

Integration of Augmented Reality Vision and Speech Modules into The Cognitive Assistant

System

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Sneha Iyer

Spring, 2023

Technical Project Team Members:

Keshara Weerasinghe

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Signature __ Date __________

Sneha Iyer

Approved __ Date __________

Homa Alemzadeh, Department of Electrical and Computer Engineering

INTRODUCTION

In the field of emergency medicine health specialists utilize a variety of information

available in a situation in order to provide the best care possible to a patient in dangerous

circumstances. According to Kim et al. (2021), in emergency medical care processes, the

responders collect large amounts of data with different levels of importance and confidence,

including the patient’s past medical history, their present medical conditions, and interventions

performed. While there are many standards and tools for collecting, storing, and distributing

emergency medical services (EMS) data (Becknell & Simon, 2016), more attention should be

given to reliably translating this variety of information into actionable knowledge for assessing

and performing emergency operations. Additionally, recalling this information requires cognitive

effort in a crisis situation. If some of the responsibility for aggregating and analyzing information

is delegated to assistive technologies, then more cognitive effort can be channeled into

improving the speed and precision of pre-hospital care.

Emergency medical technicians (EMTs) collect, filter, and interpret information from

real-time sources in order to provide timely and appropriate medical interventions during

emergency situations. However, doing so in a high-pressure situation causes a cognitive strain on

those performing during a crisis (Lawn et al., 2020). Assistive technologies can help to lessen

this pressure on first responders by improving situational awareness and facilitating appropriate

decision making (Holthe et al., 2022). Additionally, the integration of machine learning

technologies within cognitive assistant systems aims to improve the accuracy and effectiveness

of EMTs by utilizing analytical algorithms that collect heterogeneous data streams from the

incident scene, aggregate that data with publicly available data, extract valuable information, and

provide applicable feedback.

In an emergency, necessary activities in the scene, prehospital, and in hospital setting

must be conducted, as precisely and quickly as possible. According to Kalhori (2022),

technologies such as AI might be a beneficial support to achieve this crucial aim. Already in

emergency departments in some hospitals, AI has been applied for predictive modeling, patient

monitoring, and day-to-day running of emergency departments. These intelligent tools support

health care providers in reducing waiting times in the emergency department, decreasing errors,

and increasing the efficiency of care.

This technical project focuses on working on a part of a Cognitive Assistant system that

acts as an artificial intelligence (AI) agent who is assisting the responders observing and

processing the data and interacting with responders during response operations to provide them

with reminders, feedback and insights to improve their situational awareness and operations

outcome.

RELATED WORK & BACKGROUND

Need for automation in emergency response

Currently, in an emergency response situation, which is usually initiated by a 911 call,

EMS responders follow a certain procedure that produces a flow of information. According to

Kim et al. (2021, p. 3), “In each call, responders are dispatched to the incident location and

informed of the “Call Type,” which is the general reason for the incident. On arrival, responders

interact with the patient and others to identify the “Chief Complaints,” which are the primary

reasons for the EMS call. Then, the responders use the patient’s Chief Complaints, Signs and

Symptoms, past medical history, history of the present illness (HPI) or injury, and current

presentation to form a set of “Impressions.” From the Impressions, the responders select and

follow the appropriate “EMS Protocol Guidelines” to perform “Interventions" (including

"Procedures" and "Medications"), which are a series of treatments to stabilize the patient before

transporting to the hospital. Responders document this information flow from Call Type to Chief

Complaints to Impressions and, finally, to Interventions, along with other information described

as "Narrative" and/or "Medic Notes", in the EMS incident reports”. It is evident that a plethora of

information has to be processed very quickly and with as much accuracy as possible. Having all

this information being processed and feedback displayed in real-time would be useful for

efficiency and decreasing cognitive strain on the EMT.

AR and VR technology in emergency medical field

 With the rapid technological advancements in recent decades, virtual reality (VR) and

augmented reality (AR) technologies have been increasingly adopted to address various

challenges in medical environments and emergency management. For example, studying

emergency management is important, but one main obstacle in this field is that disaster scenes

are difficult to construct in real life. Forcing subjects to simulate real hazards would probably not

be possible, with many legal and moral challenges. Thus, VR and AR technologies have been

used to construct/imitate disaster scenes for emergency research (Zhu & Li, 2021). Another

example is that traditional EMS provider training relies on mannequins and verbal descriptions

of a scene. However, mannequins do not provide real-time reactions to treatment such as

improved breath sounds or skin signs. Thus, AR has been utilized to generate a display of such

responses to provide a more realistic training exercise (Titzler & Zuniga-Hernandez, 2023).

These examples show instances where AR and VR technology has been utilized for improving

the emergency response industry. In this project, we seek to use AR to stream data to our

Cognitive Assistant system as well as to display useful feedback to an EMT.

PROBLEM STATEMENT

 The CognitiveEMS system in particular focuses on processing this information collected

from the responder, which includes stages for converting speech to text, extracting medical and

EMS protocol specific concepts, and modeling and execution of an EMS protocol (See Figure 1

for an architectural overview of this system). Specifically, when a first responder speaks to a

patient, the CognitiveEMS system converts speech to text using a speech to text library.

Negation detection, value retrieval, and concept mapping to protocols are performed on the

converted text for each sentence. Based on the information from the converted text, as well as

information from sensors connected to the wearable device and the patient, the system predicts

relevant EMS protocols, and provides feedback and suggestions to the first responder. The main

technologies used in the system are the Google Speech API for the speech to text conversion,

MetaMap software for concept extraction, and a rule engine for enabling the policies and

operational decisions to be defined, tested and executed (Preum et al., 2019). The pipeline

utilizes a behavior tree framework and machine learning (ML) methods to extract critical

information from both audio and visual input and recommend interventions to specialists.

Early identification of necessary protocols and/or interventions by a system such as the

Cognitive Assistant in an emergency situation may save patients' lives by helping EMT’s to

make quicker and more accurate decisions regarding the patients' transfer and care. Additionally,

systems such as the Cognitive Assistant allow us to analyze the ways that AI and humans interact

and collaborate. A better understanding of this will help grow potential for humans to learn from

and collaborate with algorithms in an ethical manner.

Before this project, there were offline, individual ML modules for speech that were

separate from the pipeline. Only audio data was collected via the microphone of the device the

pipeline was running on; no vision data was collected, analyzed, or streamed. Additionally, the

AR glasses and smartwatch were not being utilized for collecting and streaming data. Thus, my

capstone project centered around integrating these smart devices into the current pipeline (which

involves creating Android applications to collect and send data, server side scripts to receive and

organize that data, and code to cohesively organize different modules in the pipeline), creating a

vision module (where image/video data was collected, streamed, and analyzed), managing the

various input and output streams, as well as processing and demoing the real-time results on a

graphical user interface (GUI) in the Cognitive Assistant system. It also includes managing the

pipeline and helping to integrate the offline modules by other students into the pipeline to

analyze and interpret the data to help the assistant recommend protocols and interventions to

EMS specialists.

 Figure 1. The architecture of the CognitiveEMS system (Preum et al., 2018)

METHODS/RESULTS

 For this project, we had a VUZIX M400 Augmented Reality Smart Glasses and a

Samsung Smartwatch that were the main hardware components utilized for data collection and

analysis.

 We aimed to collect audio, video, accelerometer, and gyroscope data. The audio data

would be fed to the existing system for speech to text translation using Google Cloud Speech and

concept extraction using MetaMap. Then machine learning models would run on that data to

identify protocols and interventions. The video data would be displayed on a front-end GUI

interface and wrist/hand positions would be annotated by Google Mediapipe. Finally, the

accelerometer and gyroscope data would be utilized for determining CPR Rate.

 Some of the main concepts/activities involved in streaming data are using network

protocols such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP),

Android app development, creating server-side scripts to receive and process data, handling data

analysis, as well as returning feedback and displaying the output. When designing an application

that involves streaming and networking, it is important to select the appropriate network protocol

based on what type of data is being handled/transmitted and the requirements of the system

concerning speed, reliability, existing infrastructure, etc. Additionally, we had to plan out how

we would design the streaming so the end-to-end system worked properly.

Video Streaming/Vision Module

 The first part of this project involved streaming data from a video camera on the AR

glasses to the server hosting the CognitiveEMS system (a laptop). The Transmission Control

Protocol (TCP) protocol was used for streaming this video data (images). Client-server streaming

using the TCP protocol and Python scripts is a well known efficient way to stream data between

a server and multiple clients. Specifically, TCP is a connection-oriented protocol that provides

reliable and ordered transfer of data packets between two endpoints on a network. TCP is widely

used for applications that require error-free transmission of data, such as web browsing, email,

and file transfer. We chose to utilize this protocol because image data is very large and we need

data reliably.

To actually do this, I utilized an existing client side Android app written by PhD student

Lahiru Nuwan (edited by Keshara Weerasinghe) in the lab to send the data and then wrote a

server side python script to receive the data. In the script, to receive data, first I used the python

socket library to set up a TCP socket and bind it to a specific IP address and port number. Then I

used that socket to receive data from the Android app and process it as needed. When the image

was received, it was processed using Google MediaPipe, to annotate wrists/hand positions. In

particular, their MediaPipe Hand Landmarker solution lets you detect the landmarks of the hands

in an image. You can use this library to localize key points of the hands and render visual effects

over the hands. It operates on image data with a machine learning (ML) model as static data or a

continuous stream and outputs hand landmarks in image coordinates of the detected hands.

Finally, I converted the image with annotations to a pixmap format and scaled it, in order

to display it in a PyQt5 graphical user interface (GUI). The conversion was necessary, since the

PyQt5 library QImage module takes in a pixmap image as input. An example screenshot of

typical output is shown below:

Figure 1: Hand/Wrist detection by Google Mediapipe

I also tried to use the detected hand/wrist positions to calculate CPR Rate. However, the

results were very far off from the correct value. The large error was probably due to the

hand/wrist annotations not being exactly correct. While Mediaipe is beneficial and chosen by us

due to its real-time capabilities, its accuracy does not seem to be the best. Thus, for the

demo/experiments we decided to only rely on smartwatch data to calculate CPR rate and leave

image analysis for later.

Speech Module

 Next, we worked on streaming audio data from the microphone on the AR glasses. The

User Datagram Protocol (UDP) was used to stream audio data. UDP is a connectionless protocol

that does not guarantee the delivery or order of data packets, however it is very fast. UDP is

often used for applications that require quick and efficient transmission of data. We chose to use

UDP for audio streaming because it reduces latency, is faster at streaming since it does not wait

for acknowledgement, and content is being consumed in real time and humans would be unlikely

to notice small drops of data as much as they notice delays in motion caused by retransmission.

 To actually do this, I developed an Android application to capture sound bytes from the

microphone and send them via UDP to the server hosting the CognitiveEMS system. Then on the

server side, we wrote a python script to receive and process that data.

Android app:

First I set up the Android Studio development environment for a Linux operating system.

The adb and Android SDK libraries were installed to enable us to do wireless streaming easily.

Then I designed a user interface. In order to allow a more efficient setup for demos, I put a text

input where the user can specify the server IP address to which the data can be sent wirelessly.

As well as buttons to start streaming and close/shutdown the application. Next, I added

permission requests. In order for the Android application to record audio data, it needs

permission to access the microphone of the device. So to allow the app to access the microphone,

I added permission requests to the AndroidManifest.xml file. This will prompt the user of the

device to grant permission to the app to record audio.

Then to implement audio recording and encoding, I used the AudioRecord and

MediaRecorder classes. This class provides methods for setting the audio source and format, as

well as starting and stopping audio recording. Before recording audio, important parameters such

as recording rate, number of channels, buffer size etc. need to be specified. After some research,

we chose a recording rate of 16000 hertz, since that is a well known rate for human speech

recording, 1 channel, and a PCM format (which is an integer representation of audio data,

usually signed numbers in two's complement format). Once the audio is recorded, it needs to be

encoded into a format that can be transmitted via UDP. Some common formats for audio

transmission include WAV, MP3, and AAC. We chose MP3 and also experimented with WAV.

To send the data I utilized the Android DatagramPacket, InetAddress, and Socket

libraries. First, I read data from the microphone into a buffer using the AudioRecord.read()

method. Next I put that buffer in a packet using DatagramPacket. Finally the packet is sent using

socket.send() after specifying the destination IP address and port. This is done in a while() loop

to ensure continuous streaming (until the app is closed).

Figure 2: Code Snippet for Audio Streaming from Android Device

Server Side Script

 On the server side, we used the python socket library to set up a UDP socket and bind it

to a specific IP address and port number. In a separate thread, audio data was received and put

into a buffer. The data is received continuously in a while loop. The data from the buffer is

processed by the Google Speech Cloud Speech to Text API. Google generates requests and

responses based on the text chunks given from the audio data buffer. Then we take the responses,

create a transcript, and display the results back on the GUI for the user to view. The sentences

from the transcript are also sent to other buffers for concept extraction using MetaMap,

intervention suggestion using a behavior tree framework, and protocol suggestion using a

machine learning model developed by PhD student Xueren Ge.

Smartwatch Module

 The smartwatch streaming functionality was developed by PhD student Keshara

Weerasinghe. I helped with integrating it into the CognitiveEMS system. This involved creating

an output display box to show CPR rate calculations on the GUI as well as editing the existing

code to incorporate Keshara’s code. A general overview of Keshara’s code: He also utilized

Android studio to develop an app to stream accelerometer and gyroscope data from a Google

Pixel smartwatch to a specific server device (specified by IP address). He used the UDP protocol

to send the data and also wrote a python script to receive this data as well as calculate CPR rate.

The specific algorithm involves using xyz coordinates of a hand/wrist, calculating the magnitude

and time between peaks, and using that information to calculate CPR rate.

Main Module

 While we continued to integrate several data streams, we also had to make sure that the

overall system could handle this and also organize the various modules’ input and output. For the

CogEMS system demos, the main file is GUI.py. In this, we set up several different threads for

each data stream. Additionally, beforehand this main file contained code for several different

functionalities. This caused the code to be very long and difficult to navigate through. Thus, we

worked on modularizing the code and creating different scripts for each of the main outputs

being displayed (i.e. a separate script for video_streaming and display, script for smartwatch,

etc.).

Data Collection

 In order to show real time results, test the different streaming modules, and provide a

demo of comprehensive results, I worked on adding scripts to collect data from several streams

and writing that data to files/output automatically for analysis purposes. The specific data

streams collected were audio, video, smartwatch, speech to text transcription, concept extraction,

intervention, and protocol suggestion data. This data is collected and stored in a folder marked

by a timestamp to show at what point the data was collected. Every time the pipeline system is

run, the user can specify if they want to collect data and even specify certain streams. Data will

be collected until the user exits or closes the system.

Figure 3: Side-by-side screenshots of data collection folder produced by running the system

EVALUATION

To evaluate this project, I captured screenshots of sample output/code and created demos

to show progress and get feedback from other members of the group. The figures below show

some example screenshots that were captured after some of the milestones achieved. For some

milestones screenshots are missing and note that we also showed progress with demo videos

taken that cannot be displayed in this report. Regarding getting feedback and evaluating the

system outside of the lab, we also demonstrated the system at the SEAS Engineering Open

House and are planning to demo the system at other conferences in the future. Additionally, we

are planning to take the system to the North Garden Volunteer Fire Company to test it out and

get feedback from professionals involved in emergency situations.

Creating Demo’s (side-by-side of what is being done behind the scene and what shows up

on the output GUI when creating a demo) :

Progress - System at the beginning:

Progress - Integrating Video from smartphone, with Google Mediapipe:

Progress - Video + Audio from an external smartphone microphone (not from the AR

glasses).

Progress - Video from AR glasses:

Progress - Video from AR glasses and Smartwatch Stream integrated; Audio is still from

file stream

There are a couple of missing screenshots for milestones of integrating Audio, fixing the

Concept extraction, integrating the Smartwatch module, and integrating Xueren’s ML model, but

the screenshot below shows everything together.

Video, Audio from Glasses and Smartwatch Stream with Concept Extraction fixed and

Xueren’s ML Protocol Suggestion model (Current model):

CHALLENGES

In this project, an EMT responder wears “smart” devices such as augmented reality

glasses and a smartwatch. Data collected via camera/microphone on the glasses and

accelerometer/gyroscope on the smartwatch is recorded and streamed to a pipeline where it is

received and analyzed in order to recognize the actions being made by the EMT as well as make

recommendations. Integrating the AR glasses and smartwatch (i.e. streaming, receiving, and

displaying data collected by these devices) posed certain challenges:

● Android Studio: We had to build two different Android applications – one for the glasses

and one for the smartwatch. The setup of Android Studio itself proved to be challenging.

Especially with a Linux based operating system, there was a lot of configuration

involved. Another challenge with Android Studio is ensuring that the development

version matches or satisfies the device specifications. There are several different versions

of Android depending on the device being used. We ensured that we used a version that

would satisfy both the AR glasses and the smartwatch. Finally, one last challenge was

actually coding with Android Studio. Several libraries were deprecated and some libraries

did not even work properly. Building Android apps requires a lot of knowledge about the

configuration files, which can be hard to understand for someone new at coding with

Android Studio. Moreover, as described in the results section, each time a change was

made the entire app had to be reinstalled on the device for testing. Overall, it sometimes

became a tedious process to write app code. But it was a great learning experience and I

came out of this project knowing a lot more about app development and streaming from

Android apps to another device.

● Combining new code with preexisting code: One common challenge that developers face,

and that we faced in this project, was combining new code with preexisting code and

managing different versions. Additionally, sometimes code that was provided by other

students did not work properly or did not satisfy all the requirements we wanted. We

often had to edit the new code to fit into the system or edit old code and make

environment changes to adapt to the new code. Additionally, we had to go through

old/existing code and spend time trying to understand what was going on and how it

worked. What is described in the results section is the final version that is currently in the

pipeline, but to get to that point required a lot of development and adjustments made.

Doing integration overall required a lot of editing, testing, and debugging. Github helped

with managing version control.

● Realtime streaming: In order to present the pipeline system, we had to get the data

streaming and analyze it in real time. Doing this in realtime is difficult because there is a

lot of data being handled at once and each stream needs to be efficient. We used threads

to help with performance and edited parameters relating to display or rate to process data

faster. Another way we tried to be efficient was we loaded or utilized pre-trained machine

learning models that did not require much post processing (GoogleSpeech, Mediapipe

hand detection, as well as Xueren’s protocol suggestion model).

● Size/Space/Memory limits: Initially, I started coding for this project using a virtual

machine on my personal laptop. This proved to be difficult since my virtual machine ran

very slowly due to memory constraints. Afterward, I moved to using a Desktop machine

in the Link Lab. I went to the lab three days per week, and was able to work there.

However, even that desktop had limitations. Especially, when we worked on integrating a

protocol suggestion machine learning model from PhD student Xueren Ge, the desktop’s

GPU proved to be not enough and the existing python configuration was causing

problems. In order to integrate larger machine learning models and run the demo

seamlessly and quickly, we bought an Alienware laptop with a Linux operating system.

Then we set up the environments and system from scratch. This definitely helped when it

came to running the demo and we were able to clean up the pipeline system (getting rid

of unnecessary/problematic dependencies, properly configuring the python environment,

etc). We also updated the github readme and put more comments into the code to help

future students who get involved in this project.

● Data synchronization: This project involved several streams of data. When running the

demo, we had to make sure we had a comprehensive system where all the data streams

worked properly enough to collect data for analysis and display it all simultaneously on

the GUI. If one stream failed we had to make sure the others were not impacted.

Modularizing the code and running each stream on its own thread helped with this. The

code is currently not exactly synchronized by timestamp, we just start all the streams at

the same time. More work can be done to synchronize the data in the future.

DISCUSSION/CONCLUSION

 This project focused on integrating these smart devices into the current pipeline, creating

a vision module, managing the various input and output streams, processing and demoing the

real-time results on a GUI, as well as managing the pipeline and helping to integrate the offline

modules by other students into the pipeline to analyze and interpret the data to help the assistant

recommend protocols and interventions to EMS specialists. Throughout this project I was

exposed to and learned more about several different concepts such as networking protocols,

streaming data, developing applications using Android Studio, utilizing threads for efficiency,

and integrating code in modular ways. I also learned better coding practices such as managing

version control using Github, documenting code changes, setting up environments from scratch,

and working with/configuring systems with various dependencies.

 Based on the new changes and additions to the pipeline, as well as taking into account

future plans, below is a revised figure of the architecture of the CognitiveEMS Pipeline that I

created:

Figure 4: Revised diagram of architecture of CogEMS system

 Additionally, I plan to continue working on the system. Currently, we are working on

closing the loop, which involves sending the feedback from the data analysis back to the AR

glasses for the EMT to see. Below is a figure showing an idea of how the EMT would view

information.

Example image of displaying feedback back to the AR glasses:

Figure 5: Example of feedback display on AR glasses

ACKNOWLEDGEMENTS

● PhD Student Keshara Weerasinghe for mentoring and working with me throughout this

semester and the previous semester. We worked together on many of the aspects

mentioned in this report.

● Advisor Dr. Homa Alemzadeh for her help throughout my time conducting research in

her lab, as well as for specific feedback on every aspect of this project.

● Other students in the group: Saahith Janapati and Xueren Ge for their feedback during

group meetings and their collaborations. Also PhD student Lahiru Nuwan from Professor

Stankovic’s group for his feedback and insights.

REFERENCES

Becknell, J., Simon, L. (2016). Beyond EMS data collection: Envisioning an information-driven

future for Emergency Medical Services (Report No. DOT HS 812 361). Washington, DC:

National Highway Traffic Safety Administration. Retrieved from

https://www.ems.gov/pdf/Beyond_EMS_Data_Collection.pdf

Committee on Guidance for Establishing Crisis Standards of Care for Use in Disaster Situations;

Institute of Medicine. Crisis Standards of Care: A Systems Framework for Catastrophic

Disaster Response. Washington (DC): National Academies Press (US); 2012 Mar 21. 6,

Prehospital Care Emergency Medical Services (EMS) Retrieved from

https://www.ncbi.nlm.nih.gov/books/NBK201058/

Holthe, T., Halvorsrud, L., & Lund, A. (2022). Digital Assistive Technology to Support

Everyday Living in Community-Dwelling Older Adults with Mild Cognitive Impairment

and Dementia. Clinical interventions in aging, 17, 519–544.

https://doi.org/10.2147/CIA.S357860

Kalhori S. (2022). Towards the Application of Machine Learning in Emergency Informatics.

Stud Health Technol Inform, 291, 3-16. https://doi.org/10.3233/SHTI220003

Kim, S., Guo, W., Williams, R., Stankovic J. and Alemzadeh, H. (2021). Information Extraction

from Patient Care Reports for Intelligent Emergency Medical Services. IEEE/ACM

Conference on Connected Health: Applications, Systems and Engineering Technologies

(CHASE), 58-69, https://doi.org/10.1109/CHASE52844.2021.00014

Lawn, S., Roberts, L., Willis, E., Couzner, L., Mohammadi, L., & Goble, E. (2020). The effects

of emergency medical service work on the psychological, physical, and social well-being

of ambulance personnel: a systematic review of qualitative research. BMC psychiatry,

20(1), 348. https://doi.org/10.1186/s12888-020-02752-4

Preum, S.M., Shu, S., Hotaki, M., Williams, R.D., Stankovic, J.A., & Alemzadeh, H. (2019).

CognitiveEMS: a cognitive assistant system for emergency medical services. SIGBED

Rev., 16, 51-60. https://doi.org/10.1145/3357495.3357502

Titzler, J., Zuniga-Hernandez, M. (2023, March 28). Using Augmented Reality

Simulation for Emergency Medical Services Training. JEMS: EMS, Emergency Medical

Services - Training, Paramedic, EMT News. https://www.jems.com/training/using-

augmented-reality-simulation-for-emergency-medical-services-training/

Zhu, Y., & Li, N. (2020). Virtual and Augmented Reality Technologies for Emergency

Management in the Built Environments: A State-of-the-Art Review. Journal of Safety

Science and Resilience. https://doi.org/10.1016/j.jnlssr.2020.11.004

