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INTRODUCTION 

In the field of emergency medicine health specialists utilize a variety of information 

available in a situation in order to provide the best care possible to a patient in dangerous 

circumstances. According to Kim et al. (2021), in emergency medical care processes, the 

responders collect large amounts of data with different levels of importance and confidence, 

including the patient’s past medical history, their present medical conditions, and interventions 

performed. While there are many standards and tools for collecting, storing, and distributing 

emergency medical services (EMS) data (Becknell & Simon, 2016), more attention should be 

given to reliably translating this variety of information into actionable knowledge for assessing 

and performing emergency operations. Additionally, recalling this information requires cognitive 

effort in a crisis situation. If some of the responsibility for aggregating and analyzing information 

is delegated to assistive technologies, then more cognitive effort can be channeled into 

improving the speed and precision of pre-hospital care. 

Emergency medical technicians (EMTs) collect, filter, and interpret information from 

real-time sources in order to provide timely and appropriate medical interventions during 

emergency situations. However, doing so in a high-pressure situation causes a cognitive strain on 

those performing during a crisis (Lawn et al., 2020). Assistive technologies can help to lessen 

this pressure on first responders by improving situational awareness and facilitating appropriate 

decision making (Holthe et al., 2022). Additionally, the integration of machine learning 

technologies within cognitive assistant systems aims to improve the accuracy and effectiveness 

of EMTs by utilizing analytical algorithms that collect heterogeneous data streams from the 

incident scene, aggregate that data with publicly available data, extract valuable information, and 

provide applicable feedback. 



 

In an emergency, necessary activities in the scene, prehospital, and in hospital setting 

must be conducted, as precisely and quickly as possible. According to Kalhori (2022), 

technologies such as AI might be a beneficial support to achieve this crucial aim. Already in 

emergency departments in some hospitals, AI has been applied for predictive modeling, patient 

monitoring, and day-to-day running of emergency departments. These intelligent tools support 

health care providers in reducing waiting times in the emergency department, decreasing errors, 

and increasing the efficiency of care. 

This technical project focuses on working on a part of a Cognitive Assistant system that 

acts as an artificial intelligence (AI) agent who is assisting the responders observing and 

processing the data and interacting with responders during response operations to provide them 

with reminders, feedback and insights to improve their situational awareness and operations 

outcome. 

 

RELATED WORK & BACKGROUND 

Need for automation in emergency response 

Currently, in an emergency response situation, which is usually initiated by a 911 call, 

EMS responders follow a certain procedure that produces a flow of information. According to 

Kim et al. (2021, p. 3), “In each call, responders are dispatched to the incident location and 

informed of the “Call Type,” which is the general reason for the incident. On arrival, responders 

interact with the patient and others to identify the “Chief Complaints,” which are the primary 

reasons for the EMS call. Then, the responders use the patient’s Chief Complaints, Signs and 

Symptoms, past medical history, history of the present illness (HPI) or injury, and current 

presentation to form a set of “Impressions.” From the Impressions, the responders select and 



 

follow the appropriate “EMS Protocol Guidelines” to perform “Interventions" (including 

"Procedures" and "Medications"), which are a series of treatments to stabilize the patient before 

transporting to the hospital. Responders document this information flow from Call Type to Chief 

Complaints to Impressions and, finally, to Interventions, along with other information described 

as "Narrative" and/or "Medic Notes", in the EMS incident reports”. It is evident that a plethora of 

information has to be processed very quickly and with as much accuracy as possible. Having all 

this information being processed and feedback displayed in real-time would be useful for 

efficiency and decreasing cognitive strain on the EMT. 

AR and VR technology in emergency medical field 

 With the rapid technological advancements in recent decades, virtual reality (VR) and 

augmented reality (AR) technologies have been increasingly adopted to address various 

challenges in medical environments and emergency management. For example, studying 

emergency management is important, but one main obstacle in this field is that disaster scenes 

are difficult to construct in real life. Forcing subjects to simulate real hazards would probably not 

be possible, with many legal and moral challenges. Thus, VR and AR technologies have been 

used to construct/imitate disaster scenes for emergency research (Zhu & Li, 2021). Another 

example is that traditional EMS provider training relies on mannequins and verbal descriptions 

of a scene. However, mannequins do not provide real-time reactions to treatment such as 

improved breath sounds or skin signs. Thus, AR has been utilized to generate a display of such 

responses to provide a more realistic training exercise (Titzler & Zuniga-Hernandez, 2023). 

These examples show instances where AR and VR technology has been utilized for improving 

the emergency response industry. In this project, we seek to use AR to stream data to our 

Cognitive Assistant system as well as to display useful feedback to an EMT. 



 

 

PROBLEM STATEMENT 

 The CognitiveEMS system in particular focuses on processing this information collected 

from the responder, which includes stages for converting speech to text, extracting medical and 

EMS protocol specific concepts, and modeling and execution of an EMS protocol (See Figure 1 

for an architectural overview of this system).  Specifically, when a first responder speaks to a 

patient, the CognitiveEMS system converts speech to text using a speech to text library. 

Negation detection, value retrieval, and concept mapping to protocols are performed on the 

converted text for each sentence. Based on the information from the converted text, as well as 

information from sensors connected to the wearable device and the patient, the system predicts 

relevant EMS protocols, and provides feedback and suggestions to the first responder. The main 

technologies used in the system are the Google Speech API for the speech to text conversion, 

MetaMap software for concept extraction, and a rule engine for enabling the policies and 

operational decisions to be defined, tested and executed (Preum et al., 2019). The pipeline 

utilizes a behavior tree framework and machine learning (ML) methods to extract critical 

information from both audio and visual input and recommend interventions to specialists.  

Early identification of necessary protocols and/or interventions by a system such as the 

Cognitive Assistant in an emergency situation may save patients' lives by helping EMT’s to 

make quicker and more accurate decisions regarding the patients' transfer and care. Additionally, 

systems such as the Cognitive Assistant allow us to analyze the ways that AI and humans interact 

and collaborate. A better understanding of this will help grow potential for humans to learn from 

and collaborate with algorithms in an ethical manner. 



 

Before this project, there were offline, individual ML modules for speech that were 

separate from the pipeline. Only audio data was collected via the microphone of the device the 

pipeline was running on; no vision data was collected, analyzed, or streamed. Additionally, the 

AR glasses and smartwatch were not being utilized for collecting and streaming data. Thus, my 

capstone project centered around integrating these smart devices into the current pipeline (which 

involves creating Android applications to collect and send data, server side scripts to receive and 

organize that data, and code to cohesively organize different modules in the pipeline), creating a 

vision module (where image/video data was collected, streamed, and analyzed), managing the 

various input and output streams, as well as processing and demoing the real-time results on a 

graphical user interface (GUI) in the Cognitive Assistant system. It also includes managing the 

pipeline and helping to integrate the offline modules by other students into the pipeline to 

analyze and interpret the data to help the assistant recommend protocols and interventions to 

EMS specialists. 

 



 

 Figure 1. The architecture of the CognitiveEMS system (Preum et al., 2018) 

 

METHODS/RESULTS 

 For this project, we had a VUZIX M400 Augmented Reality Smart Glasses and a 

Samsung Smartwatch that were the main hardware components utilized for data collection and 

analysis. 

 We aimed to collect audio, video, accelerometer, and gyroscope data. The audio data 

would be fed to the existing system for speech to text translation using Google Cloud Speech and 

concept extraction using MetaMap. Then machine learning models would run on that data to 

identify protocols and interventions. The video data would be displayed on a front-end GUI 

interface and wrist/hand positions would be annotated by Google Mediapipe. Finally, the 

accelerometer and gyroscope data would be utilized for determining CPR Rate.  

 Some of the main concepts/activities involved in streaming data are using network 

protocols such as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), 

Android app development, creating server-side scripts to receive and process data, handling data 

analysis, as well as returning feedback and displaying the output. When designing an application 

that involves streaming and networking, it is important to select the appropriate network protocol 

based on what type of data is being handled/transmitted and the requirements of the system 

concerning speed, reliability, existing infrastructure, etc. Additionally, we had to plan out how 

we would design the streaming so the end-to-end system worked properly.  

 

Video Streaming/Vision Module 



 

 The first part of this project involved streaming data from a video camera on the AR 

glasses to the server hosting the CognitiveEMS system (a laptop). The Transmission Control 

Protocol (TCP) protocol was used for streaming this video data (images). Client-server streaming 

using the TCP protocol and Python scripts is a well known efficient way to stream data between 

a server and multiple clients. Specifically, TCP is a connection-oriented protocol that provides 

reliable and ordered transfer of data packets between two endpoints on a network. TCP is widely 

used for applications that require error-free transmission of data, such as web browsing, email, 

and file transfer. We chose to utilize this protocol because image data is very large and we need 

data reliably. 

To actually do this, I utilized an existing client side Android app written by PhD student 

Lahiru Nuwan (edited by Keshara Weerasinghe) in the lab to send the data and then wrote a 

server side python script to receive the data. In the script, to receive data, first I used the python 

socket library to set up a TCP socket and bind it to a specific IP address and port number. Then I 

used that socket to receive data from the Android app and process it as needed. When the image 

was received, it was processed using Google MediaPipe, to annotate wrists/hand positions. In 

particular, their MediaPipe Hand Landmarker solution lets you detect the landmarks of the hands 

in an image. You can use this library to localize key points of the hands and render visual effects 

over the hands. It operates on image data with a machine learning (ML) model as static data or a 

continuous stream and outputs hand landmarks in image coordinates of the detected hands. 

Finally, I converted the image with annotations to a pixmap format and scaled it, in order 

to display it in a PyQt5 graphical user interface (GUI). The conversion was necessary, since the 

PyQt5 library QImage module takes in a pixmap image as input. An example screenshot of 

typical output is shown below: 



 

 

Figure 1: Hand/Wrist detection by Google Mediapipe 

 

I also tried to use the detected hand/wrist positions to calculate CPR Rate. However, the 

results were very far off from the correct value. The large error was probably due to the 

hand/wrist annotations not being exactly correct. While Mediaipe is beneficial and chosen by us 

due to its real-time capabilities, its accuracy does not seem to be the best. Thus, for the 

demo/experiments we decided to only rely on smartwatch data to calculate CPR rate and leave 

image analysis for later.  

 

Speech Module 

 Next, we worked on streaming audio data from the microphone on the AR glasses. The 

User Datagram Protocol (UDP) was used to stream audio data. UDP is a connectionless protocol 

that does not guarantee the delivery or order of data packets, however it is very fast. UDP is 

often used for applications that require quick and efficient transmission of data. We chose to use 

UDP for audio streaming because it reduces latency, is faster at streaming since it does not wait 



 

for acknowledgement, and content is being consumed in real time and humans would be unlikely 

to notice small drops of data as much as they notice delays in motion caused by retransmission. 

 To actually do this, I developed an Android application to capture sound bytes from the 

microphone and send them via UDP to the server hosting the CognitiveEMS system. Then on the 

server side, we wrote a python script to receive and process that data. 

 

Android app: 

First I set up the Android Studio development environment for a Linux operating system. 

The adb and Android SDK libraries were installed to enable us to do wireless streaming easily. 

Then I designed a user interface. In order to allow a more efficient setup for demos, I put a text 

input where the user can specify the server IP address to which the data can be sent wirelessly. 

As well as buttons to start streaming and close/shutdown the application. Next, I added 

permission requests. In order for the Android application to record audio data, it needs 

permission to access the microphone of the device. So to allow the app to access the microphone, 

I added permission requests to the AndroidManifest.xml file. This will prompt the user of the 

device to grant permission to the app to record audio. 

Then to implement audio recording and encoding, I used the AudioRecord and 

MediaRecorder classes. This class provides methods for setting the audio source and format, as 

well as starting and stopping audio recording. Before recording audio, important parameters such 

as recording rate, number of channels, buffer size etc. need to be specified. After some research, 

we chose a recording rate of 16000 hertz, since that is a well known rate for human speech 

recording, 1 channel, and a PCM format (which is an integer representation of audio data, 

usually signed numbers in two's complement format). Once the audio is recorded, it needs to be 



 

encoded into a format that can be transmitted via UDP. Some common formats for audio 

transmission include WAV, MP3, and AAC. We chose MP3 and also experimented with WAV.  

To send the data I utilized the Android DatagramPacket, InetAddress, and Socket 

libraries. First, I read data from the microphone into a buffer using the AudioRecord.read() 

method. Next I put that buffer in a packet using DatagramPacket. Finally the packet is sent using 

socket.send() after specifying the destination IP address and port. This is done in a while() loop 

to ensure continuous streaming (until the app is closed). 

 

Figure 2: Code Snippet for Audio Streaming from Android Device 

 

Server Side Script 

 On the server side, we used the python socket library to set up a UDP socket and bind it 

to a specific IP address and port number. In a separate thread, audio data was received and put 

into a buffer. The data is received continuously in a while loop. The data from the buffer is 

processed by the Google Speech Cloud Speech to Text API. Google generates requests and 



 

responses based on the text chunks given from the audio data buffer. Then we take the responses, 

create a transcript, and display the results back on the GUI for the user to view. The sentences 

from the transcript are also sent to other buffers for concept extraction using MetaMap, 

intervention suggestion using a behavior tree framework, and protocol suggestion using a 

machine learning model developed by PhD student Xueren Ge.  

 

Smartwatch Module 

 The smartwatch streaming functionality was developed by PhD student Keshara 

Weerasinghe. I helped with integrating it into the CognitiveEMS system. This involved creating 

an output display box to show CPR rate calculations on the GUI as well as editing the existing 

code to incorporate Keshara’s code. A general overview of Keshara’s code: He also utilized 

Android studio to develop an app to stream accelerometer and gyroscope data from a Google 

Pixel smartwatch to a specific server device (specified by IP address). He used the UDP protocol 

to send the data and also wrote a python script to receive this data as well as calculate CPR rate. 

The specific algorithm involves using xyz coordinates of a hand/wrist, calculating the magnitude 

and time between peaks, and using that information to calculate CPR rate. 

 

Main Module  

 While we continued to integrate several data streams, we also had to make sure that the 

overall system could handle this and also organize the various modules’ input and output. For the 

CogEMS system demos, the main file is GUI.py. In this, we set up several different threads for 

each data stream. Additionally, beforehand this main file contained code for several different 

functionalities. This caused the code to be very long and difficult to navigate through. Thus, we 



 

worked on modularizing the code and creating different scripts for each of the main outputs 

being displayed (i.e. a separate script for video_streaming and display, script for smartwatch, 

etc.). 

 

Data Collection 

 In order to show real time results, test the different streaming modules, and provide a 

demo of comprehensive results, I worked on adding scripts to collect data from several streams 

and writing that data to files/output automatically for analysis purposes. The specific data 

streams collected were audio, video, smartwatch, speech to text transcription, concept extraction, 

intervention, and protocol suggestion data. This data is collected and stored in a folder marked 

by a timestamp to show at what point the data was collected. Every time the pipeline system is 

run, the user can specify if they want to collect data and even specify certain streams. Data will 

be collected until the user exits or closes the system. 

 

     

Figure 3: Side-by-side screenshots of data collection folder produced by running the system 

 



 

EVALUATION 

To evaluate this project, I captured screenshots of sample output/code and created demos 

to show progress and get feedback from other members of the group. The figures below show 

some example screenshots that were captured after some of the milestones achieved. For some 

milestones screenshots are missing and note that we also showed progress with demo videos 

taken that cannot be displayed in this report. Regarding getting feedback and evaluating the 

system outside of the lab, we also demonstrated the system at the SEAS Engineering Open 

House and are planning to demo the system at other conferences in the future. Additionally, we 

are planning to take the system to the North Garden Volunteer Fire Company to test it out and 

get feedback from professionals involved in emergency situations. 

 

Creating Demo’s (side-by-side of what is being done behind the scene and what shows up 

on the output GUI when creating a demo) : 

 

 

 



 

Progress - System at the beginning: 

 

Progress - Integrating Video from smartphone, with Google Mediapipe: 

 



 

Progress - Video + Audio from an external smartphone microphone (not from the AR 

glasses). 

 

Progress - Video from AR glasses: 

 



 

Progress - Video from AR glasses and Smartwatch Stream integrated; Audio is still from 

file stream 

 

There are a couple of missing screenshots for milestones of integrating Audio, fixing the 

Concept extraction, integrating the Smartwatch module, and integrating Xueren’s ML model, but 

the screenshot below shows everything together. 

 

Video, Audio from Glasses and Smartwatch Stream with Concept Extraction fixed and 

Xueren’s ML Protocol Suggestion model (Current model):  



 

 

CHALLENGES 

In this project, an EMT responder wears “smart” devices such as augmented reality 

glasses and a smartwatch. Data collected via camera/microphone on the glasses and 

accelerometer/gyroscope on the smartwatch is recorded and streamed to a pipeline where it is 

received and analyzed in order to recognize the actions being made by the EMT as well as make 

recommendations. Integrating the AR glasses and smartwatch (i.e. streaming, receiving, and 

displaying data collected by these devices) posed certain challenges: 

● Android Studio: We had to build two different Android applications – one for the glasses 

and one for the smartwatch. The setup of Android Studio itself proved to be challenging. 

Especially with a Linux based operating system, there was a lot of configuration 

involved. Another challenge with Android Studio is ensuring that the development 

version matches or satisfies the device specifications. There are several different versions 

of Android depending on the device being used. We ensured that we used a version that 



 

would satisfy both the AR glasses and the smartwatch. Finally, one last challenge was 

actually coding with Android Studio. Several libraries were deprecated and some libraries 

did not even work properly. Building Android apps requires a lot of knowledge about the 

configuration files, which can be hard to understand for someone new at coding with 

Android Studio. Moreover, as described in the results section, each time a change was 

made the entire app had to be reinstalled on the device for testing. Overall, it sometimes 

became a tedious process to write app code. But it was a great learning experience and I 

came out of this project knowing a lot more about app development and streaming from 

Android apps to another device. 

● Combining new code with preexisting code: One common challenge that developers face, 

and that we faced in this project, was combining new code with preexisting code and 

managing different versions. Additionally, sometimes code that was provided by other 

students did not work properly or did not satisfy all the requirements we wanted. We 

often had to edit the new code to fit into the system or edit old code and make 

environment changes to adapt to the new code. Additionally, we had to go through 

old/existing code and spend time trying to understand what was going on and how it 

worked. What is described in the results section is the final version that is currently in the 

pipeline, but to get to that point required a lot of development and adjustments made. 

Doing integration overall required a lot of editing, testing, and debugging. Github helped 

with managing version control.  

● Realtime streaming: In order to present the pipeline system, we had to get the data 

streaming and analyze it in real time. Doing this in realtime is difficult because there is a 

lot of data being handled at once and each stream needs to be efficient. We used threads 



 

to help with performance and edited parameters relating to display or rate to process data 

faster. Another way we tried to be efficient was we loaded or utilized pre-trained machine 

learning models that did not require much post processing (GoogleSpeech, Mediapipe 

hand detection, as well as Xueren’s protocol suggestion model). 

● Size/Space/Memory limits: Initially, I started coding for this project using a virtual 

machine on my personal laptop. This proved to be difficult since my virtual machine ran 

very slowly due to memory constraints. Afterward, I moved to using a Desktop machine 

in the Link Lab. I went to the lab three days per week, and was able to work there. 

However, even that desktop had limitations. Especially, when we worked on integrating a 

protocol suggestion machine learning model from PhD student Xueren Ge, the desktop’s 

GPU proved to be not enough and the existing python configuration was causing 

problems. In order to integrate larger machine learning models and run the demo 

seamlessly and quickly, we bought an Alienware laptop with a Linux operating system. 

Then we set up the environments and system from scratch. This definitely helped when it 

came to running the demo and we were able to clean up the pipeline system (getting rid 

of unnecessary/problematic dependencies, properly configuring the python environment, 

etc). We also updated the github readme and put more comments into the code to help 

future students who get involved in this project.  

● Data synchronization: This project involved several streams of data. When running the 

demo, we had to make sure we had a comprehensive system where all the data streams 

worked properly enough to collect data for analysis and display it all simultaneously on 

the GUI. If one stream failed we had to make sure the others were not impacted. 

Modularizing the code and running each stream on its own thread helped with this. The 



 

code is currently not exactly synchronized by timestamp, we just start all the streams at 

the same time. More work can be done to synchronize the data in the future. 

 

DISCUSSION/CONCLUSION 

  This project focused on integrating these smart devices into the current pipeline, creating 

a vision module, managing the various input and output streams, processing and demoing the 

real-time results on a GUI, as well as managing the pipeline and helping to integrate the offline 

modules by other students into the pipeline to analyze and interpret the data to help the assistant 

recommend protocols and interventions to EMS specialists. Throughout this project I was 

exposed to and learned more about several different concepts such as networking protocols, 

streaming data, developing applications using Android Studio, utilizing threads for efficiency, 

and integrating code in modular ways. I also learned better coding practices such as managing 

version control using Github, documenting code changes, setting up environments from scratch, 

and working with/configuring systems with various dependencies. 

 Based on the new changes and additions to the pipeline, as well as taking into account 

future plans, below is a revised figure of the architecture of the CognitiveEMS Pipeline that I 

created: 



 

 

Figure 4: Revised diagram of architecture of CogEMS system 

 

 Additionally, I plan to continue working on the system. Currently, we are working on 

closing the loop, which involves sending the feedback from the data analysis back to the AR 

glasses for the EMT to see. Below is a figure showing an idea of how the EMT would view 

information. 

 

Example image of displaying feedback back to the AR glasses: 

 



 

 

Figure 5: Example of feedback display on AR glasses 
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