/CURRENTTAG )/ 

5 WDAND2AFT / CURRENTWD/CURRENTTAG [^/]+/[^ ]+ WD2AFT/[^ ]+ / 

6 PREV1OR2WD /( PREVWD/[^ ]+ [^/]+/CURRENTTAG | PREVWD/[^ ]+ [^/]+/[^ ]+ [^/]+/CURRENTTAG )/ 

7 NEXT1OR2TAG /( [^/]+/CURRENTTAG [^/]+/NEXTTAG [^/]+/[^ ]+ | [^/]+/CURRENTTAG [^/]+/[^ ]+ 

[^/]+/NEXTTAG )/ 

8 NEXT1OR2OR3TAG /( [^/]+/CURRENTTAG [^/]+/NEXTTAG [^/]+/[^ ]+ [^/]+/[^ ]+ | [^/]+/CURRENTTAG 
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[^/]+/[^ ]+ [^/]+/NEXTTAG [^/]+/[^ ]+ | [^/]+/CURRENTTAG [^/]+/[^ ]+ [^/]+/[^ ]+ 

[^/]+/NEXTTAG )/ 

9 NEXTTAG / [^/]+/CURRENTTAG [^/]+/NEXTTAG / 

10 NEXTWD / [^/]+/CURRENTTAG NEXTWD/[^ ]+ / 

11 WDPREVTAG / [^/]+/PREVTAG CURRENTWD/CURRENTTAG / 

12 WDNEXTTAG / CURRENTWD/CURRENTTAG [^/]+/NEXTTAG / 

13 SURROUNDTAG / [^/]+/PREVTAG [^/]+/CURRENTTAG [^/]+/NEXTTAG / 

14 PREVBIGRAM / [^/]+/PREVTAGA [^/]+/PREVTAGB [^/]+/CURRENTTAG / 

15 NEXTBIGRAM / [^/]+/CURRENTTAG [^/]+/NEXTTAGA [^/]+/NEXTTAGB / 

16 CURWD / CURRENTWD /CURRENTTAG / 

17 LBIGRAM / PREVWD/[^ ]+ CURWD/CURRENTTAG / 

18 RBIGRAM / CURRENTWD /CURRENTTAG NEXTWD/[^ ]+ / 

19 PREV2TAG / [^/]+/PREV2TAG [^/]+/[^ ]+ [^/]+/CURRENTTAG / 

 

Note that there is a many-to-1 mapping between regular expressions and regular languages, meaning that any regular 

language has an infinite number of corresponding regular expressions, thus each rule may be represented by various 

different Regex but the matching results should always be the same. 

 

VIII. Test Data and Result for Experiment II 

We will first describe the dataset used to test this experiment. Then we will talk about the different execution 

environments of running the implementation of Brill Tagging. Our results are presented at the end of this Section. 

A. Test Data 

The dataset we use to test this experiment is still a subset of Brown Corpus. It is a first-stage-tagged file and the size of 

the file is 2.2MB, which has 2,198,493 characters. We will use this file to run all the testings. 

B. Execution Environment 
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We changed our experiment environment for this set of experiments from Experiment I. Instead of running on a 

personal local machine, we tested our designs on University of Virginia Computer Science Department’ server, which 

has a 12-core Intel i7 processor as the host and Xeon PhiTM as the device. 

Xeon PhiTM is a coprocessor computer architecture developed by Intel [53]. Those coprocessors are PCI Express form 

factor add-in cards that work synergistically with Intel® Xeon® processors to enable dramatic performance gains for 

highly parallel code—up to 1.2 double-precision teraFLOPS (floating point operations per second) per coprocessor. 

There are 61 cores and 244 threads on one Xeon PhiTM chip; one of the cores is the “master” node that allocates tasks 

across other 60 cores. We also tested our implementation on this hardware to compare the performance for different 

parallel computing architectures. 

The program that is run on the host and the device is written in C++ using POSIX Regex library. The multi-threading 

function is achieved using PThread (POSIX Threads Programming). There are two different ways of running a PThread 

program on Xeon PhiTM chip. One is to run the program “natively” – the programmer will first compile the program on 

the host, then the executable will be copied onto the device and the whole program will be run on the device. Another 

way to run a PThread program is to add “#pragma offload” in the program for the part that needs to be run on the 

device. The programmer will also compile the program on the host first, then instead of copying the executable onto the 

device, the program will be run on the host and only the part that is marked by “#pragma offload” will be offloaded 

onto the device. In our case here, we choose the “native” mode to run our program. One of the advantages of running 

the program in the “native” mode is that we do not need to change the PThread code. Instead, we only need to add the 

“-mmic” compiler flag while compiling the program, thus the code that is run on the host and the device are essentially 

the same. 



	   40	  

Since we’ve adopted the framework of the direct AP design for second-stage tagging for all hardware to simplify the 

experiment, i.e. we will first do the Regex matching using single-threaded and multi-threaded program on CPU, Xeon 

Phi and AP, and then consider updating the tags as a post processing, we can simply compare the performance of the 

Regex matching across all the implementations.  

Table 15 shows the pseudo code for how we measured the Regex matching time of the PThread code that was run on 

the host Intel i7 as well as the device Xeon PhiTM. It first reads in the input text, and then it compiles all the Regex in a 

Regex file (218 rules) and stores them in a queue. A number of threads are created based on the specification of the 

programmer. Each thread is responsible of fetching one compiled Regex from the queue if the queue is not empty and 

then performing the matching against the input text. The part to be timed is bolded. Essentially, it is the part where 

threads are created and a matching function is called.  

Table 15: Pseudo Code for PThread 

queue<regex_t> compiled_regex; 

int NUM_OF_THREAD; 

char * input_text; 

 

input_text = read_file(); 

 

// Sequentially 

for (each_regex_in_the_file) { 

  t = compile_regex(current_regex); 

  compiled_regex.push(t); 

} 

 

// PThread 

for (thread_id < NUM_OF_THREAD) { 

  pthread_create(matching_function, compiled_regex.front(), input_text); 

  compiled_regex.pop(); 

} 
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For the AP, since we do not have the real hardware yet, we estimated the on-chip matching performance as mentioned 

in the previous sections. Since we could not measure the real matching time which may also include the time of 

transferring data, writing output, etc, the reported time may be in favor of the AP. However, the experiment can still 

provide some insights in terms of the matching ability of different architectures. 

C. Results of the experiment 

Here, we will report the results of our experiment. We will first compare the resource utilization difference of the AP 

chip between the direct AP implementation and the Regex implementation. Then we will report the matching 

performance of the Regex implementation across different hardware. 

1) Resources utilization of the AP chip for direct AP implementation vs. Regex implementation 

Table 16 reports the resource utilization difference of the AP chip between the direct AP implementation and the Regex 

implementation. From the result, we can see that the STE consumptions are pretty similar between the two 

implementations for both before and after optimization. The difference may be caused by the syntax of the Regex or the 

way those Regex are written. Note that, there are 49,152 STEs on one AP chip and 1,572,864 STEs on an AP board. 

The STE consumption is only a tiny part of the whole AP chip; it is capable of processing more complex rules.  

Table 16: Resource Utilization Difference of the AP Chip 

 STE Usage Last States Size 

Direct AP 

Implementation 

Before optimization 3073 215 

After optimization 1514 204 

Regex 

Implementation 

Before optimization 3092 241 

After optimization 1184 201 

2) Matching performance of Regex implementation for the original 218 rules across all computer architectures 

Table 17 shows the matching performance of Regex implementation of Brill tagging on the host Intel i7. We can see a 
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performance scale as we increase the number of threads. Since the processor only has 12 cores, the performance 

reaches a plateau at 12 threads. 

Table 17: Matching Performance of Regex Implementation on the Host Intel i7 

CPU: 2.2 MB file size (2,198,493 char); Time in microsecond 

Thread 1 Thread 2 Threads 4 Threads 6 Threads 

Runtime 4047938 2704563 1085865 743572 

Thread 8 Threads 10 Threads 12 Threads 14 Threads 

Runtime 655385 632916 597654 618925 

 

Fig. 6 plots the execution time in terms of number of threads on Intel i7. We can more easily see the plateau at 12 

threads. 

 

Figure 6:  Execution Time in Relation to Number of Threads on Intel i7 

 

Table 18 shows the matching performance of Regex implementation of Brill tagging on the device Xeon PhiTM. We can 

see a performance scale as we increase the number of threads. It reaches a plateau at around 90 threads. 
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Table 18: Matching Performance of Regex Implementation on Xeon Phi 

Xeon Phi: 2.2 MB file size (2,198,493 char); Time in microsecond 

Thread 1 Thread 2 Threads 4 Threads 10 Threads 20 Threads 30 Threads 40 Threads 

Runtime 115505574 57701342 29155922 13971906 10768066 9705664 9245049 

Thread 50 Threads 60 Threads 70 Threads 80 Threads 90 Threads 100 Threads 120 Threads 

Runtime 8936398 8709339 8658992 8571378 8379498 8407550 8377593 

 

Fig. 7 plots the execution time in terms of number of threads on the device Xeon PhiTM. Fig. 7 (a) shows the zoomed-in 

plot from 1 thread to 70 threads; Fig. 7 (b) is the plot for all the test runs from 1 thread to 120 threads. 

 

 

Figure 7 (a) :  Threads 1 - 70 

 

Figure 7 (b) :  Threads 1 - 120 

Figure 7:  Execution Time in Relation to Number of Threads on the device Xeon PhiTM 

 

The above matching performance was measured on the real hardware. For the AP, we estimated the on-chip matching 

performance as mentioned in the previous sections. Table 19 shows the speed-up comparing the performance of the 

single-threaded, multi-threaded program on the host, the device, as well as the estimated AP performance. Note that 

since the AP hardware is not yet available, we could not measure the real matching time which may also include the 

time of transferring data, writing output, etc. However, the result still shows the potential of the AP chip as an 
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accelerator of performing pattern-matching tasks.  

 

Table 19 (a): Matching Performance Comparison between Xeon PhiTM and Intel i7 

Xeon Phi 1 Thread 2 Threads 10 Threads 30 Threads 60 Threads 90 Threads 120 Threads 

Runtime 115505574 57701342 13971906 9705664 8709339 8379498 8377593 

CPU 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads 12 Threads 14 Threads 

Runtime 4047938 2704563 1085865 655385 632916 597654 618925 

Speed-up 28.534  21.335  12.867  14.809  13.761  14.021  13.536  

 
 

Table 19 (b): Matching Performance Comparison between Intel i7 and AP 

i7 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads 12 Threads 14 Threads 

Runtime 4047938 2704563 1085865 655385 632916 597654 618925 

AP 

on-Chip 
2,198,493 * 7.5ns = 16489 

Speed-up 245.493  164.022  65.854  39.747  38.384  36.246  37.536  

 

Table 19 (a) reports the performance comparison between the host Intel i7 and the device Xeon PhiTM. We can see a 

clear advantage of running the program on the host Intel i7. The single threaded program has an about 28X speed up in 

favor of Intel i7. There are 12 cores on the host and 61 cores (244 threads) on the device. Comparing the best 

performance of the host and the device, we can still get about 14X speed-up using Intel i7. As we described in Section 

VIII-B, we attempted to use the same code for both the host and the device and we ran the program natively on the 

device. Although we can see a scale-up of the program run on Xeon PhiTM, clearly we aren’t fully using the device. 

There are a couple of possible reasons behind this behavior of the device - the different generations of the chips may 

cause some of the performance difference. Another possibility is that the larger caches in Intel i7 really benefit the rule 

fetches for the NFAs. Thus it’s better to design a program that is specific for Xeon PhiTM that can take full advantage of 
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the accelerator. 

Table 19 (b) compares the performance of Intel i7 and the AP. For both of the experiments, we can see that the AP can 

achieve great performance improvement for the Regex matching kernel. For the single-threaded program on Intel i7, 

the AP can achieve about 245.5X speed-up and 36X speed-up comparing to the best performance on the i7. Although 

the performance of the AP is estimated and it may not include all the execution time to run the matching function, it 

still shows the promising performance gain. 

3) Matching performance of Regex with different complexity 

Another interesting thing to compare is to see how the complexity of the Regex impacts the performance of different 

hardware. In order to do this comparison, we separate Regex rules into 3 different categories – 200 simple (all the 

Regexes are linear), 200 original (200 Regexes from the original 218 rules), and 200 complex (all the Regexes have 

“alternation”). Table 20 reports the STE usage of all three categories. Table 21 shows the matching performance on 

Intel i7 in terms of the three categories; Table 22 shows the matching performance on Xeon PhiTM. Table 23 reports the 

performance of Intel i7 with 12 threads and the best performance on Xeon PhiTM comparing to the AP in each category. 

As mentioned in the previous section, this experiment only include matching performance which may not reflect the 

time of transferring data, writing output, etc., but the experiment can still provide some insights in terms of the 

matching ability of different architectures. 

 

Table 20: Resource Utilization Difference of the AP Chip for Three Categories 

 STE Usage 

200 Simple 2737 

200 Original 2934 

200 Complex 5843 
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Table 21: Matching Performance of Complex vs. Simple Regex on the Host Intel i7 

Intel i7: 2.2 MB file size (2,198,493 char); Time in microsecond 

No. of Thread 1 Thread 2 Threads 4 Threads 6 Threads 

200 Simple Rules 3420775 1770075 934856 634993 

200 Original Rules 3813265 1935178 1035936 706789 

200 Complex Rules 6631973 3392653 1852137 1290916 

No. of Thread 8 Threads 10 Threads 12 Threads 14 Threads 

200 Simple Rules 568813 534045 513631 522118 

200 Original Rules 646080 605576 563720 572210 

200 Complex Rules 1186821 1102516 1053676 1098875 

 

 

Table 22: Matching Performance of Complex vs. Simple Regex on the Xeon Phi 

Xeon Phi: 2.2 MB file size (2,198,493 char); Time in microsecond 

No. of 

Thread 
1 Thread 2 Threads 20 Threads 40 Threads 60 Threads 80 Threads 100 Threads 

200 Simple 95233305 47645001 8159165 8165023 8168897 8191992 8279226 

200 Original 111519602 55634124 10748087 9238252 8682138 8553882 8367107 

200 Complex 230954739 119205721 17833242 12180464 10599455 9976508 9672716 

No. of 

Thread 
120 Threads 140 Threads 160 Threads 180 Threads 200 Threads 220 Threads - 

200 Simple 8270046 8290763 8283347 8295673 - - - 

200 Original 8429485 8435266 8459828 8469981 8534926 - - 

200 Complex 9349682 9182961 9147677 8948600 8882996 8958258 - 

 

Table 23: Best Matching Performance Comparison between Xeon PhiTM, Intel i7  

and the AP on Different Rule Complexity 

2.2 MB file size (2,198,493 char); Time in microsecond 

 
200 Simple Rules  

(2737 STEs) 

200 Original Rules 

(2934 STEs) 

200 Complex Rules 

(5843 STEs) 

Xeon Phi 
8159165 

(20 Threads) 

8367107 

(100 Threads) 

8882996 

(200 Threads) 

Intel i7  

(12 Threads) 
513631 563720 1053676 

AP 16489 

AP Speed-up 

over Intel i7 
31.15X 34.19X 63.90X 
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Although the program is not fully utilizing the true capacity of Xeon PhiTM, the result still shows that the execution 

time on both Intel i7 and the phi increase as the complexity of Regex increases. On the other hand, the matching time 

on the AP is only related to the length of the input string regardless of the complexity of the Regex. Although the more 

complex the Regexes are, the more STEs will be consumed, as long as all the Regexes can fit onto one AP chip, the 

execution time will stay the same if the length of the input string does not change. Again, there are 49,152 STEs on one 

AP chip and 1,572,864 STEs on an AP board. The STE consumption of 218 Brill rules is only about 6% of one AP chip. 

Combining with the result from Experiment I, we can see that the AP is capable of processing more complex rules and 

larger rule set. The more complex the rules are and the larger the rule set is, the bigger the improvement the AP can 

gain over CPU. 

 

IX. Conclusion and Future Work 

The Micron Automata Processor is a novel non-Von Neumann semiconductor architecture which can be programmed 

to identify thousands of patterns present in a data stream in parallel. Xeon PhiTM is a coprocessor computer architecture 

developed by Intel which enables dramatic performance gains for highly parallel code.  

In this work, we investigated how to implement an algorithm, Brill tagging, for an application in Natural Language 

Processing, part-of-speech tagging, directly on the AP, as well as how to convert the Brill rules into Regex, and then 

compare the Regex matching performance across CPU, Xeon PhiTM and the AP.  

This work also analyzed the Regex matching performance differences across multiple computer hardware. In theory, 

the AP can achieve a significant speed-up for both the direct implementation as well as Regex matching function. It 

also shows a great potential of using the AP for other NLP tasks with the same nature.  
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To continue the work with Brill tagging, we can implement the lexical rules, rules for unknown words or the training 

stage on the AP. We will also need to evaluate the accuracy of the CPU and AP implementations of the tagger. It will 

also worth the time to try another Regex matching library other than POSIX for the C++ implementation. Different 

libraries may bring very different matching speed. 

Another extension of this work is to compare the Regex design on the AP, multi-threaded implementation on CPU 

against GPU and FPGA as well as design a program that is specific for Xeon PhiTM. As described in Section II, Regex 

can be implemented in various ways on GPU and FPGA (ie. Memory-based or logic-based). It would be an interesting 

comparison to see how implementing Regex as Memory-based or logic-based DFAs or NFAs perform on GPU or 

FPGA.  

Finally, it might be interesting to explore hardware accelerators for other applications within Natural Language 

Processing domain that are not just rule-based, such as various parsing, semantic labeling algorithms, question 

answering, machine translation, etc. For example, FPGAs and GPUs may be useful to accelerate statistic based NLP 

tasks. 
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