

E�cient Data Distribution in Large-Scale Multicast

Networks

A Dissertation

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

Computer Science

by

Matthew T. Lucas

May 1998

Copyright c
 1998 by Matthew T. Lucas

Abstract

There is an increasing demand for using today's shared computer networks, such as the

Internet, for group-based applications. Multicast is a developing communication technology

designed to provide e�cient multi-point message delivery for large-scale groups. Research

directed at the data link and network layers has been very successful, and multicast ser-

vice is now available in most best-e�ort networks. However, best-e�ort multicast networks

do not o�er quality of service guarantees such as bounded transmission delays and error

rates. Therefore, group-based applications rely on multicast transport protocols for ordering,

reliability, group management, and other end-to-end services.

This dissertation presents MESH: a novel, distributed transport protocol designed for

large-scale multicast. We show that MESH's error recovery and receiver feedback service

(1) achieves high application performance (i.e., low delivery latency and high throughput),

(2) e�ciently utilizes network and end-system resources, (3) provides a
exible error control

model suitable for reliable, unreliable, and other error control paradigms, (4) provides timely

state information required by congestion,
ow, group management, reliability, and other

control protocols, and (5) scales to large receiver sets and wide-area heterogeneous networks.

Using the MESH framework, we design and implement a reliable protocol (MESH-R) and a

deadline-driven reliable protocol (MESH-M) in a high-�delity simulation of SURAnet and

vBNSnet. We show that the performance and overhead of MESH-R and MESH-M compares

favorably to extant transport techniques (namely, centralized, tree-based, unstructured, and

FEC-based schemes) for bulk-data distribution and continuous media applications.

iii

To Tricia, Danielle, Justin, and the little one on the way

Contents

Abstract iii

Acknowledgments ix

1 Introduction 1

1.1 Background: Network Support for Multicast 3

1.1.1 Data Link Multicast . 4

1.1.2 Network Layer Multicast . 4

1.2 Background: Transport Support for Multicast 6

1.3 Introduction to Previous Work in Multicast Transport 8

1.4 Our Approach: MESH . 9

1.5 Structure of Dissertation . 10

2 Multicast Transport Protocols: Previous Work 11

2.1 Multicast Ordering Protocols . 11

2.2 Reliable Multicast Protocols . 13

2.3 Real-Time Multicast Protocols . 14

2.4 Distributed Multicast Transport Protocols 17

2.4.1 Distributed Approach at the Network Layer 18

2.4.2 Tree-Based Protocols . 19

2.4.3 Unstructured Protocols . 22

v

Contents vi

2.5 The MESH Framework . 22

2.5.1 MESH Domains . 23

2.5.2 MESH State Synchronization . 24

2.5.3 MESH Error Control . 25

2.6 Summary . 26

3 Wide-Area Multicast Network Simulation 27

3.1 Introduction to Computer Network Simulation 29

3.2 SURAnet and vBNSnet Network Model . 30

3.3 Campus and Local Area Tra�c Model . 34

3.4 Wide-Area Background Tra�c Model . 39

3.5 WAN Statistical Characterization Experiment Setup 40

3.5.1 Experiment Setup . 41

3.5.2 Data Considered . 42

3.6 Modeling the Packet Size . 43

3.7 Aggregate Wide-Area Network Tra�c Model, M 46

3.7.1 Time-Dependent Statistical Properties 46

3.7.2 Generating Self-Similar Tra�c . 48

3.7.3 Modelling the Arrival Density . 48

3.7.4 M Evaluation . 50

3.8 Partitioning Model P and Short-term Arrival Model S 52

3.8.1 Partitioning Model P . 52

3.8.2 S: Short-term Packet Arrival Model 53

3.9 Application of the (M;P ;S) Model . 54

3.10 SURAnet and vBNSnet Simulation Parameters 58

3.10.1 SURAnet and vBNSnet (M;P ;S) Model Parameters 59

3.10.2 SURAnet and vBNSnet Delay and Drop Rates 63

3.11 Summary . 68

Contents vii

4 MESH-R: Large-Scale, Reliable Multicast Transport 70

4.1 Motivation . 72

4.2 Related Work . 74

4.2.1 Analysis of Control Structure Classes 75

4.3 MESH-R Protocol Design and Motivation 78

4.3.1 MESH Framework Overview and Motivation 78

4.3.2 MESH-R Group State Synchronization Protocol 79

4.3.3 MESH-R Error Control Protocol . 83

4.4 MESH-R Performance Analysis . 88

4.4.1 Experiment Setup . 89

4.4.2 Centralized, Tree-based, and Unstructured Protocol Descriptions . . 90

4.4.3 Experimental Results . 97

4.5 Summary and Future Work . 110

4.5.1 Future Work on Reducing MESH-R's State Overhead 111

4.5.2 Future Work on MESH-R's State Synchronization Protocol 112

4.5.3 Future Work on MESH-R's Error Control 113

4.5.4 Future Work on Multi-Source Applications 114

4.5.5 Future Work on Scalability . 115

5 MESH-M { Large-scale Transport for Multimedia Applications 116

5.1 Introduction . 116

5.2 Distributed Retransmission Error Recovery 118

5.2.1 The MESH Protocol Framework . 119

5.2.2 Error Recovery in the Local Area . 120

5.2.3 Error Recovery in the Wide Area . 120

5.2.4 Advertisement Protocol . 121

5.2.5 Retransmission Protocol . 123

5.3 MESH-M Performance Evaluation . 123

Contents viii

5.3.1 Simulation Design . 124

5.3.2 MESH-M Retransmission Behavior 126

5.3.3 Comparison of MESH-M and Source-Based FEC 128

5.4 Conclusions and Future Work . 133

6 Conclusions and Future Work 134

6.1 Conclusions . 134

6.1.1 Large-Scale Reliable Transport: MESH-R 135

6.1.2 Large-Scale Deadline-Driven Transport: MESH-M 136

6.2 Future Work . 137

A Self-Similar Tra�c 139

A.1 Generating Self-Similar Tra�c Using the FFT Method 139

B Simulated Network Delay and Error Rates 141

B.1 Simulated Round-trip Delays and Drop Rates in SURAnet 141

B.2 Simulated Round-trip Delays and Drop Rates in vBNSnet 143

Acknowledgments

It is an honor to have Alfred Weaver as my advisor, colleague, and friend throughout

the development of this work. Alf recognized the importance and challenge of wide-area

multicast, and gave me the freedom to explore my own solutions. I sincerely appreciate his

support, insight, direction, and wisdom.

Special thanks to Bert Dempsey and Dallas Wrege. Bert is an exceptional researcher

and friend. I thoroughly enjoyed my time writing papers and exploring networking ideas

with him. Likewise, special thanks to Dallas (a.k.a. Dr. Figure) for his insights on tra�c

modeling, and expertise in TeX. It has been a pleasure working with him.

Thanks goes to J�org Liebeherr, William Wulf, Andrew Grimshaw, and James Aylor who

served on my dissertation committee and provided valuable feedback. It is an honor to have

this prestigious faculty review and accept my work.

I am also grateful to Paco Hope for helping me with the compute servers and Sudhir

Srinivasan for teaching me SES Workbench optimizations. I wish all of you (Alf, Bert,

Dallas, Jorg, Bill, Andrew, Jim, Paco, and Sudhir) the very best of luck in your endeavors.

My parents, Diane and Jerome Lucas, deserve special recognition for stressing the im-

portance of education. Their academic accomplishments, as well as their support, have

provided me continuous inspiration.

Finally, thanks goes to my wife Tricia for supporting me in my academic pursuits. Tricia

is a wonderful friend, wife, mother, and partner to tolerate and encourage the long hours

required to complete this work.

ix

List of Figures

2.1 Subgrouping Example of SURAnet . 20

2.2 Internet domain hierarchy . 23

3.1 SURAnet infrastructure and topology. 31

3.2 vBNS infrastructure and topology. 32

3.3 Campus network model. 32

3.4 Roundtrip times over a 2 hop path within UVAnet. 35

3.5 Roundtrip times over a 3 hop path within UVAnet. 35

3.6 Campus background tra�c approach. 36

3.7 Packet drop series at Olsson Hall router Ethernet interfaces 2, 8, and 12. . . 37

3.8 (M;P ;S) tra�c model. 40

3.9 Experiment Setup . 42

3.10 Packets per 100 seconds for 9 day packet trace. 43

3.11 Packets per 10 second interval for �rst Tuesday packet trace. 44

3.12 Probability density function of packet sizes. 45

3.13 Autocorrelation function for packet sizes. 46

3.14 Autocorrelation function for the 2AM, 3PM and 9PM traces. 47

3.15 Q-Q plots of 2AM, 9PM and 3PM empirical traces versus �tted log-normal

distributions. 49

3.16 Arrival distribution of empirical traces (solid lines) and synthetic (dashed

lines) for low, medium, and high network utilizations. 51

x

List of Figures xi

3.17 Log variance plot of synthetic (green lines) versus empirical (red lines) for

2AM, 9PM and 3PM UVAnet traces. 51

3.18 Packet-train time series for (a) 2AM, (b) 9PM and (c) 3PM campus sub-

streams with addresses 192.0.0.0 - 199.255.255.255. 55

3.19 Number of packets in a train plotted against the mean of the campus sub-

stream (in packets per 1ms). 56

3.20 Probability density function for empirical campus streams (solid lines) and

model P (dashed lines) for 3PM trace. 58

3.21 Simple partitioning approach for 3PM trace using empirical probability. . . 59

3.22 Log-variance plot of 3PM component substreams. Note the correlation struc-

ture of the synthetic (b) match the empirical (a). 60

3.23 SURAnet round-trip delays for M = 10� 70 background packets per 100 ms. 65

3.24 SURAnet round-trip drop rates forM = 10�70 background packets per 100

ms. 66

3.25 vBNSnet round-trip delays for M = 700� 2700 background packets per 100

ms. 67

3.26 vBNSnet round-trip drop rates for M = 700� 2700 background packets per

100 ms. 68

4.1 SURAnet network with multicast source located at CTV, and group members

located at each campus network. 76

4.2 MESH's state synchronization approach. 80

4.3 MESH-R message format. 81

4.4 MESH-R error control protocol state diagram. 84

4.5 MESH-R procedure for selecting a retransmission server. 86

4.6 Centralized error/control
ow example. 91

4.7 Tree-based error/control
ow example. 93

4.8 SRM adaptive timer algorithm. 96

List of Figures xii

4.9 File transfer times for 1 MB �le in SURAnet. 97

4.10 File transfer times for 10 MB �le in vBNSnet. 98

4.11 Protocol overhead in SURAnet. 100

4.12 Protocol overhead in vBNSnet. 100

4.13 Protocol e�ciency in SURAnet. 101

4.14 Protocol e�ciency in vBNSnet. 102

4.15 MESH error recovery example in campus domain. 106

4.16 Retransmission distribution in vBNSnet between adjacent campus networks. 108

4.17 Retransmission distribution in SURAnet between adjacent campus networks. 109

4.18 Example MESH state synchronization. 112

5.1 S-ARQ retransmission model. 119

5.2 Advertisement packet format. 122

5.3 Retransmission procedure for selecting remote AR. 124

5.4 Wide-area network topology used in simulation experiments. 125

5.5 Distribution of retransmission requests. 127

5.6 Retransmission protocol overhead distribution and drop rates per link. . . . 127

5.7 Application performance under FEC and MESH-M error control. 129

5.8 Network cost for FEC overcoding. 130

5.9 Application performance for FEC(4:2), FEC(5:1), and MESH-M with � = 1. 131

5.10 Network cost for FEC(4:2), FEC(5:1), and MESH-M with � = 1. 131

5.11 Application performance for FEC(4:2), FEC(5:1), and MESH-M with � = 3. 132

5.12 Network cost for FEC(4:2), FEC(5:1), and MESH-M with � = 3. 132

List of Tables

3.1 Olsson router utilization and drop statistics. 38

3.2 Parameters used to model UVAnet arrivals. 50

3.3 Network �lter mask and percent of tra�c for 2AM, 9PM and 3PM traces. . 57

3.4 Network address ranges used to de�ne SURAnet substreams. 62

3.5 Network address ranges used to de�ne vBNSnet substreams. 63

4.1 vBNSnet AR selection distribution. 107

B.1 Suranet round-trip network delay (in ms) for M = 10 packets per 100ms. . 141

B.2 Suranet round-trip network delay (in ms) for M = 70 packets per 100ms. . 142

B.3 Suranet round-trip network drop percent for M = 10 packets per 100ms. . 142

B.4 Suranet round-trip network drop percent for M = 70 packets per 100ms. . . 143

B.5 vBNSnet round-trip delays (in ms) for M = 700 packets per 100ms. 143

B.6 vBNSnet round-trip delays (in ms) for M = 2700 packets per 100ms. . . . 144

B.7 vBNSnet round-trip drop percent for M = 700 packets per 100ms. 144

B.8 vBNSnet round-trip drop percent for M = 2700 packets per 100ms. 144

xiii

1

Introduction

Recently, there has been a massive investment in computer network infrastructure to sup-

port the growing communication demands of networked computer systems. Although

computer networks were originally designed for point-to-point communication patterns

(so-called unicast communication), there is an increasing demand for using today's com-

puter networks for group-based applications. In contrast to traditional unicast applications,

group-based applications require that messages are delivered from a source to a set of re-

ceivers (i.e., the group) as opposed to a single receiver. The developing communication

technology that supports group-based applications is known as multicast.

Networks that have been extended to support multipoint message delivery service are

known as multicast networks. The internet protocol (IP) and asynchronous transfer mode

(ATM) standards are an important class of multicast networks since they are the dominant

technology deployed in public and private computer networks today. Production IP and

ATM multicast networks, however, provide what is called best-e�ort multicast service for

data applications. This means the network does not guarantee message delivery, ordering,

throughput, or transmission delay. As a result, end-system protocols (known as multi-

cast transport protocols) are commonly used to provide group transport services such as

1

2

error recovery and message ordering. Together, multicast networks and multicast transport

protocols e�ciently support and enable group-based applications.

Error control and receiver feedback services are a fundamental requirement of many

group-based applications. For example, �le and data distribution applications require in-

order, complete delivery of messages from the source(s) to each member in the group.

For such reliable applications, the transport protocol must detect and recover messages

dropped by the network as well as inform the source when each receiver has successfully

obtained the messages that compose the �le. Other applications have less strict error control

requirements. For example, an application that employs a replicated remote procedure

call (RPC) may require that only k of N group members receive a message (so-called,

K � reliable multicast). Finally, some applications classes, such as multimedia systems, do

not require any error control service. Instead, the transport protocol must provide timely

and accurate network drop and delay feedback so the source can determine an appropriate

transmission rate. The goal of the transport protocol is to provide a rich set of error

control and receiver feedback services, thereby facilitating the development of group-based

applications.

Most research in multicast transport protocol design has focused on small groups (i.e.,

less than a hundred members) in local area networks. However, as the number of networked

computer systems continues to grow, so will the demand for using multicast networks for

group-based applications with hundreds or thousands of members. This domain is called

large-scale multicast. Aside from the increased group size, large-scale multicast is a funda-

mentally di�erent problem domain than local multicast because (1) network drop, delay,

and throughput characteristics often vary signi�cantly between each station and (2) wide-

area networks are often saturated, resulting in highly variable drop and delay patterns.

These network characteristics pose di�cult challenges for large-scale error control and re-

ceiver feedback protocol designs. None the less, e�cient large-scale transport protocols are

1.1. Background: Network Support for Multicast 3

critical because poor designs can overwhelm network links with protocol tra�c and yield

poor application performance.

This dissertation considers the design of e�cient and low-latency error control and

receiver feedback services for distributed, large-scale multicast groups. We show that trans-

port protocols designed for small groups, in local network environments, do not scale

to large, wide-area multicast groups. We present a new multicast transport framework

(MESH) designed speci�cally for the large-scale environment. Using the MESH frame-

work, we design a reliable data distribution protocol (MESH-R) and a deadline-driven

multicast transport protocol (MESH-M). To assess the performance and network overhead,

MESH-R and MESH-M are implemented in a high �delity simulation environment based

on the SURAnet and vBNSnet network architectures. We compare MESH's performance

to existing classes of transport designs (namely, centralized, tree-based, unstructured, and

FEC-based schemes), and show that the MESH framework compares favorably.

The remainder of this chapter motivates our research and is structured as follows: Sec-

tion 1.1 presents multicast network service models provided by IP and ATM networks. We

observe that both the Internet and ATM multicast data service models are inadequate for

many group-based applications. Section 1.2 discusses requirements of group-based applica-

tions and observes there is a common need for error control and receiver feedback transport

service. Section 1.3 gives an overview of multicast transport approaches and summarizes

the inadequacies of their designs for large-scale multicast. Section 1.4 presents the form of

our solution and thesis statement. Finally, Section 1.5 outlines the dissertation.

1.1 Background: Network Support for Multicast

When two or more networked computers exchange messages, there are many communica-

tion protocols that work together to make message delivery successful. Today's protocol

architecture is organized under the OSI reference model into the following layers: physical,

data link, network, and transport.

1.1. Background: Network Support for Multicast 4

In a layered multicast communications architecture, the data link, network, and trans-

port protocols must support multicast service, otherwise e�cient and high performance

group communication can not be realized. Data link and network multicast are discussed

below. Transport multicast is discussed in Section 1.2.

1.1.1 Data Link Multicast

Data link protocols control communication between network devices on the same local area

network (LAN) segment. Thus, data link multicast provides support for multicast groups

that are located on the same LAN, or LANs connected via bridges, repeaters, and switches.

Fortunately, data link multicast is easily accomplished for broadcast (e.g., Ethernet) or

token passing link protocols (e.g., Token-ring and FDDI) since network interface cards

(NIC) can be con�gured to �lter on both multicast and unicast frames. Today, every

widely deployed data-link protocol supports multicast.

1.1.2 Network Layer Multicast

The network layer controls the exchange of messages between multiple LAN segments. It is

critical that the network layer support multicast, otherwise a source would potentially have

to unicast N � 1 messages; one to each group member. With network multicast, a source

simply sends a message on the multicast group address. The network elements (e.g., routers

and switches) forward the message only on those links that ultimately lead to a receiver.

The Internet protocol (IP) and asynchronous transfer mode (ATM) are the two dominant

network layer protocols in today's infrastructure. Their service models are discussed below:

� IP [28] was originally designed to provide best-e�ort datagram service with no guar-

antees on delay, delay jitter, or drop rate. Researchers in the Internet Engineering

Task Force (IETF) are currently extending the IP protocol suite to o�er QoS guar-

antees [19, 27]. QoS classes under development include guaranteed service { which

1.1. Background: Network Support for Multicast 5

provides hard guarantees on delay and drop rates, and predictive service { which

provides predictive delay and drop rates.

� ATM networks o�er �ve service classes [2, 5]: (1) constant bit rate (CBR) { which pro-

vides hard bounds on delay and drop rates, (2) real-time variable bit rate (RT-VBR)

{ which provides hard guarantees on delay and drop for real-time, bursty tra�c such

as compressed video, (3) non-real-time variable bit rate (nrt-VBR) { which provides

guarantees on average delay and maximum loss rate, (4) available bit rate (ABR) {

which provides minimum throughput guarantees and, (5) unspeci�ed bit rate (UBR)

{ which provides no guarantees on delay, delay jitter, or drop rates.

IP and ATM service falls into two categories: best-e�ort (i.e., IP datagram and UBR

service) and QoS (i.e., IP guaranteed, IP predictive, ABR, CBR, VBR, and rt-VBR service).

The best-e�ort service class is intended for use by traditional data applications such as �le

transfer, email, remote login, transactions, and RPC. In contrast, the QoS service classes

are intended to provide service for applications with time-sensitive or other media-speci�c

constraints (e.g., a production videocast system requiring �xed bandwidth and bounded

transmission delay.)

This research focuses exclusively on best-e�ort networks. Although QoS networks are

important, they lack standardization and are not a standard service in public networks

today. Adding network multicast functionality to best-e�ort networks requires the following

three extensions: (1) multicast routing, (2) group membership detection, and (3) group

network addressing. Multicast routing involves building a routing tree from source(s) to

the receiver set, and dynamically modifying the routing tree to bypass congested or failed

links. Group membership protocols detect dynamic membership changes (i.e., joins, leaves

and failures) and inform the routing protocol to expand and prune the distribution tree

as appropriate. Finally, the addressing protocol assigns the multicast distribution tree a

network address (referred to as the multicast group address).

1.2. Background: Transport Support for Multicast 6

Research in multicast routing [43, 54, 76, 88, 93, 98, 100, 105], group management,

and addressing is extensive. Today, IP vendors have successfully integrated multicast rout-

ing (e.g., M-OSPF [72], PIM [33], and DVMRP [34, 35, 97]), group membership (e.g.,

IGMP [32]), and multicast addressing into their routing and switching products. Likewise,

ATM vendors have incorporated multicast routing and group management mechanisms into

their signaling protocol. Although interoperability remains an issue, best-e�ort multicast

service is available in limited form in today's production IP and ATM networks.

1.2 Background: Transport Support for Multicast

The transport layer bridges the gap between the application's communications requirements

and the service provided by the network. In this research, we use the standard IP multicast

service model given below:

� The network delivers messages to all, some, or none of the group members.

� The network does not identify which group members receive data messages, or what

end-systems are listening on the multicast group address.

� The network does not provide feedback concerning congestion, available throughput,

drop rates, or delay to the group members.

In best-e�ort multicast networks, two common transport protocol classes are fully

reliable and multimedia transport protocols. Each is discussed below:

� Fully reliable: Many multicast transport protocols guarantee that a message sent by a

group member is received by every group member. Thus, the transport protocol recov-

ers messages dropped by the network, and con�rms that each group member received

all messages. Reliable transport protocols are typically used by distributed process-

ing systems, data distribution systems, replicated remote procedure calls, groupware,

1.2. Background: Transport Support for Multicast 7

and fault-tolerant process groups. Further, reliable protocols provide service for

distributed consistency protocols (e.g., a total or causal ordering and atomic de-

livery protocols) used by replicated �lesystems, distributed databases, distributed

simulations, concurrent processing systems, and cache coherence protocols.

� Multimedia transport service: With recent advances in network technology, it is now

possible to use multicast networks for high bandwidth multimedia applications such

as audiocast [50, 90], videocast [39], group video conferencing [42, 99], distributed

whiteboards [41], interactive TV, and other multimedia systems (e.g., tele-medicine

systems). In contrast to reliable multicast, multimedia applications are loosely syn-

chronized groups that require real-time1 data delivery, but not necessarily reliable

delivery. Nonetheless, real-time applications perform best when data are not lost,

and thus a transport protocol that provides deadline-driven reliability is warranted.

Additionally, network performance feedback is useful to drive the source's coding

scheme.

In addition to error control, multicast transport protocols also provide
ow and con-

gestion control as well as application-speci�c services such as group management, fault

tolerance, and ordering services. Flow and congestion control mechanisms control the

source's transmission rate and pattern such that network and end-systems resources are

used e�ciently and are not overwhelmed. The transport layer can also provide fault toler-

ance mechanisms to detect when a group member has failed, and to provide a means for

members to recover missing data upon restart. Group management services handle dynamic

membership changes (i.e., joining and leaving) and collect member performance data. For

example, a multicast source may require throughput feedback for each member in the mul-

ticast group. Performance data allows a source to eliminate slow or unstable members of

the group.

1Here, real-time is de�ned as data whose value has a limited lifetime.

1.3. Introduction to Previous Work in Multicast Transport 8

1.3 Introduction to Previous Work in Multicast Transport

The �rst generation of multicast transport protocols rely on a central site for providing

multicast service. Chang and Maxemchuck [21] (CM) presented an early transport protocol

using a token-based approach. The token circulates around the group and (1) allows a group

member to send data, (2) informs group members of messages sent in the system, and (3)

provides a total message ordering. There are a number of variants of the CM approach [10,

18, 44, 53, 67, 101] designed for speci�c applications and network environments. Ease of

implementation and simplicity are the key advantages of centralized approaches.

The drawback to centralized schemes is that network and processing overhead grows pro-

portionally to the group size. Eventually, links close to the source become saturated, thereby

limiting data throughput. The scalability limitations have motivated researchers to con-

sider protocols that distributed protocol processing among group members. One common

approach is to hierarchically organize the multicast group into a tree-based structure [47,

62, 103], thereby localizing error control and aggregating feedback. The performance of

the tree-based approaches hinges on the ability to construct control trees that follow the

underlying routing tree. Constructing such trees at the transport layer remains an open

problem. Instead, tree-based protocols rely on manual organization (e.g., o�ine by an ad-

ministrator), network layer routing tables, non-standard network diagnostic options (e.g.,

scoping and traceroute), or modify network routers to construct the control tree.

To avoid the problems associated with establishing a control tree, many large-scale pro-

tocols disseminate control information to the entire group. Timer-based multicast channel

access strategies suppress duplicate control messages, while maintaining low service latency.

The advantage of the unstructured approach is that there are no points of failure or \struc-

ture" to maintain. Further, unstructured approaches can be implemented entirely at the

transport layer. The disadvantage is the signi�cant network overhead incurred by multi-

casting control information to the group. Often receiver feedback and error control services

are sacri�ced to control overhead.

1.4. Our Approach: MESH 9

1.4 Our Approach: MESH

This dissertation develops a novel framework, called MESH, for large-scale multicast trans-

port. MESH has the following characteristics: (1) it is a fully distributed, transport-layer

solution, (2) it presents a robust state synchronization protocol that provides detailed end-

system state for reliability, congestion control, group management, and other end-system

services, and (3) it achieves e�cient, low-latency error control service using a self-organizing,

soft-state recovery structure (hence, the name MESH). Key novel ideas in MESH include:

� Domain-based control structure: MESH constructs a hierarchical control structure

based on network domain boundaries found in networks today (e.g., local, campus,

and backbone domains).

� State synchronization: MESH uses a data-driven, multicast scheme to synchronize

group state. Network e�ciency is achieved using special nodes, called active receivers

(ARs), which aggregate and propagate domain state throughout the hierarchy.

� Performance-based error control: Within each domain, MESH uses sophisticated

heuristics to localize recovery of dropped messages between group members. The

heuristics are driven by observed network performance characteristics such as delay

and drop patterns. ARs recover errors between domains.

This dissertation develops a fully reliable protocol (MESH-R), and a deadline-driven

reliable protocol (MESH-M) based on the MESH framework. Using a high-�delity network

simulator, we show MESH-R and MESH-M compare favorably to (1) the tree-based, cen-

tralized, and unstructured protocol designs for single-source reliable applications, and (2)

forward error correction for multimedia applications. This leads us to our thesis statement:

Domain-based subgrouping and performance-based error control provides scalable

multicast transport service with higher performance and lower network overhead

than centralized, tree-based, and unstructured approaches.

1.5. Structure of Dissertation 10

1.5 Structure of Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 presents previous work in multicast transport protocol designs. We consider

background work in centralized, tree-based, and unstructured approaches, and we present

the MESH framework in detail.

Chapter 3 develops a high-�delity simulation environment that evaluates the perfor-

mance and network overhead of multicast transport protocol designs. First we develop

network models based on SURAnet and vBNSnet infrastructure. Next, we present a sta-

tistical characterization of campus and wide-area network tra�c based on data collected

in a backbone network. We then develop a tra�c model, called (M;P ;S), that e�ciently
generates background tra�c with the same statistical properties found in the characteriza-

tion study. Finally, we derive (M;P ;S) parameters to drive the background load in the

SURAnet and vBNSnet network simulations.

Chapter 4 develops MESH-R, a reliable multicast transport protocol based on the MESH

framework. We implement MESH-R and three other protocols (namely, centralized, tree-

based, and unstructured protocols) in the SURAnet and vBNSnet simulation environment

presented in Chapter 3. We compare the performance and overhead of each protocol for a

single-source, bulk �le distribution application. Our analysis demonstrates the e�ectiveness

of MESH's state synchronization and error control protocol. We show that MESH compares

favorably to the other protocol designs across a range of network utilization.

Chapter 5 develops MESH-M, a multicast transport protocol that provides deadline-

driven reliability suitable for multimedia applications. We compare the performance and

overhead of MESH-M to a number of FEC schemes in the SURAnet environment. Our

analysis shows that with some additional playback delay, MESH-M is attractive as compared

to FEC schemes across a range of network loss patterns.

Chapter 6 presents our conclusions, summarizes the contributions of this dissertation,

and outlines future research directions.

2

Multicast Transport Protocols: Previous Work

Contemporary multicast transport protocols can be characterized based on the type of

services provided, network model assumptions, target group size, and number of sources

supported (see [11, 40] for a complete characterization). Transport services are the most

discriminating of these characteristics, and can be roughly divided into three classes: (1) or-

dering protocols, (2) fully reliable protocols, and (3) real-time protocols. Sections 2.1, 2.2,

and 2.3 discusses previous work for each service class. Section 2.4 discusses current re-

search e�orts aimed at improving the scalability of multicast transport protocols. Finally,

Section 2.5, presents the MESH framework.

2.1 Multicast Ordering Protocols

Early research in multicast transport protocols focused on providing reliable, atomic, and

ordered message delivery for N � N distributed systems1. In addition to providing tradi-

tional end-to-end services, multicast ordering protocols ensure that messages are delivered

according to the ordering constraints speci�ed by the service model or application (e.g.,

causal or total ordering).

1In N �N protocols every group member is potentially a source.

11

2.1. Multicast Ordering Protocols 12

Chang and Mexemchuck (CM) [21] present the pioneer work on reliable, ordered mul-

ticast protocols. The CM algorithm circulates a token to all group members. The site

holding the token multicasts a sequenced acknowledgment for each message sent to the

group, thereby creating a total order. Token rotation is reliable; thus, failed members can

be detected.

There are many extensions and variations of the CM approach. Whetten [101] presents

the Reliable Multicast Protocol (RMP) which allows multiple groups, multiple ordering

constraints (i.e., source ordering and/or total ordering,) and multiple reliability guarantees

(i.e., reliable, unreliable or K reliable). Armstrong et al. [10] presents the multicast trans-

port protocol (MTP) which further centralizes the CM algorithm by electing a \master"

site to handle error control,
ow control, ordering, and membership. All group members

register with the \master" site as either a producer and/or consumer. The master schedules

the producers such that only one producer is active at any given time, thereby guaranteeing

a total ordering. Bormann et al. [18] propose MTP-2 which extends MTP's group joining

procedure, recovers if the master fails, allows the master to migrate, and prioritizes the

producers. Kaashoek et al. [53] presents RBP in which all messages are unicast to a central

site called the sequencer node. The sequencer, in turn, orders and multicasts the message

to the group. Spauster [44] extends the CM approach to multiple groups. Each subgroup is

assigned a central sequencing node, called a primary, which sends and receives messages for

the subgroup. Primaries exchange messages such that subgroup streams are combined in a

consistent manner as they are routed to their destination, thereby creating a total ordering.

Ma�es [67] also studies total ordering among multiple groups. Each subgroup is assigned a

group transport service (GTS) agent, which provides a total ordering within the subgroup

(inter-group total ordering is not addressed).

There are many other transport ordering protocols [14, 16, 15, 26, 55, 69, 73, 83] which

are not discussed here since their primary focus is the ordering algorithm, as opposed to

receiver feedback and error control.

2.2. Reliable Multicast Protocols 13

2.2 Reliable Multicast Protocols

The drawback to the multicast ordering protocols presented in Section 2.1 is the latency

and network overhead incurred by the ordering algorithm. For an application that requires

reliable multicast, but no multiple source ordering services, more e�cient and lightweight

protocols are su�cient.

The Xpress Transport Protocol (XTPv4) [4, 95] provides multicast service primitives

that o�er reliable and unreliable service for both single and multiple source groups. A central

agent, called the multicast group manager (MGM), maintains a list of group members

and tra�c speci�cations used by the error,
ow, and congestion control algorithms. The

application can specify which, if any, of the group members must receive the data reliably,

as well as how to handle member failures. For multiple sources, XTP is similar to RBP

in that each source �rst unicasts messages to the MGM, which in turn multicasts the

message to the rest of the group. The communication between the sources and the MGM

is a normal XTP unicast connection; thus, the MGM manages rate,
ow, and error control

independently for each source via XTP unicast. To desynchronize and reduce the amount of

return tra�c to the MGM, XTP uses slotting, damping, and polling techniques. Slotting is

a technique whereby receivers randomly back-o� retransmission requests. By multicasting

retransmission requests other receivers can \damp" out redundant requests.

Jain and Ramakrishnan [86] optimize the basic centralized approach by incorporating

negative acknowledgments and periodic polling messages (NAPP) for single-source reliable

multicast in LANs. Like XTP, error control uses negative acknowledgments (NACKs),

slotting, and damping. To ensure forward progress of the sender, each receiver periodically

sends a positive acknowledgment (ACK). However, ACKs are only required if there are no

errors (i.e., NACKs implicitly acknowledge correctly received messages.)

Crowcroft [30] and Cheriton [23, 24, 22] study LAN-based client-server applications2.

In Crowcroft's protocol, the client maintains send and receive windows for each server in

2In the client-server domain, the servers make up the multicast group.

2.3. Real-Time Multicast Protocols 14

the group. The minimum of the send windows establishes the amount of data the client

can send to all servers, and the individual server windows limit the retransmissions to any

given server. Error control is achieved using positive acknowledgments. Thus, clients can

desynchronize return tra�c
ow from the servers by delaying acknowledgments. In contrast,

Cheriton's VMTP protocol uses the response from the server as an implicit acknowledgment.

If the server response or client request is lost, the client will time-out and resend the request.

VMTP does not address
ow and congestion control.

Ammar [9, 25] improves the latency of single source, bulk data distribution by \par-

allelizing" the multicast stream. The protocol partitions the receiver set into subgroups

based on throughput and delay characteristics from the source. Thus, members with high

throughput will be grouped together and will receive the data in much less time than the

slow subgroups. Ammar also proposes the single connection emulation protocol (SCE) [96]

which lies between IP and TCP. The SCE layer handles group management and aggregates

SCE acknowledgments into a single TCP ACK. If all acknowledgments are not received by

the SCE protocol, TCP will time out and send a retransmission.

As opposed to retransmission, many protocols over-code the data stream such that

many network losses can be recovered without using retransmission. Jones [52] presents a

data distribution protocol based on saturation (also referred to as replication) combined

with negative acknowledgments for error control. More recently, Nonnenmacher [74, 75]

combines a forward error correction scheme [13, 87] (FEC) with centralized retransmission

to achieve reliable data distribution. The results show the FEC/ARQ hybrid error control

protocol (called NP), o�ers a substantial reduction in network overhead compared to pure

retransmission schemes.

2.3 Real-Time Multicast Protocols

For optimal performance, real-time applications require bounded transmission delay, error

rates, jitter, and throughput guarantees which can only come from the multicast network.

2.3. Real-Time Multicast Protocols 15

Such QoS guarantees obviate the need for transport-level error and congestion control.

Since QoS networks are not publicly available today, many real-time applications rely on

data-grade service found networks such as the MBONE. Real-time transport protocols in

best-e�ort multicast networks (or probabilistic and predictive QoS networks that exhibit

dynamic variations in QoS) primarily focus on network performance monitoring, group

membership, and other feedback service.

The real-time protocol (RTP) [91, 92] provides session and transport services for multi-

party interactive multimedia conferences3. RTP transport services include QoS and receiver-set

performance monitoring. In RTP, each member periodically multicasts reception perfor-

mance and sending state information. The sending state component includes the source

identi�er, NTP timestamp [70, 71], RTP timestamp, packet count, and octet count. The

reception component contains performance reports for up to 31 senders. Each report in-

cludes the source's identi�er, cumulative packets received, cumulative packets expected,

inter-arrival jitter, and the timestamp of the last report.

Yavatkar [104] investigates rate-adjustment, error control, and feedback strategies for

large-scale distribution of time-sensitive data. The following rate adjustment strategies are

evaluated: (1) majority policy - the rate is set to the majority of the receivers, (2) universal

policy - the rate is set to the minimum of the receivers, and (3) probabilistic policy - the

rate is probabilistically increased or decreased based on receiver feedback. Three redun-

dant transmission strategies are evaluated: (1) replication - a packet is duplicated every K

packets, (2) X-OR - an X-OR packet is generated every K packets, and (3) replication and

X-OR combined. Finally, three receiver feedback strategies are evaluated: (1) immediate

feedback, (2) random back-o� feedback, and (3) random back-o� with probabilistic feed-

back. Based on simulation experiments, the authors conclude probabilistic rate reduction,

replication and random feedback back-o� are the most promising techniques.

3The full set of services include: synchronization, stream multiplexing (mixing), stream demultiplexing,

media encoding identi�cation, error detection, encryption, and QoS monitoring.

2.3. Real-Time Multicast Protocols 16

Bolot et al. [17] propose a scalable feedback mechanism for single-source, large scale

videocasting in multicast data networks. The video source uses the receiver feedback to

adjust the video data rate to match the available bandwidth in the network. Feedback is

accomplished using sender-based polling with key-based matching. Both the sender and

receiver randomly generate keys at the beginning of a polling period. Sender polling mes-

sages include its key and a bitmask. If the receiver's key matches the sender key under

the bitmask, then it responds with its state (i.e., loaded, unloaded or congested). Once a

receiver replies for a given polling period, it does not respond to any other polling requests.

By increasing the number of signi�cant bits in the mask the sender can control implosion,

yet receive a response from every group member.

Braudes and Zabele present the reliable and adaptive multicast protocol (RAMP) [20]

for real time distribution of images. RAMP assumes a network with QoS capabilities (such

as the RSVP [106] approach proposed for IP) and supports priority data. The priority in-

formation is kept within the IP header, thus RAMP requires router support. Error control

is achieved using negative acknowledgments with selective retransmission. Flow and con-

gestion control is achieved using a dynamic rate-based mechanism driven by source quench

messages from routers and error rates.

In addition to feedback service, recent research focuses on layered distribution of real-

time data. McCanne [68] presents the receiver-driven layered multicast (RLM) protocol for

distribution of hierarchically encoded [93] video streams. RLM uses a parallel approach

similar to Ammar's scheme [9, 25], except each band in the video stream is multicast on

a di�erent address. Thus, slow receivers tune into low-frequency image bands, whereas

receivers with a fast connection tune into all bands thereby receiving the highest qual-

ity image. Li [59, 60] presents the layered video multicast with retransmissions (LVRM)

protocol which extends RLM with retransmission-based error control and hierarchical rate

control.

2.4. Distributed Multicast Transport Protocols 17

2.4 Distributed Multicast Transport Protocols

The protocols discussed in Sections 2.1, 2.2, and 2.3 rely on a central site to keep track of

all the receivers in the group; we call this the centralized approach. Central sites greatly

simplify many of the end-to-end, group management, and ordering algorithms. However,

one serious problem is that the central site must process all the control messages and

protocol overhead. Therefore, the performance of the multicast session is bounded by the

capacity of the central site to process protocol messages and receiver state. Eventually, as

the group grows in size, the protocol overhead either exceeds the central site's processing

capabilities or exceeds the available bandwidth of the communications links at the central

site (i.e., multicast implosion).

The protocols reviewed either do not consider scalability (i.e., were designed for small

groups), or use mechanisms to reduce the number of messages between the central site and

receiver set. For large groups, Pingali [84] shows that receiver-initiated approaches (e.g.,

negative acknowledgments, slotting, and damping) are e�ective control message reduction

techniques. However, receiver-based approaches perform best when receivers \eavesdrop"

on control messages sent from other receivers. Thus, control messages must be sent on the

multicast address (which is ine�cient in terms of bandwidth utilization), or all receivers

must be located on a broadcast network (which is not the case for large groups). Further,

receiver-based approaches are not suitable for applications in which the source must posi-

tively hear from the receiver set on a per message or periodic basis. Many protocols address

this problem using probabilistic polling and other polling acknowledgment desynchroniza-

tion techniques. These techniques work well for applications which can tolerate large polling

periods; however, acknowledgment desynchronization schemes are inappropriate for large

groups which require low latent, tight synchronization.

In general, control message desynchronization, polling, NACKs, slotting, and damping

techniques improve protocol scalability for certain applications and network environments.

However, as the receiver set grows the central site must ultimately sacri�ce performance by

2.4. Distributed Multicast Transport Protocols 18

quenching the data tra�c or sacri�ce services such as error recovery, group management,

and performance feedback. These scalability limitations are driving researchers to consider

distributed transport protocol design for large-scale, wide-area multicast.

2.4.1 Distributed Approach at the Network Layer

One distributed technique is to push error control and state-feedback services into the net-

work layer. For example, Rajapolan [85] presents the reliable multicast (RM) protocol which

distributes protocol processing into the network layer to achieve reliable, K-reliable, and

subgroup-reliable multicast. Error recovery is local between router pairs, thereby incurring

low network overhead and recovery delay. Each channel between router pairs uses window-

based
ow control, which in turn regulates the amount of data each source can send. A

gather operation allows sources to e�ciently obtain state information from the group. Pa-

padopoulos [77] proposes embedding retransmission service into network routers known as

subcast. Routers are con�gured to accept retransmission requests and replies from end-

systems, and forward them onto links which lead to receivers missing the data. Cisco [94]

has developed a similar scheme to Papadopoulos, except end-systems send NACKs directly

to the source (as opposed to a router). PGM enabled routers intercept NACKs, and subcast

an ACK to suppress redundant NACKs. If an end-system receives a router ACK and has

a copy of the data, it unicasts the retransmission to the source. PGM routers intercept

retransmissions and subcast it to the group.

Embedding error control and receiver feedback aggregation into the network layer is

an optimal solution because, (1) only a single request and reply are generated on a single

link, (2) retransmissions only traverse links which lead to a receiver missing the data,

and (3) requests and replies travel the routing tree. The drawback to RM, PGM, and

Papadopoulos's scheme is that network-layer protocols, software, and hardware must be

modi�ed to support the services. Although this approach may lead to high performance

and low cost reliable multicast, we believe it is unrealistic to expect these mechanisms to

2.4. Distributed Multicast Transport Protocols 19

be a standard service within network protocols such as IP, or link layer technologies such

as ATM and frame-relay.

2.4.2 Tree-Based Protocols

Paul [78] was the �rst to introduce a distributed transport protocol architecture, called

the Designated Status Protocol (DSG). DSG is similar to the RM protocol, except desig-

nated end-system receivers (DRs) perform error recovery and aggregate acknowledgments

as opposed to network routers. Like the RM approach, DRs enable error recovery and

control packet aggregation to proceed independently and concurrently in di�erent parts of

the network.

Figure 2.1 shows how DRs might be hierarchically organized in the SURAnet [3]4 net-

work architecture. The dark dashed lines indicate the multicast routing tree5 for a source

located at CTV and receivers located at each campus. Inside an arbitrary campus, say GIT,

communication is fast, cheap, and predominantly error-free. Thus, receivers inside GIT will

receive nearly identical subsets of the packets sent on the multicast address. Thus, it makes

sense to establish a DR representing the GIT campus. Further, campuses \downstream"

from GIT in the multicast routing tree (e.g., TAU, JKV) receive a subset of the messages

the GIT campus receives. Thus, it makes sense that the GIT DR is a parent node of TAU

and JKV. For example, Figure 2.1 shows receivers at JKV, MSB, and AUB sending protocol

control messages to the JKV DR. In turn, the JKV DR sends aggregated protocol control

messages to the DR located at GIT.

Lin and Paul [62] present the reliable multicast transport protocol (RMTP) which is

based on the RM protocol and the DSG architecture to provide reliable, single-source, data

distribution service. RMTP uses windowed
ow control with congestion avoidance [48]

to prevent overwhelming end-systems and network resources. Therefore, RMTP adapts

the sending rate to the slowest receiver. Receivers and DRs use a timer-based approach to

4SURAnet is a contemporary WAN connecting research institutions in the southeastern United States.
5A source-based tree, in this case.

2.4. Distributed Multicast Transport Protocols 20

3 Mbit/s Link

1.5 Mbit/s Link

Campus Network

Multicast Routing Tree

Source Campus Network

Protocol Control
Messages

GNU

MEM

BIR

JCK

TAU

MSB

AUB
MBJ

GIT

UMD

WVU

KNX

LEX

NOF

NEO

JKV

CTV

GIT DR

JKV Designated Receiver

End Systems @ MSB Campus

Designated Receiver

End System

Source Node

Figure 2.1: Subgrouping Example of SURAnet

periodically unicast ACKs up the DR hierarchy. ACKs include the largest sequence number

L of the message in which all subsequent messages have been received, a bitmap indicating

which messages were lost after message L, the receiver's maximum window size and the

maximum data rate the receiver can process. The source and DRs use ACKs to retransmit

data, adjust sending rates, release bu�ers and clean up aged state information. DRs cache

all the data sent on the multicast address; thus, a receiver can join late or recover from

failure and still receive the complete data stream. When a DR sends a retransmission via

multicast, it only sends the message on the subtree. Thus, like RM, RMTP must modify

network routers and routing protocols.

2.4. Distributed Multicast Transport Protocols 21

Holbrook et al. [47] present the log-based receiver-reliable multicast protocol (LBRM) for

distributed interactive simulations. LBRM uses a receiver-reliable approach to error control

but does not consider fault tolerance,
ow, rate or congestion control (these are considered

application-layer issues). LBRM is similar to RMTP in that designated receivers6 distribute

error-recovery overhead and log all messages sent from the source. If the receiver detects a

gap in the sequence space and wants to recover the lost message, it unicasts a retransmission

request (i.e., NACK) to the nearest logging server. Based on the number of NACKs, the

logger can decide to unicast or multicast the retransmission. In contrast to RMTP and the

polling mechanisms found in NAPP and XTP, LBRM uses a heartbeat scheme to provide

sub-second loss detection of a single packet. Whenever a message is transmitted, the source

includes the maximum time (i.e., heartbeat) before it will send another message. If the

source does not have data to send after the heartbeat has expired, then it sends a heartbeat

message with a larger heartbeat interval. LBRM is a strict transport layer solution. The

di�culty is that logging servers must be strategically placed in the network.

Yavatkar [103] presents the tree-based multicast transport protocol(TMTP) for single-

source data distribution. TMTP is a distributed protocol based on subgrouping and DRs,

thus it is very similar to RMTP. Like RMTP, each DR periodically sends positive acknowl-

edgments to its parent in the subtree for
ow control. Unlike RMTP, TMTP receivers

multicast NACKs using IP's TTL scope control7. This enables other receivers to damp out

redundant retransmission requests. The local DR also retransmits the packet under TTL

scope control such that all local receivers recover the message. Flow control is achieved

using a combination of window and rate-based control mechanisms. The rate is established

at the beginning of the session, and the windows are updated at each DR from ACK control

messages.

6Designated receivers are called logging servers in the LBRM protocol.
7Time to live (TTL) is value carried in the IP packet. Each time a router handles a packet, it decrements

the TTL �eld by one. If a router receives a packet with a TTL of 0, the router discards the packet.

2.5. The MESH Framework 22

2.4.3 Unstructured Protocols

Tree-based protocols perform exceptionally well when the control tree maps to the under-

lying network routing tree. However, constructing such trees at the network layer is still

an open problem. Alternatively, some protocols do not create an explicit control structure,

and multicast control messages to the entire group. Floyd et al. [41, 49] use an unstructured

approach called scalable reliable multicast (SRM) to provide transport service for Wb - a

shared, interactive whiteboard tool. Receiver feedback is accomplished by each member

periodically multicasting session messages8. Session messages contain the highest sequence

number received from every source in the group. When a node detects the network has

dropped a message, it multicasts a retransmission requests to the group. To avoid message

implosion, the request is slotted and redundant requests are damped. The closest group

member which has the data multicasts the retransmission; again, other receivers damp out

redundant retransmissions. Since SRM is unstructured and purely distributed, it has a

signi�cant robustness and portability advantage over RTMP, TMTP, and LBRM. However,

the cost and delay of multicasting error and session messages is substantial.

2.5 The MESH Framework

We present a general framework suitable for building large-scale transport services in [63].

Known as MESH, the framework supports rich state feedback and error control services for

single and multi-source reliable, multimedia, and other multicast application types. Key

criteria motivating the design of MESH include:

� Distributed overhead: Control processing and message overhead must be distributed

throughout the multicast group for a protocol to scale beyond a few dozen nodes or

to wide-area networks.

8The rate of session messages is targeted to be 5% of the target bandwidth of the Wb session.

2.5. The MESH Framework 23

Peering Point

Campus Domain

Backbone Interconnect Domain

Regional Backbone Domain

... ...

Router 2

Router 1

Net C(1) Net C(i+1)Net C(i) Net C(n)

Net R(1)

Net I(1)

Net R(n)

Net I(n)

A B C

Lan Segments

End-Systems

Figure 2.2: Internet domain hierarchy

� Localized service: Protocol services such as error control and receiver feedback must

be localized to achieve e�cient, low-latency service.

� Network independence: Protocols must not rely on network-level support beyond

basic IP-datagram service, otherwise the they will not port to other network environ-

ments.

� Dynamic control structure: Protocol control structures must adapt quickly to dy-

namic network congestion patterns, changes in group membership, and gracefully

handle failures.

2.5.1 MESH Domains

MESH partitions the multicast group into subgroups based on network domain boundaries.

For example, consider Figure 2.2 which shows the hierarchical organization of the Internet

today. The �gure shows four network domains: local, campus, regional, and backbone

interconnect. The lowest level (LAN segments) connects end-system device (e.g., A;B; and

C), whereas the highest level (backbone interconnect) provides long-haul, wide-area transit.

2.5. The MESH Framework 24

MESH's domain-based subgrouping strategy is motivated by (1) infrastructure found

in each network domain, (2) the nature of packet losses and transmission delays in hier-

archically organized networks, and (3) the ability to domain-scope multicast messages. In

particular, MESH's design is based on the following observations:

� Bandwidth is plentiful in the local and campus area networks, and backbone networks

represent the constrained resource.

� Packet loss and delay occurs primarily at the network exchange/peering points and in

the backbone networks. Thus, members within a given campus domain will receive a

similar set of packets and transmission delay relative to a particular multicast source.

� Domain multicast is easily accomplished. For example, consider a node on campus

network Net C(1) in Figure 2.2. In IPv6, multicast messages can be domain-scoped

such that it is only delivered to the nodes attached to Net C(1). In IPv4 networks,

domain scoping is also feasible via a local multicast address, or gateway service (e.g.,

con�guring a �rewall at \router 1").

Once the multicast group is hierarchically organized based on network domains, the

goal becomes localizing protocol processing as much as possible, thereby reducing service

latency and network load.

2.5.2 MESH State Synchronization

In MESH, receiver state is �rst synchronized locally within the domain, then between

domains. Note that exactly what state is exchanged, and the degree of synchronization

depends on the application's requirements. Nodes within a domain synchronize state using

domain-multicast service. For example, consider end-system A on network C(1) in Fig-

ure 2.2. By domain-multicasting, A's state messages are forwarded to end-systems within

network C(1) (i.e., B and C.) Domain-multicast has the following desirable properties: (1)

2.5. The MESH Framework 25

each member can identify and track the state of other members within its domain, (2) any

node can compose an aggregate state message representing all the end-systems within the

domain, and (3) there is no control structure to create or dynamically maintain.

Property (2) above allows a single member to report the state of the domain. MESH

leverages this property by selecting a single node within each domain to act as the domain's

\active receiver" (AR). The key role of the AR is to aggregate and forward domain state to

the next domain in the hierarchy. For example, an AR on Net C(1) can regionally domain-

multicast a state message such that it is scoped to networks C(1) - C(i). Thus, all receivers

within network C(2) - C(i) can determine the state of the receivers in network C(1) with

a single message. State synchronization is recursive; that is, campus domain ARs elect a

regional domain AR to report the state of receivers located in networks C(1) - C(i).

2.5.3 MESH Error Control

In the MESH framework, error control is based on a unicast request/response retransmission

strategy. Unlike the tree-based approaches, MESH does not build an explicit recovery

tree. Likewise, domain-multicast retransmissions are avoided due to the network overhead.

Instead, MESH relies on a number of heuristics to localize error control based on RTT

estimates between receivers and network error patterns observed. Like the state feedback

protocol, the MESH error recovery protocol �rst tries to locally recover lost messages within

the domain. For those packets that cannot be recovered locally, the AR attempts to recover

the message in the next higher domain. Like the state synchronization protocol, MESH's

error control and server selection heuristics are based on the type of service required by the

application (e.g., fully reliable and deadline driven reliable) as well as the desired e�ciency

and latency.

2.6. Summary 26

2.6 Summary

This chapter presented previous work in multicast transport protocol design. We �rst con-

sidered centralized protocols which provide ordering, reliability, and feedback services for

real-time data. We concluded that the centralized design does not scale to large groups or

wide-area networks. Next, we considered scalable protocols that distribute control process-

ing using a tree-based and unstructured approach. We showed that the tree-based protocols

present a scalable and e�cient solution, however, they require support from network soft-

ware in order to localize services. We considered unstructured approaches and showed that

they are a robust transport-layer solution. However, they are ine�cient and incur sub-

stantial network overhead as compared to tree-based designs. Finally, we presented the

MESH framework. We argued that the framework: (1) distributes network overhead using

a domain-based control structure, (2) provides a rich state feedback architecture based on

domain-multicast and AR state aggregation, and (3) provides localized error control via a

unicast request/response approach.

3

Wide-Area Multicast Network Simulation

This chapter develops a technique suitable to evaluate the performance and overhead of

large-scale multicast transport protocol designs such as MESH. In the literature, com-

mon protocol performance evaluation approaches include analytic models, simulation, and

empirical studies. Analytic evaluation is often the �rst technique employed because (1)

theoretical performance is easily obtained when the protocol is expressed mathematically,

(2) they are quick to compute, and (3) they give fair comparative performance between

protocol designs. However, analytic models are not well-suited to evaluate MESH and

other distributed multicast protocols because such protocols are not easily expressed math-

ematically. For example, researchers have yet to analytically model a modern unicast
ow

control algorithm, such as that found in TCP, because of the complex, dynamic interaction

with the error control algorithm, congestion control algorithm, round-trip time estimators,

and network state[8]. Distributed multicast transport protocols, such as MESH, represent

an even greater challenge to express mathematically due to the additional dependencies

between the end-systems in the group.

Empirical evaluation is in some respects ideal because the protocols are evaluated under

conditions of real network congestion, link errors, transmission delays, and router drops.

In this work, however, empirical evaluation is precluded because (1) extant wide-area data

27

28

networks do not o�er experimental multicast service, (2) detailed network management

statistics such as per-link loss and delay information are not available, and (3) there is no

means to control network load. Due to the limitations of analytic and empirical techniques,

computer network simulation is commonly used to evaluate large-scale transport protocols

for multicast applications. In general, simulation is attractive because protocol performance

and overhead can be predicted for contemporary and future high-speed networks under a

range of network congestion levels.

This chapter develops an empirically driven, high-�delity network simulation of SURAnet

and vBNSnet. We show the simulation environment is suitable to: (1) measure net-

work overhead introduced by a multicast protocol, (2) support large multicast groups with

dynamically changing membership, (3) support single and multi-source distributed, multi-

media, and continuous stream applications, (4) support large-scale, heterogeneous network

topologies with contemporary and next-generation infrastructure, (5) control network load

and congestion, and (6) run e�ciently on a contemporary high-end workstation.

The remainder of this chapter is organized as follows: Section 3.1 introduces the struc-

ture of the simulation environment developed and discusses issues related to discrete event

network simulation. Section 3.2 presents the local campus and wide-area networks consid-

ered. Section 3.3 presents the tra�c modeling approach used to drive delays and packet

drops within the campus network. Next, Sections 3.4-3.6 introduce and motivate the WAN

tra�c model by presenting a comprehensive characterization study of the statistical prop-

erties of a wide-area network packet arrival process. Sections 3.7-3.8 present the details of

the WAN model, and evaluates its accuracy in terms of the empirical traces. Finally, Sec-

tion 3.10 integrates the tra�c model into the network simulation described in Section 3.2,

and gives model parameters.

3.1. Introduction to Computer Network Simulation 29

3.1 Introduction to Computer Network Simulation

Computer network simulations have two main components: the network model, and the

background tra�c model. The network model consists of the transmission infrastructure,

networking elements (e.g., switches and routers), end-systems, and protocols which de�ne

how messages are delivered from source to destination systems. The tra�c model gener-

ates background load within the network, thereby driving queuing delays, packet drops,

transmission delays, and other network performance characteristics. Once the network and

background tra�c models are established, the protocol under consideration is implemented

within the end-systems (as is done with a real system) and the simulation is executed. Using

statistics gathered within the simulator, protocol overhead and application performance can

be expressed quantitatively for the network, group size, congestion, and application under

consideration.

In this research, we use a packet-level simulation approach to modeling computer net-

works. In a packet-level simulation, each network element (such as a router, transmission

link, and end-system) is modeled as a distinct entity. Network packets
ow individually from

the host system, through the network elements, and �nally to the destination. Each net-

work element models packet
ow within the device. For example, consider a network router.

Packets arrive at the input port, wait in the input bu�er, transfer across the backplane,

and �nally wait at the output port until the transmission link becomes available.

The key advantage to packet-level simulation is that with careful design, accurate net-

work performance characteristics can be achieved. The drawback, however, is that modeling

each packet and each network element requires signi�cant computational and memory re-

sources. For example, at a minimum, a discrete event simulator [8] must schedule two events

per packet transmission: (1) the packet must be queued in a local bu�er until the network

link is available and (2) the packet must be scheduled to arrive at the destination node.

Since each event requires a 100� 200 byte data structure within the simulator, substantial

memory is required even for a simple network architecture. Thus, packet-level simulation is

3.2. SURAnet and vBNSnet Network Model 30

often precluded for large networks, such as the global Internet [82]. In this research, we limit

the network infrastructure, network topology, simulation timing granularity, and precision

of the network element models such that a �ve minute network simulation executes in less

than 24 hours on a Sun UltraSparc 170 equipped with 320 MB of memory.

In a packet-level simulation, the network performance characteristics (e.g., end-to-end

transmission delays and drop rates) are driven by the background tra�c model. Thus, it

is critical that background tra�c models generate realistic network loads, otherwise any

protocol performance predictions will not be representative of performance found in a pro-

duction network. Computational e�ciency, however, is of equal importance since millions of

packets per second may have to be generated in a high-speed network environment. Hence,

the goal of the background tra�c models developed in this chapter is that is should be e�-

cient enough for use in a regional or national Internet backbone network simulation, while

retaining su�cient accuracy to faithfully model campus and wide-area network performance

characteristics.

3.2 SURAnet and vBNSnet Network Model

This section develops network models of SURAnet and vBNSnet { shown in Figures 3.1

and 3.2 respectively. SURAnet is chosen because it represents a large-scale, contemporary

Intranet or ISP network employing low-speed, T-1 infrastructure. Whereas, vBNSnet is

chosen because it represents a state-of-the-art, high-speed WAN based on 155 mbps OC-3c

infrastructure. Together, the SURAnet and vBNSnet network models provide a basis to

evaluate the performance and overhead of multicast protocols in low and high-speed network

environments.

SURAnet and vBNSnet provide backbone interconnect service for large university, cor-

porate, and small ISP networks. In the network model developed here, each SURAnet and

vBNSnet network access point (NAP) provides service for the campus network shown in

Figure 3.3. This simpli�ed campus network is modeled after the University of Virginia net-

3.2. SURAnet and vBNSnet Network Model 31

work (UVAnet) which uses FDDI backbones to interconnect Ethernet LANs. As Figure 3.3

shows, there is a four route hop between end-systems which reside within the campus net-

work (but not on the same LAN segment), and a two-hop route to the backbone network.

End-systems in the multicast group can be located on any one of the three Ethernet seg-

ments. Thus, the routes between the end-systems are su�ciently distinct such that campus

delays and drops create di�erent performance characteristics for multicast group members

located on the same campus network.

GNU

MEM

BIR

TAU
JKV

MSB

AUB
MBJ

GIT

UMD

WVU

KNX

LEX CTV

NOF

NEO

3 Mbit/s Link

1.5 Mbit/s Link

Campus Network

Multicast Routing Tree

Source Campus Network

JCK

Figure 3.1: SURAnet infrastructure and topology.

We use the Internet Protocol version 4 (IPv4) [28] as the network layer protocol. The

IPv4 protocol speci�cation provides \best e�ort" datagram service; that is, the network

makes no guarantees on throughput, transmission delay, transmission delay variation, de-

livery order, or drop rates. The basic IP packet consists of a source address, destination

address, checksum, transport protocol identi�er, packet length, transport protocol payload,

3.2. SURAnet and vBNSnet Network Model 32

Network Access Point

OC-3C Link

NCSA

CHICAGO

CORNELL

HOUSTON

PSC

CLEVELAND

MAE-EAST

DENVER

SDSC

SFC

NCSR

Multicast Routing Tree

Figure 3.2: vBNS infrastructure and topology.

Ethernet
Segment 3Segment 2

EthernetEthernet
Segment 1

FDDI Campus Backbone

To Backbone Network

End Systems

Network Router

Figure 3.3: Campus network model.

3.2. SURAnet and vBNSnet Network Model 33

and optional diagnostic �elds. The standard IPv4 header (i.e., those without options de-

�ned) is 20 bytes in length. IP packets are delivered from a source to a destination using

a routed approach; thus, there is no explicit network path (i.e., connection) setup between

end-systems in the group. Instead, routers use the packet's destination address as an index

into a routing table which determines the output link. After determining the appropri-

ate output port, the router queues the packet at the output interface bu�er until the link

becomes available.

In the Internet, routing tables are dynamically constructed using a link state (e.g.,

MOSPF[72]) or distance vector (e.g., DVRMP [34, 35, 97]) routing protocol. For simplicity,

the SURAnet and vBNSnet network models use static, shortest path �rst routing which

minimizes the number of hops. For example, Figure 3.1 illustrates the multicast routing

tree constructed for a source located at the CTV network access point (NAP) with receivers

located on each campus network. A variant of the Internet group management protocol

(IGMP) [32] determines the network location of the multicast group members and detect

dynamic changes. IGMP informs the routing protocol to expand and prune the routing tree

as members join and leave the group.

Within the campus network, data link multicast delivers multicast packets to receivers

on the same Ethernet segment. The campus network model also employs IPv6's domain-

scoping service. Routers at the WAN network boundary forward packets that have the

domain scope
ag only to internal campus links. Although domain-scoping is not a standard

service within IPv4, domain-multicast is easily accomplished today using a local multicast

address.

Within the simulation, the end-to-end network delay of a packet consists of the sum of

link propagation delays (�xed on each link), router queuing delays, and packet transmission

times. Network routers drop a packet if there is insu�cient output port bu�er space or

CPU cycles available using a tail-drop discard strategy.

3.3. Campus and Local Area Tra�c Model 34

3.3 Campus and Local Area Tra�c Model

Background tra�c is generated by two sub-models: one which generates background tra�c

within the campus network, and one which generates background tra�c within the wide-

area network. This section presents the tra�c model used within the campus network.

Sections 3.4-3.8 present a parameterized tra�c model which generates background tra�c

within the WAN.

The goal of the campus network tra�c model is to generate background load such

that application packet delay and loss rates represent the performance characteristics of

UVAnet. Figures 3.4 and 3.5 show delay and drop rates (where drops are shown as the

negative spikes) for an unicast 32 kbps voice stream over two and three hop routes within

UVAnet1. Of the �ve network paths studied (ranging from one to �ve hops in length),

the network performed very well with average transmission delays ranging from 3 � 7ms

(one-way), and an isolated drop rate of less than 1% of the stream. This data suggests that

UVAnet is engineered properly to support resource-hungry multicast applications and has

signi�cantly lower delay and drop rates as compared to the Internet today.

Figure 3.6 shows a common approach to modeling delays and drops at a LAN segment

router. The core idea is to statistically multiplex cross-tra�c (shown as dark packets) with

application packets (shown as light packets) at each router's output port. The statistical

properties of the cross-tra�c are carefully controlled such that the queuing delay and drop

rates correspond to router delay and drop statistics measured within UVAnet.

We employ the cross tra�c approach at each UVAnet campus router. We derive the

target packet drop rates by considering the utilization (in both packets and bytes per second)

and drop rates (due to output port bu�er over
ows) for the 14 Ethernet and 2 FDDI

interfaces presented in Table 3.1. The table was constructed by using the simple network

management protocol (SNMP) to query the Olsson router once per second during a weekday

1Refer to [38] for detailed analysis of transmission delay and drops as well as details concerning the

experiment.

3.3. Campus and Local Area Tra�c Model 35

0

50

100

150

200

0 50 100
Elapsed Time (sec)

200 250 300150

R
ou

nd
tr

ip
 T

im
es

 (
m

s)

Figure 3.4: Roundtrip times over a 2 hop path within UVAnet.

Elapsed Time (sec)

0

50

100

150

200

250

0 50 100 150 200 250 300 350

R
ou

nd
tr

ip
 T

im
es

 (
m

s)

Figure 3.5: Roundtrip times over a 3 hop path within UVAnet.

3.3. Campus and Local Area Tra�c Model 36

Cross-Traffic
Model

Ethernet / FDDI
Segment

Ethernet / FDDI
Segment

Campus Router

Application Packet

Background Packet

Source

Figure 3.6: Campus background tra�c approach.

afternoon. Table 3.1 shows that Ethernet drop rates are between 0% and 0:75%, and the

FDDI interfaces experienced no drops. We observed that drops are not correlated with the

interface's forwarding rate. For example, Ethernet interface 8 had the highest forwarding

rate of 148:3KB=sec and a drop rate of 0:001%. However, Ethernet interface 11 had the

lowest forwarding rate of 3:1KB=sec; however, it experienced a drop rate of 0:62%. Finally,

Ethernet interface 12 had a moderate forwarding rate of 83:7KB=sec, with the highest drop

rate of 0:75%. In the campus network simulation, the Ethernet interface drop rate is set at

0:4% (which represents moderate Ethernet interface drop rates) and the FDDI drop rate

is set at 0%. In addition, an error probability of 0:1% is added at each interface to model

discards due to malformed packets, processor overload, and router updates2.

Next we consider how packet drops are correlated in time. Figure 3.7 shows the drop

rate as a function of time (sec) for the three highest byte forwarding interfaces at the Olsson

router. The �gures show that packets are dropped in isolated bursts throughout the series.

Thus, for simplicity, packet drops are modeled independently and not correlated within the

router interfaces.

SNMP does not give �ne-granularity data on router input/output queuing, processing,

or media access contention delays. Therefore, the router delay model is based on end-to-

2During routing table updates, routing on the interface is temporarily suspended thereby causing packet

drops.

3
.3
.
C
a
m
p
u
s
a
n
d
L
o
c
a
l
A
r
e
a
T
r
a
�
c
M
o
d
e
l
37

0 5 10 15 20 25 30 35

0
1000

2000
3000

4000
5000

6000
7000

8000
9000

T
im

e (sec)

Discards

(a
)
D
rop

s
at

E
th
ern

et
in
terface

2.

0 1 2 3 4 5 6 7 8 9

0
1000

2000
3000

4000
5000

6000
7000

8000
9000

T
im

e (sec)

Discards

(b
)
D
rop

s
at

E
th
ern

et
in
terface

8.

0 50

100

150

200

250

0
1000

2000
3000

4000
5000

6000
7000

8000
9000

T
im

e (sec)

Discards

(c)
D
rop

s
at

E
th
ern

et
in
terface

12.

F
igu

re
3
.7
:
P
acket

d
ro
p
series

at
O
lsson

H
all

rou
ter

E
th
ern

et
in
terfaces

2,
8,
an
d
12.

3.3. Campus and Local Area Tra�c Model 38

Interface Packets/Sec KBytes/Sec Drop %

Ethernet Interface 1 15:4 11:7 0

Ethernet Interface 2 54:7 29:3 0:05

Ethernet Interface 3 9:0 6:3 0

Ethernet Interface 4 36:1 18:0 0:07

Ethernet Interface 5 16:6 6:1 0

Ethernet Interface 6 125:5 18:3 0

Ethernet Interface 7 43:1 12:0 0

Ethernet Interface 8 256:0 148:3 0:001

Ethernet Interface 9 56:8 19:0 0:003

Ethernet Interface 10 46:3 21:6 0:18

Ethernet Interface 11 3:8 3:1 0:62

Ethernet Interface 12 243:0 83:7 0:75

Ethernet Interface 13 18:4 5:4 0:03

Ethernet Interface 14 14:1 6:2 0:1

FDDI Interface 1 359:2 86:0 0

FDDI Interface 2 487:1 80:8 0

Table 3.1: Olsson router utilization and drop statistics.

end packet delays of the UVAnet traces presented in [38]. Figures 3.4 and 3.5 show that

transmission delays over a two and three hop route are steady except for occasional large

delays (up to 250 ms.) We ignore the outlying delay spikes and assign each packet a uniform

delay between 1� 3 ms at each output port. Like the loss model, delays are not correlated

between arrivals. In the worst case, the delay model gives a maximum delay of 12 ms

between two stations within the campus network, and a maximum of 6 ms delay to the

WAN access point.

Packet delay and drop patterns at campus routers are modeled independently from

adjacent routers. For example, if a burst of packets arrives at the router attached to Ethernet

3.4. Wide-Area Background Tra�c Model 39

segment 1 in Figure 3.3, the burst is not correlated with arrivals at router 2, router 3, or

the backbone router. Modeling the delays and drops independently in a campus network is

acceptable because most LAN tra�c is highly localized (e.g., �leserver and remote login);

thus, losses and delays are not correlated between routers as they would be in a WAN

environment.

3.4 Wide-Area Background Tra�c Model

In wide-area networks, the load at a particular router is a function of the load at adjacent

routers. Thus, the cross-tra�c model employed within the campus network is not appropri-

ate for wide-area models since packet delays and drops are not correlated between adjacent

network routers. Instead, the model developed in this section takes a di�erent approach by

introducing background tra�c at each WAN NAP representing the tra�c generated by a

contemporary campus network. Each packet is then routed in the WAN to a destination

NAP, thereby correlating network load at adjacent routers. The statistical properties of the

background tra�c and destination NAP address distributions control the delay and packet

drop rates within the WAN.

One common WAN background tra�c generation approach is to aggregate a number of

individual sources (e.g., using tcplib [31]) until the desired background load in the network is

achieved. Although the application-level aggregation technique is highly accurate, it is not

e�cient enough to scale to large backbone network simulations, especially those designed

to evaluate complex communication patterns such as reliable multicast.

In this research, we model WAN tra�c on a per-campus granularity using the technique

summarized in Figure 3.8. First, a self-similar process M models the aggregate packet

arrival distribution and correlation structure generated by campus network. We call this

sample path, representing arrivals per 100 ms, the aggregate stream. P then divides the

aggregate stream into individual campus streams| one for each destination campus network

access point within the WAN. Finally, a short-term burst process S takes the arrivals

3.5. WAN Statistical Characterization Experiment Setup 40

generated by P and creates a sample path with a high resolution timing granularity, e.g.,

arrivals per millisecond.

Aggregate Arrivals per 100ms

Campus Stream (1 ... N) Arrivals per 100 ms

Campus Steam i

Arrivals per msSPM
Aggregate Stream Model Partitioning Process Short-term Burst Model

Figure 3.8: (M;P ;S) tra�c model.

Computational e�ciency is a key advantage to the (M;P ;S) model. In general, gener-

ating a large-scale background load that faithfully models the arrival density and correlation

structure is di�cult and computationally expensive. Our scheme requires only a single ag-

gregate packet stream to be generated from each campus within the WAN. Further, each

stage in the (M;P ;S) model is e�cient { the computational complexity of generating a

sample path is O(N �P logP), where N is the number of campus networks and P is the size

of the sample path. The second key advantage is that the characteristics of the individual

streams created by the partitioning process P are a function of a small number of statistical

properties of the aggregate stream. By expressing the background tra�c in terms of the

aggregate stream parameters, we can study the WAN under consideration for a range of

congestion levels, independent of the underlying network topology and infrastructure.

3.5 WAN Statistical Characterization Experiment Setup

We use the statistical characteristics of the tra�c generated by the University of Virginia

campus network (UVAnet) to evaluate and motivate the design of the (M;P ;S) tra�c
model. We chose UVAnet because it represents tra�c generated by a large contempory

network, enterprise network, or small Internet service provider that would interconnect on

3.5. WAN Statistical Characterization Experiment Setup 41

a regional WAN. The data and analysis presented in this section develop the (M;P ;S)
background tra�c model. However, the data also contributes to understanding the fractal

behavior of wide-area network utilization as well as provide a benchmark to evaluate the

accuracy of existing tra�c models.

Our statistical analysis is based on 90-minute samples from a week-long trace of nearly

one billion IP packets exchanged between UVAnet, Virginia Educational and Research Net-

work (VERnet), and BBNplanet3 (at the time, UVA's global Internet access provider). The

network monitor used to collect the trace consists of a powerful workstation4, a customized

kernel with large network bu�ers and background processes disabled, and a kernel-level

packet �lter [1]. The network monitor provides a timestamp resolution within 100 �sec and

an observed drop rate of less than 0:005% over the entire trace.

3.5.1 Experiment Setup

Figure 3.9 shows the experimental setup which consists of three routers and a network

monitor interconnected by an Ethernet hub. The VERnet and BBNplanet routers are each

connected to three T1 links, while the UVAnet router is connected to UVA's backbone

FDDI concentrator. The �lter listens promiscuously on the Ethernet and capture all IP

packets sent between the UVAnet, VERNet and BBNPlanet routers. The �lter captures

the IP header and saves the IP source, IP destination, timestamp, and size of each packet

to disk. After compression, approximately six bytes are saved per packet.

Figure 3.10 depicts the nine-day packet trace captured by the packet �lter. The �gure

plots the number of packets exchanged between the three networks per 100-second interval

as a function of time. There are two periods where the monitor workstation went o�-

line. The �rst period occurred between 8PM Wednesday and 8AM Thursday due to a disk

problem, and the second failure occurred at 11PM on the second Tuesday due to a campus-

wide power outage. Two interesting observations about the data are: (1) the ratio of the

3SURAnet is the regional component of BBNplanet.
4Sun UltraSparc Model 170 with 192MB RAM and 8GB of disk space running Solaris 2.5.

3.5. WAN Statistical Characterization Experiment Setup 42

CISCO 2500 CISCO AGS/7000CISCO AGS/7000

UVAnet

(Global Internet)
BBNPlanetVERnet

Sun Ultra 170

Bay Networks Ethernet Hub

Monitoring Tool

Figure 3.9: Experiment Setup

peak to the minimum data rate is approximately 8:1, which is bursty at this timescale, and

(2) the packet rate is cyclical with periods of low utilization occurring around 5AM and

peak utilization occurring around 4PM.

3.5.2 Data Considered

The statistical analysis considers the packets leaving UVAnet destined for either BBNplanet

or VERnet during the one-day period highlighted in Figure 3.10. The study is limited to

outgoing packets because the end-goal of this section is to develop a model of packet arrivals

generated at a wide-area backbone network access point (e.g., packet arrivals for a large

campus network or small Internet service provider).

Figure 3.11 shows the number of packets generated by UVAnet per 10-second interval

over the 27 hour trace. The network monitor experienced a single burst of drops during the

27 hour period when, just before 12PM, the monitor timed out for exactly ten seconds and

dropped 9; 784 packets. The statistical analysis focuses on the three 90-minute intervals

highlighted in Figure 3.11. These intervals, namely the 2:15AM { 3:45AM (\2AM trace"),

3.6. Modeling the Packet Size 43

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Tue 12AM Thu 12AM Sat 12AM Mon 12AM Wed 12AM
Wed 12AM Fri 12AM Sun 12AM Tue 12AM

Time

Power failureMonitor offline

Pa
ck

et
s

pe
r

10
0

se
co

nd
s

Figure 3.10: Packets per 100 seconds for 9 day packet trace.

2:00PM { 3:30PM (\3PM trace"), and 9:00PM { 10:30PM (\9PM trace"), correspond with

periods of low, high and medium network utilizations, respectively, and because the arrival

processes are stationary over the duration5. We present three traces from a single 27 hour

trace. However, the statistical analysis results are consistent and representative of the data

collected throughout the entire week.

3.6 Modeling the Packet Size

This section characterizes and presents a model of the density and correlation structure

of the packet sizes generated by UVAnet. Figure 3.12 shows the empirical probability

distribution of packet sizes for the 2AM, 3PM and 9PM traces. The density is presented

on a logarithmic scale to highlight that a small number of packet sizes dominate the trace.

5Note that the packet arrival process must be stationary to evaluate its time-dependent properties.

3.6. Modeling the Packet Size 44

low utilization
(2AM)

medium utilization
(9PM)

high utilization
(3PM)

0

2000

4000

6000

8000

10000

Tue 12AM Tue 12PM Wed 12AM

Time

packet drop

Pa
ck

et
s

pe
r

10
 S

ec
on

ds

Figure 3.11: Packets per 10 second interval for �rst Tuesday packet trace.

In particular, approximately 75% of the packets are either 40� 44 or 552 bytes in length.

Inspection of the distribution also reveals \spikes" at 55, 60, 75, 144, 576, and 1500 byte

packets, accounting for 12% of the packets. For all three traces, the average packet size was

approximately 300 bytes. A key observation in Figure 3.12 is that the densities are nearly

identical for all three traces, which shows that the distribution of packet sizes is independent

of network utilization.

We next consider the correlation structure of the packet sizes. For a random pro-

cess fXigi=0;1;:::;N with sample mean X and sample variance of S2, the autocorrelation

function r can be estimated for all lag k as follows6:

6Autocorrelation describes the relationship of the size of packet i to packet i+ k. If r(k) = 0, then the

size of packet i has no impact on the size of packet i+ k.

3.6. Modeling the Packet Size 45

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0

Pe
rc

en
t

Packet Size
200 400 600 800 1000 1200 1400 1600

9PM

2AM
3PM

Figure 3.12: Probability density function of packet sizes.

r(k) =

PN�k
i=1 (Xi �X)(Xi+k �X)

(N � k)S2
(3.1)

Figure 3.13 gives the autocorrelation r(k) of the packet sizes plotted as a function of

the lag k for each trace. Since the tail converges rapidly to 0, we can conclude that packet

sizes are not correlated; i.e., the size of packet xi has a negligible in
uence on the size of

packet xi+1; : : : ; xn. The lack of correlation can be explained by the nature of statistical

multiplexing in IP networks. That is, packet sizes are most often highly correlated as they

are generated by the application [81]. However, as the network statistically multiplexes a

large number of independent connections, the correlation diminishes. For example, Fig-

ure 3.13 shows that the 9PM trace has the most correlation, and the 3PM trace has the

least correlation. The correlation analysis shows that packet sizes can be faithfully modeled

for a large campus network by independently choosing a packet size using the empirical

density function shown in Figure 3.12.

3.7. Aggregate Wide-Area Network Tra�c Model, M 46

-0.05

0

0.05

0.1

0.15

0.2

50 100 150 200 250 300 350 400 450 500

A
ut

oc
or

re
la

tio
n

9PM
3PM
2AM

Lag k (packets)

Figure 3.13: Autocorrelation function for packet sizes.

3.7 Aggregate Wide-Area Network Tra�c Model, M

This section develops a tra�c modelM which generates a sample path such that the corre-

lation structure and arrival distribution matches the UVAnet traces presented in Section 3.5.

Accurately modeling the arrival correlation of the tra�c stream generated by the campus

network is critical since packet bursts dramatically a�ect the WAN packet drop rate, varia-

tion in network transmission delay, and available network throughput. In developingM, we

�rst use a self-similar tra�c source to model the time-dependent component of the traces.

Next, we transform the sample path to match the arrival density of the UVAnet traces.

3.7.1 Time-Dependent Statistical Properties

The time-dependent properties of the UVAnet streams are shown in Figure 3.14 by plotting

the autocorrelation function of packet arrivals per 1 ms (note, the role of H is discussed

next). In contrast to the packet size correlation, Figure 3.14 shows the correlation structure

3.7. Aggregate Wide-Area Network Tra�c Model, M 47

H = 0.71

H = 0.74

H = 0.77

H = 0.80

H = 0.68
0

0.05

0.1

0.15

0.2

0

A
ut

oc
or

re
la

tio
n

3PM
9PM

2AM

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time Lag (seconds)

Figure 3.14: Autocorrelation function for the 2AM, 3PM and 9PM traces.

of packet arrivals is hyperbolically decaying, suggesting that the streams have long-range de-

pendencies [29]. The important property of an arrival process with long-range dependencies

is that the arrival burstiness is similar, independent of the time scale in which it is viewed

(so-called self-similar processes). Formally, a stationary process fXi j i = 0; 1; : : : ;1g and
its associated aggregated arrival processes fX(m)

i jm = 1; 2; : : : ;1g given by:

X
(m)
i = 1=m

i(m+1)�1X
k=im

Xk (3.2)

is exactly second-order self-similar if the autocorrelation r(m)(k) of each aggregated process

is given by [57]:

r(m)(k) = r(k); k � 0 (3.3)

and the variance is given by [57]:

Var(X(m)) = V ar(X)m�2(1�H) (3.4)

3.7. Aggregate Wide-Area Network Tra�c Model, M 48

The degree of self-similarity is expressed by the Hurst parameter H in equation 3.4. H

varies between 0:5 and 1, where a larger value indicates a higher degree of self-similarity. For

a short-range dependent process, such as the Poisson-based models in [46, 51], the Hurst

parameter will be approximately 0:5; thus, by (4), the correlation of a Poisson process

will fall o� as 1=m where m is called the aggregation level. Using the reference curves in

Figure 3.14 we see that the correlation structure of the traces correspond to self-similar

processes with H between 0:70 and 0:80; thus, they can not be accurately modeled with a

Poisson-based process. These results are consistent with studies showing the self-similarity

of LAN tra�c which have estimated the Hurst parameter as high as 0:82 [57].

3.7.2 Generating Self-Similar Tra�c

The literature gives number of tra�c models that generate long-range dependent tra�c

(see [45, 57, 80] and the references therein). In developing M, we model a particular class

of self-similar tra�c called Fractional Gaussian Noise (FGN) [12] using the Fast Fourier

Transform (FFT) method developed by Paxson [79]. The advantage to a FGN process

is that the degree of self-similarity can be expressed solely by the Hurst parameter. We

choose the FFTmethod (given in Appendix A.1) because an approximate FGN sample path

of length P can be e�ciently generated in O(P logP). E�ciency is crucial since a large

simulation must generate potentially millions of packets per second; thus, exact self-similar

processes based on fractional auto-regressive integrated moving averages (F-ARIMA) [7],

alternating renewal processes [57] and M/G/1 queues [29] are precluded because of their

computational complexity.

3.7.3 Modelling the Arrival Density

The next step in M is to transform the path such that the arrival density matches the

UVAnet stream. Using a maximum likelihood estimator (MLE), the distribution of packet

arrivals for UVAnet per 100 ms interval is �tted to the Pareto, Gamma, Weibull and Log-

3.7. Aggregate Wide-Area Network Tra�c Model, M 49

normal distributions7 . The goodness of �t is evaluated by plotting the quantiles of the

empirical data against the quantiles (Q-Q) of the �tted distribution. We model the arrival

density using a log-normal distribution because it faithfully captures the packet arrival

process for the entire range of the distribution as shown in the Q-Q plots presented in

Figure 3.15.

10

20

30

40

50

60

70

10 20 30 40 50 60 70

(a) 2AM trace.
20 40 60 80 100 120

20

40

60

80

100

120

(b) 9PM trace.

20

40

60

80

100

120

140

20 40 60 80 100 120 140

(c) 3PM Trace.

Figure 3.15: Q-Q plots of 2AM, 9PM and 3PM empirical traces versus �tted log-normal

distributions.

The FFT algorithm produces a Normally distributed (0; 1) FGN sample path with

long-range dependence corresponding to the Hurst parameter H . Next, fx0; :::; xn�1g is

transformed such that it is lognormally distributed with mean M and variance V 2 as fol-

lows: First, construct fx00; :::; x0n�1g such that x0i = xi
p
�2 + �; where � and �2 are given

by:

� = lnM � 1

2
lnf1 + V 2

M
2g (3.5)

�2 = lnf1 + V 2

M
2 g (3.6)

After this transformation, fx00; :::; x0n�1g is Normal(�; �2). Next, construct fx000; :::; x00n�1g
such that x00i = exp(x0i). The sample path fx000; :::; x00n�1g is now lognormal with mean M

and variance V 2.

7These distributions are commonly chosen to model LRD processes because they have a heavy-tail [80].

3.7. Aggregate Wide-Area Network Tra�c Model, M 50

3.7.4 M Evaluation

Table 3.2 gives the Hurst, mean (M) and variance (V 2) parameters used byM to model the

UVAnet traces. M and V 2 were obtained using a maximum likelihood estimator (MLE) for

the arrival process measured in the UVAnet traces. We used the semi-parametric algorithm

developed in [56] to approximate the Hurst parameter at H = 0:80.

Trace Mean Packets/100 ms (M) Variance (V 2) Hurst (H)

2AM Trace 23:49 96:67 0:80

3PM Trace 60:73 272:39 0:80

9PM Trace 46:16 193:43 0:80

Table 3.2: Parameters used to model UVAnet arrivals.

In Figure 3.16, the distribution of packet arrivals per 100 ms for the three hour-long

UVAnet traces are shown in solid lines, while the dashed lines give the arrival distribution

as generated by M. As the �gure shows, the �t is excellent.

The time-dependent accuracy of the synthetic stream generated byM is evaluated using

log-variance plots. A log-variance plot gives the degree of burstiness of an arrival process

over multiple time scales by plotting the logarithm (base 10) of the normalized variance

of the aggregated arrival process X(m) against the logarithm of its aggregation level, m.

Figure 3.17 shows log-variance plots for the synthetic traces in green, and the empirical

traces in red. The �gure shows that the variance of the arrivals for all three traces decay

slowly in proportion to a self-similar process with H = 0:65 for small aggregation levels, and

asymptotically as a self-similar process with H = 0:85. Further, M faithfully reproduces

the correlation structure of the UVAnet traces across the entire aggregation range.

3.7. Aggregate Wide-Area Network Tra�c Model, M 51

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120 140

Medium utilization (9PM)

Low utilization (2AM)

High utilization (3PM)

K packets

Pr
ob

. (
%

)
of

 K
 p

ac
ke

t a
rr

iv
al

s
in

 1
00

 m
s

Figure 3.16: Arrival distribution of empirical traces (solid lines) and synthetic (dashed lines)

for low, medium, and high network utilizations.

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5

L
og

10
 (

N
or

m
al

iz
ed

 V
ar

ia
nc

e)

Log10 (Aggregation Level)

Hurst = 0.65

1/Aggregation Level

Hurst = 0.75

Hurst = 0.85

Figure 3.17: Log variance plot of synthetic (green lines) versus empirical (red lines) for

2AM, 9PM and 3PM UVAnet traces.

3.8. Partitioning Model P and Short-term Arrival Model S 52

3.8 Partitioning Model P and Short-term Arrival Model S

In the context of the (M;P ;S) approach illustrated in Figure 3.8, the previous section

developed a computationally e�cient method M to accurately model the tra�c departing

a campus network. This section develops the remaining two processes P and S which (1)

partition the aggregate stream by assigning a destination network address to each arrival,

and (2) distribute the substream packet generated by P into arrivals per millisecond. We

then evaluate the accuracy of the (M;P ;S) approach by comparing the arrival density and
correlation structure of synthetic traces to an example partitioning of the UVAnet traces.

3.8.1 Partitioning Model P

P takes as input a set of m target arrival distributions fd1; d2; : : : ; dmg, where m gives the

number of campus destinations (NAPs) on the WAN. Each target distribution function di is

de�ned as a set of probabilities fpi;0; pi;1; : : : ; pi;nig, where pi;k is the probability of k packet
arrivals on substream i during a time interval of length � . The goal of P is to the sample

path generated by M into m substreams such that the packet arrival distribution for each

substream i matches the target arrival density di.

The aggregate tra�c stream generated by M is expressed as a sequence of packet

arrivals fx0; x1; : : : ; xn�1g, where xj gives the number of packet arrivals during time in-

terval [�j; (� + 1)j] (note � = 100 ms.) P constructs a set of m sequences fY1; Y2; : : : ; Ymg,
where Yi = fyi;0; yi;1 : : : ; yi;n�1g, such that xj =Pm

i=1 yi;j as follows: For each target density

function di, a discrete-time birth-death process (i.e., Markov chain) is constructed with Ni

states such that the steady-state probability that process i is in state k is exactly pi;k. The

\birth" and \death" transition probabilities � and � are determined using the well-known

relationship:

pi;k = pi;0

kY
l=1

�i;l�1
�i;l

(3.7)

3.8. Partitioning Model P and Short-term Arrival Model S 53

where �i;l is the probability of moving from state l to state l+ 1, and �i;l is the probability

of moving from state l to state l � 1.

For each time period j, the Markov chains are independently modulated to obtain m

state sequences fsi;j j 1 � i � m; 0 � j � n�1g, where si;j denotes the state of the ith chain
during the jth time interval. The Markov chains are normalized such that

Pm
i=1 psi;j = 1

for all j. Finally, each packet from the aggregate stream is independently and randomly

assigned a campus network address, where the probability that a given packet is assigned

NAPi is given by
si;jP
k sk;j

.

Note that model P satis�es the requirement for e�ciency since (1) each Markov chain

is modulated independently from the others, and (2) the cost of partitioning an aggregate

stream arrival generated byM involves rotating the Markov chains and generating a random

number to determine the destination campus network address (NAPi) for each packet in

xj .

3.8.2 S: Short-term Packet Arrival Model

Next we develop a model S which distributes the packet arrivals generated by P into short

term arrivals (i.e., arrivals per ms). One approach is to uniformly distribute packet arrivals

across the 100 ms interval, or use Poisson-based interarrivals. However, the analysis in [80]

shows that arrivals, when viewed at millisecond granularity, occur in bursts rather than a

continuous
ow.

S models the short-term arrival using the well-known packet-train model developed by

Jain [51]. The packet-train model considers packet arrivals as a sequence of bursts (so-called

trains), as opposed to independent events (so-called cars). A train is de�ned as a series of

arrivals, such that the elapsed time between any two packets does not exceed the maximum

allowable intercar gap (MAIG). The train size is de�ned as the number of packets within

the train, and the train length is de�ned as the elapsed time from the �rst to last packet. As

an example, Figure 3.18 illustrates the packet-train concept for the 2AM, 3PM, and 9PM

3.9. Application of the (M;P ;S) Model 54

campus substreams with addresses between 192.0.0.0 - 200.0.0.0. The �gures plot the train

size using a 5 ms MAIG for an arbitrary one-second interval.

The short term model S uses the packet-train approach to transforming the arrival

path Xi;j generated by P (where i refers to ith substream, and j refers to the jth sample)

into arrivals per ms. Since the average train size is related to the mean of the substream,

the average number of packets per train must be determined for each substream. S com-

putes the mean of each substreami f�1; �2; : : : ; �mg using the target arrival distributions

parameters fd1; d2; : : : ; dmg from P . The average number of packets per train is shown in

Figure 3.19 as a function of the mean of the campus substreams for the 2AM, 3PM and 9PM

traces. Using the equation l(x) = 12:5x + 1:35 shown in Figure 3.19, the average packets

per traini is given by l(�i). For each arrival xi;j , the packets are distributed throughout

the 100 ms interval by constructing a set of trains t1; t2; : : : ; tn such that the arrival time of

tn is � 100 ms from the arrival time of t0.. The size of packet train tk is determined using

a Poisson distribution with mean l(�i). The train interarrival time (i.e., the elapsed time

between train rk and rk+1) is determined by a Poisson distribution with mean
xi;j
l(�i)

.

3.9 Application of the (M;P ;S) Model

This section applies the (M;P ;S) tra�c model to an example partitioning of the UVAnet

traces described in Section 3.5. Table 3.3 gives the network masks used to partition the

aggregate stream into fourteen campus substreams based on destination IP address (for a

review of IP addressing, refer to [28]). The table gives the percentage of packets that each

substream contributes to the aggregate stream for the 2AM, 3PM and 9PM traces. The

Class A and Class D/E address spaces are each assigned their own campus stream, while

the Class B and C address space is partitioned along bits 2-5 into twelve streams of equal

size with respect to the number of network addresses they cover. Although this partitioning

is arbitrary, it is su�cient to illustrate the (M;P ;S) model and compare the correlation

and arrival density of the synthetic streams generated by (M;P ;S) to the UVAnet traces.

3.9. Application of the (M;P ;S) Model 55

0
2
4
6
8

10

Pa
ck

et
s

pe
r

T
ra

in

Time (ms)

0 200 400 600 800 1000

(a) 2AM Trace - Low Utilization.

0
2
4
6
8

10

Pa
ck

et
s

pe
r

T
ra

in

Time (ms)

0 200 400 600 800 1000

(b) 9PM Trace - Medium Utilization.

0
2
4
6
8

10

Pa
ck

et
s

pe
r

T
ra

in

Time (ms)

0 200 400 600 800 1000

(c) 3PM Trace - High Utilization.

Figure 3.18: Packet-train time series for (a) 2AM, (b) 9PM and (c) 3PM campus substreams

with addresses 192.0.0.0 - 199.255.255.255.

3.9. Application of the (M;P ;S) Model 56

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 p
ac

ke
ts

 p
er

 tr
ai

n

Mean (packets per ms)

Figure 3.19: Number of packets in a train plotted against the mean of the campus substream

(in packets per 1ms).

The arrival distributions D = fdclass a; d128�135; : : : ; dclass dg, and the packet train sizes

S = fsclass a; s128�135; : : : ; sclass dg are constructed for the UVAnet 3PM campus substreams

created by the partitioning given in Table 3.3. Next, we construct synthetic streams for the

3PM trace using M(M = 60:73; V 2 = 272:39; H = 0:80) 8, P(D), and S(S).

Figure 3.20 compares the arrival density of the synthetic stream (dashed lines) with the

empirical streams (solid lines) for the �ve largest streams in the 3PM trace 9. For the three

largest streams, the arrival density of the synthetic stream matches the empirical stream

closely. For the smaller streams, the �t is also good except the synthetic tra�c slightly

underestimates the peak and overestimates the tail of the distribution. For comparison,

Figure 3.21 shows a simple, �rst-order partitioning approach which divides the aggregate

8These parameters were derived in Section 3.7.
9For clarity of presentation, the remaining smaller streams are omitted.

3.9. Application of the (M;P ;S) Model 57

Filter Mask 2AM Trace 9PM Trace 3PM Trace

0:0:0:0� 127:255:255:255 (Class A) 1:6% 1:6% 1:7%

128:0:0:0� 135:255:255:255 (Class B) 20% 20% 21%

136:0:0:0� 143:255:255:255 (Class B) 6:9% 5:9% 3:9%

144:0:0:0� 151:255:255:255 (Class B) 3:0% 3:0% 2:4%

152:0:0:0� 159:255:255:255 (Class B) 4:2% 7:7% 6:3%

160:0:0:0� 167:255:255:255 (Class B) 3:0% 3:0% 2:4%

168:0:0:0� 175:255:255:255 (Class B) 0:6% 1:4% 1:0%

176:0:0:0� 183:255:255:255 (Class B) 0:0% 0:0% 0:0%

184:0:0:0� 191:255:255:255 (Class B) 0:0% 0:0% 0:0%

192:0:0:0� 199:255:255:255 (Class C) 21% 26% 22%

200:0:0:0� 207:255:255:255 (Class C) 40% 32% 39%

208:0:0:0� 215:255:255:255 (Class C) 0:0% 0:1% 0:2%

216:0:0:0� 223:255:255:255 (Class C) 0:0% 0:0% 0:0%

224:0:0:0� 255:255:255:255 (Class D/E) 0:3% 0:1% 0:2%

Table 3.3: Network �lter mask and percent of tra�c for 2AM, 9PM and 3PM traces.

stream based on the relative probabilities given in Table 3.3. Note that the �rst-order

approach does not accurately model the arrival density for any of the 3PM campus streams.

Figure 3.22 shows the log-variance plot for the empirical and synthetic substreams for the

3PM traces. As the �gure shows, the self-similarity of the synthetic streams in Figure 3.22(b)

compares favorably to the empirical log-variance plots depicted in Figure 3.22(a) for all

aggregation levels. Note that in the synthetic tra�c, the initial slope of the variance falls

o� as 1=m, underestimating the empirical data. This e�ect is created by the short-term

packet model S which uses a Poisson distribution to model the short-term packet arrivals.

However, at one order of magnitude (i.e., arrivals per 100 ms) on the log-variance plot, the

slope begins to fall o� as a self-similar process with a Hurst parameter of 0.80. The increase is

driven byM, which generates self-similar packet arrivals at the 100 ms granularity. Finally,

at three orders of aggregation, the variance of the synthetic begins to underestimate the

3.10. SURAnet and vBNSnet Simulation Parameters 58

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40 45

200.0.0.0 - 208.0.0.0 Stream

192.0.0.0 - 200.0.0.0 Stream

136.0.0.0 - 144.0.0.0 Stream

152.0.0.0 - 160.0.0.0 Stream

128.0.0.0 - 136.0.0.0 Stream

K packets

Pr
ob

. (
%

)
of

 K
 p

ac
ke

t a
rr

iv
al

s
in

 1
00

 m
s

Figure 3.20: Probability density function for empirical campus streams (solid lines) and

model P (dashed lines) for 3PM trace.

long-term burstiness. This decrease is an e�ect of the Markov chain (used in model P)
smoothing the long-range burstiness of the tra�c generated by M. Overall, however, the

synthetic streams generated by (M;P ;S) closely match both the arrival distribution and

correlation structure of the empirical traces.

3.10 SURAnet and vBNSnet Simulation Parameters

This section integrates the (M;P ;S) background tra�c model into the SURAnet and vB-

NSnet network models presented in Sections 3.1-3.3. First, Section 3.10.1 derives tra�c

model parameters for both SURAnet and vBNSnet, discusses implementation issues, and

gives tra�c model customizations. Next, Section 3.10.2 presents the set of parameters used

to drive SURAnet and vBNSnet network load from light to peak utilization. Finally, Sec-

3.10. SURAnet and vBNSnet Simulation Parameters 59

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

128.0.0.0 - 136.0.0.0 Stream

136.0.0.0 - 144.0.0.0 Stream

200.0.0.0 - 208.0.0.0 Stream

152.0.0.0 - 160.0.0.0 Stream

192.0.0.0 - 200.0.0.0 Stream

K packets

Pr
ob

. (
%

)
of

 K
 p

ac
ke

t a
rr

iv
al

s
in

 1
00

 m
s

Figure 3.21: Simple partitioning approach for 3PM trace using empirical probability.

tion 3.10.2 presents the observed end-to-end network delays and drops in the SURAnet and

vBNSnet simulations for the range of background load considered.

3.10.1 SURAnet and vBNSnet (M;P;S) Model Parameters

Incorporating the (M;P ;S) tra�c model into the SURAnet and vBNSnet network envi-

ronments involves deriving the model parameters for each submodel M, P , and S. Each

submodel is discussed below:

� ModelM: As presented in Section 3.7,M takes three input parameters: meanM (in

packets per 100 ms), variance V 2, and Hurst parameterH . M and V 2 characterize the

arrival density generated by a campus network, whereas H is used to control the self-

similarity of the tra�c. Section 3.7 estimatedM and V 2 for UVAnet using a lognormal

MLE. The data show that for UVAnet, V
2
can be approximated as 4:2 timesM ; thus,

in both the SURAnet and vBNSnet simulations V 2 = 4:2 �M . Section 3.7 showed

3.10. SURAnet and vBNSnet Simulation Parameters 60

-3

-2

-1

0

0 1 2 3

L
og

10
 (

N
or

m
al

iz
ed

 V
ar

ia
nc

e)

Class D/E Traffic

No Correlation (1/M)

Log10 (Aggregation Level)

Hurst = 0.85

Hurst = 0.75

Hurst = 0.65

(a) Empirical substreams.

-3

-2

-1

0

0 1 2 3

L
og

_1
0

(N
or

m
al

iz
ed

 V
ar

ia
nc

e)

Aggregation Level

Class A Traffic

Class D/E Traffic

No Correlation (1/M)

Hurst = 0.65

Hurst = 0.75

Hurst = 0.85

(b) Synthetic substreams.

Figure 3.22: Log-variance plot of 3PM component substreams. Note the correlation

structure of the synthetic (b) match the empirical (a).

that H = 0:80 faithfully models the self-similarity of UVAnet over the entire range of

network utilization. Thus, H is �xed at 0:80 for all values of M in the SURAnet and

vBNSnet simulations, and the background load is characterized solely by M .

� Model P: As presented in Section 3.8.1, P takes as input a set of probability density

functions fpdf0; pdf1; : : : ; pdfng; where pdfi represents the target arrival density for the
substream destined for campus network access point i. Using fpdf0; pdf1; : : : ; pdfng,

3.10. SURAnet and vBNSnet Simulation Parameters 61

P partitions the sample path generated by M into n � 1 substreams. Section 3.8.1

derived fpdfclassA; pdf128�135; : : : ; pdf224�255g by considering the substreams obtained

by partitioning the UVAnet traces along class A, B, C, and D/E IP addresses. The

PDFs used in the SURAnet and vBNSnet simulations are created in the same manner,

except the partitioning tables are customized for each network model. Tables 3.4

and 3.5 are used to derive PDFSURAnet and PDFvBNSnet respectively. Each table is

discussed below:

The SURAnet partitioning table is constructed such that 10% of network tra�c is

local to SURAnet, and the remaining 90% is routed to the global Internet. Each

component substream is de�ned by �rst considering (where possible) the IP address

blocks assigned to SURAnet campus networks. For example, address block 130:207:0:0

is assigned to the GIT campus; thus, it is included in the GIT substream de�ni-

tion 130:107:0:0� 130:255:255:255. Next, the capacity of infrastructure connecting

the campus network to SURAnet is considered and assigned an address block with

proportional tra�c volume. In addition to the 17 campus networks, two additional

nodes UMD-NXP and GIT-NXP are added as the SURAnet network exchange points

(NXPs) located at GIT and UMD. The (M;P ;S) model is not employed at the UMD-

NXP and GIT-NXP, since such tra�c does not represent the tra�c generated by a

campus network. Instead, the NXPs simply re
ect incoming packets to the SURAnet

source. Finally, PDFSURAnet : fpdfUMD; pdfNOF ; : : : ; pdfUMD�NXPg is constructed
by applying Table 3.4 to the UVAnet traces.

The vBNSnet partitioning is shown in Table 3.5. Since vBSNnet packet traces are

not available, Table 3.5 is based on statistics reported in the April, 1997, vBNS man-

agement and operations report [6]. PDFvBNSnet : fpdfPSC ; pdfNCAR; : : : ; pdfMAEg is
constructed by applying Table 3.5 to the UVAnet traces.

� Model S: As described in Section 3.8.2, model S distributes the arrivals per 100 ms

generated by P into arrivals per ms. In the SURAnet environment, S is implemented

3.10. SURAnet and vBNSnet Simulation Parameters 62

SURAnet Node # T-1 Links Assigned Address Range % Tra�c

UMD 6 128.0.0.0 - 128.31.255.255 0:80%

NOF 3 128.32.0.0 - 128.83.255.255 0:71%

CTV 5 128.84.0.0 - 128.111.255.255 0:74%

WVU 4 128.112.0.0 - 128.123.255.255 0:51%

LEX 4 128.124.0.0 - 128.150.255.255 0:47%

GNU 4 128.151.0.0 - 128.168.255.255 0:52%

TAU 5 128.169.0.0 - 128.173.255.255 0:72%

MEM 2 128.174.0.0 - 128.182.255.255 0:27%

BIR 4 128.183.0.0 - 128.196.255.255 0:58%

KNX 3 128.197.0.0 - 128.217.255.255 0:41%

JCK 4 128.247.0.0 - 128.234.255.255 0:55%

NEO 2 128.248.0.0 - 128.255.255.255 0:32%

JKV 4 130.0.0.0 - 130.15.255.255 0:46%

MBJ 2 130.16.0.0 - 130.70.255.255 0:26%

AUB 2 130.71.0.0 - 130.90.255.255 0:21%

MSB 2 130.91.0.0 - 130.106.255.255 0:29%

GIT 14 130.107.0.0 - 130.255.255.255 1:55%

GIT-NXP NA 0.0.0.0 - 127.0.0.0, 31:2%

129.0.0.0-129.255.255.255,

131.0.0.0-191.255.255.255,

224.0.0.0-255.255.255.255

UMD-NXP NA 192.0.0.0 - 223.255.255.255 59:4%

Table 3.4: Network address ranges used to de�ne SURAnet substreams.

exactly as described in Section 3.8.2. However, in the vBNSnet simulation, S is

modi�ed such that if the average train interarrival time is less than 10 ms for the

ith arrival generated by P , then S distributes the packet arrivals using a Poisson

distribution. The Poisson model is used because in the vBNSnet tra�c model, packet

arrival bursts can exceed 30K packets per second. Such an arrival process is not well

suited for the packet train model which organizes the arrivals into bursts (i.e., trains)

3.10. SURAnet and vBNSnet Simulation Parameters 63

vBNSnet Node Assigned Address Range % Tra�c

PSC 0.0.0.0 - 128.255.255.255 8:23%

224.0.0.0 - 255.255.255.255,

NCAR 129.0.0.0 - 131.255.255.255 9:46%

Chicago 132.0.0.0 - 137.255.255.255 9:35%

Denver 138.0.0.0 - 151.255.255.255 5:55%

Cornell 152.0.0.0 - 191.255.255.255 7:96%

SFC 192.0.0.0 - 192.255.255.255 11:0%

SDSC 193.0.0.0 - 198.255.255.255 13:81%

Clevland 199.0.0.0 - 203.255.255.255 9:21%

Houston 204.0.0.0 - 204.255.255.255 8:63%

NCSA 205.0.0.0 - 205.255.255.255 6:94%

MAE 206.0.0.0 - 223.255.255.255 9:76%

Table 3.5: Network address ranges used to de�ne vBNSnet substreams.

followed by periods of silence. Finally, in the vBNSnet environment, background

packets are introduced into the network at a rate of 1=arrivalj �sec, where arrivalj

is the number of packets in the jth generated by S (note: 0 � j < 100.) This step is

necessary because a sub-millisecond timing granularity is required for the high-speed

vBNSnet infrastructure.

3.10.2 SURAnet and vBNSnet Delay and Drop Rates

Section 3.10.1 presented (M;P ;S) model parameters for SURAnet and vBNSnet. The

parameters are �xed for each simulation environment, except forM , which drives the back-

ground tra�c generated at each campus network. This section presents the range for M

used in the SURAnet and vBNSnet simulations. M is parameterized such that congestion

levels vary from light to peak congestion with network drop rates approaching 20% on the

worst case network path. The 20% drop rate is chosen to provide a broad spectrum to

3.10. SURAnet and vBNSnet Simulation Parameters 64

evaluate protocol performance, and because it represents error rates found in congested

Internet paths today.

3.10.2.1 SURAnet Performance

The statistical characterization of wide-area packet arrivals presented in Sections 3.4-3.6

show that UVAnet generates between 20 and 60 packets per 100 ms. Thus, M = 20 at

the UVAnet campus would generate tra�c corresponding to light load, whereas M = 60

corresponds to heavy load. Since each campus network on SURAnet has various access

speeds,M scaled relative to the CTV NAP based on the access speed and tra�c distribution

given in Table 3.4. For example, MSB has 3 mbps access to SURAnet, whereas UVAnet

has 5.5 mbps access. Thus, the proportion of tra�c generated at CTV (given by MCTV)

nearly twice that of MSB (MMSB).

In the SURAnet simulation environment, network load M at the CTV NAP (also re-

ferred to as the UVA NAP) is considered between 10�70 packets per 100 ms. Although this
range is slightly larger as observed in the UVAnet traces, it realizes the worst-case target

network drop rate of approximately 20%.

Tables B.1 and B.2 in appendix B give the round trip times observed within the SURAnet

simulation. The delay statistics were collected by having stations at each campus send a 100

byte probe message every 100 ms to a station located at each remote campus network. The

remote station immediately re
ected the probe message. As Tables B.1 and B.2 show, the

delays under light load roughly correspond to the propagation delay in the WAN plus the

campus network access delay (which averages 4 ms). For example, the delay between UVA

and UMD averages 21 ms. Of the 21 ms, 16 ms is incurred within the campus networks, 2 ms

is the link propagation delay within SURAnet, and 3 ms is SURAnet queuing/transmission

delay. Under heavy load (M = 70), the average round-trip time is 203 ms with a peak delay

of 970 ms between UMD and MSB. Under heavy load, delay is dominated by queuing delays

within SURAnet. The SURAnet delays are shown graphically between UVA and selected

3.10. SURAnet and vBNSnet Simulation Parameters 65

campus networks in Figure 3.23. Note that the delays are roughly constant until M = 30,

then rise sharply until M = 60 at which point the marginal delay decreases because the

network has reached saturation.

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70

Background load (packets per 100ms)

R
ou

nd
-t

ri
p

ne
tw

or
k

de
la

y
(m

s)

NOF

NEO
MSB

GIT

GNU

LEX

Figure 3.23: SURAnet round-trip delays for M = 10� 70 background packets per 100 ms.

Tables B.3 and B.4 in appendix B give the network drop rates observed within the

SURAnet simulation for light and peak load. Note that during light load (M = 10),

roundtrip network drop rates are less than 8% on the worst-case path. However, at peak

load (M = 70), round-trip drop rates are as high as 43%. Figure 3.24 plots the network drop

rates from the CTV campus to selected sites. Note that the network drop rates remain fairly

constant until M = 40, then increase sharply. This is because utilization at the routers at

GNU and GIT begin to approach capacity. Thus, the network performance between nodes

on either side of GNU and GIT remains good; however, communication performance across

these boundaries is relatively poor.

3.10. SURAnet and vBNSnet Simulation Parameters 66

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70

Pa
ck

et
 d

ro
p

(%
)

Background load (packets per 100ms)

NOF

GNU

LEX

GIT

NEO

MSB

Figure 3.24: SURAnet round-trip drop rates for M = 10� 70 background packets per 100

ms.

3.10.2.2 vBNSnet performance

To achieve a one-way network drop rate of 20% in the vBNSnet network model described

in Section 3.1 requires M at each NAP to approach 60000 packets per second. At this

packet rate, a �ve hundred second network simulation requires 450MB of real memory, and

three days execution time on an UltraSparc 170 equipped with 320MB RAM. To bring the

memory requirement below 200MB and execution time less than 24 hours, the packet size

distribution shown in Figure 3.12 is scaled by a factor of three to 4500 bytes. Although

a 4500 transmission unit exceeds the maximum sized Ethernet packet of 1500 bytes, such

a maximum transmission unit (MTU) is reasonable in future high speed networks. Even

today, 4500 byte packets are common on the vBNSnet backbone since many end-systems

are connected via FDDI (note that the MTU in an FDDI network is 4500 bytes.)

The vBNSnet background load M is parameterized between 700 and 2700 packets per

100 ms. Tables B.5 and B.6 in appendix B give the simulated vBNSnet round-trip delay

3.10. SURAnet and vBNSnet Simulation Parameters 67

for M = 700 and 2700 respectively. Like the SURAnet simulation, the round-trip times

under light utilization (M = 700) are almost entirely composed of WAN propagation and

campus network delay. However, unlike SURAnet, delays under peak utilization (M = 2700)

increases slightly. This is because the transmission and queuing delays in a high-speed OC-

3C infrastructure become insigni�cant as compared to the propagation delay. Figure 3.25

plots the observed delays from the SFC node to selected sites. Again, note the slow increase

in round-trip delays as compared to the SURAnet environment.

20

30

40

50

60

70

80

90

500 1000 1500 2000 2500

den

cle

mae

cor
psc

hou

chi

N
et

w
or

k
ro

un
d-

tr
ip

 d
el

ay
 (

m
s)

Background load (packets per 100ms)

Figure 3.25: vBNSnet round-trip delays for M = 700 � 2700 background packets per 100

ms.

Tables B.7 and B.8 in appendix B give the vBNSnet round-trip drop rates forM = 700

and 2700 respectively. Under light utilization (M = 700), the round-trip network drop

rates are between 2 � 4%, and peak at 38% under high utilization (M = 2700). Note that

like SURAnet, as the network load increases, bottleneck points begin to appear. In the

vBNSnet simulations, the bottleneck appears in the CLE and CHI NAPs. Thus, network

performance on either side of the bottleneck points is still good at high utilization. However,

3.11. Summary 68

performance across the bottleneck points degrades sharply with M . Finally, Figure 3.26

plots the observed network drop rate from SFC to selected sites. Note the poor performance

to CLE and COR as compared to PSC; PSC's route follows SDS, HOU, and MAE and avoids

the CHI bottleneck.

0

5

10

15

20

25

30

35

500 1000 1500 2000 2500

psc

den

hou

mae

chi

cle

cor

Background load (packets per 100ms)

Pa
ck

et
 d

ro
p

(%
)

Figure 3.26: vBNSnet round-trip drop rates for M = 700 � 2700 background packets per

100 ms.

3.11 Summary

In this chapter, we developed a high-�delity network simulation environment suitable to

evaluate the performance and overhead of multicast transport protocols. We considered

two backbone networks, namely SURAnet and vBNSnet. SURAnet is chosen because it

represents a contemporary low-speed network using T1 infrastructure, whereas vBNSnet

chosen because it represents a state-of-the-art network based on OC-3C infrastructure.

3.11. Summary 69

Both the SURAnet and vBNSnet networks interconnect large campus networks modeled

after UVAnet.

Next, we developed tra�c models suitable to drive network performance characteristics

of SURAnet and vBNSnet. Within the campus network, we use empirical and SNMP

performance studies of UVAnet to drop and delay packets independently at each router.

The wide-area background tra�c model, however, is considerably more complex. Here, we

�rst consider the statistical properties of ten day, wide-area packet trace. Using arrival

density and correlation analysis, we developed the (M;P ;S) tra�c model, which works

as follows: First, M uses a sophisticated self-similar tra�c model to create a sample path

representing the aggregate stream generated by a large campus network. Next, P partitions

the aggregate stream into substreams based on target density functions, while preserving

the correlation structure of the aggregate stream. Finally, S uses a packet train approach

to model short-term dependencies.

We showed that (M;P ;S) accurately and e�ciently generates background tra�c by

comparing the synthetic streams to the empirical traces used in the characterization study.

Using tra�c traces and operations reports, we developed (M;P ;S) tra�c parameters which
achieve network drop rates from 2 � 20% on the worst-case SURAnet and vBNSnet net-

work paths. In subsequent chapters, we use the SURAnet and vBNSnet environments to

implement and evaluate large-scale multicast transport protocols.

4

MESH-R: Large-Scale, Reliable Multicast

Transport

Research in advanced transport services for multicast applications has accelerated in recent

years with the continuing maturation of network-layer multicast support. Central to trans-

port protocol designs is the control structure which distributes protocol processing, localizes

error repair, and aggregates receiver state. Further, the control structure determines the

ow of end-system control information used by feedback-based algorithms, e.g., congestion

and error control protocols at the source. Thus, the design of control structure is critical

since it determines the services that can be provided at the transport layer, as well as its

scalability, e�ciency, and performance.

One common control structure is to organize multicast group using a logical structure

such as a ring, central site, or tree. Tree-based schemes, in particular, o�er e�cient aggre-

gation of receiver state and low latency error recovery when the control tree closely follows

the underlying multicast routing tree. Constructing and maintaining e�cient control trees,

however, is di�cult without resorting to manual con�guration, network-layer support be-

yond current multicast services (e.g., subcast), or network-speci�c options (e.g., hop-count

scoping) that have unpredictable e�ects. Alternatively, some protocols multicast control

information to the entire group. SRM [41], for example, uses a sophisticated timer man-

70

71

agement strategy based on propagation delay estimates to control access to the multicast

channel. Since transport services are not localized, unstructured approaches have a higher

overhead and a greater error recovery latency, in general, when compared to tree-based

schemes.

This chapter presents a novel multicast transport design (MESH-R) that achieves fully

reliable data distribution in a scalable, e�cient fashion. A key contribution of our solution

is the receiver-driven, dynamic organization of the multicast control structure based on

network performance characteristics. The MESH-R framework (1) is a fully distributed,

transport-layer solution, (2) presents a robust state synchronization protocol that provides

detailed end-system state for reliability, congestion control, group management, and other

end-system services, and (3) achieves an e�cient, low-latency error control service using a

self-organizing, soft-state unicast recovery structure between multicast receivers.

This chapter compares the performance of MESH-R relative to other classes of so-

lutions for reliable single-source bulk transfer in an IP WAN environment. To assess

relative performance and network overhead, MESH-R and three other approaches (a cen-

tralized, a tree-based, and an unstructured protocol) are implemented in a high-�delity

WAN testbed [64, 66]. This environment allows for direct comparisons between the perfor-

mance (throughput) and e�ciency (protocol messages transmitted across the network) of

these schemes. The simulation experiments are performed over a range of network loss rates

using two di�erent Internet backbone topologies. The results validate correct operation of

MESH-R, and show that error control and state feedback heuristics work well. Speci�cally,

we show that MESH-R's error control protocol adapts rapidly to changing network con-

ditions, exhibits good locality in recovering lost packets, and e�ectively exploits network

links outside of the multicast routing tree. Our experiments show that the MESH control

structure has the robustness and
exibility of unstructured approaches, while retaining an

e�ciency and performance of an optimal tree-based scheme.

4.1. Motivation 72

The remainder of this chapter is organized as follows: Sections 4.1 and 4.2 motivate

this research and discuss related work. Section 4.3 motivates MESH-R's design, and gives a

detailed explanation of the state feedback and error control algorithms. Section 4.4 describes

our simulation-based performance study. Sections 4.5 gives our conclusions and discusses

important aspects in further improving and understanding MESH-R's performance.

4.1 Motivation

Key multicast application domains studied today include (1) delay-sensitive delivery for mul-

timedia streams, (2) single-source reliable data transfer involving large numbers of receivers

(e.g., software distribution, push applications), and (3) multi-source data distribution sys-

tems (e.g., web-cache updates, DIS, stock-quote dissemination, and networked games). Most

of these applications require reliable data delivery, or, perform best when data loss is min-

imal. Therefore, reliable transport services are bene�cial since they facilitate and simplify

multicast application development.

This chapter studies protocol mechanisms for achieving large-scale, reliable data delivery

in unreliable networks such as the Internet. Although this research considers a single-source,

reliable bulk data distribution application, the results generally extend to the applications

discussed above. The following design criteria are critical to a modern reliable transport

protocol:

Reliability: All nodes identi�ed by the group management protocol either receive the

message, or the source is informed that particular data elements were not delivered to

particular group members. Note that full-reliability represents the most challenging error

control requirement. However, the constraint can be relaxed to achieve other reliability

semantics (e.g., k-reliable and receiver-reliable).

Network Dependence: Only basic connectionless, datagram IP multicast service should

be assumed. In particular, we reject non-standard network-layer service such as subcasting

or hopcount-based (TTL) scoping. Subcasting is a powerful additional service which allows

4.1. Motivation 73

IP routers to receive an encapsulated IP datagram, de-encapsulate it, and multicast it down

the local routing tree. Thus, subcast messages reach only the receivers within a subtree

(below the router handling the subcast) of the multicast routing tree associated with the

source. While proposed in a number of forms, subcasting lacks a standard de�nition and

standardization does not appear imminent. Moreover, reliance on this mechanism in any

transport solution will be problematic, e.g., heavily switch-based networks where IP routers

are sparse. Hopcount-based scoping also has severe limitations as a mechanism for grouping

receivers or limiting transmissions to subsets of the global multicast group [102]. Moreover,

the performance of the mechanism varies dramatically and unpredictably for receivers in

di�erent areas of the network, even for receivers within the same extended LAN.

Our network model does assume the notion of domain-based scoping, as supported by

IPv6 multicast addresses. This service option de�nes multicast domain hierarchies at nat-

ural network administration domains (e.g., LAN, campus network, regional backbone, and

global). The performance study below considers only the global (all members of the mul-

ticast group) and campus (members within a set of physically co-located LANs under one

administrative entity) domain. Note that even without network domain scope service, cam-

pus scoping can be easily achieved by having the group management protocol establish a

separate multicast address for each campus.

Scalability: Multicast protocol designs must scale to large receiver sets and heteroge-

neous network environments.

Robustness: Network performance characteristics constantly change due to link and

network node failures, congestion, and routing changes. Likewise, the group membership

might also change since nodes may join, leave, and fail. The transport should not fail

as a result of such dynamic events. Instead, the transport protocol must de�ne robust

procedures that adapt quickly to changing network conditions.

Single Source/Multiple Source: A distinguishing characteristic of a multicast solution is

whether it extends multi-source applications. Control structure solutions speci�cally for the

4.2. Related Work 74

multiple-source case include k-ary trees [58] and hypercube organizations [61]. Our protocol

is evaluated here for single-source reliable transfer only, but it has attractive properties for

extension to the multiple-source case.

4.2 Related Work

The control structure approach employed by a multicast transport protocols is the key factor

which impacts scalability, e�ciency, data delivery latency, and the set of services which can

be supported. Control structure classes proposed in the literature can be characterized as:

centralized, tree-based, and unstructured. Each is brie
y discussed below.

Centralized control (CM): The most basic control structure relies on each receiver ex-

changing control data directly with the source. E�ciency and scalability are gained by

combining negative acknowledgments, sender polling, and periodic receiver-driven state

synchronization messages.

Tree-based control (RMTP, TMTP, LBRM): Tree-based approaches extend the cen-

tralized schemes such that overhead is distributed hierarchically among group members.

Receivers unicast control messages to their parent in the control tree structure. Receiver

state is aggregated at internal nodes in the control tree as it propagates towards the

source(s).

Unstructured control (SRM): In contrast to the centralized and tree-based designs, un-

structured approaches do not organize the multicast group into a control structure. Instead,

control messages are multicast to the group using a timer-based strategy. For example, upon

detection of an error, a group member schedules a repair request sometime in the future

based on the group size and delay from the source. Since control information is multi-

cast to the group, other members suppress redundant requests and replies. Sophisticated

timer management strategies achieve a low-latency service, while e�ciently using network

resources.

4.2. Related Work 75

4.2.1 Analysis of Control Structure Classes

Each of the control structures perform well for certain network environments, group sizes,

and application requirements. Each control class is discussed below in terms of the evalua-

tion criteria identi�ed in Section 4.1.

Centralized approach: Since the source e�ectively engages in an independent conver-

sation with each group member, the central approaches have a clear simplicity advantage

compared to any distributed control scheme. Thus, any reliability scheme (both single

and multi-source) is easily accomplished. The disadvantage is that message processing

and network overhead increases signi�cantly as a function of group size and network error

rates, thus limiting throughput and scalability. Typically, centralized protocols are used for

single-source applications with a small number of group members (e.g., less than 100), or

in applications where the feedback to the source is minimal.

Tree-based approaches: The hierarchical structure used in the tree-based schemes re-

solves the scalability limitations of the centralized protocols. The critical factor determining

the overhead and throughput of tree-based approaches is the degree to which the multi-

cast group can be organized around the underlying network performance properties. For

example, consider the SURAnet network architecture shown in Figure 4.1.

Figure 4.1 shows a tree-based structure in which the group is hierarchically organized

around the routing tree (shown as a dashed line with a source located at the CTV campus).

This control tree leads to e�cient use of network resources since the state is aggregated

along the routing tree, and retransmissions traverse a minimum number of WAN links.

However, a control tree organization that does not map to the underlying routing tree

leads to poor latency and increased network overhead. For example, consider a control tree

where nodes located on the MSB subnet are children of an UMD node. Such a tree results

in signi�cant network overhead since protocol tra�c traverses �ve WAN links as opposed to

a single WAN link. Further, transport latency increases since error repairs are not localized

and state slowly propagate towards the source.

4.2. Related Work 76

3 Mbit/s Link

1.5 Mbit/s Link

Campus Network

Multicast Routing Tree

Source Campus Network

Protocol Control
Messages

GNU

MEM

BIR

JCK

TAU

MSB

AUB
MBJ

GIT

UMD

WVU

KNX

LEX

NOF

NEO

JKV

CTV

GIT DR

JKV Designated Receiver

End Systems @ MSB Campus

Designated Receiver

End System

Source Node

Figure 4.1: SURAnet network with multicast source located at CTV, and group members

located at each campus network.

Constructing the control tree such that it maps to the underlying routing tree (or net-

work performance characteristics) represents a considerable challenge without help from the

network layer. That is, in a transport-only approach, members of the multicast group can

only estimate the transmission latencies using probe packets, and compare relative error

characteristics from the source(s). Such information is expensive to collect (i.e., it takes

several iterations to estimate the RTT and obtain informative error characteristics), and

gives poor information about the routing tree. Consequently, it is di�cult to hierarchically

4.2. Related Work 77

organize the multicast group into a tree structure at the transport layer. This problem is

aggravated under dynamic membership (i.e., frequent joins and leaves), when the multicast

network has dynamic error and delay characteristics, and the interior nodes of the tree fail

(thereby disconnecting the control tree and requiring a repair mechanism).

Given the di�culty of constructing and maintaining a control tree, most protocols rely

on help from the network layer to create and maintain the structure of the control tree.

For example, RMTP protocol mechanisms are built into network routers. Thus, the control

tree is integrated with the multicast routing tree giving excellent performance. Likewise,

the TMTP protocol uses TTL-based scoping mechanisms to discover relative network-

router distances between nodes and the source. Based on the hop-counts, receivers can

be approximately organized to the underlying routing tree.

With help from the network layer (or o�-line manual organization), tree-based protocols

perform exceptionally well. However, the network-level support currently employed by

the tree-based protocols (i.e., TTL scoping, subcasting, and other router-based auxiliary

mechanisms) will not be available in future network environments. This is mostly due to

the shift from router-based network transport to switch-based WANs using ATM, Frame-

Relay, tag-switching, IP switching, and switched Ethernet and FDDI in the local/campus

domains. In a switched network, multicast messages are forwarded at the link layer in

hardware and are not processed by IP software. Thus, auxiliary IP-level mechanisms will

not be available. Manual organization is equally inappropriate for short-lived applications

or in dynamic environments.

Unstructured Approach: As opposed to relying on network support to help organize the

multicast group, unstructured approaches send control messages on the multicast channel

and use a timer-based back-o� strategy to suppress redundancy. The unstructured approach

is attractive for multi-source applications. It also has desirable robustness property in that

any node can fail and the multicast session continues without expensive failure recovery

mechanisms.

4.3. MESH-R Protocol Design and Motivation 78

The key disadvantage to the unstructured strategy is that it becomes increasingly di�-

cult to set the timer back-o� strategy in large-scale, heterogeneous network environments.

This is because the transmission delays between nodes are signi�cant, thus requiring large

timer intervals to avoid duplicate control messages. Consequently, service latency increases.

Performance and overhead also su�er signi�cantly in networks with high error rates. For

example, in the ideal case only a single retransmission request and retransmission would be

generated for each network drop. However, without a local-recovery mechanism, retrans-

mission requires a multicast to the entire group. Consequently, network overhead increases

quickly for large groups in networks with even a moderate error rate. This problem is

further exacerbated when retransmissions are lost.

4.3 MESH-R Protocol Design and Motivation

Section 4.2 characterized multicast transport protocols based on their respective control

structure. We saw that there are essentially two strategies { unstructured and highly struc-

tured approaches (e.g., centralized and tree-based). This section describes and motivates

the MESH-R protocol. We show that MESH-R sits between the unstructured and highly

structured approaches, having the robustness and network independence of the unstructured

approach, yet the e�ciency and performance of a structured approach.

4.3.1 MESH Framework Overview and Motivation

The MESH framework localizes protocol overhead by partitioning the multicast group along

network domain boundaries. The advantage to the domain structure is that nodes within a

domain experience similar error rates, delays, and network performance relative to a source.

Further, the domain structure provides a natural partitioning given today's network archi-

tecture (e.g., LAN/campus boundary, campus/regional WAN boundary, regional/backbone

WAN interconnect boundary).

4.3. MESH-R Protocol Design and Motivation 79

For simplicity and clarity of explanation, this research considers two network domains:

campus and WAN. For example, consider the SURAnet network shown in Figure 3.1. Mul-

ticast messages sent by a node can be scoped locally to their campus domain, or globally

to all nodes1. We further assume a group membership protocol which has identi�ed each

group member and the campus domain to which each member belongs.

Once the group hierarchy is established, two fundamental issues remain: state synchro-

nization and error control within a domain, and state synchronization and error control

between domains. Section 4.3.2 presents MESH-R's state synchronization protocol; Sec-

tion 4.3.3 presents MESH-R's error control protocol.

4.3.2 MESH-R Group State Synchronization Protocol

In general, the group state synchronization mechanism is a fundamental transport service

since it is used by the (1) source(s) to track the state of the group (i.e., which messages

have been received), (2) error control mechanism to detect errors, (3) congestion control

algorithm to determine network performance and congestion, (4) group management proto-

col to determine which nodes are alive and their status, and (5) by auxiliary mechanisms to

estimate round-trip times, error patterns, and more. In terms of reliable data distribution,

the goal of the state feedback service is to (1) provide e�cient and low-latency feedback

to the source and other group members identifying which nodes have received which data,

and (2) provide auxiliary mechanisms that produce an accurate characterization of network

drop rates and transmission delays.

MESH's group state synchronization protocol uses a two-part strategy. The �rst strat-

egy, intra-domain state synchronization, relies on each node multicasting domain-scoped

state messages. This approach has several desirable properties. First, each member can

identify and track the state of other members within their domain. Second, each node

1Section 4.5 discusses how the domain structure can be hierarchically extended to scale to multicast

groups distributed across global networks such as the Internet.

4.3. MESH-R Protocol Design and Motivation 80

can determine network delay, error, and other characteristics between members. Third, any

node can compose an aggregate state message representing all the nodes within the domain.

MESH's second synchronization strategy is to elect a single node within each domain

to act as the domain's \active receiver" (AR). The key role of the AR is to forward domain

state to the next domain in the hierarchy. For example, consider Figure 4.2 which shows four

members (A;B;C;D) in the same network domain. Here, each member sends a domain-

scoped (Dcast) state report in response to receiving data from the source. At some point,

the domain AR (in this example A) globally multicasts (Gcast) an aggregate state report

message representing the state of (A;B;C;D).

Node (D)Node (C)Node (B)Domain AR - (A)

Dcast State D

Gcast State A,B,C,D

Dcast State B

Dcast State C

Data packet
(Gcast from source)

Figure 4.2: MESH's state synchronization approach.

Note that since state is reported via domain-scoped messages, any node can function as

an AR. ARs can be determined by a simple election algorithm, or by the group management

mechanism. Exactly what state is contained within state messages, and the degree of

synchronization, depends on the application's requirements. These details, in the context

of a single-source reliable application, are discussed in the next section.

4.3. MESH-R Protocol Design and Motivation 81

Node Identi�er

Time-stamp

Message Type (Data, Retransmission Request, State Report)

Data Format (if Data Message)

Sequence Number

Size

DATA

Retransmission Request (if Retransmission Request Message)

Sequence Number

General State Report

C { Cumulative DATA ACK

H { Sequence number of highest DATA message received

Loss Mask[C;H] { Which DATA messages received over C : : :H

Domain Report

CD { Cumulative DATA ACK domain received

HD { Sequence number of highest DATA message domain received

Loss Mask[CD ;HD] { Which DATA messages the domain received over CD : : :HD

Original Received Report

L { Start sequence number of report

Loss Mask { Which DATA messages originally received over L

Figure 4.3: MESH-R message format.

4.3.2.1 MESH-R State Report Message Format

Figure 4.3 shows the format of a MESH-R message. The packet header gives the unique

identi�er of the node (for IP multicast networks, this would be the IP address + port

number of the application), local time-stamp of when the message was sent, and message

type. Data messages (either original data from the source, or a retransmission) include a

sequence number, message size, and the data. Likewise, retransmission requests include a

sequence number identifying which data is to be retransmitted.

Each MESH-R message includes a \general state report," \domain report," and \original

received report." In the general state report, C identi�es the sequence number of the

4.3. MESH-R Protocol Design and Motivation 82

cumulative data messages received by the reporting entity. Next, \loss mask" identi�es

which messages have been received on the interval [C;H] (H gives the highest message

received thus far.) Likewise CD; HD gives the cumulative and received bitmask indicating

which messages have been received within the domain (if this node is an AR). Finally, the

\original received report" indicates the messages originally received in the domain without

being dropped by the network.

4.3.2.2 MESH-R State Report Frequency

MESH's state feedback approach incurs signi�cant network overhead since state messages

are multicast to every group member in the domain. Therefore, one goal is to minimize

the number of state messages generated by each group member. On the other hand, data

throughput depends on the latency of the feedback loop identifying which messages have

been received by each group member. The state reporting mechanism must balance the

network overhead and performance tradeo�.

MESH-R uses a general state reporting approach suitable for a number of application

classes, including reliable multicast. The approach is based on two state reporting strategies.

The �rst is a low frequency, synchronous report generated at interval SY NC. Secondly,

asynchronous reports are generated when new data arrives, or the state of the domain

changes (if the node is an AR).

Synchronous reports serve two purposes: (1) they provide a heartbeat which informs

other nodes about this node's existence, and (2) they update ARs and the source in the event

an asynchronous report is lost. Synchronous reports are generated only if an asynchronous

report has not been generated for a period of SYNC ms. The SYNC interval is determined

dynamically to be the worst-case latency between any two nodes within the domain.

Asynchronous reports are generated for newly received data (either from the source, or

as the result of a retransmission). Asynchronous reports serve the following three roles:

First, they act as a positive acknowledgment to the AR (or source). Second, remote nodes

4.3. MESH-R Protocol Design and Motivation 83

use the reports to cancel a pending retransmission (since the retransmission is no longer

necessary.) Third, asynchronous reports are used by the error control heuristic (discussed

next) to determine where to send retransmission requests.

4.3.3 MESH-R Error Control Protocol

In the MESH framework, error control is based on a unicast request/response retransmission

strategy. Unlike the structured approaches, MESH does not build an explicit recovery tree.

Instead, MESH relies on a number of heuristics to localize error control based on RTT

estimates between receivers and network error patterns observed. Like the state feedback

protocol, the MESH error recovery protocol �rst tries to locally recover lost messages within

the domain. For those packets which cannot be recovered locally, the AR attempts to recover

the message in the next higher domain.

The state diagram for MESH-R's error control protocol is shown in Figure 4.4. As

the �gure shows, nodes detect network losses by a gap in the data stream, or from state

messages. If data loss is detected either from out-of-order messages in the stream, or from

a sender state report, a retransmission request is scheduled immediately. On the other

hand, if data loss is detected from another node's state report, a retransmission request is

scheduled after the one-way transmission latency from the source. In the later case, the

retransmission request is delayed because it is possible that data is still in transit from the

source; it may be that the remote node's state report arrived before the data. This time-out

prevents unnecessary retransmission requests and responses. Finally, notice that if out-of-

order data or a sender state report arrives before the timer expires, the retransmission

request is immediately scheduled.

The MESH-R server selection algorithm identi�es a remote node to unicast a retrans-

mission request. If the remote node has the data, it immediately unicasts a retransmission,

otherwise it queues the request until the data becomes available. After a retransmission

request is sent, the node waits twice the estimated round-trip time to the selected server

4.3. MESH-R Protocol Design and Motivation 84

(2) Unicast request

(3) Set repair timer (based on AR chosen)

(1) Invoke AR selection algorithm

Set time-out
(delay from source)

Loss detected from state
report (other than source)

Multicast state report

Packet Loss Detected

Data arrived

Data arrived

Time-out
(data did not arrive)

Loss detected by out-of-order data
Loss detected by sender state report OR

Time-out OR

Loss detected by out-of-order data
Loss detected by sender state report OR

End

Figure 4.4: MESH-R error control protocol state diagram.

before sending another retransmission request. The time-out period is selected for the fol-

lowing reasons: First, it gives the server node time to recover the message itself in the

event the data is not immediately available for retransmission. Second, it provides extra

time in the event that current network delays are higher than previously observed. Finally,

the delay gives the state reporting mechanism time to identify nearby nodes in the domain

which have the data (this is used by the server selection algorithm, discussed next).

4.3. MESH-R Protocol Design and Motivation 85

4.3.3.1 MESH-R Retransmission Server Selection Algorithm:

In the MESH framework, group members are responsible for initiating and recovering lost

data. As shown in Figure 4.4, each node invokes the MESH-R's server selection algorithm

to decide where to send a retransmission request. The server selection algorithm is designed

using the following goals:

� Centralized default: When the network error characteristics and transmission delays

are not established (e.g., during initialization) or there is insu�cient error character-

ization available, the protocol should behave like a centralized protocol (i.e., ARQs

should be sent to the AR or source as opposed to random behavior).

� Localized recovery: Once the state feedback service has collected network error and

delay characteristics, error recovery should be further localized to nearby, upstream

nodes within the domain (similar to tree-based recovery.)

� Soft-state, robust, dynamic structure: The error control structure should adapt to

dynamic network performance characteristics. Further, if a node should fail or drop

out of the multicast group, then the error control algorithm should quickly route

around the failed node.

� Cross-link/redundant link recovery: The selection algorithm should take advantage

of \cross-link" recovery in networks with a rich/redundant topology. For example,

consider the architecture and routing tree for a source located at the MAE-EAST

domain in the vBNSnet architecture shown in Figure 3.2. The SFC and DENVER

domains should exchange error control information since each node is at the end of

a di�erent path from the source, yet both nodes are in close proximity. Likewise, if

SDSC has a high error rate (and thus, so does SFC), but SFC is quickly recovering

messages from DENVER, then SFC should be able to repair SDSC's errors as well

(i.e., downstream recovery.)

4.3. MESH-R Protocol Design and Motivation 86

Input: A set R of retransmission servers in domain fR1;R2; : : : ;RNg

A set of servers S = fS1; S2; : : : ; SDg from which retransmissions have been requested

Output: Receiver to send a retransmission request

Time� out until next retransmission generated

1. Time-out RTT (DomainAR)

2. Receiver DomainAR

3. For all Ri 2 R

4. If (((su�cient network domain characterization available) And

5. Ri =2 S And

6. Ri is Upstream And

7. RTT (Ri) < Time-out) Or

8. (Ri has DATA And

9. RTT (Ri) < Time-out))

10. Then

11. Time-out RTT (Ri)

12. Receiver Ri

13. Return (Receiver, 2�Time-out)

Figure 4.5: MESH-R procedure for selecting a retransmission server.

The MESH-R server selection algorithm is shown in Figure 5.3. The algorithm takes as

input a set of group members within the domain (obtained from the state feedback service),

and a set of nodes in which an ARQ request has been sent for the missing data. By default,

lines 1 and 2 select the domain AR (or source, if the source is located within the domain)

to send the retransmission request. Hence, in the default case, MESH-R within the domain

behaves as a centralized protocol. Since domains are hierarchically organized around the

network infrastructure, MESH-R, by default, behaves similarly to a tree protocol with the

hierarchy de�ned by the network domains.

The goal of the MESH-R retransmission server selection heuristic is to identify nodes

that can service the request with lower network overhead and latency than the domain

AR. The MESH-R heuristics localize error recovery using a two-part strategy. The �rst

4.3. MESH-R Protocol Design and Motivation 87

phase (given in lines 4-7) considers all the nodes within the domain (line 3). As shown in

line 5, a node is eliminated if a retransmission request has already been sent to that node

(from the previous retransmission round). Next, a node is eliminated unless is it considered

\upstream" to the source, where upstream is de�ned as follows:

Upstream(X,Y): Relative to a particular source, X is considered \upstream"

from Y if the number of messages originally received at X but not at Y is

greater than the number of messages originally received at Y but not at X .

Thus, if X is \upstream" it is a good choice to send a retransmission request because

there is high probability X will have the missing data. Note that the originally received

messages are determined by the \originally received message report" component of a state

advertisement. Finally, line 7 selects the node that is \upstream" with the lowest estimated

network delay.

The second phase of the server selection algorithm is given in lines 8 and 9. Phase

two optimizes the basic server selection heuristic by considering all nodes in the domain

regardless of whether an ARQ has been sent there. Line 8 reduces this set to those nodes

that are known from the state feedback service to have the missing data. Line 9 selects the

node if it is closer than the node selected by the �rst phase of the selection algorithm.

If the data is not recovered within two RTTs to the AR, then the MESH-R heuristic is

invoked again to select another AR to send a retransmission request. Note, however, the

nodes to which an ARQ has been sent are eliminated from phase one of the server selection

algorithm. Hence, MESH-R approximates a \search ring" which expands up towards the

source based on error characteristics. On the third recovery attempt, MESH-R considers

the network error characterizations to be in a state of
ux, and the domain-AR is selected

as the retransmission server.

4.4. MESH-R Performance Analysis 88

4.3.3.2 MESH-R AR Recovery

The AR is a special node in the error recovery process because it is responsible for recovering

data which can not be recovered locally within its domain. Therefore, when an AR detects

missing data, it waits to see if any subgroup member reports that it has the data. By

default, the AR waits for a period equal to the observed worst-case round-trip time within

the domain. If the AR does not receive a domain state report indicating a node has the data,

it attempts to recover the data in the higher domain in the hierarchy using the MESH-R

recovery algorithm. After the data is recovered, the AR domain-multicasts a retransmission

to the other members in the domain.

4.3.3.3 MESH-R Server State

When a node receives a retransmission request, it �rst checks to see if the data is present.

If the server node has the data, it immediately unicasts a retransmission to the requesting

node. If the data is unavailable, the server queues the request until it recovers the data via

its own error recovery attempts. Once the data is recovered, the server forwards the retrans-

mission to requesting nodes unless the state reporting mechanism indicates the requesting

node has obtained a copy of the data.

After sending a retransmission (or after the receipt of a global retransmission from an

AR or source), a node sets a \retransmission block" timer. During the \block" time the

server node ignores retransmission requests for the data. The \block timer" eliminates

retransmissions that would otherwise be generated by a request that was in transit prior to

the arrival of the retransmission.

4.4 MESH-R Performance Analysis

This section uses the SURAnet and vBNSnet simulation environments developed in chapter

3 to evaluate the MESH, centralized, tree-based, and unstructured protocol designs. Perfor-

4.4. MESH-R Performance Analysis 89

mance is evaluated by considering �le transfer times and network overhead for a large-scale,

bulk data distribution application. Speci�c goals of the study include:

� Demonstrate the correctness of MESH-R's error recovery heuristics and state feedback

service.

� Evaluate the e�ectiveness of the AR selection heuristics (e.g., localized and cross-link

recovery).

� Demonstrate expected �le distribution performance for each protocol class.

� Compare �le distribution latency and network overhead for each protocol class over a

range of network utilization.

4.4.1 Experiment Setup

Chapter 3 presented the packet-level simulation environment in detail. To summarize, two

network models are developed: vBNSnet (OC3 infrastructure) and SURAnet (T1 infras-

tructure) which interconnect campus networks (Ethernet with FDDI backbones2). Network

drop rates and delays are �xed within campus networks, and are driven by the (M;P ;S)
tra�c model within the WAN. Key simulation and application parameters are discussed

below:

� Background load: Within SURAnet, the background load is varied from 10 � 70

packets per 100 ms, and from 700 � 2700 packets per 100 ms in vBNSnet. These

background load rates were chosen because they create a network loss rates between

1%� 25% on the worst-case WAN path.

2Refer to Figures 3.2,3.1,and 3.3 for the vBNSnet, SURAnet, and campus network infrastructure and

topologies.

4.4. MESH-R Performance Analysis 90

� Receiver set: Twelve group members are uniformly distributed at each campus

network (i.e., four receivers are located on each Ethernet segment). Thus, there are

204 group members in the SURAnet environment and 132 members in vBNSnet.

� Group management: Receivers are identi�ed before data transfer begins, and do

not leave the group during the session. Since reliable data transfer is a requirement,

session throughput is limited by the slowest receiver.

� Multicast source: The multicast source is arbitrarily located at the CTV campus in

SURAnet, and MAE-EAST within vBNSnet.

� File transfer sizes: A �le size of 1 MB is chosen in SURAnet, and 10 MB in vBNSnet.

� Flow control: In the SURAnet simulation, the application's bu�er size is �xed at

60 KB at each source/receiver. Data is transmitted using a packet size of 1 KB,

therefore a maximum of 60 packets can be in transit at a given time. In the vBNSnet

environment, the bu�er size is set at 240 KB and data is packetized in 4 KB messages.

A window-based approach is used for
ow-control. Thus, the source can not send a

data message whose packet sequence number is greater than 60 beyond the sequence

number of the lowest packet acknowledged by the entire group.

� Congestion control: Typically, the transport protocol adjusts the size of the
ow

control window as a function of observed network congestion (typically measured

by loss rate). However, changing the window size will impact the throughput and

network overhead di�erently for each protocol class. Therefore, the size of the
ow

control window is �xed throughout the data transfer.

4.4.2 Centralized, Tree-based, and Unstructured Protocol Descriptions

This section de�nes the centralized, tree-based and unstructured protocols considered in

the performance study. Each protocol is designed to give representative performance for

4.4. MESH-R Performance Analysis 91

its respective control structure class. No protocol optimizations were made for the network

environment, group size, or application under consideration; rather we focus on fundamental

designs.

4.4.2.1 Centralized Protocol

The centralized protocol design (similar to [53])is intended to represent a simple, centralized

approach to achieving reliable data transfer. Illustrated in Figure 4.6, data transfer proceeds

as follows: The source transmits data on the global multicast address until the transmit

window is full (i.e., 60 packets are outstanding). The source keeps track of when each data

packet was multicast to the group. Upon receipt of a data message, a receiver unicasts an

ACK to the source. The ACK message contains a cumulative acknowledgment (C-ACK)

indicating that all data messages up to C-ACK have been received and a bitmask indicating

which packets have been received beyond the C-ACK.

Multicast 103

Multicast 104

Multicast 105

Multicast 106

Multicast Source

C-ACK 103

C-ACK 104

C-ACK 104, ACK 106

Multicast Reciever X

C-ACK 106

X

Unicast 105 to X

Figure 4.6: Centralized error/control
ow example.

4.4. MESH-R Performance Analysis 92

If the source does not receive a positive ACK for a group member after twice the

estimated round-trip time (or receives an ACK from a subsequent data message indicating

data is missing), the source unicasts a retransmission and resets the transmit time to the

group member. For example, Figure 4.6 shows the network dropped data packet 105 to

receiver X . Upon reception of data packet 106, the receiver generates a cumulative ACK of

104, and a selective ACK for 106. Based on the ACK, the source determines X is missing

data unit 105. Therefore, the source unicasts a retransmission of 105 to X . Also note that

if packet 106 was dropped as well, the source would eventually timeout and retransmit both

105 and 106 to X .

4.4.2.2 Tree-based Protocol

The tree-based protocol is similar to the centralized approach, except that error control

and state feedback are localized between nodes in the hierarchy. For example, Figure 4.7

shows the source multicasting data unit 100. Like the centralized protocol, each receiver

(this example shows only four receivers: A;B;C;D) immediately unicasts a C-ACK(100)

to its parent node. Each parent node unicasts a group-ACK (G-ACK) to the next parent in

the tree after it determines that all child nodes have received the data. For example, node

A unicasts G-ACK(100) to its parent node after receiving C-ACKs from leaf nodes B;C,

and D.

Like the centralized protocol, parent nodes use ACKs to determine if child nodes are

missing data. Upon detection of a lost data message (as determined by a ACK message, or

a time-out3), the parent node retransmits the data via unicast to the child node. Like the

centralized protocol, parent nodes track when each transmission was sent, and continue to

generate retransmissions until an ACK is received from the child.

3The time-out is chosen to be the estimated round-trip to the child node from the time the parent node

received the data from the source.

4.4. MESH-R Performance Analysis 93

(mcast from source)
Data packet 100

Data packet 101
(mcast from source)

To next internal
node in heirarchy

To next internal
node in heirarchy

C-ACK (100) C-ACK (100) C-ACK (100) C-ACK (100)

G-ACK (100)

G-ACK (101)

C-ACK (101)

C-ACK (101)C-ACK (101)C-ACK (101)
X

Unicast (101,D)

Internal Node (A) Node (D)Node (C)Node (B)

Figure 4.7: Tree-based error/control
ow example.

In addition to ACK messages, parent nodes unicast low-frequency polling messages to

each child node containing the highest received data sequence number thus far. Each child

node replies to a polling message with an ACK. The polling mechanism synchronizes state

in the event no ACKs were received from the child node within the polling period (either

because the source did not generate any data during the polling period, or the last ACK

from a child was lost).

Control trees are statically con�gured according to the multicast routing tree (thus rep-

resenting the optimal control tree). In both the SURAnet and vBNSnet simulations, a single

node is established within each campus network to act as the campus parent node. Thus,

most data messages dropped within the campus network are recovered locally. Campus

parent nodes are then hierarchically organized according to the multicast routing tree. For

example, consider the TAU node in the SURAnet environment. Here, TAU's parent is GIT,

whose parent is GNU, whose parent is CTV (the source). Like the control tree, the polling

4.4. MESH-R Performance Analysis 94

period is statically determined depending on the network architecture. A polling period of

500 ms is chosen in SURAnet, and 50 ms in vBNSnet.

4.4.2.3 Unstructured Protocol

Unstructured transport protocols multicast data, state, and error control messages to the

entire group. Hence, the key protocol design issue involves developing request/response

timing strategies which minimize redundant messages while achieving low service latency.

In terms of error control, the two key timing issues involve (1) when to multicast a retrans-

mission request and (2) when to send a repair. In this study, we use the widely accepted

error control timing-strategy pioneered in SRM [41].

In SRM, after a node (denoted here as A) detects data loss it schedules a retransmission

request on the uniform distribution:

[C1dS;A; (C1 + C2)dS;A] (4.1)

Where dS;A is node A's one-way estimated transmission delay from the source (S). If A

receives a retransmission request (for the same data) before its own retransmission request

timer expires, A reschedules its request timer using a random exponential back-o� on the

interval:

2i+1[C1dS;A; (C1+ C2)dS;A] (4.2)

where i gives the cumulative number of duplicate requests received thus far4. When node

B receives a repair request which it can service (i.e., node B has a copy of the data), B

schedules a retransmission reply on the uniform distribution:

[D1dA;B; (D1+D2)dA;B] (4.3)

If B receives a retransmission reply before its timer expires, B cancels its reply. Other-

wise, B multicasts the repair. Due to the probabilistic nature of the request/repair strategy,

4In our analysis, i is given a maximum value of 4.

4.4. MESH-R Performance Analysis 95

B ignores repair requests for a period of 3dS;B seconds after sending or receiving a repair R.

The \block" period prevents a station from responding to requests that have been serviced

by R.

The parameter C1 determines the request timer delay, and C2 determines the request

timer interval. Therefore, smaller values of C1 and C2 decrease the delay before a request

is generated (thus reducing recovery latency.) However, larger values C1 and C2 contribute

to lowering the number of duplicate requests (thus reducing network overhead.) The same

argument can be applied to D1 and D2 since these parameters determine the interval over

which retransmissions are sent.

Since retransmissions are multicast to the group, one goal is to minimize the number

of responses { thus arguing for a large value of C1 and C2. However, response time is also

critical, thus arguing for smaller values of C1 and C2. In SRM, C1; C2; D1; D2 are adjusted

dynamically as a function of both the recovery delay and number of duplicate requests

and repairs. The adaptive algorithm for C1 and C2 works by calculating the exponentially

weighted average of duplicate retransmission requests (avg dup req) and average request

delay (avg req delay) at node N :

avg dup req = (1� �)avg dup req + � dup req (4.4)

avg req delay = (1� �)avg req delay + � req delay (4.5)

where dup req gives the number of duplicate requests received and req delay gives the

request delay within the previous recovery. The algorithm for adjusting C1 and C2 is

given in Figure 4.8. First, the algorithm determines if the number of duplicate requests is

greater than 1 (line 1). If so, then the request delay (C1) and interval (C2) is increased

thereby decreasing the probability of future duplicate requests. Lines 4 � 8 decrease the

request interval and request delay if (1) avg dup req is less than 0:5 (line 4), and (2)

avg req delay is less than the round-trip transmission delay from the source (line 5) or if

avg dup req is greater than 0:25 (line 7) respectively. Decreasing the request delay and

4.4. MESH-R Performance Analysis 96

Initial Values

C1 = C1 = 2

D1 = D2 = log10(Group Size)

For each recovery period:

1 If (avg dup req > 1)

2 Increase request timer delay (C1+ = 0:1)

3 Increase request timer interval (C2+ = 0:5)

4 Else If (avg dup req < 0:5)

5 If (avg req delay > RTT (Source))

6 Decrease request timer interval (C2� = 0:1)

7 If (avg dup req > 0:25)

8 Decrease request timer delay (C1� = 0:05)

9 Else

10 Increase request timer delay (C1+ = 0:05)

Figure 4.8: SRM adaptive timer algorithm.

request interval reduces the delay over which a request will be generated, thus improving

recovery delay. Finally, if avg dup req is between 0:5 and 1:0, the request delay is increased

slightly { thereby decreasing the probability of a duplicate request. The same adaptive

algorithm is used to adjust D1 and D2, based on the measurements ave dup repair and

ave repair delay.

In the SRM protocol framework, each group member sends a periodic session message

which contains the highest sequence number received from each source. In the data-

distribution context, session messages are modi�ed to include a C-ACK and a bitmask

indicating which messages are received beyond C-ACK. Typically, session messages are gen-

erated periodically such that session message bandwidth is limited to 5% of the bandwidth

consumed by data and retransmission overhead. In our implementation, session messages

are generated by each group member on 250 ms intervals in SURAnet, and 25 ms intervals

in vBNSnet. The session message frequency was chosen so that state is propagated quickly

to the source without consuming excessive bandwidth.

4.4. MESH-R Performance Analysis 97

4.4.3 Experimental Results

The performance of each protocol is evaluated using three metrics: application throughput,

network overhead, and protocol e�ciency. Each metric is de�ned and used to compare

relative protocol performance across a range of network load in SURAnet and vBNSet.

Following the preliminary analysis, the performance of each protocol class is discussed in

detail.

4.4.3.1 Application Performance

The �rst metric used in the comparison study considers application performance in terms

of elapsed �le distribution time. Figures 4.9 and 4.10 plot transfer times for each protocol

as a function of network load in SURAnet and vBNSnet respectively. Each data point gives

the average transfer time based on ten simulation runs, with error bars showing the range

of transfer times observed.

0

50000

100000

150000

200000

250000

300000

350000

0 10 20 30 40 50 60 70 80

T
ra

ns
fe

r
T

im
e

(m
s) Centralized

Tree

MESH

Unstructured

Network load (background packets per 100ms)

Figure 4.9: File transfer times for 1 MB �le in SURAnet.

4.4. MESH-R Performance Analysis 98

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

500 1000 1500 2000 2500 3000

Centralized

Tree

MESH

T
ra

ns
fe

r
T

im
e

(m
s)

Unstructured

Network load (background packets per 100ms)

Figure 4.10: File transfer times for 10 MB �le in vBNSnet.

Figure 4.9 shows that in the SURAnet environment, the transfer times using the cen-

tralized approach were the largest and increase rapidly with network load. In contrast,

the measured �le transfer times were more than ten times faster using the distributed ap-

proaches. Between the distributed approaches, Figure 4.9 reveals a signi�cant performance

gap. In particular, we see that under light load the tree and MESH protocols perform

comparably and distribute the �le twice as fast as the unstructured approach. Over the

entire dataset, MESH had the best throughput { performing nearly three times better than

the unstructured approach, and twice as fast as the tree protocol under heavy network load

(i.e., the background load equals 40� 70 packets per 100 ms.)

Figure 4.10 shows the average �le transfer times for each protocol in vBNSnet. In

contrast to the SURAnet experiments, the centralized protocol outperforms both the tree-

based and unstructured approaches until moderate network load is achieved, at which point

centralized performance degrades rapidly. Secondly, Figure 4.10 shows the unstructured

protocol distributes the �le 20% faster on average than the tree-based protocol across the

4.4. MESH-R Performance Analysis 99

entire range of network load. Finally, the �gure shows MESH outperformed the tree and

unstructured approaches by a factor of three across the entire range of network load.

4.4.3.2 Protocol Overhead and E�ciency

Although application performance is a key performance metric, it does not characterize

network overhead introduced by the protocol. In this research, overhead is evaluated by

considering the number of protocol bytes introduced on the WAN. Here, protocol bytes is

de�ned as the cumulative number of bytes from (1) data messages multicast by the source,

(2) state feedback messages, (3) retransmission requests, and (4) retransmission replies

traversing each WAN link. Note that protocol overhead on the campus network is not

considered since LAN bandwidth is not constrained in our model.

Figures 4.11 and 4.12 give observed protocol overhead in SURAnet and vBNSnet re-

spectively. The �gures show that the tree-based protocol introduces the fewest number of

bytes in both network environments. In fact, since the control tree is constructed to map

directly to the network routing tree, the number of bytes introduced represents a lower

bound on overhead5. Next, the �gures show that MESH introduces slightly more overhead

than the tree protocol in vBNSnet, and exhibits substantially more overhead in SURAnet

{ comparable to the unstructured protocol. Finally, in both network environments, the �g-

ures show that the centralized technique introduces substantially more overhead than any

of the distributed techniques.

Next, we evaluate protocol e�ciency (i.e., combine both performance and overhead in

a single metric) by dividing protocol bytes (given in Figures 4.11 and 4.12) by application

throughput (given in Figures 4.9 and 4.10). The e�ciency metric is useful because it gives

protocol overhead relative to its throughput (which we call normalized overhead). The

e�ciency metric can be best understood by considering the following example. Consider

5Assuming that the network routing tree represents the lowest overhead path from the source to receiver

set.

4.4. MESH-R Performance Analysis 100

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

0 10 20 30 40 50 60 70 80

Centralized

Unstructured

MESH

Tree

Network load (background packets per 100ms)

Pr
ot

oc
ol

 o
ve

rh
ea

d
(b

yt
es

)

Figure 4.11: Protocol overhead in SURAnet.

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

500 1000 1500 2000 2500 3000

Centralized

Unstructured

MESH

Tree

Network load (background packets per 100ms)

Pr
ot

oc
ol

 o
ve

rh
ea

d
(b

yt
es

)

Figure 4.12: Protocol overhead in vBNSnet.

4.4. MESH-R Performance Analysis 101

an application using two protocols (A and B) to distribute a 50 KB �le. Using protocol A,

the application distributed the �le in 50 seconds with protocol bytesA = 500 KB. However,

when using protocol B, the transfer took 100 seconds with protocol bytesB = 100 KB. Here,

the normalized overhead of protocols A and B are 500 and 200 respectively. Thus, B is 2:5

times more e�cient even though A transferred the �le in half the time.

Figures 4.13 and 4.14 give the normalized overhead for each protocol plotted as a function

of the background load for the SURAnet and vBNSnet environments. The data points are

based on average �le distribution time and protocol bytes for the runs at each background

load.

0
0 10 20 30 40 50 60 70 80

Centralized

Tree

MESH

5

10

15

20

25

30

35

Unstructured

Network load (background packets per 100ms)

N
or

m
al

iz
ed

 o
ve

rh
ea

d

Figure 4.13: Protocol e�ciency in SURAnet.

Figure 4.13 shows that the centralized protocol performs very poorly when consider-

ing the amount of network overhead incurred to achieve the given throughput. Secondly,

unlike the �le transfer time metric, there is signi�cant disparity in e�ciency between the

distributed protocols. Here, the tree protocol performs the best across the entire range of

4.4. MESH-R Performance Analysis 102

0

200

400

600

800

1000

500 1000 1500 2000 2500 3000

Centralized

MESH

Tree

Unstructured

Network load (background packets per 100ms)

N
or

m
al

iz
ed

 o
ve

rh
ea

d

Figure 4.14: Protocol e�ciency in vBNSnet.

network load. MESH performs comparably to the tree protocol until high network load,

in which case the tree protocol is three times more e�cient. Finally, the unstructured ap-

proach performs poorly when compared to MESH and the tree-based schemes { particularly

at high network load, where the normalized overhead of the tree-based scheme is ten times

better.

Figure 4.14 shows similar e�ciency results for the centralized and unstructured ap-

proaches in vBNSnet. However, the e�ciency of the centralized approach is comparable

to the unstructured protocol until moderate network load, at which point it increases ex-

ponentially. Unlike SURAnet, MESH achieves the best normalized overhead in vBNSnet,

outperforming the tree-based scheme by a factor of 2.5 independent of the network load.

4.4. MESH-R Performance Analysis 103

4.4.3.3 Centralized Performance Analysis

The throughput and e�ciency analyses show that the centralized approach does not scale to

large receiver sets in a bandwidth-constrained environment such as SURAnet. In particular,

as the network load becomes signi�cant (e.g., background load equal to 40 packets per

100 ms in Figure 4.9), the centralized approach e�ectively fails without using congestion

control (i.e., reducing the window size of 60 KB). The failure is the result of the unicast

error recovery overhead (implosion) on network links close to the source. Multicasting

retransmissions would lower the overhead, however, not by the order of magnitude necessary

to achieve the performance levels of the distributed techniques. The vBNSnet experiments

show that if the network can handle the additional overhead, the centralized approach can

perform remarkably well. None the less, Figure 4.14 shows that scalability is limited as a

result of the exponentially increasing network overhead.

4.4.3.4 Unstructured Performance Analysis

The performance of the unstructured approach is very good as compared to the centralized

approaches. However, it performed the worst of the distributed techniques when both

throughput and e�ciency are considered. The relatively poor throughput performance

relates to the e�ects of dropped requests and responses on the adaptive timer strategy,

explained as follows.

Recall equation 4.2 which gave the interval in which a repair request is scheduled after a

network drop is detected. For each duplicate request received, a node reschedules its request

using an exponential back-o�. This approach works well when requests and responses are not

dropped by the network (note that in the SRM performance analysis [41], this assumption

is made). However, consider what happens when a request is dropped. Some set of nodes

missing the data will not receive the retransmission request, and thus will time-out sending

its own request. As a result, the adaptive algorithm interprets the duplicate requests as if the

two requests crossed paths in the network, and therefore increases the request parameters C1

4.4. MESH-R Performance Analysis 104

and C2. Likewise, if a response is dropped, the response parametersD1 andD2 are increased.

Unless the adaptive timer strategy can distinguish between duplicate requests/responses as

a result of network drops, or because they crossed en route within the network, the adaptive

timer algorithm will continue to increase the request interval, yielding poor performance.

The second performance limitation with the unstructured approach relates to multicas-

ting retransmission requests and responses. For example, consider the group membership

in SURAnet (204 members). During light network loads (e.g., drop rates of 1%), on average

at least one node will not receive the data. As a result, the data stream e�ectively doubles

when considering retransmission overhead. When the network drop rate approaches 7%,

two retransmissions are sent on average for each message in the datastream { e�ectively

tripling the size of the data stream. This is why Figure 4.13 shows the rapid decrease in

e�ciency as network drop rates become signi�cant (e.g., at a network load of 40 packets

per 100 ms.)

4.4.3.5 Tree Performance Analysis

As discussed in section 4.2, tree-based protocols localize error control and aggregate receiver

state between levels in the hierarchy. In our experiments, the control tree was organized

along the multicast routing tree, thus is optimal. The experiment data con�rms that the

tree-based protocol introduced the least overhead in each network.

In the SURAnet environment, MESH introduced 2�5 times the number of protocol bytes
as compared to the tree-based scheme. Thus, even though the tree protocol did not dis-

tribute the �le in the least amount of time in SURAnet, it had the best overhead/throughput

ratio. However, in the high-speed vBNSnet network environment the throughput of the tree-

based protocol was poor relative to the other distributed protocols. Hence, even though

it introduced the least network overhead, MESH signi�cantly outperformed the tree-based

scheme when considering the overhead/throughput metric.

4.4. MESH-R Performance Analysis 105

The poor throughput performance in the high-speed networks can be explained by con-

sidering the latency of the receiver feedback aggregation. For example, consider how state

propagates from the NCSR node to the source (MAE-EAST). First, NCSR unicasts a G-

ACK to DENVER, which in turn unicasts a G-ACK to CHICAGO, etc. Thus, NCSR's

ACK must propagate through a campus network ten times before reaching the source. In

contrast, consider the other protocols which send their state directly to the source. Here,

the ACK only traverses two campus networks, one at NCSR and MAE-EAST. In a low-

speed environment, the campus propagation delay is negligible. However, in vBNSnet, the

campus network delays exceed the one-way delay from NSCR to MAE-EAST. As a result,

the source must stall waiting on feedback.

4.4.3.6 MESH Analysis

The performance analysis shows that MESH has the highest throughput in both SURAnet

and vBNSnet, and the best overhead/throughput ratio in vBNSnet. First, we explain

MESH's performance by considering protocol behavior within the campus network. Then

we focus on MESH's performance within the WAN.

In the campus network model, packet drops are infrequent and transmission delay is low.

Since delays and drops are modeled independently for each message, the MESH heuristics

can not determine if nodes within the domain are upstream or downstream. As a result, the

MESH selection heuristics default to the domain AR, and therefore behave nearly identically

to the tree-based protocol. However, MESH can recover some network drops local to the

campus that the tree protocol can not. For example, consider Figure 4.15 which shows a

campus network with the AR located on Ethernet A and additional receivers located on

Ethernets B and C. The example shows the campus network dropped message 100. Thus,

the receivers on A did not receive message 100, but the receivers on B and C did. In this

case, the AR detects that a receiver on B has the data, and thus recovers the data locally.

4.4. MESH-R Performance Analysis 106

In contrast, the tree-based protocol would have sent a request on the WAN (assuming the

parent node for the campus network is located on A).

Source Multicast 100

AR on Ethernet A Node on Ethernet B Node on Ethernet C

X

State Report (AR)

Request (100)

Repair (100)

Dropped Packet

State Report (C)State Report (B)

Multicast to next domain Domain Report

Figure 4.15: MESH error recovery example in campus domain.

Unlike the campus network, error rates and transmission delays in the WAN give the

MESH heuristics a rich network characterization to determine where to send retransmission

requests. MESH's performance within the WAN can be explained by considering where

ARs send their retransmission requests. For example, consider table 4.16 which gives the

retransmission request distribution within vBNSnet with background load equal to 2300.

Figure 4.16 presents table 4.1 graphically for requests sent between ARs whose campuses are

adjacent. Here, the black arrows show the direction of the routing tree and the red arrows

show the percentage of retransmission requests sent to the AR located at the adjacent

campus.

As Figure 4.16 shows, MESH directed 85% of the retransmission requests to an AR

located one WAN hop away. This high degree of local recovery contributed to the low

network overhead and recovery delay. In contrast to the tree-protocols, MESH relied heavily

4.4. MESH-R Performance Analysis 107

sfc ncsr sds den chi ncsa hou cle cor psc mae

sfc 0 0 77 0 0 0 7 0 0 0 15

ncsr 20 0 1 76 1 0 0 0 0 0 0

sds 12 0 0 0 0 0 84 0 0 0 2

den 87 0 4 0 5 1 1 0 0 0 0

chi 1 0 0 1 0 91 2 3 0 0 0

ncsa 0 0 12 0 6 0 77 0 0 0 3

hou 0 0 0 0 0 0 0 0 0 0 100

cle 0 0 0 0 0 0 0 0 0 83 16

cor 0 0 0 0 0 0 0 72 0 27 0

psc 0 0 0 0 0 0 0 0 0 0 100

mae 0 0 0 0 0 0 0 0 0 0 0

Table 4.1: vBNSnet AR selection distribution.

on cross-link recovery. For example, consider the DENVER node. Here, 87% of the requests

did not follow the routing tree to CHICAGO, but rather were sent to SFC. In this situation,

MESH chose SFC because it has a signi�cantly greater probability of recovering the data

as compared to CHICAGO. This is because the routing path to SFC is independent from

the path to DENVER. Likewise, at the CHICAGO node, MESH directed retransmission

requests to NCSA. Most of the other nodes, however, forwarded the bulk of their requests

to the closest upstream node on the routing tree. As a result, MESH added only 5% more

protocol bytes to the network as compared to the tree approaches.

Figure 4.17 shows the percentage of requests directed to adjacent campuses in SURAnet

during moderate network load. Like the vBNSnet environment, MESH achieved a high

degree of localization { directing 70% of all retransmission requests to an AR one WAN link

away. Likewise, MESH exploited cross-link recovery. For example, consider the UMD node.

Here, 9% of the retransmission requests were sent up the routing tree to the CTV campus,

whereas 88% were sent to NOF. For the UMD node, NOF is a good choice because it is

has a low RTT as compared to CTV and NOF's path to the source is independent from

UMD's path. Likewise, other nodes such as LEX, MEM, MBJ, and AUB heavily exploit

cross-links properties sending 74%; 97%; 78%; and 79% of their requests o� the routing tree

respectively.

4.4. MESH-R Performance Analysis 108

PSC

CLEVELAND

77%

91%

100%

Multicast Routing Link

84%

DENVER

NCSR

Retransmission Requests (%)

OC-3C Link

Network Access Point

MAE-EAST

100%

CORNELL

CHICAGO

76%
87%SFC

77%

SDSC
HOUSTON

NCSA

83%

73%

Figure 4.16: Retransmission distribution in vBNSnet between adjacent campus networks.

In addition to cross-link recovery, a few ARs actually sent retransmission requests

\downstream" along the multicast routing tree in SURAnet. For example, consider GNU.

Even though the source CTV is located a single hop away, the GNU node directed 16%

of its requests downstream to GIT. GNU selects GIT because the link between GNU and

CTV is a bottleneck point with a signi�cant transmission delay and drop rate (as shown

in Tables B.3 and B.4). Since GIT has a lower transmission delay than CTV, GNU selects

GIT when GIT reports that it has the data. It is interesting to note that no data packets

were dropped on the GNU-GIT link. Thus, GIT can not determine if GNU is upstream

or downstream in the routing tree. By default, GIT considers GNU downstream, and thus

does not send retransmission requests to GNU.

Although MESH delivers the �le quicker than the other protocol classes, Figure 4.13

shows that the tree-based approach outperforms MESH in terms of throughput e�ciency in

SURAnet. One key factor impacting MESH's e�ciency relates to MESH's aggressive error

4.4. MESH-R Performance Analysis 109

GNU

MEM

BIR

TAU
JKV

MSB

AUB
MBJ

GIT

UMD

WVU

KNX

LEX CTV

NOF

NEO

Campus Network

Source Campus Network

JCK

88%
41%

70%
34%

37%

75%

42%

31%

60%

42%

13%

30%

18%

23%

30%

52%

37%

7%

9%

2%

25%

29%

16%

28%

18%

63%

36%

12%

46%

Retransmission Request (%)

Multicast Routing Tree Link

T1 Link(s)

Figure 4.17: Retransmission distribution in SURAnet between adjacent campus networks.

recovery strategy. Recall that an AR waits two RTT periods after sending a retransmission

request before it times-out and sends another. For most ARs, the data is recovered on

the �rst try. However, consider the case where a data message is dropped on the Ethernet

link at the source. Now, when MSB detects the dropped message it will likely send a

retransmission request immediately to JKV. However, since JKV has a low RTT compared

to the source, it is unlikely that JKV will have recovered the data before MSB times-out.

Consequently, MSB sends a request to the next upstream node, namely TAU. The MSB

AR will continue to aggressively search for the data until it is recovered. Using the MESH

4.5. Summary and Future Work 110

strategy, nodes such as MSB often recover the data quicker than when using a tree-based

approach, but with a higher network overhead.

The second ine�ciency of MESH relates to the state reporting mechanism. That is,

each AR multicasts up to two state reports for each message { once when the AR receives a

message, and another as a result of the subgroup receiving the message. As compared to the

tree and unstructured designs, which only generate a single ACK per message or use periodic

strategies, MESH incurs at least twice the state feedback overhead. The next section

presents some approaches to reduce the state overhead without compromising throughput.

4.5 Summary and Future Work

This chapter presented MESH-R, a reliable single-source multicast protocol built using the

MESH framework. Using a high-�delity network simulation of SURAnet and vBNSnet,

the performance of MESH-R, a centralized, a tree-based, and an unstructured protocol was

evaluated under a range of network loads. The analysis showed that centralized approaches

fail at high network congestion levels, and that distributed protocols are well suited for

large-scale multicast networks and groups.

Of the distributed protocols, our analysis showed that the unstructured approach o�ered

the worst overhead/performance ratio. In contrast, we found that MESH-R achieved the

lowest �le distribution latency in both SURAnet and vBNSnet due to MESH's ability to

localize error recovery and exploit cross-link redundancy in the multicast network. Using

the network e�ciency metric, we found that an optimal tree-based protocol slightly outper-

formed MESH in the SURAnet environment, and that MESH-R o�ered the best network

e�ciency in the high-speed vBNSnet environment.

Our performance analysis shows that the generic implementation of MESH-R is an

attractive protocol for the application and network environments considered. In general,

however, no two multicast sessions are the same. Each application has di�erent error con-

trol and feedback requirements. Likewise, each network has its own particular performance

4.5. Summary and Future Work 111

characteristics. One key feature of the MESH framework is that the heuristics can be pro-

grammed for a particular application, network environment, or group size. We conclude

by discussing how MESH can be programmed and optimized for various multicast applica-

tion and network scenarios. In particular, we consider techniques to reduce the overhead of

MESH's state reporting mechanism, improve the performance of the error control heuristics,

and adapt MESH to larger multicast network environments.

4.5.1 Future Work on Reducing MESH-R's State Overhead

In the transport domain, state synchronization is a fundamental service because error

control, reliability, congestion control, group management protocols, and other feedback

algorithms rely on the service to collect accurate and timely state information. In the

MESH framework, synchronizing state is an expensive operation because state messages

are multicast to the domain. We are currently investigating techniques to reduce the state

overhead in MESH, without sacri�cing synchronization latency. Our approach is to charac-

terize application requirements so that MESH can identify critical state (i.e., state impeding

the progress of the group), and non-critical state.

As an example, consider the single-source reliable application. The source requires

feedback from the multicast group so it can determine which messages have been received

by each node. Therefore, the lowest cumulative message sequence number received thus far

is the critical state. In the MESH framework, the state synchronization strategy can be

driven based on the critical path. For example, consider Figure 4.18 in which the multicast

receiver X originally received messages 103; 104; 106�110. For each message, the local state
changed and thus a state report was generated. However, for reliable delivery, the ACKs

generated after \C-ACK 104", were useless until 105 was recovered.

A second optimization is to identify state which is critical to the progress of the entire

group, and use that information to drive local synchronization. For example, consider the

NOF and MSB nodes in SURAnet. MSB is likely to be a bottleneck point for the group,

4.5. Summary and Future Work 112

Multicast 103

Multicast 104

Multicast 105

Multicast 106

C-ACK 104, ACK 106,107,108,109,110

C-ACK 104, ACK 106,107,108,109

C-ACK 104, ACK 106,107,108

C-ACK 104, ACK 106,107

Multicast 107

Multicast 108

Multicast 109

Multicast 110

Multicast Reciever X

X

C-ACK 104, ACK 106

C-ACK 104

C-ACK 103

Retrans Request 105

Retransmit 105

From Network

C-ACK 110

Figure 4.18: Example MESH state synchronization.

whereas NOF is likely to proceed in lock-step with the source. In a similar fashion to the

local bottleneck, based on the state of MSB (or the bottleneck node in the group) NOF

can back-o� its state reporting frequency since it does not speed the progress of the data

transfer.

In future work, we will investigate using the critical state techniques to reduces state

overhead as well as the aggressiveness of the error control strategy { which can be driven

using the same approach.

4.5.2 Future Work on MESH-R's State Synchronization Protocol

The state reduction techniques can lead to substantial e�ciency gains for some applica-

tions. However, one danger when reducing the state reporting frequency is the e�ect of

dropped state reporting messages. For example, consider the example in Figure 4.18. Here,

4.5. Summary and Future Work 113

the throughput of the group is not impacted if \C-ACK 103" is dropped by the network,

because \C-ACK 104" is subsequently multicast. However, if the state reporting algorithm

suppresses \C-ACK 104" because it is not considered critical, then data transfer might stall.

We are currently investigating adding a �eld to the state reporting message (shown in

Figure 4.3), which gives the node's global perspective of the messages received by the entire

group. That is, each node reports its view of the group state. This �eld has several key

advantages. First, it allows the nodes in the group to determine the current bottleneck of

the group, and thus use it to drive the aggressiveness of the control algorithms. Second, it

addresses the problem of dropped state messages. That is, as long as one other node in the

group receives the state report, the state will propagate to the other nodes in the system.

Finally, the global state �eld adds signi�cant robustness to the protocol. For example,

consider the SURAnet architecture 3.1. Let's say the CTV-UMD and CTV-GNU links are

overloaded to the point where no data messages can cross them. With the global state

�eld, data transfer under MESH-R can continue reliably. That is, NOF can communicate

with the source and receive new data. Based on NOF's state messages UMD will �gure out

that it is missing data, and recover it from NOF. Eventually, the data will propagate to the

entire group. Even though only NOF can directly communicate with CTV, the global state

�eld will indirectly inform the source that all receivers obtained a copy of the data.

4.5.3 Future Work on MESH-R's Error Control

The performance analysis demonstrated that the MESH heuristics do very well localizing

error recovery simply by considering network delay and loss characteristics. However, we

discovered some examples where MESH was too aggressive sending retransmission requests.

In particular, we showed that the MSB node in SURAnet would �rst attempt to recover

the data from JKV. However, approximately 50% of the time JKV could not recover the

data within two RTTs. Thus, MSB would time-out and continue its search.

4.5. Summary and Future Work 114

This data suggests that MESH's error recovery algorithm should adapt to the temporal

error recovery pattern in addition to static properties. We are currently investigating a

simple adaptive algorithm which drives the time-out delay based on the number of dupli-

cates received. In particular, we are considering a strategy similar to the SRM algorithm

which increases the time-out if there is, on average, more than one duplicate retransmission

received. Otherwise, the time-out is slightly reduced.

Another strategy we are investigating adapts the time-out based on the state of the node

where a retransmission request was sent. For example, if the server node reports it has the

data, the time-out can be reduced to a single RTT estimate. This optimizes for the case

where the retransmitted data or retransmission request was lost. We believe these adaptive

techniques can e�ectively reduce network overhead without sacri�cing performance.

Researchers have shown that forward error correction (FEC) strategies can provide ex-

cellent error coverage for large-scale multicast [74, 75]. FEC schemes, however, can not

repair all errors. In future work we will consider integrating FEC with the MESH retrans-

mission scheme. In future work we will investigate adaptive FEC overcoding schemes based

on the the error pattern reported by MESH's \originally received" metric.

4.5.4 Future Work on Multi-Source Applications

Like the unstructured approach, MESH easily extends to a multi-source application. The

only modi�cation is that the message format shown in Figure 4.3 would have to carry state

for each source. The current state can be easily packed into 32 bytes for each source; thus,

the number of active sources must be controlled so that they �t into a single state report

message. Note that the error control algorithm does not change. In future work, we will

design MESH-W { a reliable transport protocol for multi-source web cache updates, and

compare the performance to other large-scale, multi-source applications.

4.5. Summary and Future Work 115

4.5.5 Future Work on Scalability

The MESH framework achieves scalability by partitioning the multicast group along network

domain boundaries. This research considered two domains, the campus and WAN backbone,

with hundreds of receivers. In the campus network model, experimentation showed that

the AR could handle 100 nodes with comparable overhead to the 12 receivers studied here.

The only limitation is the campus bandwidth and the processing capabilities of the AR.

The more challenging domain relates to extending the network hierarchies beyond a single

WAN backbone. In future work we will consider the scalability of MESH with three or four

backbone domains. In particular, we will investigate the latency of the state synchronization

and AR selection within the domain.

5

MESH-M { Large-scale Transport for Multimedia

Applications

5.1 Introduction

Demand is steadily increasing for using wide-area multicast networks to deliver large-scale

audiocast, videocast, group videoconferencing, and other multimedia applications. Multi-

casting is needed in order to utilize network resources e�ciently and to provide low-latency

delivery to multiple receivers. At the same time, for good performance, continuous media

data streams such as digital audio or video require bounded transmission delay, low error

rates, and predictable throughput. Since multicast networks o�ering such quality of service

(QoS) guarantees are not widely available today, endsystem protocols must be devised to

compensate for network delays and errors, else the playback quality at the receivers will be

poor.

Bu�ering on the receiver side protects playback from disruptions due to packet delay

variations, packet jitter. Receiver feedback techniques [17] are e�ective in matching ap-

plication data rates with long-term
uctuations in the available network bandwidth. For

network packet loss, redundancy-based error control, or Forward Error Correction (FEC),

o�ers a low latency solution to compensating for some losses but at the cost of consuming

116

5.1. Introduction 117

additional network bandwidth [13, 87]. While source-driven retransmission protocols do

not scale to large networks and large receiver sets, recent fully reliable multicasting proto-

cols introduce a hierarchy of special multicast receivers that handle retransmissions locally

and relay control information back to the source. Distributed schemes o�er the advantages

of low-latency recovery, restriction of individual retransmissions to only a portion of the

network, and scalability to large receiver sets.

This chapter introduces a novel distributed retransmission-based error control protocol

for wide-area multicasting of time-constrained data streams. Known as MESH-M [65], the

new scheme extends the successful approach of distributed multicast error control in three

key ways. First, MESH-M incorporates a retransmission model for delay-sensitive streams,

decoupling the use of retransmission from a fully reliable service semantic and allowing the

protocol to be tailored for application-dependent delay constraints. Second, the protocol

uses a run-time algorithm for dynamic con�guration of the control framework between the

receivers performing retransmission-based recovery. This dynamic control structure enables

adaptation to network tra�c dynamics and exploitation of multiple physical paths in the

wide-area topology, in contrast with static hierarchical control as in [47, 62]. Third, MESH-

M is explicitly designed to work with multiple multicast data sources without building a

per-source control framework.

The remainder of this chapter is structured as follows. Section 5.2 covers related work

and describes MESH-M. Section 5.3 compares the performance and network cost of MESH-

M against end-to-end FEC using a wide-area network simulation of digital video delivery.

The simulation results demonstrate that, if the multicast receivers can tolerate some addi-

tional bu�ering delay, MESH-M can substantially improve playback quality by recovering

lost packets and that the network overhead incurred by MESH-M is signi�cantly less than

with end-to-end FEC. Section 5.4 gives our conclusions and discusses future work.

5.2. Distributed Retransmission Error Recovery 118

5.2 Distributed Retransmission Error Recovery

Chang and Maxemchuck(CM) [21] present the pioneer work on fully reliable multicast

transport protocol design. However, the CM protocol and its derivatives are based on

a centralized design which does not scale to large groups [84]. Holbrook [47], Paul [62]

and Yavatkar [103] use a distributed protocol design for achieving single source, reliable

data distribution. These protocols strategically distribute special nodes called designated

receivers (DRs) throughout the multicast group. By hierarchically organizing DRs and

endsystems, errors can be recovered locally between DRs and their children. Floyd et al. [41]

propose the SRM protocol in which receivers multicast retransmission requests to the group

and any group member can multicast retransmissions. The distributed protocols discussed

above improve scalability to large multicast groups and wide-area network environments.

However, the retransmission approaches employed are largely inappropriate for multimedia

applications since the temporal constraints of continuous media are not considered.

A deadline-driven protocol for retransmission-based error recovery of continuous media

data is presented by Dempsey [37]. The slack retransmission request (S-ARQ) scheme

extends the initial bu�ering at the receiver (the slack time) to enable receivers to recover

some lost messages via retransmission. Figure 5.1 [36] illustrates the S-ARQ method for

a unicast voice application. In the �gure, the network drops the second voice packet in a

talkspurt. Upon detecting the lost packet (as triggered by the reception of an out-of-order

packet), the receiver initiates a retransmission request and recovers the data prior to its

playback deadline.

S-ARQ performs well for point-to-point multimedia applications in a high performance

network environment [38]. However, S-ARQ as described above will not scale to large

multicast groups because the source must process every retransmission request for the entire

group. Furthermore, S-ARQ becomes infeasible in large networks where the roundtrip delay

between the receiver set and the source requires a prohibitively large slack time.

5.2. Distributed Retransmission Error Recovery 119

3 4 5

Extended Control Time 1 2 3 4 5

time

Protocol Processing
and Network Delay

time

time

time

3Voice
Sampling

Playback

Packetization

Arrival
at Receiver

Talkspurt

Packetization Intervals

Retransmission

lost

1 2 4 5

1 2 3 4 2 5

1 3 2 4 5

1Control Time(a) with jitter control

(b) with jitter control
 and Slack ARQ

Figure 5.1: S-ARQ retransmission model.

5.2.1 The MESH Protocol Framework

MESH-M is a distributed error control protocol for large-scale multicast groups that in-

corporates the time-constrained retransmission model of S-ARQ. In the MESH framework,

the multicast receiver set is partitioned into local subgroups, as motivated by the hierarchi-

cal design of contemporary networks: high-performance local or metropolitan area networks

with high bandwidth, low error rates, and generally low utilization interconnected by WANs

that o�er relatively low bandwidth, large delay variations, and high error rates due to heavy

utilization. The MESH framework uses various mechanisms for error recovery within the

local and the wide-area domain, in order to exploit the high performance of local area

networks and to protect scarce wide-area link bandwidth.

5.2. Distributed Retransmission Error Recovery 120

5.2.2 Error Recovery in the Local Area

Prior to data transfer to a multicast group, MESH-M requires the multicast group to be

partitioned into subgroups. The goal of the subgrouping algorithm is to partition the re-

ceiver set along the boundaries representing a high performance network domain, or campus

network, within the multicast network. Each subgroup elects a special receiver, the active

receiver, which coordinates error recovery for the subgroup. Algorithms for e�ective sub-

grouping and electing the active receiver are not explored in this research, but domain-based,

centralized, or local subgroup-based multicast schemes present several options.

Active receivers recover losses inside the local campus network via local communication

with subgroup members. Traditional source-based reliable multicast techniques are e�ective

in this domain. For losses that occur in the wide-area network delivery, the active receiver

recovers packets using the mechanisms described in Section 5.2.3 and then forwards the

recovered packets to all receivers in the local subgroup.

5.2.3 Error Recovery in the Wide Area

For error recovery between subgroups, the ARs use a novel combination of control mecha-

nisms. During the multicast data transfer, each AR dynamically discovers neighboring ARs

with which it may perform retransmissions. Discovery takes place through an advertise-

ment protocol run at each AR, thus avoiding the overhead of setting up and maintaining

static control hierarchies, e.g. as in [103]. For non-local losses, an AR runs the retransmis-

sion protocol and unicasts a retransmission request to a remote AR. If an AR receives a

retransmission request and has a copy of the data, it immediately unicasts the data to the

requesting AR. As with S-ARQ, bu�ering at the multicast receivers is scaled to ensure a

high likelihood that retransmissions can be completed before the playback deadline of the

retransmitted packets. Retransmissions arriving after the playback deadline are ignored.

5.2. Distributed Retransmission Error Recovery 121

5.2.4 Advertisement Protocol

After multicast data transfer commences, ARs send low-frequency advertisement messages

to a multicast group address on which all ARs listen. Advertisement messages (1) announce

the existence of the AR to other ARs, (2) characterize network errors between the AR and

each multicast source, and (3) provide a means to estimate the transmission delay between

ARs. Note that the advertisement protocol can be easily implemented using an existing

protocol de�nition, e.g., RTP [92].

The structure of an advertisement packet is shown in Figure 5.2. In the header the

Source Identi�er uniquely identi�es the AR by concatenating its network address and port

number; the Timestamp �eld contains a �ne-granularity (e.g., millisecond resolution) times-

tamp of when the advertisement was transmitted; and the Report Number sequences the

advertisements from an AR. The body of the advertisement packet characterizes network

losses at each AR relative to each multicast source transmitting to the group.

Each block in the body carries four �elds. The Stream Id identi�es the multicast data

stream for this block. All information in the other three �elds of the block are relative to

this multicast data stream. The S and E �elds give the range of message numbers, e.g.,

packet sequence numbers, being reported. Finally, the Loss Mask �eld is a bitmask over the

range [S,E] where a bit set in the nth position of the mask represents the correct reception

at the AR of the message S+n, n = 0; 1; : : : ; E�S. In this context correct reception means

that the message was received from the network without any retransmissions.

Active receiver A processes the advertisement sent by active receiver B in the following

manner. First, the network transmission delay between A and B is estimated via the

Timestamp value in the header, along with an exponentially weighted moving average for

smoothing. Second, the Loss Mask �eld computes an error independencemetric between A

and B, EI(A;B), relative to each multicast data stream. The error independence metric

measures the di�erence between the network errors experienced byA and the network errors

experienced by B.

5.2. Distributed Retransmission Error Recovery 122

Source Identi�er

Timestamp

Report Number

Stream Id /* Source 1 */

S /* Start Message Number */

E /* End Message Number */

Loss Mask[S,E] /* messages received in [S,E] range */

.

.

.

Stream Id /* Source N */

S

E

Loss Mask[S,E]

Figure 5.2: Advertisement packet format.

Error independence is calculated as follows. For a given multicast data stream, let

lX(0; n) be a bitmask representing the reception history at active receiver, X, for messages

with sequence numbers in the range [0,n]. A bit set in the ith position represents correct re-

ception of the ith message. Let the number of bits set in the mask be denoted jlX(0; n)jrecvd
and the number of unset bits by jlX(0; n)jlost. De�ne

�i =

8<
:

1 if jlB(i; i)jrecvd = 1 and jlA(i; i)jrecvd = 0

0 otherwise

Then, for each multicast data stream common to A and B, active receiver A calculates

EI(A;B) =

Pi=Ê
i=0 �i

jlA(0; n)jlost
(5.1)

where Ê is the largest value received in the E �eld relative to this stream within an

advertisement message from B.

5.3. MESH-M Performance Evaluation 123

5.2.5 Retransmission Protocol

Each active receiver uses the information derived from received advertisement messages to

drive retransmission decisions. Speci�cally, when an AR, ARlocal, detects missing pack-

ets, ARlocal dynamically determines an appropriate remote AR to which a retransmission

request will be sent. The algorithm is given in Figure 5.3.

The three inputs to the procedure are: the playback deadline of the lost packets, the set

of ARs from which advertisement messages have arrived, and the set of known ARs which

have requested a retransmission of the missing packets. The algorithm loops through all

possible candidate ARs to which a retransmission request might be sent and applies the

following criteria for selection. First, ARs that have already sent retransmission requests

to the local AR are eliminated (line 4) in order to avoid circular retransmission requests.

Second, as a heuristic, any AR,ARi, such that EI(ARlocal;ARi) = 0 (line 5) is eliminated

since ARi is unlikely to have a copy of the missing packets. All ARs that appear to be too

far away for timely retransmission (line 6) are removed, and �nally, the algorithm biases

selection (line 7) towards the AR that will impose the least overhead on the network, as

estimated by the network latency from the local AR to the remote AR. If the algorithm

returns no candidate for retransmission, then the active receiver suppresses its retransmis-

sion request in order to avoid wasting scarce wide-area network resources on retransmission

attempts with a low probability of success.

5.3 MESH-M Performance Evaluation

In this section, we use a packet-level simulation to evaluate the error recovery performance,

network overhead, and scalability of MESH-M. Performance metrics of interest include:

(1) e�ectiveness in improving the data available for timely playback at the receivers, (2)

the network overhead of MESH-M protocol tra�c, and (3) the distribution of protocol

5.3. MESH-M Performance Evaluation 124

Input: A set S of active receivers fAR1;AR2; : : : ;ARNg

and a set D of dependent active receivers fARi1 ;ARi2 ; : : : ; ARijDj
g

and a playback deadine deadline

Output: Identify the remote active receiver to which a retransmission request will be sent.

1. Round-trip-time 1

2. Receiver null

3. For all ARi 2 S

4. If (ARi =2 D And

5. EI(ARlocal;ARi) 6= 0 And

6. RTT (ARi) < deadline And

7. RTT (ARi) < Round-trip-time)

8. Then

9. Round-trip-time RTT (ARi)

10. Receiver ARi

11. End If

12. End For

13. Return Receiver

Figure 5.3: Retransmission procedure for selecting remote AR.

processing among ARs. To give a comparison with an alternative solution for delay-sensitive

error control, MESH-M is compared against end-to-end forward error correction.

5.3.1 Simulation Design

The performance of MESH-M and FEC are compared by considering a videocast application

based on the SURAnet simulation environment developed in Chapter 3. However, the

background tra�c model and router drop characteristics are modi�ed to evaluate protocol

performance over a range of network drop rates and patterns. Key aspects of the simulation

model are given below:

5.3. MESH-M Performance Evaluation 125

GNU

MEM

BIR

JCK

TAU
JKV

MSB

AUB
MBJ

GIT

UMD

WVU

KNX

LEX CTV

NOF

NEO

3 Mbit/s Link

1.5 Mbit/s Link

Video Traffic

Campus Network

Figure 5.4: Wide-area network topology used in simulation experiments.

Topology: Figure 5.4 shows the network topology. It is closely based on the SURAnet

backbone, a contemporary WAN interconnecting research institutions in the South-

eastern US.

Application tra�c: Application tra�c is a 500-second trace of MPEG-I encoded

video at 16 frames/second (fps), 320-by-240 pixel resolution and 8 bit color. The

video stream bandwidth averages 220 Kbits/s and a peak rate of 530 Kbits/s.

Routing: The dotted arrows in Figure 5.4 show the multicast routing tree constructed

for the video distribution from a source on the CTV campus. The multicast tree is

based on shortest hop unicast routing.

Packet drop rates: The background tra�c generated by each campus network

is �xed at moderate load (i.e., 1mbps.) Packets are dropped at a router if there

is insu�cient bu�er space at the output port. In addition to the standard tail-drop

model, we control router drop patterns as follows: Upon packet arrival, a geometrically

5.3. MESH-M Performance Evaluation 126

distributed burst of packets with mean � will be dropped with probability � if the

output queue is less than two-thirds full, and by 10�� if the queue is greater than two-
thirds full. Thus, routers drop packets in blocks for larger values of �, and, isolated

drops for small values of �. The (�; �) model evaluates the performance of FEC and

MESH-M under various drop patterns; that is, correlated block losses, versus isolated

losses.

Transmission delays: The end-to-end packet delays in the network are composed

of router queuing and the per-link transmission delay of the packet. Queueing delay

results from congestion due to application and background tra�c.

Receiver operation: As a conservative default value, receivers use a one second

slack time for jitter and S-ARQ retransmission. Once the slack bu�er is initially

�lled, complete video frames are removed at the 16 fps rate.

The simulation is con�gured with receivers located on all 17 campus networks each with

an associated AR for the subgroup. Only one multicast source is assumed, and it is located

at the CTV campus. In the experiments, ARs send advertisement messages once per second

resulting in an advertisement tra�c load of about 3% of the multicast video stream. In the

base case, the error intensity values are set to � = 0:006 and � = 3. These loss rates result

in individual wide-area links losing between 1% and 6% of packets. These error rates are

high enough to exercise MESH-M and are within the range of measured loss rates in the

Internet.

5.3.2 MESH-M Retransmission Behavior

Figure 5.5 and Figure 5.6 present data from simulation experiments on the dynamic be-

havior of the MESH-M retransmission scheme. Figure 5.5 shows how MESH-M distributes

retransmission requests across the set of ARs. Since the retransmission algorithm given in

Figure 5.3 biases towards nearby ARs and the GIT campus connects to several campuses,

5.3. MESH-M Performance Evaluation 127

Requests Sent

Requests Received

0

500

1000

1500

2000

2500

JCK JKV MSBMEMGNU

N
um

be
r

of
 R

eq
ue

st
s

CTV UMD NOF WVU LEX KNX GIT BIR NEO MBJ TAU AUB

Figure 5.5: Distribution of retransmission requests.

Packet Loss Rate

Protocol Bytes

JC
K

_G
IT

T
A

U
_A

U
B

A
U

B
_M

SB

JK
V

_M
SB

N
E

O
_M

B
J

JC
K

_B
IR

JC
K

_N
E

O

M
B

J_
T

A
U

T
A

U
_J

K
V

G
IT

_J
K

V

G
IT

_T
A

U

M
E

M
_B

IR

B
IR

_G
IT

M
E

M
_K

N
X

K
N

X
_G

IT

G
N

U
_G

IT

L
E

X
_G

IT

W
V

U
_L

E
X

U
M

D
_W

V
U

U
M

D
_N

O
F

C
T

V
_U

M
D

C
T

V
_N

O
F

C
T

V
_G

N
U

0

2

4

6

8

10

12

Percent of Total

Pe
rc

en
t

Figure 5.6: Retransmission protocol overhead distribution and drop rates per link.

the GIT AR receives a disproportionate number of requests. The absolute rate of retrans-

mission requests arriving at the GIT AR is nonetheless modest for the scenario studied, i.e.,

less than 5 requests per second on average. In general, the e�ect shows that campuses with

large fan-out in the wide-area topology may result in a concentration of protocol tra�c at a

single AR, but the threat of processing bottlenecks is small due to limited fan-out in WAN

topologies and the processing capacities of modern workstations.

Figure 5.6 shows the distribution of MESH-M network overhead versus congestion in

the network. Recall that MESH-M protocol tra�c includes advertisements, retransmission

5.3. MESH-M Performance Evaluation 128

requests and retransmitted data packets. The data illustrates the tendency of the retrans-

mission algorithm to distribute retransmission overhead, when possible, along network links

with the least congestion, as indicated here by the packet loss rate on each link.

5.3.3 Comparison of MESH-M and Source-Based FEC

In this section we compare the performance of MESH-M to source-based Reed-Solomon

FEC with overcoding levels ranging from 7:5{40%. Reed-Solomon codes add h redundant

packets to n data packets [13]. If any n of the n+ h packets are received, then the original

data can be recovered. In our simulation experiments, H redundant packets are added to

each group of packets from N frames, denoted here as a FEC (N :H) encoding. Since each

frame in the video tra�c trace is composed of, on average, slightly more than two data

packets, FEC (2:1) yields approximately 20% overcoding.

5.3.3.1 Application Performance

Figure 5.7 shows the percentage of frames played at each campus for six di�erent proto-

col scenarios: no error recovery, MESH-M, and FEC overcoding at 10% (5:1), 15% (3:1),

21% (4:2) and 29% (4:3). In these measurements, all the packets making up a video frame

must be available at the playback deadline in order for the application to play a frame.

Over all campuses, FEC (5:1) and FEC (3:1) improve application performance by 30% over

the no-protocol case. The FEC (4:2) and (4:3) schemes improve the application perfor-

mance by 49% and 61%, respectively. MESH-M provides the best error coverage, increasing

application performance approximately 80%.

In Figure 5.7 the receivers are ordered left-to-right by their distance from the video

source at campus CTV. Due to the cumulative e�ects of packet loss at each wide-area link,

receivers farthest from the multicast source experience the highest loss rates and therefore

the greatest performance gains from the use of error recovery techniques. As the distance

5.3. MESH-M Performance Evaluation 129

FEC (4:3) - 29% Overcoding

FEC (4:2) - 21% Overcoding

FEC (3:1) - 15% Overcoding

FEC (5:1) - 10% Overcoding

MESH-M

No Error Recovery

Fr
am

es
 P

la
ye

d
(%

)

86

88

90

92

94

96

98

100

CTV GNU UMD NOF WVU GIT JCK BIR JKV LEX TAU KNX MSB NEO MEM MBJ AUB

Figure 5.7: Application performance under FEC and MESH-M error control.

from the source increases, local retransmissions using MESH-M maintains the playback

quality increasingly better than the source-based FEC approach.

5.3.3.2 Network Cost

To compare the network overhead associated with error control schemes, a network cost

metric is de�ned here. For each link in the WAN topology, the link cost is de�ned as the

product of two factors: (1) the congestion of the link, as measured by its average packet loss

rate over the duration of the data delivery, and (2) the amount of protocol tra�c carried on

the link, as measured by the ratio of protocol bytes to total tra�c bytes on the link. The

network cost is then the sum over all link costs. This de�nition re
ects the importance of

steering protocol overhead away from congested links.

Figure 5.8 plots the relative network cost for FEC overcoding levels ranging from 7:5{

40% and MESH-M. The network cost of FEC increases linearly up to 35% overcoding and

more rapidly thereafter due to the added congestion. The dotted line represents the cost

metric calculated for the MESH-M retransmission scheme { which equals that of 7:5% over-

coding. MESH-M actually adds 10% more tra�c to the network than 7:5% FEC overcoding,

5.3. MESH-M Performance Evaluation 130

7.5 8.5 10 12 15 16 18 20 21 25 29 35 40
0

(3:4)(3:3)(4:3)(3:2)(4:2)(2:1)(5:2)(6:2)(3:1)(4:1)(7:1)(6:1) (5:1)

0.048

0.095

0.143

0.190

0.238

0.285

0.332

0.380

0.428

FEC Overcoding (%)

R
el

at
iv

e
N

et
w

or
k

C
os

t

FEC (N:H)

MESH-M cost reference

Figure 5.8: Network cost for FEC overcoding.

but MESH-M biases its tra�c towards lightly loaded network links whereas FEC overhead

is added on the links in the multicast routing tree.

5.3.3.3 Di�erent Network Error Rates

The performance and network cost of FEC and MESH-M over di�erent error intensities

and burst loss sizes is compared here using FEC(5:1) 10% overcoding and FEC(4:2) 21%

overcoding. The choice of FEC(5:1) was motivated by the similar cost of MESH-M (as

shown in the previous section) while FEC(4:2) provides a comparison for a much higher

amount of overcoding.

Recall that � and � characterize the loss/load error model at each network router. In

Figures 9{12, the application performance and relative network cost of the MESH-M scheme

along with FEC(5:1) and FEC(4:2) are plotted across a range of values for � and either

� = 1 or � = 3. All other simulation parameters remain as in the base con�guration.

The error recovery performance and network cost of FEC(5:1), FEC(4:2), and MESH-M

are shown for the isolated loss model, i.e., � = 1, in Figure 5.9 and Figure 5.10. In this

5.3. MESH-M Performance Evaluation 131

0 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024
ρ

86

88

90

92

94

96

98

100

Fr
am

es
 P

la
ye

d
(%

)
FEC (4:2) - 21% Overcoding

MESH-M

No Protocol

FEC (5:1) - 10% Overcoding

Figure 5.9: Application performance for FEC(4:2), FEC(5:1), and MESH-M with � = 1.

0
0 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024

0.048

0.095

0.143

0.190

0.238

ρ

MESH-M

FEC (5:1) - 10% Overcoding

FEC (4:2) - 21% Overcoding

R
el

at
iv

e
N

et
w

or
k

C
os

t

Figure 5.10: Network cost for FEC(4:2), FEC(5:1), and MESH-M with � = 1.

experiment, without protocol overhead, the link drop rates are between 0{2:7% for � = 0,

and between 2:4{4:8% for � = 0:024.

As seen in Figure 5.9, the performance of FEC(4:2) and retransmission are comparable,

and both techniques provide excellent error recovery over the full range of �. Figure 5.10

shows, however, that the cost metric for FEC(4:2) is roughly 2:5 to 16 times greater than

MESH-M over the range of � shown. On the other hand, FEC(5:1) has a network cost

similar to MESH-M, but its error recovery e�ectiveness is noticeably less, especially under

higher error rates.

5.3. MESH-M Performance Evaluation 132

ρ

Fr
am

es
 P

la
ye

d
(%

)

76
78
80

82
84
86
88
90
92

94
96
98

100

0 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024

FEC (4:2) - 21% Overcoding

FEC (5:1) - 10% Overcoding

No Protocol

MESH-M

Figure 5.11: Application performance for FEC(4:2), FEC(5:1), and MESH-M with � = 3.

ρ

0
0 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024

0.048

0.095

0.143

0.190

0.238

0.285

0.332

0.380

0.428

R
el

at
iv

e
N

et
w

or
k

C
os

t

FEC (5:1) - 10% Overcoding

MESH-M

FEC (4:2) - 21% Overcoding

Figure 5.12: Network cost for FEC(4:2), FEC(5:1), and MESH-M with � = 3.

5.4. Conclusions and Future Work 133

In Figure 5.11, the application performance of FEC(4:2), FEC(5:1) and MESH-M for

bursty losses, i.e., � = 3, is shown. For this network scenario, without protocol tra�c, the

link drop rates are between 0{2:8% for � = 0 and between 6:9{10:1% for � = 0:024.

MESH-M performs signi�cantly better than FEC(4:2) in this scenario, as seen in Fig-

ure 5.11. Figure 5.12 reveals that the network cost for MESH-M at low error rates is small,

but it increases rapidly as error rates rise, due to the greater amount of retransmitted data.

As a result, the cost for retransmission is similar to 10% overcoding at � = 0:009, but closer

to the cost for 21% overcoding at � = 0:024. By contrast, the FEC schemes have penalties

that grow linearly with �.

5.4 Conclusions and Future Work

This chapter presented MESH-M { a low-cost, e�ective error control for multimedia appli-

cations in wide-area multicast networks. Simulation experiments in this study give evidence

that MESH-M succeeds in localizing retransmissions within the wide-area topology, and in

steering retransmission tra�c away from congested links. These properties enable MESH-

M to scale to large receiver sets and heterogeneous networks. The experiments also show

that, for applications which can tolerate some additional bu�ering delay, MESH-M provides

excellent error control at a lower network overhead than end-to-end forward error correction.

While these performance and cost advantages come at the expense of protocol complexity

within endsystems, MESH-M inherently requires less coordination overhead than schemes

that set up and maintain per-source control trees, e.g., [47, 62, 103]. Furthermore, as

compared with these other schemes, MESH-M is more robust to active receiver failures,

adapts more readily to network congestion, and is well-suited for multiple sources. Our

future work will extend MESH-M by incorporating FEC with distributed retransmissions,

and combine MESH-R for full reliability of receiver feedback and other state critical to the

multimedia application.

6

Conclusions and Future Work

6.1 Conclusions

The rapid growth in networked computer systems and available bandwidth is driving inter-

est in large-scale multicast applications such as distributed computing, multimedia, gaming,

and bulk-data transfer. Wide-area multicast networks, however, will likely provide ser-

vice comparable to that found in the Internet today; i.e., no performance guarantees on

transmission delay, drop rate, or transmission delay variation. As a result, multicast trans-

port services, such as error control and receiver feedback, are required by many multicast

applications.

Central to transport protocol design is the control structure which distributes proto-

col processing, localizes error repair, and aggregates receiver state. Further, the control

structure determines the
ow of end-system state used by feedback-based algorithms, e.g.,

congestion and error control protocols at the source. Thus, the design of control structure

is critical since it determines the services that can be provided at the transport layer, as

well as its scalability, e�ciency, and performance.

This dissertation presented a novel, fully-distributed transport control framework called

MESH. Our key contributions include:

134

6.1. Conclusions 135

� Domain-based control structure: MESH partitions the multicast group into an hi-

erarchical control structure based on natural network domain boundaries found in

networks today (e.g., local, campus, and backbone domains).

� State synchronization: MESH uses a data-driven, multicast feedback scheme to

synchronize group state within each domain. Special group members, called active

receivers (ARs), aggregate and propagate state throughout the domain hierarchy.

� Performance-based error control: Sophisticated heuristics localize the recovery of mes-

sages dropped by the network between group members. The heuristics are driven by

dynamic network performance characteristics such as delay and error patterns.

6.1.1 Large-Scale Reliable Transport: MESH-R

Using the MESH framework, we designed a reliable transport (MESH-R) suitable for use

by a large-scale, bulk-data distribution application. Key contributions of MESH-R include

(1) a robust state synchronization protocol that provides detailed end-system state for

reliability, congestion control, group management, and other end-system services, and (2) a

receiver-driven error control service which uses a self-organizing, soft-state unicast recovery

structure between multicast receivers.

Using a high-�delity network simulation of SURAnet and vBNSnet, we validated cor-

rect operation of MESH-R under a range of network loads. The study demonstrated that

MESH's state synchronization provides low-latency, e�cient state feedback to the source.

The study demonstrated that MESH-R's error control protocol adapts rapidly to changing

network conditions, exhibits good locality in recovering lost packets, and e�ectively exploits

redundant cross-links outside of the multicast routing tree.

We then compared the relative performance and network overhead of MESH-R to other

classes of solutions found in the literature (a centralized, a tree-based, and an unstructured

protocol). The experiments showed that (1) MESH-R achieves the lowest �le distribution

6.1. Conclusions 136

latency in both SURAnet and vBNSnet, (2) MESH-R o�ers the best network e�ciency in

the high-speed vBNSnet environment, and (3) MESH-R o�ers network e�ciency comparable

to an optimal tree-based approach in SURAnet.

6.1.2 Large-Scale Deadline-Driven Transport: MESH-M

We considered the design of transport service for large-scale, continuous media applications.

In the continuous-media domain, transport service requirements include network perfor-

mance feedback and timely recovery of messages lost by the network (since each message

has an associated play-back deadline.)

We developed MESH-M, a distributed error control scheme which recovers dropped

messages using the time-constrained retransmission model of S-ARQ. The key contribution

of MESH-M is the error control framework. Our approach is based on identifying local

nodes which have a high probability of retransmitting messages within the media's playback

deadline. Our approach attempts to minimize the network overhead by avoiding congested

network links and localize repair. Unlike other schemes, our approach is implemented

entirely at the transport layer, relies on a run-time algorithm for dynamic con�guration of

the control framework, and performs retransmission-based recovery based upon observed

network delays and error patterns relative to the source.

We compared the performance of MESH-M to a range of FEC overcoding levels. Our

analysis focused on a single-source, MPEG video-cast application in the SURAnet environ-

ment. Key results of the analysis include:

� MESH-M e�ectively distributed error recovery throughout the group.

� MESH-M distributed retransmission overhead, when possible, along network links

with the least congestion.

� MESH-M improved application performance by 80% { a 30% improvement over FEC

schemes that overcode the stream by 29%.

6.2. Future Work 137

� MESH-M is very e�cient { comparable to FEC overcoding at 7:5%, and more than

three times more e�cient than a 29% FEC overcoding scheme.

6.2 Future Work

In this dissertation, we showed (for the network environments considered) that the generic

implementation of MESH-R was very attractive for reliable multicast, and MESH-M per-

formed very well for deadline-driven reliable multicast. In general, however, no twomulticast

sessions are the same. Each application has di�erent error control and feedback require-

ments. Likewise, each network has its own particular performance characteristics. One key

feature of the MESH framework is that the heuristics can be programmed for a particular

application, network environment, or group size. Future research directions focus on devel-

oping MESH protocols for other application domains, and lowering the network overhead

associated with MESH-R and MESH-M without compromising application performance.

These directions are summarized below.

� In MESH, each node domain-multicasts state according to the application's require-

ments. Domain-multicast has a number of advantages in that it is robust and provides

low-latency synchronization. However, it is an expensive operation. In future work,

we will investigate techniques that lower the state frequency by developing an API

which allows the application or group management protocol to identify state critical

to the progress of the group. We will also investigate techniques which can e�ciently

exchange state within a domain, without sacri�cing synchronization latency. The

hypercube technique proposed by Liebeherr [61] is a promising approach.

� MESH's error recovery heuristics do very well localizing error recovery simply by

considering network delay and loss characteristics. In future work, we will consider

other heuristics that might improve recovery latency and lower network overhead. In

particular, we believe that adapting the retransmission timers to recovery delay and

6.2. Future Work 138

duplicates can greatly improve MESH's e�ciency. Also, we will investigate modifying

the server selection algorithm to consider past recovery behavior and loss rates between

ARs.

� The MESH framework inherently supports multi-source applications. However, mul-

tiple sources increase the size and frequency of state messages. In future work, we

will investigate low-overhead state services for multisource applications. Of particular

interest is a web-cache update application. Here, once a server receives an update, it

must quickly inform the other servers which data are no longer valid. Updating the

stale data is a separate issue in which multicast may not be the optimal technique.

We plan to investigate low latency, low overhead web-cache solutions using MESH.

� MESH relies on a retransmission-only error control scheme. However, FEC has been

shown to recover a large number of network losses without retransmission. In future

work, we will investigate integrating FEC with MESH-based retransmission. We

believe a hybrid scheme can signi�cantly lower the network overhead and service

latency.

� The MESH framework hinges on the ability to localize multicast messages within

network domains. Since IPv6 is not widely deployed, it is unclear if domain-multicast

can be relied upon. Although centralized approaches and local multicast addressing

present viable options, we plan to investigate the feasibility of a multicast gateway

service located at each network exchange point. In addition to domain-scoping service,

the gateway can provide a number of critical services such as congestion control,

accounting, metering, and quality of service monitoring.

A

Self-Similar Tra�c

A.1 Generating Self-Similar Tra�c Using the FFT Method

The FFT strategy to generating FGN is based on constructing a sequence of complex num-

bers fz0; :::; zn�1g corresponding to the power spectrum f(�;H) of a FGN process. Applying

the inverse discrete fourier transform to fzg obtains a sequence fx0; :::; xn�1g corresponding
to the time domain couterpart to fzg. Since fxg has by construction the power spectrum

of FGN, the sample path is guaranteed to have the autocorrelation properties of an FGN

process. The steps to the FFT technique are given below [79]:

1. Construct a sequence of values f1; :::; fn, where fi = f(2�i=n;H). The power spectrum

of FGN, developed by Whittle, is given below by Beran [12]:

f(�;H) = A(�;H)[j � j�2H�1 +B(�;H)] (A.1)

A(�;H) = 2 sin(�H)�(2H + 1)(1� cos�) (A.2)

B(�;H) =
1X
j=1

[(2�j + �)�2H�1 + (2�j � �)�2H�1] (A.3)

2. Multiply each fi by an independent exponential random variable with mean 1, creating

a sequence ff̂ig. This step distributes the power for a given frequency as an indepedent

139

A.1. Generating Self-Similar Tra�c Using the FFT Method 140

exponential random variable such that the mean is equal to the actual power. This

step is necessary because estimating the power spectrum using the Fourier transform

relies on the fact that ordinates (called the peridogram ordinates) are asymptotically

independent and exponentially distributed with mean f(�;H).

3. Construct a sequence of complex numbers fz0; :::; zn�1g, where j zi j=
q
f̂i�1 and the

phase of zi is uniformly distributed between 0 and 2�. The random phase techinque,

given by Schi� [89], maintains the autocorrelation structure of the FGN process while

ensuring that each sample path is unique.

4. Construct fz00; :::; z0n�1g as follows:

z0j =

8>>>><
>>>>:

0; if j = 0

zj ; if 0 < j � n=2

zn�j ; if n=2 < j < n

(A.4)

where zn�j is the complex conjugate of zn�j . Since fz0jg is symmetric about z0n=2, it
corresponds to the Fourier transform of a real-valued signal [89].

5. Take the inverse-Fourier transform of fz0jg, resulting in an approximate FGN sample

path fx0; :::; xn�1g.

B

Simulated Network Delay and Error Rates

B.1 Simulated Round-trip Delays and Drop Rates in SURAnet

uva umd nof wvu lex knx gnu git mem bir jck neo mbj tau jkv aub msb

uva 0 21 21 26 32 31 23 28 38 33 37 40 38 33 33 37 40

umd 21 0 20 23 28 35 28 32 43 37 41 44 42 37 37 41 43

nof 21 21 0 26 32 35 27 31 42 36 40 44 42 36 36 41 43

wvu 26 23 26 0 23 32 33 29 39 34 37 41 39 34 34 38 40

lex 32 28 31 23 0 26 27 23 34 29 32 36 34 29 29 33 34

knx 31 34 34 31 26 0 25 21 25 26 30 34 32 26 26 30 32

gnu 23 27 27 32 27 24 0 21 32 27 31 34 33 27 27 31 33

git 27 31 31 28 23 20 21 0 28 23 27 31 29 23 23 27 29

mem 38 42 42 38 34 26 33 28 0 21 25 29 32 33 33 38 40

bir 33 37 37 33 28 26 27 23 21 0 21 25 29 29 29 33 34

jck 37 41 41 38 33 31 32 28 25 21 0 21 25 33 33 37 39

neo 41 45 45 41 36 34 35 31 29 25 21 0 21 27 31 31 36

mbj 39 43 43 39 34 32 33 29 32 29 25 21 0 24 27 27 32

tau 33 37 37 33 29 26 27 23 34 29 32 27 23 0 21 21 26

jkv 33 37 37 33 29 26 27 23 34 29 32 31 27 21 0 26 23

aub 37 41 41 37 32 30 31 27 38 32 36 31 27 21 26 0 21

msb 39 43 43 39 34 33 33 29 40 34 38 35 32 26 23 21 0

Table B.1: Suranet round-trip network delay (in ms) for M = 10 packets per 100ms.

141

B.1. Simulated Round-trip Delays and Drop Rates in SURAnet 142

uva umd nof wvu lex knx gnu git mem bir jck neo mbj tau jkv aub msb

uva 0 363 22 370 376 608 361 605 620 610 615 621 618 611 611 617 618

umd 363 0 21 24 31 956 709 952 968 959 962 967 966 960 958 963 965

nof 22 21 0 27 34 612 365 609 624 615 622 626 623 617 617 621 624

wvu 370 24 27 0 24 34 716 30 45 36 40 44 43 36 36 42 44

lex 377 30 33 23 0 28 267 24 38 30 33 38 37 30 30 36 37

knx 611 957 615 33 27 0 265 21 26 28 31 36 35 28 28 33 35

gnu 359 708 364 716 266 264 0 261 273 266 269 274 272 265 267 272 275

git 606 953 611 29 23 21 261 0 32 24 27 33 31 24 24 29 31

mem 620 967 626 44 38 26 276 32 0 24 27 32 35 38 38 44 45

bir 611 959 617 36 30 28 267 24 23 0 21 26 30 30 30 36 37

jck 617 964 622 40 34 32 273 28 27 21 0 22 26 34 34 40 42

neo 622 970 628 45 39 37 277 33 32 26 22 0 21 28 32 33 38

mbj 620 968 627 44 37 35 276 31 35 30 26 21 0 25 28 29 34

tau 611 960 618 36 30 28 267 24 39 31 34 28 24 0 21 22 27

jkv 612 959 617 36 30 28 268 24 39 30 34 32 28 21 0 27 24

aub 618 965 624 42 35 33 274 29 45 35 39 32 29 22 27 0 21

msb 620 966 626 43 37 35 276 31 46 37 41 37 34 27 25 21 0

Table B.2: Suranet round-trip network delay (in ms) for M = 70 packets per 100ms.

uva umd nof wvu lex knx gnu git mem bir jck neo mbj tau jkv aub msb

uva 0 3 2 4 6 6 2 4 6 5 5 7 6 5 6 6 6

umd 3 0 3 3 4 7 4 5 7 7 7 7 7 7 6 8 8

nof 3 3 0 4 5 7 4 5 8 7 6 8 7 7 7 8 7

wvu 4 3 4 0 3 5 6 4 6 6 5 7 6 5 5 6 6

lex 6 4 6 3 0 4 4 3 5 4 4 5 5 4 4 5 5

knx 5 7 7 5 4 0 4 3 3 4 4 5 5 4 4 6 5

gnu 3 4 4 6 4 4 0 2 4 4 4 5 5 4 4 6 5

git 4 6 5 4 3 3 3 0 4 3 3 4 4 3 3 4 4

mem 7 8 8 7 6 3 6 4 0 2 4 5 7 6 6 6 6

bir 5 7 6 5 4 4 4 3 2 0 3 4 5 4 4 5 5

jck 5 7 7 5 4 4 4 3 4 3 0 3 4 4 4 5 5

neo 7 8 8 6 6 5 5 4 5 4 3 0 3 4 5 5 6

mbj 7 7 7 6 5 6 5 4 7 5 4 3 0 3 4 4 5

tau 5 7 7 5 4 4 4 2 5 5 4 5 3 0 2 3 4

jkv 5 7 6 5 4 4 4 3 6 4 4 5 4 2 0 4 2

aub 7 7 8 7 6 6 6 4 7 5 5 5 4 3 4 0 3

msb 7 7 8 6 5 5 5 4 7 5 5 6 5 4 3 2 0

Table B.3: Suranet round-trip network drop percent for M = 10 packets per 100ms.

B.2. Simulated Round-trip Delays and Drop Rates in vBNSnet 143

uva umd nof wvu lex knx gnu git mem bir jck neo mbj tau jkv aub msb

uva 0 14 3 16 18 31 9 29 31 31 31 33 32 30 30 32 31

umd 14 0 3 3 4 39 24 39 42 41 40 40 42 42 41 40 39

nof 3 3 0 4 5 32 11 30 31 33 33 33 33 31 32 33 34

wvu 16 3 4 0 3 5 25 3 7 5 5 7 6 5 6 6 6

lex 18 4 5 3 0 4 24 3 6 4 4 5 5 4 4 5 5

knx 30 40 33 5 4 0 23 3 3 3 4 5 6 4 4 5 5

gnu 10 21 11 25 22 23 0 21 24 21 23 25 25 22 22 24 26

git 27 38 32 4 3 3 20 0 4 3 3 3 4 3 3 4 4

mem 34 43 38 7 5 3 30 4 0 2 4 5 7 6 5 7 6

bir 31 40 35 5 4 4 25 3 3 0 3 4 5 4 4 6 5

jck 33 40 37 4 4 4 28 3 4 3 0 3 4 4 4 5 6

neo 36 43 39 6 5 5 30 4 5 4 3 0 3 4 5 6 6

mbj 36 43 38 6 5 5 30 4 6 5 4 3 0 3 4 4 5

tau 31 40 35 5 4 4 26 2 5 4 4 5 3 0 3 2 4

jkv 32 40 35 5 4 4 25 3 5 4 4 5 4 3 0 4 3

aub 35 43 37 7 5 5 29 4 6 5 5 6 4 3 4 0 3

msb 36 43 38 6 5 5 30 4 7 5 5 7 5 4 3 3 0

Table B.4: Suranet round-trip network drop percent for M = 70 packets per 100ms.

B.2 Simulated Round-trip Delays and Drop Rates in vBN-

Snet

sfc ncsr sdsc den chi ncsa hou cle cor psc mae

sfc 0 29 24 26 35 42 39 43 47 53 53

ncsr 28 0 35 20 29 33 44 37 42 42 51

sdsc 24 35 0 33 42 39 32 50 55 53 46

den 26 20 32 0 26 30 42 35 39 39 49

chi 34 28 42 26 0 22 28 26 30 31 40

ncsa 42 33 38 31 22 0 24 31 35 35 38

hou 38 45 32 42 29 24 0 37 42 39 32

cle 43 37 51 35 26 31 37 0 22 22 28

cor 48 42 55 39 31 35 42 22 0 27 33

psc 54 42 53 39 31 35 39 22 26 0 24

mae 53 51 46 48 40 39 32 29 33 24 0

Table B.5: vBNSnet round-trip delays (in ms) for M = 700 packets per 100ms.

B.2. Simulated Round-trip Delays and Drop Rates in vBNSnet 144

sfc ncsr sdsc den chi ncsa hou cle cor psc mae

sfc 0 35 29 28 51 61 49 79 86 86 68

ncsr 35 0 46 24 46 63 67 75 81 83 98

sdsc 29 46 0 40 67 49 37 95 102 65 56

den 28 24 40 0 40 57 60 69 76 78 93

chi 51 46 67 40 0 35 47 47 54 56 72

ncsa 61 63 49 57 34 0 30 63 70 73 49

hou 49 66 37 60 47 30 0 76 82 46 37

cle 79 74 95 69 47 64 75 0 25 28 37

cor 87 82 103 77 55 71 82 25 0 36 44

psc 86 83 66 79 57 73 46 28 36 0 27

mae 68 99 57 94 72 49 37 36 44 27 0

Table B.6: vBNSnet round-trip delays (in ms) for M = 2700 packets per 100ms.

sfc ncsr sdsc den chi ncsa hou cle cor psc mae

sfc 0 2 2 2 2 3 3 3 3 3 3

ncsr 2 0 3 2 3 3 3 3 3 4 4

sdsc 2 3 0 3 3 2 2 3 4 3 2

den 2 2 2 0 2 2 3 2 3 3 3

chi 2 2 3 2 0 2 2 2 2 2 3

ncsa 3 3 3 3 2 0 2 3 3 3 2

hou 3 3 2 3 2 2 0 3 3 3 2

cle 3 3 4 2 2 2 2 0 2 2 2

cor 3 3 4 3 2 3 3 2 0 2 3

psc 4 4 3 3 2 3 2 2 2 0 2

mae 3 4 3 3 3 2 2 2 3 2 0

Table B.7: vBNSnet round-trip drop percent for M = 700 packets per 100ms.

sfc ncsr sdsc den chi ncsa hou cle cor psc mae

sfc 0 4 5 3 17 10 7 34 35 23 11

ncsr 4 0 7 3 18 20 11 33 35 35 33

sdsc 5 7 0 5 21 7 5 38 37 9 8

den 3 4 5 0 15 21 11 31 33 33 31

chi 16 16 21 14 0 7 10 22 24 23 22

ncsa 10 21 8 20 8 0 4 29 25 28 9

hou 7 12 5 11 10 4 0 30 31 7 6

cle 34 34 37 31 22 26 29 0 2 4 5

cor 34 33 35 32 23 29 30 3 0 4 7

psc 22 34 9 34 24 27 6 4 5 0 2

mae 12 33 8 32 24 8 5 5 6 3 0

Table B.8: vBNSnet round-trip drop percent for M = 2700 packets per 100ms.

Bibliography

[1] Snoop Packet Filter. Sun Solaris 2.5 man page. Sun Microsystems, 1996.

[2] ATM Forum, ATM User-Network Interface Speci�cation Version 3.0, 1993.

[3] SURAnet Backbone Network Architecture, October 1994. Available by ftp at

ftp.sura.net in pub/maps/SURAnet/SURA.backbone.3.ps.

[4] Xpress Transport Protocol Speci�cation, Version 4.0, 1994. XTP Forum, Available

at http://www.ca.sandia.gov/xtp/xtp.html.

[5] ATM Forum, ATM Forum Tra�cManagement Speci�cation Version 4.0, Contribution

95-0013R11, March 1996.

[6] NSF very High Speed Backbone Network Service Management and Operations

Monthly Report, MCI vBNS Engineering, April 1997.

[7] A. Adas and A. Mukherjee. On Resource Management and QoS Guarantees for Long

Range Dependent Tra�c. In Proc. IEEE Infocom, pages 779{787, April 1995.

[8] J. S. Ahn and P. B. Danzig. Packet Network Simulation: Speedup and Accuracy

Versus Timing Granularity. IEEE/ACM Transactions on Networking, 4:743{757,

1996.

145

Bibliography146

[9] M. Ammar and L. Wu. Improving the Performance of Point to Multi-Point ARQ

Protocols through Destination Set Splitting. IEEE INFOCOM '92, pages 262{271,

May 1992.

[10] S. Armstrong, A. Freier, and K. Marzullo. Multicast Transport Protocol. Technical

Report RFC 1301, Internet Engineering Task Force, February 1992.

[11] D. G. Basset. Reliable Multicast Services for Tele-collaboration. Masters Thesis,

University of Virginia, January 1997.

[12] J. Beran. Statistical Methods for Data with Long-Range Dependence. In Statistical

Science, 7(4), pages 404{427, 1992.

[13] E. Biersack. Performance Evaluation of Forward Error Correction in ATM Networks.

ACM SIGCOMM '92, 22(4):248{258, August 1992.

[14] K. Birman. The Process Group Approach to Reliable Distributed Computing.

Communications of the ACM, 36(12):37{53, December 1993.

[15] K. Birman and T. A. Joseph. Reliable Communication in the Presence of Failures.

ACM Transactions on Computer Systems, 5(1):47{76, February 1987.

[16] K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group

Multicast. ACM Transactions on Computer Systems, 9(3):272{314, August 1991.

[17] J. Bolot, T. Turletti, and I. Wakeman. Scalable Feedback Control for Multicast Video

Distribution in the Internet. ACM SIGCOMM '94, 24(4):58{67, September 1994.

[18] C. Bormann, J. Ott, H. C. Gehrcke, T. Kerschat, and N. Seifert. MTP-2: To-

wards Achieving the S.E.R.O. Properties for Multicast Transport. In ICCCN '94,

San Francisco, California, September 1994.

[19] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:

an Overview, RFC 1633, July 1994.

Bibliography147

[20] R. Braudes and S. Zabele. Requirements for multicast protocols. Request for

Comments (Informational) RFC 1458, Internet Engineering Task Force, May 1993.

[21] J. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Transactions

on Computer Systems, 2(3):251{273, August 1984.

[22] D. R. Cheriton. VMTP: A Transport Protocol for the Next Generation of Commu-

nication Systems. In Proc. Sigcomm '86, pages 406{415, Stowe, Vermont, August

1986.

[23] D. R. Cheriton and C. L. Williamson. VMTP as the Transport Layer for High Per-

formance Distributed Systems. IEEE Communications Magazine, 27(6):37{44, June

1989.

[24] D. R. Cheriton and W. Zwaenepoel. Distributed Process Groups in the V Kernel.

ACM Transactions on Computer Systems, 3(2):77{107, May 1985.

[25] S. Cheung and M. Ammar. Using Destination Set Grouping to Improve the

Performance of Window-Controlled Multipoint Connections. Technical Report

GIT-CC-94-32, Georgia Institute of Technology, August 1994.

[26] F. Christian, H. Aghili, R. Strong, and D. Dolev. Atomic Broadcast: From Simple

Message Di�usion to Byzantine Agreement. Technical Report IBM Research Report

RJ 5244 (54244), IBM Almaden Research Center and Hebrew University, July 1986.

[27] D.D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an

Integrated Services Packet Network: Architecture and Mechanisms. In Proc. Sigcomm

'92, pages 14{26, August 1992.

[28] Douglas E. Comer. Internetworking with TCP/IP, Second Edition. Prentice Hall,

1991.

Bibliography148

[29] D. R. Cox. Long-Range Dependence: A Review. In Statistics: An Appraisal, Proc.

50th Anniversary Conference, pages 55{74, Ames, IA: Iowa State University Press.

Iowa State Univ. Press, 1984.

[30] J. Crowcroft and K. Paliwoda. A Multicast Transport Protocol. In Proc. Sigcomm

'88, pages 247{256, Stanford, California, August 1988. ACM.

[31] P. B. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin. An Empirical Work-

load Model for Driving Wide-area TCP/IP Network Simulations. Internetworking:

Research and Experience, 3(1):1{26, March 1992.

[32] S. Deering. Host extensions for IP multicasting. Request for Comments (Stan-

dard) STD 5, RFC 1112, Internet Engineering Task Force, August 1989. (Obsoletes

RFC0988).

[33] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. An Architecture

for Wide-Area Multicast Routing. ACM SIGCOMM '94, 24(4):126{135, September

1994.

[34] S. E. Deering. Multicast Routing in Internetworks and Extended LANs. In Proc.

Sigcomm '88, pages 55{64, Stanford, California, August 1988. ACM.

[35] S. E. Deering. Multicast routing in a datagram internetwork. PhD thesis, Stanford

University, Palo Alto, California, December 1991.

[36] B. J. Dempsey. Retransmission-Based Error Control for Continuous Media Tra�c in

Packet-Switched Networks. PhD thesis, Department of Computer Science, University

of Virginia, May 1994.

[37] B. J. Dempsey, J. Liebeherr, and A. C. Weaver. On Retransmission-Based Error Con-

trol for Continuous Media Tra�c in Packet-Switching Networks. Computer Networks

and ISDN Systems, 28(5):719{736, March 1996.

Bibliography149

[38] B. J. Dempsey, M. T. Lucas, and A. C. Weaver. An Empirical Study of Packet Voice

Distribution over a Campus-Wide Network. 19th IEEE Conference on Local Computer

Networks, October 1994.

[39] B. J. Dempsey, M. T. Lucas, and A. C. Weaver. Design and Implementation of a High-

Quality Video Distribution System using XTP Reliable Multicast. In Multimedia:

Advanced Teleservices and High-Speed Communication Architectures, Ralf Steinmetz

(Editor), Spring-Verlag, pages 376{387, Heidelberg, Germany, September 1994.

[40] C. Diot, W. Dabbous, and J. Crowcroft. Multipoint Communications: A Sur-

vey of Protocols, Functions, and Mechanisms. IEEE Journal on Selected Areas in

Communications, 15(3), April 1997.

[41] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. Reliable Multicast Frame-

work for Light-weight Sessions and Application Level Framing. In ACM Sigcomm '95,

pages 342{356, Cambridge, Massachusetts, September 1995.

[42] R. Frederick. Nv manual pages.

[43] R. Frederick. Multicast Routing Algorithms: A Survey, January 1994. Unpublished

Memorandum Available at ftp://ftp.csc.ncsu.edu/pup/rtcomm/RTMulticast.ps.

[44] H. Garcia-Molina and A. Spauster. Ordered and Reliable Multicast Communication.

ACM Transactions on Computer Systems, 9(3):242{271, August 1991.

[45] M.W. Garrett and W. Willinger. Analysis, Modeling and Generation of Self-Similar

VBR Video Tra�c. In ACM Sigcomm 1994, London, UK, August 1994.

[46] H. He�es and D. M. Lucantoni. A Markov Modulated Characterization of Packe-

tized Voice and Data Tra�c and Related Statistical Multiplexer Performance. IEEE

Journal on Selected Areas in Communications, SAC-4(6):856{868, September 1986.

Bibliography150

[47] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-Based Receiver-Realiable

Multicast for Distributed Interactive Simulation. In Proc. Sigcomm '95, pages

328{341, August 1995.

[48] V. Jacobson. Congestion Avoidance and Control. Computer Communication Review,

18(4):314{329, August 1988.

[49] V. Jacobson. Multimedia Conferencing on the Internet. In Tutorial 4, ACM Sigcomm

'94, September 1994.

[50] V. Jacobson and S. McCanne. The LBL audio tool vat. Manual page, July 1992.

[51] R. Jain and S. A. Routhier. Packet Trains: Measurements and a New Model for

Computer Network Tra�c. IEEE Journal on Selected Areas in Communications,

SAC-4(6):986{995, September 1986.

[52] M. Jones, S-A. Sorenson, and S.Wilbur. Protocol Design for Large Group Multicast-

ing: The Message Distribution Protocol. Computer Communications, 14(5):287{297,

June 1991.

[53] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An E�cient

Reliable Broadcast Protocol. Operating Systems Review, 23(4):5{19, October 1989.

[54] V. Kompella, P. Vachaspathiand J. C. Pasquale, and G. C. Polyzos. Two Tech-

niques for Multicasting for Multimedia Applications. Technical report, University of

California, San Diego, November 1991.

[55] S. Kramer. Total Ordering of Messages in Multicast Communication Systems. PhD

thesis, The Hebrew University of Jerusalem, Jerusalem, Israel, December 1992.

[56] W. Lau, A. Erramilli, J. L. Wang, and W. Willinger. Self-Similar Tra�c Parame-

ter Estimation: A Semi-Parametric Periodogram-Based Algorithm. In Proc. IEEE

Globecom '95, Singapore, 1995.

Bibliography151

[57] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the Self-Similar Na-

ture of Ethernet Tra�c (Extended Version). IEEE/ACMTransactions on Networking,

2(1):1{15, February 1994.

[58] B. Levine, D. Lavo, and J. J. Garcia-Luna-Aceves. The case for reliable concurrent

multicasting using shared ack trees. In Proceedings of ACMMultimedia '96, November

1996.

[59] X. Li, S. Paul, P. Panch, and M. Ammar. Layered Video Multicast with Retrans-

mission (LVMR): Evaluation of Error Recovery Schemes. In Seventh International

Workshop on Network and Operating Systems Support for Digital Audiovisual

(NOSSDAV '97), May 1997.

[60] X. Li, S. Paul, P. Panch, and M. Ammar. Layered Video Multicast with Retransmis-

sion (LVMR): Evaluation of Heirarchical Rate Control. In Proc. IEEE Infocom '98,

San Francisco, Ca., March 1998.

[61] J. Liebeherr and B. S. Sethi. Optimum Routing of Multicast Streams. In Proc. IEEE

Infocom '98, San Francisco, Ca., March 1998.

[62] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol. In Proc.

IEEE Infocom '96, pages {, March 1996.

[63] M. T. Lucas, B. J. Dempsey, and A. C. Weaver. Distributed Error Recovery for Con-

tinuous Media Data in Wide-Area Networks. Technical Report CS-95-52, University

of Virginia, July 1995.

[64] M. T. Lucas, B. J. Dempsey, and A. C. Weaver. An E�cient Self-Similar Tra�c

Model for Wide-Area Network Simulation. In Proceedings of IEEE Globecom '97,

pages 1572{1576, November 1997.

Bibliography152

[65] M. T. Lucas, B. J. Dempsey, and A. C. Weaver. MESH: Distributed Error Recovery

for Multimedia Streams in Wide-Area Multicast Networks. In Proceedings of IEEE

International Conference on Communication (ICC '97), pages 1127{1132, June 1997.

[66] M. T. Lucas and D. E. Wrege and B. Dempsey and A. C. Weaver. Statistical Charac-

terization of Wide-Area IP Tra�c. In Proceedings of Sixth International Conference

on Computer Communications and Networks (IC3N'97), pages 442{447, September

1997.

[67] S. Ma�eis, W. Bischofberger, and K. Matzel. A Generic Multicast Transport Service

to Support Disconnected Operation. In Second USENIX Symposium on Mobile and

Location-Independent Computing, Ann Arbor, MI, April 1995.

[68] S. McCanne, V. Jacobsen, and M. Vetterli. Receiver-driven Layered Multicast. In

ACM Sigcomm `96, pages 117{130, Stanford University, California, October 1996.

[69] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for Dis-

tributed Systems. IEEE Transactions on Parallel and Distributed Systems, 1(1):17{25,

January 1990.

[70] D. Mills. Network Time Protocol (Version 3): Speci�cation, Implementation, and

Analysis. DARPA Network Working Group, RFC-1305, March 1992.

[71] D. Mills. Improved Algorithms for Synchronizing Computer Network Clocks. ACM

SIGCOMM '94, 24(4):317{327, September 1994.

[72] J. Moy. Multicast extensions to OSPF. Request for Comments (Proposed Standard)

RFC 1584, Internet Engineering Task Force, March 1994.

[73] S. Navaratnum, S. Chanson, and G. Neufeld. Reliable Group Communication in

Distributed Systems. In Eighth International Conference on Distributed Computing

Systems, pages 439{446, San Jose, Calif., June 1988.

Bibliography153

[74] J. Nonnemacher and E. W. Biersack. Reliable Multicas: Where to use FEC. In Pro-

ceedings of IFIP Fifth International Workshop on Protocols for High Speed Networks,

INRIA, Sophia Antipolis, France, October 1996.

[75] J. Nonnemacher, E. W. Biersack, and D. Towsley. Parity-Based Loss Recovery for

Reliable Multicast Transmission. In ACM Sigcomm `97, pages 289{300, Cannes,

France, October 1997.

[76] C. A. Noronha. Optimum routing of multicast streams. In Proc. IEEE Infocom '94,

Toronto, Canada, June 1994.

[77] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error Control Scheme for

Large-Scale Multicast. In Proc. IEEE Infocom '98, San Francisco, Ca., March 1998.

[78] S. Paul, K. K. Sabnani, and D. M. Kristol. Multicast Transport Protocols for High

Speed Networks. In Proc. International Conference on Network Protocols, pages 4{14,

August 1994.

[79] V. Paxson. Fast Approximation of Self-Similar Network Tra�c. Technical Re-

port LBL-36750, Lawrence Berkeley Laboratory and EECS Division, University of

California, Berkeley, April 1995.

[80] V. Paxson. An Introduction to Internet Measuring and Modelling. In Tutorial 2,

ACM Sigcomm '96, Stanford University, August 1996.

[81] V. Paxson and S. Floyd. Wide Area Tra�c: The Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking, 3(3):226{244, June 1995.

[82] V. Paxson and S. Floyd. Why We Don't Know How To Simulate The Internet.

Technical Report LBNL-41196, Network Research Group, Lawrence Berkeley National

Laboratory, December 1997.

Bibliography154

[83] L. Peterson, N. C. Bucholz, and R. D. Schlichting. Preserving and Using Context In-

formation in Interprocess Communication. ACM Transactions on Computer Systems,

7(3):217{246, August 1989.

[84] S. Pingali, D. Towsley, and J. F. Kurose. A Comparison of Sender-Initiated and

Receiver-Initiated Reliable Multicast Protocols. In Proc. 1994 ACM Sigmetrics and

Performance `94, pages 221{230, May 1994.

[85] B. Rajagopalan. Reliability and Scaling Issues in Multicast Communication. In Proc.

Sigcomm '92, pages 188{198, Baltimore, Maryland, August 1992.

[86] S. Ramakrishnan and B. N. Jain. A Negative Acknowledgement with Periodic Polling

Protocol for Multicast over LANs. In Proc. IEEE Infocom '87, pages 502{511, San

Francisco, California, March 1987.

[87] L. Rizzo. E�ective Erasure Codes for Reliable Computer Communications Protocols.

Computer Communications Review, 27(2):24{36, 1997.

[88] H. Salama. Multicast Routing Algorithms: A Survey, January 1994. Unpublished

Memorandum Available at ftp://ftp.csc.ncsu.edu/pup/rtcomm/RTMulticast.ps.

[89] S. Schi�. Resolving Time-series Structure with a Controlled Wavelet Transform.

Optical Engineering, 31(11):2492{2495, November 1992.

[90] H. Schulzrinne. Voice Communication Across the Internet: A Network Voice Terminal.

Technical Report UM-CS-1992-050, University of Massachusetts, July 1992.

[91] H. Schulzrinne. Issues in Designing a Transport Protocol for Audio and Video

Conferences and Other Multiparticipant Real-Time Applications. Technical Report

draft-ietf-avt-issues-01, Internet Engineering Task Force (IETF), October 1993.

Bibliography155

[92] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Pro-

tocol for Real-Time Applications. Technical Report draft-ietf-avt-rtp-06, Internet

Engineering Task Force (IETF), November 1994.

[93] N. Shacham. Multipoint Communication of Hierarchically Encoded Data. In Proc.

IEEE Infocom '92, volume 3, pages 2107{2114, Florence, Italy, May 1992.

[94] T. Speakman, D. Farinacci, S. Lin, and A. Tweedly. Pretty Good

Multicast (PGM) Transport Protocol Speci�cation. Technical report, Inter-

net Engineering Task Force Internet Draft, January 1998. Available at

ftp://ds.internic.net/internet-drafts/draft-speakman-pgm-spec-00.txt.

[95] T. W. Strayer, B. J. Dempsey, and A. C.Weaver. XTP: The Xpress Transfer Protocol.

Addison-Wesley Publishing Company, 1992.

[96] R. Talpade and M. Ammar. Single Connection Emulation (SCE): An Architecture for

Providing a Reliable Multicast Transport Service. Technical Report GIT-CC-94-47,

Georgia Institute of Technology, Atlanta, Georgia, April 1995.

[97] A. S. Thyagarajan and S. E. Deering. Hierarchical Distance-Vector Multicast Rout-

ing for the MBone. In Proc. Sigcomm '95, pages 60{66, Cambridge, Massachusetts,

September 1995.

[98] H. Tode, Y. Sakai, M. Yamamoto, H. Okada, and Y. Tezuka. Multicast routing

algorithm for nodal load balancing. In Proc. IEEE Infocom '92, pages 2086{2095,

Florence, 1992.

[99] T. Turletti. H.261 Software Codec for Videoconferencing over the Internet. Techni-

cal Report 1834, Institut National de Recherche en Informatique et en Automatique

(INRIA), January 1993.

Bibliography156

[100] L. Wei and D. Estrin. A comparison of multicast trees and algorithms. In Proc. IEEE

Infocom '94, Toronto, Canada, June 1994. IEEE.

[101] B. Whetten, T. Montgomerey, and S. Kaplan. A High Performance Totally Or-

dered Multicast Protocol, August 1994. Research Memorandum Avaliable at:

http://research.ivv.nasa.gov/projects/RMP/RMP.html.

[102] H. Zhang X. Rex Xu, A. Myers and R. Yavatkar. Resilient Multicast Support for

Continuous-Media Applications. In Seventh International Workshop on Network and

Operating Systems Support for Digital Audiovisual (NOSSDAV '97), May 1997.

[103] R. Yavatkar, James Fri�oen, and Madhu Sudan. A Reliable Dissemination Protocol

for Interactive Collaborative Applications. ACM Multimedia 1995, pages 333{343,

November 1995.

[104] R. Yavatkar and Leelanivas Manoj. Optimistic Strategies for Large-Scale Dissem-

ination of Multimedia Information. ACM Multimedia 1993, pages 1{8, August

1993.

[105] T. S. Yum and M. Chen. Multicast source routing in packet-switched networks. In

Proc. IEEE Infocom '91, pages 1284{1288 (11B.2), April 1991.

[106] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource

ReSeVation Protocol. IEEE Network, 7(5):8{18, September 1993.

