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Abstract

Neuroscientists have recently discovered the existence of meningeal lymphatic ves-
sels in the brain and have shown their importance in preventing cognitive decline. With
age, lymphatic vessels narrow, poorly draining cerebrospinal and interstitial fluids,
which leads to plaque accumulation, a hallmark of Alzheimer’s disease. The analysis
and detection of these vessels is performed by hand, and thus suffers from quantification
variability. Furthermore, the only existing complexity measures currently extracted
from images of these vessels are width and area, which are insufficient to capture
morphological differences. This dissertation details the first automated segmentation
and analysis methods developed for lymphatic vessels. The proposed segmentation
approach, called LyMPhi, is a level set segmentation method featuring hierarchical
matting to pre-determine foreground and background regions. The resultant approach
eliminates the need for user-defined initialization, an advantage over competing meth-
ods, and produces smooth segmented contours. The level set force field is modulated
by the foreground information computed by matting, while also constraining the seg-
mentation contour to be smooth. Segmentation output from this method has a higher
overall Dice coefficient and boundary F1-score compared to that of competing algo-
rithms. The algorithms are tested on real and synthetic data generated by our novel
shape deformation based approach. LyMPhi is also more stable under different initial
conditions than comparative level set segmentation methods. Analysis can also be
extended to studying elastic deformation for lymphangiogenesis as well as vessel nar-
rowing. The deformation model can additionally be used for stretching existing vessel
data into realistic synthetic data. Machine learning is explored and tested with appli-
cation to segmenting the meningeal lymphatic vessels, showing promising results for
the future. Manual segmentation, which is used as labels for neural network training,
as well as a comparison for measuring segmentation accuracy, is analyzed with respect
to statistical measures of variance. The last step in vessel analysis is to create relevant
measures, many of which can be extended from already existing measures for other
vessel networks. Given this work, neuroscientists have the first image analysis tools
for meningeal lymphatic vessels, and subsequently can accurately capture information
that will enable them to explore the vessels’ role in neurodegenerative diseases.
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Figure 1: Image of meningeal lymphatic vessels, stained in red. Blood vessels are stained in
blue. This image was acquired by Kipnis Lab, University of Virginia, Neuroscience.

1 Introduction

1.1 The Meningeal Lymphatic Vessels

In recent years, study of the lymphatic system present in our central nervous system has
come to the research forefront. The lymphatic vessels surrounding the brain, which were
unknown just six years ago, have been shown to drain waste from our brains. If this waste is
not drained, it accumulates to form plaque, which contributes to neurodegenerative disease.
Studies on mice have shown loss of memory and impairment in cognitive ability in cases
where the vessels do not drain wastes adequately. [1]

The meningeal lymphatic vasculature (MLV) is present around major sinuses in the
meninges, three membranes that line the skull and vertebral canal, enclosing the brain and
spinal cord. These lymphatic vessels surround the cerebral cortex. Both the fluid part of
the CSF (cerebrospinal fluid) and immune cells present in the CSF, such as T cells and B
cells, are drained through the surrounding lymphatic vessels, all the way to the deep cervical
lymph nodes.

Recent work shows that in old age, lymphatic drainage is reduced by shrinking of the
lymphatic vessels. This can lead to cognitive decline and loss of memory which is common in
Alzheimer’s disease. Studies on mice have shown loss of memory and impairment in cognitive
ability if the vessels’ draining capacity does not function adequately. [1] A counter-effect is
visible in the case of Multiple Sclerosis (MS). It is evident in MS that the lymphatic vessels
are used to transport the immune cells responsible for autoimmune attack [2]. The attacks
are directed to the myelin sheaths of neurons and can result in paralysis.

An underlying question remains: can we predict onset of these diseases or diagnose
patients by studying an individual’s lymphatic vasculature? [3] Fueled by advances in mi-
croscopy, image processing will play an important role in the reverse engineering of the
central nervous system [4].

As these vessels were only recently discovered, there is no tool available for automatically
analyzing these images. By building the first, we can provide more measures for understand-
ing these vessels. An image of the vessels, stained in red, is shown in Figure 1.

1.2 MLV Image Acquisition

The steps described following were applied for meningeal whole-mounts. Incubation with
appropriate dilutions of primary antibodies was delivered: anti-LYVE-1–eFluor 660 or anti-
LYVE-1–Alexa Fluor 488, anti-CD31, and anti-GFP. After incubating for 10 min DAPI,
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the tissue was mounted with Aqua-Mount (Lerner) and glass coverslips. Preparations were
stored at 4 °C for no more than one week until images were acquired either using a wide-field
microscope (Leica) or a confocal microscope (FV1200 Laser Scanning Confocal Microscope,
Olympus). [1]

1.3 Problem Formulation

There are currently no image processing tools for analyzing the meningeal lymphatic vascu-
lature. This dissertation proposes the first.

The first step in analysis is segmentation, or detection of vessel objects in an image.
Neuroscientists currently analyze these image data by hand, laboriously marking the bound-
aries of vessels using mouse clicks to draw a polygon boundary around the edges of a vessel.
The time required to process one image, that is, to segment the image into its background
and foreground, is around two hours. Manual processing is an incredibly slow and fallible
method, and serves as the main hindrance to further research involving this data. Hand
quantification tends to overestimate vessel content and cannot account for small holes or
loops in vasculature. Furthermore, hand quantification results vary from person to person
and even varies on a single image using the same individual, which can be measured. The
work hopes to alleviate the time taken to process the meningeal lymphatic vessel images,
and therefore speed up research in the areas using these images.

The image data used in analysis is difficult and expensive to produce, as each image
of vessels represents one sacrificed mouse. So, it would be useful to create a synthetic
image database of meningeal lymphatic vessels for use in further study. Also, a synthetic
database has the added benefit of not containing the errors discussed above in manually
annotated ground truth. Creating a model for generating realistic vessel images will allow
neuroscientists to perhaps use machine learning techniques for analyzing the vessel data;
these learning algorithms require more data than is currently available. As neuroscientists
learn more about the morphology changes of lymphatic vessels due to disease or age, these
changes can also be modeled, replicated, and further studied.

Quantification and complexity analysis of the meningeal lymphatic vessels is currently
limited to calculating area of the vessels and average width of vessels in one image. The
average width is calculated by sampling the vessel at 100 points and averaging over the
widths found at these points. As different users will select different points to sample, the
average width computed from user to user for the same image can vary up to 30 percent.
This is unreasonable for a metric that should provide a reliable comparison from image
to image. Also, averaging the width of vessels that are highly variable in size does not
provide enough information on vessel morphology throughout the mouse brain. Quantitative
measures already used to characterize other vascular networks should be used to describe the
meningeal lymphatics, as well as new metrics developed to capture details unique to these
newly discovered vessels.

This dissertation is for the first tool-set developed specifically for the above mentioned
unique challenges of analyzing meningeal lymphatic vessels.
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1.4 Contributions of this Dissertation

The contributions of this dissertation are listed here.

1.4.1 Level-Set Segmentation of MLV

The first contribution is to develop a level-set based segmentation method for accurately
segmenting meningeal lymphatic vessels within a highly cluttered background.

1.4.2 Shape-based Data Augmentation

The second contribution is to build a rich database of realistic synthetic meningeal lymphatic
vessel images that can serve as ground truth for image analysis studies [4].

1.4.3 Application of Deep Learning to MLV

Third, smaller images of the MLV are segmented using a deep learning approach, despite the
challenge of a small training dataset. Promising segmentation results are shown compared
to traditional segmentation methods, such as level-set methods.

1.4.4 Analysis of Manual Segmentation

Fourth, an in-depth analysis of our manual segmentation is performed, to study annotator
error and reliability.

1.4.5 Complexity Analysis of the MLV

Finally, the fifth contribution is to develop a set of informatics for characterizing meningeal
lymphatic vasculature, aiding in distinction between groups that have differences in lym-
phatic form and/or function. These informatics can also be used for assessing segmentation
accuracy.

1.5 Dissertation Outline

Chapters 2 and 3 are background chapters, on microscopy methods and the meningeal lym-
phatics, respectively. Chapter 4 covers our level-set segmentation method for the MLV, called
LyMPhi. Chapter 5 details a novel shape deformation based data augmentation method for
generating MLV data complete with ground truth. Chapter 6 goes over testing of a CNN
with the meningeal lymphatic images. Statistical analysis of our hand annotation is pur-
sued in Chapter 7, highlighting important variation and errors in the manual segmentation.
The final contribution, complexity analysis of the MLV, is discussed in Chapter 8. Finally,
Chapter 9 concludes this dissertation.
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2 Background on Microscopy

This section contains a technical background on microscopy, specifically the imaging and
image processing procedures followed. The two main types of microscopical imaging are
highlighted here, cryo-electron microscopy and light microscopy.

2.1 Cryo-EM

Cryo-electron (cryo-EM) microscopy is essential for the study and functional understanding
of non-crystalline macromolecules, such as proteins. These molecules cannot be imaged
using X-ray crystallography or other popular methods. Cryo-EM has been successfully used
to visualize molecules such as ribosomes, viruses, and gap junction channels, for example.
Obtaining structural models of these at various conformational states leads to insight on how
these molecules interact with others. The drive for using electron microscopy is to enlighten
us on the roles of individual proteins so as to create a complete and measurable model of
the workings inside (and outside) a single cell. [4]

Recent advances in imaging technology have given cryo-EM a scientific rebirth, achieving
near-atomic resolution of non-crystalline specimens [5]. Because of imaging improvements,
image processing and analysis of the resulting images have increased the resolution such that
molecular structures can be resolved at the atomic level. Cryo-EM is ripe with stimulating
image processing challenges. In this section, we will touch on the most essential informa-
tion in order to build an accurate structural three-dimensional model from noisy projection
images. [4]

2.1.1 Single-Particle Reconstruction (SPR)

Cryo-electron microscopy is often used for the purpose of single-particle reconstruction. The
imaging process is described as follows: A plastic tube contains the isolated molecular sample
of interest. Inside the tube, nanoparticles are free to move. The sample must be frozen in
order for the molecule to be imaged. A miniscule drop (3 µL) of the sample is placed onto
a 3 mm copper grid. [6]

To move from sample in solution to frozen molecules, the sample is loaded into a machine
with a chamber that maintains 100% humidity and a temperature of 4◦ Celsius. There are
blotting papers on either side of the sample, which close on the grid and leave a thin layer
of molecules in solution. The flattened sample is then rapidly plunged into liquid ethane,
surrounded by a ring of liquid nitrogen. The sample is frozen so quickly that ice crystals
cannot form. This amorphous, thin ice is called “vitreous ice”, and is essential to the imaging
process, as there is no crystalline order to interfere with the frozen particle structures. [6,7].

Following is the imaging procedure, to reconstruct a 3D structure from the frozen molecules.
The grid containing the frozen particles is loaded into a transmission electron microscope
(TEM). Underneath the frozen sample is a detector, such as photographic film. The molecules
are fixed in different orientations. When the molecules are shot through with an electron
beam, the orientation of the particles leaves a unique “shadow.” These “shadows”, or pro-
jections, contain all the 3-dimensional information of the molecule, compressed into a 2-
dimensional image. An image collected using the electron microscope is called a micrograph,
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and it contains many noisy 2D projection images of a single molecule. [6]
The molecules are trapped in the ice in different orientations, or viewing directions [8].

Projections from the same 3D orientation can be clustered, often using K-means. Projections
from the same cluster are rotated so that all projections are in the same in-plane orientation.
These “aligned” molecules are then averaged together. This aggregate image (called a “class
average”) provides a less noisy view of the molecule in this 3D orientation [9]. We perform
this same process for the different 3D orientations of the molecule. Combining 2D templates
leads to an estimated 3D structure for each particle. [5, 6]

One major challenge of SPR is that there is no way to objectively measure the quality of
the resulting particle reconstruction. (Although, more recently, [10] proposes that their ab
initio model could be used for such quality comparisons.) There are imaging challenges, such
as: overexposure to electrons causing radiation damage to specimens, but underexposure
resulting in the noisy projections. [5]

After collecting all averaged views, they are combined computationally. [6] If no similar
previously solved structures are available, an initial particle model (ab initio is generated
based on physical principles, and then, through iterative refinement, the final 3D structure
is reconstructed.

2.1.2 Ab Initio Modeling

Ab initio modeling estimates the base structure of a molecule. This is the initial step of a
procedure called iterative refinement, where the base structure of a molecule is then refined
until convergence to reconstruct a single particle (SPR.) If done manually, this initialization
can lead to bias and slow convergence. [10] In regards to initial volume estimation, most
recent methods use stochastic optimization or geometric constraints imposed by the Central
Slice Theorem. [4]

Most ab initio modeling algorithms use the idea of common lines and the Fourier slice
theorem. The 2D Fourier transform of a projection image is equivalent to a slice through
the origin of the 3D Fourier transform of the molecule’s potential function. For asymmetric
molecules, any two projections share just one “common line.” To find these common lines, [11]
discretize the Fourier space into 360 possible lines per projection, and pick the line that has
the highest cross-correlation between each pair of projection images. Then, the authors find
the rotations of the projections that best satisfy all of the common lines. The reconstruction
is achieved by using the 3D psuedopolar Fourier transform. The approach is robust to noise
and is not dependent on the number of projections. One area of concern is the use of class
averages for projection images, as class averages do not represent true projections and often
lead to misclassification of common lines. [11]

The following two methods are software tools that can be used for solving cryo-EM struc-
tures. SIMPLE is a software for ab initio reconstruction of heterogeneous single-particles.
The projection images are first clustered using a probabilistic PCA based algorithm, which
has features of K-means. Then class averages are taken. The main novelty of SIMPLE
is in finding the orientation of each projection using a simulated annealing approach. To
reconstruct the volume, the authors use a Fourier inversion algorithm with the aligned pro-
jections. [9]

PRIME is a probabilistic initial 3D model generator. The creators of PRIME also cre-
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ated SIMPLE the previous year, but have improved their techniques to create a faster and
more advanced mechanism for creating 3D cryo-EM maps. This time, they use stochastic
hill-climbing in local neighborhoods to find the best matches for orientation given a single
particle image. These best orientation matches are given weights, so that the final orienta-
tion assigned to a particle image is actually a weighted average of all discretized orientations.
This is called a sparse orientation weighting approach, because the majority of the weights
are zero. The 3D molecule is reconstructed as usual with Fourier inversion. The main bene-
fit to using this algorithm is that there is no alignment, clustering, or averaging necessary -
PRIME works well on noisy data. PRIME can be used to create final high resolution cryo-
EM maps, although some detail may be missing, so the method is more useful for generating
ab initio models. [12]

2.1.3 Cryo-EM Structure Determination

The process used for refinement if using ab initio modeling (when no known templates
exist) is common across many algorithms. Refinement is done using 3D projection matching
monitored by the Fourier shell correlation curve. There is no “gold standard” for refinement,
particularly because of over-fitting to noise - this recalls a major limitation that there is no
complete standard for assessing validity of the reconstruction results. [5]

RELION is a popular implementation of a Bayesian approach for cryo-EM structural
determination. RELION follows a Maximum a posteriori (MAP) estimation approach to
find an optimized solution to the reconstruction problem. The novelty of RELION is in
implementing the well-defined mathematical method into software that is efficient compu-
tationally. There are a number of ways in which the authors decrease computational time -
such as only searching for orientations similar to the orientations of neighboring projections,
instead of over the whole set. Another improvement introduced here is to prevent over-fitting
of the reconstruction to noise by performing refinement on two halves of the data and then
combining the two converged refinements. The RELION framework is notable for containing
many image processing procedures for cryo-EM in one pipeline, without the need for exces-
sive tuning - and doing so quickly, efficiently, and without increasing reconstruction error.
There is still a need for structure initialization with RELION, however, which makes the ab
initio modeling discussed previously of necessity. [13]

2.1.4 Fitting an Atomic Model

We have discussed methods for building and refining a 3D reconstruction of the molecule
being imaged. This reconstruction is in reality a density map. What researchers are truly
interested in is an atomic level structural model of the molecule. After providing a 3D
reconstruction, structural features down to the atomic level can be fit inside the molecule.
A model fitting is performed for secondary structure elements (SSEs) such as α-helices and
β-sheets. [14,15] Fitting such a model allows for understanding of how the molecule functions
inside a cell. [6] Model fitting is performed by introducing some constraints, by using mass
spectroscopy, proteomics, and chemical cross-linking. Having this knowledge at the atomic
level can aide in analysis of possible deformation paths of molecules. [4].
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2.2 Light Microscopy

2.2.1 Image Analysis with Light Microscopy

Both light microscopy and electron microscopy are used to investigate the interior of organ-
isms. Light microscopy (LM) has limitations to overcome, just like EM. The limitations of
LM are imposed by the characteristics of photons, such as fluorescence properties, by aber-
rations in the optics, and the overall resolution of the microscope. Also, the available photon
budget of the specimen being imaged also limits the image reconstruction quality. LM is
characterizable by the nature of the object being observed, such as the cell or organelle,
and also by the association or recomposition of those quantities, such as through membrane
fusion. [4]

Low signal-to-noise ratio (SNR) and multitudes of objects in the field of view complicate
tracking problems, and it is difficult to solve the correspondence problem [16]. Some image
analysis problems of interest include tracking in bioimaging [17–19], sub-diffraction limited
imaging [20,21], and parametric and geometric active contour based segmentation [22]. Other
important topics include shape analysis [23], neuronal tracing [24], image deconvolution [25],
and spot detection [26], such as in STARmap [27]. A research group from Stanford has
developed a technology called STARmap for identifying the proteins expressed at single-cell
resolution in three-dimensional intact mouse tissue samples. The different proteins can be
seen by staining each nucleotide (or amino acid) a different color, so they can read the tRNA
from a multi-channel image. By observing the protein expressed in a single-cell, the authors
can determine what type of cell it is - excitatory neurons, inhibitory neurons, microglia,
etc. Not only can the authors view overall numbers of cell types in different brain regions,
distributions of cell types can be also be characterized, down to single cell nearest neighbors.
Unexpected cell groupings and even new cell types have been found. STARmap is less noisy
and error-prone than previous methods and can handle large quantities of gene markers.
The experiment is performed immediately after some stimulus is given to the mouse, and so
can capture important information about neuronal response and brain function. [27]

The MLV specimen is tagged with a fluorescence protein which emits photons when
illuminated by some light source [28]. The photons are detected by a sensor to produce an
image. Laser scanning confocal microscopes are used for fast imaging of MLV from mice.
Co-localization between two proteins, such as VEGFR-3 and LYVE-1, can provide stronger
evidence for the presence of lymphatics in an image.

2.2.2 Technological Advancements for LM

Recent technological advancements include multi-photon, STED (simulated emission deple-
tion) microscopy [29], PALM (photo-activated localization microscopy) [30] and STORM
(stochastic optical reconstruction microscopy) [31]. Other advancements include coherent
beam sources, faster detectors, more sensitive molecular probes, and automated imaging
procedures. [4]

Resolution that surpasses the 200 nm diffraction limit has been a running goal of LM.
Structured illumination microscopy (SIM) [32,33], produced 3D reconstructions of specimens
with resolution close to 100 nm. STED [29], STORM [31,34], and PALM [30,35], which won
the 2014 Nobel prize in chemistry, can provide single molecule localization within cells -
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which is at the scale of just dozens of nanometers. Lattice light sheet microscopy, or LLSM,
also allows for super-resolution [36]. PALM, STORM, and SIM improve resolution with
the cost of slowing acquisition rate. A 28x28 micron square image with resolution 60 nm
takes about one minute to record using PALM [37]. This mostly restricts application to
fixed samples, instead of live imaging. High-NA TIRF SIM (numerical aperture) [38] and
LLSM [39] allowed imaging with high resolution of the associations between cortical filaments
and proteins and three dimensional intracellular interactions. [4]

Another active field in microscopy imaging is finding ways to combine EM with LM, such
as with CLEM microscopy [40]. This brings together the advantages of live fluorescence with
the high resolution that EM provides. [4]

2.2.3 Poisson Noise Model - Similarites with SAR

Live-cell fluorescence imaging is limited by time, in order to prevent photo-bleaching or
phototoxicity. Image denoising can be used to mitigate these effects, and allow for longer
time-series of images to be taken [41–43]. The major advantage of denoising algorithms over
frame-averaging is to retrieve denoised time series from acquisitions that have low SNR [4].
This can be observed outside of microscopy, in SAR (synthetic-aperture radar) or satellite
imaging as well - using methods such as DD-SRAD [44] provides a denoised time-series from
low quality data, without losing the time information.

Poisson and Poisson-Gaussian noise is generally measured when using fluorescence mi-
croscopy [4]. The imaging set-up consists of the optical system followed by a photodetector
and accompanying filters. The photodetector converts the optical intensity in the form of
photons into electrons. However, the signal is generally disrupted by various noise sources
during the acquisition process. Poisson noise is particularly degrading when there are low-
lighting conditions, shorter exposure times, and inefficient photon detectors - all of which
are especially found in LM. Signals are thus known to be damaged by intensity dependent
Poisson noise. [4]

A key challenge in Poisson estimation is that the observed counts have different variances.
The Poisson noise effect increases as the mean intensity value in the image decreases - and
the overall SNR decreases as a result. [4] Again, this is similar to the effects of speckle or
multiplicative noise present in satellite imagery - the signal and noise are not independent,
and thus not easily partitioned [44].

Variance stabilization techniques are used to combat Poisson noise effects, by converting
Poisson noise into Gaussian noise with unit variance [45–48]. Subsequently, commonly used
denoising methods for additive white Gaussian noise can be applied. Similarly, with speckle,
a logarithmic transform is often used to convert the multiplicative denoising problem into
an additive one [44]. Stabilization algorithms provide effective denoising capabilities given
the collected photon count is high [47,48]. For low SNR, there are other denoising methods
that avoid ”Gaussianization” of the signal [4].

While the NL-means filter [49] is considered efficient and effective for additive white
Gaussian noise, in the case of Poisson noise, the method needs to be combined with a Fisz
transform [156,157] to provide the same noise reduction while preserving image geometry.
The NL-means, or non-local means algorithm, exploits natural image redundant paches to
restore the signal. For SAR imagery, simple NL-means also does not remove all high intensity
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speckle and also leaves behind texture artifacts [44].
For Poisson noise reduction, wavelet-based methods (including ridgelets and curvelets)

[46, 50, 51], such as the Haar wavelet [52, 53], are also used for image denoising. Wavelets,
and similar formulations such as shearlet transforms [54], have also shown success in the
satellite imaging domain.

Compressive sensing is also at the research forefront to minimize the number of measure-
ments needed during biological imaging [55,56].

For preservation of live samples during imaging, the illumination intensity is set to lower
levels. This causes an increase in noise and resolution loss, to the effect that image compo-
nents, particularly sub-cellular structures, become blurred. [4] Popular deconvolution meth-
ods for fluorescence microscopy minimize an energy functional that includes two terms: a
data fidelity term based on noise statistics, point spread function, etc., and a regularization
term based on a prior. The solution is generally constrained to be positive. Regularizers
to suppress noise while restoring details and structure include Total Variation (TV) meth-
ods [57], also used in denoising of SAR imagery [44, 58]. Deconvolution methods also are
used for LLSM, for recovering structural details and improving spatial resolution, even when
illumination is pushed to extremely low levels in order to limit photo-damage/toxicity [36].

2.2.4 Particle Detection

In LM, the assumption generally is that the background is static, and the object of interest
has higher intensity. To extract the particle, thresholding may be used. However, choosing
an appropriate threshold is still an unsolved problem. Histogram analysis can be used to
estimate a threshold, perhaps by using Otsu’s method [59]. If SNR is low, however, sim-
ple thresholding cannot capture objects of interests, as some pixels belonging to particles
can appear dim. The background is not generally uniform, as well. Cluttered backgrounds
including structures of varying size, such as what is observed in images of MLV, generally
create poor detection results when global thresholding is applied. Considering spatial coher-
ence between pixel neighbors, such as in Hierarchical Image Matting [60], greatly improves
detection and segmentation performance. This helps avoid misclassification of isolated pixels
in the image. [4]

Local maxima intensity where the local curvature is high (determined by the Hessian),
can also be used to determine objects of interest [61]. The Laplacian of Gaussian, or LoG,
also shows a strong ability to detect object location [62]. The LoG is a bandpass filter
that only enhaces objects of a specific size, thus reducing the presence of lower or higher
frequencies (either background clutter or noise.) This is similar to the determination of
vesselness proposed by Frangi [63]. The choice of bandwidth for both the LoG filter and for
Frangi’s method is critical, and difficult to tune for images with highly variable object size.
If the object scale is parameterized too small, noise induces over-detection. If the parameter
is too large, objects become smoothed or merge together.

This chapter has been a general overview of microscopy methods and some interesting
image processing and analysis challenges as they relate to this dissertation topic. The next
chapter will provide an in-depth understanding of the biology of the lymphatic system, as
well as accompanying diseases of the CNS.
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3 Background on Meningeal Lymphatics

3.1 Immune Cells within the CNS

The traffic of T-cells between the meninges and the cerebrospinal fluid is of great inter-
est, because these activated T-cells are involved in many diseases of the central nervous
system. The first in-vivo to demonstrate communication within the meningeal compart-
ment that drives the property of T-cells to cause disease was [64]. Multiphoton imaging
was used to show the meningeal macrophages communication with encephalitogenic T-cells
prior to infiltrating the brain parenchyma. Similar molecular mechanics were shown to play
a role in the parenchymal infiltration of T-cells and in regulating contact with meningeal
macrophages. [64,65]

The first study that used single-cell approaches in order to analyze the CNS-immune
compartment in both normal and pathological conditions was published in 2018 [66]. Using
single-cell mass spectrometry, the authors shine light on the diversity and complexity of the
immune cells present in the CNS. The authors also demonstrate the presence of resident
neutrophils within the meninges. [65,66]

Meningeal T-lymphocytes produce cytokines (such as interleukin-4 and interferon-gamma)
that regulate cognitive and social behavior in mice. There are many different immune
cells in the brain. During neuroinflammation (modeled by experimental autoimmune en-
cephalomyelitis in mice), lymphoid cells 1 and mast cells play an important role. Lymphoid
cells 1 generate a pro-inflammatory environment and encourage filtration of cells through
the brain parenchyma. The immune cells in the meninges activate pathogenic T-cells and
regulate their migration into the central nervous system (CNS.) [65]

Glia occupy some 80% of the human brain. Microglia are the tissue resident macrophages
of the brain parenchyma and have varied roles in brain development, homeostasis, injury,
and disease. [67] There is a growing need to study microglia (the specialized immune cells
of the CNS) and test anti-inflammatories as treatment for neurodegeneration caused by
inflammation [68].

3.2 Disorders of the Central Nervous System

3.2.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is characterized by the formation of β-amyloid into plaques in the
brain. Studies have shown that fifty percent of normal elder people have abnormal amyloid
without symptoms of dementia. Dementia occurs about twenty years post development
of amyloid abnormality; thus, AD is considered to be progressively neurodegenerative. A
person may live for a long time with AD with no major cognitive disruption. [69]

Trials are currently being held to test the efficacy of amyloid-modulating drugs on cog-
nitively normal patients with abnormal amyloid biomarkers. Other treatment methods
and targets should be studied, such as lymphatic vessels, to prevent abnormal amyloid
buildup. [69]

Policy makers will have to consider the opportunity cost of treatment - many left un-
treated will pass on before any cognitive decline. But once brain damage occurs, treatment
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methods become ineffective. With early treatment, it may be possible to live with AD and
never develop dementia. [69]

Mesquita et al. [1] found that using a compound in aged mice to grow lymphatic ves-
sels and promote drainage helps aged mice learn and retain better. Obstructing the lym-
phatic vessels led to the accumulation of amyloid plaques similar to those present in human
Alzheimer’s patients. The scientists are now working on a drug for human use, and are
hopeful that by maintaining healthy lymphatic vessels, the effects of AD will be mitigated
in the future. [70]

It is well known that AD patients complain about sleep disturbance. The relationship
between sleep and Aβ plaques is bidirectional. Mouse and human models have found plaques
increase with sleep disruption (measured by Aβ in interstitial fluid.) During sleep is when the
glymphatic system clears wastes - it cleans metabolic waste during slow-wave sleep (SWS).
Neuronal firing also promotes Aβ, and there is less of this firing during SWS. [71]

Aβ increase occurs during all types of interrupted sleep: insomnia, sleep apnea, etc. But
this interrupted sleep is always self-reported, and thus not quantitative. Aβ also disrupts
the CNS clocks’ synchronization, which makes sleep worse. On mouse models, chronically
shortened amount of sleep time (sleep loss) led to finding more Aβ in the cerebral cortex.
Evidence has also been found that mice may not be able to acclimate to a stressor due to sleep
loss. Sleep deprivation is also a stressor in and of itself, which impairs cognitive function on
its own. Chronic sleep deprivation (SD) could be a risk factor for AD, even to those who are
non-genetically predisposed, or those who develop sporadic AD (late-onset, most common
form.) Similar results as discussed above have also been found in fruit flies. [71]

In humans, hippocampal activation captured by fMRI in cognitively impaired patients
shows that the SD is augmenting neuronal excitability. Also in humans, short term total
SD leads to non-removal of Aβ (which is normally cleared overnight.) The levels remain
high through the day. The above studies have found other possible biomarkers for AD -
CSF orexin is one example, tau protein another. We are moving “beyond amyloid”: AD is
multifactorial, and depends on the responses from many causal factors interacting, such as
astrocytes, dysfunctional microglia and vasculature (blood and lymphatic.) Simple proof of
this: removing the plaques does not improve cognitive function. Both Aβ without AD (as
in [69]) and AD without Aβ are possible. Presence of the glymphatic system (perivascular for
CSF connected to downstream lymphatics) in the human brain has not yet been proven. [71]

Slow wave activity (SWA) measured by EEG in Hertz (Hz) decreases with age. Memory
impairment is related to continuous hippocampal activation and reduced connection between
the hippocampus and prefrontal cortex (PFC.) Studies have now shown correlation between
Aβ in the medial PFC with disrupted non-REM (NREM) SWA, also with impaired memory
transform (short to long-term) and retention overnight. The SWA waveforms also change. In
rodents, bidirectionality of SD and Aβ has been shown with shorter, fragmented NREM. [71]

Potential treatments targeting sleep are sleep hygiene (exercise, dim light, etc.), mela-
tonin (didn’t improve cognitive performance in drug tests), and transcranial direct current
stimulation (tDCS) during sleep. The last is effective for memory consolidation in multiple
patient types (schizophrenia, etc.) However, long-term evidence of efficacy is yet to be shown.
We need to better understand the different sleep stages and the progression of AD. With
this knowledge, non-invasive treatments targeting sleep restoration can be developed. [71]

Thus, a major takeaway for the future of AD research is the move away from the classical
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amyloid cascade hypothesis. [71]
In a news article published by Scientific American [72], it was reported that slow wave

sleep (non-REM, slow electrical oscillations) helps memory consolidation. It also drives CSF
and blood flow through the brain. We know wastes are cleared during sleep. But in the
Science article [73], Laura Lewis from Boston University asks why during sleep? [72]

The neuroscientists used EEG and fMRI to measure electrical activity, blood oxygena-
tion, and CSF flow, all at the same time in sleeping adults. As brain activity affects blood
flow, volume of blood in the brain is reduced, CSF comes in to fill this volume. They mea-
sured CSF coming into the fourth ventricle (produces CSF by filtering blood plasma.) The
wave flow pushes CSF around ventricles and into the meninges (space between membranes
surrounding brain and spinal cord), which carries away toxic wastes. The CNS combines
“making decisions” (like a boss in a company) about memories with “cleaning” (like janitors.)
In nature, everything is done simultaneously instead of separated and is thus more efficient.
Sleep disturbance is common in Alzheimer’s (characterized by a build-up of amyloid-β, toxic
proteins not cleared by CSF) as well as depression and schizophrenia, so there are many
related disorders of interest. In the future, neuroscientists want to do studies manipulat-
ing neural activity in mice (during sleep) and observe the consequences. Modulating brain
activity could be a treatment for humans. Studying sleep signatures can also be used as a
diagnostic. One major takeaway: sleep is important for this “housekeeping function” of the
brain. [72]

Amyloid plaques and neurofibrillary tangles are markers of Alzheimer’s disease. In the
past, treatment methods for Alzheimer’s disease have been focused on breaking up plaques.
But by the point that plaques have been formed, cognitive decline has already set in and
cannot be undone. In reality, the proteins that make up the plaques and tangles are the
deep-rooted problem: amyloid-β and tau. Toxic amyloid-β makes good tau protein unfold
(like a paperclip) and become toxic. This in turn kills neurons and causes failure at synapses.
Tau needs to remain healthy for Alzheimer’s prevention. [74]

Likely this whole process begins many years before the onset of cognitive decline. Humans
have so many neurons that our brains can compensate for this toxic conversion until the rate
of neuron death increases to an unsustainable rate. This is when Alzheimer’s becomes
symptomatic, but the damage is already too great. Dr. George Bloom, a professor with
UVA Biology and the UVA Brain Institute, suggests genetic testing to see who is at risk,
to then offer treatment up to 15 years prior to symptom onset. His work has most recently
been published in the Journal of Alzheimer’s Disease [75]. Memantine (Namenda) is one
such potential drug that might prevent tau unfolding into its toxic state. [74]

Of course, better tests need to be developed to determine who is at risk for Alzheimer’s
- unnecessary treatment should not be given to those who will not develop the disease.
Imaging, such as MRI, of the brain and meningeal lymphatic system could possibly reveal
early changes in the brain and risk factors. We are many years from effective prevention of
Alzheimer’s, as there are long-term clinical trials that need to be undergone for any drugs that
are developed. Studying this disease is expensive, but the consequences of not adequately
researching prevention are far greater. Alzheimer’s disease affects 6 million Americans today,
and costs $300 billion dollars for healthcare and treatment overall. The National Institutes
on Aging predict that by 2050, these numbers will increase to 16 million people and $1.1
trillion dollars. Clearly, we need to work towards a solution. [74]
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In 2019, drug trials ceased as the cognitive function of Alzheimer’s patients worsened [68].
Trials were performed by Amgen and Novartis Neuroscience Collaboration (launched in Au-
gust 2015) working with Banner Alzheimer’s Institute. The trials were testing BACE1
inhibitor CNP520 (umibecestat.) The inhibitor blocks the BACE1 enzyme that forms amy-
loid plaques. The failed trials mark another proof against amyloid theory of Alzheimer’s
disease. [68]

The current thinking is that the plaques are triggering inflammatory immune reactions
that causes neurodegeneration. It is suggested that simple drainage of lymphatics is
not the answer; the shape and branching also matters in how the vasculature interacts
with its environment. Lymphatic vessels carry the immune cells responsible for the possible
autoimmune attack mentioned above; treatments can target these vessels’ transport as well.
[68]

3.2.2 Multiple Sclerosis

The relationship between lymphatic vessels and disease is complicated. Vessels may help
develop conditions for Multiple Sclerosis (MS), which is not yet well understood. MS is an
autoimmune disorder where the immune system attacks the myelin sheath around nerves,
which disrupts communication throughout the body. A nerve affected by MS has a myelin
sheath that has been destroyed and the nerve fiber is exposed. A patient affected with MS
may lose the ability to walk.

When CNS immune privilege is undermined, autoimmune attacks occur, such as in mul-
tiple sclerosis. In this disease, immune cells specific to the CNS self-antigens cause damage
to the CNS. This results in paralysis. [3]

The MLV promote fluid homeostasis, but like other lymphatic networks, also aid in the
recycling of immune cells. In multiple sclerosis models, ablating the MLV has a positive effect,
because this allows the antigens, including those that attack the myelin sheath of neurons,
do not travel as freely. [65] In new research, the Kipnis lab, formerly at UVA, has found that
lymphatic vessels are linked to multiple sclerosis, and possibly other neuroinflammatory
diseases. There is a signal sent from the brain to the lymph nodes that requests immune
cells to reenter the brain. These immune cells travel through the lymphatic vessels and are
responsible for autoimmune attack, which can result in paralysis. [76] The positive effect is
shown by lowering paralysis in mice [65].

Blockading the MLV decreases pathogenicity and associated pathology in EAE, which is
the mouse model of multiple sclerosis [2]. Removing the vessels does decrease the number of
immune cells present, but does not completely remove MS from a mouse. We need to further
understand how the signal is sent (cellular, molecular, etc.) before researching treatment
options. Contrary to in Alzheimer’s disease, during neuroinflammation, there is little change
in the size or complexity in the lymphatic vessels. [76]

3.2.3 Parkinson’s Disease

Parkinson’s disease (PD), like Alzheimer’s disease (AD), is another neurodegenerative dis-
ease that displays abnormal accumulation of proteins in the brain parenchyma. Inadequate
removal of faulty brain cells during neurodevelopment can lead to long-term behavioral
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issues [77]. Modulating the MLV function does affect both PD and AD in terms of phys-
iopathology: the reduced drainage leads to more protein buildup for both diseases, which
further incurs neuronal damage and behavioral degeneration. [65]

The cellular cleaner is the AIM2 inflammasome, which has previously been associated
with infection immune response, but was first studied in the brain by [78]. The inflammasome
plays an important role in making sure the developing brain is properly assembled and
correctly functioning. This form of cleaning, by causing cell death, plays a direct role in
removing the unwanted cells from the CNS to establish a healthy brain, which has the
correct connections and the appropriate number of cells. [77]

Ataxia is a condition where individuals lose control of movement, a common symptom of
PD. This pathway could be contributing to neuronal loss that is prevalent with ataxia. The
cleanup is necessary, but over-cleaning can have negative consequences - potentially, ataxia.
Early-onset neurodegenerative diseases are associated with mutations in DNA damage repair
proteins, so this pathway could also be involved. [77, 78]

3.2.4 Autism

Autism spectrum disorder (ASD) refers to a wide range of conditions characterized by chal-
lenges with social skills, speech, and nonverbal communication, as well as exhibiting repeti-
tive behavior [79].

An unexpected form of cellular cleanup takes place in developing brains, as discussed in
Section 3.2.3. If too little or too much cleaning takes place, permanent changes take place in
the wiring of the brain. In experiments performed on laboratory mice, these changes result
in anxiety-like behavior. The changes may play a role in neurological conditions in humans,
such as autism. [77]

Brain cells that have genomic compromises, or damaged DNA, are normally expelled
from cells instead of being incorporated into the CNS. However, when the damage goes
unrecognized, cells containing DNA damage live on in the CNS and are evidenced by the ac-
cumulation of DNA damage in the brain. Over half the neurons created during development
of the brain end up dying, so proper removal is necessary. Again, too much or too little
cleanup is hypothesized to underlie autism and even intellectual disability - or any other
type of neurodevelopmental disorder. [77,78]

3.2.5 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that affects nerve
cells both in the brain and spinal cord, which causes loss of muscle control. ALS is often
referred to as Lou Gehrig’s disease. [80]

The discovery of the AIM2 inflammasome pathway’s involvement in cell cleanup (dis-
cussed in Sections 3.2.3 and 3.2.4) came about somewhat by accident. Researchers [78] were
observing the behavior of laboratory mice during an investigation of traumatic brain injury.
That unexpected lead gave the scientists a better understanding of the developing brain,
which may in the future yield new treatment possibilities for neurological disease. [77,78]

Such treatment options are likely far in the future, but such a therapy could have
widespread benefits. A treatment strategy for the AIM2 inflammasome pathway in the
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adult brain would likely prove efficacious for most neurodegenerative diseases that are a re-
sult of DNA damage. That includes the major diseases discussed in Sections 3.2.1 and 3.2.3,
as well as ALS. [77,78]

3.2.6 Huntington’s Disease

Huntington’s disease (HD) is a fatal genetic disorder. HD causes progressive breakdown of
nerve cells in the CNS. This breakdown causes deterioration of an individual’s physical and
mental abilities, usually during their prime working years. HD has no cure. [81]

After ablation of the MLV, the authors of [1] found fold changes in genes, particularly
those associated with Huntington’s, Parkinson’s, and Alzheimer’s diseases.

3.2.7 Stroke

Stroke occurs when the blood supply to a part of the brain is interrupted or reduced, pre-
venting the brain tissues from receiving oxygen and nutrients. Brain cells can begin to die in
just minutes. A stroke is considered a medical emergency, and prompt treatment is crucial.
Early action could reduce brain damage or other complications. There are two overarching
types of stroke: ischemic, due to a lack of blood flow, and hemorrhagic, due to bleeding, or
hemorrhaging. [82]

In stroke, the method of stroke affects the morphology of the MLV. For example, pho-
tothrombosis (PT) induces lymphangiogenesis, while in transient middle cerebral artery
occlusion (tMCAO), lymphangiogenesis is not observed. On the other hand, the absence of
MLV during tMCAO worsens the stroke conditions, but this is not the case during PT. [65]
We still need more understanding on the relationship of vessel structure with different dis-
eases.

3.3 Lymphatic System

3.3.1 Glymphatic System

The glymphatic system, or paravascular system, refers to the peripheral lymphatics, outside
of the CNS. This system facilitates the flux of CSF (cerebrospinal fluid) in and out of the
brain parenchyma to allow waste removal. [65,83]

Lymphatic vessels transport pathogens to lymph nodes so they can start creating anti-
bodies and build immunity. Lymphatic vessel endothelial cells making up the vessels express
hyaluronan receptor 1 (LYVE-1). The lymphatic valve system made of flaps; opening a
valve lets in pathogens and other cells. These are on initial lymphatic vessels where cells
enter through “button” pattern junctions between cells. This implicates that the amount of
surface area of these branched vessels is most important for determining amount of uptake.
The smooth muscle of collecting lymphatic vessels (after the initial) uses contractions to
propel lymph towards the lymph nodes. The diameter should be measured here, at these
wider, less branched vessels. [84]

Lymphangiogenesis is the remodeling of peripheral lymphatic networks during inflamma-
tion. [65] Lymphangiogenesis is seen in cancer and inflammatory disease. Hypothetically, the
spreading network can allow for more fluid and cell flow. Macrophages secrete growth factors
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(VEGF) that lead to sprouting and multiplying of vessels. New vessels have wider diameter
but no “button” like junctions, so there may be less pathogen and cell entry. Inflammation
reduces lymphatic pumping, and the vessels become more permeable, allowing lymph to leak
out. (Excess fluid pressure outside the vessel walls due to leakage could cause propulsion of
lymph without needing contractions.) However, it has been shown in [85] that lymph flow
velocity is reduced when pumping of vessels is suppressed. Can this decrease in velocity be
shown in meningeal lymphatic vessels as well? [84]

The first, along with Louveau et al. [86], to molecularly characterize the meningeal lym-
phatic vasculature and its function in the drainage of CSF-derived constituents through the
cervical lymph nodes, was Aspelund et al. in 2015 [87]. The authors used the reporter
mice Prox1-GFP and lymphatic deficient mice K14-sVEGFR3 to demonstrate the impor-
tance of the MLV in draining brain-injected macromolecules to the peripheral lymphatic
system. [65,87]

CT-lymphography provides three-dimensional imaging of the lymphatic system in hu-
mans, allowing for visualization of small lymphatic channels, down to 0.7 or 1.2 nanometers
in diameter. This is higher resolution than using other imaging techniques, although CT-
scans do expose patients to radiation. [88,89] This 3D imaging helps researchers particularly
understand the connection between the meningeal lymphatics and the peripheral lymphatics.
It provides the ability to map defective vessels and augment drainage of the lymphatics. [90]
As this is a different imaging modality entirely from what is used here (confocal microscopy),
the noise and artifacts present in these images will be different.

[91] discusses the vascular permeability of lymphatic endothelial cells. An interesting
experiment is performed with young and old human skin and the lymphatic vessels imaged
there, complete with information about how the two types of skin exhibit different markers
or proteins. [91] It is interesting to note that there is a difference in permeability correlated
with age even in the peripheral lymphatic endothelial cells. Perhaps the permeability of the
endothelial cells also affects the ability of the MLV to effectively drain fluid, the discussion
of which takes place in Section 3.3.2.

3.3.2 Function of the Meningeal Lymphatic Vasculature (MLV)

The meninges communicate to the brain periphery via the lymphatic system, because the
meningeal compartment lacks a blood brain barrier. The meningeal lymphatic system is a
central regulator of CNS homeostasis. [65] It was first described in 1787 by Paolo Mascagni
[92] but was excluded from anatomical textbooks, and only recently re-discovered in 2014 [3].

Meningeal lymphatic vessels maintain proteostasis or proper levels of proteins in brain
fluids. The brain doesn’t have its own lymphatic vessels to drain waste, so proteins and waste
are transported via the interstitial fluid (ISF) out of the brain parenchyma. The ISF travels
along blood vessel walls to reach the CSF and the lymphatic vessels. Waste clearance occurs
across the blood brain barrier, through a process called transvascular clearance. However,
with age, transvascular clearance is inhibited, and more responsibility falls to the lymphatic
vessels. If the lymphatic vessels also narrow, then plaques accumulate. [93]

A seminal paper written by Antoine [3] really elucidates the importance of the meningeal
lymphatics. The meningeal lymphatics are present around blood vessels in the meninges.
The fluid part of the CSF (cerebrospinal fluid) drains through those blood vessels, but
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immune cells present in the CSF, such as T cells and B cells, are drained through the
surrounding lymphatic vessels, all the way to the deep cervical lymph nodes. This drainage
occurs in steady state. [3]

The central nervous system has immune privilege, meaning that antigens, such as self-
reactive T cells, can be introduced to the CNS without causing an allergic reaction. Drainage
may also contribute to keeping this peace. [3]

The underlying question then remains: do patients with MS or Alzheimer’s exhibit
changes in their meningeal lymphatics? If so, could we predict onset or of these diseases or
diagnose patients by studying an individual’s lymphatic vasculature? [3]

The authors of [86] used a new dissection method to study the meninges using multipho-
ton imaging, which allows them to demonstrate the extent of CSF uptake by the MLV. [65,86]

The first in vivo imaging of the MLV in humans was performed by [94]. The authors
developed an MRI approach for visualization of the enrichment of gadalinium within the
MLV of primates and humans. The presence of these genuine lymphatic vessels was confirmed
using immunohistochemistry. [65,94] As the images of humans are taken using MRI, different
image processing techniques may be required for analyzing the MRI images compared to the
microscopy images used in this thesis.

Meningeal lymphatic networks (MLV) develop postnatally, unlike other lymphatic net-
works. Development of the MLV depends on the Vascular Endothelial Growth Factor c -
Vascular Endothelial Growth Factor Receptor 3 (VEGFc-VEGFR3) pathway, just as pe-
ripheral lymphatic networks do (those outside the meninges.) The MLV network remains
dependent on this pathway well after the developmental stage. [65] [95] provides the first de-
scription of postnatal development of MLV, and shows that the VEGFc-VEGFR3 pathway
is required for maintenance of the MLV. The authors demonstrate that cranial and spinal
lymphatic vessels initiate development postnatally, around day eight, and further grow until
day twenty-five. This work also presents the first evidence that the MLV, contrary to the
peripheral network, requires constant signaling through the VEGFR3 pathway in order to
be maintained [65,95].

A salient discovery that strongly advocates for the research in this thesis, was published
in 2018 by [1]. This paper provided the first demonstration of the implication of MLV
dysfunction in the context of Alzheimer’s disease and aging. With aging, the MLV decrease
in function. [65]

Using chemical and physical approaches, the authors demonstrate that the meningeal
lymphatic vessels are a key regulator of the overall glymphatic system [65]. In their exper-
iments, [1] injected mice with a vessel-damaging drug, and found that the CSF no longer
reached the deep cervical lymph nodes located in the mouse neck [93]. Mesquita et. al. [1]
impaired lymphatic vessels in mice in three ways: ablating them by injecting visudyne, surgi-
cally ligating them, and using mice that are genetically impaired. These impairment methods
do not affect the blood vessels in the meninges. Using all three methods, the authors find a
decreased amount of CSF draining through the lymph nodes, i.e., reduced molecular diffu-
sion in the brain parenchyma. This impeded fear memory and spatial learning. They also
found transcriptional alterations associated with synaptic plasticity in hippocampal neuronal
transmission. [1]

The MLV is capable of uptake of CSF, which was found in studies performed by [1], where
the MLV was ablated, resulting in less CSF derived macromolecules found in the cervical
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lymph nodes. However, this did not cause buildup in CSF pressure, so unlike peripheral
lymphatics, the MLV is not responsible for recycling of interstitial fluids - that amount of
fluid would be too large for MLV uptake. [65]

Still, the MLV is definitely a regulator of the glymphatic system, which removes wastes
from the CSF into the brain parenchyma. During aging, restoring impaired MLV using
VEGFc results in improvement in drainage, glymphatic function (waste or protein removal)
and cognitive decline, which was observed in [1]. Amyloid buildup is reduced, and the
behavioral effects can be demonstrated in mice. [1] These observations are not fully under-
stood. When MLV are impaired, this might change the composition of the CSF, meaning
cell concentrations will be shifted, changing the cells’ ability to remove wastes. [65]

The experiments are performed on male and female wild type mice, whose fresh frozen
brain sections are fixed and stained with antibodies before imaging. The Alzheimer’s mouse
models do not have plaques in the meninges, but if their lymphatics are ablated, then the
plaques grow in regions similarly to plaques in humans whom they imaged. This is significant:
human plaques are due to lymphatic impairment, and current Alzheimer’s mouse models do
not capture the whole picture. [1]

One interesting discovery to explore is that inducing local lymphangiogenesis may pro-
mote drainage and waste clearance [93]. Restoring drainage functionality in aged mice res-
cued intra-parenchymal CSF recirculation and improved age-induced cognitive decline [65].
Aged mice can be treated with vascular endothelial growth factor C to improve lymphatic
drainage and peripheral lymphatic sprouting. The drainage could help performance of cur-
rent AD antibody treatments. [1]

The images presented in this thesis were captured by the authors of [1]. The green-
channel images are meningeal whole-mounts, from the top of a mouse head. All of the
cranial MLV images are of the superior sagittal sinus (SSS).

In [2], the implication of the MLV in the CNS immune response is described. The authors
use genetic and chemical methods to discover the contribution of the MLV in immune cell
recirculation and immune response. It is demonstrated that CCR7 expression by meningeal
immune cells is required for recirculation through the MLV. [2, 65]

[96] provides evidence of the extent and function of the MLV at the skull base. The
authors show that CSF enters at specific locations at the base of the skull, where the dura
mater is thinner. The authors also demonstrate the dorsal and basal lymphatic vessels
behave differently during aging, which provides insight into the regional specificity of the
MLV. [65,96] The different behavior is observed phenotypically in the MLV structure, which
will be discussed in Section 3.3.3.

3.3.3 Complexity of the MLV

[95] present some complexity measures on the MLV. By measures in this section, we simply
refer to measures of some biological quantity, not a measure on a set. The authors mention
thinning in areas, and calculate the percentage area of lymphatic vessels over image size,
for whole mount images. Discontinuity of vessels is noted, measured by the number of end-
points in a vessel, or the number of connected components. This number of breakpoints or
discontinuities may be important to understanding the development or degradation of a net-
work. For calculating all of these measures, including area, accurate segmented boundaries
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are necessary. [95]
The two main measures used by [1] for measuring changes in lymphatic vessels are per-

centage area, or coverage, and average diameter of vessels. The diameter is averaged across
one hundred vessels and fifty measurements per vessel. It is unclear if the measurements
are taken across the width of the main vessel, or across secondary branches. Different re-
searchers measure vessels, which results in a variation of 15 percent in absolute diameter.
This measurement variance is unacceptable, since vessel diameter should be a fixed, mea-
surable metric. [1]

In [2], the total length and the number of sprouts are measured for MLV complexity.
The number of sprouts is measured relative to the distance from the pineal gland, along the
transverse sinus. LYVE-1 percentage of coverage is also measured over the image, but this
measure must contain a large amount of noise, as LYVE-1 uptake is heavily present in the
image background. Lymphatic ablation is measured by either LYVE-1 area over the total
area of the sinus, or the length of the lymphatics compared to the length of the sinus. [2]

The spinal region contains lymphatic vessels; a network of collecting lymphatics is ob-
served at each nerve root between the lumbar and cervical regions of the spinal cord. These
are the lymphatic vessels we will analyze in our images of the spinal meninges. Analysis of
these spinal lymphatics showcases a permeable lymphatic phenotype, which scales positively
with complexity. Less complex junctions are found to be imperbeable, such as the zipper-like
junctions found along the transverse and superior sagittal sinuses [2, 65,95,96].

Measures taken by [96] include the number of branches per millimeter of vessel length.
Branches are defined as sprouting tips with length over 100 microns. This measure is taken
on whole-mount images only. The count is taken manually, and normalized by the total vessel
length in a given image. The other measures taken are the number of zipper-type junctions
and the number of button-type junctions, the latter of which are more permeable. The cell
boundaries need to be visible to determine the junction type. Junction type is related to
the location of the MLV, with zipper-like junctions found in the transverse and superior
sagittal sinus (SSS), and button-like junctions found in spinal lymphatics. Lymphatic vessel
coverage of the SSS is also measured, by taking the amount of LYVE staining around the
SSS. Diameter of the vessels is sampled every 20 microns. Lymphatic regression, a negative
phenotype associated with age, is measured by comparing the length of the lymphatic vessel
to the length of the SSS, with the confluence of sinuses taken as the origin (center of the
junction in a whole-mount image.) [96]

Transcriptomic analysis of the MLV shows that the genes regulating development and
maintaining of the vasculature are unique from those of the peripheral lymphatic system.
This implies that while the MLV and peripheral lymphatic endothelial cells (LEC) share
molecular features, atypical pathways are involved in forming and maintaining the MLV. [2]
This is extremely important. Therefore, it is reasonable to conclude that the structure could
also be different from regular lymphatic networks, since the genes encoding development and
maintenance are different. [65]

During the inflammatory state, there is no change in the dorsal or spinal MLV. However,
the cribiform plate MLV expands, similar to peripheral lymphangiogenesis [2,97]. With age,
the dorsal MLV degenate and the basal MLV undergo hyperplasia [1, 96]. Hyperplasia is
enlargement, a morphological change. [65]

Based on this review of what is currently known about the meningeal lymphatics, it
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is clear that much remains unknown. The current approaches for studying the MLV are
not transferable to clinics and human patients as of yet. Thus, researching the mechanics
and molecular dynamics of how the MLV change the meningeal and parenchymal brain
compartments is of great necessity. [65] It is clear also to see that structurally, there are
great changes in the MLV in different conditions, and that these structural changes result in
great molecular changes in the central nervous system, which can either worsen or improve
disease prognosis depending on the disease. To study the vascular structure, and in the
future hopefully model these dynamic causal effects, accurate segmentation of the MLV is
of the utmost importance.
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Figure 2: Example of segmentation using LyMPhi on an image of spinal lymphatics after
contusion injury. The result shown here is the segmentation binary mask multiplied by the
red channel of the original image, to show the full variation of intensity and shadowing in
these microscopy images.

4 Level-Set Segmentation

4.1 Background on Segmentation

As our proposed method, called Lymphatic Matted φ (LyMPhi), where φ represents the
signed distance function used to evolve the level set boundary, is fundamentally a level set
based method, it is important to describe the intensive history of level set segmentation.
The power of this level set segmentation can be seen in Figure 2.

Level set segmentation is a geometric adaptive technique that benefits from the ease
of varying the topology of active contours by automatic splitting and merging [98]. This
geometric segmentation utilizes a higher-dimensional function φ where the zero level set
represents the object boundary [99]. The motion of the object contour is performed as the
evolution of the zero level set by minimizing the energy functional E(φ) [98–100]:

E(φ) = Eexternal(φ) + Einternal(φ) (1)

where Eexternal represents the energy of the external force that drives the movement of
the contour, while Einternal regularize the smoothness of the contour.

Numerous level set segmentation methods have been proposed over recent decades for
tubular structures. [101] uses regional kernel for variational level set formulation [102] to
maintain the continuity of segmented retinal vessels with variant intensity, where the kernel
parameters are manually adjusted for optimal performance. Post-segmentation using a re-
gion growing technique is required to recover the missing thin vessels and remove the falsely
detected signal. L2S [103] models the inhomogeneity of tubular structures and intra-region
illumination variations using Legendre Polynomials. It can preserve the overall structure
automatically, but is biased to the initialization of the level set functions. TuFF [104] in-
corporates the idea of region growing mentioned earlier. Within the curve evolution, an
attraction force is proposed to reconnect the disjoint vessel components that are lost using

31



traditional level set segmentation methods, mainly due to thresholding based initialization.
TuFF is a stable work on segmenting tubular structures; however, in the context of seg-
menting lymphatic vessels, it is challenging to initialize the level set functions to cover all
branches which are present throughout the image. Another concern that affects the perfor-
mance of TuFF on lymphatic vessels is the tradeoff between smoothness of the curve and
details of the signals. Because of the variant thickness of vessels, inhomogeneous intensity
within the vessels and clutter in the background, smoothing parameters are hard to control,
and oversmoothing often results.

The level set methods described above [101–104] require an initial guess, or offset/threshold
value for the level set boundary. Most level set algorithms use intensity thresholding, com-
bined with search of specific object scales within the image. Neither of these base methods
are substantial especially for meningeal lymphatic segmentation because of the wide vari-
ability of intensity and scale within even one single vessel. Reduction of clutter appearing
in the segmentation result, using existing techniques, inevitably removes vessel information
that cannot always be fully recovered by region growing methods.

The following are the main roadblocks to successfully segmenting meningeal lymphatic
vessel images: the variant thickness of vessels, in-homogeneous intensity within the vessels,
noise, and background clutter. The background clutter is perhaps the most challenging
aspect; it consists of blood vessels with which the lymphatics vessels are intertwined, as well
as other cell types that are also stained. The clutter cannot be removed with thresholding
because the vessel staining varies widely in intensity. Existing level set methods do not
accommodate these unique challenges of lymphatic vasculature images. In order to remove
background clutter, TuFF, for instance, relies on consistent vessel size, which cannot be
used in images of lymphatic vasculature. Lymphatic vessel structure varies widely in shape,
thickness, and structure. In response to these challenges, we propose a new method which we
call Lymphatic Matted φ, or LyMPhi to perform image analysis of lymphatic vasculature.
LyMPhi utilizes a technique called matting which has been used by others as applied to
retinal images [60]. However, to our knowledge, this is the first ever reported work that
further develops and uses matting applied to the image analysis of lymphatic vasculature.
Furthermore, LyMPhi is the first level-set method powered by matting to reduce clutter in
segmentation.

Many of the major segmentation and analysis challenges are shown in Figure 3. Even for a
scientist, determining which parts of the image belong to the lymphatic vessel set is difficult.
In Figure 3c, there are small endothelial cells at the bottom middle cluttering the image. The
boundaries of the vessels are not always well-defined, and are surrounded by noise. Hand
annotation, thus, is unreliable as well as time-consuming. Removing these repeating noisy
artifacts while accurately segmenting the vessel boundary manually is challenging, as the
difference in intensity between the noise and the vessel boundary is small.

4.2 Proposed Method: LyMPhi

We propose a level set method called LyMPhi. The proposed method is based on the TuFF
algorithm, while incorporating hierarchical image matting to remove background clutter.

Level set segmentation provides smoothness of object boundaries, while powerful sepa-
ration of background and foreground is produced by matting. Since both TuFF and hierar-
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(a) Image of meningeal lymphatic vessels. (b) Contrast enhanced version of the image.

(c) Detail of the contrast enhanced image.

Figure 3: One example image. The original image is shown on the left (a), and the contrast
enhanced image is shown on the right (b). The contrast enhancement displays the challenges
of noise, artifacts, intensity variation, and background clutter. The final image (c) is a detail
image from (b).
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chical matting [60] were developed for segmenting vasculature, they are appropriate parent
methods to LyMPhi.

4.2.1 Matting

Matting is a technique used to separate foreground pixels from background pixels, which
is necessary to remove the background clutter mentioned above. The images of lymphatic
vessels share some similarity with retinal fundus images, which capture blood vessels growing
on a surface. Since the lymphatic vessels also grow on a surface (blood vessels) which is the
main contribution to the clutter, a matting procedure developed for retinal images is adapted
for use in LyMPhi.

Fan et al. [60] propose the first matting algorithm for segmentation of fundus images.
Matting was previously not possible for fundus images because of the amount of time it
would take for a user to generate a trimap. The initial trimap generated by the authors
is automated, under some size constraints dictated by the known properties of the blood
vessels imaged. This initial trimap is then refined using the hierarchical matting procedure,
which stratifies unknown pixels into hierarchies based on distance from known pixels and
then updates pixel labels in order of hierarchy. Unknown pixels are assigned labels based
on their correlation with labeled neighbors. This method has been tested against leading
supervised and unsupervised methods for retinal image segmentation, yielding high accuracy.
The proposed matting model also has the benefit of being less computationally complex than
leading deep learning methods, as well as having higher performance. [60]

This matting algorithm is called hierarchical image matting [60]. It can effectively remove
clutter as well as retain small vessel details. The matting procedure is composed of three
steps.

Initial Trimap: Image matting begins with an initial trimap, composed of foreground
vessel (V ), background (B), and unknown (U ) pixels. In the original method, the trimap
is generated using size criteria on the blood vessels. Since lymphatic vessels vary widely in
size and shape, and enough studies have not been performed to set a bound on maximum or
minimum vessel width, our method uses an automated approach to initial trimap generation.
In LyMPhi, the initialization step is performed using simple Otsu multithresholding for the
spinal dataset, to provide two threshold levels: low and high [59]. For the partial and whole
mount datasets, the lower threshold is 75, and the upper threshold is 100; out of 255 for
a grayscale image (single channel.) The lower threshold is used as the cutoff for B, while
the upper threshold is used for demarking V. The pixels with intensity between the two
threshold levels fall in the set U.

In [105], Otsu multithresholding is also used as a pre-segmentation step for iris segmen-
tation, which is then optimized using geodesic active contours, as Otsu’s method does not
provide the best results if the image histogram is not easily separable. In LyMPhi, Otsu’s
method can be used to initialize the hierarchical matting procedure, which will be used to
drive level set evolution.

Stratification: The minimum distance from a vessel pixel in V , di, is calculated for each
pixel in U . The pixels in U are stratified into hierarchies based on this minimum distance.
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Unknown pixels with the same distance, di are collected into one hierarchy. The hierarchies
are ordered based on distance, with the lowest distance hierarchy being assigned label 1.
There are m hierarchies, H1 to Hm. Each hierarchy has the form:

Hj = {uji |iε1, 2, ..., ni}. (2)

ni is the number of unknown pixels in each hierarchy that need to be labeled.

Hierarchical Update: The hierarchies are updated in order, from closest distance to V
to farthest. In a grid centered on each unknown pixel, correlations are calculated between
the unknown pixel and surrounding known pixels. The correlation function is composed of
a color cost function and a spatial cost function. The color cost function is defined as

βc(u, k) = ||cu − ck|| (3)

where cu and ck are the intensities of the unknown and known pixels, respectively. The
intensity is taken in the red channel of the original image. The spatial cost function is

βs(u, k) =
‖xu − xk‖ − xmin
xmax − xmin

(4)

where xmax and xmin are normalization terms; namely, the maximum and minimum
distances between the unknown pixel u and any known pixel k in the surrounding grid. The
combined correlation function is

β(u, k) =
1

βc(u, k) + βs(u, k)
. (5)

The final decision rule for labeling an unknown pixel is described by

Iv =

{
1 if β(u, V ) > β(u,B)
0 else

(6)

Iv representing the mask of vessel pixels. [60]
The matting algorithm provides good separation between background and foreground

elements. However, the matting result is not smooth because the method is not iterative
and has no smoothness constraints, which is one reason why it is used in combination with
level-set segmentation.

4.2.2 Level Set Formulation

The energy functional in 1 can be tuned to the problem at hand. To address the challenge of
segmenting lymphatic vessels, we exploit TuFF [104] as the framework of our proposed level
set segmentation method. LyMPhi can preserve the vessel-like tubular structure by using a
local attraction force (Fattr) to join the discontinuous components:

E(φ) = Ereg(φ) + Eevolve(φ) + Eattr(φ) (7)

Here, inside of the zero level set is denoted as φ > 0, while the outside is φ < 0.
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Figure 4: The top shows the initial trimap, consisting of background, unknown pixels, and
estimated foreground. Images are binary, white indicating belonging to the set in question,
i.e., background, foreground, unknown. After image matting, the calculated background and
foreground have converged.

36



The Ereg term regularizes the length of the zero level set, which controls the smoothness
of the contour. Eevolve drives the evolution of the curve where a combination of axial and
orthogonal vector field is used to achieve the curve propagation perpendicular to the vessel
boundary and along the vessel axis, respectively. The former design fulfills the width of the
tubular structure and the latter one traces the growing length along its major axis. Eattr
acts for connecting the discontinuous fragments in a way of creating an attraction force field
using vector field convolution (VFC) [106]. As a result, two disconnected components will
be attracted to connect if the two separate curves lie in the neighboring force field where the
forces (Fattr) are opposite and hence mutually attractive.

Minimization of the energy functional is solved using gradient descent, using

δφ

δt
= Freg(x) + Fevolve(x) + Fattr(x). (8)

Freg and Fevolve are the forces due to their corresponding energy functionals, described
above. Freg, Fevolve, and Fattr are forces, which are defined and applied with respect to the
normal direction of the implicit function, ∂φ

∂t
(as described below.) The Freg term regularizes

the length of the zero level set, which controls the smoothness of the contour. Fevolve drives
the evolution of the curve where a combination of axial and orthogonal vector field is used
to achieve the curve propagation perpendicular to the vessel boundary and along the vessel
axis, respectively. In TuFF, this vector field is created using a edgemap of the vesselness
response map, produced by [63], and tuned by the scale parameter determining the thickness
of the vessels. As tuning this parameter is difficult for lymphatic vessels, where the vessel
scale varies greatly, in LyMPhi, the edgemap is instead computed on the original image.
Fattr acts for connecting the discontinuous fragments in a way of creating an attraction

force field using vector field convolution (VFC) [106]. The vector x is a position in the image.
Freg = ν1div[n(x)]δε(φ) while

Fattr(x) = ν2

p∑
i=1

p∑
j 6=i

F (i,j)
attr (x), ∀x ∈ Ω. (9)

The full expression of Fevolve is not included here due to size constraints. The full forms
and derivations of all forces can be found in [104].

For Freg, ν1 is a smoothing parameter, n(x) is the inward normal unit vector to φ, and δε
is the regularized Dirac delta function [107]. For Fattr, ν2 decides the effect of the attraction
force, and p is the number of disjoint connected components that can potentially be attracted
to one another. Ω is the image, and d is the dimension of said image. The local attraction
force is defined as follows: F (i,j)

attr (x) = κi 〈Γi(x),−n(x)〉 θj(x). i, j refer to two connected-
components. κi is the normalized mass of the “child” component. The indicator function
θj(x) determines if a child component is within the convex hull of the ”parent.” Γi is the
attraction force field computed via the VFC technique [106].

Level set evolution is an iterative process, where the level set boundary moves closer to
the object boundary over many iterations. A novel modification we make to level set curve
evolution takes place during the iteration process. We design a force field over the image
that is made up of the component forces:
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Figure 5: Example force field around vessel. The blue arrows inside the vessel point out to-
wards the vessel boundary, and the arrows outside drive the level set in towards the boundary.

F (i, j) = Freg(i, j) + Fevolve(i, j) + Fattr(i, j). (10)

This force field is the velocity of the level set evolution, or ∂φ
∂t

. The velocity at each point
(i, j) has a magnitude and a direction. The magnitude is the speed at which we move the zero
level set inwards or outwards towards the object boundary (moving the level set elevation
up or down), calculated from the component forces. However, we modify the direction of
the velocity according to the matting result, as explained below.

4.2.3 Curve Evolution

As the level set evolves, the level set boundary can be pulled towards the foreground pixels
and away from the background pixels, to more tightly constrain the final segmentation to
the foreground pixels.

At each pixel in the image, there is an overall force determined by the separate forces
in 8. This overall force has either positive or negative sign, denoting whether this pixel, at
that iteration, is thought to be within the object boundary, or not. LyMPhi modulates this
overall force at each pixel location by performing a check with the initial matting result. An
example force field is shown in Figure 5, drawn using software from [106].

To realign the level set boundary towards the desired foreground, LyMPhi changes the
sign of the signed distance function at each pixel according to whether it is labeled foreground
or background by the matting procedure. All calculated foreground pixels now have a positive
signed distance to indicate that they lie within the object boundary, whereas all background
pixels are given a negative signed distance to show that they lie beyond the boundary.
Restraining the level set evolution to calculated vessel foreground enables LyMPhi to more
closely adhere to small vessel details, instead of obscuring these details on the quest for
overall smoothness, as in other level set methods.

After computing (8), the following is used to drive foreground propagation:

δφ

δt i,j
=


∣∣∣ δφδt i,j∣∣∣ if ui,jεV

−
∣∣∣ δφδt i,j∣∣∣ if ui,jεB

(11)

to change the sign of δφ
δt

at each pixel location (i, j). u is the pixel at (i, j) and V,B are the
foreground and background maps produced by matting. An example is shown in Fig. 6 at
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Figure 6: Modifying the velocity field that drives curve evolution. The level set contour is
shown with a purple dashed line. The yellow shape represents the foreground calculated by
hiearchical matting. In (A), the red arrows along the level set contour are driving curve
evolution further towards the vessel interior. In (B), this is corrected using the decision rule
11. The corrected velocity field drives curve evolution at subsequent iterations towards the
outer vessel boundary.

iteration t. At time t, the original velocity field, calculated from the TuFF forces, is shown by
brown arrows. The yellow shape represents the calculated foreground, V , from hierarchical
matting. In (A), the red arrows represent an incorrect direction for curve evolution. These
arrows are driving φ inside the vessel. These directions are corrected in (B), using the
matting label calculated. The now green arrows of the contour evolution speed have been
changed in the normal direction.

4.3 Experiments Performed and Results

4.3.1 Description of the Datasets Used

There are three real image datasets used for the experiments performed. All three datasets
contain confocal microscopy images taken of lymphatic vessels in mice, stained with LYVE-
1. The images were acquired by the Kipnis laboratory at the Center for Brain Immunology
and Glia (BIG), then at the University of Virginia School of Medicine, Department of Neu-
roscience. The current imaging technology produces 2D images, as the lymphatic vessels are
laid on a slide and then imaged. In the future, we hope to extend LyMPhi, particularly the
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matting algorithm, to 3D images of lymphatics.
There are 39 images in total. Seventeen of these are images of the superior sagittal sinus

in the mouse brain, with nine images taken in whole-mount, and eight in partial-mount.
An example of the whole-mount sinus is shown in Fig. 8. The images are 16 bits per pixel
for the spinal dataset, and 8 bits per pixel for the whole and partial mount datasets. The
image size varies within each dataset. The whole-mount images are 2643x948 pixels, with
one image having dimensions 2311x948 pixels. The resolution is 0.33 pixels per micron. The
partial-mount images vary more widely in dimension, with the minimum width and height
being 4631 and 1941 pixels, respectively. The maximum width and height are 4653 and 1993
pixels. Resolution is 1.61 pixels per micron.

The twenty-two remaining images are of lymphatic vessels in the mouse spinal cord
post-injury. These images are referred to as the spinal dataset, an example of which is
shown in Fig. 7. While these vessels do not originate from the spinal meninges, they are
phenotypically related to the meningeal lymphatic vessels. The spinal dataset original images
vary the most widely in dimension. The minimum width and height are 1344 and 702 pixels,
and the maximum width and height are 4195 and 3114 pixels. The resolution for these
images is 0.805 pixels per micron.

It is valuable to have three datasets with different resolutions because different levels of
vessel details are captured. The vessel size and structure varies widely for each dataset. The
whole-mount images contain the most clutter, as they have the entire structure of the blood
vessel network present in the sinus, showing the lymphatic vessels growing on top of and
around the blood vessel network (shown in Fig. 8.) The partial-mount images provide finer
detail along within the sinus, generally displaying the overall vessel structure at finer detail -
which necessarily removes higher level structure, such as branching or looping. In the spinal
dataset, lymphatic vessels aggregate in rounder shapes, with a large amount of holes or gaps
in the vessels, as shown in Fig. 2. The vessels in the spinal images are overall not as thin or
elongated as the meningeal lymphatic vessels shown in the other two datasets.

The driving biological interest in this approach is in segmenting meningeal lymphatics in
the sinus, but because of limited data (17 images), testing is also performed on the spinal
images. High performance of LyMPhi on the spinal dataset may imply promising application
to generalized lymphatic vessel images.

4.3.2 Creation of Manual Annotation

Manual segmentation was performed for comparison with automated segmentation methods.
Three operators created separate annotations for each dataset, and the images were merged
using majority voting to create one consensus segmentation image for comparison. The
vessels are primarily distinguished by brightness or color, and also by shape and relation to
surroundings. This manual quantification was performed using the software FIJI (ImageJ), a
Java-based image editing software package. The manual annotation is generated by using the
“Clear” tool under “Edit,” with “Freehand” selection. The user draws regions around objects
in the image that are not considered lymphatic vessel, and these are cleared successively,
until only lymphatic vessel content remains in the image.

The important discrepancies were of both interobserver and intraobserver nature; both of
which could cause issues with replication. With interobserver discrepancy, there is a poten-
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tial for variation in segmentation from different observers, due to the occasional ambiguous
definition of a vessel in accordance with its surroundings. This could cause inconsistencies in
the resulting cropped image as the criteria (mostly pixel group brightness) for a vessel could
be interpreted differently. Even the same person will create slightly different manual seg-
mentation for the same image if created at separate times. The time taken to perform hand
segmentation ranged from roughly 30 minutes to an hour; therefore, there is a high potential
for fatigue, and subsequently, error. This was the main cause for intraobserver discrepancy;
usually a day or two after originally segmenting images, we reprocessed the images, due to
the fact that some clutter was originally missed. Annotating in the vicinity of small holes
and gaps in the vessel presents difficultly; zooming into these smaller regions means that the
intensity variations between vessel and non-vessel are less easily detectable by the human
eye, due to noise. Often, these holes or gaps are overlooked or improperly manually seg-
mented. All of the above problems attest to the fact that hand-segmentation is far less than
ideally efficient as the state-of-the-art method for lymphatic vessel quantification; a better,
more accurate way is needed if the data is to be analyzed in larger quantities. We thus add
a synthetic dataset to our testing data, discussed in Section 5, to provide unimpeachable
ground truth.

4.3.3 Comparative Methods Tested

Four methods are compared on the datasets described above.
Simple Hierarchical Image Matting: This is a matting based segmentation method de-

veloped for blood vessels in fundus images, as described in Section 4.2.1. Initialization is
performed using Otsu multithresholding, and the grid size used for hierarchical update is
9x9, as in the original paper [60]. We use our own implementation of the method, based on
the equations given in the referenced paper.

L2S: The earliest method tested is L2S, a Legendre polynomial based active contour
segmentation method, developed to deal with intensity inhomogeneity along object bound-
aries [103]. The upper bound on iterations was set to 1,000 (the default.) For this method,
initial contours are set by the user using an elliptical boundary surrounding each vessel. The
user also must indicate how many separate vessels to segment per initial contour. There
are several initial contours for each image, because the vessels are found in different image
regions.

Simple TuFF: This method is Tubularity Flow Field, a level set method developed for
neuron segmentation, as discussed above in Section 4.1. TuFF is run for 80 iterations per
image (the default.) The scales parameter is set to 10 for these images, which defines the
width of the Gaussians used for the Frangi vessel enhancement. This choice is used in order
to enhance the most prominent vessels in the images. All other TuFF parameters are used in
their default settings. Simple morphological post-processing is used to remove small objects
from the final segmentation.

4.3.4 Measuring Segmentation Accuracy

Each result was compared to either the manual majority voted annotation or the generated
ground truth using the Sørenson-Dice coefficient to measure accuracy [108]. This measures
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the pixel overlap between the annotation and the experimental results (or for the synthetic
case, ground truth vs. experimental), and combines evaluation metrics such as sensitivity,
specificity, and accuracy that are also often used for evaluation segmentation results [109].
The results are shown in Table 1, with the Sørenson-Dice coefficient averaged over each
dataset per method. The Dice coefficient has a range from zero to one, with one signifying
a perfect match.

The Dice coefficient is complemented by the Boundary F1-score, a measure computed
from precision and recall on the segmented boundary [110]. This is denoted by BF-score
in Table 1. The Boundary F1-score also ranges from zero to one, one meaning a perfect
boundary match.

The BF (Boundary F1) contour matching score is based on precision and recall on the
boundary only, developed for semantic segmentation in supervised learning, not just fore-
ground/background segmentation. They show that the BF-score is complementary with the
Jaccard index, or Dice coefficient. One limitation of Jaccard Index (JI) is that it evaluates
the amount of pixels correctly labelled, but not necessarily how accurate the segmentation
boundaries are. Therefore, JI alone is not sufficient to compare different segmentation meth-
ods. [110]

For some applications, the contour quality greatly contributes to the perceived segmenta-
tion quality. Popular contour-based measures for segmentation include the Berkeley contour
matching score [111], which computes the F1-measure from precision and recall values with a
distance error tolerance θ to decide whether a boundary point has a match or not. The BF-
score is modeled off the Berkeley contour matching score, but extended for multi-class. [110]

Given two boundary maps, of the predicted segmentation and the ground truth: for each
pixel in the predicted segmentation (for precision), search the ground truth within a distance
to see if you can find a matching positive pixel in the manual segmentation. Basically, build
a window (surrounding Euclidean distances 19 pixels, depending on image size, away) and
search within that window in the manual annotation. Precision is over all positive pixels
in the prediction; Recall is iterated over every pixel in the hand segmentation, and over all
positive pixels in the ground truth (and the search is in the prediction). [110]

Using Spearman’s correlation coefficient, the authors observe low correlations between
BF and other measures (for example JI). The aim is to create a measure to complement the
Jaccard index, which is standard for segmentation. [110] As the measures are complementary,
this dissertation considers mainly JI and BF.

From a human study conducted by [110]: we can see that the JI is more correlated with
the human ranking than the BF. This is consistent with an observation made during the
study: accurate contours are less important in the first place than having the right categories.
However, for relatively good and similar segmentations, the BF becomes more relevant to
rank segmentations. Have also shown that the proposed BF score is complementary with JI
as it more carefully takes the contours into account, and both measures should be considered
simultaneously. [110]

The BF-scores are also averaged over each dataset. Standard deviations are provided in
Table 1.
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Table 1: Average Dice Coefficient and BF-score for All Methods

Method TuFF L2S Mat. LyMPhi

Metric Dice BF-score Dice BF-score Dice BF-score Dice BF-score

Partial 0.31±0.15 0.43±0.12 0.55±0.18 0.58±0.10 0.58±0.09 0.60±0.07 0.71±0.09 0.84±0.07
Whole 0.22±0.10 0.14±0.15 0.35±0.13 0.48±0.17 0.46±0.10 0.74±0.07 0.54±0.09 0.86±0.05
Spinal 0.39±0.23 0.35±0.27 0.59±0.27 0.62±0.28 0.61±0.15 0.79±0.18 0.67±0.10 0.79±0.14

Synthetic 0.06±0.04 0.15±0.08 0.58±0.25 0.79±0.20 0.81±0.13 0.79±0.12 0.89±0.09 0.96±0.05

Table 2: Median Dice Coeff. for All Methods

Method TuFF L2S Mat. LyMPhi

Partial 0.30 0.59 0.59 0.74

Whole 0.20 0.34 0.48 0.56

Spinal 0.39 0.67 0.65 0.70

Synthetic 0.05 0.56 .91 0.91

4.3.5 Results

Three level-set methods, including LyMPhi, are compared on the datasets described above.
Each method is initialized by thresholding a small amount of noise and background clutter,
in order to retain the majority of the foreground. For TuFF, the scale parameter is set to
10 for these images, which defines the width of the Gaussian functions used for the Frangi
vessel enhancement [63]. This is the best choice for scale enhancement in these images, in
order to enhance the most prominent vessels. The other level-set method tested is L2S. All
three level-set methods are run for 200 iterations. Hierarchical image matting is tested as
described in Section 4.2.1. The initial trimap is found using Otsu multithresholding [59].

The methods described above in Section 4.3.3 are run on each of the four datasets.
Including creation of the matting initialization, LyMPhi run-time is approximately 2 hours
for a spinal lymphatics image with size 1500x2700 pixels, on a standard Windows x86
desktop with 8GB RAM. This is similar to the computing time for the other level-set methods
tested.

For all four datasets, LyMPhi has the maximum average and median Dice coefficient
measured from all four methods, as shown in Tables 1 and 2. The median Dice coefficients
are also shown as these values are less affected by outliers, such as images with overall
weaker staining. TuFF performs well when vessel scales do not vary widely. However, TuFF
performs poorly when the scale is highly variable: this method retains too little of the vessel
in the segmentation result. As lymphatic vasculature varies so widely in size compared to
neuron branches, the scale enhancement used in TuFF tends to discount larger more blob-
like vessel regions. If a larger scale parameter is used, thinner vessel structures are omitted
from the segmentation result. L2S, when initialized finely, performs better, as on the spinal
dataset. However, if initialization is coarser (and thus inaccurate), L2S retains much of the

43



background clutter. Mean BF-scores are also shown in Table 1. Again, LyMPhi outperforms
or has equivalent performance to the other methods tested. LyMPhi’s BF scores are close
to 1.

Additionally, the standard deviation of Dice coefficient and BF-score is presented in Table
1. LyMPhi has the lowest standard deviation for both Dice coefficient and BF-score. Paired
with the average scores reported in Table 1, this shows that LyMPhi is the most consistently
high-performing method across all datasets. For the spinal dataset, where hierarchical im-
age matting also has a high BF-score, LyMPhi by comparison has a slightly lower standard
deviation, meaning that the performance on the spinal dataset in terms of BF-score is better
by LyMPhi than hierarchical image matting. One reason why hierarchical image matting
performs well on the spinal dataset is because, in the spinal images, the vessel mass is larger
than in meningeal images. This allows for more information when comparing unknown pixels
to the higher intensity foreground - increasing the number of connected known foreground
pixels improves the labeling of the unknown pixels. It is important to note, however, that
the overall vessel boundary in the segmentation is not smooth as a result of image matting,
and appears pixelated, even with these high resolution images. Additionally, although hier-
archical image matting partially provides thin branches that are ignored by other methods,
this inclusion comes at the expense of including irrelevant cell types.

The vessel size extracted by LyMPhi most closely matches the manual annotation. TuFF
results in an undersegmentation, or thinning of vessels, and L2S frequently oversegments, not
adhering to the outer vessel boundary. Matting, while more correctly extracting vessel size,
includes extraneous cellular matter, which obfuscates the measured amount of lymphatic
vasculature. Thus, LyMPhi, due to its incorporation of matting, is the most robust method
of the three for detecting thinning of meningeal lymphatic vessels, a precursor to Alzheimer’s
disease. Sample segmentation results are shown in Fig. 7. It can be seen that LyMPhi has
captured less of the background clutter while preserving the thickness of the vessels. In Fig.
7, it is clear from the displayed results that LyMPhi has retained less of the clutter present at
the top and bottom right of the image. LyMPhi has the most consistent results (maximum
Dice coefficient) across all datasets.

The results are poorest, for all methods, on the whole-mount dataset (out of the real
datasets) due to poor channel separation. In these images, the lymphatic vessels are present
in the green channel, but the background clutter of blood vessels and endothelial cells also
have strong representation in the green channel, as shown in Fig. 8. This leads to poor seg-
mentation by all methods. However, LyMPhi still outperforms the others in this challenging
circumstance.

LyMPhi has the most consistent results (highest Dice coefficient and BF-score) across all
datasets. The segmented vessels are smooth and do not contain large gaps due to improper
thresholding. The attraction force is also able to join some disjoint vessel components.

It must be noted that the manual segmentation being compared to is only a best ap-
proximation of the vessel boundaries. There is a fair amount of error involved in hand
segmentation, as discussed in Section 4.3.2, which are certainly affecting the Dice coefficient
calculations. Further analysis on the reliability of manual annotation will be provided in
Section 7. It is possible that the LyMPhi segmentation result is closer to the true segmen-
tation than our manual annotation. Sample segmentation results are shown in Figure 9. It
can be seen that the LyMPhi segmentation result (second from the bottom) has captured
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(a) Original Image (b) Manual Segmentation

(c) TuFF: Dice = 0.16 (d) L2S: Dice = 0.38

(e) Matting: Dice = 0.48 (f) LyMPhi: Dice = 0.73

Figure 7: Segmentation results on one image from the spinal dataset. The results are
displayed as gray-scale image data and overlays with the final segmentation contours in red.
Captioned is the Dice score
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(a) Original Image (b) Green Channel

(c) LyMPhi Result: Dice = 0.69

Figure 8: Segmentation results on one image from the whole-mount dataset. The results
are displayed as gray-scale image data and overlays with the final segmentation contours in
green.

46



Figure 9: Segmentation results on one image from the Partial-Mount dataset. Results are
shown as binary segmentation masked with the original red channel, to show distinction
between lighter intensity background and brighter foreground that are included in the result.
Top image is the original image, with meningeal lymphatics shown in red. Moving from left to
right, top to bottom, the results are: L2S, TuFF, Matting, LyMPhi, and Manual Annotation.

Figure 10: LyMPhi provides the highest precision values for all datasets. This precision
result means there is a higher proportion of relevant boundary pixels returned by LyMPhi
than by the other methods. This performance is explained by the other methods returning
too many positive pixels, as evidenced by the recall numbers in Fig. 11.

less of the background clutter while preserving the thickness of the vessels better than the
competing methods.

4.4 Analysis

4.4.1 Precision and Recall on the Boundary

When analyzing why the BF-score for LyMPhi is higher compared to the other methods, it is
observed that LyMPhi has the highest precision values on the boundary for all datasets. This
means there is a higher proportion of relevant boundary pixels returned by LyMPhi, because
the other methods return too many positive pixels. These results are shown in Fig. 10 and
Fig. 11. Sometimes precision is more important than recall, which could be argued in this
case. Precision is important for getting more accurate complexity measurements. Including
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Figure 11: Looking at the recall values, the answer is: yes, the other methods do return too
many positive pixels. If you mark every pixel as positive, by sheer luck, a higher percentage
will match with the ground truth. LyMPhi has lower recall in some cases than the other
methods, meaning LyMPhi is a more conservative method.

too much background matter in the lymphatic segmentation could grossly overestimate the
volume of lymphatics present.

4.4.2 Per-Image Scores

Measures computed over the whole dataset do not enable distinguishing an algorithm that
delivers a medium score on all images from an algorithm that performs very well on some
images and very poorly on others. Plotting the histogram of per-image scores enables making
such a distinction. Two such histograms have been shown in Fig. 12. The histogram of Dice
scores calculated after using LyMPhi is heavier on the upper end of scores, so there are fewer
low or medium scores when using LyMPhi as compared to Hierarchical Image Matting. Per-
image scores reduce the bias w.r.t. large objects, as missing or incorrectly segmented small
objects have a lower impact on the global confusion matrix. Average per-image scores,
however, can be used for overall assessment, as shown in Section 4.3.5. [110]

The set of per-image scores to evaluate the percentage of images with a performance
higher than a threshold, to compare the percentage of images where one method performs
better than another or to analyze the statistical difference of two segmentation algorithms
with t-test. When using a paired t-test on Dice coefficients from using LyMPhi and Hierar-
chical Image Matting, at the α = 0.05 significance level, Dice coefficients using LyMPhi are
higher than when using Hiearchical Image Matting. Using per-image scores allow comparison
to a threshold which can be useful in real applications where the user expects a minimum
level of quality.

4.4.3 Stability of LyMPhi

One important facet of LyMPhi is its stability and robustness to various starting points due
to initialization. This robustness cannot be offered by other level-set methods tested on
the lymphatic data. We have found that initialization plays an enormous part in the final
accuracy of the results found by using L2S or TuFF on our data, and this initialization is
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Figure 12: Segmentation results on all microscopy images. Results are shown as histograms
of Dice coefficients. Left graph contains the results from Matting, right shows the results
from LyMPhi.

difficult to tune from image to image. The staining varies in each vessel sample, leading to
variable signal strength. Using too low an initial threshold retains too much clutter, while
using too high a threshold removes part of the vessel that is lower in intensity. LyMPhi
can segment lymphatic vessels even with a coarser initialization, which may be necessary to
retain signal across a dataset.

The matting procedure has already produced a vessel foreground that has removed much
of the background clutter, so the first iterations can quickly move the level set boundary
close to the calculated vessel foreground. This is done by changing the force field, or velocity,
of phi. Subsequent iterations smooth the zero level set contour.

Two variants of initialization are shown in Fig. 13, with their respective segmentation
results using TuFF and LyMPhi.

The TuFF result using the finer initialization indeed only captures a few elements of clut-
ter. But the level set boundary tends to overall creep inside the true vessel boundary. This
could be due to intensity inhomogeneity and lower signal strength at the vessel boundary,
as well as difficulty tuning the vessel scale parameter. If the scale parameter is made larger
to prevent such undersegmentation, this will lead to missing thinner vessel segments in the
segmentation result. The TuFF result using coarser initialization picks up much more back-
ground clutter, as expected. The level set boundary has extended at more points outside
the vessel boundary, leading to oversegmentation.

The LyMPhi result using the finer initialization still picks up some background clutter,
with a bit more clutter retained when using the coarser initialization. However, the main
advantage of LyMPhi is that it captures the true vessel width which TuFF cannot. Width
is a measure of significant interest to neuroscientists, as they use it to quantify lymphatic
presence.

4.4.4 Isolating the Effect of Foreground Propagation

One might wonder whether simply using matting to initialize a level-set algorithm, and
then separately running the level-set method without further consideration to the matting
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(a) Fine Initialization (b) Coarse Initialization

(c) ”Fine” TuFF: D = 0.74 (d) ”Coarse” TuFF: D = 0.55

(e) ”Fine” LyMPhi: D = 0.83 (f) ”Coarse” LyMPhi: D = 0.80

Figure 13: The first row shows two initial segmentation images of a partial mount image:
(a) is fine-grained initialization, and (b) is a rougher thresholding keeping much of the
background clutter. The second row shows two TuFF results after 200 iterations, using
each initialization. The third row shows two LyMPhi results after 200 iterations. The
respective Dice coefficient (denoted with ”D”) is displayed underneath each result. There
is a marked decrease in Dice coefficient of almost 0.2 depending on the initialization used,
whereas LyMPhi changes in Dice coefficient by only 0.03 even when the initialization becomes
much coarser.
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Figure 14: Close-up of vessel detail. From the left: original image, segmentation using
matting to initialize TuFF, segmentation using LyMPhi. The loop encircled in yellow is
more accurately captured by LyMPhi - the pipelined approach distorts the shape of the
vascular loop. Zoom from original image is approximately 30X to show fine detail. Again,
intensity variation is retained in the segmentation result to enable visualization of shadowing
and detail.

Table 3: Change in Dice Coefficient Due to Foreground Propagation

Dataset Matting+TuFF LyMPhi
Partial-Mount 0.64 0.71
Whole-Mount 0.32 0.54

Spinal 0.62 0.67

result will produce similar accuracy as using our intertwined approach, LyMPhi. For this
reason, we isolate the effects of foreground propagation, by comparing the segmentation
results between using matting plus TuFF as a simple pipeline and LyMPhi. The results
show that manipulating the sign on the level-set to pull the contour towards previously
marked foreground does prevent over-smoothing of level-set segmentation. LyMPhi is able
to capture more details than the pipelined approach, an example of which is shown in Figure
14.

In Table 3, comparisons of the average Dice coefficient with and without foreground
propagation are recorded. Adding the foreground propagation to manipulate the sign on the
signed distance function does positively impact the accuracy of the segmentation, as shown
by the higher Dice coefficient produced by LyMPhi.

4.5 Discussion

The main contributions of Objective 1 can be summarized as follows. First, a matting
based level-set segmentation approach, LyMPhi, is proposed to obtain robust and accurate
meningeal lymphatic vessel segmentation by removing background clutter and retaining both
smoothness and complexity of the vessels. Second, LyMPhi is fully automated, unlike the
current hand segmentation used by neuroscientists, or traditional level-set or matting seg-
mentation procedures, which may require difficult to tune user-defined intensity and scale
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thresholds. Third, extensive experiments are conducted on three types of lymphatic vessel
datasets to validate the performance of LyMPhi using Dice’s coefficient compared to other
state-of-the-art segmentation algorithms.

As shown with the Whole-Mount dataset, LyMPhi struggles to segment images with
poorly separated channels, or images where the staining intensity is low overall. A correction
stage could be placed before the segmentation algorithm, to enhance channel separation and
overall intensity, leading to stable segmentation results even when input image quality varies.
This could aid in extending LyMPhi to segmentation of other vascular images with high
clutter and varying vessel width, such as blood vessel images. Additionally, entropy-based
or saliency-based thresholding can be used to determine the initial trimap, in addition to
learning more information from neuroscientists about what sizes and shapes the vasculature
reasonably maintain.

To improve the segmentation performance further, any number of denoising approaches
could be applied prior to using LyMPhi. Anisotropic diffusion [44, 112, 113], or other ap-
proaches used for Gaussian and non-Gaussian noise could be used for smoothing. Some of
the methods listed in Section 2.2.3, such as NL-means or TV-based denoising specifically for
Poisson noise corrupted microscopy images, may work well to mitigate the effects of noise
on vessel segmentation.

LyMPhi may not be only limited to use on meningeal lymphatic vessels. Other datasets
that include vasculature, such as neuron datasets, or blood vessel datasets, could benefit
from the clutter avoiding properties of LyMPhi. Even road networks in satellite images,
provided the noise is not too obscuring, could be segmented using LyMPhi.

As has been discussed in Section 4.3.2, the manual annotation used may lose some intri-
cacies in the vasculature due to the laborious process of hand-labeling. In Chapter 5, we will
discuss a novel way to create synthetic data that will be used for testing, which intrinsically
provides a solid ground truth for comparison.
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5 Data Augmentation

5.1 Background on Data Augmentation

One of the central problems of using machine learning in animal brain imaging in regards
to analysis is the size of the data set. Most images are hard to come by because each image
represents perhaps hours of experimentation and often, an animal being sacrificed. Among
data augmentation methods, the following are worth mentioning in this dissertation: (1)
Generative Adversarial Networks [114] and (2) u-Net elastic deformation [115].

5.1.1 Generative Adversarial Networks

A first option for data augmentation involves designing a custom generative adversarial
network (GAN) to produce images indistinguishable from the original data set. This is
a highly popular method in recent years for data augmentation. In this approach, two
networks are used to generate and subsequently evaluate image data. The first network is
a generative network, typically deconvolutional. The second is a discriminative network,
and is conversely convolutional. The generative network creates data from the training data
and the discriminative network classifies input data as synthesized or true (from the original
data distribution.) Using backpropagation, the generator learns how to create more realistic
images to increase the classification error of the discriminator. [116]

Generative Adversarial Networks are often used towards evaluating the robustness of
CNNs. The generator creates attacks for realistic looking data with some indistinguishable
flaws, to fool the discriminator. [117] There are also deepfakes, in images and video, which
are again distorted image or video content generated by deep learning algorithms. Research
on detecting adversarial attacks and deepfakes is experiencing high current activity. [118]

Cycle-consistent adversarial networks learn the mapping between two images, to apply
the correct amount of deformation to one image, in terms of textures and colors, in order to
make that image look like something else. For example, the cyclic GAN in [119] learns the
mapping between a zebra and a horse, and can “paint” an image of a horse to look like a
zebra. [120] uses [119] to add snow to summer scenes and remove snow from winter scenes in
remote sensing imagery. This learning of mapping could be useful for modeling degeneration
of vasculature, for example.

Of particular interest within cyclic-GANs to biological segmentation problems are the
creation of conditional adversarial networks. These networks learn the relationship between a
set of labels and a real image, complete with textures and intensity variation. The established
relationship is extremely useful, as any data that is augmented needs to include ground truth
to be of future use for training or comparison.

One such network, using cascaded refinement networks, learns the how to color objects
and features in a city landscape based on labeled data from vehicular cameras. [121] We have
tried using this trained network on our MLV data, but found that the network weights are
too attuned to the Cityscapes dataset used, so the 256x256 pixel output generated by the
GAN highly resembles the images of buildings and vehicles.

A conditional adversarial network named pix2pix was also trained on the Cityscapes
dataset and other datasets, and has spawned many similar networks trained on a variety
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of datasets and at different resolving power. The original pix2pix network offers very low
resolution, smaller generated images. Interestingly, the pix2pix generator network utilizes
the u-net architecture [115,122]. [123]

Conditional GANs are also used for the method called pix2pixhd [122], which is based
on pix2pix but offers higher resolution output, with generated image size up to 2048x1024
pixels, thus including finer details. With pix2pixhd, labels for objects can be interactively
changed by users in real-time, and one set of labels can generate different images by adding
different textures and colors. Object instance segmentation is used to enable changing an
object category, such as a tree to a building, and even adding or removing objects. The
network also boasts a new adversarial loss function, as well as new multiscale generator and
discriminator architectures. [122]

The motivation for conditional GANs can be to create virtual environments, and also
training data, as in our case. Existing data can be segmented, the labels can be modified,
and new images generated from the changed labels. In the case of pix2pixhd, input to
the generator can even be in the form of an edgemap. Pix2pixhd proposes a coarse-to-fine
generator and multiscale discriminator architectures to achieve high resolution output. The
authors’ adversarial loss is proven better than using L1 loss at learning the image to image
pairing. Pix2pixhd was not the first GAN to generate larger images, but due to its advanced
objective function, more realistic images are possible. [122]

The generator network from the original pix2pix is split into two sub-networks: G1, a
global generator, and G2, a local enhancer network, with larger output. G2 takes input from
G1 to integrate global and local information. Both G1 and G2 are trained separately and then
fine-tuned together. Three scale discriminators prevent over-fitting and over-loading memory.
First, the generated images are downsampled into pyramids, and then each discriminator
network handles a different scale. If scales are not incorporated, the generated images have
many repeating patterns. [122]

The improved loss function mentioned earlier is a feature matching loss, which extracts
features from multiple scales and matches these (learns the mapping) from real to synthetic
features. The synthetic features must be statistically realistic at various scales. The feature
massing loss is combined with standard GAN loss. An instance boundary map, or edge map,
is used to separate objects that are of the same class, such as different types of trees. This
prevents bleeding of objects into one another within the generated images; even if all objects
are people or cars, they need to remain distinct. This also allows for object based image
manipulation instead of only global texture changes, the first GAN to have this functionality.
During the training stage, the networks use features from the image and labels to generate
the original input image, which enables G1 and G2 learn which features are important for
realistic reconstruction. The encoder learns features from the ground truth, which are the
real city traffic images. [122]

The features are clustered within each category using k-means clustering (for example,
asphalt vs. cobblestone road texture). A cluster center is selected to use these new features
in modifying an image. The quality of generated results is assessed using segmentation
accuracy of labeled objects, in terms of pixel accuracy and mean intersection over union
(IOU). Essentially, if the objects can still be accurately segmented according to their original
ground truth labels, the generated image is of high quality. [122]

However, when attempting to test the network, it was simply too large for our available
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hardware (Nvidia Titan X and Nvidia Titan XP x2.) Pix2pixhd was developed by researchers
from NVIDEA, which means they have access to the largest GPUs. The pix2pixhd network
has so many sub-networks, with even more layers and weights, that even testing the existing
trained model is not possible given our hardware, let alone trying to train the model on our
data. This is the case even when attempting to generate the smallest image size, 256x256.
For training, thousands of images are used - which begs the question: are there even enough
MLV images to train a conditional GAN, in order to generate more data? [122]

Based on the pix2pix network, [124] is trained on retinal images. However, when using
this network on the MLV, even though the retinal images are closer to our vasculature than
the Cityscapes dataset, there are still too many differences for the generated data to look
like the MLV images. We also do not have enough MLV images for retraining the network.

5.1.2 Elastic Deformation

For this thesis, deformation methods for data generation are more of interest, as having a
morphing model for lymphatic vessels can have more uses than just creating additional data
(see Section 5.5.2.

In the u-net paper, elastic deformation is used to stretch and bend images of cells into new,
biologically plausible shapes - thus creating more data. The authors build a convolutional
neural network for segmenting closed loop structures, i.e., cells, in biological microscopy
images. The second major contribution the authors make is to use their own elastic defor-
mation model to create new training data from the limited data available. The deformations
are created by randomly displacing pixel intensities along a 3x3 window. The interior pixel
displacements are then interpolated. Using the augmented data and the trained u-net, seg-
mentation results are vastly improved compared to other competing methods. [115]

Elastic deformation of shapes is a much explored area of interest within image processing.
Similar object morphing approaches are used throughout the image processing literature.

5.2 Shape Analysis

The fundamental drawback of using elastic deformation as described in the u-net paper is
that the deviations take place in Euclidean space. These deformations are not guaranteed
to be meaningful, i.e., have any similarity to real biological shapes. To ensure that the
deformations we use to generate new data are biologically sound, we move to deformations
along a new space, called the shape space.

Shape analysis can be as simple as modeling cell shape with a known shape model,
such as an ellipsoidal cell shape model [125], to as complicated as shapes that have yet
to be described. There is even learning of shapes being performed using dynamic Graph
CNNs [126].

[127] defines 3D shapes of proteins from cryo-EM images. Instead of comparing shapes
by their main chain or backbone sequence, the authors compare based on surface shapes,
because this is where protein interaction occurs. Proteins with very different backbones can
have highly similar surface shapes. 3D Zernike Descriptors (3DZD) are used to represent
the shapes, with order n = 20 as the order of the descriptor [128]. These are mathematical
moment based invariants of 3D functions - they are rotation invariant. This represents
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the 3D shape by a weighted combination of 3D basis functions. 3DZD also provides the
Euclidean distance between shapes; two shapes are similar if this distance is below 10. The
authors compare the 3DZD distance to the Procrustes distance and the TM-score [129] -
other distances to measure similarity between shapes. [127]

The resulting shape description is mapped to 3D space using PCA, with 3 eigenvectors.
All shapes can be plotted using PCA to view clusters of shapes. For single-chain proteins (and
complexes), the shape is most defined by eccentricity. The eccentricity is approximated by
finding the minimum volume enclosing ellipsoid (MVEE) for each protein. Protein complexes
are more spherical than single-chains, as measured by eccentricity. [127]

In the future, this work could allow for taking a protein “census.” Types of proteins can
be counted in organisms and compared to other organisms. Simulations can also be designed
using this newfound knowledge of specific shapes. [127]

In [115], deformation is used to stretch and bend images of cells into new, biologically
plausible shapes - thus creating more data. The authors build a convolutional neural network
for segmenting closed loop structures, i.e., cells, in biological microscopy images. The second
major contribution the authors make is to use their own elastic deformation model to create
new training data from the limited data available. The deformations are created by randomly
displacing pixel intensities along a 3x3 window. The interior pixel displacements are then
interpolated. Using the augmented data and the trained u-net, segmentation results are
vastly improved compared to other competing methods.

The fundamental drawback of using deformation as described in the u-net paper is that
the deviations take place in Euclidean space. These deformations are not guaranteed to be
meaningful, i.e., have any similarity to real biological shapes. To ensure that the deformations
we use to generate new data are biologically sound, we move to deformations along the shape
space. In [130], the authors use this idea of shape spaces to show that shapes reside on high
dimensional manifolds. Manifolds can be built on a variety of objects, such as images of faces.
For example, recent research has shown that searching a face manifold of high resolution
images that have a low resolution image similar to a low resolution input image, can aid
in upsampling the input image [131]. Between different shapes on the shape manifold, a
geodesic distance can be taken, which is the path along the curves of the manifold between
the two shapes. Sampling points along this geodesic showcases the evolution of one shape
to another shape.

An example of this is shown in trajectory using lymphatic vessel data is shown in Figure
15. The sample shapes that lie in between are deformations of the original shapes. [132] We
propose to build a large lymphatic dataset by sampling these deformations found between
the true vessel data available.

[133] introduces the square root velocity (SRV) transform for shapes to remove transla-
tion, scaling, and rotation discrepancies. Their preshape space includes all the rotations and
scaled versions of a shape on the shape space. The authors also introduce a path straight-
ening approach to find the geodesics between shapes on the shape space. This method
straightens a path between two shapes into a geodesic path. We propose using the square
root velocity function (SRVF) to transform shapes of lymphatic vessels into new shapes, as
a method for data augmentation.

Prior to computing the SRV, unit length curves are enforced on closed curves (which
begin and end at the same location) to remove scaling effects. To preserve orientation, or
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Figure 15: Showing the evolution of one vessel shape (Vessel 1) to another shape (Vessel 2)
along a geodesic path, i.e., morphing between one shape to another.

remove rotation effects, reparameterization of shapes is done based on a circle. The sampled
points along the curve surface are compared to a circle’s points which also start and end
at the same place. The SRV is the only shape transform of its type where we can still
use Euclidean coordinates to describe the transformed shape. The SRV supports elastic
deformation, unlike previous methods, such as [130], which only include bending, and not
stretching energy. The SRV transform also enables transfer of deformation from one shape
to another shape. The SRV transform will be more extensively discussed in the following
section, where it will be used to create synthetic vessel images of the meningeal lymphatics.

5.3 Synthetic Vessel Data

We test segmentation performance on a synthetic dataset of 100 images. We choose to test
using synthetic data in addition to real data, because there are errors in the hand annotation,
due to not removing the many holes present in the vessels. Thus, only testing with real data
means that instead of comparing our results to ground truth, we are comparing the similarity
to another flawed measurement. Our method, LyMPhi, may in fact capture more accurately
the true shape of lymphatic vasculature. Therefore, we test all methods on a synthetic
dataset of our own creation, where ground truth perfectly captures the true vessels so that
any comparisons are more meaningful.

There is also a limited amount of data for analysis purposes. Data collection is expensive
in three ways: time, money, and animal life - as each image of meningeal lymphatics requires
the sacrifice of one mouse. In this section, we propose a method for creating synthetic vessel
data so that everyone who wishes to study the meningeal lymphatics can have access to
these data.
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We build our own deformation model for lymphatic vessels, allowing us to morph the
vessels into reasonable formations. All of our deformations can be run by neuroscientists to
ensure they are in line with what changes the vessels naturally undergo. Elastic deformation
of shapes is a much explored area of interest within image processing. Similar object mor-
phing approaches are used throughout the image processing literature, as discussed earlier.

The following workflow explains how the synthetic images were created. To begin, new
vessel shapes must be generated. Elastic deformation is used to stretch existing vessel shapes
into new vessels [133].

5.3.1 Vessel Shape Generation

First, from the manual segmentation of partial mount images, isolate each individual vessel
segment. The manual segmentation must be used in this step, to prevent bias from any
automated segmentation methods. Then, use the square root velocity function (SRVF or
SRV, interchangeably) to represent each shape, thus accounting for rotation, shift, and scale
variance [133]. These are just the outer contours.

To use the SRVF, first, the shape boundary is sampled in x, y-space. Three hundred
sample points are used to achieve a smooth shape boundary. Using fewer sample points
will not allow for a smooth boundary, but using more than three hundred sample points
will greatly slow the overall shape generation process without much benefit in terms of
smoothness. These sample points, denoted β, are locations, which are transformed by

q(t) =
˙β(t)√
‖ ˙β(t)‖

(12)

the SRV equation [133,134]. ˙β(t) is the gradient at each point β(t) on the original curve.
Prior to using SRV, unit length curves are enforced on closed curves (which begin and end

at the same location) to remove scaling effects. Each location on the shape is a function of
the parameter t ∈ [0, 1], with t = 0 and t = 1 being the beginning and end of the curve. The
process is illustrated in the schematic shown in Fig. 16. After the SRVF has been applied,
the new points on the curve, q(t), have been transformed from p(t) into the shape space,
where elastic bending, stretching, and shrinking is possible. SRV is a shape transform where
we can still use Euclidean coordinates to describe the transformed shape. SRV supports
elastic deformation, unlike previous methods, such as [130], which only include bending, and
not stretching energy. The same deformation process is repeated to represent any holes, or
capillary loops in a vessel.

From any two original vessel shapes, morph along a shape geodesic to find new interpo-
lated vessel shapes. The interpolated vessels are stretched and bent versions of the original
vessels, i.e., intermediate deformations [134]. Essentially, sample the geodesic path to get
closed curve shapes, representing the vessel exterior. The sampling can be performed finely
or sparsely to create any number of new shapes.

Because the manifold containing SRV transformed shapes is locally Euclidean, affine
transformations are possible. Shape interpolation is performed by taking convex combina-
tions of q: αq1 + (1− α)q2, where q1 and q2 are two SRV transformed shapes, and α ∈ [0, 1]
(intermediate algorithmic time-steps.) q1 and q2 must have the same dimensions. For a
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Figure 16: A representation of the SRVF computed at locations on the closed vessel boundary
shown in white. The function allows the curve to stretch elastically into another shape. On
the left, the original points are labeled β(t), starting at t = 0 at one end of the shape and
ending at t = 1 after traversing the whole shape. In the middle, the gradient, or tangent
slope, at each point is calculated. The rightmost shape has the labeled points q(t) after the
SRV function, 12, has been utilized.

two-dimensional shape, the dimension of each q is n x 2, where n is the number of samples
taken to characterize the shape (in our case, 300.)

The SRV transform also enables transport of deformation from one shape to another
shape. Using deformation transport [133], the hole shapes can be morphed with the same
amount of stretching and bending as the interpolated vessel (as used for the exterior.) Es-
sentially, we use the same bending and stretching energy on a new shape. Given an SRV-
transformed shape q1 and an intermediate deformation to a second known SRV-transformed
shape, the shooting velocity v1 can be calculated. This v1 signifies which direction and how
far to travel along the manifold before reaching the desired deformation. “Transport” means
finding the parallel translation of v1 (call it v2) for morphing the new shape – in this case, a
vessel hole. Fig. 17 shows this intuitively.

Let [qa1 ] and [qb1] be the shapes of a lymphatic vessel, at two points along a geodesic path.
[qa1 ] is the original vessel shape in SRV-space (initial time τa), and [qb1] is some arbitrary
deformation of the original shape. We can think of this deformation having occurred after a
certain amount of time, say after time τb. This contour deformation depends on the geometry
of the lymphatic vessel. Now, take a different object, a vessel hole from the original vessel
shape, which is similar to the lymphatic vessel, but obviously not identical geometrically.
Given its initial shape [qa2 ], prior to any deformation, we wish to predict its shape [qb2] after the
same amount of time, τb as for the exterior lymphatic vessel. We thus take the deformation
that deformed [qa1 ] to [qb1] and then apply this deformation to [qa2 ], using the following:

1. Let α1(τ) be a geodesic between the shapes [qa1 ] and [qb1] in the SRVF transformed
shape space and v1 ≡ α̇1(τa) be its initial velocity. (q1 and q2 represent two different
shapes, and a or b mean a deformation.)

2. Using forward parallel translation, we transport v1 to [qa2 ]. Let α1−2(τ) be a geodesic
from [qa1 ] to [qa2 ] in the same shape space. Construct a vector field ωτ such that ω0 = v1
and Dω

dτ
= 0 for all the points along α1−2. Please see [133] for additional details. Fig.

17 shows the relationship between q1 and q2 for more clarity.
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Figure 17: If v1 is the velocity used to reach the intermediate deformation, v2 is the velocity
to apply the same amount of deformation on the new shape, in this case, a hole. The lower
left panel is the large hole within the vessel in the upper right panel. Since shape spaces
are overall nonlinear manifolds, the deformations of one shape cannot simply be applied to
another. The manifold is only linear when the shape is of the same type.

3. Then, v2 ≡ ω(1) is a parallel translation of v1.

4. Using v2 as the initial velocity, form a geodesic starting at [qa2 ], which at time-step τb
will end in deformation [qb2].

The original work [133] on deformation transport is for applications where viewing angles
of objects change. Here, we substitute the change in “viewing angle” for a moment in time,
either before or after deformation. This is the first use of the theory for modulating the
interior of a an object, since a shape necessarily only retains the boundary.

A new, complete vessel shape includes an interpolated shape plus similarly deformed
holes placed proportionally (semi-randomly) according to vessel size within the interpolated
vessel. A vessel skeleton is generated using the methodology in [135], and the radius of the
vessel at each skeleton point is calculated, using size-constrained inscribed spheres [136].
Considering the original size of the hole prior to deformation, the point within the vessel is
found where the vessel diameter best matches the original hole size, and the deformed hole is
placed at the best diameter match. This ensures the deformed hole fits within the boundary
of deformed vessel. Placing the holes based on the original hole location unfortunately does
not scale as the vessel may shrink at certain points to where the hole will no longer fit.

New (final) binary vessel images are produced at this stage. An example is shown in Fig.
18. Bioinformatics can be computed on these new shapes. The full diagram illustrating the
shape interpolation process is shown in Fig. 19.
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Figure 18: Output from the shape deformation process is an individual binary vessel, with
fitted deformed holes.

Figure 19: Shape interpolation – from an image to a shape. Streamlined, generalizable
workflow from images to new, complete vessel shapes.
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Figure 20: Generating the full synthetic images. Streamlined, generalizable workflow from
morphed vessels to realistic, complete vessel images.

In summary, we can loop through combinations of vessels - to create a new vessel, morph
between two vessel shapes on the shape space. The two original vessel shapes are picked from
all possible vessel pairs. For example, in a dataset of 18 images, where there are 451 original
vessels, the total number of vessel pairs is 101,475! To create a full meningeal lymphatic
image, combinations of these new vessel shapes are used. As the total number of possible
interpolated vessels is incredibly large (there are multiple interpolations possible for each of
those 101,465 pairs), and new vessel shapes can be endlessly combined in different selections
or groupings, truly, the amount of synthetic data that can be generated through this process
is nearly infinite.

There is a possibility for using shape deformation to simulate lymphangiogenesis, thinning
of vessels, or lymphatic regression, which is the shortening of the lymphatic vessels along the
sinus with age. This could be formulated similarly to neurodegeneration, which has already
been shown in [134].

5.3.2 Synthetic Image Formation

A flowchart of the image generation process is shown in Fig. 20. As both the shape generation
and image generation processes are generalizable, other areas where synthetic data would be
of benefit could use these procedures to augment existing datasets.

Selections of vessel shapes are used to create foreground and background layers of a
new synthetic image. Each layer is 4649x1967 pixels, which is also the size of the final
synthetic images. This is a similar size to the images found in the partial mount dataset.
Select a random number of vessels to include (based on real images.) These vessels are the
generated vessels from the shape deformation discussed previously. The images containing
these random assortments of vessels are layers for our final image. First, there are some
steps needed to produce the foreground layers of the final images.

The foreground layer is used as ground truth, before being convolved with a Gaussian
filter to attenuate the signal at vessel edges. This mimics the true images, and is the reason
why simple thresholding will not solve the segmentation problem. Set the intensity of the
vessels in this layer to the maximum intensity, at 255. The maximum intensity vessel image
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Figure 21: A trimmed Gaussian filter is used over the foreground image layer to attenuate
signal intensity. This mimics the true variation in intensity in the microscopy images.

is used as the ground truth.
Then, a trimmed Gaussian filter is applied over each row in the image where the vessel

exists to attenuate the intensity of the vessel at boundaries. This mimics the true images,
and is the reason why simple thresholding will not solve the segmentation problem. The
result is shown in Fig. 21.

For each vessel in the foreground layer, the rows in the layer where the vessel exists must
be identified. Then, for each of those identified rows, take the length (the number of pixels
in that row that belong to vessel foreground) as n. A 1D Gaussian filter of size 2m+1, where
m = n if n is even, and m = n + 1 if n is odd, is used to attenuate the vessel at each row.
Centered at the center pixel in the vessel row, this longer Gaussian filter gives the trimmed
Gaussian effect.

Next, on the background layers, which simulate clutter, some additional perturbations
need to be added. Create three background layers with the generated vessels but set these
intensities at 20 percent of the possible higher foreground intensity (5 to 1 signal to clutter
ratio), so that there is some overlap between the foreground and background within the
lower intensities. The background layers represent the clutter of blood vessels in the original
images.

We then combine the foreground and background layers together. The following are
adding blur and noise to the combined image. Gaussian blur and Poisson noise [137] are
added to complete the synthetic images. Gaussian blur is added with sigma between 0.2
and 0.5 (range is normalized.) The static background intensity is raised up to 19 out of 255,
which is similar to the background levels in real data. This is done to make sure that when
Poisson noise is applied to the image, the background also becomes noisy - if the background
intensity is zero, the Poisson noise in the background will have no effect. Poisson noise is
based on the signal intensity in the image.

We use the Poisson noise model on the synthetic data because in confocal microscopy
using fluorescence emission to stain biological specimens, Poisson noise is a significant vari-
able. The Poisson noise model is used to reflect the small number and extreme variation of
detected photons. [137]

Comparisons in terms of noise are shown in Fig. 22. The noise levels are not exactly the
same, but are similar in level and spread given the variations in noise across the many images
in the three microscopy datasets. In the histograms, the frequency count for the microscopy
region is higher because the region is slightly larger. The intensity in the histograms has
been scaled from 0 to 1.
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Figure 22: Plotting the small background region in a microscopy image (left) and a synthetic
image (right.) There is more faint background clutter in the original image that we do not
simulate, but the background intensity is in a similar range. In the synthetic images, the
background intensity cannot be lowered too much, otherwise the Poisson noise effects are
no longer apparent; which is why the static background in the synthetic image is higher.
Histograms of a near constant intensity region in both images are presented on the bottom
panel: in a microscopy image (left) and a synthetic image (right.)
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(a) Synthetic Image (b) Ground Truth

(c) Detail of Synthetic Image

Figure 23: One example image from the synthetic dataset. The ground truth is shown on
the right, and a close-up of the synthetic image in a red-based colormap in (c), in order to
show the added noise, blur, intensity variation, and background clutter.

Fig. 23 showcases one synthetic image. The ground truth is shown as well to display
where the clutter resides.

5.4 Segmentation Results

All methods discussed in Section 4.3.3 are tested on the synthetic dataset developed in this
Chapter. Average/median Dice coefficients and BF-scores are presented in Tables 4 and 5,
complete with standard deviations.

On synthetic data, any noise that is not eradicated in thresholding is magnified by TuFF,
where the attraction force (even when used at a minimum) joins noisy elements together.

Table 4: Average Dice Coefficient and BF-score for All Methods

Method TuFF L2S Mat. LyMPhi

Metric Dice BF-score Dice BF-score Dice BF-score Dice BF-score

Synthetic 0.06±0.04 0.15±0.08 0.58±0.25 0.79±0.20 0.81±0.13 0.79±0.12 0.89±0.09 0.96±0.05
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Table 5: Median Dice Coeff. for All Methods

Method TuFF L2S Mat. LyMPhi

Synthetic 0.05 0.56 0.91 0.91

LyMPhi performs the highest on the synthetic data, as it is the best at separating the varied
intensity foreground from the background. The ground truth compared to here is infallible,
so there is resiliency in these results.

5.5 Discussion

In this chapter, the first SRVF based data augmentation method has been developed, which
should be used for creation of MLV data, as well as any other data where shapes undergo
elastic deformation. Our method of synthetic data augmentation is also a fast ground truth
generation, which is of necessity in a variety of fields [138].

5.5.1 Conditional Generative Adversarial Networks

Can more realistic data be generated using deep learning methods, as discussed in Section
5.1.1? Images of red blood cells were generated using conditional generative adversarial
networks in [139], the workings of which have been discussed previously. This work shows
promise for augmentation of MLV images. The red blood cells were first “grown” in the
images using a shape based model of red blood cells, much like our vasculature is modeled
by known shape. Then noise, intensity variation, etc. is added using the conditional GAN.
However, using the current machines available, these networks are unable to be trained or
tested - there is not enough memory to store the weights of a network necessary to output
a high resolution, full size generated image. There are also simply not yet enough data to
train a conditional GAN in order to make more realistic MLV data.

5.5.2 Other Uses for Morphing

Aside from data augmentation, there are two alternative ways to use the morphing paradigm
described in Section 5.3. During dissection of the meningeal lymphatic vessels, prior to
imaging, the vessels often become disconnected at points. This does not reflect the real
structure of the vessels inside the mouse brain. The bending and stretching energies used
in elastic deformation can be used to merge disjointed vessels, resulting in a complete vessel
network captured for each mouse.

Another way to use morphing is to model the change in vessel structure from young
vessels to old vessels, i.e., model the thinning and degeneration of vessels. This can be
performed by finding the intermediate stages along the shape manifold between a healthy
vessel and an aged vessel. Quantifying the morphing cost between a healthy vessel and other
vessels of different ages could provide a metric on how “aged” the vessels are. This work can
also be extended to morph healthy vessels to lymphatic vessels in a state of infection.
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Neuroscientists can use the above morphing tool to generate more data of lymphatic
vessels whenever needed. Perhaps, in the future, models can be built for generating healthy
versus aging vessels, and studies can be simulated before testing with live mice.

In the next chapter, a deep learning study on smaller images of the MLV will be performed
in compared to traditional segmentation methods.
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6 Deep Learning

This chapter showcases a u-net based architecture for the automated segmentation of images
of meningeal lymphatic vessels. We are preparing for the time when there is sufficient data
available for training. Until that time, LyMPhi is expected to have higher segmentation
accuracy. In the future, with enough training data and labels, deep learning methods could
perform more efficacious. We chose the u-net architecture because of its proven success in
biomedical segmentation problems, especially for retinal vessel images [140]. U-net also has
built-in methods to augment data, such as rotation, cropping, adding noise/blur, etc. These
are useful for our dataset, as the experimental data are limited.

6.1 Motivation for Deep Learning

As the meningeal lymphatic vasculature itself is a recent discovery, there is no available
software tailored for automatically segmenting these images, other than the one proposed in
this thesis, LyMPhi (Chapter 4). Instead, segmentation must be performed by hand, which
is a tedious and error-prone process. By building an automatic segmentation tool for these
vessels, we can provide more measures for understanding and researching them, in a quick
and reliable way. A convolutional neural network, called u-net, is adapted to the vessel
segmentation application, with the goal of teaching the network how to segment the ves-
sels. Segmentation using u-net is compared to traditional non-learning based segmentation
methods using Dice coefficient.

Examples of traditional segmentation methods for vascular datasets (neurons, blood ves-
sels, etc.) include level-set segmentation methods [103, 104, 107] and image matting [60].
These methods are proven to work well on vascular data, but in the case of retinal images,
deep learning has shown new promise. Among the most prominent methods of computer
vision and machine learning are convolutional neural networks, or CNNs. This chapter ex-
plores the application of CNNs to segmenting MLV in the brain via microscopy images, by
applying existing medical-based CNN architecture to improve the time taken to process MLV
images. An example result from our work is shown in Fig. 24.

Our research question thus is: can we improve the accuracy of segmenting the meningeal
lymphatic vessels by using a CNN as compared to traditional segmentation methods?

6.2 Background on Deep Learning

Deep learning has a wide range of applications. Some networks are used for classification,
some for enhancement prior to segmentation [141]. Picture quality can be assessed at the
patch level using the network PaQ-2-PiQ [142]. Deep neural networks built for segmentation
are essentially classifiers at the pixel level.

Convolutional neural networks are also used for object detection in tracking problems.
In [143], the authors find that the main reason one stage detectors struggle with accuracy is
class imbalance during training. Class imbalance here refers to having thousands of potential
box (detection) candidates and very few useful ones. In a one stage detector, there is no
intermediate task which must be performed in order to produce an output. This one stage
detector leads to a simpler and faster model architecture. By adding a factor in front of
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(a) Original image (b) Ground truth image

(c) Confidence map (d) Binary segmentation result

Figure 24: Example result. The original red channel image (cropped to size 512x512 pixels)
is shown in (a), the hand created ground truth in (b). U-net generated confidence map is
shown in (c), and the binary segmentation result in (d) is produced by thresholding the
confidence map at 50%. The Dice coefficient for this image is 0.89.
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the standard cross-entropy loss function, the authors of [143] were able to get a classifier
that is more accurate then one stage detectors, but is faster then 2 stage detectors. Cross-
entropy loss, or log loss, measures the performance of a classification model whose output is
a probability value between 0 and 1. The authors call their technique focal loss, which refers
to downweighting the loss assigned to well classified examples in a standard cross-entropy
loss function. The network they build and train is called RetinaNet, a network featuring
dense layers; layers in which each node is connected to a node in the next layer. [143] The
RetinaNet has also shown its efficacy in segmenting the optic disk in fundus images [144].

Other work on neural networks seeks to address some common problems, such as the van-
ishing gradient problem, which often arises when a given network is too deep (has too many
layers.) Residual neural networks, or ResNets, are able to address this issue by introducing
some skip connections between layers [145].

Region Based Convolutional Neural Networks, or R-CNNs, extract local regions of inter-
est for classification [146]. R-CNNs have shown promise for segmentation problems, partic-
ularly where same-class objects repeat throughout the image [142].

Newer work on neural networks (NN) allows for user-input for loss term coefficients,
meaning that the overall network need only be trained once. The authors of [147] train
a network with multiple loss terms. The NN learns over a distribution of the loss term
coefficients, and then the user selects the coefficients to be used as a type of input to the
model. For example, the user input can allow for having a network trade-off between image
compression and quality. [147]

Many neural networks have been built for segmentation of the retinal vessels in fundus
images, not just the optic disk. For example, a three-stage deep learning model was proposed
by [109], which segments thinner blood vessels separately from thicker ones.

The authors of [115] build a convolutional neural network for segmenting closed loop
structures, i.e., cells, in biological microscopy images. The u-net includes an expander net-
work before the output layer to increase the resolution of the segmentation output. The
second major contribution the authors make is to use their own elastic deformation model
to create new training data from the limited data available, as discussed in Chapter 5. The
deformations are created by randomly displacing pixel intensities along a 3x3 window. The
interior pixel displacements are then interpolated. Using the augmented data and the trained
u-net, segmentation results are vastly improved compared to other competing methods. [115]

6.3 Choice of Network

Images of MLVs are similar to fundus images in some respects, so using deep learning for
segmentation may further enhance the quality of segmentation results. The main challenge
with using learning in this area is that the available datasets are not large enough to train
networks. For this reason, we choose u-net [115] as the network of choice, because a necessary
data augmentation step is built-in to the network pipeline. u-net was designed to handle
datasets with few training images. This thesis documents the first time application of deep
learning to images of this kind.
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6.4 Training Data

One of the central problems of biomedical images in regards to machine learning is the size of
the data set; most images are hard to come by because each image represents one (expensive)
mouse being sacrificed. The original images of meningeal lymphatic vessels are 2D confocal
microscopy image acquired by the Kipnis lab in the University of Virginia department of
Neuroscience. There are 39 images in total, which does not constitute a sufficient dataset to
train a deep neural network.

Once the data had been processed and augmented, training was ready to begin. The
version of u-net we modeled can be found in the following repository [140]. A three-operator
majority voted ground truth was created (by Nazia Tabassum and colleagues) and used for
training labels.

We ran our deformation pipeline to generate 1000 images of size 512x512 to act as training
and testing for the ground truth masks and original images, and split those up into 750
training and 249 testing, based off of the original 39 images split into 30 train/9 test. Splitting
of the data into train and test datasets occurred prior to data augmentation, making sure
not to include any original images or deformed images from training within the test data
set. The network then read in and trained on the 750 image pairs, and then was tested on
the 249 test images. Data normalization was added after each convolutional layer to further
reduce the noise of output images. The network hyperparameters were as follows, as well as
the training times and hardware:

1. Training Time: 2 Hours

2. Hardware: Nvidia Titan X and Nvidia Titan XP x2

3. Optimizer: ADAM with α = 1 ∗ 10−5 learning rate

4. Loss: Binary Cross Entropy

5. Implemented On: Tensorflow with Keras

6. Number of Epochs: 100

7. Steps/Epoch: 10

The original images varied in size from 4000x2000 to 2000x10000, and the network was
trained on images of size 512x512. This training on subsampled images was done to aid
computation speed. Results are promising with the above configuration on 512x512 size
images, as demonstrated below. However, increasing the image size to 1024x1024, which
is closer to the original image size, did not output meaningful segmentation results. This
method of data augmentation does not generate enough new features for segmenting images
of larger size, possibly leading to vanishing gradients within the CNN [148].
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(a) Whole Mount Ground Truth

(b) Partial Mount Ground Truth

Figure 25: To train the CNN, we need labeled data. Using three annotators, we hand
segmented the images in ImageJ, by clearing out any background clutter around the vessels.
The three annotations are combined using majority voting to reduce noise in the output.
Majority voting only counts a pixel as foreground if 2 out of 3 annotators have marked it as
such. Shown are two examples of majority voted ground truth labels we produced. These
are used for our training labels.
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6.5 Assessing Segmentation Results

The trained u-net was tested on 249 test images, augmented from the real dataset. The u-net
output is a confidence map in grayscale, higher confidence represented by higher intensity
(on a scale of 0 to 1.) 100 percent confidence that a pixel belongs to the foreground set is
denoted by intensity 1, and the color white. Thresholding is performed on the outputted
confidence map at 0.5, or 50 percent confidence, to produce a binary segmentation. The
confidence maps and binary results are shown in Fig. 24 and Fig. 26.

Fig. 26 contains images with segmentation results. The original red channel image of
meningeal lymphatics is shown in the top left corner. The majority voted ground truth
is shown on the top right. The u-net output is a confidence map, which we threshold at
confidence level 0.5 to get a binary segmentation result, with resulting Dice coefficient of
0.89. This is a high segmentation result, as the highest value the Dice coefficient can take is
1, which indicates a perfect match with the ground truth. Dice coefficients above 0.8 show
strong segmentation performance.

Table 6: Dice and Hausdorff Distance for Test Set

Metric Dice Coefficient Hausdorff Distance (microns)
Average 0.72 5.87

Standard Deviation 0.15 1.16
Mode 0.78 4.8

Median 0.76 5.86

This binary segmentation was evaluated compared to the hand-labeled ground truth by
using Dice coefficient [108]. A higher Dice coefficient indicates closer alignment with the
ground truth. Shown here are the quantitative results for the results on our test dataset
using u-net segmentation. Though the average Dice coefficient using u-net is 0.72, in Fig.
27, it is seen that the most frequent Dice coefficient values are between 0.8 and 0.9, which are
reasonably high scores in terms of segmentation accuracy. The Hausdorff distance is shown
in microns [149], also in Table 6. Lower Hausdorff distance means a better match with the
ground truth.

The same 249 images were used to test four separate methods for vessel segmentation:
Chan-Vese [107], L2S (Legendre Level Set) [103], Hierarchical Image Matting [60], and TuFF
(Tubularity Flow Field) [104]. The Dice coefficent was computed for all the results, reading
across the top row (in bold), with statistics reported in the subsequent rows. The average
Dice coefficent for the segmentation results is 0.72, as shown in Fig. 28. It is clear to see that
the average Dice score for u-net, is much higher than any of the competing algorithms, and
that the standard deviation is also comparable or lower. Hausdorff distance for the other
methods is shown in Table 7 as well, and it is clear to see that using the other methods
produces higher Hausdorff distance than when using u-net for segmentation.

In Fig. 29 we show results on a spinal lymphatic image with other state of the art
segmentation methods. Chan-Vese, L2S, and TuFF are all level-set segmentation methods.
Hierarchical image matting, in the bottom right corner, is a correlation based segmentation
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(a) Original image (b) Ground truth image

(c) Confidence map (d) Binary segmentation result

Figure 26: Example result on the partial mount dataset. The original red channel image
(cropped to size 512x512 pixels) is shown in (a), the hand created ground truth in (b). U-
net generated confidence map is shown in (c), and the binary segmentation result in (d) is
produced by thresholding the confidence map at 50%. The Dice coefficient for this image is
0.89.
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Figure 27: Histogram of Dice coefficients for test data.

Table 7: Dice Coeff. and Hausdorff Dist. (microns) for Competing Methods

Method Chan-Vese L2S Mat. TuFF

Metric Dice Hau. Dice Hau. Dice Hau. Dice Hau.

Avg. 0.63 7.07 0.62 6.99 0.58 6.98 0.50 8.07

Std. Dev. 0.19 1.86 0.18 1.77 0.15 1.59 0.23 2.16

Mode 0.68 6.09 0.56 5.19 0.53 5.09 0.57 6.70

Median 0.68 6.64 0.64 6.86 0.61 7.02 0.51 7.63
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Figure 28: Statistics of Dice coefficient calculated for all segmentation results.

method developed for segmentation of retinal images. Using u-net provides a Dice score of
0.92, a very high Dice score in its own right, and much higher than all the other competing
methods. The details in the u-net segmentation result are much clearer, even though the
staining in the original image is weak between branches of the vessel, as seen in Fig. 30.

6.6 Discussion

The main outcome revolves around the improved processing times for the data given. Neu-
roscientists using the tool need not waste valuable resources on hand quantifying the image
data. Another glaring issue is that of accuracy and reproducibility; different observers can
and do segment the images differently. Therefore, a lack of consistency among the data
analysis is prevalent.

Our adaptation of CNNs to the segmentation problem for vessels is also useful for anyone
in the future wishing to segment vessel data. Our trained network can be used quickly and
efficiently on any new images. Scientists using our tools can spend more time developing
a better understanding of the lymphatic system’s relationship with disease. There is hope
that the onset of disease could be predicted by studying lymphatic vasculature [3]. If so,
drugs can be developed (indeed neuroscientists have already started such studies) to improve
vessel function and possibly cure diseases such as Alzheimer’s.

If segmentation of human MLV is desired, 3D CT-lymphography is available [90]. The
network will however need to be retrained on the CT images, and there will be the challenge
of working with a larger 3D dataset, requiring more images and memory to train the network
than used in this example.
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Figure 29: Example result on the spinal dataset. The original ground truth image (cropped
to size 512x512 pixels) is shown in the first panel, the segmentation results following. U-
net generated binary segmentation result in the top row is produced by thresholding the
confidence map at 50%. The Dice coefficient for this image is 0.92.
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Figure 30: The original red channel image (cropped to size 512x512 pixels) is shown here for
the segmentation results in Fig. 29.

6.6.1 Working with a Small Training Set

Working with a small amount of images for training poses challenges when experimenting
with deep learning methods. The data augmentation possibilities discussed in Section 5.5.1
could be used with more hardware capabilities. But there are other possibilities for explo-
ration as well. [150]

Patch based training and testing could potentially be implemented to boost the amount
of data available for training. Doing so could save computational time if using a uniform
size of image. [142] There are other images from different neuroscience labs that have not
yet been collected and annotated for training, because the annotation procedure is so time-
consuming. For deep learning, however, many weaker (or less accurately labeled) labels are
better than fewer labels - so even poorly annotated ground truth is better than not enough
examples. This could cause problems however when restitching the output to the original
full image size - boundary artifacts may appear. A pretrained network could be used to
boost performance (transfer learning), but some thought must be put into choosing the
correct dataset. As discussed in Section 5.5.1, fundus images, although vascular in nature,
are too fundamentally different to be used as the pretraining dataset. Unfortunately, many
microscopy images that look similar to those of the MLV, such as images of microglia, suffer
from the same problem - smaller size and lack of labels.

Self-supervised learning is another new area of interest, which helps deep learning meth-
ods when there is a dearth of labeled data. Self-supervised learning is good for problems
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where transfer learning is not that applicable, such as when there are no similar enough
datasets to use for transfer learning - a possibility discussed above. Self-supervised learning
uses unlabeled data. First, a network is trained on surrogate tasks, where the surrogate task
is something obvious, such as the relative location of two patches in an image, or whether
two patches are from the same image. These surrogate tasks are easily labeled, as the labels
can be generated automatically. After the network has learned these surrogate labels, the
features that are learned during this training process are used for the actual classification
task. This approach has been shown to work effectively for classification of spinal MRI im-
ages, for example [151]. In this case, again, much thought needs to be put into formulating
appropriate surrogate tasks to solve the segmentation problem.

6.6.2 Limits of Deep Learning

There are some broader concerns about relying too heavily on deep learning methods for
analysis. Deep learning methods currently do not incorporate time, space, or causality
into their algorithms, the foundations for common sense. There are no methods that can
understand how an object’s shape impacts its function. AI does not yet exist under the
assumptions that we have, such as that an organism cannot be in two spaces at the same
time, for example. Before we can introduce AI into our hospitals, we need to train them
to view the world with our common sense assumptions. [152] It would be interesting to be
able to train a machine to understand how lymphatic vascular shape impacts its function in
transporting immune cells and draining cerebrospinal/interstitial fluid.

In reality, we have just recently created the resources for deep learning, which are massive
amounts of data. The methods currently used for neural networks have existed for a number
of years already. There is much work to be done to truly make use of the new resources
available, in the form of rich, high-dimensional images.

The next chapter will analyse the validity of using manual segmentation as ground truth
for comparison, as well as for training labels.
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Table 8: Agreement and Fleiss’s Kappa Between Annotators

Dataset Agreement Kappa

Partial 0.98 0.62

Whole 0.97 0.60

Spinal 0.96 0.75

7 Analysis of Manual Segmentation

7.1 Analysis of Agreement between Annotators

The results shown prior only compare automated segmentation results between different
segmentation algorithms. Since the manual annotation obtained is combined input from
three annotators, in this section the agreement and kappa statistics between the annotators
is compared, as well as the statistics between the chosen segmentation algorithms and the
annotations.

Fleiss’s Kappa is used for comparing the three annotations created by three separate
operators for each vessel image. Fleiss’s Kappa measures the reliability of the agreement
between the three annotators in this case. [153] Instead of creating a voting matrix and up-
dating it for each pixel in a dataset, counts were kept of voting proportions and probabilities.
Percent agreement and Fleiss’s Kappa are shown in Table 8.

The Fleiss’s Kappa values between annotators are between 0.6 and 0.75, indicating mod-
erate agreement between annotators on where a vessel is present. For the spinal dataset, the
Kappa value is highest, indicating better agreement than for the other two datasets. How-
ever, none of the Kappa values have reached higher levels (.8 or .9 for example), which are
more preferred Kappa values - showing that there is still considerable disagreement between
annotators, and that creating accurate ground truth for these images is not a trivial prob-
lem. [154] Surely, manual analysis has proven inconsistent, which motivates the automated
analyses of this thesis.

Agreement and the kappa statistic are calculated for all images in each dataset, between
the segmentation algorithm and the majority voted groundtruth. Cohen’s Kappa is used in
this case because there are two raters being compared, the automated segmentation algorithm
in question, and the consensus segmentation. Cohen’s Kappa is considered to be more reliable
of a measure than percent agreement, as the Kappa measure takes into consideration the
probability of random agreement. [155] Percent agreement and Cohen’s Kappa are shown in
Table 9. Agreement is denoted by Agr. and Kappa by Kap.

From Table 9, agreement between LyMPhi and annotators largely outperforms inter-
annotator agreement in the partial mount dataset. Thus, for this dataset, it can be stated
that LyMPhi is superior to manual segmentation. In the other datasets, the Kappa value is
lower than the Kappa values shown in Table 8, meaning that LyMPhi has not yet surpassed
hand annotation for these datasets. However, the Kappa values for LymPhi do outperform
the agreement between annotation and the other segmentation algorithms tested. This
further affirms that LyMPhi is better suited for segmentation of meningeal lymphatic vessels
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Table 9: Agreement and Cohen’s Kappa Between Algorithms and Annotators

Method TuFF L2S Mat. LyMPhi

Statistic Agr. Kap. Agr. Kap. Agr. Kap. Agr. Kap.

Partial 0.87 0.23 0.94 0.44 0.97 0.56 0.98 0.70

Whole 0.68 0.14 0.84 0.28 0.93 0.43 0.95 0.52

Spinal 0.65 0.19 0.84 0.39 0.96 0.64 0.96 0.64

(a) Consensus Segmentation via STAPLE (b) Consensus Segmentation via Majority

Figure 31: Consensus segmentation results on a portion of an image from the spinal dataset.
The results are displayed as binary. The left image shows a consensus segmentation ob-
tained via the STAPLE algorithm. The right image is the manual annotation we used for
comparison, obtained by majority voting.

than other automated methods.

7.2 Performance of LyMPhi and Each Annotator as Measured by
STAPLE

The STAPLE algorithm combines ground truth annotations according to expectation max-
imization and also measures specificity and sensitivity of each ground truth annotator. The
algorithm can be used to compare automated segmentation methods to ground truth as
well. [156]

An example of where disagreement between annotators can occur is shown in Fig. 31.
When combining three annotations using the STAPLE algorithm [156], noisy regions, such
as in the top of the image in Fig. 31a can still remain. The images are difficult to annotate
due to low-level noise that must be removed. Due to the low image contrast, patches of noise
may be missed by an individual annotator. This, and other challenges, leads to annotator
disagreement. Using majority voting, as shown in Fig. 31b, can reduce the effects of the
disagreement due to noisy background; however, some small amounts of noise do remain,
which create divergence when comparing with LyMPhi and other automated algorithms.

Using the STAPLE algorithm, an estimate of sensitivity and specificity of raters can
be obtained [156]. In Table 10, the sensitivity and specificity of the three annotators as
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Table 10: Sensitivity and Specificity

Dataset Partial Whole Spinal

Rater Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Rater 1 0.77 0.99 0.91 0.98 0.82 0.99

Rater 2 0.77 0.99 0.56 0.99 0.96 0.97

Rater 3 0.76 0.98 0.81 0.98 0.93 0.99

LyMPhi 0.8 0.99 0.74 0.98 0.60 0.99

well as LyMPhi are compared. Sensitivity refers to the number of true positives that are
measured, and specificity the number of true negatives [157]. This is in comparison to the
STAPLE estimated consensus segmentation, which has been shown to have some flaws - so
these sensitivity/specificity measurements are also only estimates.

Specificity is so high across all raters and datasets because the number of negatives, or
non-lymphatic pixels, is so large, and it is easier to mark these correctly. High sensitivity,
however, is more difficult to achieve. LyMPhi outperforms on sensitivity for the partial
mount dataset, which is in accordance with the discussion of Kappa values in Section 7.1.
This means that LyMPhi really is better at distinguishing the lymphatic vessels than either
of the raters individually, or when they are considered together. Although this is not the case
for the remaining two datasets, it is interesting to note that for the whole mount dataset,
the sensitivity value for Rater 2 is lower than that of LyMPhi (0.56 compared to 0.74). So,
in cases where multiple annotators cannot be reached to perform a consensus segmentation,
there is great risk relying on a single annotator for a correct segmentation of the lymphatic
vessels. As mentioned before, manual annotation takes a great deal of time; a more accurate
segmentation may be found in less time by using LyMPhi, instead of relying on a potentially
flawed hand segmentation.

7.3 Failure to Annotate Boundary by Manual Segmentation

Combined errors of sensitivity and specificity at the fine-grained level along the vessel bound-
ary shows that our level-set method, LyMPhi, better captures the true vessel boundary than
manual segmentation. This can be shown in Fig. 32, where the red circle in Fig. 32c shows
that the boundary found by LyMPhi better matches that in Fig. 32a - the boundary in Fig.
32b has been flattened and does not provide accurate curvature of the vessel edge.

7.4 Discussion

This chapter has shown the risks associated with trusting manual segmentation fully and
completely, particularly when relying on a single annotator, as is often the case in segmen-
tation of the MLV. Chapter 8 will discuss the possibilities when a correct segmentation of
the lymphatics is in hand: namely, structural complexity analysis.
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(a) Original from Partial Mount Dataset (b) Manual Segmentation of Vessel

(c) Segmentation of Vessel by LyMPhi

Figure 32: Consensus segmentation results on a portion of an image from the partial mount
dataset. The segmentation results are displayed as binary. The top left image shows the
original vessel from the cropped image. The top right image is the manual annotation,
obtained by majority voting. The bottom image is segmentation performed by LyMPhi
(Dice = 0.94).
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8 Complexity Analysis

Now that segmentation is in hand, what can we do with the segmented vessels? This chapter
discusses complexity measures for the meningeal lymphatic vessels. These complexity mea-
sures serve a dual-purpose: comparison between different vessels, and also providing a new
way to measure segmentation accuracy. In the future, complexity may be a key bioinformatic
used to assess and quantify disease progression and drug efficacy.

8.1 Motivation for Complexity Analysis

Since the meningeal lymphatic vessels were only recently discovered, there is no tool available
for automatically analyzing these images. By building the first such tools, we can provide
more measures for understanding these vessels.

After segmentation, neuroscience experiments require comparison of lymphatic vessel
width, because during aging, lymphatic vessels thin and do not adequately drain wastes
from the brain. The comparison of vessels needs to be extended beyond width comparisons,
however - there are other interesting features of lymphatic vessels that could characterize
their complexity or networking ability. For example, in Figure 33, there is branching struc-
ture present in the vessels, stained in green. This structure may have a functional relation-
ship with drainage. We propose to build a set of measures for analyzing and characterizing
lymphatic vessels.

Figure 33: Lymphatic vessels stained in green.

Neuroscientists currently use hand quantification and analysis, which takes up to 7 hours
for a single image and is not consistent from person to person. Width measures in the
most recently published work have varied up to thirty percent! Width is sampled over the
vessels, with each researcher sampling different points, so the samples are not reproducible.
These widths are averaged over an entire image, smoothing over considerable vessel variabil-
ity. Furthermore, quantification by hand consistently over-quantifies vessel quantity because
there are fine details that are difficult to capture using mouse clicks. This again is incred-
ibly time consuming, and any measurements would be more accurate if automated. Most
current vessel analysis methods are semiautomated, like the approaches used in [158]. A
fully automated method to capture lymphatic vessel structure is needed, so that scientists
can have a reliable tool for lymphatic analysis. Furthermore, new relationships between ves-
sel growth and function could be understood by introducing new ways of analyzing vessels.
The ultimate question is can we predict these diseases or diagnose people with autoimmune
disorders just by studying their meningeal lymphatic network?
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A wider choice of measures would also yield more information about lymphatic vessels.
Also, can complexity measures be tuned specifically for lymphatic vasculature in order to
assess and analyze segmentation results?

8.2 Background on Vessel Complexity

Complexity is measured throughout the image processing world on a variety of different types
of images. For example, diagram images, which are black and white images consisting of
thin-lined pen and pencil diagrams, use something called an image signature to capture the
information of the diagram. [159] Vascular skeletons do look similar to thin-lined diagrams,
so vessel network signatures could potentially be captured using these methods.

Protein complexes also have measures of complexity. Protein complexes have holes, while
single chains generally do not. The holes are places for subunits to bind. Larger complexes
have larger holes, as they have more space for them. The authors take the protein volume
to convex hull ratio: Vp/Vc. A smaller ratio means more holes. The problem is, this ratio is
not just counting holes, which makes this ratio difficult to apply to lymphatic vasculature.
A simple chain with skinny branches curving in different directions also has a low ratio. [127]

In neuron analysis, the relationship between the morphology and function of neurons
was proposed by Santiago Ramón y Cajal. Morphological analysis of neurons and sub-
components, such as dendritic spines, synapses, and mitochondria has shown promise in
understanding neurodegenerative diseases. Comparing neuronal structures is also of great
importance. A comparison involves computing a similarity score for a type of neuron based
on a training dataset. The training set is built by categorizing neurons based on their
functionality. As more datasets of traced neurons from different organisms become available,
robust comparisons can be made. [4]

Most existing neuron tracers assume a tree-like structure, with no loops. This produces
some difficulty when attempting to translate neuron analysis methods to lymphatic analysis,
as lymphatic vasculature is ripe with capillary looping. However, techniques used to analyze
dendritic spine morphology could be translatable to lymphatic branch types. Spine shape is
used to classify the spine, based on maximum curvature, convexity, area, and other attributes.
These are used to predict the spine’s functional category. [4]

The most recent work published in this area uses hand quantification and analysis for
lymphatic vessels [1]. Since these vessels have not been well studied from an image processing
perspective, methods for other vascular structures, such as neurons, are of interest. The first
step is to create an accurate vessel skeleton. There are many methods for producing accurate
vessel skeletons, some based on marked point process, such as [160]. An interesting way to
build a neuron graph, and subsequently, a skeleton uses marked point process (MPP) to
birth marks along neuron centerline until the minimum energy arrangement is found. The
birth and death process proceeds according to simulated annealing. Marks are assessed by
their neuriteness (location on centerline) and interaction with other marks (not too crowded,
not so spread out that they don’t capture enough of the neuronal path.) [160]

The MPP solution is then used to build a graph, with each mark as a node. Gradient
vector field speedmap is used to drive fast marching to iteratively find the minimum paths
from start node to terminal node. This results in the minimum spanning tree (MST) of
the graph, which is the reconstructed neuron skeleton. When initializing, the user must
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overestimate the number of marks you need for all the objects (neurons, vessels) in the
image. [160]

We propose using a method called hierarchical skeleton abstraction, where an initial
skeleton is simplified using minimization over the number of branchpoints [135]. This method
provides a smooth skeleton, with fewer false branchpoints, and is more generalizable to
lymphatic vessel structure - which is wider than neuronal structure. After obtaining the
skeleton, analysis measures similar to those found in common neuron analysis papers, such
as [161], can be used, such as calculating the number of branchpoints and total vessel length.
More branchpoints signify higher complexity.

Figure 34: Branchpoints plotted in red and endpoints plotted in green on a vessel skeleton.

Another surveillance measure is the ramification index. The ramification index is cal-
culated for microglia and is defined as the ratio of the perimeter of the cell to the area,
normalized by the same ratio for a circle of that area. This index quantifies how ramified,
a cell is, or how spread out the branches (processes) of the microglia are. [162] While this
index does not directly translate to lymphatic vessels, as the vessels are not a single cell with
processes, calculating a similar index and seeing how it scales with lymphatic complexity is
still of interest. A similar measure of interest is porosity.

8.3 Proposed Complexity Measures

To further assess the segmentation results, we introduce three measures into the study of
lymphatic vasculature: vessel length, vessel ramification index, and vessel porosity. Vessel
length is widely used to study neurons and blood vessels, but vessel ramification and vessel
porosity (as an image analysis measure) do not exist in the literature.

The following are results shown on a couple of images from the datasets described in 4.
The images have been cropped to focus on one connected vessel at a time, as the vessels are
often disjoint due to dissection.

Fractal dimension was calculated as a potential measure of how much detail changes
in a pattern compared to the measuring scale. It can measure the “space-filling capacity
of a pattern.” While the fractal dimension does increase with more complex vessels, the
difference in fractal dimension is not very discriminative between simpler and more complex
vessels. From our experiments, the range of fractal dimension found is only from .9 to 1.4,
approximately. A more discriminative measure is desired.
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8.3.1 Skeletonization

The next step to much of vessel analysis after segmentation is skeletonization. The method
used in this thesis is called hierarchical skeleton abstraction [135]. This is a generalized
skeletonization algorithm for objects designed in 2004. An initial skeleton is created from a
simplified silhouette of the object. The initial skeleton is then simplified under two condi-
tions: similarity to the initial guess and having the fewest branching points possible. Both
boundary and inner branches are considered. (If an inner branch is removed, the two sub-
skeletons are joined.) The skeleton simplification is an optimization problem, where the
two constraints are that the two endpoints remain fixed and that eliminated branches do
not reappear. A few hundred breadth first sweeps of the skeleton are needed before conver-
gence. [135]

8.3.2 Vessel Length

We can first build a skeleton from the segmentation to start the automated complexity
analysis. Skeletons are one-pixel wide backbones of image objects. Displayed in 34 is a
lymphatic vessel skeleton with endpoints marked in green, and branchpoints marked in red.
One measure of interest for lymphatic vessels is vessel length. This can measure lymphatic
regression; regression is where the vessel grows shorter in length over time, with age. The
vessel length is calculated as the total number of pixels along the skeleton, as the skeleton
is one-pixel wide.

Vessel length was computed for all binary segmentation output by first skeletonizing.
This complexity measure is commonly used for neruonal analysis [161].

8.3.3 Vessel Ramification Index

Another measure of interest is the ramification index. A ramification index has been calcu-
lated for cells such as microglia and is typically defined as the ratio of the perimeter of the
cell to the area, normalized by the same ratio for a circle of that area. Again, this index
quantifies how ramified a cell is, or how spread out the branches (processes) of the microglia
are. [162] This index does not directly translate to lymphatic vessels, as the vessels are not
a single cell with processes.

Calculation of the ramification index was performed next on two types of vessels: one
simpler vessel, and a “more ramified” vessel. These are both shown in Figure 35. The RI
does indeed scale with complexity within vessels. However, there could be more meaningful
ways of calculating complexity that are more directly applicable to lymphatic vessels.

The ramification measure was then re-designed to better fit lymphatic vessels. Instead
of comparing to a circle of the same area, the comparison is performed with a simpler vessel
– a vessel with one smooth contour all along the outside, a filled vessel. The boundary was
traced roughly in Fiji to create a smooth vessel approximation, for visual purposes only. A
depiction of the process is shown in Figure 36. As it was done by hand, the boundary is
much wider than the vessel (boundary in yellow.) In the experiments, the vessel boundary
lies directly on the edge of the vessel.

The vessel ramification index is defined as
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(a) Simple Vessel (b) Complex Vessel

Figure 35: Two types of vessels.

(a) Tracing Vessel Boundary

(b) Simplified Vessel Result

Figure 36: Simplification of vessel.
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RIvessel =
Peri1
Area1

÷ Peri2
Area2

, (13)

where Peri1 and Area1 refer to the perimeter and area of the original vessel, and Peri2
and Area2 are the perimeter and area of the simplified vessel. This scales with the original
ramification index.

8.3.4 Vessel Porosity

Another similar measure we developed is inspired by porosity for materials. Porosity, or void
fraction, is a measure of the void or empty spaces in a material. It is the fraction of the
volume of voids over the total volume. Porosity is always a number between 0 and 1, unless
it is described as a percentage. A material has high porosity if it contains large spaces, such
as the figure on the left in Fig. 37.

Figure 37: Depiction of porosity.

Similar to ramification index, vessel porosity is calculated as the area of capillary loops
over the total surface area of the vessel, akin to how porosity is calculated for materials.

Vessel porosity is calculated as the area of capillary loops, which are the gaps where
a vessel branches and reconnects to the larger network, over the total surface area of the
vessel. We use area instead of volume because the images are 2D. Pictured in Fig. 38 are
some images of the capillary loops as shapes. Vessel porosity is similar to ramification index
in that it measures how much space is filled within the larger vessel boundary.

8.4 Complexity Results

The new RI is able to discriminate distinctively between simpler and more complex vessels.
The simpler vessel has a ramification index (RI) of 7.50 and the more complex vessel has
an RI of 31.28, with a new RI of 2.99 and 21.56, respectively. These results are depicted
in Table 11. While the previous RI for microglia also is discriminative between two vessel
types, the new one developed makes more sense for this problem.
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Figure 38: Three examples of capillary loops.
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Table 11: Ramification Indices

Vessel Type RI New RI
Simple Vessel 7.50 2.99

Complex Vessel 31.28 21.56

8.4.1 Measuring Segmentation Accuracy

All three measures were run on all segmentation results, and compared to the ground truth
using mean squared error. The u-net segmentation results have the lowest error for all three
measures compared to the ground truth complexity values, as shown in Table 12. Vessel
length varies widely because the skeleton produced changes enormously with changes in the
segmentation. As porosity is always a value between 0 and 1, the MSE for porosity is lowest
across all the methods.

Table 12: Mean Squared Error of Complexity Measures

Measure Chan-Vese L2S TuFF Matting u-net
Length 3.77x106 4.05x106 4.24x106 2.41x107 1.63x106

Ramification 0.508 0.515 0.538 0.478 0.228
Porosity 0.015 0.015 0.015 0.015 0.009

8.5 Discussion

The complexity measures proposed in this paper are automatically calculated, and would
serve to benefit the scientists that wish to use the data to draw conclusions. A main limitation
of this work is the ability to correlate complexity measures with some real physical meaning,
such as more/less drainage of waste. This is difficult to perform without directly working
with neuroscientists to design experiments and make measurements.

In the future, the assessment of whether these measures are strong enough to analyze
lymphatic complexity would be valuable. The work can be extended to building feature
vectors with discriminative power between impaired and healthy MLV for use with simple
classifiers, like in other works [134,163].

8.5.1 Possible Future Complexity Measures

The percentage length of the superior sagittal sinus compared to the whole MLV network is
also used as a measure. An extension of this could be to calculate the percentage length to
the blood vessel network. [95]

A graph can be built from the skeleton, with branchpoints and endpoints as graph nodes.
Within the graph signal processing framework, other measures can be taken on the vessels
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that have not yet been applied: tortuosity, graph diameter, density of branches, etc. Tortu-
osity measures how twisted a path from one node is to the next, compared to the straight
line distance between them. Graph diameter and density can provide an idea of network
surveillance of the meninges. [134]

The above are primarily adapting known approaches to lymphatic vessels. A possible
new way to describe vascular complexity by ascribing physical meaning to our measure in
terms of flow rate. Ultimately, whatever measure we use to describe a network of vessels
should allow scientists to infer how the structure influences the function of these vessels - in
this case, how fluid drains through the vessels. For a single image, analyzing fluid flow is
a particularly challenging endeavour. Traditionally, in biomedical data, fluid flow through
vessels is estimated from video sequences. As our data is comprised only of individual
images, we propose a novel way of describing fluid flow by modeling the vessel network as
an electrical circuit. At various sample points, a thickness can be measured along the vessel.
This thickness, combined with the viscosity coefficient and compressibility of the passing
fluid (using Poiseuille’s Law and Navier-Stokes equations), is named as the resistance of
the vessel at that point [164, 165]. This resistance represents how difficult it is for fluid to
flow through a vessel. A wider vessel implies lower resistance. If we imagine a circuit with
various resistances along its length, these resistances can be combined to find the equivalent
resistance of the vessel network [166]. This overall resistance describing the network would
be used to compare the ease with which fluid flows through different vessel configurations.
Using the vessel width in this way provides more meaning than averaging, because connection
patterns (series, loops, parallel) has a strong impact on the equivalent resistance calculated.

Implementing this flow model will come with challenges, however, as the lymphatic vessels
cannot be modeled with a traditional tree-structured graph. A graph structure allowing for
self-looping must be built before attempting to describe fluid flow through graph analysis.

Measuring the implications of vessel structure could be more valuable than simple mea-
suring vessel structure alone. This idea could lead to other interesting findings, such as
calculating the maximum possible flow velocity at various points. This type of single image
fluid flow analysis is novel, and is applicable to various types of vasculature, such as blood
vessels. Indeed, through surgical research, Dr. Scott A. Berceli at the University of Florida
studied different vein graft models in vivo, and measured blood flow. This research can show
which graft models have higher flow vs. lower flow. [167]

We have shown how to segment the meningeal lymphatic vessels, as well as how to cal-
culate complexity measures for the vasculature and compare different segmentation results.
The future of lymphatic complexity analysis is ripe with possibility, some avenues of which
have been discussed here. The next chapter will conclude this dissertation.
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9 Conclusions

The main contributions of this dissertation can be summarized as follows. The first deliver-
able of this dissertation is a level-set based segmentation method for accurately segmenting
meningeal lymphatic vessels from a highly cluttered background. The matting based level-set
segmentation approach, LyMPhi, is proposed to obtain robust lymphatic vessel segmentation
by removing background clutter and retaining vessel smoothness. Essentially, LyMPhi has
enabled the segmentation of a recently discovered anatomy (lymph in the brain), allowing
quantification of the delicate vessels that vary in width and intensity. LyMPhi is automated,
unlike the current manual segmentation used by neuroscientists, or traditional level-set seg-
mentation procedures, which may require difficult-to-tune intensity and scale thresholds.
Extensive experiments are conducted on four types of lymphatic vessel datasets to validate
the performance of LyMPhi compared to other state-of-the-art segmentation algorithms.

The second deliverable is a shape morphing procedure which creates a rich database of
realistic synthetic meningeal lymphatic vessel images. A novel approach to synthetic data
augmentation is proposed, based on shape deformation of the real lymphatic vessels. Seg-
mentation on the synthetic data is performed using LyMPhi and other competing methods,
with the added benefit of comparison to completely accurate ground truth. Segmentation
output from LyMPhi has a higher overall Dice coefficient compared to that of competing
algorithms as well as a higher BF-score, whilst being stable under different initial conditions.

Third, a convolutional neural network was applied to the MLV images, which is a chal-
lenging problem considering the lack of microscopic data with labels of the MLV. The u-net
architecture was used for segmentation, and promising segmentation results are shown com-
pared to more traditional methods. The fourth major contribution is an in-depth analysis of
the manual segmentation used, using kappa statistics, showing the fallacy in holding manual
segmentation as the gold standard in lymphatic analysis. In the short range, segmentation
can be performed automatically, saving human labor and preventing human error between
images. Finally, the fifth deliverable is a set of metrics for characterizing meningeal lym-
phatic vasculature. The LyMPhi segmentation results will be used to perform complexity
analysis of the vessels, using well-known complexity measures for other vasculature, as well
as developing new metrics which incorporate features unique to lymphatic complexity, such
as capillary looping. [168,169]

In the long-term, studying the segmented vessels in terms of quantity and complexity,
may lead to future discoveries on the role our meningeal lymphatic system plays in diseases
of the central nervous system. Vessel quantification can be quickly performed using the
automated segmentation result, potentially yielding fast and reliable numbers on lymphatic
drug impact during future studies. There is hope that the onset of disease could be predicted
by studying lymphatic vasculature [3]. If so, drugs can be developed (indeed neuroscientists
have already started) to improve vessel function and if not cure diseases like Alzheimer’s, then
at least mitigate them. Complexity measures built on the reliable segmentation provided by
LyMPhi can lead to fundamental understanding of these vessels: how they grow, how they
decline, and ultimately, the intricacies of their function.
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