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Abstract

While playing an essential role in star formation and planet formation, the origin of

circumstellar disks remains a matter of debate. In particular, circumstellar disks are

frequently observed in reality, yet magnetic fields in simulations readily suppress them.

In synergies with astronomical observations, analytical and numerical calculations

enable us to investigate the process of disk formation from prestellar cores to tens

of thousands of years after the birth of the protostars. However, the diversity of

the involved astrophysical processes and the wide ranges of length scales over eight

orders of magnitude have hindered our attempts to simulate the formation of disks.

In this thesis, we first approach the problem with idealized simulations that capture

the essential physics. It is followed by using synthetic observation to understand the

physics behind actual radio observations of protostars with embedded disks. Lastly,

we describe the tools that are built for current and future investigations.

In the first project, we systematically investigate the roles of turbulence and am-

bipolar diffusion (AD) in the accretion phase of star formation using magnetohydro-

dynamic (MHD) simulations. We find that both turbulence and AD promote disk

formation. In the turbulent simulations, rotationally supported disks form with and

without AD. However, the disks formed without AD are strongly magnetized and
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short-lived. Turbulence also modifies the appearance of the magnetic field-induced

pseudo-disks. The pseudo-disks are warped by turbulence while still staying coher-

ent. In the simulations with AD, the magnetic flux is removed from the disks very

efficiently, and the magnetic field lines are less pinched. It results in reduced mag-

netic braking and promotes disk formation. The disks formed with AD are highly

unstable without turbulence. We conclude that turbulence and AD work in parallel

to promote disk formation. We measure the plasma-β of the disks formed in our

simulations. The disks are much more strongly magnetized than commonly assumed

in the literature for driving protoplanetary disk accretion.

By comparing radio observations of protostars in the Perseus molecular cloud and

the synthetic observations using the previous simulations, we explain the depolariza-

tion observed on the disk scale and the alignment of the polarization to the minor

axes of the disks. A model is constructed by considering the Larmor precession time-

scale, or the grain alignment time-scale, with the gas damping time scale to determine

whether the grains are aligned. The vector radiative transfer equation is solved ana-

lytically and applied to the simulation to obtain a synthetic polarimetry observation.

To reproduce the observed trends, we conclude that both grain dealignment and dust

self-scattering must be present.

In the last part of the thesis, we describe three modules implemented in Athena++

to facilitate a range of current and future studies on star and disk formation. We

implement the multipole expansion self-gravity solver to the code in spherical polar

coordinates. Using the MacLaurin spheroid as a test, we find that the error converges

as more terms in the multipole expansion are used. The error is less than 0.1% when

a reasonable number of terms is included in the expansion. The general barotropic

equation of state (EOS) and its applications are then discussed. A general form of

the multi-power-law equation of state is derived and used to fit a realistic relationship
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between temperature and density obtained using complex radiation MHD simulation.

Lastly, we describe an implementation of sink particles treatment. This treatment

keeps some of the strengths while improving the weaknesses of an existing implemen-

tation of sink particles. These modules are used in various projects by collaborators,

including astrochemistry of hot cores and first cores, centrifugal barriers in protostel-

lar collapse, and grain growth in disk formation, some of which are briefly described

in the thesis.
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Chapter 1

Star Formation Theory

If we spend an hour driving, escape from the city lights, and look up into infinity,

usually, we will start counting the thousands of stars that we see. But the longer

we stare into it, the more stars appear until we notice a hazy band of light spanning

across the whole sky.1 What we are seeing is the Milky Way, composed of hundreds

of billions of stars that our eyes cannot distinguish individually. Although people

may find it distant, not only that stars form our galaxy, they are also the factories

of the heavy elements that comprise our bodies. Most of the stars are in fact much

less massive than our sun. With the advance in our understanding of the origin

of stars, we currently know the whole formation process of low-mass stars begins

from molecular clouds. Molecular clouds are turbulent, and these turbulent motions

redistribute gas and dust unevenly. Thus, high-density regions known as prestellar

cores form. As the prestellar cores condense further, they collapse under their own

gravity and protostars form at the centers of the cores. Happening in parallel is

the rotation of the cores induced by the random motions inherited from their parent

clouds. Due to the conservation of angular momentum, the rotation speeds up as the

1If you are in the northern/southern hemisphere, give it a try in the summer/winter!
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cores contract. Eventually, centrifugal forces, which increase faster than gravitational

forces as the core collapses, provide enough support and cause the cores to flatten and

form circumstellar disks. The accretion phase as well as other later phases quickly

follow as the material continues to be accreted from the disks to the central protostars.

While the above picture captures the essence of star formation processes, many

details are missing, and star formation remains one of the least understood astrophys-

ical processes. To draw a complete picture, analytical and numerical calculations are

often required. However, it is made difficult, if not impossible, by the large range of

scale and wide range of physical processes involved. Beginning from giant molecular

clouds, to prestellar cores, circumstellar disks, and finally to stars, they have length

scales of 106, 104, 102, and 10−2AU, respectively; a dynamic range of eight orders

of magnitude. Meanwhile, different physical processes including (but not limited to)

hydrodynamics, gravitation, electromagnetism, and radiative transfer dominate dif-

ferent phases of the whole process but we are still far from capable of including most

processes in a single calculation.

Although technology is quickly catching up, it is usually the simplest and the most

idealized model that yields the most intuition. Therefore, in the following, we will

start with the most essential physics and then add more pieces to the puzzle in the

hope of getting closer to the complete picture. Note that astrophysical fluid dynamics

and star formation are wide and deep topics. This introduction is only scratching the

surface and is written in a way that builds the basis just enough for understanding

the thesis.
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1.1 Hydrodynamics

Astrophysical flows are well described by compressible Navier-Stokes equations.

They are composed of the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (1.1)

and the momentum equations

∂ρv

∂t
+∇ · (ρvv + P ) = −ρ∇Φg, (1.2)

where ρ is the gas (or fluid) mass density, v is the velocity, P is the pressure, and

Φg is the gravitation potential caused by the gas itself. In general, the pressure is

a function of both the mass density and the internal energy density, which requires

solving an additional energy equation. However, for the reasons that will be dis-

cussed in the next section, the temperature of molecular clouds is nearly constant at

∼10K, corresponding to an isothermal sound speed cs of ∼0.2 km s−1. Therefore, for

simplicity, we will adopt the isothermal equation of state (EOS), i.e.

P = ρc2s . (1.3)

The gravitational potential can be obtained by solving Poisson’s equation

∇2Φg = 4πGρ. (1.4)

While the detailed numerical method for solving equation (1.4) will be presented in

Chapter 8, it can be treated as a given quantity in the current context.
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Prestellar cores can be modeled as a sphere of self-gravitating gas. Assuming

all quantities are spherically symmetric, we can write them in terms of only radial

distance r and time t. In this case, the equations become

∂ρ

∂t
+

1

r2
∂ (r2ρvr)

∂r
= 0,

∂vr
∂t

+ vr
∂vr
∂r

= −c
2
s

ρ

∂ρ

∂r
− ∂Φg

∂r
,

1

r2
∂

∂r

(
r2
∂Φg

∂r

)
= 4πGρ.

(1.5)

In the following, we will discuss a solution for hydrostatic isothermal cores in Subsec-

tion 1.1.1 and a self-similar solution for isothermal flow in Subsection 1.1.2, respec-

tively.

1.1.1 Time-independent solutions

The solution for hydrostatic cores can be obtained by substituting vr = 0 and

∂/∂t = 0. After rearranging, the momentum equation becomes

1

ρ

dρ

dr
= − 1

c2s

dΦg

dr
, (1.6)

which, if Φg(r = 0) = 0 is assumed, results in

ρ = ρce
−Φg/c2s ,

1

r2
d

dr

(
r2
dΦg

dr

)
= 4πGρce

−Φg/c2s ,
(1.7)

where ρc = ρ(r = 0) is the central density. Finally, we can obtain the Lane–Emden

equation
1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= e−ψ (1.8)



6

by defining

ψ ≡ Φg

c2s
, ξ ≡

(
4πGρc
c2s

)1/2

r. (1.9)

The solution to the Lane–Emden equation as shown with a solid line in Fig. 1.1

is known as the Bonnor–Ebert sphere (Bonnor 1956; Ebert 1955), characterized by

the constant density at small radii and the approximately 1/r2 density falloff. It is

not just a theoretical calculation that exists on paper. In fact, the density struc-

ture of Barnard 68 (Fig. 1.2) inferred from infrared observations shows a remarkable

agreement with the theoretical solution (Alves et al. 2001). Also note that this so-

lution can very well be approximated by the so-called pseudo-Bonnor–Ebert sphere

ρ/ρc = (1+ξ2/2)−1 shown with dashed line in Fig. 1.1 and both profiles are frequently

adopted as the initial conditions of numerical simulations (e.g. Chapter 6).

1.1.2 Self-similar solutions

Bonnor–Ebert sphere is not the only solution to the Lane–Emden equation; it can

be shown that ρ ∝ 1/r2 also satisfies the equation. In fact, this profile, which is

known as singular isothermal sphere (Shu 1977), is a special case of a solution to a

more general problem. If we start again from equations (1.5) and follow Shu (1977),

we can write another quantity M , the total mass inside a certain radius, in terms of

density:
∂M

∂r
= 4πr2ρ. (1.10)

The equations to be solved become

∂M

∂t
+ u

∂M

∂r
= 0,

∂ρ

∂t
+

1

r2
∂ (r2ρu)

∂r
= 0,

∂u

∂t
+ u

∂u

∂r
= −c

2
s

ρ

∂ρ

∂r
− GM

r2
.

(1.11)
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)

Figure 1.1: Solution and an approximation to the solution to the Lane–Emden
equation. The solution, Bonnor–Ebert sphere (solid) features constant density
near the center and 1/r2 falloff as the radius increases. The pseudo-Bonnor–Ebert
sphere (dashed) provides a good approximation to the solution.

Figure 1.2: (Left) B, V, I band (0.44, 0.55, and 0.90µm) image of Barnard 68 taken
with the Very Large Telescope; (Right) Azimuthally averaged dust extinction profile
of Barnard 68 (red circles) and the best-fit Bonnor–Ebert sphere (black solid line).
Figures taken from Alves et al. (2001).
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We can then non-dimensionalize the quantities using

x =
r

cst
, M =

c3s t

G
m(x), ρ =

1

4πGt2
α(x), u = csv(x). (1.12)

After some manipulation, one should get

m = x2α (x− v) ,

[
(x− v)2 − 1

]
v′ =

[
α (x− v)− 2

x

]
(x− v) ,

[
(x− v)2 − 1

] 1

α
α′ =

[
α− 2

x
(x− v)

]
(x− v) ,

(1.13)

which can be solved using power series of 1/x to obtain asymptotic solutions for

x≫ 1:
α = Ax−2 − A(A− 2)

2
x−4 + · · · ,

v = − (A− 2)x−1 +
(A− 2)(A− 6)

6
x−3 + · · · .

(1.14)

Finally, we can find that, by substituting t → 0, the initial density is indeed

proportional to 1/r2 with an initial zero velocity. Since the solution is written in terms

of x, a dimensionless quantity, the solution is self-similar. There are lots of interesting

properties of the solution. The constant A determines whether the profile is stable

against gravitational collapse: the solution describes an inside-out collapse with an

expansion wave propagating at the isothermal sound speed when A > 2. By putting

r → 0, M represents the mass of the central “protostar”, which increases linearly with

time. When A is just above the critical value 2, the solution has an accretion rate of

0.975 c3s/G = 1.85× 10−6M⊙ yr−1 (cs/0.2 km s−1)3, implying an lower limit on rate an

actual star accretes. Also, the constant accretion rate is sometimes a useful property.

In Section 8.3, we describe one of the applications that uses a singular isothermal

sphere as the initial condition.
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1.2 Radiation Hydrodynamics

In the last section, we assume the pressure is always proportional to the density,

which is equivalent to an isothermal assumption. In this section, we will relax the

restriction and reestablish why and when it is a valid approximation.

Recall that pressure should be a function of density and internal energy. Obtaining

the internal energy requires solving the energy equation. An energy equation reads

∂E

∂t
+∇ · [(E + P )v] = −ρv · ∇Φg +H− Λ, (1.15)

where E = e + ρv2/2 is the total energy density of the fluid with e as the inter-

nal energy density, and H and Λ are the heating and cooling terms, respectively. In

molecular clouds and prestellar cores, the main source of heating is cosmic-ray heating

while molecular lines and dust (thermal) radiation are responsible for the cooling. In

prestellar cores, the density is high enough for dust and gas to be well-coupled (Gold-

smith 2001) and dust cooling usually dominates. The dust cooling time-scale at

10K is ∼102–103 year, much shorter than the mechanical time-scale (e.g. the free-

fall time of prestellar cores is ∼104–105 year), so it is safe to ignore the mechanical

heating/cooling terms when determining the equilibrium temperature, and it is safe

to simply consider the balance between H and Λ. Compared to that of cosmic-ray

heating, the temperature dependence of dust radiation cooling is very steep (∝ T 4);

even if the gas temperature is only slightly out of equilibrium, the heating and cooling

terms would be greatly unbalanced and the temperature would return to equilibrium

within a short time-scale.

The argument above, however, only holds when the prestellar cores are optically

thin to their own radiation. As the core contracts, the density as well as the optical
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depth increases, which makes cooling inefficient. As a result, an adiabatic core forms

at the center. With the enhanced gas pressure, the adiabatic core would be able to

support itself against gravity. Hence, it is also known as the first hydrostatic core. As

the central temperature increases and reaches about 2000K, dissociation of hydrogen

molecules, an endothermic process, begins, which weakens the thermal support and

triggers the second collapse. Once the dissociation completes, the gas temperature

rises rapidly again, the ionization of hydrogen begins, and the second hydrostatic

core, or the protostellar core, forms.

Simulating the adiabatic cores requires solving additional equations as radiation

becomes significant. The radiative transfer equation is

∂Iν
∂t

+ cn · ∇Iν = Sν (Iν ,n) , (1.16)

where Sν(Iν ,n) is the source term encompassing both absorption and emission. This

equation is notorious for being hard to solve because of the dependence of specific

intensity Iν on not only location, but also direction angle and frequency. Nonetheless,

one can reduce its complexity by taking the grey approximation or by integrating

over frequency, assuming local thermal equilibrium is attained. We end up with the

radiation hydrodynamic equations

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇ · (ρvv + P ) = −ρ∇Φg −Gr,

∂E

∂t
+∇ · [(E + P )v] = −ρv · ∇Φg −G0

r + ρϵCR,

∂I

∂t
+ cn · ∇I = S (I,n)

(1.17)

after including radiative force Gr and net heating/cooling rate G0
r that couple the
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radiation and hydrodynamic equations, and the cosmic-ray heating rate per unit

mass of gas ϵCR. To relate gas pressure and internal energy density, for simplicity, we

can use the ideal gas law

e =
P

γ − 1
, (1.18)

where γ is the adiabatic index. The source term in the radiative transfer equation is

defined as

S (I,n) = cρ

[
κa,P

(
carT

4

4π
− J

)
+ κa,R (J − I)

]
, (1.19)

where κa,P and κa,R are the Planck and Rosseland mean absorption opacity, respec-

tively, J =
∫
I dΩ/(4π) is the angular quadrature of the intensity (i.e., the mean

intensity)..

Indeed, solving a similar set of equations, Masunaga & Inutsuka (2000) shows

that the first core starts forming when the central density reaches ∼10−13 g cm−3.

At ∼10−7 g cm−3, the central temperature reaches ∼2000K and the second collapse

begins. And finally, the second core forms ∼0.1 year after the second collapse begins.

Unfortunately, due to the short time-scale of first cores and that they are deeply

embedded, there is still no direct evidence for these theoretically predicted structures

so far.
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Chapter 2

Disk Formation Theory

Being a natural consequence of the conservation of angular momentum, circumstellar

disks play a critical role in the later stages of star formation. The rotation of prestel-

lar cores is believed to be inherited from their turbulent parent molecular clouds;

although there is only a negligible amount of net angular momentum in the molecular

clouds, a locally non-zero net angular momentum within the clouds can contribute to

the rotation of prestellar cores. By observing spectral lines, we can obtain kinematic

information about these prestellar cores. Statistically, a core would have a rotational

energy that is about 2% of the gravitational binding energy (i.e. βrot = 2%, Goodman

et al. 1993). As the cores contract, due to conservation of angular momentum, their

angular speed and, thus, the centrifugal support is significantly amplified. At some

point, the rotational support would be large enough to halt the gravitational collapse

and circumstellar disks are formed around the protostars.

To get a sense of how large a disk would be, we can consider the balance between

rotational and gravitational energies. If we assume the specific angular momentum

l∼L/M is conserved, the rotational energy would be ∼L2/(MR2) ∼ l2M/R2 ∝ R−2.

On the other hand, the gravitational energy is ∼GM2/R ∝ R−1, increases slower than
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the rotational energy as R decreases. When R decreases to βrot = 2% of the original

size, the rotational energy catches up with the gravitational energy and, assuming a

core size of ∼104AU, the expected disk size would be ∼102AU.

However, it brings a problem that, if the angular momentum of each gas parcel is

perfectly conserved, none of them would be able to arrive at the centers of prestellar

cores and stars would be unable to form. Therefore, there have to be ways to redis-

tribute angular momentum. In hydrodynamic simulations, the resultant circumstellar

disks are usually very massive and unstable due to Toomre’s (1964) instability. Spi-

rals can develop from the disks and angular momentum can be transported through

gravitational torque. The material with angular momentum removed would be able

to be accreted by the protostars. Whether the disk can accrete at a high enough rate

to avoid mass accumulation and fragmentation is unclear. Other physical processes

to enable disk accretion may be needed.

2.1 Ideal Magnetohydrodynamics

In fact, the molecular cloud is partially ionized by cosmic rays and threaded by

magnetic field lines. Although neutral particles cannot experience the electromag-

netic (EM) forces directly, when charged particles, which are tied to magnetic fields,

are accelerated by EM forces relative to the neutral particles, the EM forces would be

transferred to the neutrals through collisions. These charged particles are also fairly

well-coupled to the neutrals due to the fact that the magnetic diffusion timescale is

usually much longer than the dynamical timescale. As the consequence, like most

fluids of astrophysical interest, the gas in the molecular cloud to the zeroth order

acts like a perfectly conducting plasma and can be described by ideal magnetohy-

drodynamics (MHD). Ideal MHD introduces the induction equation and couples it

to hydrodynamics by adding the Lorentz force terms to the momentum and energy
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equation. Specifically,

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇ ·

(
ρvv + P +

B2

8π
− BB

4π

)
= −ρ∇Φg,

∂E

∂t
+∇ ·

[(
E + P +

B2

8π

)
v − B (B · v)

4π

]
= −ρv · ∇Φg,

∂B

∂t
−∇× (v ×B) = 0.

(2.1)

Here, the Lorentz force, which is usually written in the form of (∇×B)×B/4π, is

decomposed into two terms: the magnetic pressure term −∇B2/8π and the magnetic

tension term ∇ ·BB/4π = (B · ∇)B/4π. The magnetic tension term vanishes when

the magnetic field has no variation along the field line, or in other words, magnetic

tension is non-zero if and only if the field lines have a curvature. In absence of

other forces, the magnetic field line tends to redistribute such that the force vanishes.

Therefore, we can see that magnetic tension tends to straighten field lines. With a

similar argument, but this time the magnetic pressure term vanishes only when the

magnetic field strength is uniform, we see that magnetic pressure tends to spread out

field lines such that they are uniform, as illustrated in Fig. 2.1. Therefore, materials

move preferentially along the field lines, or otherwise, there will be a resistive force

acted by the bent magnetic field.

Under the ideal MHD or the flux-freezing approximation, the dimensionless mass-

to-flux ratio is useful when the interplay between gravity and the magnetic field is of

interest. The dimensionless mass-to-flux ratio of a structure, as the name suggests,

is the ratio between the mass and the magnetic flux threaded through it, normalized

by the critical value:

λ = 2π
√
G
M

Φ
, (2.2)
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Figure 2.1: Illustration of magnetic (a) pressure force and (b) tension force. Figure
adapted from (Thorne & Blandford, 2021).

where Φ is the magnetic flux, and (2π
√
G)−1 is the critical value above which gravi-

tational instability can happen (Nakano & Nakamura 1978), i.e. a structure is stable

against gravitational collapse when λ < 1, and vice versa. Through Zeeman observa-

tions of prestellar cores, Troland & Crutcher (2008) constrain the typical mass-to-flux

ratio. After applying the correction for the projection of the underlying geometry of

the cores, the authors found the mass-to-flux ratios to be close to unity (λ ≈ 2.6);

meaning that gravity is just slightly stronger than the magnetic force.

2.1.1 Magnetic Braking Catastrophe

It turns out the result is catastrophic if we simulate the formation of a magnetized

disk with the observed parameters in a way that is the most idealized. The simulation

starts with a protostellar core of one solar mass and ∼104AU with an arbitrary

density profile, for example, a Bonnor–Ebert sphere. The core is initially threaded by

a uniform magnetic field with a mass-to-flux ratio λ≫ 1 and starts with a solid-body

rotation such that βrot is a few percent. In the beginning, since the magnetic field is

straight and uniform, there is not any magnetic force acting on the gas, and the core
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proceeds to contract isotropically. As soon as the magnetic field lines become slightly

bent, the magnetic field exerts a force that resists the infall perpendicular to the field

lines and causes the gas to flow preferentially along the field lines. Therefore, the

core is flattened along the field lines, forming the so-called pseudo-disk (Galli & Shu

1993). As the cores are flattening, the gas along a certain field line closest to the mid-

plane would feel the strongest gravitational pull. Therefore, it is pulled into the center

much quicker than the others, causing the pull to be even stronger, and hence, heavily

pinches the magnetic field line toward the center. As in hydrodynamic simulation, due

to the conservation of angular momentum, the rotation of the gas at the mid-plane is

amplified compared to the rest in the same flux tube, causing the field lines to twist

slightly in the direction of the rotation. Recall that Lorentz force has two components:

tension and pressure. Due to axisymmetry, the magnetic pressure would only exert

a radial force and has no effect on angular momentum. The tension force, however,

is exerted on the gas at the mid-plane, resisting the rotation. Note that angular

momentum is always conserved; the removed angular momentum is transported to

the rest of the material on the flux tube, driving an outflow that carries away angular

momentum. This process is very efficient and is able to completely suppress disk

formation, leading to the magnetic braking catastrophe (Galli et al. 2006).

As will be introduced in Section 6.1, the potential resolutions fall into three cat-

egories: non-ideal MHD effects, turbulence, and field-rotation misalignment. Studies

including these effects will be presented in Chapter 6, and they suggest that non-ideal

MHD effects are the most promising. Therefore, it is useful to provide an overview

of non-ideal MHD.
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2.2 Non-ideal Magnetohydrodynamics

Non-ideal MHD effects arise due to disks being only lightly ionized. They include

Ohmic dissipation, Hall effect, and ambipolar diffusion (AD); each of them dominates

a different regime. Roughly, in regions with increasing density, AD, Hall effect, and

Ohmic dissipation dominate in the order given. In the circumstellar disks that this

thesis studies, AD is the most effective among the three. AD relaxes the assumption

that charged particles are perfectly coupled to the bulk neutral materials; instead,

the charged particles (or ions) that are tied to the magnetic field can slip through the

gas, causing the magnetic flux to be released from the gas.

To formulate AD, we can first start by writing down the drag force acting on the

neutrals by the ions

F drag = γρρi (vi − v) , (2.3)

where γ = ⟨wσ⟩/(m +mi) is the drag coefficient, w is the relative velocity between

ions and neutrals, and m and mi are the mass of the neutrals and ions, respectively.

In the frame of neutrals, the only forces experienced by the ions are the drag force

and the Lorentz force. The two forces must be equal since, otherwise, the ions would

be accelerated until the drag force balance the Lorentz force. So we can write

γρρi (vi − v) =
1

4π
(∇×B)×B,

vi = v +
1

4πγρρi
(∇×B)×B.

(2.4)

Since the magnetic field is tied to the ions instead of the neutrals, we should write

the induction equation as

∂B

∂t
−∇× (vi ×B) = 0. (2.5)
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Eliminating vi, we get

∂B

∂t
−∇× (v ×B)−∇×

(
1

4πγρρi
(∇×B)×B ×B

)
= 0. (2.6)

Note that a×ê×ê gives the component of an arbitrary vector a that is perpendicular

to the unit vector ê, the induction equation becomes

∂B

∂t
−∇× (v ×B) +∇× (ηAD (∇×B)⊥) = 0,

ηAD =
B2

4πγρρi
,

(2.7)

where a⊥ denote the perpendicular component of a to B.
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Chapter 3

The Athena Family of Code

Since this thesis focuses on the application and development of the Athena family of

code (Stone et al. 2008, 2020), this chapter provides an overview of Athena and its

successor, Athena++. Athena is a grid-based code that solves the MHD equations.

The code is designed for the studies of astrophysical flows, and is capable of solving

compressible hydrodynamics and MHD with a wide range of physics in one-, two-, and

three-dimension. In short, Athena solves the partial differential equations (PDEs) in

a fixed computational domain. The domain is discretized into (cubic) cells, with each

cell initialized with the initial condition. The PDEs are also discretized by the finite

difference method in both time and space, and are used to evolve the fluid quantities

to the next time-step.

Succeeding Zeus,1 Athena inherited the strength of Zeus while still having quite a

few improvements. Different from Zeus, Athena uses directionally-unsplit, high-order

Godunov method; in each time-step, Athena solves individual Riemann problem at

the cell interfaces and integrates the equations in the conservative form. Similar to

Zeus, Athena is particularly great at maintaining the divergence-free condition (∇ ·

1In Greek mythology, Athena is the daughter of Zeus who sprang out from his head.
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B = 0); it evolves the magnetic field using constrained transport (CT, Evans &

Hawley 1988). At each time-step, the electromagnetic force and current are calculated

at the edges of each cell interface. They are used to integrate the induction equation

and update the magnetic flux threading through each cell interface, analogous to

evolving the fluid quantities using fluxes.

To overcome the numerical difficulties caused by the large dynamic range of as-

trophysical flows, static mesh refinement (SMR) has been implemented in Athena.

SMR works by dividing the computational domain into multiple ones. Some of them

where the flows are expected to be smoother would be tiled by coarser cells, while

others where interesting finer structures happen would be refined and tiled by finer

cells. Unfortunately, due to the difficulties in maintenance, not all pieces of physics

are compatible with SMR. With the latest version of 4.2, Athena is deprecated in

2013. The team then started the development of the successor Athena++. Athena++

is an adaptive mesh refinement (AMR) framework designed to make the develop-

ment of AMR-compatible physics modules more manageable. The MHD solvers

behind Athena++ is completely based on Athena. Athena++ is written in C++ and

with performance in mind. The integrator is so-called task-based. It allows tasks

to be performed out-of-order so that MPI (message passing interface) communica-

tion (an I/O-bound task required for distributed parallelism) can be overlapped with

computationally-expensive tasks. Athena++ is currently more capable than Athena

in almost every way, and is quickly adopted by the community. Active development

has been undergoing and some of which will be discussed in Part III.
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Chapter 4

Polarization

The information on the magnetic field is critical to the study of star formation.

However, obtaining this information from observation has been challenging since

magnetic fields are hard to be observed directly. Therefore, techniques such as

Chandrasekhar–Fermi method (Chandrasekhar & Fermi 1953) and velocity gradi-

ent technique (González-Casanova & Lazarian 2017) have been developed for this

purpose. It turns out that magnetic fields have effects on both linear dust continuum

polarization and circular line polarization due to grain alignment and Zeeman effect,

respectively. In the following, we will first introduce grain alignment and the compli-

cation due to scattering. Following that, we briefly discuss Zeeman effect, the basis

of anchoring mass-to-flux ratios.

4.1 Grain Alignment

Although the main ingredient of the molecular cloud is molecular hydrogen, there

are also dust grains, tiny solid particles accounting for about 1% of the total mass (Frisch

et al. 1999). Composed of mainly carbon and silicates, dust grains have sizes rang-

ing from a few angstroms up to about a micron (Draine 2011). Through collision
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and sticking, dust grains can grow until they are large enough to attract each other

through gravity and eventually form planets. On top of that, dust grains are also

responsible for emitting, absorbing, and scattering radiation. In general, dust grains

are not spherical and have rotation usually aligned to their shortest axes. Barnett

(1915) discovered that dust grains would spontaneously magnetize, and in the pres-

ence of a background magnetic field, would precess around and slowly align to the

background magnetic field.

This alignment affects polarization because of the dichroic absorption and emis-

sion of elongated dust grains. In particular, polarized radiation with E vectors aligned

with the shortest axis is less likely to be absorbed and emitted. The resultant polar-

ization depends on whether the radiation is contributed by the background starlight

or the dust thermal emission. In the former case, starlight, resulting from black body

radiation, is unpolarized at first. However, as it passes through dust grains along the

line of sight, one component gets extincted more effectively than the other, resulting

in polarized radiation with E vectors aligned to the magnetic field. In the latter case,

the thermal radiation is already polarized in the first place and has the opposite ori-

entation. As illustrated in Fig. 4.1, linear polarization either parallel or perpendicular

to the magnetic field is produced, allowing us to trace the magnetic field orientation

and morphology, and in turn, to measure the magnetic field strength using methods

like the histogram of relative orientation (Soler et al. 2013). Fig. 4.2 presents some

examples of magnetic field orientation inferred from both the polarization of back-

ground starlight and dust thermal radiation. The inferred orientation is strikingly

consistent.

However, grains do not always align to magnetic fields, especially in circumstel-

lar disks as discussed in Chapter 7. Further complicating matters is the fact that

grain alignment is not the only mechanism responsible for linear polarization; an-
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Figure 4.1: Illustration of the polarization of background starlight (left) and dust
thermal radiation (right) due to grain alignment. Figure adapted from Lazarian
(2007).

other mechanism is self-scattering in disks (Kataoka et al. 2015; Yang et al. 2016).

The details behind the mechanism are out of the scope of this thesis. Briefly, the

polarization of scattered light is a function of scattering angle. As a result of the

disk inclination and emission profile, the scattered light is polarized with E vectors

aligned to disk minor axes, independent of magnetic fields.

4.2 Zeeman Effect

As the only method of measuring the magnetic field strength directly (Crutcher

2012), Zeeman effect relies on the fact that Zeeman-sensitive transitions split under

an external magnetic field. The energies of the split transitions are differed by ∼µBB,

where µB is the Bohr magneton. The radiation would be both linearly and circularly

polarized. By measuring the elliptical polarization, observers can retrieve information

on both the magnetic field strength and direction. However, in most astrophysical

environments, the line widths are usually much larger than the splitting, causing

the information on the linear polarization inaccessible. Nonetheless, the remaining

information on the circular polarization would still allow us to measure the line-of-

sight component of the magnetic field.
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Figure 4.2: Magnetic field orientation inferred from the polarization of dust thermal
emission and background starlight toward Taurus (top left), Pipe (top right), Lupus
I (bottom left), and Musca (bottom right) molecular clouds. The pattern shown in
grayscale is the line integral convolution of the magnetic field orientation inferred by
rotating the polarization of the dust thermal emission by 90◦. The black line segments
show the magnetic field orientation inferred from the polarization of starlight. Figure
taken from Soler et al. (2016).
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Chapter 5

Thesis Overview

In this thesis, we first examine the process of circumstellar disk formation and tackle

the magnetic braking catastrophe through numerical simulations using Athena. We

perform the analysis on realistic disk-formation simulations including the most es-

sential physics. With the simulations available, we consider grain alignment and gas

thermal motions that reduce the alignment and synthesize the dust thermal emission

and its polarization by solving the vector radiative transfer equations. The results

are then compared with ALMA Band 7 observations of 10 protostars in the Perseus

molecular cloud. After that, we revisit simulating disk formation and discussed the

tools necessary for running a realistic high-resolution disk formation simulation. The

implementations of each of them are described along with their applications to other

problems.

We begin by analyzing disk formation simulation and synthetic observation in

Part II. In Chapter 6, we follow the process of disk formation from prestellar cores to

tens of thousands of years after the birth of the protostars using Athena. Through

comparing designed sets of simulations including different sets of physical processes,

we isolate and analyze the features induced by turbulence and AD, and discuss how
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they promote disk formation, respectively. We conclude the chapter by discussing

the efficacy of both resolutions to the magnetic braking catastrophe and the disk

properties of the disks obtained in our simulations.

In Chapter 7, we re-examine observations of protostars in the Perseus molecular

cloud and confirm the phenomenon of depolarization in the disk scale. Before at-

tempting to reproduce the trend using synthetic observations of the simulations in

the last chapter, we discuss the condition required for grains to align, and thus, lead

to polarization. We are able to reproduce most parts of the observed trends using the

model derived from this condition. Lastly, we discuss the cause of the depolarization

with the help of an analysis of the simulation data.

Part III begins with a brief review of the challenges in simulating star and disk

formation. We list the tools needed to be implemented in Athena++. The imple-

mentations and applications of self-gravity solver, general barotropic EOS, and sink

particle treatment are described in Chapters 8, 9, and 10, respectively. The self-

gravity solver enabled the 2D (axisymmetric) radiation hydrodynamic simulations of

disk formation, which facilitate the computation of temperature that is needed for

the astrochemical calculations carried out by Prof. Garrod’s group and for grain

growth calculations. The general EOS enabled an exploration of the classic notion

of “centrifugal barrier” in disk formation that was recently claimed to be observed

with ALMA. The sink particle treatment is needed for both current and future disk

formation 3-D simulations in Cartesian coordinates.

Finally, Part IV concludes this thesis. We present a summary of the thesis in

Chapter 11. The current status of this field, the progress in resolving the magnetic

braking catastrophe, and the outlook of this line of research are discussed in Chap-

ter 12.
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Part II

Numerical Simulations of Disk

Formation
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Chapter 6

Disk Formation in Magnetized

Dense Cores with Turbulence

and Ambipolar Diffusion

This chapter is adapted from Lam et al. 2019, Monthly Notices of the RAS, 489, 5326,

with minimal modifications.

Abstract

Disks are essential to the formation of both stars and planets, but how they form

in magnetized molecular cloud cores remains debated. This work focuses on how the

disk formation is affected by turbulence and AD, both separately and in combination,

with an emphasis on the protostellar mass accretion phase of star formation. We find

that a relatively strong, sonic turbulence on the core scale strongly warps but does

not completely disrupt the well-known magnetically induced flattened pseudo-disk

that dominates the inner protostellar accretion flow in the laminar case, in agreement

with previous work. The turbulence enables the formation of a relatively large disk
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at early times with or without AD, but such a disk remains strongly magnetized and

does not persist to the end of our simulation unless a relatively strong AD is also

present. The AD-enabled disks in laminar simulations tend to fragment gravitation-

ally. The disk fragmentation is suppressed by initial turbulence. The AD facilitates

the disk formation and survival by reducing the field strength in the circumstellar

region through magnetic flux redistribution and by making the field lines there less

pinched azimuthally, especially at late times. We conclude that turbulence and AD

complement each other in promoting disk formation. The disks formed in our sim-

ulations inherit a rather strong magnetic field from its parental core, with a typical

plasma-β of order a few tens or smaller, which is 2–3 orders of magnitude lower than

the values commonly adopted in MHD simulations of protoplanetary disks. To resolve

this potential tension, longer term simulations of disk formation and evolution with

increasingly more realistic physics are needed.

6.1 Introduction

Circumstellar disks play a central role in the formation of both Sun-like stars and

planets. It is through such disks that the stars assemble most of their masses. The

disk is also the birthplace for planets. Understanding the formation and evolution of

disks has always been an integral part of the astronomical quest for our origins.

Despite significant progress, our knowledge of the origins of disks remains far

from complete. A major impediment to a full understanding of how disks form and

evolve is the magnetic field, which has been observed to thread molecular clouds

in general (e.g. Planck Collaboration et al. 2015) and star-forming cloud cores in

particular (for recent reviews, see Pattle & Fissel 2019 and Hull & Zhang 2019, and

references therein). Since the magnetic field interacts closely with the movement

of (partially) ionized gas, particularly the collapse and rotation of the magnetized
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star-forming core, it is expected to strongly affect the process of disk formation out

of the dense core, although fully quantifying this effect remains a work in progress.

The potential for the magnetic field to strongly affect disk formation was demon-

strated by early 2D (axisymmetric) numerical simulations of the collapse of magne-

tized rotating cores in the ideal MHD limit (e.g. Tomisaka 2000; Allen et al. 2003),

where the field removes essentially all of the angular momentum from the collapsing

material through magnetic braking. Galli et al. (2006) pointed out that the efficient

removal of angular momentum is directly tied to the well-known “magnetic flux prob-

lem” in star formation, namely, the stellar magnetic field would be many orders of

magnitude stronger than the typically observed values if the magnetic flux threading

the core was to be completely frozen into the matter and dragged all the way into the

forming star, as would be the case in the strict ideal MHD limit. The concentration of

magnetic flux at the center would formally lead to the formation of a split magnetic

monopole in this limit, where both the rapid increase of the field strength towards the

center and the long lever arm associated with the nearly radial field lines make the

magnetic braking efficient and disk formation difficult. This difficulty was sometimes

referred to as the “magnetic braking catastrophe” in the theoretical literature of disk

formation. How the catastrophe is averted for disk formation is ultimately tied to

how the magnetic flux problem is resolved in star formation.

The magnetic flux must be redistributed relative to the accreted matter in order

to resolve the magnetic flux problem. The most studied means of flux redistribution is

through non-ideal MHD effects, including Ohmic dissipation, AD and the Hall effect.

Shu et al. (2006) was the first to suggest that Ohmic dissipation may decouple the

magnetic field from the circumstellar material enough to allow for disk formation.

This suggestion was confirmed and extended numerically by Krasnopolsky et al. 2010

and Machida et al. 2011, among others (see e.g. Li et al. 2014a and Tsukamoto 2016
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for reviews of early work and references therein).

Non-ideal MHD effects are particularly well studied in recent years during the core

collapse phase, up to (and slightly beyond) the formation of the second Larson’s (stel-

lar) core. In this early phase, there is now broad agreement that a relatively small

disk (typically of several AU or smaller in size) can form in the presence of Ohmic dis-

sipation and AD (e.g. Dapp et al. 2012; Tomida et al. 2015; Tsukamoto et al. 2015a;

Vaytet et al. 2018) and disk size can be increased or decreased by the Hall effect

depending on whether the magnetic field is anti-aligned or aligned with the rotation

axis (e.g. Tsukamoto et al. 2015b; Wurster et al. 2018). The agreement is all the

more remarkable in view of (1) the numerical challenges in covering the large range in

spatial scale (from >10 000 to ≪1AU) and in treating non-ideal MHD effects and (2)

the diverse techniques used in tackling the problem: semi-analytic (e.g. Dapp et al.

2012), grid-based codes (e.g. Tomida et al. 2015; Vaytet et al. 2018), and smoothed

particle hydrodynamics (SPH) codes (e.g. Tsukamoto et al. 2015a,b; Wurster et al.

2018).

How large (∼100AU scale), persistent disks form and evolve during the later, main

protostellar mass accretion phase of star formation is far less certain, as stressed by

Tsukamoto (2016) and, more recently, Gray et al. (2018). One potential difficulty

in this phase is that, as more and more magnetized core material collapses on to

the central protostellar system, more and more magnetic flux should be dragged

by the collapsing material to the circumstellar region, making the magnetic field

there increasingly stronger and magnetic braking increasingly more efficient, unless

the magnetic flux can be effectively redistributed outwards relative to the infalling

matter. This redistribution of flux relative to matter lies at the heart of resolving

the magnetic flux problem, which is much more severe at the end of the protostellar

accretion phase than at the beginning, when the stellar mass is much larger and
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much more magnetic flux associated with the stellar mass needs to be redistributed

outwards. How it happens exactly is unclear, and is made more difficult by a technical

challenge: simulations of the main protostellar accretion phase of star formation

require a sink particle treatment (or something equivalent) to avoid the problem of

prohibitively small time-step shortly after the formation of the stellar seed.

Sink (or equivalent) treatment has been employed in magnetized protostellar disk

formation simulations using both SPH (e.g. Wurster et al. 2016; Lewis & Bate 2018)

and grid-based MHD codes. The latter include both ideal MHD simulations with

turbulence (e.g. Seifried et al. 2013; González-Casanova et al. 2016; Kuffmeier et al.

2017; Gray et al. 2018; Kuruwita & Federrath 2019), and non-ideal MHD simulations

with Ohmic dissipation (e.g. Machida et al. 2011, 2014; Tomida et al. 2017; Kölligan

& Kuiper 2018), Ohmic dissipation and turbulence (e.g. Matsumoto et al. 2017),

AD (e.g. Masson et al. 2016; Hennebelle et al. 2016; Zhao et al. 2016, 2018), and

all three non-ideal MHD effects but no turbulence (e.g. Li et al. 2011). Ideally, one

would want to include both turbulence and all three non-ideal MHD effects and follow

the disk formation and evolution to the end of the protostellar mass accretion phase.

To achieve this goal, we have started a long-term program using the Athena MHD

code (Stone et al. 2008). As a first step, we will focus on only one of the three non-ideal

MHD effects, AD, which has yet to be studied together with turbulence during the

protostellar mass accretion phase using a sink treatment. We find both turbulence and

AD facilitate disk formation, but in a complementary way. The turbulence enables

the formation of disks at early times and the AD allows the turbulence-enabled early

disks to persist to later times. In addition, the turbulence tends to make the AD-

enabled disks less prone to gravitational fragmentation.

The rest of the paper is organized as follows. In Section 6.2, we describe the

set-up of the numerical simulations. This is followed by a discussion of the results of
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the simulations that include only turbulence (Section 6.3) and only AD (Section 6.4),

respectively. We then discuss those disk formation simulations that include both

turbulence and AD in Section 6.5. Section 6.6 focuses on the gross properties of the

formed disks, especially their degree of magnetization. The main results of the paper

are summarized in Section 6.7.

6.2 Problem Setup

6.2.1 Governing equations

The non-ideal MHD equations including self-gravity that we solve numerically are

∂ρ

∂t
+∇ · (ρv) = 0, (6.1)

ρ
∂v

∂t
+ ρ (v · ∇)v = −∇P +

1

c
J ×B − ρ∇Φg, (6.2)

∂B

∂t
= ∇× (v ×B)− 4π

c
∇× (ηAJ⊥) , (6.3)

∇2Φg = 4πGρ, (6.4)

where J = (c/4π)∇×B is the current density, and J⊥ = [(J ×B) ×B]/B2 is the

current density perpendicular to the magnetic field. As a first step towards a compre-

hensive model, we make the simplifying assumptions that the gas is isothermal (with

P = ρc2s ), that the ambipolar diffusivity ηA is given by

ηA =
B2

4πγρρi
, (6.5)
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where γ = ⟨σv⟩/(m+mi) is the ion-neutral drag coefficient (charged grains are not ac-

counted for explicitly), and that the ion density ρi is approximated using ρi = Cρ1/2,

where C is a constant (assume equilibrium between cosmic-ray ionization and recom-

bination, e.g. Shu 1992); these approximations will be relaxed in future investigations.

Therefore, the ambipolar diffusivity can be rewritten into

ηA = QA
B2

4πρ3/2
, QA =

1

γC
. (6.6)

The rest of the symbols have their usual meaning.

6.2.2 Numerical method

We carry out a set of simulations in Cartesian coordinates using Athena, a grid-

base code that solves 3D time-dependent non-ideal MHD equations including self-

gravity (Stone et al. 2008; Bai & Stone 2011). Roe solver is used for solving the MHD

equations and self-gravity is solved using FFT with zero-padded boundary, which

better isolates the core from its images, as if the computational domain is twice

as big. Standard outflow boundary conditions are imposed in all three directions

except for the velocity in the ghost zone, which is set to zero if it is pointing into

the computational domain, to prevent material from entering the simulation box. In

order to speed up the simulations and follow the formation and evolution of disks for

as long as possible, two treatments are employed.

(i) Sink particle — As mentioned in the introduction (Section 6.1), we are interested

in studying disk formation and evolution during the main protostellar accretion

phase, where a sink particle treatment is necessary to avoid prohibitively small

time-steps. Our implementation of sink particles is based on that by Gong &

Ostriker (2013). We modified the original treatment slightly to better conserve
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mass and momentum. Specifically, the sink particle always lives in the center

cell of a sink region of 3 × 3 × 3 cells. Density and momentum thresholds are

calculated for each cell in the sink region by averaging the closest neighboring

cells in the active zone. Any excess mass and momentum over the thresholds

in the sink region are removed from the grid and put into the sink particle;

the magnetic field in the sink region is left untouched. This implementation is

intended to mimic the eventual decoupling of the material that is accreted on to

the central protostar and the magnetic flux associated with it that must occur

in order to resolve the well-known magnetic flux problem for the central star.

While the treatment is a very rough approximation of the physics involved in

the actual decoupling process, it does capture an essential aspect of the process,

namely, the magnetic flux associated with the stellar material is not destroyed

artificially;1 rather, it is preserved to machine accuracy since the magnetic field

in the sink region is evolved in exactly the same manner as that in the active

region using CT in the Athena code.

(ii) AD time-step floor — While running the non-ideal MHD simulations, we find

the AD time-step often drops to very small values, causing the simulations to

stall. From the definition

∆tAD =
∆x2

6ηA
=

4πρ3/2∆x2

6QAB2
, (6.7)

it is immediately clear that the AD time-step problem is most severe in cells

with very low densities and moderately strong magnetic fields (Mac Low et al.

1995). We found that this is indeed the case. To speed up the simulations, we
1The magnetic flux in the densest disk-forming region is not destroyed by Ohmic dissipation or

other non-ideal MHD effects (as discussed in, e.g. the notes-added-in-proof of Shu et al. 2006). It is
redistributed to lower density regions where the non-ideal MHD effects tend to be weaker.
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reduce the diffusivity in such cells locally by enforcing a lower limit (or floor)

on the AD time-step. We monitor the affected cells to make sure that only a

tiny amount of mass is affected by the treatment.

6.2.3 Model set-up and parameters

We start our simulations with a 0.5M⊙ centrally condensed spherical core with a

radius of 2000AU placed in a simulation box of 5000AU on each side. The density

follows the pseudo-Bonner–Ebert sphere profile, which is described by

ρ(r) =
ρ0

1 + (r/rc)
2 , (6.8)

where ρ0 is the central density and rc is the characteristic radius, which is chosen to

be 1/3 of the radius of the core so that the central density is 10× higher than the

edge density. The background density is set to 1 percent of the edge density. The

isothermal sound speed cs is set to 0.2 km s−1. The core is assumed to have a solid-

body rotation with an angular speed ω ≈ 6×10−13 s−1 (corresponds to a rotational to

gravitational energy ratio βrot ≈ 0.03) with the rotational axis aligned with the z-axis.

This combination of parameters yields a large disk of ∼400AU in the absence of a

magnetic field that is easily resolvable in our simulations. The magnetic field strength

is characterized by the dimensionless mass-to-flux ratio λ = 2π
√
G(Mcore/Φ), where

Mcore is the total mass of the core, Φ is the magnetic flux threading through the

whole core, and (2π
√
G)−1 is the critical value for the mass-to-flux ratio. A uniform

magnetic field along the rotation axis with strength corresponding to λ ≈ 2.6 for

the dense core as a whole is adopted in all of out simulations. We note that in our

setup the mass-to-flux ratios along different (initially vertical) flux tubes are different,

decreasing radially outwards from a maximum value of ∼8.4 on the axis. We also note
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that the above choice of dimensional numbers is not unique, since isothermal MHD

simulations with self-gravity are scale-free. For example, one can choose a different

length scale (L), which would lead to a corresponding change in the mass, density and

magnetic field strength (in proportional to L, L−2, and L−1, respectively). The scale-

free nature of the simulations is preserved in the presence of AD with the adopted

power-law dependence of the ion density on the neutral density (ρi = Cρ1/2).

In the models with turbulence, an initial turbulent velocity field is generated with

an k−2 power spectrum (Gong & Ostriker 2011). In order to ensure fair comparison

between different models, any additional total angular momentum is removed from

the turbulent velocity field before it is added on top of the solid-body rotation. The

turbulence is allowed to decay freely after the initial injection. Since the dense core

in our simulation collapses rather quickly, the majority of the turbulent motion is

retained during the core collapse and disk formation. The level of initial turbulence is

characterized by the rms Mach number M such that an additional turbulent kinetic

energy Eturb = McoreM2c2s/2 is added. Three levels of turbulence are considered

in this work, corresponding to M = 0.0, 0.5, and 1.0, respectively. We do not

consider supersonic turbulence because they are uncommon in low-mass star-forming

cores (e.g. Bergin & Tafalla 2007).

For AD, we follow Shu (1992) and adopt γ = 3.5× 1013 cm3 g−1 s−1 and

C = 3× 10−16 cm−3/2 g1/2 (corresponding to the standard cosmic ray ionization rate

of 10−17 s−1), which are taken from Draine et al. (1983). This combination yields

a value of the coefficient for the ambipolar diffusivity QA defined in equation (6.6)

of 95.2 g1/2 cm−3/2 s, which will be termed “the standard value” of the AD coefficient

and denoted by QA,0 hereafter. We will consider a range of QA, including 0×, 0.1×,

0.3×, 1×, 3×, and 10× the standard value. The model parameters are summarized

in Table 1.
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Table 6.1: Model parameters and outcome.

Model Name M QA/QA,0 Comments

M0.0AD0.0 0.0 0.0 DEMSa
M0.5AD0.0 0.5 0.0 Transient Disk & DEMS
M1.0AD0.0 1.0 0.0 Transient Disk & DEMS
M0.0AD0.1 0.0 0.1 DEMS
M0.0AD0.3 0.0 0.3 DEMS
M0.0AD1.0 0.0 1.0 DEMS & Persistent Disk
M0.0AD3.0 0.0 3.0 Persistent Disk
M0.0AD10.0 0.0 10.0 Persistent Disk
M0.1AD0.1 0.1 0.1 DEMS
M0.1AD0.3 0.1 0.3 DEMS
M1.0AD0.1 1.0 0.1 Transient Disk & DEMS
M1.0AD0.3 1.0 0.3 Transient Disk & DEMS
M1.0AD1.0 1.0 1.0 Transient Disk & DEMS
M1.0AD3.0 1.0 3.0 Persistent Disk
M1.0AD10.0 1.0 10.0 Persistent Disk
M0.0AD1.0USb 0.0 1.0 DEMS
M1.0AD1.0USb 1.0 1.0 DEMS

a DEMS refers to the so-called “decoupling-enabled magnetic struc-
ture”, a magnetically-dominated, low-density structure that is com-
pletely different from the dense rotationally supported disk (see Zhao
et al. 2011, and Fig. 6.1 below)

b Simulation is initialized as a uniform sphere.
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6.2.4 Numerical code and zoom-in simulations

The Athena family of codes has been used for MHD simulations in a wide range

of astrophysical systems, from clusters of galaxies (e.g. Martizzi et al. 2019) to the

atmospheres of planets (e.g. Li & Chen 2019). In star formation, it has been used

to study the dynamics of magnetized molecular clouds and formation of dense cores

and filaments (e.g. Chen & Ostriker 2014, 2018). In this paper, we start a long-term

program to extend such studies to core collapse and disk formation. This code choice

is motivated by several factors. First, the code uses CT to treat the magnetic field

evolution, which ensures that the divergence-free condition ∇ · B = 0 is satisfied

to the machine accuracy. This is of paramount importance for the magnetized disk

formation problem because it prevents the generation of magnetic monopoles (and

their associated change of magnetic field topology) even close to the forming protostar

where a strong variation of the magnetic field is expected. Secondly, a well-tested sink

particle treatment including magnetic fields is already in place. Thirdly, a treatment

of AD has already been implemented and has been applied successfully to the related

problem of dense core formation (Chen & Ostriker 2014).

A well-known difficulty with the treatment of AD is that the time-step required

for numerical stability is proportional to the grid size (∆x) squared (see equation 6.7).

To alleviate this difficulty, we have decided to adopt a strategy of zoom-in simula-

tions with uniform grids. Specifically, we adopt a base grid of 2563 for the prestellar

phase of core evolution and restart each simulation right after the sink particle for-

mation, keeping only the central 1283 cells in the original grid, and recasting them

into 2563 cells as follows. Each of the kept original cells is split into eight octants

of equal size. We keep the cell-centered hydrodynamics quantities untouched, which

are later smoothed out as they evolve. Each of the three face-centered magnetic
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field components is linearly interpolated along its direction to each of the new faces,

which ensures that the magnetic field on the new (finer) grid remains divergence-free.

For our canonical choice of length scale, the resolution of the zoom-in simulation is

∼10AU. This relatively large cell size enables us to explore efficiently a wide range of

simulation parameters, which is important for uncovering general trends, especially

with respect to the strength of AD. However, as discussed in Section 6.2.3, the physi-

cal scale of these simulations can in principle be reduced by choosing a smaller length

scale.

We will first examine the trends in simulations where only turbulence or only AD

is included (Sections 6.4 and 6.3, respectively). This is followed by a discussion of

those simulations where both effects are included (Section 6.5).

6.3 Disk Formation in Ideal MHD: Turbulence

To isolate the effects of turbulence from those of AD, we will first concentrate on

ideal MHD simulations with three different levels of turbulence characterized by M =

0.0 (Model M0.0AD0.0; laminar), 0.5 (M0.5AD0.0; subsonic), and 1.0 (M1.0AD0.0;

transonic).

Figure 6.1 shows the column density along the z-axis (the rotation axis and the

direction of the initial magnetic field) of the three models at two representative epochs

when the sink particle has accreted 0.1M⊙ (upper row) and 0.2M⊙ (lower) of material,

respectively. We choose to compare the models at the same sink (stellar) mass rather

than the same absolute time (the time elapsed since the beginning of the simulation) or

the relative time (the time elapsed since the formation of the sink particle) because, as

mentioned earlier, the magnetic flux released from the stellar material plays a central

role in the disk formation problem, and this flux is expected to be similar for the

same stellar mass.
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Figure 6.1: Column density along z-axis of the zoom-in simulations of the three ideal
MHD models with different levels of turbulence (left to right, M = 0.0, 0.5 and 1.0)
when the sink particle has accreted 0.1M⊙ (upper row) and 0.2M⊙ (lower). The
sink particle is marked by a cross. (See the supplementary material in the online
journal for an animated version of the column density distribution for each model.
Models M0.0AD0.0 and M1.0AD0.0 are also included in the animated version of
Figs 6.6 and 6.11, respectively.)
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The simplest case of no turbulence (Model M0.0AD0.0) follows the well-known

pattern that the gravitational collapse proceeds preferentially along the field lines,

forming a thin, equatorial pseudo-disk through which most of the material is ac-

creted. Rotation of the infalling pseudo-disk material winds up magnetic field lines,

driving a bipolar outflow that removes angular momentum from the pseudo-disk. The

magnetic flux brought in by accretion accumulates in the sink region and causes the

formation of the so-called DEMS (decoupling-enabled magnetic structure; Zhao et al.

2011), which persists until the end of the simulation. The combination of efficient an-

gular momentum removal by outflow and the obstacle presented by the magnetically

dominated DEMS makes it difficult to form a rotationally supported disk, which is

absent from the laminar model.

In the presence of a subsonic (Model M0.5AD0.0) or transonic (M1.0AD0.0) turbu-

lence, the basic picture remains broadly similar. In particular, both pseudo-disk and

DEMS still exist in the turbulent simulations. One difference is that the core collapse

is slowed down somewhat by the additional kinetic energy associated with the turbu-

lence. Another difference is that the pseudo-disk is significantly warped, as discussed

in more detail in Section 6.3.1 below. Perhaps more importantly, the turbulence has

induced the formation of prominent spiral structures close to the central protostar

that are disk-like, at least at relatively early times (see panels b and c of Fig. 6.1).

These disk-like structures are indicative of the beneficial effects of turbulence on disk

formation. However, they largely disappear at later times as the circumstellar region

becomes more dominated by DEMS (see panels e and f of Fig. 6.1). The effects of

turbulence on disk formation will be discussed in more detail in Section 6.3.2 below.

We note that a large fraction, if not most, of the magnetic flux liberated from

the central star is contained in the DEMS in these ideal MHD simulations, which

is approximately the region where the plasma-β is less than unity and the radial
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velocity is positive (i.e. expanding). For example, we have computed the magnetic

flux threading such a region on the equatorial plane for the laminar (M = 0) model

when the stellar mass reaches M∗ = 0.25M⊙, and found a dimensionless ratio of the

stellar mass to the DEMS magnetic flux of ∼4.8. It is bracketed by the expected

minimum value of ∼3.0 (if the collapse is isotropic) and maximum of ∼5.4 (if the

stellar mass is accumulated along the field lines). Similarly, the ratio of the stellar

mass to the DEMS magnetic flux is ∼4.9 for the most turbulent model of M = 1

when M∗ = 0.2M⊙ (see Fig. 6.1f), again consistent with the range between ∼3.1 to

∼5.9 expected for the stellar mass of 0.2M⊙.

6.3.1 Warped pseudo-disk

In this subsection, we focus on the structure of the protostellar accretion flow on

the several hundred to a few thousand AU scale that is well resolved by our sim-

ulations. This region is important to study both theoretically and observationally.

Theoretically, it is the bridge between the larger scale dense core and the smaller

scale disk (if present). Observationally, it is starting to be probed by (sub)millimeter

interferometers, especially ALMA. One may naively expect this region to be driven

completely chaotic by turbulence. However, in the presence of a dynamically sig-

nificant, large-scale magnetic field, the protostellar accretion flow remains spatially

coherent to a large extent, as first demonstrated by Li et al. (2014b) for a non-

self-gravitating accretion flow on to a star of fixed mass. Here we show that this

basic result still holds when the self-gravity and a varying stellar mass are treated

self-consistently.

We demonstrate the coherence of the density structure in two ways, through

density distributions on cylindrical surfaces around the z-axis passing through the

sink particle (Fig. 6.2) and three-dimensional visualization (Fig. 6.3). Panel (a) of
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Fig. 6.2 shows that, at a representative epoch whenM∗ = 0.1M⊙, the density distribu-

tion of the non-turbulent model (M0.0AD0.0) on a representative cylinder of radius

rcyl = 250AU is concentrated near the equator. This is of course the well-known

pseudo-disk. As the level of turbulence increases, the pseudo-disk becomes increas-

ingly more warped (compare panels a–c) but remains spatially connected. This coher-

ence persists to later times, even in the case of strongest turbulence (M1.0AD0.0; see

panels d–f, where the density distributions are plotted for the epochs when M∗ = 0.05,

0.15 and 0.2M⊙, respectively). The pseudo-disk warping is not limited to the partic-

ular radius of rcyl = 250AU, as illustrated in panels (g)–(i), where we plot the density

distributions for Model M1.0AD0.0 at the same time as shown in panel (c) but on

cylinders of three other radii (rcyl = 125, 500 and 1000AU).

The spatial coherence of the turbulence-warped pseudo-disk can be visualized

more clearly in Fig. 6.3, which shows the isosurface of the normalized density

ρ̃ =
ρrcyl
Σ

= 1, (6.9)

where rcyl is the cylindrical radius and Σ is the column density along the direction of

the initial magnetic field (z-axis). Physically, ρ̃ is a dimensionless quantity that is the

inverse of the characteristic thickness of the local density structure (Σ/ρ) relative to

the local cylindrical radius. It is a measure of the (angular) “thinness” of the density

structure. We find it easier to highlight regions with high-mass concentration at

different radii simultaneously (i.e. the pseudo-disk) using this dimensionless quantity

than the density itself, because the latter varies much more strongly with radius.

The 3D view of the pseudo-disk drives home the important conceptual point that,

in the presence of a dynamically significant large-scale magnetic field and a subsonic or

transonic turbulence, the inner protostellar accretion flow has a unique texture that is
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Figure 6.2: Turbulence-induced pseudo-disk warping. Plotted in the top
row are the density distributions on a cylinder of radius rcyl = 250AU
at the epoch when M∗ = 0.1M⊙ for Model M0.0AD0.0 (panel a), M0.5AD0.0 (b),
and M1.0AD0.0 (c) as a function of azimuthal angle ϕ (from 0 to 2π) and height z,
showing a more severe warping of the (dense) pseudo-disk by a stronger turbulence.
The middle row is for Model M1.0AD0.0 at the same radius as in panel (c) but at
different epochs [M∗ = 0.05 (d), 0.15 (e), and 0.2M⊙ (f)], showing the time evolution
of the warped pseudo-disk. The bottom row is also for Model M1.0AD0.0 at the
same epoch as in panel (c) but at different cylindrical radii [125 (g), 500 (h), and
1000 au (i)].
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Figure 6.3: 3D view of the turbulence-warped pseudo-disk. Plotted is the isosurface
of the normalized density ρ̃ = 1 at an epoch when the stellar mass M∗ = 0.15M⊙
for the ideal MHD sonic turbulence model M1.0AD0.0. The surface is colored by
its height above or below the x–y plane passing through the sink particle (i.e. its z
value).



47

neither completely chaotic (as expected, e.g. for a region of isotropic turbulence) nor

simply organized (as the equatorial pseudo-disk in the laminar Model M0.0AD0.0).

Instead, it has a structure intermediate between these two extremes that is shaped

by the interaction between the large-scale magnetic field and gravity, which tends to

produce a flattened structure (i.e. a pseudo-disk) because of the anisotropy in the

magnetic support against the gravity, on the one hand, and by the turbulent motions

initially present inside the core, which tend to perturb the flattened structure by

deflecting the gravity-induced collapsing motions towards the pseudo-disk and by

distorting the magnetic field lines. The perturbed pseudo-disk is further modified by

rotation, especially at small radii where the rotational speed is typically the highest.

Indeed, the spiral structures that are prominent in the column density maps of the

turbulent models in Fig. 6.1 are those more tilted parts of the warped pseudo-disk

that are viewed more edge-on (i.e. with a longer path-length in the pseudo-disk along

the line of sight), as already discussed in Li et al. (2014b) in the absence of self-gravity.

The inclusion of self-gravity in our simulations strengthens the general picture that the

warped pseudo-disk serves as a dense “backbone” for the inner protostellar accretion

flow on to low-mass stars formed in turbulent, magnetized dense cores. It would be

interesting to test this picture through high-resolution observations, especially using

ALMA.

6.3.2 Enhanced rotation by turbulence

In Fig. 6.1, we have already seen hints of the beneficial effects of turbulence on

disk formation from the morphology of the circumstellar material. These effects are

quantified in Fig. 6.4, which plots the mass-weighted distributions of the infall and

rotational speeds as a function of radius at the same two representative stellar mass

M∗ = 0.1 and 0.2M⊙ as in Fig. 6.1. At the relatively early epoch when M∗ = 0.1M⊙,
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the bulk of the circumstellar material on the 100-AU scale rotates well below the

Keplerian speed in the laminar case (Model M0.0AD0.0), with a rotational speed

significantly below the infall speed, which is indicative of a rapidly collapsing inner

protostellar envelope rather than a rotationally supported structure. This is in con-

trast with the turbulent cases where the rotational speed is significantly closer to the

Keplerian value and the infall speed closer to zero. This is especially true for the sonic

turbulence model (M1.0AD0.0) where the rotational speed approaches the Keplerian

speed outside the sink region (rcyl ≳ 15AU), and the infall speed is ∼2−3 times

lower than that (and well below the free-fall value). Whether this slowly collaps-

ing (compared to free fall), rotationally dominated, flattened circumstellar structure

is called a “disk” or not depends on how disks are defined (e.g. Vaytet et al. 2018).

A quantitative definition of disks will be described below in Section 6.6.1.

The sonic turbulence model (M1.0AD0.0) is strongly affected by the magneti-

cally dominated, low-density DEMS at later times. For example, a well-developed

DEMS is clearly visible in the surface density plot of Fig. 6.1 when M∗ = 0.2M⊙ (see

panel f). Nevertheless, the infall speed remains well below the free-fall value even at

this late epoch, and the (mass-weighted) rotational speed still approaches the Keple-

rian value right outside the sink region, as illustrated by the red curves in panel (b)

of Fig. 6.4. At this epoch, the appearance of the circumstellar region of the weaker

turbulence case (M0.5AD0.0) is also dominated by DEMS, although its rotational

speed is somewhat lower on average and its infall motion somewhat faster compared

to Model M1.0AD0.0 (compare green and red curves in panel b). This trend continues

to the laminar case (violet curves), especially for the rotational speed, which is close

to zero on the 100-AU scale. This comparison re-enforces the notion that turbulence

facilitates disk formation, making it possible for the circumstellar material to rotate

closer to the Keplerian speed.
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Figure 6.4: Distributions of the mass-weighted rotational (upper curves) and infall
speeds (lower) in a wedge within 45◦ of the equatorial plane compared to the Keple-
rian (upper black dotted line) and free-fall (lower) profile at two representative epochs
with stellar mass of M∗ = 0.1 (panel a) and 0.2M⊙ (b) for three ideal MHD models
with turbulent Mach number of M = 0.0 (violet solid line), 0.5 (green dashed), and
1.0 (red dash–dotted). The vertical dotted line in each panel denotes roughly the
radius of the sink region.

There are several reasons suggested for why turbulence tends to promote disk

formation. They include turbulence-induced magnetic diffusion (e.g. Santos-Lima

et al. 2012), tangling of magnetic field lines (e.g. Seifried et al. 2013), field-rotation

misalignment (e.g. Joos et al. 2013; Gray et al. 2018), and pseudo-disk warping (e.g.

Li et al. 2014b). To these we add two more possibilities: earlier formation of DEMS

and self-sorting of infalling protostellar envelope materials of different specific angular

momenta.

Strongly magnetized, low-density, expanding DEMS are formed in all three ideal

MHD cases (see e.g. Fig. 6.1) especially at the later epoch when M∗ = 0.2M⊙.

It turns out that such DEMS form at a smaller stellar mass for the turbulent case

compared to the laminar case, as can be seen most clearly from the animation of

the column density map in the supplementary material of the online version of the

article. The reason for the earlier (in terms of stellar mass) formation is that DEMS

are produced by a competition between the ram pressure of the infalling material
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and the magnetic forces exerted by the magnetic flux decoupled from the accreted

mass. As the star accretes mass, the magnetic flux associated with the accreted mass

is left in its surroundings, causing an accumulation of magnetic flux. Although the

ram pressure increases initially due to the increasing central mass and infall speed,

it drops with the density at later times. When the ram pressure becomes dominated

by the magnetic forces, DEMS form. This process is facilitated by turbulence, which

produces inhomogeneity in the density distribution in the circumstellar gas, including

low-density channels between dense spirals where the trapped magnetic flux can leak

out more easily and, therefore, at an earlier epoch. The flux leakage lowers the mag-

netic flux near the accreting protostar, as illustrated in the panel (a) of Fig. 6.5, which

shows a much lower magnetic flux passing through an equatorial circle of 125AU in

radius centered on the protostar for each of the two turbulence models compared to

the laminar model. The lower magnetic flux in turn promotes disk formation.

There is the possibility that the decrease of magnetic flux in the central region

with increasing turbulence is due to enhanced magnetic diffusion from turbulence-

induced reconnection (as reviewed by Lazarian et al. 2015). Indeed, in their ideal

MHD simulations of strongly magnetized, turbulent, cluster-forming clouds, Li et al.

(2015) found that the mass-to-flux ratios of the most massive dense clumps are often

larger than that of the cloud as a whole, indicating a breakdown of the flux-freezing

condition, possibly due to turbulent reconnection. In panel (b) of Fig. 6.5, we plot

the dimensionless ratio λ125 of the mass M125 enclosed within a sphere of 125AU in

radius (including the stellar mass) to the magnetic flux passing through an equatorial

circle of 125AU (shown in panel a) as a function of the enclosed mass, and compare

it to the initial mass-to-flux ratio of the core as a whole (λcore, the dotted line in the

panel), as well as the mass-to-flux ratios expected under flux freezing in two limits: (1)

the stellar mass is accumulated along the (initially vertical) magnetic field lines (λcyl,



51

0.00 0.05 0.10 0.15 0.20 0.25

M∗ [M�]

5

10

15
Φ

1
2
5

[1
0

2
8

G
cm

2
]

(a)

0.00 0.05 0.10 0.15 0.20 0.25

M125 [M�]

0

5

10

15

20

λ
1
2
5

(b)

λcyl

λsph

λcore

M0.0AD0.0

M0.5AD0.0

M1.0AD0.0

Figure 6.5: Reduction of the magnetic flux close to the accreting protostar by turbu-
lence. Plotted are (a) the magnetic flux passing through a circle of 125AU in radius
on the equatorial plane as a function of stellar mass and (b) the dimensionless ratio of
the mass enclosed by a sphere of 125AU in radius (including the stellar mass) and the
magnetic flux as a function of the enclosed mass for ideal MHD models of turbulence
Mach number M = 0.0 (violet solid line), 0.5 (green dashed), and 1.0 (red dash–
dotted). The dotted line in panel (b) denotes the initial value for the core as a whole
λcore and the upper and lower dashed lines denote, respectively, the mass-to-flux ratio
expected under flux freezing in the limit that the stellar mass is accumulated along
the (initially vertical) magnetic field lines (λcyl) and that the core collapse into the
star is strictly spherical or isotropic (λsph). The star symbol denotes the time of sink
particle formation for each model.

upper dashed line), and (2) the core collapse into the star is strictly spherical or

isotropic (λsph, lower dashed line). It is clear that although λ125 is significantly larger

than λcore and λsph over most of the time for the turbulent models, it remains near

or below λcyl, except towards the end of the simulation, when λ125 increases rapidly

above λcyl. Therefore, the relatively high values of λ125 before its rapid rise could

in principle come from mass accumulation along field lines rather than turbulent

reconnection, although some contribution from the latter cannot be excluded. The

rapid increase in λ125 towards the end is due to rapid expansion of DEMS, which

happens even for the laminar case without any turbulence.

Another way that turbulence can help with disk formation is that, unlike the

laminar case with a flat equatorial pseudo-disk, the bulk of rotating, protostellar

material can fall close to the central protostar on different planes (see Fig. 6.3). In
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the presence of a strong magnetic field, material on the same magnetic field line

would tend to flow along the field line and form the dense (warped) pseudo-disk, as

illustrated in Fig. 6.2 and discussed in Section 6.3.1. The turbulence-induced variation

of angular momentum of the material initially located on the same field line would be

largely erased once the bulk of this material has collapsed along the field line on to the

pseudo-disk. Nevertheless, there can still be variation of angular momentum between

the materials collected on to the pseudo-disk along different field lines. Because

of strong warping, different parts of the pseudo-disk with different specific angular

momenta can fall towards the central protostar on different planes, which reduces

their chance of collision. This makes it easier for the high specific angular momentum

material to retain its angular momentum and form a disk, without being impeded

by the low specific angular momentum material, which can fall into the sink region

without colliding with the high specific angular material.

6.4 Disk Formation in Non-Ideal MHD:

Ambipolar Diffusion

In this section, we seek to isolate the effects of AD by setting the turbulence to

zero and considering a wide range of ambipolar diffusivity, with the coefficient QA =

0× (Model M0.0AD0.0), 0.1× (M0.0AD0.1), 0.3× (M0.0AD0.3), 1× (M0.0AD1.0),

3× (M0.0AD3.0), and 10× (M0.0AD10.0) the standard value. The choice of the

largest AD coefficient is motivated by Zhao et al. (2016, 2018), who showed that the

level of AD can be enhanced by 1–2 orders of magnitude when small grains are de-

pleted. We will first survey the broad trends (Section 6.4.1) before diving into detailed

discussions of how AD affects the protostellar accretion flow relative to the ideal MHD

case (Section 6.4.2) and the reasons behind the trends identified (Section 6.4.3).
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6.4.1 Overview of results

To get a first impression on how AD affects the dynamics of core collapse and

disk formation, we plot in Figs 6.6 and 6.7, respectively, the column density maps

and the mass-weighted infall and rotational speeds as a function of radius for the

material on the equatorial plane for all non-turbulent AD models (rather than within

a wedge of 45◦ of the equatorial plane as in Fig. 6.4 since the pseudo-disk here is

not warped by turbulence) at five epochs when the stellar mass M∗ = 0.1, 0.15, 0.2,

0.25, and 0.3M⊙. From the left-most column of the column density maps, it is clear

that the least magnetic diffusive model, M0.0AD0.1, does not show any evidence of a

well-formed disk, especially at later epochs, when the appearance of the circumstellar

region is dominated by low-density, expanding regions (i.e. DEMS). The lack of a

rotationally supported structure is corroborated by the velocity profiles displayed as

violet solid curves in the Fig. 6.7, which show that the rotation is significantly sub-

Keplerian on the 100-AU scale at the earliest epoch (when M∗ = 0.1M⊙) and becomes

worse at later times, and that the rotational speed is increasingly dominated by the

infall speed over time.

As the AD coefficient QA increases from 0.1 to 0.3 times the standard value,

the (mass-weighted) rotational speed stays closer to the Keplerian value (compare blue

dashed and violet solid curves in Fig. 6.7) until the last epoch (when M∗ = 0.3M⊙),

when the rotational speed drops to close to zero and becomes much smaller than

the infall speed. At the early epochs, the rotation remains significant, with a speed

comparable to the infall speed. However, there is no clear evidence for a rotationally

supported structure either from the column density map or velocity profiles for this

moderately weak AD case. The appearance of the circumstellar region at the last

epoch is dominated by low-density, expanding DEMS, as in the least diffusive model
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of M0.0AD0.1.

The appearance of the circumstellar region changes drastically as the AD co-

efficient QA increases further to the standard value (i.e. Model M0.0AD1.0). As

is seen from the middle column of Fig. 6.6, a small dense circumstellar structure

is (barely) visible at the earliest epoch (M∗ = 0.1M⊙). It rotates close to the

Keplerian value, and appears to be the seed for the larger, more prominent, rota-

tionally supported structure that develops later. The formation of a rotationally

dominated (perhaps even supported) structure of ∼30AU in radius is evident at

the epoch of M∗ = 0.15M⊙ from the velocity profiles, which show a nearly Keple-

rian rotation for the structure that clearly dominates the slow (sub-free-fall) infall.

This structure is visible in the column density map (see panel h of Fig. 6.6) as the

small red region (of high column density) near the sink particle (marked by the

white cross). A well-defined dense spiral structure is apparent at the epoch when

M∗ = 0.2M⊙. The structure becomes more ring-like at even later epochs (M∗ = 0.25

and 0.3M⊙), although arm-like features are still visible. There is little doubt that

these dense spiral/ring-like structures are rotationally supported, because they rotate

at (or slightly above) the Keplerian value and their infall speed is close to zero (well

below the infall value; see the green dash–dotted curves in panels c–e of 6.7). De-

spite the formation of a rotationally supported structure that is absent from the less

magnetically diffusive models, Model M0.0AD1.0 retains an important feature of the

less diffusive models: the low-density, expanding, DEMS. The co-existence of a rota-

tionally supported disk and DEMS is an interesting new feature that has not been

reported in the literature before.

The low-density DEMS all but disappear as the AD coefficient increases further,

to 3 and 10 times the standard value (Models M0.0AD3.0 and M0.0AD10.0, respec-

tively). For these more magnetically diffusive cases, the circumstellar region remains
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Figure 6.6: Column density along z-axis of the zoom-in simulations of all non-
turbulent AD models with QA = 0.1×, 0.3×, 1×, 3× and 10× (left to right) the
standard value when the sink particle has accreted 0.1, 0.15, 0.2, 0.25 and 0.3M⊙ (top
to bottom). The sink particle is marked by a cross. (See the supplementary material
in the online journal for an animated version of the column density distribution for
each model.)
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speeds (lower) on the equatorial plane compared to the Keplerian (upper black dot-
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M∗ = 0.1 (panel a), 0.15 (b), 0.2 (c), 0.25 (d) and 0.3M⊙ (e) for all non-turbulent
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dotted), 3× (yellow dash–double-dotted), and 10× (red dash–triple-dotted) the stan-
dard value. The vertical dotted line in each panel denotes roughly the radius of the
sink region.
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dominated by a rotationally supported structure even at late epochs (see the last two

columns of Fig. 6.6). Compared to Model M0.0AD1.0 with the standard AD coef-

ficient, the rotationally supported structures emerge earlier, are larger at the same

epoch (with the same M∗), and appear to be more gravitational unstable, as evi-

denced by the presence of secondary fragments (see e.g. panels o and s). Although

more refined treatments, such as radiation hydrodynamics, are required to investigate

the process of gravitational fragmentation properly, the broad trend is unmistakable:

as the level of AD increases, more angular momentum is retained by the circumstellar

material, making the formation of a rotationally supported structure easier. In what

follows, we seek to understand the physical reasons behind this trend, starting with

a discussion of an AD-induced structure that is absent in the ideal MHD limit.

6.4.2 AD-induced diffusion-DEMS

The presence of AD in principle allows the magnetic flux dragged to the vicinity of

the protostar to diffuse outwards relative to the protostellar accretion flow, which is a

mode of flux redistribution not available in the ideal MHD limit. Li & McKee (1996)

showed analytically that the magnetic flux left behind by the accreted stellar material

tends to create a circumstellar region of strong magnetic field that is confined by the

ram pressure of the accretion flow. The transition between the accretion flow and the

circumstellar region dominated by the (AD) redistributed flux is often mediated by a

shock of continuous type (C-shock; see Draine & McKee 1993 for a review) although

not always. This transition is a key difference between protostellar accretion with

AD and in the ideal MHD limit. It has been confirmed in non-ideal MHD simula-

tions in 1D (adopting the so-called “thin-disk” approximation, e.g. Krasnopolsky &

Königl 2002; Tassis & Mouschovias 2005), 2D (assuming axisymmetry, e.g. Mellon

& Li 2009; Kunz & Mouschovias 2010; Li et al. 2011), but not yet in 3D. Krasnopol-
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sky et al. (2012) showed that the AD-induced circumstellar structure found in their

2D (axisymmetric) simulations quickly became unstable when the assumption of ax-

isymmetry is removed. This leaves open the question whether such a structure can

ever be produced in 3D in the first place. The answer turns out to be “yes”, as we

show next.

The case for the AD-induced structure can be made most clearly in the least diffu-

sive model M0.0AD0.1 at early epochs. There are three lines of evidence supporting

this case. First, the model has a clear plateau in the distribution of the vertical

magnetic field strength (Bz) on the equatorial plane near the centre that is distinct

from the surrounding (weaker field) region, as seen pictorially in Fig. 6.8, which plots

the maps of Bz at the same five epochs as in Fig. 6.6. This is further quantified for

the representative early epoch M∗ = 0.15M⊙ in panel (a) of Fig. 6.9, where the az-

imuthally averaged Bz is plotted as a function of radius. The magnetic flux threading

through this plateau region (r ≲ 125AU, the red region in panel b of Fig. 6.8) is

about 1.30× 1029Gcm2, which yields a dimensionless mass-to-flux ratio of 3.7 (using

M∗ = 0.15M⊙ as the mass). This ratio is comparable to the mass-to-flux ratio of

the central 0.15M⊙ of the initial core, which is ∼3.1 if the core collapse is isotropic

and ∼6.5 if the collapse is along the field lines. This agreement lends credence to

the notion that the plateau is created mostly by the magnetic flux that is decoupled

from, and left behind by, the mass already accreted on to the star. The same holds

true for the other two early epochs shown in Fig. 6.8, which correspond to M∗ = 0.1

and 0.2M⊙, when the dimensionless ratio of the stellar mass to the magnetic flux in

the plateau region is 4.8 and 3.6, respectively.

Secondly, in the transition zone between the plateau and its surrounding region (at

a radius ∼100AU), the infall of the bulk neutral material slows down temporarily,

before reaccelerating towards the central protostar (see panel b of Fig. 6.9). The ions,
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Figure 6.8: Distribution of the vertical magnetic field on the equatorial plane for
the least diffusive model M0.0AD0.1 at the epochs when M∗ = 0.10, 0.15, 0.2, 0.25,
0.3M⊙, showing a distinct strong-field plateau at early epochs, which is disrupted at
later epochs. (See the supplementary material in the online journal for an animated
version of the vertical magnetic field strength and column density distribution.)

which are tied to the magnetic field lines, collapse much more slowly than the neutrals

inside the plateau, however, which is another characteristic of the AD-induced struc-

ture proposed originally by Li & McKee (1996) and found numerically in previous 1D

and 2D simulations. Since this strongly magnetized structure is created by flux redis-

tribution by (microscopic) magnetic diffusion, we will refer to it as “diffusion-DEMS”,

to distinguish it from the structure created by interchange instability, where magnetic

flux is advected outwards by bulk fluid motions of strongly magnetized, low-density

regions, which we will sometimes refer to as “advection-DEMS” or just DEMS (since

it is the more common of the two types in the current simulations).

Thirdly, at early times when the central stellar mass M∗ is of the order of 0.1M⊙

or smaller, the magnetic field strength in the diffusion-DEMS agrees to within a factor

of 2 with the analytic estimate from Li & McKee (1996) (their equation 7) for the

AD-shock based on a balance of the ram pressure of the pre-shock infalling material

and the post-shock magnetic pressure. The agreement worsens at later times, when

the pre-shock material is confined vertically to a thin layer by the tension force of a

highly pinched magnetic field, which is not accounted for in the analytic theory. In

such a case, it is more appropriate to exam the balance of forces than pressures.
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Figure 6.9: AD-induced magnetically dominated circumstellar structure in Model
M0.0AD0.1 at a representative epoch when M∗ = 0.15M⊙. Plotted are the distribu-
tions as a function of radius of (a) the azimuthally averaged vertical magnetic field
strength (Bz) on the equatorial plane, (b) ion and neutral infall speeds weighted by
mass, and (c) the radial component of each of the force terms in the momentum
equation (equation 6.2), including the flow acceleration (the solid line), magnetic
force (dashed), gravity of the central object (dash–dotted), and the gas pressure gra-
dient (dash–double- dotted). Note that a symmetrical log scale is used for the vertical
axis of panel (c), where the range [−1, 1] is in linear scale to highlight the change of
flow acceleration to positive values in the transition region around r ∼ 100AU.
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The mechanics of the accretion flow in the equatorial region is illustrated more

clearly in panel (c) of Fig. 6.9, which plots the radial components of all force terms in

the momentum equation (equation 6.2). It is clear that most of the flow acceleration

in the radial direction, ρ(v · ∇)vr (solid line in the panel), comes from the gravity

of the central object (dash–dotted) over most radii. The main exception is near

the plateau-surrounding transition region (r ∼ 100AU), where the magnetic force

(J ×B)r/c (dashed) and, to a lesser extent, the gas pressure gradient (dash–double-

dotted) dominate the gravity and lead to a net outward acceleration, which slows down

the accretion flow in the transition region. In other words, the natural tendency for

the strong magnetic field in the plateau region to expand is contained by the rapidly

collapsing accretion flow.

A strong-field plateau was also found in the AD simulations of Tomida et al.

(2015), Masson et al. (2016), and Hennebelle et al. (2016). Hennebelle et al. (2016)

found an interesting way to interpret the plateau semi-analytically using a one-

dimensional model where the inward advection of the magnetic flux is balanced by

the outward diffusion of the flux (see their equation 1). The balance is also one of

the basic ingredients of our interpretation, based on the semi-analytic work of Li &

McKee (1996), where the neutral material accretes across the magnetic field lines in

the diffusion-DEMS (but not necessarily outside this structure), as evidenced by the

much slower infall speed of ions (and thus the field lines tied to them) compared to

that of neutrals (see panel b of Fig. 6.9). Our interpretation goes one step further

and envisions the diffusion-DEMS (or the plateau region) as a region distinct from

its surroundings, with a sharp drop in field strength between the two, especially at

relatively early epochs (see the first three panels of Fig. 6.8). The drop introduces an

outward magnetic force which, in our picture, is reflected in the deceleration of the

surrounding accretion flow. This confinement of a lighter fluid (the magnetic field)
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by a heavier fluid in the presence of the gravity of the central star has long been

suspected to be unstable to interchange instabilities (e.g. Li & McKee 1996; Stehle

& Spruit 2001). It is indeed the case, as we show next.

The development of the interchange instability can be seen most clearly in the

animations of the distributions of the mid-plane vertical magnetic field strength (Bz)

and the surface density Σ side-by-side (see online complementary materials or compare

the first column of Fig. 6.6 to that of Fig. 6.8). The animations show that noticeable

azimuthal variations start to develop inside the diffusion-DEMS for both Bz and

Σ around the epoch when M∗ = 0.2M⊙, with the two variations anti-correlated.

The variations become more prominent at later epochs, with denser, less magnetized

“fingers” infalling towards the central protostar along some azimuthal directions, and

less dense but more strongly magnetized pockets expanding away from the central

object (see e.g. panel p of Fig. 6.6 and panel d Fig. 6.8), as expected for interchange

instability, which is a form of the Rayleigh–Taylor instability. The infalling heavier

Rayleigh–Taylor “fingers” deliver both matter and magnetic flux to the central sink

region, where the mass is accreted on to the sink particle while the magnetic flux is

left behind. Magnetic pressure builds up in the sink region, which is released along

the directions of least resistance, driving the expansion of the low-density pockets

between the dense infalling “fingers”. Fueled by the magnetic flux released by the

accreted mass and the decline of the density of the confining medium, the strongly

magnetized, low-density pockets expand quickly at later times, as illustrated in the

panel (u) of Fig. 6.6 and panel (e) of Fig. 6.8 (when M∗ = 0.3M⊙). Again, the

variations of the surface density and Bz are strongly anti-correlated. At such times,

the circumstellar region is essentially a mixture of the diffusion-DEMS (driven by the

AD-enabled flux redistribution at earlier times) and the advection-DEMS (fueled by
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the flux released in the sink region at later times). 2

6.4.3 Ambipolar diffusion and disk formation

In this subsection, we will explore how the AD affects the angular momentum

evolution of the protostellar accretion flow compared to the ideal MHD case and how

the formation of large disks is enabled by a relatively high ambipolar diffusivity.

We have already seen in Section 6.3 that the laminar ideal MHD model M0.0AD0.0

does not form a large rotationally supported structure because of efficient magnetic

braking of the protostellar accretion flow. Part of the reason for the efficient braking

comes from a rapid increase of the (vertical) magnetic field strength on the equatorial

plane (Bz) towards the protostar, as illustrated in panel (a) of Fig. 6.10 (black-solid

curve). This, coupled with a significant pinching of the field lines in the azimuthal

direction (or a strong radial current density Jr), gives rise to a large magnetic braking

torque (∝ BzJr) that removes angular momentum from the infalling protostellar

envelope efficiently (through a braking-driven outflow).

In the presence of even a weak ambipolar diffusivity, the magnetic field distri-

bution in the circumstellar region is modified significantly, as discussed in the last

subsection. Specifically, an ambipolar diffusivity that is 10 times less than the stan-

dard value (Model M0.0AD0.1) is enough to limit the increase of Bz towards the

protostar, and produce a plateau region of more or less constant Bz – the diffusion-

DEMS. As a result, the protostellar accretion flow is less braked in Model M0.0AD0.1

compared to the ideal MHD model M0.0AD0.0 (compare the black solid and violet

dashed curves in panel c of Fig. 6.10). The weaker braking allows the accretion flow to

retain more angular momentum, as can be seen by comparing the violet solid curves

2We note that the flux decoupling inside the sink region is ultimately achieved through magnetic
diffusion as well, so the advection-DEMS is also driven by magnetic diffusion on scales smaller than
the DEMS themselves.
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Figure 6.10: Effects of AD on the magnetic field strength and structure, and the
magnetic braking efficiency. Plotted are the distributions of (a) the azimuthally
averaged vertical magnetic field strengthBz, (b) the degree of pinching of the magnetic
field lines (see equation 6.10 for a definition) in negative ϕ-direction, and (c) the
magnetic braking torque −Γz = (1/c)[(J × B) × r]z, on the equatorial plane at a
representative epoch when M∗ = 0.15M⊙. The curves in each panel correspond to the
models with QA = 0.0 (black solid line), 0.1 (violet dashed), 0.3 (blue dash–dotted),
1.0 (green dash–double-dotted), 3.0 (yellow dash–triple-dotted) and 10.0 (red dash–
quadruple-dotted), respectively.
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in panels a and c of Fig. 6.7 to those in panels a and b of Fig. 6.4, respectively.

Despite the reduction in magnetic braking efficiency, this least diffusive

model (M0.0AD0.1) does not retain enough angular momentum to form a large ro-

tationally supported structure. As the ambipolar diffusivity increases by a factor of

3–0.3 times the standard value (Model M0.0AD0.3), the situation remains qualita-

tively similar, with the circumstellar region dominated by a well-defined diffusion-

DEMS at early epochs and by the development of interchange instabilities at later

times (see the second column of Fig. 6.6). Quantitatively, the increase in AD coeffi-

cient causes a further reduction in the vertical field strength Bz in the circumstellar

diffusion-DEMS (compare the blue dash–dotted and violet dashed curves in panel a

of Fig. 6.10). Just as importantly, the circumstellar field lines are significantly less

pinched, especially in the azimuthal direction.

To measure the pinching of the field lines quantitatively, we consider the magnetic

field curvature:

κ =
B

B
· ∇B

B
. (6.10)

In particular, the ϕ-component of the curvature, κϕ, measures the degree of field line

pinching in the azimuthal direction, which is directly tied to magnetic braking. It

is significantly smaller for Model M0.0AD0.3 than for Model M0.0AD0.1 within the

diffusion-DEMS, as shown in panel (b) of Fig. 6.10 (compare the blue dash–dotted

and violet dashed curves). The combination of a weaker and less azimuthally pinched

magnetic field reduces the efficiency of magnetic braking in Model M0.0AD0.3 further

compared to Model M0.0AD0.1 (compare the blue dash–dotted and violet dashed

curves in panel c). However, the reduction is still not enough to enable the formation

of a large rotationally supported structure in this relatively weak AD case.

As the AD coefficient increases further from 0.3 to 1.0 times the standard value,
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a rotationally supported structure is formed, as a result of further weakening of the

magnetic braking by a somewhat weaker and substantially less azimuthally pinched

circumstellar magnetic field (compare the green dash–double-dotted and blue dash–

dotted curves in Fig. 6.10). The situation with the more magnetically diffusive cases

of M0.0AD3.0 and M0.0AD10.0 is qualitatively similar, with the magnetic braking

weakened enough to allow for large disk formation. Quantitatively, the rotationally

supported structures form at earlier epochs. Note that the magnetic field lines near

the protostars are actually more pinched in these two highly diffusive models com-

pared to the standard AD one because of the increased rotational speed (compare,

for example, the yellow dash–triple-dotted and green dash–double-dotted curves in

panel b of Fig. 6.10). Nevertheless, the magnetic braking remains weak enough for

the large rotationally supported structure to persist until the end of the simulation.

6.5 Disk Formation with Turbulence and

Ambipolar Diffusion

In the last two sections, we have explored separately the effects of turbulence and

AD on disk formation. Here we study the combined effects of these two physical in-

gredients, focusing on the cases with a sonic turbulence (with Mach number M = 1)

and a range of ambipolar diffusivity, from 0.1 to 10 times the standard value. The

results are shown in Figs 6.11 and 6.12, which plot, respectively, the surface density

and the radial profiles of the mass-weighted infall and rotational speeds at four rep-

resentative epochs when M∗ = 0.1, 0.15, 0.2 and 0.25M⊙. It is immediately apparent

that well-formed disks are present at the earliest epoch shown (M∗ = 0.1M⊙) for all

five models independent of the values of AD coefficients, both in morphology (the

first row of Fig. 6.11) and in kinematics (with rotational speed close to the Keplerian
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value, and much larger than the infall speed; see panel a of Fig. 6.12). This is very

different from the laminar (M = 0) cases where, at the same epoch, a rotationally

supported structure either does not exist (see panels a and b of Fig. 6.6 and the

curves plotted in violet solid and blue dashed line in panel a of Fig. 6.7) or is barely

visible (see the right three panels of the same row of Fig. 6.6 and the rest of the curves

in Fig. 6.7). This is clear evidence that turbulence is beneficial to disk formation,

at least at early epochs, independent of the strength of AD. It is consistent with the

results discussed in Section 6.3 for the ideal MHD cases.

Whether the rotationally supported structure formed at early epochs can persist

to later times or not depends on the value of the AD coefficient. In Section 6.3,

we have already seen that the rotationally supported structure formed early in the

ideal MHD sonic turbulence model M1.0AD0.0 disappears at later times, with the

circumstellar region becoming increasingly dominated by strongly magnetized, low-

density (advection-)DEMS. This behavior is preserved qualitatively for the two weak-

est AD cases (Model M1.0AD0.1 and M1.0AD0.3), where the well-defined rotationally

supported disk at the epoch M∗ = 0.1M⊙ becomes severely disrupted by the epoch

M∗ = 0.15M⊙ and almost completely disappears by the epoch M∗ = 0.2M⊙ (see

the left two columns of Fig. 6.11 and the purple and blue lines in panels c and d of

Fig. 6.12). This late-time behavior is broadly similar to that of the corresponding

laminar AD cases (Model M0.0AD0.1 and M0.0AD0.3), although it is easier to ob-

serve the development of magnetic interchange instability in the laminar cases, and

their circumstellar regions are dominated by the DEMS to a larger extent at late

epochs. For these two weakest AD cases, the sonic turbulence produces only initial

transient disks, as in the ideal MHD case.

To produce a large, persistent, rotationally supported structure, a relatively strong

AD is needed, with or without turbulence. The formation of such a structure in the
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Figure 6.11: Column density along z-axis of the zoom-in simulations of five sonic-
turbulent AD models with QA = 0.1×, 0.3×, 1×, 3× and 10× (left to right) the
standard value when the sink particle has accreted 0.1, 0.15, 0.2 and 0.25M⊙ (top to
bottom). The sink particle is marked by a cross. (See the supplementary material in
the online journal for an animated version of the column density distribution of each
model.)
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Figure 6.12: Distributions of the mass-weighted rotational (upper curves) and infall
speeds (lower) in a wedge within 45◦ of the equatorial plane compared to the Kep-
lerian (upper black dotted) and free-fall (lower) profile at five representative epochs
with stellar mass of M∗ = 0.1 (panel a), 0.15 (b), 0.2 (c) and 0.25M⊙ (d) for all
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1× (green dash–dotted), 3× (yellow dash–double-dotted) and 10× (red dash–triple-
dotted) the standard value. The vertical dotted line in each panel denotes roughly
the radius of the sink region.
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laminar cases with AD coefficient of 1.0, 3.0, and 10.0 times the standard value has

already been discussed in the last section (see the last three columns of Fig. 6.6). For

these cases of relatively strong AD, the sonic turbulence makes the small rotationally

supported structure at early epochs (e.g. M∗ = 0.1 and 0.15M⊙) much more promi-

nent and better defined compared to the laminar cases (contrast the first two panels

of the last three columns of Figs 6.6 and 6.11). In addition, the turbulence appears

to have made the rotationally supported structure more stable against gravitational

fragmentation, judging from the absence of prominent fragments that are prevalent

in the corresponding laminar cases at later epochs. Part of the reason is likely that

the disk produced in the presence of turbulence is already highly structured (and

more strongly magnetized; see Section 6.6 below) to begin with, which facilitates the

redistribution of angular momentum inside the disk and lessens the need for strong

spirals to develop gravitationally to transport angular momentum. In any case, we

have shown that AD and turbulence work together constructively to form large, per-

sistent, stable disks throughout the protostellar accretion phase, with the turbulence

making the disk formation easier at early epochs and AD making it easier for the

disks to survive to later epochs.

As in the ideal MHD case, the promotion of disk formation at early times by

turbulence in the AD cases is facilitated by the warping of pseudo-disks. The warp

is illustrated in Fig. 6.13, which plots the density distribution on a cylinder of a rep-

resentative radius rcyl = 250AU at the epoch M∗ = 0.1M⊙ for the cases with AD

coefficient of 0.1, 1.0 and 10.0 times the standard value. These are to be compared

with panel (c) of Fig. 6.2 for the ideal MHD case. As the AD coefficient increases,

the warped pseudo-disk appears somewhat thicker, which is understandable since the

field lines are expected to be less pinched across the pseudo-disk, leaving it less mag-

netically compressed. Nevertheless, the AD of the levels considered in this paper
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does not fundamentally change the basic picture of a flattened pseudo-disk as the

backbone of the protostellar accretion flow and its warping (but not complete disrup-

tion) by turbulence. The beneficial effects of pseudo-disk warping in disk formation

as discussed for the ideal MHD case in Section 6.3, including self-sorting of materials

of different specific angular momenta and easier escape of trapped magnetic flux, are

therefore preserved.

The early formation of a large, rotationally supported disk enabled by turbulence

is expected to affect the diffusion-DEMS formed in the laminar AD simulations dis-

cussed in Section 6.4.2. This interesting structure was particularly well defined in the

weakest AD model of M0.0AD0.1 at early epochs (see Fig. 6.8). In the presence of a

relatively weak turbulence of M = 0.1 (Model M0.1AD0.1), the strong-field plateau

region (the diffusion-DEMS) at the earliest two epochs is significantly perturbed but

not destroyed, as illustrated in the upper row of Fig. 6.14, which plots the distribu-

tions of the vertical component of the magnetic field on the equatorial plane (Bz) at

four representative epochs when M∗ = 0.1, 0.15, 0.2, and 0.25M⊙. In addition, the

ring-like structure outside the diffusion-DEMS at intermediate epochs for the laminar

case (see panels b–d of Fig. 6.8) where the vertical field strength is locally enhanced

is largely preserved (although significantly perturbed, see panels b–d of Fig. 6.14),

again indicating that the weak turbulence does not change the flow structure funda-

mentally. Nevertheless, it does produce an azimuthal variation that appears to have

accelerated the development of the interchange instability which, as in the laminar

case, dominates the circumstellar region at late epochs, as shown more clearly in the

surface density maps plotted in the lower row of Fig. 6.14. In this case, the combi-

nation of a weak turbulence and a weak AD was not able to enable the formation of

a large, well-defined disk. The situation is broadly similar for the somewhat stronger

turbulence model of M0.3AD0.1 (with M = 0.3), where the diffusion-DEMS is harder
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Figure 6.13: Turbulence-induced pseudo-disk warping with AD. Plotted are the den-
sity distributions on a cylinder of radius rcyl = 250AU at the epoch whenM∗ = 0.1M⊙
for Model M1.0AD0.1 (panel a), M1.0AD1.0 (b), and M1.0AD10.0 (c) as a function of
azimuthal angle ϕ and height z, showing a thicker pseudo-disk as the AD coefficient
increases.
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Figure 6.14: Distribution of the vertical magnetic field on the equatorial plane (top
panels) and the column density (bottom panels) for the weak turbulence and weak
AD model (M0.1AD0.1) at the epochs when M∗ = 0.05, 0.1, 0.15, 0.2, 0.25M⊙,
showing a distinct strong-field plateau at early epochs, which is disrupted at later
epochs. (See the supplementary material in the online journal for an animated version
of the vertical magnetic field strength and column density distribution.)

to identify (not shown) and a rotationally supported structure remains absent. As

the turbulence level increases to the sonic value (M = 1), the diffusion-DEMS is no

longer clearly visible; the circumstellar region at the earliest epoch is dominated by a

transient rotationally supported structure instead (see the left column of Fig. 6.11).

6.6 Discussion

6.6.1 How strongly magnetized are protostellar disks?

It is widely believed that a main driver of disk evolution is the magnetic field,

through either the magneto-rotational instability (Balbus & Hawley 1991) or a mag-

netic disk-wind (Blandford & Payne 1982). How fast the disk evolves depends on the

degree of disk magnetization, especially the strength of the poloidal magnetic field

threading the disk. For example, in the 2D (axisymmetric) non-ideal MHD simu-
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lations of Bai (2017), a mid-plane plasma-β of 105 for the initial poloidal magnetic

field is enough to drive an accretion rate of order 10−8M⊙ yr−1, typical of classical

T Tauri stars. The rate is increased to ∼10−7M⊙ yr−1 when the initial poloidal field

strength is increased by a factor of
√
10, corresponding to a plasma-β of 104. The

degree of disk magnetization is currently a critical free parameter in modeling the

dynamics of protoplanetary disks that is unfortunately difficult to measure observa-

tionally. Theoretically, it is expected to be determined by the amount of magnetic

flux carried into the disk during its formation out of the dense molecular cloud cores,

which are known to be significantly magnetized, and the subsequent magnetic flux

transport within the disk (e.g. Okuzumi et al. 2014). Determining the initial degree

of magnetization of protostellar disks is therefore a central task of magnetized disk

formation calculations. In this subsection, we will take a first step in this direction.

To quantify the disk properties, particularly its degree of magnetization, we need

to determine which simulation cells belong to the disk. We will adopt the criteria

used in Masson et al. (2016), which are

1. the material in the cell is close to the hydrostatic equilibrium in the z-direction

so that the rotational speed is significantly greater than the vertical speed (vϕ >

f |vz|);

2. it is rotationally supported against infall so that the rotational speed is signifi-

cantly greater than the radial speed (vϕ > f |vr|);

3. it is significantly dominated by rotational support instead of thermal sup-

port (ρv2ϕ/2 > fP );

4. it has high density (ρ > 3.8× 10−15 g cm−3).

Following Masson et al.(2016, see also Gray et al. 2018), we will choose a value of
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2 for the factor f , which ensures that the quantities to be compared are significantly

different. The results are shown in Figs 6.15 and 6.16.

In Fig. 6.15, we plot the column density along the z-axis for the “disk cells”

selected based on the above criteria for all non-turbulent (M = 0) models that have

a wide range of values for the AD coefficient, from QA = 0 (ideal MHD, the leftmost

column) to 10 (rightmost column), at five different epochs (the last epoch was not

reached in the ideal MHD case where the mass in the simulation box is significantly

depleted by a magnetic braking driven outflow). Also shown for each model and

each epoch are the number of disk cells and the total mass in these cells. Obviously

as the number of disk cells increases, the disk becomes better defined, although the

boundary between a disk and not a disk is somewhat arbitrary. For definiteness, we

will refer to a structure with less than 50, between 50 and 100, and more than 100

disk cells as “no disk”, “underdeveloped disk”, and “well-developed disk” (or “disk”

for short), respectively. Based on this definition, we find no discernible disk at any

epoch for the laminar ideal MHD (Model M0.0AD0.0) and laminar, relatively weak

AD (M0.0AD0.1 and M0.0AD0.3) models (see the first three columns in Fig. 6.15).

A well-developed disk does appear in the standard AD coefficient case (M0.0AD1.0),

at the epoch when M∗ = 0.2M⊙ (panel p) and later. For such well-developed disks,

we characterize their degree of magnetization through two dimensionless numbers:

the normalized ratio of the disk mass to the magnetic flux threading the disk, λd, and

the plasma-β (the ratio of thermal to magnetic pressure), both noted in Fig. 6.15.

The former is to be compared to the mass-to-flux ratio of the initial cloud core, which

is λcore = 2.6 globally. For the standard AD case under discussion, we find λd = 18 at

the epoch when M∗ = 0.2M⊙. It is much higher than λcore, indicating that the newly

formed disk is much less magnetized relative to its mass compared to its parental core,

presumably because of the action of AD, which is expected to redistribute the mag-
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netic flux outwards, away from the high-density circumstellar region. Nevertheless,

this disk is still significantly magnetized, as reflected in the value of the plasma-β,

which is 14 at this epoch. This value, while much larger than that for the initial core

as a whole (βcore = 1.9), is much smaller than what is typically adopted in MHD

simulations of protoplanetary disks, as mentioned earlier. Interestingly, the magnetic

energy is dominated by the poloidal component of the magnetic field rather than

the toroidal component, as shown by the values of βt and βp in Fig. 6.15 for each

disk, which are the ratios of the thermal to magnetic energy due to the toroidal and

poloidal field component, respectively. The disk remains significantly magnetized at

later epochs. The values of λd and β are formally 9.2 and 2.5, respectively, at the

epoch when M∗ = 0.25M⊙, smaller than their counterparts at the earlier epoch of

M∗ = 0.2M⊙, but they are affected by a relatively low density region that satisfies the

disk criteria but is detached from the main body of the disk (see panel v of Fig. 6.15).

By the last epoch shown (panel aa, M∗ = 0.3M⊙), the disk has λd = 23 and β = 7.7,

with the magnetic energy strongly dominated by the poloidal field component.

As the AD coefficient increases, the disk starts to form earlier. For example, by the

epoch when M∗ = 0.15M⊙, a disk is already well-developed in the most magnetically

diffusive model (M0.0AD10.0, panel l), clearly visible although underdeveloped in the

second most diffusive model (M0.0AD3.0, panel k), but barely discernible in the stan-

dard AD case (panel j). Another trend is that, as the AD coefficient increases, the

disk is somewhat bigger (compare the disks in the last three columns of Fig. 6.15) and

more massive, with the disk mass increasing from ∼0.02M⊙ for Model M0.0AD1.0

to ∼0.03M⊙ for M0.0AD3.0 to ∼0.04M⊙ for M0.0AD10.0. The disk remains signif-

icantly magnetized, with λd ∼ 10 − 20 and β ∼ 10 − 20 typically, and the magnetic

energy dominated by the poloidal field component in most cases. The main exception

is the last epoch of the most diffusive model (M0.0AD10.0, M∗ = 0.3M⊙), when the
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disk is significantly less magnetized, with λd = 32, β = 59, and the magnetic energy

dominated by the toroidal field component instead.

Turbulence changes the formation and properties of disks substantially, as illus-

trated by Fig. 6.16, which is the same as Fig. 6.15 but for all models with sonic turbu-

lence (M = 1) and different levels of AD. The change is the most pronounced at the

earliest epoch (M∗ = 0.1M⊙), when the disk is well developed in all AD models and

is clearly visible (although underdeveloped) even for the ideal MHD case (panel a).

The ideal MHD disk is strongly magnetized, with λd = 3.8 that is comparable to that

of its parental core (especially the central part that is less magnetized compared to

the core as a whole) and a plasma-β that is much less than unity (βd = 0.1). The

strong magnetization, we believe, is the reason that the disk enabled by turbulence

early in the ideal MHD case is transient; the magnetic braking is simply too efficient

to allow the disk to persist for a long time. The same is broadly true for the early

disks formed in the two weakest AD cases (Model M1.0AD0.1 and M1.0AD0.3), even

though their masses (0.003 and 0.008M⊙) are significantly larger than that of the

ideal MHD disk (0.001M⊙); both disks disappear at later epochs.

The early disk enabled by turbulence does survive to the last epoch shown in

Fig. 6.16 (M∗ = 0.3M⊙) in the standard AD model of M1.0AD1.0. However, even

in this case where a disk is formed without turbulence, the properties of the disk,

especially its magnetization, are strongly affected by the turbulence. Similar to the

ideal MHD and the two weakest AD cases, the early disk is strongly magnetized,

with β = 0.81 and 0.94 at the epochs M∗ = 0.1 and 0.15M⊙ respectively (see

panels d and j). The order-of-unity disk plasma-β persists to the later epoch of

M∗ = 0.2M⊙, when β = 1.6. This value is much smaller than that for the cor-

responding non-turbulent model at the same epoch, where β = 14. The stronger

magnetization induced by turbulence is expected to make it more difficult for the
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disk to survive. This is indeed true for the standard AD case, where the disk mass

is reduced by more than a factor of 2 (from 0.014 to 0.006M⊙) between the last two

epochs (M∗ = 0.2 and 0.25M⊙). Indeed, the disk disappears completely at even later

epochs (not shown). In this particular case, the turbulence not only enabled the ear-

lier formation of the disk, but also made the disk more strongly magnetized and thus

harder to survive. This negative effect of turbulence on the long-term survivability

of AD-enabled disks is a new phenomenon that has not been seen before.

The reduction of disk plasma-β by turbulence is also evident in the stronger AD

models of M1.0AD3.0 and M1.0AD10.0. For example, at the epoch when M∗ =

0.2M⊙, the well-developed disks in the laminar Model M0.0AD3.0 and M0.0AD10.0

have β = 9.4 and 21, respectively. When a sonic turbulence is present, these values

are reduced by roughly a factor of 2, to 4.2 for Model M1.0AD3.0 and 14 for Model

M1.0AD10.0, respectively. Nevertheless, these significantly magnetized disks are able

to survive to the end of the simulation, unlike the standard AD case.

Another interesting effect is that, for the more magnetically diffusive cases where

disk formation can be enabled by AD alone, the turbulence makes the disk more sta-

ble to violent gravitational instability (which often produces fragments distinct from

the main body of the disk in the laminar cases, see e.g. panels s and o of Fig. 6.6).

As speculated earlier, part of the reason may be that the turbulence strongly warps

the pseudo-disk that feeds the disk, leading to a strong initial inhomogeneity in the

disk (including spirals) that facilitates the redistribution of angular momentum which,

in turn, lessens the need for violent gravitational instability to do so. Another reason

is that the disks formed in the presence of turbulence tend to be more strongly magne-

tized and thus less prone to gravitational instability. In any case, the combination of

a relatively strong turbulence and relatively strong AD appears capable of producing

a large, persistent, stable, but significantly magnetized disk.
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The significant level of magnetization that we found in the disk formed in the

presence of AD and especially turbulence may be a potential problem for the disk

evolution in late phases of star formation, particularly the classical T Tauri phase

that is generally thought to be crucial to planet formation. While it is reassuring

that the disk can inherit a magnetic field from its parental core, our simulations

show that the inherited field may be too strong for the protoplanetary disks, with a

typical plasma-β ∼ 10 − 20 without turbulence and ∼1 − 10 with turbulence, and

a poloidal field component comparable to, and often larger than, the toroidal field

component. These values are orders of magnitude lower than the typical initial values

used in global protoplanetary disk simulations (∼104 − 105), as mentioned earlier.

One empirical constraint on the disk plasma−β comes from the measurement of the

magnetic field strength of ∼0.54G in the Semarkona meteorite (Fu et al. 2014). If we

adopt the estimates of the temperature and density distributions for the solar nebula

from Desch (2007) and assume that the parent body of the meteorite comes from the

main asteroid belt at a radius of ∼2.5AU, we obtain a plasma-β of ∼700 in the gas

surrounding the meteorite if the field strength in the gas is the same as that in the

meteorite. It is, however, possible that the former may be weaker than the latter, by

a factor between 1 and 10, if the chondrules are formed in nebular shocks (Desch &

Connolly 2002). In this case, the gas plasma-β would be in the range of ∼103 − 105,

close to the values often adopted in simulations of relatively evolved, protoplanetary

disks. This is reassuring since the Semarkona chondrules are thought to form in a

rather late stage of the solar nebula evolution, with an inferred age of 2–3 Myr after

the formation of the first calcium aluminum-rich inclusions (Mostefaoui et al. 2002).

This is much older than the disks studied in this paper, which typically have an age

of only a few times 104 years.

The above result needs to be tested with high resolution simulations that resolve
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the disks better. If confirmed, the discrepancy would indicate that, although AD

and turbulence can enable disks to form, they may not be able to demagnetize the

formed disk enough to satisfy the constraints imposed by the (low) accretion rate

and measurements of meteoritic magnetic field strength in late phases. Additional

magnetic diffusivities, such as Ohmic dissipation and Hall effect, a detailed treatment

of the disk thermodynamics, and longer-term simulations of the disk from its initial

formation to the T Tauri phase may be required to resolve the discrepancy.

6.6.2 Connection with previous work and future refinement

As discussed in the introduction, the most detailed non-ideal MHD studies of

magnetized disk formation to date tend to focus on the early phase up to, and slightly

beyond, the formation of Larson’s second core (stellar seed; see recent reviews by

Tsukamoto 2016 and Wurster & Li 2018). The focus of this work is on the less well

explored protostellar accretion phase, with emphasis on turbulence and AD, which

have previously been investigated separately but not in combination thus far.

Our self-gravitating ideal MHD simulations with turbulence (but not AD) can be

viewed as an extension of the work by Li et al. (2014b), who studied the simplified

problem of the accretion of non-self-gravitating turbulent rotating protostellar enve-

lope on to a star of fixed mass. Our more self-consistent treatment strengthened their

general conclusions that the structure of the magnetized protostellar accretion flow is

dominated by a turbulence-warped but spatially coherent pseudo-disk, and that the

turbulence is beneficial to disk formation. However, there is an important difference:

whereas the disk induced by a sonic turbulence in Li et al. (2014b) lasted until the

end of their simulation (see also González-Casanova et al. 2016), that in the corre-

sponding model here (Model M1.0AD0.0) is more transient and becomes disrupted

by DEMS at late epochs (see the right column of Fig. 6.1). The exact reason for this
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Figure 6.15: Column density of cells identified as a part of the disk along z-axis of
all non-turbulent AD models with QA = 0.0×, 0.1×, 0.3×, 1×, 3×, and 10× (left to
right) the standard value when the sink particle has accreted 0.1, 0.15, 0.2, 0.25, and
0.3M⊙ (top to bottom). The sink particle is marked by a cross. The number of cells is
written on the upper right corner. For those snapshots where either underdeveloped
or well-developed disks (with more than 50 disk cells) are identified, the disk mass
is shown below the disk cell number in the upper right corner, and the mass-to-flux
ratio λd, total plasma-β, and toroidal component βt and poloidal component βp of
the plasma-β are shown on the lower part of each panel.
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Figure 6.16: Column density of cells identified as a part of the disk along z-axis of
all sonic-turbulent AD models with QA = 0.0×, 0.1×, 0.3×, 1×, 3×, and 10× (left
to right) the standard value when the sink particle has accreted 0.1, 0.15, 0.2, and
0.25M⊙ (top to bottom). The sink particle is marked by a cross. The number of cells
is written on the upper right corner. For those snapshots where either underdeveloped
disks or well-developed disks are identified, the disk mass is written on the upper right
corner, and the mass-to-flux ratio λd, total plasma-β, and toroidal component βt and
poloidal component βp of β are written on the lower right corner of each panel.
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difference is unclear. We also note that the lack of a persistent rotationally supported

disk is broadly consistent with the work of Gray et al. (2018), who found that such

a disk does not form unless there is a large misalignment between the turbulence-

induced angular momentum (which is set to zero for our simulation as a whole) and

the magnetic field. We note that Kuffmeier et al. (2017) found multiple spirals in the

circumstellar regions in some of their ideal MHD disk formation simulations (see the

left column of their Fig. 10) similar to our ideal MHD turbulent models (M0.5AD0.0

and M1.0AD0.0). It would be interesting to see whether their spirals are part of a

warped but spatially coherent pseudo-disk (as true for our cases, e.g. Fig. 6.3) or not.

Our 3D laminar (non-turbulent) simulations with AD is a natural extension of

the 2D (axisymmetric) work of Li et al. (2011). In particular, we have shown for the

first time that the strongly magnetized circumstellar structure driven by AD-induced

magnetic flux redistribution that is predicted analytically and found in the 2D simu-

lations can be produced in 3D as well. We have shown further that such a structure is

unstable to the magnetic interchange instability, which is broadly consistent with the

3D work of Krasnopolsky et al. (2012). However, an apparent difference is that there

are AD-enabled, persistent rotationally supported circumstellar structures in our sim-

ulations (see Fig. 6.6) but not in theirs. This is probably because Krasnopolsky et al.

adopted an initially uniform density distribution, which is known to be less conducive

to disk formation compared to the centrally condensed distribution adopted in most

of our simulations (see e.g. Machida et al. 2014). Indeed, we have performed two sim-

ulations with an initially uniform density distribution (keeping the global mass-to-flux

ratio the same as before, i.e. λcore ≈ 2.6) for the standard AD case with and without

a sonic turbulence (Models M1.0AD1.0US and M0.0AD1.0US respectively). Neither

model produced a large, persistent rotationally supported circumstellar structure.

This is consistent with Zhao et al. (2016), who found that enhanced AD, possibly
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by removal of small grains, is needed to enable the disk formation in such cases. It

is also broadly consistent with Masson et al. (2016, see also Hennebelle et al. 2016),

who found that, for an initially uniform core with aligned magnetic field and rotation

axis, the formation of a large, well-resolved disk is enabled by AD in the relatively

weak field case of λ ≈ 4 (after correcting for a somewhat different definition of the di-

mensionless mass-to-flux ratio) but barely in the stronger field case of λ ≈ 1.6. They

showed further that disk formation in the latter case is helped by a relatively large

misalignment (of 40◦) between the magnetic field and rotation axis. We note that

our 3D results are also qualitatively consistent with those from 2D (axisymmetric)

simulations of Mellon & Li (2009) in that relatively large disks can form if the AD

is strong enough. It is, however, difficult to quantitatively compare these early 2D

simulations with the current 3D simulations because they have very different initial

conditions (self-similar magnetized toroids with non-uniform magnetic fields versus

centrally condensed cores threaded by an uniform magnetic field).

The most unique aspect of our work is the combination of turbulence and AD. We

have shown that the two work together to form disks that are much better defined than

those induced by turbulence or AD separately. The turbulence tends to promote disk

formation at early epochs while AD helps the early disks to survive to later times.

However, even with both turbulence and AD, there is no guarantee that a large,

persistent disk would form automatically. It depends on many factors, including

the degree of magnetization (i.e. λcore), the level of turbulence (i.e. Mach number

M), the structure of the core (e.g. the initial density distribution), the rate of core

rotation, and the degree of coupling between the magnetic field and the bulk neutral

cloud material. For example, we do not find a large, persistent disk for the uniform

core model M1.0AD1.0US with a sonic turbulence and the standard AD coefficient,

as mentioned above.
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We caution the reader that small, numerically unresolved disks may still form in

those simulations that do not produce large, persistent rotationally supported disks.

This is a general concern for disk formation simulations that focus on the protostellar

mass accretion phase where a sink particle treatment is needed, particularly for the

relatively low-resolution simulations presented in this manuscript, because the angular

momentum of the material accreted onto the central star (sink particle) from the sink

region is lost as far as the disk formation is concerned (e.g. Machida et al. 2014; Gray

et al. 2018). We have carried out a crude resolution study, by running the uniform-

grid simulations well into the protostellar accretion phase without zoom-in (256 cells

in 5000 AU). Compared with the zoom-in simulations presented in this paper, it is

somewhat more difficult to form disks in these lower resolution simulations, although

the general trend is the same, namely, disks are formed more easily in the presence

of a larger AD and a stronger turbulence. We plan to perform higher resolution

simulations in the near future using a version of the Athena++ code (currently under

development) that will include not only non-ideal MHD effects and sink particles but

also a self-gravity solver that works with AMR.

6.7 Conclusion

We have carried out a set of numerical simulations of disk formation in rotating,

magnetized molecular cloud cores including turbulence and AD, both separately and

in combination, with a focus on the protostellar mass accretion phase of star formation

that is made possible by a sink particle treatment. The main results are as follows.

1. In the ideal MHD limit, a relatively strong, sonic turbulence on the core scale

strongly warps but does not completely disrupt the well-known magnetically in-

duced flattened pseudo-disk that dominates the inner protostellar accretion flow

in the laminar case, in agreement with previous results obtained in the absence
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of self-gravity. The turbulence facilitates the disk formation at early times, pos-

sibly by creating strong inhomogeneities (including low-density regions) in the

warped pseudo-disk that allow the magnetic flux trapped near the forming star

to escape more easily. The warping of the pseudo-disk may also promote disk

formation by making it easier for materials with high specific angular momenta

to retain their angular momenta. However, the turbulence-enabled initial disk

is too strongly magnetized to persist to the end of the simulation, when the ma-

jority of the core material has been accreted onto the star or ejected in outflows.

It is replaced at later times by strongly magnetized, low-density expanding re-

gions where the magnetic flux associated with the accreted stellar material is

advected outwards (i.e. the so-called “advection-DEMS” or simply DEMS).

2. We find from our 3D laminar (non-turbulent) non-ideal MHD simulations that

AD can redistribute the magnetic flux associated with the accreted stellar mate-

rial to a circumstellar region where it is trapped by the surrounding protostellar

accretion flow, forming the so-called “diffusion-DEMS”, in agreement with pre-

vious analytic work and 2D (axisymmetric) simulations. For a relatively weak

AD, the strongly magnetized diffusion-DEMS dominates the circumstellar re-

gion at early times, making disk formation difficult. It is subsequently disrupted

by the magnetic interchange instabilities, although the circumstellar region re-

mains strongly magnetized, with no evidence for a large rotationally supported

disk. As the level of AD increases, the magnetic field in the circumstellar re-

gion becomes weaker and less pinched in the azimuthal direction, both of which

reduce the magnetic braking torque, making it easier to form a large persistent

disk.

3. We find from our non-ideal MHD simulations with sonic turbulence that the
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turbulence and AD promote disk formation in a complementary manner, with

the former ensuring the formation of a relatively large disk early in the pro-

tostellar accretion phase and the latter facilitating the survival of the disk to

later times. In addition, the turbulence tends to make the disks formed in the

presence of a relatively strong AD more stable to gravitational fragmentation.

4. The turbulence-enabled early disks tend to be strongly magnetized, which makes

them difficult to persist unless a relatively strong AD is also present. Even with

a strong AD, the disks formed in our simulations remain rather strongly magne-

tized, with a typical plasma-β of order a few tens or smaller, which is 2–3 orders

of magnitude lower than the values commonly adopted in MHD simulations of

the relatively evolved, slowly accreting, protoplanetary disks. This potential

tension highlights the strong need to quantify the evolution of the disk mag-

netic field from its parental core to the end of its evolution with increasingly

realistic physics and to confront the model predictions with future ALMA Zee-

man observations of the field strength in disks of different evolutionary stages.



88

Chapter 7

The Transition of Polarized

Dust Thermal Emission from the

Protostellar Envelope to the

Disk Scale

This chapter is adapted from Lam et al. 2021, Monthly Notices of the RAS, 507, 608,

with minimal modifications, except for an extra Appendix 7.B.

Abstract

Polarized dust continuum emission has been observed with Atacama Large Mil-

limeter/submillimeter Array in an increasing number of deeply embedded protostellar

systems. It generally shows a sharp transition going from the protostellar envelope to

the disk scale, with the polarization fraction typically dropping from ∼5 percent to ∼1

percent and the inferred magnetic field orientations becoming more aligned with the

major axis of the system. We quantitatively investigate these observational trends us-
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ing a sample of protostars in the Perseus molecular cloud and compare these features

with a non-ideal magnetohydrodynamic disk formation simulation. We find that the

gas density increases faster than the magnetic field strength in the transition from

the envelope to the disk scale, which makes it more difficult to magnetically align the

grains on the disk scale. Specifically, to produce the observed ∼1 percent polarization

at ∼100AU scale via grains aligned with the B-field, even relatively small grains of

1µm in size need to have their magnetic susceptibilities significantly enhanced (by

a factor of ∼20) over the standard value, potentially through superparamagnetic in-

clusions. This requirement is more stringent for larger grains, with the enhancement

factor increasing linearly with the grain size, reaching ∼2 × 104 for millimeter-sized

grains. Even if the required enhancement can be achieved, the resulting inferred mag-

netic field orientation in the simulation does not show a preference for the major axis,

which is inconsistent with the observed pattern. We thus conclude that the observed

trends are best described by the model where the polarization on the envelope scale

is dominated by magnetically aligned grains and that on the disk scale by scattering.

7.1 Introduction

Magnetic fields have long been viewed as a key ingredient in molecular clouds and

star formation (McKee & Ostriker 2007). This view has been greatly strengthened

by polarimetric observations of dust continuum emission in recent years, especially

through the Planck all-sky survey (e.g. Planck Collaboration et al. 2015) and At-

acama Large Millimeter/submillimeter Array (ALMA; e.g. Hull & Zhang 2019).

On the relatively large cloud scales probed by Planck, there is little doubt that the

polarized dust emission traces the magnetic field because the (relatively small, sub-

micron-sized) dust grains are known to be preferentially aligned with their short axis

along the magnetic field (e.g. Andersson et al. 2015). On the much smaller scales
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probed by ALMA, the situation is less clear, which is the focus of our investigation.

In particular, ALMA has detected dust polarization in an increasing number of

protostellar systems that are still deeply embedded in their massive envelopes (e.g.

Hull et al. 2017, 2020; Cox et al. 2018; Maury et al. 2018; Sadavoy et al. 2018a,b,

2019; Kwon et al. 2019; Le Gouellec et al. 2019; Takahashi et al. 2019; Ko et al. 2020;

Yen et al. 2020). Le Gouellec et al. (2020) analyzed the polarization data from Class 0

sources statistically, and found an interesting anticorrelation between the dispersion of

the polarization orientations and the polarization fraction. Another interesting trend,

first discussed in Cox et al. (2018) and quantified further in this paper (see Section 7.2

below), is that the typical dust polarization fraction on the 103AU scale of the inner

protostellar envelope (≳5 percent) is much higher than that on the 102AU disk scale

(≲1 percent). While the relatively high polarization fraction on the envelope scale is

likely still due to magnetically aligned grains (as on the larger cloud scale), the origin

of the much lower polarization fraction on the disk scale is less certain.

One possible explanation of the lower polarization fraction on the disk scale com-

pared to that on the envelope scale is that the grains in the disk are much larger

than those in the envelope and thus harder to align magnetically because of their

longer Larmor precession timescale around the magnetic field (e.g. Lazarian 2007;

Yang 2021). The higher density in the disk also makes it harder for grain alignment,

regardless of the alignment mechanism because of more frequent randomizing colli-

sions of the grains with their ambient gas. These lead to a larger ratio of the Larmor

precession timescale to the gas damping timescale in the disk compared to that in

the envelope, and hence a lower magnetic grain alignment efficiency in the disk (see

equation 7.7 below), which may explain its lower polarization fraction.

A potential scenario is that the reduction factor of magnetic alignment on the disk

scale is so large as to render the polarized emission from magnetically aligned grains
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undetectable. In this case, another mechanism is needed to explain the lower but still

well-measured polarization at the ∼1 percent level. The most likely alternative to

magnetically aligned grains is dust self-scattering, which has been shown to be capable

of producing percent-level polarization at (sub)millimeter wavelengths (Kataoka et al.

2015), especially in inclined disks (Yang et al. 2016).

The goal of our investigation is therefore to quantify the change in the dust polar-

ization fraction and pattern in the transition from the protostellar envelope scale to

the disk scale and to determine whether the observed trends in the transition can be

explained by magnetically aligned grains alone or whether scattering is also needed.

In particular, we examine how the condition for magnetic grain alignment at a given

location in the protostellar system depends on its local environment, including the

gas density, magnetic field strength, and the grain properties such as size and mag-

netic susceptibility. We also take into consideration the possible enhancement of dust

magnetic susceptibility by superparamagnetic inclusions (SPIs) based on the theory

recently developed by Yang (2021). Our analytic model is then tested in synthetic

polarization of a simulated protostellar disk-envelope system from Lam et al. (2019)

to provide a qualitative comparison to the ALMA observations discussed in Cox et al.

(2018).

The rest of the paper is organized as follows. We first revisit the ALMA polar-

ization data of eight protostellar systems in the Perseus molecular clouds presented

in Cox et al. (2018) to quantify the sharp drop in polarization fraction and change

in polarization orientation from the protostellar envelope scale to the disk scale (Sec-

tion 7.2). In Section 7.3, we provide an overview of the condition for magnetic align-

ment of dust grains based on Yang (2021). The non-ideal MHD disk formation sim-

ulations of Lam et al. (2019) are described in Section 7.4, where we also present the

synthetic polarization observations and their comparison with the ALMA data. Our
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results are discussed in Section 7.5. Section 7.6 summarizes our conclusions.

7.2 Observational Motivation: Sharp

Envelope–Disk Transition in Dust

Polarization

The combination of sensitivity and resolution afforded by ALMA makes it possible

to detect polarized dust emission from the inner protostellar envelope down to the

disk scale. The behavior of the polarization in the envelope-to-disk transition region

is well illustrated in Cox et al. (2018), which presented ALMA Band 7 polarization

data on 10 Class 0/I protostars in the Perseus molecular clouds (distance ∼300 pc;

Zucker et al. 2019). They found that on the 100-AU disk scale the polarization

tends to be well ordered, with a typical fraction of ≲1 percent. In contrast, on the

larger envelope scale, the polarization becomes more disordered, with a relatively

large fraction of typically ≳5 percent. These differences were clearly visible in their

polarization maps (see their Figs. 1–3) and quantified through cumulative probability

distributions of the polarization fraction (see their Fig. 4).

To characterize the polarization in the envelope–disk transition further and facili-

tate a quantitative comparison of the observational data with synthetic observations

based on numerical simulation, we re-examine the polarization data from Cox et al.

(2018) from a different angle by taking into account the spatial information more

directly. In particular, we want to know how the polarization fraction and direction

change with the distance from the center. Since the resolution of the ALMA data

presented in Cox et al. (2018) is ≈ 0.4′′, we regridded the data to have pixel size

≈ 0.2′′ so that there are ∼2 − 4 pixels per beam. To correct for projection effects,

we need to know the system orientation in the plane of the sky and inclination rel-
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ative to the sky plane. For the orientation, we use the outflow directions inferred

in Tobin et al. (2015) and Stephens et al. (2017, 2018). Since protostellar outflows

are generally aligned perpendicular to the equatorial plane of the system, we adopt

the orientation 90◦ to the outflow direction as the position angle of the disk of the

system. For the inclination angle of the system, we use the disk orientation inferred

from the VLA Ka-band continuum observations by Segura-Cox et al. (2018), as part

of the VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM)

survey (Tobin et al. 2016), whenever such measurement is available. For the other

five systems that do not have a well-measured inclination, we assume 45◦ for the in-

clination angle.1 Considering the targets are different in size, we further normalized

the derived radius by a characteristic “disk” radius, defined as the radius of a circle

that encloses the same area as the ellipse at 10 percent maximum intensity from 2D

Gaussian fitting of the ALMA Band 7 Stokes I image; i.e. we fit the emission with

2D Gaussian distribution, measure the parameters of the ellipse at the 10 percent

peak level of the fitted distribution, and calculate R10 percent ≡
√
a · b where a, b are

the half lengths of the major and minor axes of the resulting ellipse from the fitted

Gaussian, respectively. The fitted Gaussian peak is adopted as the center of the

system. The same masking criteria as in Cox et al. (2018) are used, i.e. I > 5σI

and P > 3σP . More details on the de-projection process, as well as the parameters

adopted for individual sources, are described in Appendix 7.A.

In Fig. 7.1, we plot, as scatter plots color-coded by polarization fraction, the

combined distributions of the polarization fraction (left-hand panel) and the inferred

orientation of the polarization B-vector (rotated from the E-vector by 90◦; right-hand

panel), as a function of the normalized (deprojected) distance from the center for

1We have tested that the inclination angle does not have a huge effect (unless the system is nearly
edge-on, which is less likely) on the features we show in Fig. 7.1, since these features are visible even
before de-projection (see Appendix 7.A). We therefore adopt a representative value of 45◦.
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Figure 7.1: Trends of observed polarization from envelope to disk scales. Plotted
as functions of the deprojected distance from the center (normalized by R10 percent;
see text for definition) are the combined distributions of the polarization fraction
(left) and the orientation of the polarization B-vector (rotated from the E-vector by
90◦; right), for 8 of the 10 protostellar systems presented in Cox et al. (2018). The
orientation of the polar plot is rotated so that the disk major axes align with the
horizontal line. Also, the polar plot is mirror-imaged to reflect the degeneracy of
polarization angles over 180◦. The polarization fraction is color coded in both panels
to highlight its increase from the disk to envelope scale.
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8 of the 10 sources discussed in Cox et al. (2018). We note that, among the 10

sources presented in Cox et al. (2018), Per 41 has too few polarization detections for

meaningful analysis. The other source, Per 21, is located within the highly perturbed

protostellar envelope NGC1333 IRAS7 that harbors at least two other protostars (see

e.g. Tobin et al. 2016; Chen et al. 2019) with complex outflow morphologies (Stephens

et al. 2017). The complexity makes it difficult to assign an outflow direction for Per 21

with confidence. We thus exclude it in this study as well.

The left-hand panel of Fig. 7.1 shows that there is a clear trend for the polarization

fraction to stay roughly constant at typically a percent level (although it is higher

in a couple of cases; see discussion in Section 4) within about one normalized radius

(i.e. r/R10 percent ≲ 1) and then rapidly increases outwards, reaching values as high

as 10 − 15 percent or more. As shown in Appendix 7.A, the trend is clear in both

the cases where a large number of polarization vectors are detected on the envelope

scale (such as Per 2, Per 5, Per 11, and Per 29) and those with fewer envelope-scale

detections (such as Per 14, Per 18, and Per 50). It is a robust feature that needs

to be explained by all models of envelope/disk polarization, including our own (see

Section 7.4 below).

The right-hand panel of Fig. 7.1 shows that the orientations of the polarization

B-vectors are clearly non-isotropic (e.g. two cavities devoid of data points) within

about one normalized radius (R10 percent), with a strong preference towards the disk

orientation. This is in strong contrast with the orientations on the larger (envelope)

scale, which are much more isotropic. The difference can also be seen in individual

sources (e.g. the right-hand panels of Fig. 7.A.2), which tend to have much more

uniform polarization orientations (i.e. narrow distributions) on the disk scale than on

the envelope scale. Nevertheless, we note that there are noticeable offsets between the

disk-scale polarization orientation and the outflow-based system major axis in some
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of our targets (Per 5, Per 11, Per 18, and Per 26; see Fig. 7.A.2). It is unclear what

is the physical reason introducing such offset, and we discuss this further in Sec. 7.5.

In any case, the difference in the polarization orientations between the envelope and

disk scales is significant, and is another feature that needs to be explained.

7.3 Condition for Magnetic Grain Alignment

The simplest explanation of the observed drop in polarization fraction from the

envelope scale to the disk scale is that the grains are less well aligned at higher

densities, especially inside the disks. Here, to explore this possibility quantitatively,

we discuss the necessary conditions for magnetic grain alignment based on the recent

work by Yang (2021).

The investigation of magnetic alignment of spinning dust grains has a long and

distinguished history (see Andersson et al. 2015 for a review). Although there are

different proposed mechanisms to spin up the dust grains, the current favorite is radia-

tive alignment torque, which appears capable of spinning up grains in protoplanetary

disks (e.g. Tazaki et al. 2017; Lazarian 2007). However, for the spinning grains to

align with the magnetic field, they have to gyrate quickly around the magnetic field,

with a Larmor precession timescale tL shorter than the gas damping timescale on dust

grains td.

7.3.1 Larmor precession timescale

It is well-known that a spinning grain would be magnetized through the Barnett

(1915) effect. This spinning-induced magnetization can be quantified as M = χΩ/γ

(Purcell 1979; Roberge et al. 1993), where χ is the magnetic susceptibility, Ω is the

angular velocity, γ = gµB/ℏ is the gyromagnetic ratio with µB = 9.27×10−21 erg·G−1

(the Bohr magneton) and g ≈ 2 (the g-factor) for electrons (Draine 1996). For a dust
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grain with a magnetic moment |M|V , where V is the volume of the dust grain (i.e.

V ≡ 4πa3/3 for spherical grains with radius a), the magnetic torque exerted on the

dust grain by the external magnetic field B is roughly |M|V B. We can therefore

define a Larmor precession timescale as (see e.g. Lazarian 2007; Yang 2021):

tL =
2πI|Ω|
|M|V B =

4π(ρsV )a2/5 · γ
χV B

=

(
4πγ

5

)
ρsa

2

χB

= 2.6× 1011 s× χ̂−1

(
ρs

3 g cm−3

)(
Ts

15K

)(
B

5mG

)−1 ( a

1mm

)2

,

(7.1)

where ρs is the mass density of the dust grain, and

χ̂ ≡ χ · 103
(

Ts
15K

)
(7.2)

is a dimensionless parameter of the magnetic susceptibility determined by the com-

position of dust grains, and Ts is the dust temperature.

For regular paramagnetic material, the magnetic susceptibility is given as (e.g.

Morrish 2001; Draine 1996)

χp =
npµ

2

3kT
, (7.3)

where np = fpntot is the number density of paramagnetic atoms with fp the fraction

of the atoms that are paramagnetic and ntot the total atomic density, and µ = pµB

is the averaged Bohr magneton per iron atom. Draine (1996) noted that p ≈ 5.5 for

paramagnetic materials, and gave a realistic estimate of paramagnetic susceptibility:

χp = 4.2× 10−2fp

( ntot

1023 cm−3

)(
Ts

15K

)−1 ( p

5.5

)2

. (7.4)

For typical interstellar dust grains composed of {C, H, Mg, Si, Fe}, ρs ∼ 3 g cm−3 and

ntot ∼ 1023 cm−3 (see e.g. Draine 1996). With fp ≈ 0.1 (Draine 1996), this suggests
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that the dimensionless parameter χ̂ ∼ 1 in equation (7.1), which we will refer to as

the “standard" value for paramagnetic grains.

7.3.2 Gas damping timescale

Collisions between dust grains and surrounding gas particles have the potential

to randomize the angular momenta of grains and thus limit the degree of magnetic

alignment. In general, the damping timescale can be estimated as the time needed to

accumulate the same amount of mass from the gas material as the mass of the dust

grain (e.g. Purcell & Spitzer 1971). Assuming every colliding gas particle sticks long

enough on the grain surface for its kinetic energy to become thermalized at the grain

temperature, Roberge et al. (1993) derived a gas damping timescale

td =
2
√
π

5

ρsa

ngmgvg,th

= 3.37× 108 s×
(

ρs
3 g cm−3

)( a

1mm

)(
ng

5× 109 cm−3

)−1(
Tg
15K

)−1/2 (7.5)

for the simplest case of spherical grains2, where ρs and a are the mass density and

size of the grain, ng the number density of the gas, mg the mass per gas particle, and

vg,th and Tg the gas thermal velocity and temperature, respectively.

7.3.3 Condition for magnetic alignment with superparamag-

netic Inclusions

Combining equations (7.1) and (7.5) and assuming that the dust grains and gas

particles are in thermal equilibrium (Ts = Tg ≡ T ), we have

tL
td

= 771×
(
amm

χ̂

)(
B

5mG

)−1(
ng

5× 109 cm−3

)(
T

15K

)3/2

(7.6)

2Note that for polarization produced by B-field aligned grains, non-spherical grains are required.
Nonetheless, the timescale would be at the same order of magnitude.
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where amm ≡ (a/1mm) is the grain size in units of millimeter. Note that, as discussed

in Yang (2021), the magnetic susceptibility parameter χ̂ and the grain size a are de-

generate in the ratio between Larmor precession and gas damping. Equation (7.6)

suggests that, for paramagnetic materials with the standard value of magnetic sus-

ceptibility χ̂ ∼ 1, only small, sub-micron-sized grains have tL < td (and thus can

align with the magnetic field) for the adopted fiducial disk parameters of B ∼ 5mG,

ng ∼ 5 × 109 cm−3, and T ∼ 15K. However, χ̂ can be enhanced by a large factor

when superparamagnetic inclusions (SPIs hereafter) are present in the grains (Jones

& Spitzer 1967).

Superparamagnetism appears in nanoparticles made of ferromagnetic or ferrimag-

netic materials. Unlike paramagnetic materials that have only un-correlated electron

spins, within one superparamagnetic particle, all the atoms are spontaneously mag-

netized and behave like a single large magnetic moment (“macro-spin”; Bean & Liv-

ingston 1959), which could greatly increase the magnetic susceptibility. Yang (2021)

considered three types of candidate materials for the superparamagnetic inclusions,

and estimated a maximum enhancement factor of χ̂max ∼ 1.1× 103 for Fe3O4 (mag-

netite), ∼3.7 × 103 for γ–Fe2O3 (maghemite), and ∼7.0 × 104 for the extreme case

of pure metallic iron (see their Table 1). Since magnetite and maghemite are more

likely representative of superparamagnetic materials than metallic iron, the magnetic

susceptibility is likely enhanced by a maximum factor up to a few thousands at most,

rather than tens of thousands. Yang (2021) also noted that this maximum enhance-

ment is a hard limit determined by the crystalline structure of the SPI material

and the energy needed to overcome the crystalline structure and align the initially

randomly oriented magnetic moments inside the SPIs to the direction of the external

magnetic field. The required energy is proportional to the volume of the SPI. It there-

fore takes longer to align larger SPIs because of a larger energy required. Indeed, the
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alignment timescale is exponentially sensitive to the SPI size (see equation 9 of Yang

(2021)), which severely limits the contributions of SPIs larger than the critical size

to the magnetic susceptibility of the dust grain. Indeed, the maximum enhancement

is reached only when all SPIs inside a grain have the (same) critical size, which is

unlikely.

As briefly discussed in Yang (2021), while no magnetic alignment is expected when

the Larmor precession timescale is longer than the gas damping time scale (tL > td),

tL < td does not guarantee magnetic alignment. The grain needs to gyrate around

the magnetic field multiple times within a single gas damping time in order to ensure

magnetic alignment, which leads to a more stringent alignment condition: tL < td/η,

where η(> 1) is the number of gyrations per gas damping time needed for grain

alignment. The exact value of η is uncertain; in the discussion below, we will follow

Yang (2021) and adopt a fiducial value of 10. Making use of equation (7.6), the

alignment condition becomes:

λ ≡ 771×
(

B

5mG

)−1(
ng

5× 109 cm−3

)(
T

15K

)3/2

< ξ ≡ χ̂/η

amm

, (7.7)

where the dimensionless parameter λ and ξ encapsulate, respectively, the combination

of the gas and magnetic field quantities and of the grain properties that enter the

alignment condition. They will be referred to as gas and grain alignment parameter

respectively hereafter. In regions where the gas alignment parameter λ is larger,

the grains are harder to magnetically align because of a higher gas density ng, a

higher temperature T , or a lower magnetic field strength B. Conversely, grains with

a larger grain alignment parameter ξ are easier to align magnetically because of a

larger magnetic susceptibility enhancement χ̂ by SPIs, a smaller grain size a, or a

less stringent requirement on the number of times η that the spinning grains need
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to gyrate around the field line before being knocked off by gas collisions in order to

be magnetically aligned. In particular, in the protostellar envelope where the gas

density ng is lower and the grain size a is expected to be smaller, the condition

for magnetic alignment should be satisfied more easily. In the next section, we will

quantify how the condition affects the polarization in the transition region from the

protostellar envelope scale to the disk scale, using the physical quantities obtained

from a non-ideal MHD disk formation simulation.

7.4 Modeling Dust Polarization

7.4.1 Model setup and synthetic observations

The simulation to be used for our polarization modeling comes from Lam et al.

(2019), which contains a series of non-ideal MHD simulations of turbulent core col-

lapse and disk formation with a range of values for the turbulent level and ambipolar

diffusion (see their Table 1). The simulations are isothermal with a temperature of

10 K. They start with a centrally condensed core of 0.5M⊙ in mass and 2000AU in

radius and an initial solid-body rotation of Ω = 6 × 10−13 s−1. For the purpose of

illustrating the difference in dust polarization between the protostellar envelope and

disk, we pick a high-resolution version of their model M1.0AD10.0, which has an ini-

tial turbulence Mach number of 1.0, a relatively large ambipolar diffusion coefficient

that is ten times the fiducial value based on the standard cosmic ray ionization rate

of 10−17 s−1 (see e.g. Shu 1992), and a ∼100AU disk. The simulation was performed

using the Athena code (Stone et al. 2008) on a uniform base grid of 5123. It was

zoomed in once with half box length while keeping the number of cells fixed at 5123,

which yields a minimum resolution of 5AU. The high-resolution simulation data at

the time when the disk is well formed around the central protostar of 0.22M⊙ is used
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for our polarization analysis. The disk can be clearly see in the top panel of Fig. 7.2,

which shows a 3D view of the density distribution, together with several representa-

tive magnetic field lines. The bottom panel shows the polarization vectors obtained

through the procedure discussed next.

In the simplest case of optically thin dust with a spatially homogeneous grain

alignment efficiency, the Stokes parameters I, Q, and U of dust thermal emission

along a given line of sight are given by (see e.g. Fiege & Pudritz 2000):

I =

∫
ρ

(
1− α

(
cos2 γ

2
− 1

3

))
ds, (7.8a)

Q = α

∫
ρ cos 2ψ cos2 γ ds, (7.8b)

U = α

∫
ρ sin 2ψ cos2 γ ds, (7.8c)

where ρ and s are, respectively, the mass density at a given location and the distance

into the cloud of that location along the line of sight. The polarizability parameter

α is determined by the grain cross sections and alignment properties and assumed to

be spatially constant. The quantity γ is the inclination angle of the field line with

respect to the plane of the sky, and ψ is the angle of the magnetic field from the

direction of positive Q in the sky plane. The maximum degree of polarization p0 is

related to the parameter α through p0 = α/(1− α/6). For simplicity, we set α = 10

percent, which yields p0 = 10.17 percent3. The polarization fraction and direction

3The maximum polarization parameter p0 should in principle be determined from grain alignment
theory, as done in, e.g. Valdivia et al. (2019); Kuffmeier et al. (2020), using the POLARIS code
(Reissl et al. 2016). However, the uncertainties in the grain properties, especially their shapes, make
it difficult to firmly predict this parameter. Our choice is guided by the typical values observed
in the inner protostellar envelopes of the Perseus protostars. It is the same as the constant value
adopted by Valdivia et al. (2019) but somewhat smaller than the value of 15 percent adopted by
Padovani et al. (2012) and Lee et al. (2017).
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Figure 7.2: (a) A 3D view of the density distribution and magnetic field lines of the
simulated protostellar envelope–disk system that is used for the dust polarization
modeling. Plotted are the iso-density surfaces at ng = 107, 108, 109, 1010 cm−3 (semi-
transparent surfaces) and a sample of magnetic field lines, viewed at an angle of
45◦ to the rotation axis (as in the synthetic polarization maps in the bottom panel
and in Fig. 7.3 below). (b) Polarization (B-)vectors (with length proportional to the
polarization fraction) superposed on the color map of (mass) column density.
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are obtained from the Stokes parameters through

p =

√
Q2 + U2

I
, ϕ =

1

2
arctan 2(U,Q). (7.9)

There are a few complications. First, the densest part of the protostellar disk

formed in our simulation is moderately optically thick, which could lower its polar-

ization fraction somewhat (Yang et al. 2017; Lin et al. 2020). The optical depth

(and associated extinction) is accounted for by solving the vector radiation transfer

equation, as described in Appendix 7.C. Secondly, the magnetic alignment efficiency

is not expected to be spatially homogeneous, with grains in denser regions less likely

magnetically aligned, as discussed in Section 7.3. We capture this effect using a mag-

netic alignment probability A, defined in each voxel of the simulation based on the

alignment condition, equation (7.7):

A =





1, if the voxel satisfies equation (7.7)

0, if the voxel does not satisfy equation (7.7).
(7.10)

Finally, it is well known that dust scattering can provide significant polarization

in inclined disks along the disk minor axis (Kataoka et al. 2015; Yang et al. 2016).

To account for this possibility, in one of the models, we added a scattering-induced

polarization of fraction psca (see Section 7.4.2 below for discussions on the value of

psca) along the disk minor axis (which is the negative Q direction in our setup) only

in those voxels that do not satisfy the magnetic alignment condition (i.e. A = 0).

The synthetic observations are conducted at a resolution of 5AU. To provide

better comparison to the ALMA observations of Cox et al. (2018), we smoothed the

synthetic I, Q, and U maps with a 2D Gaussian beam with FWHM = 10 pixels
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Table 7.1: Model parameters and outcome.

Model Name ξ psca Consistencya

Xi-inf-NoSca ∞ 0.0 no
Xi-100-NoSca 100 0.0 no
Xi-2000-NoSca 2000 0.0 partially
Xi-100-Sca 100 1 percent yes

a Whether or not the model is broadly consistent with the observed polar-
ization trends from the envelope to disk scale discussed in Section 7.2.

(corresponding to ∼50AU), which is large enough to illustrate the beam convolution

effect but small enough that the envelope and disk scales remain distinct (see Fig. 7.3

below). To be consistent with our analysis on the observational data, we downsampled

the smoothed synthetic observations to have ≈ 4 pixels per beam. We did not include

any noise in the synthetic observations but applied the same masking criteria (I > 5σI ,

P > 3σP , where P =
√
Q2 + U2 is the polarized intensity and σI , σP are mean values

measured from a relatively quiescent 10× 10 pixel2 region on our synthetic maps) as

adopted in Cox et al. (2018) for consistency and better comparison with data.

7.4.2 Model results

We consider four models that cover a range of parameters, with the simulated

system viewed along a representative line of sight that is 45◦ to the disk plane (i.e. an

inclination angle i = 45◦). The model names and parameters are listed in Table 7.1.

We follow the same deprojection process as described in Section 7.2 and Appendix 7.A

with the known projected disk orientation (horizontal) and inclination angle (45◦).

Similar to Fig. 7.1, we plot the polarization fraction and angle as functions of the

normalized, inclination-corrected radius for each synthetic observation in Fig. 7.3.

We start the discussion with the simplest case of spatially homogeneous magnetic
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Figure 7.3: Comparing the four models of synthetic polarization considered in this
study. Top to bottom: Model Xi-inf-NoSca, Xi-100-NoSca, Xi-2000-NoSca, and
Xi-100-Sca (see Table 7.1 for model parameters). Left-hand panels: Maps of total
intensity (with mask I > 5σI), overplotted with polarization (B-)vectors (green seg-
ments), with length proportional to the polarization fraction. Gray contours show
the masking boundaries P = 3σP adopted when calculating the scatter plots (middle
and right-hand panels). Black open circles mark the locations of the protostar, and
black dashed ellipses represent the disk defined by horizontal position angle and 45◦

inclination, with size comparable to the contour of 10 percent peak intensity). Mid-
dle and right-hand panels: scatter plots of polarization fraction (middle) and angle
(right) in the corresponding envelope–disk system, as in Fig. 7.1. The polarization
fraction is color coded in both panels.
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grain alignment without scattering (Model Xi-inf-NoSca, the first row of Fig. 7.3).

In this case, the alignment condition is satisfied everywhere, including in the densest

part of the disk. To facilitate comparison with observations, we masked out regions

with polarized intensity P < 3σP , which creates several spatially coherent patches of

high polarization separated by stripes of lower polarization. Since the dust is aligned

with the magnetic field everywhere, the relatively-low polarization stripes are caused

by a combination of field orientation along the line of sight and, more importantly,

the variation of the field component in the sky plane, which leads to a cancellation

of the polarized emission (e.g. Kataoka et al. 2012). A clear example of the lower

polarization stripes is located to the upper-left of the disk (see the upper-left panel

of Fig. 7.3 and, more clearly, Fig. 7.2(b), where the polarization map is not beam-

convolved). The low polarization in this region comes from its magnetic field lines

being pinching by the radial infall and twisted by rotation at the same time, which

results in roughly orthogonal magnetic fields at different locations along the same line

of sight (see Fig. 7.2a for a visual impression).

It is obvious that the simplest model fails to reproduce the observed trends in

two ways. First, although the polarization fraction on the envelope scale is broadly

consistent with the observed values, that on the disk scale is higher than typically

observed. This is not too surprising since the magnetic field in the densest part of

the disk that dominates the dust emission is rather well ordered (and not along the

line of sight; see the representative field lines threading the disk in Fig. 7.2a for an

illustration), which leads to relatively little cancellation of polarized emission. In-

deed, the polarization fraction would be even higher without the beam-convolution,

as can be seen from Fig. 7.2(a), which shows that the intrinsic polarization fraction

(before beam convolution) on the disk scale is comparable to that on the envelope

scale. Clearly, magnetic field geometry alone cannot explain the large reduction of
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the polarization fraction on the disk scale compared to the envelope scale. Secondly,

there is substantial variation of the polarization orientations on the disk scale ex-

cept in the very central region (r ≲ 0.4R10 percent), where the polarization is aligned

perpendicular to the disk major axis. The reason for this polarization orientation is

that the magnetic field threading the disk has a significant poloidal component (as

opposed to being wound up by disk rotation into a completely toroidal configuration,

presumably because of the relatively large magnetic diffusivity that enabled the disk

to form and survive in the simulation in the first place). We should note that the

beam convolution makes the orientations of the polarization vectors in the inner part

of the disk more ordered but this effect is relatively moderate (compare Fig. 7.2(b)

and the top-left panel of Fig. 7.3). In particular, it does not make the polarization (B-

)vectors preferentially align with the system major axis, which is one of the observed

trends for the disk-scale polarization (see the right-hand panel of Fig. 7.1).

We next consider Model Xi-100-NoSca with the grain alignment parameter ξ on

the right side of the equation (7.7) set to 100 instead of ∞. The results are shown

in the second row of Fig. 7.3. Note that the combination of physical parameters to

reach ξ ≡ χ̂/(ηamm) = 100 is not unique. For the fiducial choice of η = 10, the value

corresponds to micron-sized (amm = 0.001), regular paramagnetic grains without

any superparamagnetic inclusions (χ̂ = 1). Another combination is to have much

larger, mm-sized grains (amm = 1) with the magnetic susceptibility enhanced by a

factor of 1000 (χ̂ = 103) by SPI. Compared with the simplest model with a spatially

homogeneous grain alignment (Model Xi-inf-NoSca, first row), the polarization on

the envelope scale appears little affected, indicating that the grains there remain

efficiently aligned with the magnetic field. In contrast, the polarization on the disk

scale is drastically reduced, to a level well below 1 percent.

The reason for the reduction can be understood from Fig. 7.4, where we show a
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face-on view (along the z-axis) of the spatial distributions (in the x − y plane) of

the gas number density ng, the magnetic field strength B, and the corresponding

dimensionless gas alignment parameter λ defined in equation (7.7). Along each z-

sight line, these quantities are plotted at the location where the density is the highest,

which is chosen to highlight the disk. It is clear that, while both the magnetic field

strength and the density increase from the envelope to the disk, the density increases

by a much larger factor, making it easier for the collisions with gas particles to damp

out the Larmor precession of the spinning grains around the magnetic field in the

disk than in the envelope. This drastic difference between how the density and field

strength vary from the envelope to the disk scale is quantified in panel (d), where

we plot the average and range of these two quantities at each radius. The difference

is reflected in the distribution of the gas alignment parameter λ ∝ ng/B, which is

plotted in panel (e). Clearly, λ increases rapidly as the radius decreases, crossing the

value of 100 adopted for the grain alignment parameter ξ for Model Xi-100-NoSca

(the lower dashed line in the panel) around a radius of order 200AU. In the envelope

outside this radius, the grain alignment condition λ < ξ (equation 7.7) is satisfied,

which leads to a high polarization fraction. Interior to this radius, the alignment

condition is violated for most of the mass, which leads to a polarization fraction

well below the observed value. An implication of this deficiency is that the observed

disk-scale polarization is unlikely produced by large, mm-sized, magnetically aligned

grains since it would require an unrealistically large enhancement of the magnetic

susceptibility (by a factor more than 103).

To increase the polarization level on the disk scale, we consider a larger grain

alignment parameter, ξ = 2000 (Model Xi-2000-NoSca, third row of Fig. 7.3). For

the fiducial value of η = 10, this choice corresponds to χ̂ = 20000 amm, which means

that, for large mm-sized grains, the magnetic susceptibility must be enhanced by a
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Figure 7.4: Face-on view of the spatial distributions (in the x−y plane) of (a) volume
density, (b) the magnetic field strength, and (c) the dimensionless gas alignment
parameter λ (see equation 7.7), at the location along each z-sight line where the
density is the highest. The small black circle highlights the location of the sink
(stellar) particle in the simulation. Also plotted are the azimuthal average and range
of the density and field strength (panel d) and gas alignment parameter λ (panel e) as
a function of radius. Note that λ is larger in the disk than in the envelope, indicating
that the condition for magnetic alignment is harder to satisfy in the former than
in the latter. The grain alignment parameter adopted in Models Xi-100-NoSca and
Xi-100-Sca (ξ = 100) is shown as the lower dashed horizontal line in panel (e), and
that in Model Xi-2000-NoSca (ξ = 2000) as the upper dashed line.
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factor close the maximum possible value for the extreme case of pure metallic iron

as the material for superparamagnetic inclusions (Yang 2021); the requirement would

be even more extreme when the higher temperature on the disk scale is taken into

account. For smaller grains, the requirement is less extreme. For example, for 1 µm-

sized grains, the enhancement factor is 20. In any case, with the grain alignment

parameter ξ increased from 100 to 2000, we are able to increase the polarization

fraction on the disk scale from ≪ 1 percent to ∼1 percent, more in line with the

typically observed values. At the same time, this polarization fraction is smaller than

that of Model Xi-inf-NoSca, where the magnetically aligned grains in the disk produce

a polarization fraction significantly above the typically observed values.

Even though Model Xi-2000-NoSca has enough magnetic alignment of the grains

to produce a polarization fraction in line with the typically observed values on the

disk scale, its polarization orientations differ substantially from the observed trend. In

particular, there is a significant variation in polarization orientation on the disk scale,

with a preference along the disk minor axis, which is the opposite of the observed

trend. This discrepancy motivates us to consider a model that includes another

polarization mechanism – dust scattering.

The degree of continuum polarization produced by dust scattering depends sen-

sitively on the grain size. At the wavelength of ALMA Band 7, the optimal size

is of order 102 µm (Kataoka et al. 2015). Such grains would typically produce a

percent-level polarization with E-vectors along the minor axis of the inclined disk

(e.g. Kataoka et al. 2016; Yang et al. 2016). To capture this effect, we add in Model

Xi-100-Sca a scattering-induced polarization to Model Xi-100-NoSca according to the

prescription given in equation (7.15), with psca = 0.01. The result is displayed in the

last row of Fig. 7.3.

As expected, the polarization structure of Model Xi-100-Sca is very similar to that
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of Model Xi-100-NoSca on the envelope scale, where the grains remain mostly aligned

to the magnetic field in both cases (comparing the second and fourth row of Fig. 7.3).

The main difference comes from the disk scale, where the scattering in the former

has now produced a percent-level polarization with the B-vectors preferentially along

the major axis of the disk, as suggested by the ALMA observations in Cox et al.

(2018). This hybrid model, with polarization on the envelope scale dominated by

magnetically aligned grains and that on the disk scale by scattering, is thus the

best of the four representative models considered in this paper for interpreting the

observational results.

7.5 Discussion

We would like to point out that since the simulations in Lam et al. (2019) are

isothermal, the temperature dependence in the gas alignment parameter λ (see equa-

tion 7.7) is neglected in our analysis in Section 7.4.2. However, we note that the

increase in λ from the envelope to the disk scale is expected to be even faster when

the temperature gradient is taken into account under the following considerations.

Generally speaking, the temperature and thermal velocity (proportional to
√
T ) are

expected to be higher at small radii. Assuming hydrostatic equilibrium, the thickness

of the disk is proportional to the thermal velocity, and the gas density is inversely

proportional to the disk height. This decrease in density as a result of the thicker

disk cancels out the dependence of collision frequency (or the gas damping timescale;

see equation 7.5) on the increasing temperature, resulting in a similar gas damping

timescale. However, the higher temperature also reduces the magnetic susceptibility

and increases the Larmor precession timescale (see equation 7.1), making magnetic

alignment more difficult for dust grains in the disk. Therefore, including a tem-

perature dependence in our analysis in Section 7.4.2 would not enhance magnetic
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alignment on the disk scale, and thus our qualitative conclusion would be strength-

ened.

Though we present the observational data from eight sources as a combined plot

in Fig. 7.1, it is important to consider the differences among individual sources. In

particular, we note that some of the protostellar systems have higher disk-scale po-

larization level than the others. This can be seen in the left-hand panel of Fig. 7.1:

While the majority of the cells at r/R10 percent ≲ 0.5 have polarization fraction ≈ 0.01,

there are systems showing p ≈ 0.02− 0.03 at the inner-most region of the disk (also

see Fig. 7.A.2). The detailed analysis of individual protostellar systems is beyond

the scope of this paper, but we would like to note the possibility that though dust

scattering works well for the general trend of the disk-scale polarization, magnetically

aligned grains may still dominate the polarization observed in some protostellar sys-

tems if the grains have relatively small sizes and/or their magnetic susceptibility is

greatly enhanced by SPIs.

We also note that, while the preference of the B-vectors to align with the major

axis of the disk is clear in the ALMA data, they could be offset by up to ∼45◦ (see

Section 7.2; also see Fig. 7.A.2). Since we derived the direction of the disk major

axis from the outflow orientation, which has a relatively low uncertainty (typically

≲ 10◦; see e.g. Stephens et al. 2018), this offset is likely real if the outflow is launched

perpendicular to the disk, as generally expected. It is possible that in the systems

with large polarization-disk orientation offsets (Per 5, Per 11, Per 18, and Per 26; see

Fig. 7.A.2), the scattering-induced polarization on the disk scale is contaminated by

that from magnetically aligned grains, whose orientation can deviate significantly

from the disk major axis (see, e.g. the top panel of Fig. 7.3). Higher resolution

observations are needed to test this possibility.
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7.6 Summary

We have re-analyzed the ALMA Band 7 polarization data from Cox et al. (2018)

for deeply embedded protostars in the Perseus molecular cloud on the scales of inner

protostellar envelopes and disks. A simple dust polarization model was constructed

based on recent theoretical work by Yang (2021) and the non-ideal MHD disk forma-

tion simulations of Lam et al. (2019) to explain the observational trends. Our main

results are summarized as follows:

1. Using scatter plots, we quantified the observational trends first identified in

Cox et al. (2018) that the polarization fraction stays relatively constant at a typical

level of ∼1 percent on the disk scale (r ≲ R10 percent) and increases sharply going from

the disk to the envelope scale (see the left-hand panel of Fig. 7.1). In addition, the

polarization (B-)vectors tend to orient more perpendicular than parallel to outflow

axis (right-hand panel of Fig. 7.1), indicating a preferential alignment with the disk

major axis, under the assumption that all polarization is from magnetically aligned

grains. These quantitative behaviors provide guidance to theoretical models of dust

polarization in the earliest phases of low-mass star formation.

2. Using MHD simulations of disk formation enabled by a combination of ambipo-

lar diffusion and turbulence (Lam et al. 2019), we showed that the observed sharp

reduction of polarization fraction from the envelope to disk scale cannot be explained

by the magnetic field geometry alone. The magnetic field on the disk scale is rather

well ordered (see Fig. 7.2) and produces an intrinsic polarization fraction comparable

to that in the envelope. Beam averaging can significantly reduce the polarization frac-

tion on the disk scale, making it more consistent with the typically observed values. It

cannot, however, make the orientations of the polarization (B-)vectors preferentially

align with the system major axis (see Fig. 7.3, first row), which is one of the observed
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trends.

3. Our MHD simulations show that the magnetic field strength increases from the

envelope to the disk scale (Figs. 7.4a and d), which tends to increase the ability of the

magnetic field to align the spinning grains. However, this tendency is overwhelmed

by the much faster increase in density (Figs. 7.4b and d), making grain alignment

more difficult through more frequent gas collisions. We show that large, mm-sized

grains cannot be aligned by the magnetic field on the disk scale to produce the

typically observed polarization level of ∼1 percent even if their magnetic susceptibility

is enhanced by an uncomfortably large factor of 103 (see the second row of Fig. 7.3).

In order for such large grains to be aligned well enough to account for the percent level

polarization, the enhancement factor must reach a factor of ∼2 × 104 (see the third

row of Fig. 7.3), which is unlikely since it is close to the maximum factor estimated for

the extreme case of metallic iron as the material for superparamagnetic inclusions.

For smaller grains, the required enhancement factor is less extreme. For example,

for 1 µm grains, it is a factor of 20, which is still quite significant; it is unclear

whether such an enhancement can be naturally achieved or not. Even if the required

enhancement can be achieved, the resulting polarization (B-vector) orientation does

not show a preference for the major axis on the disk scale, which is inconsistent with

the observed trend.

4. The model most consistent with the observed trends is the one where the

polarization on the envelope scale is dominated by magnetically aligned grains (with

a relatively large maximum polarization fraction of order 10 percent) and by scattering

on the disk scale. The former is consistent with the expectation that the grains in the

low-density envelope remain relatively small and thus more easily aligned magnetically

because of fast Larmor precession and long gas damping timescale. The latter requires

grains of order 0.1 mm in order to efficiently produce polarization at (sub)millimeter
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wavelengths through scattering.
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Appendix

7.A Deprojected Polarization Results for

Individual Sources

In this appendix, we describe the procedure for deprojecting the dust continuum

map to obtain the distributions of the polarization fraction and orientation as a

function of the radius for 8 of the 10 protostellar systems reported in Cox et al.

(2018). As discussed in Section 7.2, we define a disk plane for each source based on

its outflow direction inferred from the MASSES survey (Stephens et al. 2017, 2018)).

The inclination angle of a system to the plane of the sky could be more uncertain

unless a well-defined dust disk is observed and fitted. This is the case for three of

our eight targets using the analysis from the VANDAM (Segura-Cox et al. 2018). We

thus use the protostellar disk-fitted inclination angles for these three systems (Per-

emb-11, Per-emb-14, Per-emb-50). For the remaining protostellar systems without

well-established disks, we adopt a single value of 45◦; the exact value adopted for the

inclination angle does not change our conclusions qualitatively.

To compare the polarization data from disks with different sizes, we normalize

the distance from the center by a characteristic radius R10 percent. As described in



118

Section 7.2, it is the radius of a circle that encloses the same area as the ellipse at 10

percent maximum intensity from 2D Gaussian fitting of the ALMA Band 7 Stokes I

image. It is not our intention to claim that R10 percent represents the actual disk radius,

although the transition from disk-scale to envelope-scale polarization patterns does

seem to happen between ∼1 and 2 R10 percent for all protostellar systems investigated

in this study (see e.g. Fig. 7.1).

The effects of the deprojection and radius normalization are illustrated in Fig. 7.A.1

for Per-emb-14. The middle column shows the polarization fraction as a function of

distance to the center of the system (defined as the location of the peak intensity),

both before (top) and after (middle) the deprojection, and after the normalization

with R10 percent (bottom). The normalization suggests that the transition from flat

(disk-scale) to steep (envelope-scale) p − r correlation happens roughly at R10 percent

(vertical dotted line in the middle panel). The right column of Fig. 7.A.1 shows the

corresponding polar plot of the polarization orientations. Note that our deprojec-

tion routine only provides a correction on the distance to the system center and does

not modify the orientation of the polarization segments; this is the reason why the

distributions of polarization orientations in the polar plots (the right-hand panels of

Fig. 7.A.1) are barely impacted by the deprojection process.

Fig. 7.A.2 summarizes the deprojection results for the eight ALMA targets con-

sidered in this study except for Per-emb-14, which is presented in Fig. 7.A.1. The de-

projection parameters (position angle, inclination angle, normalized radius R10 percent)

for individual systems are listed in Table 7.A.1. The disk-to-envelope transition of

the p−r correlation at the distance ∼1−2R10 percent is clear in all systems. We would

like to point out that such transition is not an artificial result of our deprojection

routine; in fact, it could also be seen even before deprojection (see e.g. Fig. 7.A.1),

and the deprojection simply highlights this transition.
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Figure 7.A.1: Demonstration of the deprojection and renormalization effects on ob-
servation data, using Per 14 as the example. Left: total intensity map (in Jy per
beam) and polarization (B-)vectors from ALMA Band 7 observation presented in
Cox et al. (2018), with outflow directions indicated by blue and red arrows and beam
in the lower left corner. The Gaussian-fitted 10 percent peak intensity contour (purple
ellipse) and the inferred disk adopted in the deprojection process (radius = R10 percent

and inclination = 45◦; black dashed ellipse) are also marked. Middle and right: simi-
lar to Fig. 7.1 but for the original (top), deprojected (middle), and deprojected and
normalized (bottom) data of Per 14. The polarization fraction is color coded, with
the color bar shown on the right.
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Figure 7.A.2: Summary of the ALMA Band 7 polarization observations towards the
eight protostellar systems investigated in this study (with the exception of Per 14)
and the deprojection results. Plotted are the ALMA Band 7 polarization B-vector
map (left column) superposed on the dust continuum (background color map in Jy
per beam with mask I > 5σI , outflow direction indicated by red and blue arrows and
beam in the lower right corner), the scatter plots of the polarization fraction as a
function of the normalized distance (middle column; darker color means more pixels),
and the scatter plots of the B-vector orientations (0◦ for north, right column) with
the “disk plane” defined from the outflow direction marked as the dashed horizontal
cyan line (i.e. the polar plots are rotated so that the position angle of the disk is
horizontal). The polarization fraction is color coded, with the color bar shown on the
right.



121

Table 7.A.1: Deprojection parameters for individual sources.

Target PAa Inclinationb R10 percent Regridded Regridded
(◦) (◦) (AU) 0.1 arcsec 0.2 arcsec

Per 2 39 45 311 301 313
Per 5 35 45 126 126 139
Per 11 72 44c 138 137 154
Per 14 5 64c 123 121 134
Per 18 60 45 161 158 166
Per 26 72 45 109 109 125
Per 29 42 45 117 117 136
Per 50 14 67c 103 103 126

a The disk major axis is taken to be perpendicular to the outflow direction
given in Stephens et al. (2018).

b Assumed to be 45◦ unless otherwise noted.
c From Segura-Cox et al. (2018).

7.B Strands in Polarization Fraction–Radius

Histograms

In this appendix, we discuss the origin of the strands seen in the polarization

fraction–radius histograms from both synthetic and real observation data (e.g. Fig. 7.1

and Fig. 7.3). Note that these strands are composed by p−R bins with higher counts

of pixels from the map, and these bins must be spatially connected in the radial direc-

tion to form strands. Their origin can thus be understood by considering the variation

of polarization fraction azimuthally at a constant radius. Using the smoothed Model

Xi-100-Sca as an example, we follow the spatial distribution of one particular strand

(from p ≈ 0.06, r = 200AU, to p ≈ 0.04, r = 300AU; see the top-left panel of

Fig. 7.B.1) in the physical space by plotting the polarization fraction as a function of

the azimuthal angle ϕ of each pixel on the map at 200, 250 and 300 AU (Fig. 7.B.1,

top-middle). When transforming these curves into the counts in bins of the p − R
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Figure 7.B.1: Illustration of the origin of the strands seen in the polarization fraction–
radius histogram. Plotted are Models Xi-100-Sca with (top) and without (bottom)
Gaussian beam smoothing (without masking) after deprojection. Left : 2D histogram
of the polarization fraction–radius correlation. Middle: polarization fraction plotted
against deprojected position angle ϕ = arctan 2(y, x) at r = 200 (red), 250 (green) and
300 (blue). Right : ellipses of constant deprojected radii plotted on a map of azimuthal
gradient of polarization fraction ∂p/r∂ϕ; contours are at levels ±10−4AU−1. The
left/right triangle markers mark the region that has small gradient, which corresponds
to the origin of the particular strand (see text). The beams used for smoothing are
plotted in grey in the bottom-right corner.

histogram, if there is little variation in polarization fraction within a certain range of

angles, the count of pixels in the corresponding p− R bin is higher, because mathe-

matically, the sampling frequency for the p − R histogram is inversely proportional

to the gradient ∂p/r∂ϕ.

To further illustrate the idea, we plot the azimuthal gradient of the polarization

fraction (∂p/r∂ϕ) in the right column of Fig. 7.B.1 (top row). Using the same strand

discussed above as an example (which is marked by the left/right triangles in the
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middle panel of Fig. 7.B.1), the variation in polarization fraction is relatively small

in the region on the map corresponding to the strand, which is located at the lower-

side of the disk (∼270◦; see the left/right triangles on the map). Indeed, the ∂p/r∂ϕ

values are consistent with that of the aforementioned strand as we expected.

We would also like to point out that the feature of strands is not exclusive to the

smoothed model but an intrinsic property of the synthetic observation. As illustrated

in the bottom row of Fig. 7.B.1, although less visible, the strands can still be seen

easily in the unsmoothed model at similar locations. This feature is highlighted in the

smoothed model because of the reduction of local variations in polarization fraction

due to Gaussian beam averaging, which could also explain the prominent strands seen

in the ALMA data (see Fig. 7.A.2).

We also note that the gradient of polarization fraction is spatially coherent in a

sense that the gradient has the same ± sign (pink/cyan color in the right-hand panels

of Fig. 7.B.1) in patches slightly spiralling inwards in the counter-clockwise direction.

Such behavior is more significant in the unsmoothed model (bottom-right map in

Fig. 7.B.1). When comparing these patterns to the 3D disk structure (see e.g. Fig. 3

in Lam et al. 2019), we find these spirals coincide with the trajectory of the infalling

materials and the warped pseudo-disk. A detailed analysis of this behavior is beyond

the scope of this paper and is postponed to a future investigation.

7.C Extinction of Polarized Emission

To properly account for the extinction of polarized emission, one needs to solve

the vector radiation transfer equation:

d

ρ ds
S = −KS+Bν(T ) a. (7.11)
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where S = (I,Q, U) is the radiation (Stokes) vector, s the distance along the light

path, and Bν(T ) the Planck function. The extinction matrix K and absorption vector

a are related to the extinction and polarization opacities, Ce and Cp, by (see e.g. the

POLARIS code Reissl et al. 2016)

K =




Ce Cp cos 2ψ Cp sin 2ψ

Cp cos 2ψ Ce 0

Cp sin 2ψ 0 Ce



, (7.12a)

a =

(
Ce Cp cos 2ψ Cp sin 2ψ

)T

, (7.12b)

where ψ is the angle between the magnetic field and the direction of positive Q in

the sky plane. Taking into account of the magnetic alignment condition, as specified

by the magnetic alignment probability A, defined in equation (7.10), we have the

extinction and polarization opacities given by:

Ce = κ

{
1− α

[
A

(
cos2 γ

2
− 1

3

)
− 1− A

6

]}
, (7.13a)

Cp = καA cos2 γ, (7.13b)

where κ is the dust opacity (cross-section per gram of gas rather than dust), which

is taken to be κ = 1.75× 10−2 cm2g−1 (assuming a gas-to-dust mass ratio of 100) at

Band 7 (Ossenkopf & Henning 1994, logarithmically interpolated at 870µm).

One way to solve the vector radiative transfer equation (7.11) is through the formal

solution for the Stokes vector

S =

∫
T (s)

a+ asca

κ
ρ ds (7.14)
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where the vector

asca =

(
0 −psca (1− A)Ce 0

)T

(7.15)

accounts for the scattering-induced polarization included in one of the models in those

simulation cells where the magnetic alignment condition is not met (i.e. A = 0), and

the matrix T (s) is obtained from the integral

T (s) = Π∞
s e

−K(s′)ρ ds′ (7.16)

where Π∞
s denotes the (order-preserved) geometric integration along the light path

from the point of interest (s) to the “observer” at infinite distance of a function with

a matrix exponential. Note that the Stokes parameters (I, Q, U) obtained from

equation (7.14) at a given frequency ν are normalized by the product κBν(T ) at the

frequency, as in equation (7.8) for the optical thin limit. Indeed, equation (7.14)

reduces back to equation (7.8) by setting A = 1 (magnetically aligned everywhere)

and κ→ 0 (optically thin).
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Part III

Code Development
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Chapter 8

Self-gravity Solver –

Multipole Expansion

The self-gravity solver described in this Chapter has been used in the papers Barger

et al. (2021), Jin et al. (2022, accepted), Jones et al. (2022, accepted), Tu et al.

(2022, accepted), and in an ongoing astrochemical project by Prof. Garrod’s group.

Gravity is arguably the most indispensable piece of physics in star formation; it

is the weight of clouds and cores that leads to their collapse. Given a density profile,

the gravitational potential can be obtained by solving Poisson’s equation

∇2Φg = 4πGρ, (8.1)

and the gravitational acceleration is

g = −∇Φg. (8.2)

Its solution is straightforward when the mass of the system is dominated by a limited
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number of point sources. However, this is not the case in the early phases of star

formation and it is critical to consider the effects of self-gravity. For example, the

mass of circumstellar disks as discussed in Chapter 6 is about 10% of the protostellar

mass, which has significant effects on the dynamics. In fact, the gravity of the disks

is responsible for the development of spirals and disk fragmentation shown in the

rightmost column of Fig. 6.6.

Existing self-gravity solvers use techniques including but not limited to successive

overrelaxation, fast Fourier transform, and multigrid to achieve computational time

scaling of O(n1.5), O(n log(n)), and O(n), respectively, where n is the number of cells.

On paper, multigrid solvers appear to be optimal for a large number of cells. However,

implementing a multigrid solver is known to be challenging, and the implementation

details also affect the convergence rate as well as performance. Another solver, multi-

pole expansion, is based on expanding the solution into an infinite series of spherical

harmonics (Müller & Steinmetz 1995). This solution can be approximated by trun-

cating the series at l = lmax and m = mmax, where l and m are the degree and order

of spherical harmonics. After the truncation, the method has a computational time

scaling of O(n lmaxmmax) = O(n) if lmax and mmax are constants. Multipole expan-

sion solvers are particularly well-suited for solving problems with spherical geometry

such as core-collapse supernovae (Couch et al. 2013). Spherical polar coordinates

with logarithmic spacing in the radial direction also provide high dynamic ranges

in length-scale automatically, making it especially suitable for simulating star and

disk formation. For this reason, we follow Müller & Steinmetz (1995) and implement

multipole expansion solver in Athena++. It enables the use of the Athena++ for 2D

(axisymmetric) disk formation and evolution studies that include chemistry and grain

growth.
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8.1 Mathematical Basis

8.1.1 Expansion in spherical harmonics

It is well-known that the solution to Poisson’s equation can be written as an

integral

Φg(x) = −G
∫

d3x′ ρ(x′)

|x− x′| . (8.3)

In order to express the solution in terms of spherical harmonics, we can first write

|x−x′| into a sum of spherical harmonics using the generating function of the Legendre

polynomial and the addition theorem for spherical harmonics as in Müller & Steinmetz

(1995):
1

|x− x′| =
∞∑

l=0

l∑

m=−l

4π

2l + 1
Y m
l (θ, ϕ)Y m∗

l (θ′, ϕ′)
rl<
rl+1
>

, (8.4)

where r< = min(r, r′) and r> = max(r, r′). Therefore, the solution becomes

Φg = −G
∞∑

l=0

l∑

m=−l

4π

2l + 1
Y m
l (θ, ϕ)

∫
d3x′ Y m∗

l (θ′, ϕ′)
rl<
rl+1
>

ρ(x′)

= −G
∞∑

l=0

l∑

m=−l

4π

2l + 1
Y m
l (θ, ϕ)

(
r−l−1Mm

l,in(r) + rlMm
l,out(r)

)
,

(8.5)

with the inner and outer multipole moments function

Mm
l,in(r) =

∫

4π

dΩ′ Y m∗
l (θ′, ϕ′)

∫ r

0

dr′ r′l+2ρ(x′),

Mm
l,out(r) =

∫

4π

dΩ′ Y m∗
l (θ′, ϕ′)

∫ ∞

r

dr′ r′−l+1ρ(x′),

dΩ = sin θ dθ dϕ.

(8.6)

We note that, although the spherical harmonics are usually written in the complex

form using complex exponentials, the real form has the same algebraic properties.
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Using the real form also has the benefit of reducing the computational cost. Therefore,

we can replace both Y m
l and Y m∗

l by

Ylm =





√
2
√

2l+1
4π

(l−|m|)!
(l+|m|)!P

|m|
l (cos θ) sin(|m|ϕ) if m < 0

√
2l+1
4π
Pm
l (cos θ) if m = 0

√
2
√

2l+1
4π

(l−m)!
(l+m)!

Pm
l (cos θ) cos(mϕ) if m > 0,

(8.7)

where Pm
l is the associated Legendre polynomial. With an additional assumption

that the density is piecewise constant so that it can be moved outside of the integrals,

the multipole moments in equation (8.6) can be evaluated exactly with the help of

the recurrence relations of associated Legendre functions and the indefinite integrals

of associated Legendre functions (equations 5, 6, 12, and 26 in DiDonato 1982).

8.1.2 Implementation

Computing the integrals in equation (8.6) for all radii directly would lead to a

computational time scaling of O(n2
r nθ nϕ), where nr, nθ, and nϕ are the numbers of

cells in the r-, θ-, and ϕ-direction, respectively. Therefore, as in Müller & Steinmetz

(1995), the partial integrals over the volume of each shell are first computed. Then,

the multipole moments as a function of the radius would be the cumulative sum of

the partial integral in the radial direction.

Since the integrals less the density are time-independent, they are constant co-

efficients that can be precomputed and stored at the beginning of the simulation in

order to improve the performance. However, in theory, there are lmaxmmax coeffi-

cients per cell, which makes storing the coefficients directly unrealistic when lmax is

large. Nonetheless, the three-dimension integrals can each be separated into three

one-dimension integrals, and a lot of them are in fact shared by the cells with
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the same indices on the grid. The memory complexity is, therefore, reduced from

O(lmaxmmax nr nθ nϕ) to O(lmaxmmax(nr + nθ + nϕ)).

In our implementation, we precomputed and stored the coefficients for computing

multipole moments during the initialization phase. A one-dimensional logarithmic

grid, which matches the grid of the hydro quantities, for storing and interpolating

the multipole moments at different radii is constructed. Then, at each time-step, the

multipole moments are computed and interpolated to each cell, using which and the

spherical harmonics the gravitational potential is computed and stored at the cell

centers.

8.2 Potential of MacLaurin Spheroids

8.2.1 Analytical solution

A MacLaurin spheroid is a uniform spheroid with uniform density. Mathemati-

cally,

ρ(x, y, z) =





ρ0 if x2

a2
+ y2

b2
+ z2

c2
< 1,

0 otherwise.
(8.8)

As discussed in Couch et al. (2013), the gravitational potential of a MacLaurin

spheroid can be expressed analytically. MacMillan (1958) derived a solution for an
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ellipsoid that can be expressed using Carlson’s symmetric form of elliptic integral:

Φg = 2π a b c ρ0

{
RF

(
ã2, b̃2, c̃2

)
− 1

3

[
RJ

(
ã2, b̃2, c̃2, ã2

)
x2+

RJ

(
ã2, b̃2, c̃2, b̃2

)
y2 +RJ

(
ã2, b̃2, c̃2, c̃2

)
z2
]}

,

RF (x, y, z) =
1

2

∫ ∞

0

dt√
t+ x

√
t+ y

√
t+ z

RJ(x, y, z, p) =
3

2

∫ ∞

0

dt

(t+ p)
√
t+ x

√
t+ y

√
t+ z

ã2 = a2 + κ, b̃2 = b2 + κ, c̃2 = c2 + κ,

(8.9)

where κ = 0 if x2/a2 + y2/b2 + z2/c2 < 1. Otherwise, κ is the positive root of the

equation
x2

a2 + κ
+

y2

b2 + κ
+

z2

c2 + κ
= 1. (8.10)

Having an analytical solution makes it an excellent test for self-gravity solvers, as

illustrated in the following.

8.2.2 Numerical results

We computed the potential of an oblate spheroid with an ellipticity of e = 0.9, i.e.,

a = b and c ≈ 0.436a, both analytically and numerically. The L2-norm of percentage

error is computed for the different lmax used and plotted in solid blue in Fig. 8.2.1.

Theoretically, the error should converge to zero for large lmax. However, the L2-norm

converges to ≲10−3 for large lmax. We find that the converged value is limited by the

resolution of the grid. With a grid with twice the resolution, the initial convergence

rate is about the same while the error converges to a smaller value ≲3× 10−4.

Fig. 8.2.1 also show the results with higher ellipticities e = 0.99 and 0.999. As

expected, the error converges slower for a higher ellipticity. The results can be ex-
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Figure 8.2.1: L2-norm of the percentage error of the potential of MacLaurin spheroids
computed with different lmax. The error of three spheroids with ellipticities e = 0.9,
0.99, and 0.999 are shown in blue, orange, and green, respectively. The results using
coarse and fine grids are shown with solid and dashed lines, respectively.



135

plained with the zonal spherical harmonics m = 0. The zonal spherical harmonics

(of the associated Legendre polynomial) of degree l have values alternating between

positive and negative l times, forming l + 1 zones from pole to pole. Therefore, to

resolve a thinner structure, a large l is required.

Couch et al. (2013) observed that, in their implementation of cell-centered solver,

the error attains a minimum at lmax = 24 and increases linear with lmax. They found

the increase in error is in fact due to the self-potential error when the mass of a cell

is treated as a point source. The effect is not seen in this implementation because,

as noted by Couch et al. (2013), the integrals in equation (8.6) are evaluated exactly

by treating the density to be piecewise constant. It is likely that a straightforward

calculation of the integrals using the mass and the spherical harmonics at the cell

center leads to similar results.

8.3 Application – Hot Cores

Astrochemical modeling of molecular clouds and hot cores has made great progress

since Garrod et al. (2008), which included the time dependency of the physical con-

ditions of star-forming regions as well as complex chemical reactions. As has been

shown numerous times, the warming of the environment has a significant impact

on the abundance of complex species (Jørgensen et al. 2020 and reference therein).

During the warm-up phase, the simple species on grains become able to efficiently

diffuse and react to form complex species, which can then desorb into gas phase to

be observed. However, chemical models usually have an over-simplified treatment

of temperature. The flows in star-forming regions are complicated. Some may land

directly onto the stars, while others may go through the disks and slowly be accreted

or ejected as outflows. To approach this problem, we applied the self-gravity solver

described above and make use of the existing radiation solver to model the collapse
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of a hot core.

Part of this work that is conducted in one dimension (under the assumption of

spherical symmetry) is published in Astronomy and Astrophysics. For the published

results including both the physical and chemical model, please see Barger et al. (2021).

Another work that also employed the self-gravity solver is Jin et al. (2022), which is

accepted for publication also in Astronomy and Astrophysics. In Jones et al. (2022),

we applied the same method to simulate the first core. In the following, we will

outline the two-dimension physical model of hot cores, of which the investigation is

ongoing.

8.3.1 Accretion phase

As in Barger et al. (2021), we solved the radiation-hydrodynamic equations as-

suming 2-D axisymmetry using Athena++ with the additional cosmic-ray heating term

and viscous diffusion term included in equations (1.17) . Specifically, the equations

solved are

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇ · (ρvv + P +Π) = −ρ∇Φg −Gr,

∂E

∂t
+∇ · [(E + P )v +Π · v] = −ρv · ∇Φg −G0

r + ρϵCR,

∂I

∂t
+ cn · ∇I = S (I,n) ,

(8.11)

where Πij = ρν(∂jvi + ∂jvj − (2/3)δij∇ · v) is the viscous stress tensor and ν is

the viscosity. The cosmic-ray heating rate ϵCR is set to cκa,ParT
4
0 to maintain the

temperature at the initial temperature T0 = 5K.

The equations are solved in spherical polar coordinates on a grid with 256 logarithmically-

spaced cells in the radial direction and 64 uniformly-spaced cells in the polar direction.
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We assume mirror symmetry about the mid-plane, where we applied the standard re-

flecting boundary condition, and the standard polar boundary condition is used at

the pole. An outflow boundary condition is used for the hydro and a reflecting bound-

ary condition is used for radiation at the inner radial boundary. The gas that flows

through the inner boundary sets the accretion rate and is added to the mass of the

central star. We used the precalculated stellar model taken from Hosokawa & Omukai

(2009) which assumes an accretion rate 10−3M⊙ yr−1 to set the radius and the stellar

luminosity of the central star. The accretion luminosity is computed using

Lacc =
GM∗
R∗

Ṁ, (8.12)

where M∗ is the mass of the central star, R∗ is the stellar radius obtained from the

stellar model, and Ṁ is the mass accretion rate. The radiation due to the total

luminosity is applied to the inner boundary pointing radially outward. An outflow

boundary condition is applied at the outer radial boundary. As in Barger et al. (2021),

the inner boundary is set to 10AU to resolve the dust sublimation front (Kuiper et al.

2010).

To obtain a relatively stable accretion rate, we assume a singular isothermal sphere

density profile with 80M⊙ enclosed in a 0.1-pc sphere and a solid-body rotation of

5 × 10−13 rad s−1. The initial accretion rate is expected to be ∼1.4 × 10−3M⊙ yr−1,

slightly higher than the assumed accretion rate used in the stellar model, in order

to accommodate the slow-down in accretion due to the anticipated formation of a

disk. To drive accretion, the standard β−prescription for the kinematic viscosity ν is

adopted:

ν = βΩK(r)R
2, (8.13)
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Figure 8.3.1: Snapshot of hot core simulation. The color on the top/bottom three
panels shows the density/temperature at different scales. The points on the colored
panels are the tracers. The color of the points denotes the tracer type with black,
gray, and red representing mass-, space-, and gradient-tracers. The three panels
on the right show the history of stellar mass (top), mass accretion rate (center),
total luminosity (bottom solid), accretion luminosity (bottom dashed), and stellar
luminosity (bottom dotted).

where R is the cylindrical radius and ΩK(r) =
√
GM(r)/r3, with M(r) denoting the

mass enclosed within a sphere of radius r. A value of 0.03 is used for the β parameter.

The simulation is run to 25 kyr since the accretion phase starts and a central

stellar mass of ∼23M⊙ is obtained. Fig. 8.3.1 shows a snapshot of the simulation

at 15 kyr. A rotationally-supported disk formed and the radiation of the central star

cleared the polar region due to the radiation pressure.

In this phase, the gas is traced by about 2000 post-processing tracers. In order

to obtain a fairly uniform tracer distribution in the final frame, the tracers are first

initialized uniformly using a Poisson disk sampler in the last frame. Then, the velocity

profiles of the (frequent) output of the simulation are taken and interpolated between
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each output, which is used to integrate the tracers backward in time until the first

frame. While integrating, tracers are constantly injected from the inner boundary to

trace the gas that flows through the boundary.

To minimize the number of tracers used while maximizing the information needed

for reconstructing the distribution of the gas, three types of samplers are used. The

space-sampler is a regular Poisson disk sampler using the Bridson (2007) algorithm

done in log-space. The algorithm begins with a few uniformly random samples. At

each step, a candidate is chosen close to an accepted sample. A candidate is accepted if

there is no sample closer than a certain distance. The process repeats until the space

is completely sampled. Similar to space-sampler, the mass- and gradient-samplers

use a modified Bridson algorithm. Instead of using a constant distance, the minimum

accepted distance d is chosen locally based on the density and density gradient.

8.3.2 Condensation phase

Before the relatively short accretion phase, we extended the physical model back-

ward in time analytically. The singular isothermal sphere profile used above is mapped

smoothly to a uniform sphere with constant density ρ = 4.67 × 10−21 g cm−3, corre-

sponding to nH = 2000 cm−3 and a free-fall time of about 1Myr. The mapping is

performed by assuming mass conservation and that the flow does not cross each other.

Each layer of the gas is assumed to move with initially roughly constant speed, which

slows down close to the end of the condensation phase to match the initial conditions
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of the accretion phase. Specifically,

r(t, rSIS) = rSIS +∆r
τ(t)

τ(0)
,

vr(t, rSIS) = − ∆r

τ(0)
tanh

(
tc − t

ts

)
,

ρ(t, rSIS) =
Mcore

4πRSISr2

[(
1

3

rUS

rSIS
− 1

)
τ(t)

τ(0)
+ 1

]−1

,

τ(t) = tc − t− ts log

(
tanh

(
tc − t

ts

)
+ 1

)
,

rUS ≡
(

3

4π

Mcore

ρ0

rSIS
RSIS

)1/3

, ∆r ≡ rUS − rSIS,

(8.14)

where rUS and rSIS is the radial position of the tracer at the beginning of the con-

densation and accretion phases, respectively, t is the time since the beginning of the

condensation phase, RSIS is the radius of the core at the beginning of the accretion

phases, Mcore is the total mass of the core, ρ0 is the density of the uniform sphere, and

tc = 1Myr and ts = 0.01 tc are the condensation time and the length of the slow-down

period.

The gas density, temperature, and velocity field sampled by each tracer particle

as a function of time are then passed on to Prof. Garrod’s group for astrochemical

calculations and synthetic molecular line observations.

8.3.3 Work enabled by self-gravity solver

In combination with general barotropic EOS that is described in Chapter 9, the

self-gravity solver has enabled the work published in Jones et al. (2022, accepted), of

which the results will be summarized in Section 9.2. The self-gravity solver has also

been used in Barger et al. (2021), Jin et al. (2022, accepted), and Tu et al. (2022,

accepted), where radiation hydrodynamic simulations with self-gravity are carried out

in spherical polar coordinates. In the following, the results of each paper are briefly
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summarized.

Barger et al. (2021) presented the results of the first attempt in adopting physical

conditions obtained from self-consistent 1-D radiation hydrodynamics simulations in

hot-core chemical modeling. In the study, it is found that the gas-phase fractional

abundances of the complex organic molecules (COMs) are different from previous

modeling studies. The ice abundances and ice chemical composition are found to

be affected by the gas density, which controls the mass accretion rate and accretion

luminosity. Specifically, the higher accretion rate models agree better with typical

observed values. Nonetheless, in general, gas-phase COMs are more abundant as the

stellar mass, and hence, the stellar and accretion luminosities rise. There are some

discrepancies between the 1D models and observations, which can be addressed with

2-D calculations that are ongoing.

In Jin et al. (2022, accepted), a methodology similar to Barger et al. (2021) was

used to investigate the COMs in ice towards the first hydrostatic cores. It is found

that the ice constituents have relative abundances comparable to typical observed

values. Seven molecules are found to have abundances exceeding about 0.01% with

respect to water ice. However, it is unlikely to be detected by the James Webb Space

Telescope unless it is in COM-rich environments where solid-phase COM abundances

exceed 1%.

In Tu et al. (2022, accepted), we carried out 2-D axisymmetric radiation hydrody-

namic and grain growth simulation in spherical polar coordinates. “Terminal velocity

approximation”, which is shown to be a valid assumption using Lagrangian particles,

is adopted for the grain growth calculations. A growth timescale that is a function

of local physical condition is obtained semi-analytically. By applying the physical

conditions obtained from the radiation hydrodynamic simulation, it is found that the

grain-grain collision induced solely by terminal velocity approximation is too slow to
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grow grains from micron size to mm/cm size, which can be achieved by artificially

increasing the collision speed by a factor of 4. The enhanced grain growth allows

grains to settle faster towards the mid-plane, which further speeds up grain growth

due to the increased dust-to-gas ratio.
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Chapter 9

General Barotropic Equations of

State

The general barotropic EOS discussed in this Chapter was used in the paper Jones

et al. (2022, accepted) and will be used in future refined non-ideal MHD disk formation

simulations.

As discussed in Chapter 1.2, the gas temperature can differ vastly between phases

of star formation. As the density increases, the temperature increases at different

rates. To accurately capture this process, complicated radiation hydrodynamics sim-

ulations with a realistic EOS have to be conducted (e.g. Tomida et al. (2013)).

However, this kind of simulation is computationally expensive and the return is di-

minished when an accurate temperature is not the main goal. A compromise is to

use a barotropic EOS that relates the density, temperature, and hence, pressure.

This barotropic EOS is a much-needed improvement over the isothermal EOS used

in the idealized simulations presented in Part II of the thesis because it controls the

thickness of the formed disk, which is important for accurately computing the disk

properties.
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9.1 Implementation

The implementation of the general barotropic EOS is similar to the general EOS

implemented in Athena++. The general barotropic EOS is implemented for the HLLE

and HLLD solvers by replacing the pressure which is calculated using ρc2s by that cal-

culated using the barotropic EOS. Two new forms of barotropic EOS are implemented

and discussed below.

9.1.1 Stiffened equation of state

Due to the low density, molecular clouds tend to be very efficient at cooling.

Therefore, isothermal EOS is usually a reasonable assumption. However, one critical

moment in protostellar collapse and star formation is when, as the density increases,

the effective adiabatic index increases from 1 (isothermal at ∼10K) to 5/3 (adiabatic

with 3 degrees of freedom) when the core starts to become optically thick (Masunaga

et al. 1998). Plotted in Fig. 9.1.1, an EOS that captures this effect is

T = T0

[
1 +

(
ρ

ρcrit

)γ−1
]
, (9.1)

where T0 is temperature in the isothermal phase, γ = 5/3 is the adiabatic index, and

ρcrit = 10−13 g cm−3 is the critical density suggested by Masunaga et al. (1998). It is

immediately clear that the EOS reduces to the isothermal EOS when ρ ≪ ρcrit, and

T ∝ ργ−1 when ρ≫ ρcrit.

9.1.2 Smoothed multi-power-law equation of state

As the density continues to increase, the adiabatic index decreases first to 7/5 (adi-

abatic with 5 degrees of freedom) when the temperature reaches ∼100K where the

molecular hydrogen can be excited rotationally and vibrationally. When the gas
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Figure 9.1.1: Temperature plotted as a function of density for different EOS fitted
or obtained from simulations. The top panel show the “stiffened EOS” fitted from
Masunaga et al. (1998) (blue) and “multi-power-law EOS” fitted from Tomida et al.
(2013) (orange). The bottom panel shows an EOS obtained using realistic radiation
magnetohydrodynamic simulation taken from Tomida et al. (2013).
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temperature reaches 2000K, the dissociation of molecular hydrogen begins and the

effective adiabatic index decreases to ∼1.1 (e.g. Tomida et al. 2013). An EOS that

mimics this behavior is to stitch together multiple power laws. To derive the equation,

we start from the derivative

d log T

d log ρ
= (γ0 − 1) +

n∑

i=1

γi − γi−1

1 + exp(− log ρ+ log ρi−1,i)
, (9.2)

where each term in the summation is a logistic function, γi is the i-th adiabatic

index, and ρi−1,i is the i-th turn-over point (in ascending order). After rearranging

and integrating,
d log T

dρ
=
γ0 − 1

ρ
+

n∑

i=1

γi − γi−1

ρ+ ρi−1,i

,

T = Aργ0−1

n∏

i=1

(ρ+ ρi−1,i)
γi−γi−1 ,

(9.3)

where A is an arbitrary constant. It can be proven that it has the intended behavior

by considering some density ρ that falls between two turn-over points, ρj−1,j and

ρj,j+1, such that ρ≫ ρk−1,k for all k ≤ j while ρ≪ ρk,k+1 for all k ≥ j. Therefore, all

terms with i > j reduce to a constant, and the rest would be proportional to ργj−1.

To simulate the EOS in the Fig. 1 of Tomida et al. (2013), which is also shown in

Fig. 9.1.1, the following parameters can be used:

A = 10K

/
n∏

i=1

ρ
γi−γi−1

i−1,i , γ0 = 1, γ1 = 5/3, γ2 = 7/5, γ3 = 1.1,

ρ0,1 = 10−13 g cm−3, ρ1,2 = ρ0,1

(
100K

10K

)1/(γ1−1)

, ρ2,3 = ρ1,2

(
2000K

100K

)1/(γ2−1)

.

(9.4)
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9.2 Application – Centrifugal Barrier

Centrifugal barriers, features that rotate around protostars at a super-Keplerian

speed, have been theorized to exist in early analytic models of rotating cloud collapse

using a (non-interacting) test particle approach (Ulrich 1976; Cassen & Moosman

1981, CMU). However, the idea had once been dismissed probably due to its nonex-

istence in hydrodynamic simulations. It was brought to the attention of the star for-

mation community recently by Sakai et al. (2014, 2017), who claimed observational

evidence for the existence of centrifugal barriers. They presented a position-velocity

diagram fitted remarkably well by the CMU model.

In Jones et al. (2022), we test the concept of centrifugal barriers through hydrody-

namic simulations using the Athena++ code with the multipole expansion self-gravity

solver that I developed. In the simulations, we find the density exceeds the critical

density 10−13 g cm−3. Therefore, to ensure that the results are not affected by the

choice of EOS, we adopted the stiffened EOS in this investigation. This work is ac-

cepted for publication in Monthly Notices of the RAS. In the following, we will outline

the problem setup and summarize our results discussed in Jones et al. (2022).

9.2.1 Problem setup and results

In the work, we solve the following equations using Athena++:

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇ · (ρvv + P +Π) = −ρ∇Φg,

(9.5)

where the gravitational potential Φg is obtained by solving Poisson’s equation using

the self-gravity solver described in Chapter 8. As in Section 8.3, the β-viscosity

prescription is adopted with a wide range of β tested. Both uniform density and
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singular isothermal sphere profiles with solid-body rotation are considered in the

study to eliminate the effect of density profile on the results. The stiffened EOS

described in Subsection 9.1.1 is used.

Super-Keplerian regions are identified in some of the simulations with large vis-

cosity. However, we find that the results do not support the classical picture of

centrifugal barriers since the radial infall of the envelope material is not slowed down

primarily by the excess centrifugal force over the gravity. The super-Keplerian regions

found in our simulations originated from viscosity transporting angular momentum

from the center to the edge of the disks. Although the region is expected to quickly

disappear as the disk expands, the ram pressure from the infalling envelope provides

a constraint to the disk expansion and maintains the super-Keplerian rotation in the

region.
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Chapter 10

Sink Particle Treatment

The sink particle treatment discussed in this Chapter was used in the paper Lam et al.

(2019) and will be used in future refined non-ideal MHD disk formation simulations.

Sink particle treatments in one form or another have been one of the key in-

gredients in disk formation simulation. Studying the problem requires starting the

simulation from prestellar cores or even earlier phases. The density would increase

indefinitely due to the run-away collapse under the cores’ own gravity. The constantly

increasing density could cause numerical problems such as artificial fragmentation. In

order to maintain the validity of the simulations, the Jeans condition, i.e. the Jeans

length has to be resolved, has to be satisfied (Truelove et al. 1997). The numerical

problem is, therefore, alleviated by applying adaptive mesh refinement (AMR). How-

ever, at the very center of every disk is a star, the interior of which has a Jeans length

of 10−3AU, much smaller than the typical scale of a disk. Therefore, it is inevitable

to truncate the refinement and use a sink particle to replace the over-dense region

and suppress the fragmentation.

Sink particle treatment, or sink regions in general, has many variants. One of

the examples is presented in Subsection 8.3, where the hole at the center of the
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simulation is a sink that exists naturally in spherical polar coordinates. Due to the

geometry of the problem and the logarithmic spacing that comes with spherical polar

coordinates, it is a natural choice for studying disk formation. However, spherical

polar coordinates suffer when the core is turbulent or instability develops, which can

break the symmetry and cause the protostar to move. Therefore, disk formation in

a realistic, turbulent cloud core is typically studied in Cartesian coordinates with

a sink particle treatment as in Chapter 6. There are different implementations of

sink particle treatment, and the one discussed below is based on Gong & Ostriker

(2013) (hereafter referred to as GO13) that was implemented in an older version of

Athena and is extended to work with the newer Athena++ that has AMR capabilities.

10.1 Design Choice and Implementation

In most cases, sink particles are implemented in such a way that they would

remove materials within a certain radius, and then act as point sources of gravity and

sometimes provide feedback. In GO13, the sink particles are always at the central

cell of a 3 × 3 × 3 region, which is defined as the controlled volume. At each time-

step, threshold densities and momentum are calculated for all cells in the controlled

volume by taking the average of the closest active cells. Anything that is above the

threshold will be removed from the grid and added to the sink particle. The gravity

of the sink particles is calculated using a particle mesh method. The calculation is

combined with that of the grid by depositing, using triangular shaped cloud (TSC,

Hockney & Eastwood 1981), the mass of the sink particles onto a temporary grid

used by the self-gravity solver, and therefore, does not introduce any overhead. This

implementation has been found to be robust in many studies (Gong & Ostriker 2015;

Skinner & Ostriker 2015; Kim & Ostriker 2017), and therefore, forms the base of our

treatment.
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10.1.1 Creation

In Athena++, the time integration is divided into time-steps, and each time-step

is integrated with multiple stages. The checks for creating sink particles are done

at both the beginning of the simulation and at the end of each time-step. In order

for a sink particle to be created, three criteria have to be satisfied. The first is the

density threshold. As discussed earlier, it is essential to resolve the Jeans length by

a certain number of cells. In order to suppress the artificial fragmentation, a sink

particle should be created to replace the over-dense cells when the Jeans condition is

violated. Truelove et al. (1997) suggest resolving the Jeans length by four cells, which

gives a density threshold

ρTr =
π

16

c2s
G∆x2

, (10.1)

where ∆x is the cell size. On the other hand, GO13 adopted a different threshold

derived based on Larson (1969) and Penston (1969), who found a density profile

ρLP(r) =
8.86

4π

c2s
Gr2

(10.2)

where the center formally reaches infinite density. The threshold used in GO13 is

ρLP(0.5∆x) =
8.86

π

c2s
G∆x2

, (10.3)

which is larger than ρTr. Although GO13 claims that the density at the exterior of

the control volume is ρLP(2∆x) = 0.897ρTr, in the worst case scenario, the density

should be ρLP(1.5∆x) = 1.596ρTr. Therefore, to be conservative, ρTr is adopted as

the threshold in our implementation.

The second criterion is that the newly created sink particle should be at least a
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certain distance away from existing sink particles. This design choice is to avoid sink

particles being created and merged with other sink particles in a short period, which

avoids the creation of unnecessary accretion spikes to the parent sink particle (see

Subsection 10.1.2 for more details).

The third, and last, criterion is that the sink particle needs to be at a gravitational

potential minimum. When the previous two criteria are both satisfied, the potential of

the over-dense cell, as well as that of its six neighbors, are checked. If all three criteria

are satisfied, three parabolas are fitted independently in the x, y, and z directions to

the potentials. Since the potential is minimum in the center cell, the parabola fitted

using this value and those of the two adjacent cells always exists and is unique, the

vertex of which is also guaranteed to be within the center cell. After the parabolas

are fitted, a sink particle with zero mass is created at the vertices. The velocity is

obtained by interpolating the velocity on the grid trilinearly at the position of the

sink particle.

10.1.2 Merging

The merge of sink particles happens right after the creation of sink particles. Two

sink particles are flagged to be merged if they are closer than a certain distance,

which is chosen to be 2∆x. A straightforward implementation would have a time

complexity of O(n2
sink), where nsink is the number of sink particles created. In disk

formation simulations, usually, only a handful of particles would be created. However,

the number could be much greater in other applications such as molecular cloud-scale

simulations. Nonetheless, since the sink particles to be merged are physically close,

the check has to be performed only on the sink particles in adjacent meshblocks, a

subset of the whole computational domain, which should reduce the time complexity

to linear.
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After all checks are completed, the transaction occurs one by one using the total

mass of the pairs as the priority. The sink particle with the higher mass of the two

is considered the parent while the other is the child. The mass and momentum of

the child would be transferred to the parent, and the parent would be moved to the

center of mass of the two. The child is then flagged as merged. In the unlikely event

that the total mass or the mass of each particle to has a tie, it is broken by the

mass of the parent, then by the identifier of the parent, and finally by the identifier

of the child. In the case where one of the sink particles in the pair is merged, the

transaction is voided and the next transaction is processed. If there is at least one

merging happened, the process beginning from the checking starts over again until

no merging happens.

10.1.3 Advection and accretion

In GO13, the kick-drift-kick algorithm is implemented to ensure energy conser-

vation. However, the sink particles are evolved using the same time-integrator as

the hydro and magnetic field. We find that, with the higher-order time integrator

implemented in Athena++, the energy conservation is at an acceptable level. The

sink particles are coupled to the hydrodynamics through gravity and accretion. As

in GO13, the mass of the sink particles is deposited onto the grid using TSC of size

3, which ensures an identical center of mass. The gravitational acceleration of the

sink particles is obtained by, first, calculating the gravitational acceleration of each

cell in the controlled volume. The accelerations of the cells are then averaged with

weights determined by the TSC. Identical to GO13, the global integration time-step

is restricted by the requirement that sink particles cannot travel further than one cell.

Another major change from GO13 is the accretion. As mentioned above, the gas

above the accretion threshold in the control volume would all be accreted. However,
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when the sink particles cross a cell, the control volume is shifted. This discrete

behavior causes artificial spikes in the accretion rate, and therefore, is undesirable.

Instead, we computed the density threshold ρacc for each cell individually using the six

adjacent cells. Then, the TSC weight w is calculated, and only w×ρacc is accreted to

the sink particles. The momentum is treated similarly. However, in order to simulate

the magnetic field decoupling from a star represented by a sink particle, the magnetic

field is left untouched; i.e. sink particles do not carry magnetic flux.

10.1.4 Refinement

In theory, this implementation would work with any refinement level. When a

sink particle touches meshblocks of different refinement levels, the size of the control

volume should be set to 3 times the coarsest cell. However, possibly due to the

numerical noise in the gravitational potential calculation currently implemented in

Athena++, there is anomalous acceleration when a sink particle crosses the boundary

between different refinement levels with this implementation. Consequently, sink

particles are currently restricted to be at the highest refinement level. When sink

particles are entering a coarser refinement level, the coarser grid is forced to refine.

10.2 Application – Disk Formation

Combining with the multi-power-law EOS described in Chapter 9, we can finally

conduct a long-term simulation of disk formation using Athena++. As the first step,

we repeat the calculations of Model M0.0AD1.0 in Chapter 6 using a much higher

resolution in an attempt to confirm the validity of the results. The simulation box is

initialized identically to the previous study. The computational domain is, however,

twice as large, i.e. the box size is 10000AU. The root grid has 128 cells in each

direction. The central 5000AU box is always refined at least once, which makes the
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cell size at the center ∼40AU initially. The maximum number of refinement levels is

6 such that the minimum cell size is ∼1AU. The cells are refined following the Jeans

condition such that the Jeans length is always resolved by four cells. To ensure the

disk is well-resolved, the cells within 16AU from the sink particles are refined to the

highest level. The gravitational potential is computed using the multigrid solver.

As shown in Fig. 10.2.1, the central density reaches ∼5 × 10−12 g cm−3. In this

instance, the pressure support is enhanced compared to the isothermal assumption. A

first-core-like structure forms with a diameter of about 10AU. The structure appears

to be flattened by rotation. Eventually, a rotationally-supported disk forms as shown

in Fig. 10.2.2. The magnetic field begins clearing the bipolar region by generating

an outflow. Although the results are still preliminary and the simulation is still in a

rather early phase, the formation of a rotationally-supported disk is consistent with

the previous study.
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Figure 10.2.1: Edge-on (left) and face-on (right) density slices across the sink particle
showing the formation of a first core. The color shows the density in the unit of
5.94× 10−19 g cm−3. The sink particle representing the protostar is shown by a circle.
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Figure 10.2.2: Edge-on (left) and face-on (right) density slices across the sink particle
showing the onset of a rotationally supported disk. The color shows the density in
the unit of 5.94× 10−19 g cm−3. The sink particle representing the protostar is shown
by a circle.
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Part IV

Conclusion
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Chapter 11

Summary

This thesis approaches the formation of circumstellar disks around low-mass stars

using numerical simulation in an effort to answer the questions of whether magnetized

disks can form under realistic conditions and what the expectation is for an observed

disk based on the simulations. Historically, disks are found to be readily suppressed

by magnetic fields in simulations while observations of disks have become increasingly

common thanks to ALMA. This discrepancy draws a lot of attention. Over the last

decade, considerable research has been dedicated to answering these seem-to-be-trivial

questions. As part of this effort, Chapters 6 and 7 contain the main results of this

thesis.

In Chapter 6, we focus on the first question: can magnetized disk form in numer-

ical simulations under realistic conditions. We carried out a large set of simulations

with an initial pseudo-Bonnor–Ebert sphere profile and a strong but realistic uniform

magnetic field. We confirm the suppression of disk formation and the existence of fea-

tures such as pseudo-disks and DEMS (decoupling-enabled magnetic structure) under

the ideal MHD assumption. By including turbulence that is prevalent in star-forming

cores, we find short-lived disks can be formed with signs of enhanced rotation. We
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attribute the formation of these short-lived disks to the early formation of DEMS,

which allows leakage of magnetic flux. In addition, we discuss the possibility that

warped pseudo-disks open up more channels for accretion, which in turn avoids the

encounter of low- and high-angular momentum material, and therefore, angular mo-

mentum redistribution. Following turbulence, the effect of ambipolar diffusion (AD)

is explored. We find that AD is efficient in decoupling the magnetic flux from the

gas. Therefore, the reduced magnetic braking, as a result of flux redistribution and

reduction of field pinching caused by AD, is responsible for re-enabling the formation

of disks. In the presence of both processes, we further find that, although AD is more

efficient, turbulence helps stabilize the disk. Lastly, we identify the disks formed in

the simulation and measure their degree of magnetization. We find that the mag-

netization is far stronger than what is typically assumed in the literature to drive

accretion in protoplanetary disks.

In Chapter 7, we carry out synthetic observations using the simulations obtained

in the previous chapter to explain polarimetry observations of protostars. A reexam-

ination of the data shows that the depolarization occurs in the disk scale, where the

polarization aligns predominantly to the minor axes of the disks. By comparing the

grain alignment time-scale with the gas damping time-scale, a model allowing grain

misalignment is constructed. While depolarization is found in the synthetic observa-

tion, the trend that polarization favors aligning to the minor axis is not reproduced.

However, by involving scattering, the results reproduce the observed trend. This phe-

nomenon can be explained by the fact that density increases much faster than the

magnetic field strength as the radius decreases.

To support projects by collaborators and in preparation for future investigations

using Athena++, the development of self-gravity solver, general barotropic EOS, and

sink particle treatment is described in Chapters 8, 9, and 10. In Chapter 8, we present
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the multipole expansion solver that is implemented, together with the testing based

on MacLaurin spheroid and an application of the module to simulate hot cores around

a massive protostar. Two forms of general EOS are derived in Chapter 9, and their

importance and application are discussed.

In Chapter 10, the sink particle treatment, the key ingredient that enables long-

term disk formation simulation, is described. Based on GO13 which introduces an

implementation of sink particle treatment in Athena, our freshly implemented sink

particle treatment in Athena++ not only preserves the strengths of the GO13’s imple-

mentation but also improves its weaknesses discovered during the study in Chapter 6.

Of the utmost importance is the improvement in eliminating artificial accretion spikes

through gentler accretion. In this implementation, nearby meshblock refinement is en-

forced to make it compatible with AMR. The treatment is finally brought to the test in

the high-resolution disk formation simulations that repeat those in Chapter 6. In the

simulations, we discover a first-core-like structure enabled by the general barotropic

EOS described in Chapter 9, as well as a rotationally-supported disk consistent with

previous results.
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Chapter 12

Future Work

While this thesis begins with exploring the possibility of forming circumstellar disks

from prestellar dense cores, over the past few years, the community is slowly reach-

ing a consensus that non-ideal MHD effects rescue disk formation from the magnetic

braking catastrophe. The focus has been shifting towards understanding the disk

structures and properties, their evolution, and their relation to the surrounding envi-

ronments. Disk formation is closely related to planet formation, and understanding

the process of disk formation can certainly shed light on planet formation. In con-

nection to this thesis, a straightforward extension to the current work is to perform

the calculations similar to that in Chapter 6 for investigating the long-term results.

One of the major caveats in the previous investigation is the limited spatial reso-

lution, which calls for AMR simulations. With all the numerical tools required now

becoming available, we would be able to resolve disk structures and precisely assess

their properties. Disk magnetization, which sets the accretion rate of a disk, is one of

the properties that have great impact on planet formation. By measuring the magne-

tization, we can constrain the initial conditions needed for simulating the evolution

of protoplanetary disks, which is suggested to be where most of the dust growth
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happens.

While this thesis focuses only on the evolution until soon after the formation

of circumstellar disks, gas-dust simulations that follow the evolution all the way

from prestellar cores to protoplanetary disks can further expand our understand-

ing of planet formation. The flows of gas during the formation of disks are complex

and consist of turbulence, outflows, and accretion streams. Although the flows of

dust can be vastly different from those of the gas, the former can still be largely mod-

ified by the latter. With the high-resolution simulation, the vertical structures and

meridional motions of the disks can be resolved. These kinds of motions can stir up

the dust at the mid-plane or circulate the dust within the disks, and therefore affect

dust coagulation.

Finally, an ongoing ALMA large program, eDisk, may provide the best test-

ing ground for our current knowledge in disk formation. With the proposed high-

resolution continuum emission and CO isotopologue lines observations towards 17

embedded disks around Class 0/I protostars, we would be able to compare the ob-

served dust with the gas structures in detail. These observed results might be further

compared with what is predicted in future AMR simulations.
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