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Abstract

Rising rates of pedestrian fatalities is an urgent concern in the field of transportation. Both the
National Highway Traffic Safety Administration (NHTSA) and Virginia Department of
Transportation (VDOT) report gradual decreasing in pedestrian related crashes; however, they
both report increasing pedestrian fatality rates. NHTSA reported a 35% increase in pedestrian
fatalities nationwide between 2008 and 2017 and VDOT reported a 19% increase in pedestrian
fatality rates between 2012 and 2018 in the state of Virginia.

Efforts to understand pedestrian behavior and safety have traditionally relied on real world
observation methods; however, these methods are time consuming, costly, and unrealistic. With
respect to motorists, driving simulators have become more sophisticated over the years and are
now used as tools for understanding driver behavior and safety in realistic conditions. Efforts in
creating virtual environments have been developed and tested for use in understanding non-
motorized traveler behavior and safety, though, previous technologies have struggled to provide
realistic and immersive environments due to the greater degree of freedom pedestrians wield over
motorists.

The recent advancement of virtual reality (VR) technology has opened the door for lower
cost and lower risk ways to study pedestrians’ behavior, perception of safety, and acceptance of
safety technology while also offering a higher degree of data resolution and level or realism
compared to previous pedestrian virtual simulators. The research presented in this dissertation
addresses the development of a VR simulator for studying pedestrian safety, a validation analysis
of the immersive virtual environment against pedestrian behavior in the real-world environment,

and a safety analysis of alternative technology treatments at the uncontrolled crossing to prove the



efficacy of using VR technology without the risks, time, and costs of real-world studies and safety
analyses.

Comparisons between real world and VR pedestrian behavior showed no statistical
differences in gap acceptance through the use of chi-squared analysis and crossing speed through
the use of independent samples t-test at a confidence level 95%. 94% of subjects felt that they were
immersed in the virtual environment and 86% felt that their experience in the virtual environment
was consistent with their real-world experiences. The results from this analysis prove that the use
this VR simulator is a valid approach for studying pedestrian safety at uncontrolled crossings.

Safety analysis of the unsignalized crossing within the VR environment showed beneficial
correlations when incorporating alternative safety technologies through bivariate correlations.
Pedestrians were able to cross the street at slower, safer speeds, rather than darting out in front of
approaching vehicles, regardless of the gap size between vehicles because they were able to
communicate their intent to cross with approaching vehicles. 56% of subjects reported that they
felt safe crossing the road using the mobile phone application, whereas 90% of subjects felt safe
crossing the road with the flashing beacons. Compared to the 26.5% of subjects who reported that
they felt safe crossing the street without alternative technologies, it can be concluded that the

crossing alternatives increase pedestrian safety, both behaviorally and perceptively, at the crossing.
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Chapter 1: Introduction

1.1 Motivation

More than ever, non-motorized travel safety is a critical issue in transportation research. While
motor vehicle occupant fatalities (adjusted for vehicle miles traveled) have generally been
decreasing since the 1970s (with a small increase in 2015 and 2016), non-motorized traveler, or
vulnerable road user (VRU), fatalities are increasing at alarming rates. According to National
Highway Traffic Safety Administration (NHTSA), the 2016 pedestrian fatality count was the
highest since 1990 (1). New solutions are needed to bolster the safety of VRUs. Efforts to
understand pedestrian behavior and safety have traditionally relied on real world observation and
simulation methods; however, these methods can be time consuming, costly, and unrealistic. With
respect to motorists, virtual driving simulators have become more sophisticated over the years and
are now used as tools for truthfully understanding driver behavior and safety in realistic conditions.
Efforts in creating virtual environments have been developed and tested for use in understanding
non-motorized traveler behavior and safety, though, previous technologies have struggled to
provide realistic and immersive virtual environments (IVES) due to the greater degree of freedom
pedestrians wield over motorists. Within the last decade, advancements in virtual reality (VR)
technology coupled with the release of commercially available VR headsets provide a platform
that is immersive and offer users with the largest degree of agency over their actions in virtual
environments than ever before.! The goal of this research is to demonstrate the feasibility of
utilizing virtual reality technology as a tool for conducting real-world experimentation of

pedestrian safety and behavior and to conduct a comprehensive analysis of pedestrian behavior

1 The Oculus Rift was introduced in 2012, the HTC Vive was introduced in 2016.
11



using alternative infrastructure design and a prototype connected vehicle (CV) application
midblock crosswalks.

Midblock crossings present a particularly vulnerable position for pedestrian safety.
Conflicts arise due the reliance of nonverbal communication between users and individual choices
each user must make (2)(3). Newer designs that better inform drivers of pedestrian presence and
intent at midblock crosswalks have been developed and implemented, such as rapid flashing
beacons (RFB). RFBs have proven to improve safety (in some circumstances) at midblock
crosswalks, however, the design itself is not entirely perfect and costs a considerable amount of
money to install and maintain. Connected vehicle (CV) technology provides the opportunity to
increase situational awareness for all users, potentially reducing the number of vehicle-pedestrian
incidents and also limit the need for installation of infrastructure such as the RFBs. Previous
research conducted by the author through UVA ESE at Turner Fairbank Highway Research Center
involved the development of a mobile phone application that allows pedestrians to broadcast a
message directly to approaching vehicles at midblock crosswalks that notifies drivers, in-vehicle,
of the pedestrian’s presence and intent to cross the crosswalk (4). As this study primarily focused
on the drivers’ reactions and perception of the application, it is paramount to investigate how
pedestrians perceive this type of messaging and whether or not they become more reliant or
trusting of this information and alter their behavior at the midblock crosswalk when attempting to
Cross.

The challenge in testing pedestrians with these technologies in real-world environments is
the control of risk that must be enforced to ensure no test subject is put in danger. By enforcing
control over driver behavior when testing pedestrians, the reality of the experiment is not

necessarily replicating the reality of the risks pedestrians take in everyday scenarios, hence, the

12



results from these experiments don’t necessarily paint an accurate picture of everyday life. Test
beds could be developed with these technologies in place; however, these endeavors are both time
consuming and costly and the data collected from experimentation is subject to a multitude of
uncontrollable environmental factors that make events almost never identical and therefore
incomparable. The solution needed is a platform that not only allows for completely replicable
scenarios for repeated trials, but also entirely realistic scenarios and traveler (vehicles, pedestrians,

etc.) behaviors that replicate the everyday risks pedestrians face.

1.2 Research Goals

Recent studies have been taking advantage of VR to replicate realistic environmental settings at a
low cost and reduced risk to the user. With VR, we can study human behaviors in settings/scenarios
that we have limited or no access to (e.g., design of a new intersection that has not been built yet)
or are considered high-risk environments for collecting real-life data. Additionally, these tools
provide us the freedom to control and manipulate different variables of interest, which we might
not have access to in real-life environments. By coupling VR tools with biometric sensors in
addition to behavioral information, users’ physiological information can also be collected and
analyzed. VR offers the platform needed that allows researchers to collect realistic data with
complete control over the environmental factors of repeated trials.

Through the use of VR technology, the anticipated product from this research is an
understanding of perceived safety and technological acceptance as it relates to pedestrians, the
road environment, and CV technology. This information can be used by planners and engineers to
better design technology and infrastructure for pedestrians to improve safety without the

challenges of traditional methods.
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The goal of this research is twofold:

I.  Pedestrian VR Simulator Validation: Prove the feasibility of utilizing virtual reality
technology as a tool for conducting real-world experimentation of pedestrian behavior. The
importance of this goal is exemplified by the following:

* Virtual reality presents the unique opportunity to test vulnerable road users in
dangerous environments in a risk-free manner that would otherwise be impossible to
study in real world testing, thus, eliminating the need to rely on crash data.

» The cost and time needed for constructing actual testing environments is eliminated.

» Multiple users can be placed in the same virtual environment to interact with each other.

Il.  Safety Analysis of Alternative Pedestrian Crossing Technologies: Understand pedestrian
behavior and preferences (both stated and observed) in regards to alternative safety
technology at midblock crosswalks. The importance of this goal is exemplified by the
following:

» Multiple technology and design alternatives can be developed and tested at once
without having to redesign an actual intersection.

 Pedestrian behavior can be anticipated with respect to new assistive technologies so

that it may be better developed for deployment.

1.3 Research Contributions

The research presented in this dissertation contributes to the body of knowledge within
transportation by establishing novel methods of understanding pedestrian safety and behavior and

uses this new approach to test alternative and connected vehicle safety applications. Transportation

14



engineers have utilized simulation methods to understand traffic patterns, safety, and driver
behavior in the past. Though research has been conducted to simulate non-motorized users such
as pedestrians, the technology of the past has limited our ability to create fully realistic
environments for comprehensive analysis and understanding. The major contributions of this
dissertation are:
- Avalidation analysis between real-world and virtual behavior in an IVE that is modelled
on a one-to-one scale after the real-world environment
- An analysis between alternative safety measures in an IVE, proving the efficacy of VR
technology in studying the safety implications of such designs without the time, cost, and
safety risks of implementing these alternatives in the real world
- A development of a VR simulator and experiment methodology for testing pedestrian
safety
- An expansion of the traditional methods of simulation research to include vulnerable road
users (VRUs) in a fully immersible, interactable, and realistic simulation offering full range
of motion
- Provides a novel approach to the development and implementation of connected and
automated vehicle technology applications from the perspective of a VRU
- Provides an example of a comprehensive multimodal data simulator that provides never
before collected data sources that is entirely replicable with commercially available

technologies

1.4 Dissertation Overview

This dissertation is presented in seven chapters as follows:

15



1. Introduction
This Chapter presents the motivations and goals of this research presented in this
dissertation as wells as the overall contributions this research makes to the body of
knowledge of transportation engineering and safety.

2. Literature Review
This chapter provides a review of literature regarding pedestrian safety, simulation in
transportation research, and the use of virtual reality in pedestrian research. The purpose
of this chapter is to address the issues of pedestrian safety and the gaps and limitations
within past pedestrian VR research. This chapter serves as the informational background
for why the methodology of this dissertation was conducted the way is presented.

3. Mid-Block Crossing Connected Vehicle Application
This chapter is dedicated to providing an overview of past research conducted by the author
of this dissertation that is both relevant to the work done in this dissertation and one of the
major motivations of it, as well. The mobile phone application discussed in this chapter
was originally tested on drivers and, after its success in increasing driver awareness and
yielding rates for the pedestrian, it was deemed imperative to test the application on
pedestrians in a safe, yet realistic environment to fully understand the implications such a
CV application would have on pedestrian behavior and safety. This chapter serves as a case
for the need of the research presented in this dissertation to best understand VRU behavior
and preferences and expedite the research process in a safe environment.

4. Methodology- Developing a Virtual Reality Pedestrian Simulator

16



This chapter presents the methods for developing the virtual reality pedestrian simulator in
the Omni-Reality and Cognition Lab (ORCL) at the University of Virginia. Information
pertaining to equipment used within the lab and reasoning for why it was chosen is
provided and relates back to the literature presented in Chapter 2. Furthermore, this chapter
also provides the reasoning and methodology of collecting and analyzing real-world
pedestrian crossing behavior at the location of interest — the intersection of East Water
Street and 1% Street South in Charlottesville, VA — and the use of this data to model traffic
behavior within the IVE for experimentation.
5. Simulation Validation: Pedestrians in VR vs. Real World
This chapter presents the analysis that validates the use of IVE and VR technologies as a
platform for conducting pedestrian safety studies that are directly applicable to real-world
environments. This chapter identifies the key data fields in which pedestrian crossing
behavior will be assessed between the two environments and provides a detailed analysis
as to the extent of which these factors influence behavior.
6. Safety Analysis of Pedestrians in VR with Alternative Technologies

This chapter presents the analysis between pedestrian behavior within an IVE with, and
without, alternative technologies designed to increase safety. The analysis in this chapter
shows how IVEs and VR technology can be leveraged to understand the changes in
pedestrian behavior as well as the safety impacts alternative technologies could have
without the need for real-world experimentation and the limitations that come with it. This
research is not only directly applicable to real-world decision making, but novel in that it
offers a new approach to the development and implementation of connected and automated

vehicle technology applications from the perspective of a VRU.
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7. Conclusions
This chapter re-addresses the goals of this dissertation and how the analyses meet these
goals to contribute to the body of knowledge of VRU research. This section further
addresses the contributions this dissertation makes to the development of novel methods
for studying VRU behaviors. Lastly, this chapter provides insight into future work to be

conducted with the findings of the experiment described in this dissertation.
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Chapter 2: Literature Review

2.1 Introduction

While current designs have aided pedestrians in crossing roadways at mid-block crossings,
conflicts still arise due to the confusion these designs can cause between pedestrians and motor
vehicles (5). Mid-block crosswalks are dangerous for both pedestrians and drivers because
communication between the pedestrian and driver is non-verbal and each individual pedestrian
decides then it is safe to cross (6). These instances are increased when a designated mid-block
crossing is installed at the crossing of a greenway with a roadway due to the higher volume of
pedestrians and cyclists crossing. Sometimes these mid-block crossings are across roadways
where mid-block crossings are uncommon or unexpected, thus exposing users to an

uncomfortable environment.

2.2 The Dangers of Mid-Block Crosswalks

Unsignalized mid-block crosswalks pose a unique and confusing scenario for all roadways users
as driver and pedestrian communication, or the lack thereof, is paramount in understanding the
safety of these designs. In the National Highway Traffic Safety Administration (NHTSA) 2017
annual report released in 2019, pedestrian fatalities increased by 35% over the ten-year span from
2008 through 2017 (7). Furthermore, this NHTSA report states that the percentage of pedestrian
fatalities of total fatalities in traffic crashes each year increased over this same ten-year span from
12% in 2008 to 16% in 2017 and that 73% of these fatalities did not occur at intersections (7).
With respect to the state that this experiment was conducted, 13.2% of total traffic fatalities
were pedestrians in Virginia (7). The Virginia Department of Transportation’s (VDOT) Pedestrian

Safety Action Plan released in May of 2018 states that 51% of pedestrian injury crashes and 66%
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of pedestrian fatal crashes occurred at mid-block crossings (8). This report also showed that
Northern Virginia, where the W&OD and Mt Vernon Trails are located, had the second highest
percent of pedestrian fatal crashes in Virginia over the years of 2012-2016 and the highest percent
of pedestrian injury crashes in all of the state (8). Furthermore, the report states that 71% of
pedestrian fatal crashes occurred in dark or unlit conditions (8). In the Virginia Pedestrian Crash
Assessment published by VDOT representing an analysis between the years of 2012 and 2016, it
was discovered that pedestrian crashes accounted for 1.4% of all reported traffic crashes, but
accounted for 12.5% of all traffic fatalities (9). Loudon County, the City of Alexandria, Fairfax
County, and Arlington County all ranked within the top ten cities and counties for pedestrian injury
and fatal crashes (9).

It would feel appropriate, then, to implement a form of control of pedestrians at these mid-
block crossings. A 2017 study conducted by Coeugnet et.al. studied the effectiveness of a
vibrotactile wristband older pedestrian crossing behavior in a simulated environment, alerting the
pedestrian as whether they were making a safe crossing decision. Results indicated that older
pedestrians responded in accordance with the wristband 51.6% of the time, however, simulated
collisions did not fall to zero (10). A study conducted by Zhuang and Wu also found that
pedestrians have poor crossing behavior at controlled pedestrian crossings, often overestimating
their ability to cross controlled intersections with countdown timers (11). New timers with required
crossing speeds reduced risky crossing behaviors in pedestrians, but did not altogether prevent
them (11). While these studies reduced risky crossing behaviors, they did not mitigate the
unpredictability of pedestrian behavior at crosswalks. Furthermore, Zhai et. al. found in a 2019
study that the effects of jaywalking and risky driving behavior on pedestrian crash severity were

most prevalent under rainy conditions (12).
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In order to attempt to combat the unpredictability of pedestrians, the City of St. Louis
rewrote their laws requiring all trail users to stop and yield to vehicles at trail-roadway
intersections. St. Louis deemed that trail-roadway intersections were not in fact intersections, but
simply trail crossings. Thus, in order to control pedestrians at such crossings, St. Louis removed
all striping at these crossings and installed stop signs and warning messages along their trails,
indicating that it is state law that all trail users stop and yield to vehicles (13)(14). Ultimately,
pedestrians operated as usual, with some obeying the signage posted and others ignoring these
warning and stop signs and crossing with the assumption that motorists will yield to them as the
new state law stated.

A similar case can be seen in Virginia at identical intersection types along the vast network
of greenways in Northern Virginia. There are stop signs and warning messages along the trails at
intersections with roadways, yet there is still some confusion at such crossings. Whether it be
pedestrians ignoring the signs and walking into the roadways with the assumption that they have
the right of way or pedestrians stopping as the signage demands, yielding to vehicles, only to
encounter vehicles yielding at the crosswalk to pedestrian leaving pedestrians to cross with the
assumption that vehicles in adjacent lanes will do the same. Such uncontrolled mid-block crossings
foster unpredictable and unsafe situations, leaving all of the decision making at these intersections

in the hands of each individual, thus increasing the potential of possible incidents.

2.3 Simulation in Transportation Research

Modelling helps transportation engineers better understand, design, and manage our roadways to

make them safer and more efficient for all users. As new technology is developed, new methods
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and data can be studied to make better informed decisions and designs to further increase safety
and efficiency. Simulation is one of the best ways we can, as transportation engineers, understand
all of the factors that influence user behavior and safety and have been used extensively in previous
research. Traditionally, transportation engineers have taken a vehicle-centric approach to
understanding roadway safety through use of simulation models on a micro and macroscopic level
and driving simulators on an individual level. As simulation-based approaches evermore become
the standard for managing and designing for vehicles, the same approach could be leveraged for

VRUs.

2.3.1 Traffic Simulation Modelling

Transportation engineers have used simulation methods for modelling and analyzing traffic
operations under different treatments to better plan for and manage future traffic demand.
Simulation modelling (both micro and macroscopic) has proven a successful approach to
managing traffic conditions and has thus been developed to be used as the industry standard for
real-time traffic management (15). Furthermore, traffic simulation has also been used for
increasing safety of roadways. A 2020 review of literature shows that current trends in simulation
modelling aim to predict vehicle crashes, whereas traditional methods have focused primarily on
implementing traffic control (16). Additionally, with the development and implementation of CV
and AV technology, simulation-based approaches are being leveraged to understand the
implications these technologies will have on operations and safety due to the lack of empirical data
(17). Increasingly, proactive simulation-based modelling approaches are becoming the standard
for understanding and managing roadway operations and safety. Further clarity on the implications

of new technologies, designs, and operations is needed on the individual level as well for

22



understanding public acceptance and understanding of new treatments, leading to the use of virtual

simulation.

2.3.2 Driving Simulation

Virtual driving simulator methods help understand the perceptions, behaviors, and preferences of
individuals with respect to new roadway designs, technologies, and operations. The outcomes of
these studies help to better predict real-world operations in traffic modelling, understand the
implications new treatments may have on safety, and educate users on the operations of new
treatments. Past research has validated the use of driving simulators for studying driver behavior
so that the results of these studies can be taken at face value (18)(19). Due to the validity of
simulator results, driving simulators have since been used for behavior studies, driver education
and training, infrastructure design, medicine, ergonomics, and intelligent transportation systems
development (20)(21). Due to the validity and the removal of risk from real-world danger, virtual
driving simulators have become the standard for understanding driver behavior and preference,
thus, it is no surprise that this approach could be leveraged to study arguably the roads most

vulnerable user — pedestrians.

2.4 Virtual Reality Simulation

2.4.1 The Use of VR Simulation in Understanding Pedestrian Behavior

The use of virtual reality in pedestrian studies cover a wide range of topics from educating children
on safe road crossing behavior to understanding the perception of walking speed in virtual space.
Not only have the topics of research varied over the years, so, too, has the technology. Many recent
studies involve the use of HMDs, as opposed to the stationary single or multiscreen platforms used
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in early simulator iterations (with the exception of the earliest studies which utilized older, inferior
HMD technology).

Simpson et al. conducted a study in 2002 investigating road crossing behavior of children
and young adults with respect to collisions, near misses, cautious crossings, crossing time, and gap
acceptance, utilizing previous generation HMD technology (22). Results of the study suggested an
increased level of immersion as compared to prior studies involving display monitors. The study
also implied higher collision rates in the virtual environment (as compared to real-world data) may
be a result of subjects’ riskier behavior in a risk-free environment. In 2005, Banton et al.
investigated the perceptions of subjects’ walking speeds in virtual reality, also using a HMD to
validate the usefulness of virtual technology for pedestrian research (23). The researchers found
that subjects’ misperceptions were often due to a lack of sensory cues, largely because of the
HMD’s restrictions in peripheral vision and a lack of stereoscopic imaging. These early studies
employing the use of HMDs were limited by low-resolution, 640 x 480 pixel displays for each
eye, synoptic imaging instead of stereoscopic imaging, and a diagonal 48-52 degree field of vision,
compared to the natural human field of vision of 180 degrees. The authors of both the Simpson et
al. and Banton et al. papers believed that these factors impacted subject behavior due these
limitations on perception of space in the virtual environment (22)(23), stating that stereoscopic
imaging was too difficult to perform, so synoptic imagery was used instead. Furthermore, the
headsets operated on lower resolutions and frame rates, which created blurry images and jittery
frames.

For approximately ten years after these early iterations of HMDs were used in pedestrian
studies, multiscreen virtual environments dominated the pedestrian simulator literature.

Multiscreen and projection-based technologies were used for a broad range of studies including
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designing and testing educational programs, understanding pedestrian behavior, and testing new
roadway designs. Studies using multiscreen displays mitigated some of the early issues with HMD
technology by providing a much larger field of vision, eliminating the restrictions of cable
management with headsets, and reducing visual distortions and movement jitter due to the
computational power required for HMD technology use. In 2008, Schwebel et al. sought to validate
the use of virtual reality as a preventative tool to improve safe street-crossing behavior to limit
child pedestrian injuries (24). The study implemented a multiscreen environment where subjects
would stand in front of the virtual environment and observe the associated scenarios. After the
crossings were completed, participants briefly reported on the realism of the VR environment and
any discomfort they experienced. Three main measures were collected in all trials to assess safety:
average gap size available, average wait time over cars passed, and average start delay. Overall,
adults rated the VR environment as "quite realistic” and children rated it slightly lower. In 20009,
Neider et al. used a similar virtual multiscreen approach to test how divided attention affected
pedestrian behavior when crossing a busy street (25). The simulator involved subjects walking on
a treadmill while looking at a stationary multiscreen display. The study found that successful
crossing rates differed between undistracted and distracted users; however, the study found an
uncharacteristically low percentage of successful crossings. The authors pointed out that many of
the crossing failures were due to the testing time expiring while the pedestrians were distracted, as
many of them were over-cautious and did not cross within the maximum 30 second time window.
However, authors believed that the low rate of successful crossings does not suggest that the
simulated environment or task was unduly hazardous, but rather a consequence of the test design.

In 2010, Schwebel et al. conducted another study aimed to study the effectiveness of virtual

reality as a way to teach safe street-crossing behavior to children (ages 7-8) utilizing the same
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simulator validated in their 2008 study (26). Four groups were formed for testing: one group took
part in six sessions of training in an immersive virtual reality environment, the second group took
part in six sessions of training through widely-used computer video-based programs, the third
group took part in individualized personal training at real-world streetside locations, and the final
group served as a no-training control group. All groups had their behavior tested prior to training,
after training, and at a six-month follow-up assessment. As a follow-up study in 2015, Schwebel
et al. conducted a before and after within-subjects trial of training children in pedestrian safety
using a semi-mobile, semi-immersive virtual pedestrian environment placed at schools and
community centers (27). The findings of this study suggested that virtual reality environments
placed in community centers had the potential to teach children to be safer pedestrians. To further
understand the effectiveness of virtual reality as a training tool, Shen et al. conducted another study
with the same simulator from the Schwebel studies, examining the relationship between stated
temperamental fear and risky behavior in children (28). Results indicated some correlation
between fear and crossing behavior and suggested that future research should explore how factors
such as fear could influence the effectiveness of incident prevention programs.

The Schwebel simulator was also used in 2013 by Byington et al. to investigate whether
young adult pedestrian safety is compromised when subjects crossed a street while using a cell
phone (29). Results indicated differences in crossing behavior in subjects with generally riskier
behavior being observed in instances when subjects were distracted with their phones. Schwebel
et al. also conducted a similar experiment in 2012 that investigated the influence of conversing on
the phone, texting, and listening to music on pedestrian crossing behavior (30). The experiment
consisted of 138 college students crossing an interactive, semi-immersive virtual street displayed

on three monitors arranged in a semicircle in front of the student. In 2016, Rahimian et al.
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conducted an experiment with a large-screen immersive virtual environment, similar to a CAVE
system, to evaluate how texting pedestrians respond to traffic alerts delivered via their cell phone
(31). Results of this study suggested that vehicle-to-pedestrian communications could help
mitigate collisions between pedestrians and vehicles during street crossings. In 2017, Schwebel et
al. conducted another study with their multiscreen virtual environment by testing pedestrian
exposure to texting while crossing an intersection (32). Individuals exposed to texting within a
simulated pedestrian environment reported changes in their intentions to cross streets and in
perceived vulnerability to risk while crossing streets.

Through the use of their multiscreen display system, the Schwebel studies demonstrated
the effectiveness of virtual reality for research in pedestrian behavior and training. A few later
studies used newer display technology, particularly the cave virtual reality (CAVE) system.
Tzanavari et al. conducted a 2015 study that tested the efficacy of virtual reality in improving
pedestrian crossing behavior (33). This study only tested training in a CAVE environment (with
no comparison to other training methods) and was focused specifically on six children with Autism
Spectrum Disorders (ASD) ranging from 8 to11 years old. This experiment consisted of a four day
training period to investigate whether the CAVE VR environment could be used as a tool to
improve crossing behavior. Based on results describing each participant's correct steps per day per
trial, all children demonstrated progress and were able to complete the task with no mistakes by
the end of the fourth day. Furthermore, all children were able to demonstrate competency in
crossing the street in the real environment at the post-training evaluation. In 2017, another study
by Jiang et al. also used a CAVE system to examine how people behave at road crossings (34). In
this study, pedestrians attempted to cross a crosswalk in the presence of another pedestrian whose

behavior varied between safe and risky. This study employed the use of two different partner
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pedestrians - one programmed into the virtual environment and one researcher walking alongside
the test subject- in different trials. Results indicated that subjects preferred crossing with a partner,
in particular their human partner over the virtual one, regardless of the riskiness of the partner’s
behavior.

While multiscreen and CAVE projections were easier to use, some studies reported
possible implications of these technologies’ decreased levels of immersion and subsequent impacts
on subject behavior (25). Few studies provided validations of their testing methodologies and
technology; however, those that did, such as the 2008 Schwebel et al. study, continued to use their
simulator for years in various research studies (24). During the years when the CAVE system was
becoming popular in pedestrian research, the HTC Vive and Oculus Rift were released. These
commercially available HMDs made the use of VR technology for research more cost-effective
than ever before, and marked a resurgence in the use of HMDs in recent pedestrian simulator
studies. These more recent studies involving the use of HMD technology primarily relied on the
Oculus Rift or HTC Vive, both having 1080 x 1200 pixels per eye at a possible refresh rate of 90
Hz and a field of vision of 110 diagonal degrees (35). These recent studies using HMD validate
the use of virtual reality environments as a meaningful tool to study pedestrian and bicyclist safety
and behavior with some limitations in perceptions of walking speed, motion sickness, and cable
management.

In 2018, Farooq et al. presented their VIRE (Virtual Immersive Reality Environment)
system, which is capable of developing highly realistic, immersive, and interactive choice
scenarios via a HMD (36). Their investigation focused on pedestrian preferences related to
autonomous vehicles and associated infrastructure changes on urban streets. Also in 2018, Deb et

al. investigated what external features on autonomous vehicles could help pedestrians best
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understand the intentions of a vehicle at a crosswalk (37)(38). The study was conducted using a
HMD and yielded positive results showing that pedestrians’ receptivity of autonomous vehicles
increased with the inclusion of external features. Bhagavathula et al. conducted a study in 2018
utilizing HMDs to understand how pedestrian perception and behavior in virtual reality compared
to those of real world experiences (39). In this study, subjects experienced the same environment
and scenarios in both virtual and real environments. Analysis between the two settings found that
there was little difference in pedestrian behavior and perception aside from perception of walking
speed. Also in the same year, Iryo-Asano et al. conducted a similar comparison study between
real-world and virtual environments with HMDs, examining the applicability of VR to pedestrian
perception and behavior analysis (40). Results indicated that the field of view of the display may
have implications on how pedestrians interpret their surroundings, possibly leading to changes in
behavior.

Virtual reality has been used for wide ranging applications in pedestrian studies:
understanding pedestrian behavior, validating immersion in simulated environments, and as a
teaching tool. The technology used in pedestrian studies has followed a cyclical trend with early
research utilizing HMD technology before abandoning it, largely due to technical limitations, for
multiscreen displays, only for later studies to return to the use of HMD technology once it was
more commercially available. These shifts in technology and purpose of research mark a transition
to more multidisciplinary approaches in pedestrian studies, incorporating psychological,
physiological, and computer science elements to better understand the implications that virtual

reality has on pedestrian behavior and research.
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2.4.2 Gaps in Research

Though VR has been used in the past for VRU research, the technology has improved over the
years providing opportunities for better research. The last two decades have seen research focusing
on the dangers VRUs face and how countermeasures influence safety - elements such as walking
speed, gap acceptance, analysis of risky behavior, stated preference data, visual or auditory
warning effectiveness, speeds, steering, and resistance have all been the commonly discussed in
VRU research (25)(37). Trends in the use of VR technology in VRU research indicate that
commercially available technology appears to drive the method of immersion simulators are based
on, thus as more immersive and efficient virtual reality technology became commercially
available, research with bicycle and pedestrian simulators began to more readily utilize this
technology as a means of understanding human behavior.

Arguably the biggest gap in IVE VRU research is the lack of standard practice methods for
cross-comparing studies - it is difficult to draw conclusions relating to technology effectiveness
between a simulator using screens and another using a HMD because validation studies are not
consistent between simulators and there are few studies that have been conducted to analyze this
(41). Maillot e.t al. found that in comparing a screen-based setup and a CAVE environment,
participants crossing a street accepted fewer gaps and had fewer collisions, while also having better
perception of approaching vehicles speeds (42). Small differences in participant behavior have
been noted between HMD and CAVE technologies with regard to participant movements
(43). Schewbel et. al. found some correlation between a multiscreen setup and the use of a
cellphone mounted in a cardboard viewer as a simulated HMD setup (44). Other comparisons have
taken into consideration the fidelity of movement, visualization, and sound technology (45-48).

Furthermore, there are limited analyses comparing virtual and physical environments to validate
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the behaviors of participants between the two environments. Early studies analyzed the differences
between crossing behavior in IVEs and physical environments with some correlation in behavior
while other studies found differences in perception of sound (24)(49)(50). Other studies have
discussed the differences between perception of approaching objects between reality and virtual
reality (33).

Additionally, there is no standard practice in comparing the effectiveness between
simulators using the same technology, either, primarily due to the fact that the technology is
relatively new, though, some studies have started conducting post-testing for validation of results.
With respect to the more recent studies, identified gaps include a lack of model complexity of the
studies conducted, indicating that more work needs to be put into incorporating traffic flow theory
and behavior into the IVEs (36)(38)(39). Furthermore, a lack of complexity with respect to what
the VRUs can do within an IVE also needs to be addressed, including limitations in walking speed,
interaction with vehicles and infrastructure, and modelling streetscapes within the boundaries of
indoor laboratory space (37-39). Other gaps in research include studies involving multiple subjects
in the same IVE simultaneously in the same or different roles, researching subjects with disabilities
in risky scenarios, and utilizing IVEs as a tool for demonstration and education in public forums.

Strikingly, one of the major gaps within research is the lack of validation of pedestrian
behavior within simulators with real-world behavior. In the past, the primary approach to
validating a simulator has been through the use of post-test questionnaires that offer insight into
one’s perception of the IVE and how it compared to their real-world experience. Banton observed
pedestrians’ perception of walking speeds in an early iteration of VR head mounted display and
compared those to real-world walking behavior as well as collecting responses to participants’

perception of walking speed (23). Schwebel, in 2008, validated a multiscreen simulator by
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analyzing stated perceptions as well as the safety behavior of participants (24). In 2018,
Bhagavathula compared pedestrian behavior in real and virtual environments through the use of
questionnaire data, pedestrians never crossed a street but merely observed it and provided feedback
on their experiences; however, this study did model the virtual environment off of the real-world
environment and participants experienced both scenarios under controlled conditions (39). Also in
2018, Iryo-Asano validated pedestrian perception of distance and subjective danger in VR with
that of real-world experience, however, this research focused on pedestrian interactions with other
pedestrians or Segway’s and did not attempt to validate perceptions based off modelling an IVE

off of a real environment or interactions with vehicles (40).

2.4.3 VRU Simulator Categorization

As previously mentioned, IVE simulators have been increasingly used as a means to research VRU
behavior and safety. Table 1 has been developed to better illustrate how the trends in technology,
immersion, collected data, and analysis of pedestrian VR simulation research have changed over

the last two decades.
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Table 1 — Categorization of pedestrian studies using virtual reality methodologies.

Report Information Visual Technology Level of Data Reported Analysis
HMD Agency of Movement
OLS\]US e Physiological
Laboratory or . . " . Tracking Participants
Year Author Affiliated Shgla liEETEEn Rift (H) . Real Sound iEpTs Kinematic Movement (E) Feild fecchecklE) St (number and Independent Variables Statistical Analysis
0 Screen or CAVE HTC Vive Stationary Dummy ) Feedback . EEG (P) Preference
Universities Time of View . group)
(X) ) Passive
Other as
listed
X, Virtual
. N g Gap Acceptance, Descriptive
2002 Slr:‘pz;;)et Ucnalr\:te;gerf Rsezfs:\:? X X 2, 5—2&years Collision Rate, Statistics, Repeated
| v Y va Cautious Behavior Measures ANOVA
Perception of Speed vs
Banton et al University of X, n- 57 G e Repeated Measures
2005 : ASE X X X X Perception of Speed vs G
(23) Virginia Vision undergraduates . . ANOVA
View Angle, Distance
Compression
102 children, 7- Descriptive
Schwebel et UAB Youth 9 years old e
2008 al. (24) Safety Lab X X X X X 74 adults, 17-52 Gap Acceptance Statistics, One-Way
ANOVA
years old
Spearman
Tel Aviv 86, 7-12 years Collision Rate, Safety Correlation, Mann-
RO0S Esida) University % % % % old of Crossing, Gender Whitney U,
Wilcoxon
. . Repeated Measures
. lllinois 36 Collision Rate, Crossing ANOVA, Bonferroni
Neider et al. " ) Success Rate, Head .
2009 Simulation X X X X undergraduates, ) Correction,
(25) Movements/Attentive . .
Laboratory 18-30 years old Logarithmic
ness N
Transformation
Gap Size, Attention to
2010 SeineEa Wit X X X X 20 PO Traffic, Temporal Gap Linear Mixed Models
al. (26) Safety Lab old Size
Technical Gender, Average
2011 Bernhard University of X X X 48,19-32years |\ iting Time, Auditory ANOVA, Kendall
(47) i old Rank
Vienna Preference
Descriptive
Statistics, Binary
138 Gap Acceptance, Regression, Linear
2012 Sc:\”i:g; cs g:fitvolfjats X X X X X undergraduates, Collision Rate, Spare Regression, Binary
. Y ages 17-45 Time, Attentiveness Logistic Regression,
Multivariate
Regression
i . Descriptive
2013 BylaTg(t;g)et l;:thOLUa‘C x X X x X F X under Briduates Ta(c:lzlrlnlswsrt‘athatlJe' EDyeela Statistics, Repeated
| v 8 & P v Measures ANOVA
Immersive and
q . Attention, Gender,
2014 UEEIETEN] G i X X X X X SIS Successful Crossings, Descriptive Statistics
al. (48) Technologies old . .
Immersion, Noise
Lab
Descriptive
Statistics, Bivariate
2015 Shen et al. UAB Youth X X X X X 240, 7-8 years Collision Rate, Start Up fl?;::iﬁiizll
(28) Safety Lab old Time, Time To Collision .
Regression,
Bootstrapping
Mediation Analysis
Descrinti
Gap Acceptance, Safe . gscnpnve‘
Schwebel et UAB Youth Crossings, Head Skl @it
2015 al. (27) Safety Lab X X X X 44, 7-8 years old Movements/Attentive Mixed Effect Lpglstlc
Regression, Linear
ness .
Regression
Immersive and
2015 Tzanavari et Creatlvg X X X 6 male, 8-11 Compliance Rate Discrete Counts
al. (33) Technologies years old
Lab
Detection Distance,
N University of 14, 26-35 years R ' Repeated Measures
2015 Sing (51) Warwick X X X X old Recqgnlzablllt.\/ of ANOVA
Vehicles, Vehicle
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Detection, Vehicle
Impression

Gap Acceptance,

Mixed Effects
Logistic Regression,

2016 Ra;“‘"(";lr; o[ Umhversttyof F e ates Collision Rate, One-Way ANOVA,
| 8 Attention Fischer's Least
Square Difference
80, 20-80 years User Preference, Chi-Squared,
RO ey (HE) Ifsttar/inrets old Immersion Descriptive Statistics
GEE, Logistic
Gap Acceptance, . .
2017 Schwebel et UAB Youth E 219 Collision Rate, Regresslov, POI?SDH
al. (44) Safety Lab . Regression with
Attention :
Scaled Deviance
& Zil-ZOSyears Percentages, Means,
Mississippi 4 Gap Acceptance, Chi-Square, One-
2017 Debetal state undergrad, 11| o Rate, Crossing Way ANOVA,
(37) y grad or post N
University L Time Repeated Measure
doc, remaining ANOVA
had grad degree
Gap Acceptance,
64 Collision Rate, Crossing
Jiang et al. University of Time, Start Up Time, Mean, Mixed Effects
2017 undergraduates, . .
(34)(46) lowa Interpersonal Logistic Regression
18-33 years old .
Distance, Movement
Synchrony
P Standing Position, One-Way ANOVA,
University of undergraduates: D eegotcapsicap Mixed-Effects
2017 Mallaro (43) Y g . Size, Timing of Entry, g q
lowa 16 in CAVE i Logistic Regression,
16 in HMD 8 1ime, 5p Descriptive Statistics
Time
20, 22-38 years Collision Rate,
. old Accepted Crossings, Descriptive
2017 Maillot (42) Ifsttar/Inrets 40, 62-88 years Inter-simulator Statistics, Bonferroni
old Comparison
Nagoya
Iryo-Asano et University and . .
2018 al. (40) Vs ah 32 Spatial Perception Mean, CDF
Tokyo
Laboratory of . "
S018 Farooq etal. Imnovations in 42, >18 years Gap Acceptance Multimodal Logit
(36) 3 old Model, Percentages
Transportation
Deb et al. MIESES TR 30, 18-47 years Crossing Time, Start ANOVA, Bonferroni,
2018 State a q
(38) L old Up Time Regression, T-Test
University
Virginia Te?h Perception of Safety, l.\/ll?<ed Mode!
Transportation 16, 18-35 years . . Logistic Regression,
Bhagavathula N Risk of Crossing, ) "
2018 Institute and old, 11 male, 5 3 Linear Mixed
etal. (39) I Perceived Speed, " .
Virginia Smart female) N . Models, Binomial
Perceived Distance .
Road Regression
Training Environment, Descriptive
79, >60 years Gender, Accepted Statistics, Two-Way
2019 Cavallo (52) Ifsttar/Inrets old Crossings, Collision ANOVA, Fisher's LSD
Rate Test
2020 UVA ORCL E&F
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Definitions for the categorization of Tables 1 can be found in Table 2.

Table 2 — Categorization definitions for Table 1.

Year Year of paper
Report Author Author(s) of paper
Information Laborago_w or_A_fflIlated Laboratory or university where the study was conducted
niversities
Single Screen Subject viewed a single screen as visual source
Visual Multiscreen or CAVE Subject viewed multiple screens or was within a CAVE environment
Technology HMD . . . . . .
(O) Oculus Rift (H) HTC Vive Subject viewed environment in head mounted display
(X) Other as listed
Stati (Pedestrian) Subject remained motionless or interacted via controller (Bicyclist)
ationary - - - . -
subject remained motionless or interacted via controller
Agency of (Pedestrian) subject walked on treadmill or stepped off platform but actions weren't
Level of Movement Dummy translated in VR, movement was only proxy (Bicyclist) subject was on stationary bike
Immersion but movements were not translated into VR
Real Time Subject movements were translated in VR
Sound Sound was used in environment
Haptic Feedback Interaction with the environment through, vibration, resistance, etc.
Kinematic Kinematic data includes: speed, steering, direction
Movement Movement data includes: special position, body position tracking, head movements
Data Reported 8:5)) Ei)é? dngtil;iI:\/?/ Eye tracking included in study: field of vision, attention, eye tracking
(EP)h ésé(é;)gggl (l;e;eg:;(;\lje Physiological data collected via EEG of Passive sensor
Stated Preference Survey Data was collected in study
Participants (number and group) Number of participants in study and relevant demographics
Analysis Independent Variables What variables that were studied in the study

Statistical Analysis

Analysis used to determine impact of variables in study
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Chapter 3: Mid-block Crossing Connected Vehicle Application

3.1 Introduction

Research conducted prior to this dissertation as part of my master’s thesis involved the
development of a mobile connected vehicle application developed to increase safety at mid-block
crosswalks. The goal of this research was to design, develop, and test driver behavior and
perceptions of a connected vehicle mobile application that warned drivers of a pedestrian’s intent
to cross at a mid-block crosswalk. This chapter discusses the background, operations,
development, testing, and results of this research and how it serves as the motivation for the
research in this dissertation, a test case for safety analysis of alternative safety technologies for
pedestrians crossing unsignalized crossings, and the inception of the ORCL. The authors of this
work were Austin Valentine Angulo and Brian Smith, PhD and professor at the University of

Virginia.

3.2 Background

The scope of this project was to develop a mobile application that both pedestrians and motorists
can install on their smartphones or tablets to enable users with the ability to communicate with
each other at mid-block crossings via discrete safety messages and analyze the safety impacts and
performance metrics of said application. Advanced warning messages differ from currently
deployed technologies in vehicles, for example automatic braking, as this technology takes a pro-
active approach in preventing incidents rather than a reactive approach. Personalized advanced
warning messages sent to drivers inform the driver of the pedestrian’s intent to cross, potentially
increasing the driver’s awareness of the pedestrian as well as the pedestrian’s intent at the

upcoming crosswalk and limiting the number of incidents observed.
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This project aimed to expand connected vehicle technology to include vulnerable road
users in the connected environment. Mid-block crosswalk treatments vary by region and
operational needs; often, a mid-block crosswalk is striped but receives no active infrastructure
support, such as flashing warning lights, to warn pedestrians and drivers of a potential conflict.
The application was designed to create an advanced warning cyber-physical system (CPS) for a
mid-block crosswalk through geofencing — a process of using GPS technology to virtually draw
geographic boundaries, or geospaces, which allow mobile technologies to trigger a response when
within the defined space — designated areas in which users will be able to interact with each other

via smartphone or tablet, as seen in Figure 1.

Figure 1 — The pedestrian (green) and vehicle (red) geofenced areas.

The geofenced cellular network delineates three geofenced areas:
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1. A geofence encompassing the mid-block crosswalk and adjacent sidewalk for the
Pedestrian Geofence.
2. Two geofences adjacent to either side of the mid-block crosswalk for the Vehicle

Geofence.

3.3 Concept of Operations

The advanced warning mobile application was designed such that it used wireless communications
to create an environment consisting of stagnant virtual mid-block crossings, overlapping the
existing mid-block crossings, which users could interact with. When a pedestrian is in range of the
designated crossing, the virtual environment recognizes that a user is present and enables the user
to broadcast their presence and intent to cross at the crossing. Drivers need to be equipped with
the application so that they may interact with the virtual network, as well. When the driver is within
a designated range of the virtual crosswalk and a pedestrian broadcasts a notification of their
presence at the mid-block crossing using the mobile application, a visual and audible advanced

warning message is transmitted to the driver, warning them that a pedestrian is present.

The application was designed to run as the primary screen on the phone and will serve as
a proof of concept. Further development can have the application operate in the background of the
smart device or integrated into other GPS technologies, seamlessly allowing users to view their

GPS and be alerted from the crossing via visual and audible messaging.
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This application needs only standard signage, pavement markings, and cellular signal from
two smart devices (one in vehicle and one on the pedestrian’s person) in order for proper operation
at a mid-block crossing. The application was designed so that it would limit the cost and materials

needed to operate and maintain active warning technology at mid-block crossings.

3.4 System Overview

The CPS was created using localized, designated geospaces, using GPS navigational systems (in
this instance, Google Maps) at mid-block crossings. Users in the geospaces have the ability to
interact with the virtual crosswalk; the interaction between users and the environment is limited to
user request and solely personal-message oriented. Users have the option to define themselves as
a Pedestrian or Motorist upon opening the application and are allowed to alter roles between trips.
The system architecture and data flow for messaging of the CPS and the user interface of the

application is shown in Figure 2.
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Figure 2 — Data flow, system architecture, and user interface of phone app.

3.5 Data Collection for Analysis

In this report, four major data types were considered to understand the behaviors of drivers with
the advanced warning message. The first data source considered was drivers’ reaction to the
warning message. This was defined as the percentage of drivers stopping for the pedestrian with
and without the advanced warning message. The second data source considered was drivers’ stated

preference data. This was collected through a posttest questionnaire regarding the drivers’
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perceptions of the application. Responses were recorded on a five-point Likert scale ranging from
1 to 5 — with responses of 1 indicating strongly disagreeing with the statement and responses of 5
indicating a strong agreement with the statement — and analyzed perceptions of how much drivers
believed it improved their awareness of the pedestrian, whether drivers found the technology
distracting, and whether or not drivers would like to see this technology integrated into commonly
used GPS routing applications. The third data source considered was drivers’ collected eye
tracking data. The eye tracking software, SmartEye, collected the location the driver is looking as
a vector in 3-dimensional space. This information was overlaid on the recorded video from the
forward-facing camera installed in the vehicle to analyze where the driver was looking during the
experiment. The last data source considered was the drivers’ kinetic data which was collected via
the on-board vehicle control area network (CAN) bus. The vehicle’s standard data collection
protocol was deemed appropriate as it collected speed (MPH), location (GPS), acceleration rate,
deceleration rate, steering wheel angle, and break application (a binary measurement is the brake

is pressed or not pressed).

3.6 Results

During the daytime, a total of 92 subjects were tested and during the nighttime a total of 32 subjects
were tested for a grand total of 124 test subjects. The 124 subjects were recruited from the northern

Virginia area, representative of the community that lives in the northern Virginia area.

3.6.1 Yielding Rates & Odds Ratios

The first measure of effectiveness that was considered was the effect of the warning application

on the driver’s yielding rate. During the daytime, 45% of drivers in Group A stopped for the
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pedestrian without the warning during Lap 1, whereas on Lap 2 with the warning they stopped
80% of the time. Group B during the day stopped 73.1% of the time with the warning during Lap
1 and 63.5% of the time without the message during Lap 2. During the nighttime, drivers stopped
for the pedestrian75% of the time without the warning during Lap 1 and 90.6% of the time with
the message during Lap 2.

The odds ratios analysis showed that drivers were more willing to stop for the pedestrian
with a warning message than without one. In particular, drivers on their first exposure to the
pedestrian were 2.44 times more likely to stop for the pedestrian during the day and 1.79 times
more likely to stop for the pedestrian at night with the advanced warning. These results are
consistent with previous studies and regarding the effects of RFB activation and driver yielding
rates along similar roadways (53-55).

Furthermore, the odds ratios were conducted for questionnaire responses indicating the
likelihood that the driver would be in agreement with the statements provided in the questionnaire
regarding whether the warning increased the drivers’ awareness of the pedestrian (Increased
Awareness), whether the application is a technology drivers would like to see incorporated into
other GPS applications (Technological Acceptance), and whether drivers didn’t find the
application distracting (Found Not Distracting). For each survey question, it was found that the
driver was more likely to give positive feedback for the application if the driver stopped for the
pedestrian. With a confidence value of 95%, only the Increased Awareness category saw a lower
confidence value lower than 1, indicating that it is possible that the application increased all

drivers’ awareness of the pedestrian, regardless of whether the driver stopped or didn’t stop.
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3.6.2 Binary Logit Model

To best understand the impacts of the many variables in the experiment on the yielding decisions
by the drivers, binary logistic regression analyses were conducted on select cases for the study.
The binary logit model for this study, using a confidence value of 95%, follows the following

form:

= Bo + B1 X1+ +BrXn

Y =logy n f
Where:
Y = Expected Outcome (i.e. Stop or Didn’t Stop)
p = probability of stopping for pedestrian
S = “degree of change” coefficient

X = independent variable (i.e. Age, Warning Message, Gender, etc.)

n = subject number

Multiple iterations of this model were conducted to best understand the impacts of each

variable analyzed. The key factors analyzed were:

- Whether or not the driver received the warning message
- What lap the driver received the message on

- The time of day

- The age of each participant

- The sex of each participant

- The speed at which the driver was travelling when the message was received
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- The percent time the driver spent looking at the pedestrian

The first binary logit model found that younger drivers were more willing to stop for the
pedestrian, that drivers were more likely to stop for the pedestrian during the nighttime than the
daytime, and that drivers were more willing to stop for the pedestrian with the warning message.
Both the message and time of day variables had larger coefficient values within the model results,
indicating that these had a strong influence over whether or not the driver stopped for the
pedestrian.

The second binary logit model included the eye tracking data from the study. The significant
variables in this model form were found to be age, time of day, and reception of the message.
Considering this subject group, it was found that younger drivers were more willing to stop for the
pedestrian, that drivers were more likely to stop for the pedestrian during the nighttime than the
daytime, and that drivers were more willing to stop for the pedestrian with the warning message.
All of these variables had larger coefficient values, indicating that they had a strong influence over
whether or not the driver stopped for the pedestrian. Eye tracking data was shown to not be a
significant factor.

The third binary logit model included data which were part of the daytime experiment since
only the daytime experiment alternated the lap order in which drivers received the warning
message. The significant variables in this model form were found to be age, lap order, reception
of the message, and the percent time spent looking at the pedestrian. Considering this subject
group, it was found that younger drivers were more willing to stop for the pedestrian, that drivers
were more willing to stop for the pedestrian on their second lap, that drivers were more willing to

stop for the pedestrian the longer they looked at them, and that drivers were more willing to stop
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for the pedestrian with the warning message. The reception of the message, age, and percent time
looking at the pedestrian variables had larger coefficient values, indicating that these had a strong

influence over whether or not the driver stopped for the pedestrian.

3.7 Conclusions

This research aimed to develop a cyber physical, C-V2X application that could be easily integrated
into typical GPS navigation applications that provided proactive, advanced warning messages to
drivers of pedestrians’ presence and intent to cross at mid-block crosswalks. From the analysis
conducted, a few conclusions can be made that indicate the positive performance of the advanced

warning message.

1. First, the odds ratio tests for the warning vs no warning case on lap order shows that, across
the board, those who received the advanced warning message were more willing to stop for
the pedestrian than without it.

2. Second, it was found that in the odds ratio comparison between driver reaction (stopped vs
didn’t stop) and stated responses in the questionnaire that those who did stop for the pedestrian
were more likely to rate the application positively. An argument can be made, however, that
the ideal scenario for this odds ratio test be 1 for each questionnaire statement, indicating that
there isn’t a difference in perception of the application between those that did and didn’t stop
for the pedestrian, with all subjects reporting positive feedback. This in mind, the most
important questionnaire response, whether the application increased the drivers’ awareness of

the pedestrian, has an odds ratio of 1.35 and a confidence interval below 1. In this analysis,
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88.9% of the subjects indicated that the application increased their awareness of the pedestrian,
validating this ideal scenario.

3. Third, regarding the binary logit models, it can be concluded that driver age, the time of the
day that subjects were tested, and the presence of the advanced warning message all had strong,
significant impacts on the rate at which drivers stopped for the pedestrian. Most importantly,
the presence of the advanced warning message was found to be very significant across all
models, showing an increase in the likelihood for the driver to stop for the pedestrian, further

indicating that the message had a positive impact on driver behavior.

3.8 Discussion and Motivation

Upon completion of this research and due to the overwhelming positive reception and compliance
with the application from drivers, it became apparent that the application should be tested with
respect to the people who would be using it — the pedestrians. If it is not well received by the
pedestrian, it would most likely not be used and therefore would be moot. Furthermore, while the
application might show positive impacts in safety from the driver’s perspective, pedestrians may
behave rather differently with it — e.g., would they trust that drivers would stop and walk out in

front of them?

Testing this application in a real-world environment would require a lot of control to
account for pedestrian safety — in the driver testing, the pedestrian could be controlled and wouldn’t
cross unless it was safe, however, when testing pedestrians, it is much harder to know if, how, or

when to stop for them. Since real-world pedestrian testing seemed unrealistic and unsafe, VR
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simulation was deemed the only viable way to conduct any testing with pedestrians and this
application.

Not only would virtual reality negate the safety issues inherent in real-world testing, it
would provide a platform in which we could test the application alongside other technologies, such
as rapid flashing beacons, to determine how the application compares in performance and
technological acceptance. Additionally, virtual reality technology has come a long way and now
offers a multitude of capabilities that were not possible in previous virtual reality experiments that
would make pedestrian testing very realistic — e.g., tactile feedback, stereo sound, high resolution
imaging, high frame rates, eye tracking, and free range of motion.

The benefits of the mobile phone crossing application coupled with the advancements in
commercially available VR technology strongly motivated me to pursue research into the
development of a pedestrian VR simulator within which | could test out multiple scenarios and
environments and obtain results that would be directly applicable to real-world designs and

operations.
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Chapter 4: Methodology - Developing a Virtual Reality Pedestrian
Simulator

4.1 Introduction

The development of the ORCL considered the many previous technologies, strategies, and results
of previous simulators as discussed in Chapter 2. The goal of the ORCL was to build a state-of-
the-art VR simulator utilizing commercially available technology so that the research conducted
in lab and as presented in this dissertation could be readily replicated and adapted to suit the
application needs of other real-world environments or research. Furthermore, the development of
the ORCL set out to expand the capabilities and types of data collected within pedestrian
simulation research to gather comprehensive, multi-modal data to further the understanding of

pedestrian behavior and preferences in ways previously not done.

4.2 Elements of Pedestrian Simulator

All stages, excluding the real-world observation portion, of this experiment were conducted in the
ORCL in D107 of Thornton Hall at the University of Virginia. The lab is equipped with state-of-
the-art virtual reality equipment, computers, and bicycle trainer for testing both pedestrians and
bicyclists. The lab has a designated 2x11 meter space for participants to walk around in while

being tracked in the virtual environment.

4.2.1 System Architecture

In order to collect the multimodal data desired, multiple components needed to work together in

synchronicity to understand VRU behavior within IVEs. The ORCL’s simulator system
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architecture is shown in Figure 3 below, detailing all of the technology, software, communications

network, and associated data flow.

Computer
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Figure 3 — System architecture for pedestrian virtual reality simulator.

4.2.2 Equipment

This section provides information about the equipment selected for this experiment as well as

reasoning behind the equipment choices for the ORCL as it relates to past research.

HTC Vive Headsets

Two, identical, HTC Vive Pro headsets with their accompanying controllers will be used during
experimentation. The HTC Vive Pro has a resolution of 2880 x 1600 (615PP1) pixels with a refresh
rate of 90 hz and is run on SteamVR. The maximum range of the headsets, wired, is 100m squared.
The headsets have built in headphones with in-line amplifiers and a field of view of 110 degrees.
Movement is traced with an accelerometer, gyroscope, lighthouse 2.0 laser tracking system, and

dual front-facing cameras. The headsets have been equipped with the HTC Vive Pro Wireless

49



Adapters, which supports a 6 x 6 m space for accurate tracking and operates on a zero-latency
wireless communication.

The HTC Vive Pro Eye is capable of running high resolutions and frame rates, provides a
wide field of view, has movement tracing capabilities, and is compatible with SteamVR. HTC
Vive Pro Eye headsets were chosen as they provide top of the line performance in all aspects of
VR performance (frame rate, level of detail, comfort, and ability to plug and play ability with
SteamVR). The included controllers allow the user to interact with objects in the virtual
environment, as an extension of their hand.

There are two major competitors on the market offering high end, commercially available
virtual reality headsets — the Oculus Rift and the HTC Vive. At the time of purchase, HTC offered
a wide range of headset options, specifically the Vive Pro Eye with integrated Tobii eye tracking
software that would work seamlessly within SteamVR and the Oculus didn’t. Furthermore, the Pro
version of the HTC headsets had a higher resolution than the Rift, offering a more immersive
experience. Additionally, at the time of purchase, only HTC offered a wireless adapter so that users
could move around freely within a large space without being tethered to the computer by a cable
or having to carry around a laptop with a backpack in it. Because of these options, it was clear that
the HTC Vive Pro Eye offered the most immersive experience while also allowing us to collect

data that had yet to be collected previously.

Computer Hardware and Software
All IVEs used in this experiment were developed in Unity and run through the SteamVR platform.
The ability to render highly detailed VR environments at high frame rates (>30 FPS) is limited to

the capability of the computer hardware the simulations are being run on. For use in the ORCL,
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high end computing equipment was chosen so that computational performance would not be a
limiting factor in development and testing. High performance factory overclocked Nvidia 1080Ti
graphics cards run through Scalable Link Interface, an Intel Core i9-7920X, 64 GB of DDR4 RAM
at clock speeds of 3600MHz, and M.2 Solid State Hard Drives were installed in the lab computer.

The hardware within the computer cannot necessarily be compared to that used in other
studies as it is not seldom referenced or listed; however, the computer was tasked to simultaneously
collect three videos at 1080p while also running the pedestrian simulation, thus it was paramount
to build the computer with the most high-end equipment on the market to assure that environment
rendering and stability, data collection speeds, and information exchanges would not bottleneck at
any component within the system during testing. Unity and SteamVR were chosen as they are
simply the ‘go-to” when building VR games and simulations. The Unity platform is widely used
and offers an online asset store with free or purchasable assets one could import into their VR
environment without having to make from scratch (e.g. cars and trees) to expedite the process of
environment construction. SteamVR was chosen as the client to run the HTC headset because it
was not only used in the development of the HTC equipment, but it is also the default client when
using Unity. This approach is standard in all of the previous VR experiments utilizing either Oculus

or HTC HMDs.

Physiological Responses

Our platform uses an android smartwatch that is equipped with the “SWEAR” app for collecting
long-term data from smartwatches (56). The SWEAR app records heart rate, hand acceleration,
audio amplitude (noise level), and gyroscope. All these data from smartwatch will be stored on the

local device and then can be uploaded to the cloud.
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There are multiple physiological sensing devices on the market that offer professional
grade physiological data tracking and accuracy; however, these devices are expensive and often
rather difficult to sync up together with the data. Furthermore, the Fossil smartwatches used in this
experiment were readily available within the department and connected to the department server
so that time synchronicity wasn’t of concern since the smartwatches were the only experimental
sensors not connected to the main computer running the simulation. Two other devices were
considered for this experiment, the Empatica E4 smartwatch and Shimmer3d ECG
(electrocardiogram). The Shimmer ECG required sensor placement on the tips of the fingers on
subjects, interfering with their ability to interact with the controllers and thus was ruled out. The
Empatica smartwatch, when compared to the Fossil smartwatch data, was more variable and less

accurate and thus was rejected for use.

Eye Tracking

The eye tracking features of HTC Vive Pro Eye in Unity comes from integrated Tobii Pro eye
tracker. It can be utilized to track and analyze eye movement, gaze data, and focus for further data
analysis. By designing interactions with other objects, it can help to create more immersive virtual
simulations, gain insights about user performance, and improve understanding of pedestrian
behavior.

As previously mentioned, eye tracking is a technology that has been used in the past, but
only for capturing the field of view of the test subject in pedestrian simulation. With the HTC Vive
Pro Eye, Tobii eye tracking allows us the ability to know exactly where a subject is looking. This
data is novel in offering an understanding for what influences pedestrian behavior and attracts their

attention.
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Video Recording
There will be two external video recording devices in the lab that will be capturing each subject’s
movements during experimentation on 1080p. These recordings will be used to understand subject
movements and reactions. The body position data can be extracted from these videos by OpenPose.
Used in conjunction with the movement tracking of the VR headset and controllers, this video
footage can help determine how subjects were reacting during experimentation for better
behavioral analysis.

Body tracking is a novel approach in understanding pedestrian behavior in VR simulation.
As discussed in Chapter 4.2.3, body tracking not only allows for movement tracking, but limb
tracking, providing insight into how a subject physically reacts to the environment and offers new
insight into how a person actually behaves compared to stated behavior in surveys.

Figure 4 below is a screenshot of the real time data visualization during a pilot study with
one of the experimenters in VR. Within this Figure is the lab space, body tracking, field of view
from subject point of view, pupil diameter, eye position, relative position in VR, relative heading

in VR, controller position, heart rate, and hand acceleration.
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Figure 4 — Real-time data visualization screenshot of physiological and position data for pedestrian VR experimentation.

4.2.3 Data Framework

As discussed in 2.4, the equipment selected will help us address the gaps in knowledge previously
unstudied in other labs and IVEs. Table 3, below, provides the developed framework by which we

collected data and what type of data is collected.

Table 3 — Data framework for pedestrian VR experimentation.

Data Source Method Data Type
Pre-Survey Likert
Surveys .
Post-Survey Likert
. . Movement/Position
Virtual Sensors HTC Vive .
Vive Controller Input
Android Smartwatch Heart Rate
Physiological Sensors HTC Vive Eye Tracking
Cameras & OpenPose Body Position

This framework is focused on three primary sources of data: survey, virtual sensor, and
physiological data.
Survey Data
Survey data was a common source of data as shown in Chapter 2, with most studies collecting

stated preference data of some kind within their studies; however, as shown in Chapter 2.4.5, few
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studies report this data as an independent variable in their analyses as a means of understanding
VRU preferences, immersion and behavior. At the ORCL, we have developed pre- and post-
experiment surveys to collect demographic, emotional state, VR familiarity, travel behavior, travel
mode preference, technological preference, and self-reported immersion data to develop a
comprehensive story for understanding why VRUs make the choices they do within the IVE. These
data help to identify factors that may drive decision making. For example, someone who walks
daily to work may have faster walking speeds, which may correlate with why they may have

walked faster within the VR environment.

Virtual Sensor Data

Virtual sensor data covers a broad range of data types. As shown in Table 1, virtual sensors are
used to collect movement and kinematics, however, virtual sensors can be leveraged to collect
better data as well as make IVEs more immersive and interactive. At the ORCL, we have taken
advantage of new VR technology to collect movement data as well as position data within the IVE
so that a subject’s relative position to other objects within the environment can be known.
Furthermore, we’ve utilized the Vive Controllers so that users could interact with objects within
the virtual environment, something never before done as shown in the Haptic Feedback column of
Table 1. Haptic feedback within the experiments of this study includes the use of virtual touch —
e.g., pushing a button on a flashing beacon and selecting a button on a virtual phone. Both of these
instances are interactions with objects that only exist in the virtual environment, yet behave and

respond as if they were real.
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Physiological Sensor Data

Physiological sensor data refers to data collected that can help understand subject behavior within
the IVE. At the ORCL, we have adopted a few methods for collecting physiological responses
such as heart rate, eye tracking, and body position. As shown in Table 1, multiple studies collected
spatial position and kinematic data for analysis, however, none collected detailed body position
data. The distinction between spatial position data and body position data is that spatial position
data is collected via video recorders for understanding where somebody is within a space, whereas
body position data uses video recorders for understanding how the limbs of the body move within
the space during the experiment. This data is used for interpreting many possible instances within
experimentation that new insight into pedestrian testing — e.g., someone pulling their arms and
hands in towards their chest may indicate a fear response by shielding their vital organs
instinctively. This data can be cross-analyzed with survey data to compare subject observed
behavior against stated preference to fully capture the differences between what people do and

what they say.

4.3 Modeling a Real-World Environment in Virtual Reality

4.3.1 Corridor Selection and Simulated Environment

The selected corridor for this study is a section of Water St W and Water St E between 2" St SW
and 2" St SE in Charlottesville, Virginia. An aerial map of the designated corridor is displayed in

Figure 5.
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Figure 5 — Aerial image of Water Street corridor (57)

This corridor was selected as the site for study due to the heavy pedestrian traffic it
experiences due to downtown mall foot traffic and commuting and for being identified as a hot
spot for pedestrian-vehicle accidents in VDOT’s Pedestrian Safety Action Plan Map Viewer (58).

Figure 6 below depicts a snapshot of Water Street from Google Maps as well as a
screenshot of the in-development virtual environment of Water Street designed in Unity. The two
crosswalks at 1% St S (the intersection shown) are the designated midblock crossings for this
experiment. 1% St S in the northbound direction towards Water St is a one-way road that has low
traffic volumes and in the southbound direction is a small access road to the mall that does not
extend through the downtown pedestrian mall, thus, has no through traffic. Due to these conditions,
the intersection operates similarly to a standard midblock crossing and is deemed appropriate for
testing for this research. Furthermore, data collected through video recording of the site can be

limited to instances where no vehicles are present and attempting to turn onto Water St from 1% St
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S and no vehicles will be present in the virtual environment to ensure consistency between the real

world and virtual conditions.

Figure 6 — Ground level perspective comparison of virtual reality and real-world environments (59)
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4.3.2 Observation Setup

A video camera will be installed on existing infrastructure away from public interference and will
continuously record driver, pedestrian, and cyclist behavior at the location. This data will be used
as a reference for understanding real world use of roadway facilities and compliance with the
infrastructure and road rules.

Real world observations were conducted by installing four MioVision Scout cameras

(named A, B, C, and D) at the intersections of 2nd St SW, 1st St S, and 2nd St SE along Water St.

The placement and angles of these cameras are shown in Figure 7 below.

Figure 7 — Camera positioning for observational data collection on Water Street Corridor (57)

The field of view of each of the four cameras is shown below in Figure 8.
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Figure 8 — Field of view screenshot from observational cameras

Cameras A and D were placed at either end of the observation corridor in both the east and
westbound directions, respectively, to capture approaching vehicle data as well as mid-block
crossing outside of the crosswalk as well as any other information in the general vicinity that may
have been pertinent to any individual crossing. Cameras B and C were placed in the eastbound and
westbound directions, respectively, with the entirety of the same crosswalk of the intersection of
Water St and 1% Street South in view to collect crossing behaviors, approaching vehicle data, and
any other information in the direct vicinity of the crosswalk that may have been pertinent to any
individual crossing.

The cameras were installed during 2 weeks of August 2019 and collected two periods of

data: Tuesday 12 am to Thursday 11:59 pm. The recordings too place on August 20-22 and 27-29,
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midweek. This time period was selected as it falls in the middle of summer when most people are
walking around the mall and after students have returned to UVA Grounds (even though Water St
is not on Grounds, it was deemed appropriate to record footage of Charlottesville when students
have returned to Grounds as Charlottesville is most heavily populated at this time, thus, increasing

the likelihood of getting a greater number of pedestrian crossings for data analysis.

4.3.3 Real World Analysis

Data Cleaning

Data from the videos was recorded by two undergraduate students within the project team under
the guidance of graduate researchers. The peak hours of 7am to 9am and 4pm to 6pm were deemed
appropriate for analysis of the pedestrian data as they were the hours in which the most pedestrians
and vehicles were observed on the road, yielding enough data for analysis and comparison with
the virtual data to be collected. The two undergraduate recorders were given excel documents
created by the graduate researchers with data fields and instructions for recording the events as
seen in the environments. Multiple iterations of random hours of the datasets were conducted to
improve the recording document fields, designs, and definitions as well as improve the
understanding and accuracy of the undergraduates until the graduate researchers and professors on
the team felt that further improvements would yield diminishing returns.

Once the two datasets from each researcher were collected, the dataset was reduced by
keeping only the data which both data collectors had recorded identical values for every
performance metric. Of the dataset of 957 recorded crossings, the two data researchers had both
recorded 791 — meaning 166 crossings only one researcher had recorded, thus, they couldn’t be

used. Of the 791 crossings that both researchers had recorded, 420 of them were identical. This
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dataset of 420 identical recordings represents 43.9% of the 957 crossings recorded. Furthermore,
since preliminary testing within the virtual environment was to be done by analyzing gaps with
vehicles approaching from only one direction, the real-world dataset had to be reduced further to
only represent instances where traffic was approaching from one direction. Of the dataset of 420
identical recordings, 196 crossings had traffic approaching from only one direction before a gap
was selected and the pedestrian finished crossing the street.

Of the 196 crossings recorded at Water Street and 1% Street South, 251 gaps were observed.
These gaps were observed a third time by a graduate researcher to finalize the validity of the
crossings and selected gaps. 49 of the 251 observed gaps were removed from the dataset because
of instances that may have impacted the gap acceptance of pedestrians (e.g. vehicles entering
roadway from being parked on the side of the road or loading vehicles stopping on top of the
crosswalk and blocking sight distance). 202 of the 251 gaps were deemed as appropriate for testing

after this process.

Multiple performance metrics were collected in watching the video footage and are described in

Table 4 below.

Table 4 — Performance metrics collected during observational data analysis, interpretation of data, and how data was collected

METRIC UNITS INTERPRETATION HOW IT IS MEASURED
Gap size is the headway time between approaching vehicles and Gap size was measured by finding the
GAP SIZE Seconds aides in the understanding of perception of safety and level of risk headway time between vehicles at a specific
pedestrians are willing to take when crossing the road. location in the environment.

Timestamps are collected for when the
pedestrian reaches the edge of the crosswalk
and when the pedestrian steps off of the curb

onto to the roadway. No start up delay is
measured when a pedestrian doesn’t visibly
stop at the crosswalk.

Start up delay will aid in the understanding of pedestrian comfort.
Seconds Time spent waiting at the crosswalk before crossing can be indicative
of the pedestrian’s trust that drivers will yield for the pedestrian.

START UP
DELAY
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. L . . Timestamps are collected for when pedestrians
Start up delay in the crosswalk is indicative of pedestrian behavior . . ]
START UP . ! . R . . stop during their crossing on the roadway and
while crossing. Pedestrians may stop mid-crossing to determine - .
DELAYIN Seconds approaching vehicle behaviors, capturing this data may be indicative resume crossing. Pedestrian must come to a
CROSSWALK PP 9 - tr‘ust’;n dri\?er o Y full stop for it to be considered a start up delay
P ’ mid crosswalk.
Timestamps are collected from the moment a
pedestrian steps foot onto the roadway to cross
Crossing Time is the total time pedestrians spend in the crosswalk the road and the moment a pedestrian steps
CROSSING TIME Seconds while crossing. This metric is used in determining pedestrian average foot onto the curb after crossing. Total
crossing speed. crossing time does include the start up delay
time within the crosswalk, but not the start up
delay.
This metric refers to whether the pedestrian was within the crosswalk ;ggsﬁt: thz;::zgi::g’tzzeeggtﬁiijg:ssgzisis
during their crossing, or whether the pedestrian chose to cross indicate%j ’bp a Boolean Yes or No data field. If
PEDESTRIAN outside of the crosswalk. Pedestrian use of the crosswalk can be Y 8500 L ’
L . X . the pedestrian is directly within the crosswalk,
USE OF Yes/No indicative of typical pedestrian behaviors at crosswalks as well as the response would be Yes. If they crossed
CROSSWALK their comfort (i.e. pedestrians may be more willing to cross at a outsidepof the crosswalk orl if the ydeviated
crosswalk when vehicles are present vs pedestrians may cross the L Y
. N . . from the crosswalk mid crossing, the response
street midblock if no vehicles are approaching)
would be No.
At the Water St intersection, there are four corners from which a Each comer of the intersection was given a
PEDESTRIAN pedestrian could cross the crosswalk, two on the northside and two corresponding number to indicate Whgther the
START Directional on the southside. This metric is used to determine where pedestrians cros?sed at ?he North o South sides of the
POSITION cross from to help calculate crossing time and determine the most
often used crosswalk at the location. street and the East or West crosswalk.
Average crossing speed is calculated by taking
AVERAGE Walking speeds will aid in the understanding and identification of a the total time spent crossing and dividing it by
CROSSING Moh dart/dash movement, whether the pedestrian may have chosen a gap the distance across the roadway. Start up delay
SPEED P they are uncomfortable with, or whether the pedestrian feels anxious in crosswalk is subtracted from the total time
when crossing. spent crossing in order to prevent inaccurate
crossing speeds. *
N\l/Jé\f_ﬁEEEOSF Count #/ Counting the number of vehicles passed before the pedestrian begins ~ Count number of vehicles passing. Afterwards,
PASSED BEEORE Directional crossing will be indicative of the gap sizes that pedestrians are determine rejected gap sizes by timing
CROSSING rejecting. headways with stopwatch and record.
The pedestrian reaction to the last vehicle metric will indicate
whether pedestrians waited for all vehicles to pass before crossing,
whether vehicles yielded for the pedestrian, or whether the pedestrian
chose a gap they felt acceptable for crossing. This behavior is
indicative of pedestrian safety as well as comfort. Different
interpretations can be drawn from this data as this is considered the
pedestrians accepted gap. The gap size accepted can indicate that:
Record whether there was a vehicle
PEDESTRIAN Directional / ®  The pedestrian felt it was a considerable gap size to approaching when the pedestrian began the
REACTION TO Yield cross during crossing from both directions. Record whether
LAST VEHICLE Bl the pedestrian waited for the vehicle to stop. If
o The pedestrian’s acceptable gap size reduced over wait (i ok ?hdfl gty e Wi 5 i
o pedestrian’s accepted gap.
[ The pedestrian trusted approaching vehicles to stop for
them when they began crossing
o The pedestrian was waiting for a vehicle to yield the
right of way

In validating the VR simulator for pedestrians, two of these performance metrics were
marked as the key identifiers of crossing behavior and safety: gap size and crossing speed. Gap

size helps identify what gaps pedestrians feel safe to cross during and comparing the real-world
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and VR gap acceptance distributions will help in validating whether pedestrians’ perception of
safety is similar to that at the real-world crossing. Crossing speed is also important, as it is
indicative of the safety of a pedestrians crossing. As previously discussed, dart/dash movements
across crosswalks are unsafe crossing behavior and lead to many accidents. Comparing crossing
speeds will not only help in validating pedestrian behavior inside the VR environment, but also

aid in determining whether safety treatments impact crossing behavior.

4.3.4 Gap Selection

202 gaps were observed by pedestrians at the Water Street and 1% Street South mid-block
crosswalk. 85 of these gaps were rejected and 117 of them were accepted. To determine the critical
gap of this mid-block crosswalk when vehicles are approaching from only one direction, the

rejected and accepted gap distributions were plotted as shown in Figure 9.
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Figure 9 — Gap acceptance at Water Street and 1% Street S unsignalized crossing

Figure 9 shows that the accepted and rejected gap distributions overlap at 5.12 seconds, indicating
that 5.12 seconds is the critical gap time in which pedestrians decide to accept a gap, rather than

reject it. Table 5 below provides some descriptive statistics of the two distributions.

Table 5 — Descriptive statistics of gap acceptance at Water Street and 1% Street S

Accepted Rejected
Median 8.05s Median 2.56s
Count 117s Count 85s

Critical Gap 5.12 seconds
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Crossing Location Gap Comparison

Within the real-world observation, pedestrians crossed Water Street from four different corners of
the intersection. To make sure that the sample of 202 gaps was valid for use in generating an
empirical distribution from which to generate gaps within the virtual environment, statistical
analysis of both the rejected and accepted gaps was conducted for each of the four corners

pedestrians crossed from to see if there were any differences in gap acceptance.

Rejected

To determine whether the rejected gaps were the same, both an independent-samples median test
and Kruskal-Wallis test were conducted to determine whether the medians of the rejected gaps
across the four crossing starting locations was the same and whether the distribution of rejected
gaps across the four crossings starting locations was the same. Figure 10 below displays some

count statistics of the rejected gaps and the null hypotheses and final outcomes of these tests.
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Frequency

Continuous Field Information GapRejected

.00

N =285

Min = .78

Max = 9.78

Mean = 2.989
Std. Dev. = 1.8242

2.00 4.00 6.00 8.00

GapRejected

Null Hypothesis

10.00 12.00

Count

Categorical Field Information PositionRejected

Total N= 85
40

NorthEast NorthWest SouthEast SouthWest

PositionRejected

Hypothesis Test Summary

Test

ab

Sig. Decision

The medians of GapRejected
are the same across categories
of PositionRejected.

The distribution of GapRejected
is the same across categories of
PositionRejected.

Independent-Samples Median .932  Retain the null hypothesis.

Test

Wallis Test

V Independent-Samples Kruskal-

.707  Retain the null hypothesis.

a. The significance level is .050.

h. Asymptotic significance is displayed.

Figure 10 — Rejected Gaps - Independent samples median and K-W test results and frequency counts

Median

Figure 11 below displays the independent-samples median test results. Analysis was conducted

with a significance of 95% and alpha of 0.05. From this analysis, it was concluded that there was

no significant difference in medians of rejected gaps between the four starting crossing locations.
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Independent-Samples Median Test

Independent-Samples Median Test 1000 5 .
Grand Median = 2.560
Summary ) o
Total N 85 8O0 *
o
Median 2.560 E
@ 6.00
Test Statistic 4387 ) °
i i g
Degree Of Freedom 3 O 4
Asymptotic Sig.(2-sided 832
test)
200
a. Multiple comparisons are not perfarmed
hecause the overall test does not show
significant differences across samples. o

MNorthEast Nor’[r%Wes SouthEast SoutrgWes

PositionRejected
Figure 11 — Rejected Gaps - Independent samples median test for crossing locations

Kruskal-Wallis

Figure 12 below displays the independent-samples Kruskal-Wallis test results. Analysis was
conducted with a significance of 95% and alpha of 0.05. From this analysis, it was concluded that

there was no significant difference in rejected gap distributions between the four starting crossing

locations.
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Independent-Samples Kruskal-Wallis Test

10.00 o
Independent-Samples Kruskal-Wallis o
Test Summary 000 .
Total N 85 3 °
Test Statistic 1.3g3*P 8 o o
4 o
Degree Of Freedom 3 g
O 4m
Asymptotic Sig.(2-sided 07
test) ,
2.00
a. The test statistic is adjusted for ties.
b, Multiple comparisons are not performed 0
hecause the overall test does not show ' NorthEast MorthWes SouthEast SouthWes
significant differences across samples. t

PositionRejected

Figure 12 — Rejected Gaps - Independent samples K-W test for crossing locations
Accepted

To determine whether the accepted gaps were the same, both an independent-samples median test
and Kruskal-Wallis test were conducted to determine whether the medians of the accepted gaps
across the four crossing starting locations was the same and whether the distribution of accepted
gaps across the four crossings starting locations was the same, respectively. Figure 13 below

displays some count statistics of the accepted gaps and the null hypotheses and final outcomes of

these tests.
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Continuous Field Information GapAccepted Categorical Field Information PositionAccepted

N =117 Total N= 117
0 Min = 2.36

Max = 22.31 S0
Mean = 8.206
Std. Dev. = 2.7417

Frequency
Count
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a,b

Mull Hypothesis Test 5ig. Decision
1 The medians of GapAccepted Independent-Samples Median 415  Retain the null hypothesis.
are the same across categories Test
of PositionAccepted.
2 The distribution of GapAccepted Independent-Samples Kruskal- 220 Retain the null hypothesis.

is the same across categories of  Wallis Test
PositionAccepted.

a. The significance level is .050.
b. Asymptotic significance is displayed.

Figure 13 — Accepted Gaps - Independent samples median and K-S test results and frequency counts

Median

Figure 14 below displays the independent-samples median test results. Analysis was conducted
with a significance of 95% and alpha of 0.05. From this analysis, it was concluded that there was

no significant difference in medians of accepted gaps between the four starting crossing locations.
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Independent-Samples Median Test

Independent-Samples Median Test 25.00 -
Grand Median = 8.050
Summary N
Total M 117 2000
Median 8.050 g *
Test Statistic 2.851% g 150 8
o]
Degree Of Freedom 3 g.
Asymptotic Sig.(2-sided 415 © oo
test)
a. Multiple comparisons are not performed 5.00
because the overall test does not show 8
significant differences across samples.

0o
MorthEast MorthWes SouthEast SouthWes
t t

PositionAccepted

Figure 14 — Accepted Gaps - Independent samples median test for crossing locations

Kruskal-Wallis

Figure 15 below displays the independent-samples Kruskal-Wallis test results. Analysis was
conducted with a significance of 95% and alpha of 0.05. From this analysis, it was concluded that
there was no significant difference in accepted gap distributions between the four starting crossing

locations.
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Independent-Samples Kruskal-Wallis Test

Independent-Samples Kruskal-Wallis 25.00
Test Summary *
Total M 17 2000
Test Statistic 4.419%P g x
8
Degree Of Freedom 3 g o
Asymptotic Sig.(2-sided 220 ‘g-
test) O 1000
a. The test statistic is adjusted for ties.
h. Multiple comparisons are not performed 5.00
hecause the overall test does not show 8
significant differences across samples.

0o
MNorthEast Norﬂ%Wes SouthEast SoutTWes

PositionAccepted

Figure 15 — Accepted Gaps — Independent samples K-W test

4.3.5 Vehicle Modelling

Since the analysis of the observed real-world shows that there was no significant difference in
median and distribution of accepted and rejected gaps at the mid-block crosswalk of 1% Street S
and Water Street, the entirety of the dataset could be used in constructing an empirical cumulative

distribution function to represent vehicle gaps.

Empirical Distribution

A bin size of 0.2 seconds was determined in order to generate gaps that accurately reflected the
empirical distribution to preserve the granularity of the data. Larger bins produced too low of a
resolution of the distribution where generating gaps wouldn’t be indicative of the actual

distribution, whereas any finer resulted in bins that were all too similar in weight. Figure 16 below
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displays the histogram of the binned observed gaps and the cumulative distribution function (CDF)

of the data.
Histogram of Observed Gaps and CDF
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Figure 16 — Histogram of observed gaps and cumulative distribution function

This CDF was then used to generate random gaps within these 0.2 second bins. Gap
generation was limited to producing gaps between 1 second and 15 seconds in order to avoid
generating gaps that would certainly be rejected (less than 1 second) or accepted (greater than 15
seconds). The resulting CDF limited to gaps within 1 to 15 seconds represented 97.5% of the
empirical data. In order to generate gaps, it was determined that the sample of gaps to be generated
from the CDF would be 15 gaps long. Fewer gaps resulted in distributions that did not match the
CDF well, and any more resulted in too many gaps for testing purposes, limiting the exposure to

each generated gap. Gaps were generated randomly based on the weight of each 0.2 second bin of
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the CDF. Table 6 below shows a sample of generated gap data from the CDF, with the actual

sample of generated gaps that would be used in the study highlighted in green.

Table 6 — Sample gap size generations and chosen generated gap set.

REAL
GAP # 1 2 3 4 5 6 7 8 9 10  DISTRIBUTION
(1<X<15)

1 18 1.2 1 1 12 1 12 12 1 2.4

2 2 1.4 1.4 12 1.4 1 2 1.4 2 2.4

3 24 16 16 2 1.4 1 2.8 18 26 2.8

4 38 1.8 2 2.4 16 12 3.2 2 38 36

5 4.8 2.4 2 3.2 4.6 12 4.2 3.4 5.2 46

6 6.8 4 28 5 48 2 5.4 38 5.4 56

7 7 48 34 5.4 5.4 2.4 5.4 48 56 58

8 74 5.2 38 6 6.6 6.6 56 48 6.6 5.8

9 74 5.4 4.2 7 6.6 7 6.2 6.2 6.6 6.6

10 7.4 6.6 6.6 7.2 8.2 78 7 76 74 6.8

11 78 7 8.6 7.2 8.2 8.2 78 78 76 7

12 7.8 74 122 8.6 8.6 8.2 8.2 8.2 8 7

13 8.2 74 134 8.6 96 8.2 9.6 8.6 96 7.2

14 8.4 76 14 86  10.8 86 108 8.6 14 8.2

15 9.8 8.6 14 116 122 108 14 9 14 8.4
MEAN 619 483 607 567 608 501 623 528 663 561 5.93
MEDIAN 74 5.2 3.8 6 6.6 6.6 56 48 6.6 5.8 6.16
STD DEV 256 260 501 316 359 363 348 290 381 202 3.13
MIN 18 1.2 1 1 12 1 12 12 1 2.4 1.02
MAX 9.8 8.6 14 116 122 108 14 9 14 8.4 14.96
MEAN RANK | 109.37 835 9737 9957 8623 1065 107.36 9423 11017 987 106.02

z 0256 -1455 -0538 -0.392 -1.274 -0.066 -0.121 -0.745 -0.309  -0.45

SIG (2 0798 0146 0591 0695 0203 0947 0903 0456 0758  0.653

TAILED)
z 0785 1148 0919 0536 0708 1148 0383 0632 0593  0.995
SIG (2 0569 0143 0367 0936 0698 0143 0999 082 0873 0275
TAILED)

74



In determining which generated gaps best fit the empirical CDF, multiple tests were
conducted. Table 6 above shows some descriptive statistics to capture the overall picture of each
generated distribution. Furthermore, each randomly generated distribution was analyzed against
the empirical CDF in an independent-samples median test to determine whether or not there were

any differences, as shown in Figure 17 below.

Independent-Samples Median Test

. 15.00
Independent-Samples Median Test Grand Mediap = §.080
Summary
Total M 345
. 10.00
Median 6.080 §
Test Statistic 3.336° L] I i
Degree Of Freedom 10
5.00
Asymptotic Sig.(2-sided 472
test)
a. Multiple comparisons are not performed
hecause the overall test does not show 00
S . Ea I I T VR s I s B v B s B B VR v
significant differences across samples. L R R < S R S R S
23a33333333?®e
—_ S [ T '™ S N BRSBTS I (s ]
Hypothesis Test Summary
Mull Hypothesis Test Sig.“'b Decision
1 The medians of Gaps are the Independent-Samples Median 872 Retain the null hypothesis.

same across categories of Field.  Test

a. The significance level is .050.

h. Asymptotic significance is displayed.

Figure 17 — Indepedented samples median test between randomly generated gaps against real world distribution

Though there were no differences in the medians of each generated sample of data, the
descriptive statistics helped in the selection of a randomly generated gap. Random distribution 7
was chosen for use in subject testing as it was no different than the median of the empirical gaps,
but also because the range of the distribution was similar to the empirical results and it had very

few repeating gaps unlike many of the other random distributions.
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Chapter 5: Simulator Validation — Pedestrians in VR vs. Real World

The purpose of the benchmark test is to validate that the IVE developed is an accurate portrayal of
real-world environments through 1) questionnaires asking participants about their experience with
the virtual world and 2) comparing data collected during the real-world observation with data
collected during the benchmark. Participants should feel that they are experiencing and interacting
with the virtual world similarly to how they would in a real-world situation. The benchmark phase
of this test will consist of subjects answering a pre-experiment test and a personality test, entering
the virtual environment and conducting the experiment, and finally answering a post-experiment
test. The pre-test questionnaire will consist of questions pertaining to their use of traffic facilities
(what is their mode of transportation daily, do they ever consider using alternate methods of travel).
When entering the virtual environment subjects will interact with various objects (vehicles passing,
crossing signals, traffic signals). Finally, the post-test questionnaire will ask participants if their
experience in the virtual world was comparable to real world experiences (did you feel you
behaved differently, how so, compare your comfort to crossing in the virtual world vs that of the
real world). The results from this experiment will be compared to those found in the real-world
observations to determine whether pedestrians behave similarly at the midblock crossing in virtual
reality as they do to the same one in the real world. The pre and post-test questionnaires can be

found in Appendices A and B, respectively.

5.1 Experimental Design

5.1.1 Pilot testing

The pilot testing consisted of having participants, primarily undergraduate researchers, enter the

virtual reality environment and interact with it. This phase of the experiment and the associated
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data from this experiment was conducted prior to full validation of the IVE and was not considered
part of the overall experiment, but was intended for assuring that the virtual environment and
associated equipment (headsets, EEG devices, smartwatch wearables) were all in working order

before formal experimentation.

Performance metrics
« Stated observations and impressions of realism — basic feedback of the virtual environment
were collected for understanding how the functionality of the virtual environment
performed, whether subjects felt that the environment was realistic, whether certain aspects
of the environment took them out of the experience, etc.
o Feedback of bugs, glitches, or other operational failures — feedback regarding any bugs or
glitches the participants may have encountered in the environment that broke the subject’s

immersion or impeded their actions or behavior.

5.1.2 Marked Crosswalk

The first scenario to consider is the status quo of the crosswalk on 1 St S and Water St as depicted
in Figure 18 below. This is a marked, high visibility crosswalk that crosses at a one-way
intersection, but behaves nearly identical to a standard midblock crosswalk. This crosswalk sees a
relatively large amount of foot traffic due to the many parking lots adjacent to Water Street that

are used by workers and shoppers for accessing the downtown mall.
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Figure 18 — One of the crosswalks contained in this study, this one is the one we will want to be conducting this study at 1st St S

@ Water St (60)

This scenario consisted of the pedestrian entering the virtual environment and approaching the
crosswalk a few steps from the curb. The pedestrian was be allowed to cross the road whenever
they felt appropriate. Subjects were instructed to cross the road as they normally would when they
felt comfortable doing so. The testing script real aloud to all participants can be found in Appendix

C.

Performance metrics

Pre and post-test questionnaires will be conducted to understand pedestrian stated behaviors and
preferences and can be compared to their actual behaviors in the virtual environment. This
validation study was primarily focused on how the behavior of pedestrians compared between real-
world and virtual environments and not what individual factors or perceptions influenced or
correlated with pedestrian behavior in the IVE; therefore, survey data was only be reported (not
statistically analyzed) and used for understanding anomalies in overall pedestrian crossing

behavior.

78



The independent variable of consideration is the environment of the test: Real World or
VR. There are four primary dependent variables that data is collected for: Accepted Gap Number,

Gap Size, Crossing Speed, and Reaction to Last Vehicle. Detailed information for each of these

variables is included in Table 7 below.

Table 7 — Variables in VR environment, interpretation, and method for measuring

Ve;r;gt;le Variable Units Interpretation How it is Measured
There are three environments that each subject will
be exposed to:
1. As Built - modelled to be the same as the real-
Independent | Environment Nominal world er]vironment ) ) The environment number is
2. Flashing Beacons - Rapid Flashing Beacons are  recorded
installed at the crosswalk
3. Phone App - the environment is identical to the
As Built environment, with the inclusion of the
CV midblock crossing phone app
The gap number that was accepted by the
Accepted Gap . pedestrian for determining how many gaps they Record the number of the accepted
Ordinal . - 2
No. waited for before crossing to determine any gap.
correlation in wait time and environment.
. ) The gap size the subject has acc_epted for crossing. Record the accepted gap size for
ap Size Seconds Gap size is used for understanding when a each subiect
pedestrian deems it is safe to cross the road. Ject.
Average crossing speed is
calculated by taking the total time
Walking speeds will aid in the understanding and spent crossing and dividing it by the
Crossi identification of a dart/dash movement, whether distance across the roadway. Start
rossing - - .
Speed Mph the pedestrian may have chosen a gap they are up delay, or the time a subject
Dependent uncomfortable with, or whether the pedestrian spends standing still within the
feels anxious when crossing. crosswalk, is subtracted from the
total time spent crossing in order to
prevent inaccurate crossing speeds.
The pedestrian reaction to the last vehicle metric
will indicate whether pedestrians waited for all Record whether there was a vehicle
vehicles to pass before crossing, whether vehicles approaching when the pedestrian
) Directional / yielded_for the pedestrian, or whether the bgzgan_the crossing from both
Reaction to Yield pedestrian chose a gap they felt acceptable for directions. Record whether the
Last Vehicle Behavior crossing. This behavior is indicative of pedestrian pedestrian waited for the vehicle to
safety as well as comfort. Different interpretations  stop. If the pedestrian didn’t wait,
can be drawn from this data as this is considered then this is the pedestrian’s
the pedestrians accepted gap. The gap size accepted gap.
accepted can indicate that:

As previously mentioned, for this experiment, two variables, italicized in the figure above,
will be considered as the primary dependent variables for validating the efficacy of VR for
studying crossing behavior as compared to real-world crossing behavior: Gap Size and Crossing

Speed. Gap size is the primary dependent variable for consideration, as it is the standard for
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determining the behavior of pedestrians at midblock crossings as well as an indicator for
perception of safety. Crossing speed is another highly valuable dependent variable because it
indicates the safety of a pedestrian’s movement across a crosswalk.

Accepted Gap Number and the Reaction to Last Vehicle are not considered for the VR vs Real-
World analysis. Accepted Gap Number isn’t considered because the distribution of gaps generated
in VR follows a more granular structure as compared to the real-world observed gaps; therefore,
the exposure to each of the 15 second gaps is higher than the distribution of 0.2 second gap bins
as previously discussed in Section 4.4.5 and has a stronger bias to representing these larger bins
of data. Reaction to Last Vehicle is not considered either as the VR environment does not control
vehicle behavior as a pedestrian approaches and crosses the crosswalk as it does in the real-world.
Normally, when a pedestrian begins to cross at an uncontrolled crossing, cars may slow down or
yield for the pedestrian so they may cross which would be considered an instance where the
pedestrian waits for a vehicle to stop. In the IVE for the as-built scenario, vehicles don’t yield for
the pedestrian unless the pedestrian is within their lane. This approach was done for multiple

reasons.

e Determining whether or not a pedestrian was trying to communicate with approaching
vehicles of their intent to cross is too arbitrary for controlling. Some pedestrians wave,
others stand in place, some begin to cross and try to make eye contact to get a signal from
approaching vehicles, etc.

e Determining whether or not a vehicle should stop for a pedestrian in the crosswalk
depending on pedestrian position is also arbitrary, as some pedestrians like to stand entirely

on the side of the road and others right at the start of the crosswalk, so identifying a fixed
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point for the pedestrian to pass to have approaching vehicles yield for them was also
arbitrary.

e Having vehicles stop for the pedestrian when they step into the crosswalk is unrealistic,
some drivers will stop and some won’t in real life and modelling this behavior in VR would
add another layer of complexity to the study that would not only require a large sample
size, but is also not representative of an accepted gap. When pedestrians wait for vehicles
to yield for them, these gaps are neither considered rejected nor accepted and thus cannot

be used for comparison between gap acceptance between real-world and VR environments.

Controls

Multiple factors were controlled in the virtual environment to limit the factors that may influence
pedestrian crossing behavior, but also to replicate the real-world environment that was used for
comparison analysis. There were two different types of identified controls: Dynamic Controls and
Static Controls. Dynamic Controls refer to variables that are randomized for each subject trial, but
are controlled within a set of boundaries as predetermined by the researcher so as to not inflict any
bias on the dependent variables. Static Controls refer to variables that may normally be influencing
environmental factors, but have been set to be constants for every trail so that the independent

variable may be entirely isolated.

Table 8 — Controlled variables within VR environment

Control Type Variable Method Reasoning

The distribution of gap times presented to the
test subjects will follow the same distribution
as the accepted gap time of as observed at the

Vehicle The gaps between vehicles will follow a randomized real-world crosswalk. This distribution will
Dynamic Control G pattern from a predetermined distribution as decided be determined from the cumulative
aps A .
upon by the researchers. distribution of real-world gap times. The

sample of gaps will be randomized for each
participant to avoid bias towards gaps based
on exposure.
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Vehicle type and color will be randomized for each
participant based off of a predetermined set of four
vehicle types, all coupes.

Vehicle
Types

Limit any bias of gap acceptance based on
vehicle type and color based on exposure.

This is the posted speed limit along the
corridor of Water St. Keeping all vehicles’
Vehicle Vehicle speeds will be restricted to 25 mph within the speeds set at 25 mph will limit the variability
Speeds environment. in vehicle behaviors and possible
randomization bias, allowing for completely
replicable driver behaviors.

Reduce any possible changes in crossing

Static Control Weath Weather for each environment will be set to a clear, behavior that may be induced due to weather
eather sunny day and will remain unchanged between tests conditions. Reduce any affects of weather on

visibility of objects in environment.

All pedestrians will start in the same position within the

. virtual environment at the northeast corner of the Reduce any possible changes in crossing
SEWEIG) | p ion, faci hbound at th Ik behavior based ion of vehicl
Position intersection, facing southbound at the crosswa ehavior based on perception of vehicles

crossing Water Street, standing a few feet from the gaps, walking speed, etc.
curb’s edge.

5.2 Subject Recruitment

The explanation below was originally proposed for this dissertation as the method for recruiting
an appropriate sample size for data analysis. Unfortunately, due to COVID, protocols for subject
recruitment delayed the study by nearly a whole year and restricted the ability to recruit subjects
on the timeline that was previously anticipated. Despite these restrictions, subject recruitment and
testing was able to begin February 2", 2021 after receiving approval for in person subject testing
at the ORCL and finished March 12, 2021 with a total of 50 subjects having been recruited for
testing. The previously proposed method for subject recruitment is left below for reference
purposes. The email used for subject recruitment can be found in Appendix D and the Informed
Consent Form signed by all participant who participated in this study can be found in Appendix
E.

There are two factors of particular importance in this experiment that will be used to
validate the virtual environment to the real-world environment: walking speed and gap
acceptance. Walking speed is paramount as it reflects pedestrian movement in the virtual

environment and is a direct indicator of behavior in the crosswalk. Gap acceptance is also
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paramount as it reflects the pedestrians perceived safety and will be used as an indicator of realism
in the virtual environment.

To determine what sample size should be recruited.
To determine sample size, both walking speeds and gap acceptance data will be analyzed from the
real-world environment to determine the standard deviations needed to determine sample size via
the equation:

n=z2*22

Where:
n = sample size
z = z-score of confidence level
o = standard deviation

¢ = margin of error

The factor that has the largest needed sample size will be deemed as the sample we will
aim to recruit.

Utilizing the second approach as described in the previous section regarding dataset
constructions, 43.9% of the data recorded is deemed utilizable with a total of 420 recordings
exactly identical to one another. Due to the lower number of recordings, some decisions will have
to be made to determine what margin of error and confidence level should be chosen due to the
variability in the standard deviation. As it stands, all of the crossing time has been analyzed for
this dataset and with a standard deviation of .687595 seconds. With a margin of error of 10%, and

a confidence level of 85%, 98 subjects will need to be recruited. Once all of the gap acceptance
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data has been recorded, it will be analyzed via the same method and a decision will be made as to

how many subjects should be recruited.

5.3 Simulator Validation Results

This section of Chapter 5 presents the results of the VR experiment and compares these outcomes
to the behavior of pedestrians in the real-world environment to validate the use of IVE technology
for studying pedestrian behavior. As previously mentioned, this analysis looks at two major

dependent variables: Gap Size and Speed.

5.3.1 Accepted Gap Size

Similarly shown in Chapter 4.4.4, the accepted and rejected gaps of the subjects in the As Built
IVE are plotted against the # of gaps seen in the IVE. A total of 49 gaps were selected and 123
were rejected, for a grand total of 172 gaps. Though there were 50 subjects in this study, one of
the gaps was removed due to data quality reasons, thus results are only shown for 49 subjects. Of
these 49 subjects 24 were female and 26 were male. 24 (49%) of the 49 subjects were between 18
and 29 years old, 12 (24.5%) between 30 and 39, 4 (8.2%) between 40 and 49, 4 (8.2%) between

50 and 59, and 4 (8.2%) of 60 years or greater — one subject did not report their age.
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Figure 19 — Gap selection and critical gap of pedestrian crossing in VR environment

Figure 19 shows that the accepted and rejected gap distributions overlap at 7 seconds,
indicating that 7 seconds is the critical gap time in which pedestrians decide to accept a gap, rather
than reject it in the IVE. Compared to the real-world environment’s critical gap time of 5.12
seconds, 7 seems much larger. To determine whether the accepted gap distributions between the
real-world and VR environments are similar, an independent samples median test was conducted.
The results of this test are shown in and Figure 20 below. It should be noted that the total of real-
world gaps was reduced to 114 from 117, removing larger gaps that fall outside of the 1-15 second

range that the gaps in VR were generated.
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Figure 20 — Independent samples median test results between real world an VR environments

With respect to Figure 20 above, it is seen that the independent samples median test reports
that the medians between the real-world and VR environments are not different; however, the
significance statistic of .078 is borderline significant. The other appropriate test to evaluate here
would be the Mann-Whitney U test because many of the values of the accepted gaps in VR were
tied (the Kolmogorov-Smirnov test does not handle ties as well), but the output from SPSS
indicates that it is unable to compute the significance value for this data set. In reanalyzing the
data, and as will be discussed, this is because the distribution of the accepted gaps is heavily
skewed to 14 second gaps. Looking at the ranges of the gaps as seen in Figure 20, the box plot of

the VR accepted gaps shows the 75" quartile heavily favoring larger gap sizes.

Chi-Square Analysis

To determine whether accepted gap size distributions were similar, a chi-squared analysis was
deemed the most appropriate approach for determining statistical significance between the two
datasets. Chi-square analysis was deemed the most appropriate approach because the real-world
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data had already been reduced to a cumulative distribution for modelling vehicle arrivals, thus, the
VR data results are weighted heavily to their discrete value. Binning the VR data negates the
weight on the discrete values chosen to represent the real-world gap data and shifts that weight to
a bin range in which the real-world data can be categorized into as well so that they may be

compared as shown in Figure 21 below.

Bin Expected Observed | (O-E)"2/E
Expected vs Observed - 1 Sec Bins <1 0.0 0.0
2 0.0 0.0
14.0 3 0.9 0.0
10 4 13 0.0 0.9
5 17 1.0 13
10.0 6 47 4.0 0.3
7 6.9 7.0 0.1
8.0 8 9.5 7.0 0.0
9 10.3 6.0 0.6
6.0 1 7.7 6.0 1.8
4.0 11 3.0 6.0 0.4
12 13 0.0 3.0
2.0 13 0.4 0.0 13
I 14 0.4 12.0 0.4
0.0 1 N 15 0.9 0.0 3115
<1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+ 16+ 00 00
B Expected Observed x Sum 321.54
72 21.92

Figure 21 — 1 second bins for chi-square analysis

In only one instance did consolidating the 1 second bins meet the chi-squared statistic
without violating the assumptions of the analysis. While this method produced a statistically
significant value, the distribution of these accepted gaps is far too consolidated and is not indicative

of any distribution of the data whatsoever. This consolidated dataset is shown below in Figure 22.
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Expected vs Observed - 1 Sec Bins

30.0
Bin  Expected Observed|(O-E)"2/E|
220 <6 8.6 5.0 15
20.0 7 59 7.0 0.2
15.0 8 8.1 7.0 0.2
9 8.8 6.0 0.9
10.0

10+ 13.8 24.0 7.6
5.0 I I I I ¥ Sum 10.41
00 x2 11.14
<6 7 8 9 10+

B Expected Observed

Figure 22 — 1 second bin for chi-square analysis combined

Equation X below was used for determining the appropriate bin size for the data.

[ = 14
~ 1+3.22xlog(n)

Where:

| = interval for bin size

n = population size of group used for calculating expected results

From this equation, a bin size of 1.84, or, rounding up, 2 seconds was determined. The

results of the 2 second bin with some consolidation of the larger bins is shown in Figure 23 below

and does not meet the chi-squared statistic.
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Expected vs Observed - 2 Sec Bins

20.0
18.0 -
Bin Expected Observed | (O-E)2/E
16.0 <2 0.0 0.0
14.0 4 2.1 0.0 2.1
12.0 6 6.4 5.0 0.3
10.0 8 16.3 14.0 0.3
8.0 10 18.1 12.0 2.0
6.0 12+ 6.0 18.0 23.9
4.0 I ¥ Sum 28.70
2.0 2 11.14
0.0 .
<2 4 6 8 10 12+

M Expected Observed

Figure 23— 2 second bins for chi-square analysis condensed

Further consolidation of the 2 second bins to meet the chi-squared statistic would require
consolidating the 10 and 12+ bins to reduce the chi-squared absolute difference shown in the 12+
second bin of Figure 23 and would violate the assumptions of the chi-squared test with 25% of the
bins (the 4 second bin) having and expected value under 5.

The use of 2 second bins could not meet the chi-squared statistic, regardless of how the
bins were consolidated, thus, 1.5 second bins were considered for analysis to increase the
granularity of the data but remain close to ideal interval of 1.84 seconds. Figure 24 below presents

the data of the 1.5 second bins.
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Expected vs Observed - 1.5 Sec Bins

18.0
16.0
14.0
12.0

B Expected Observed

Figure 24 —1.51 second bins for chi-square analysis

10.0
8.0
6.0
4.0 I
2.0
0.0 ] I I ]
<15 3 4.5 6 7.5 9

10.5 12 13.5 15+

Bin Expected Observed | (O-E)"2/E
<15 0.0 0.0
3 0.9 0.0 0.9
45 1.7 1.0 0.3
6 6.0 4.0 0.7
7.5 10.3 7.0 11
9 16.3 13.0 0.7
10.5 8.6 6.0 0.8
12 3.4 6.0 19
13.5 0.9 0.0 0.9
15+ 0.9 12.0 144.4
¥ Sum 151.50
12 17.53

This approach best shows the distributions of accepted gap sizes between the expected and

observed data sets; however, like the 1 second bins, in only one instance did consolidating the 1.5

second bins meet the chi-squared statistic without violating the assumptions of the analysis. The

distribution of these accepted gaps was far too consolidated and is not indicative of any distribution

of the data whatsoever. This consolidation is shown in Figure 25 below.

Expected vs Observed - 1.5 Sec Bins

30.0
25.0
20.0
15.0
10.0

5.0 I I

0.0 -

<4.5 6 7.5 9

M Expected Observed

Figure 25 — 1 second bins for chi-square analysis comdensed
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7.5 10.3 7.0 0.2
9 16.3 13.0 0.9
10.5+ 13.8 24.0 7.6
¥ Sum 11.02

v2 11.14




Looking at these figures, it becomes clearly apparent that the reasoning for why many of these
distributions have to be consolidated into bins with large values, creating distributions of near
exponential growth in gap distribution is because of the large number of subjects in the VR
environment who accepted the 14 second gap. Of the 49 subjects, 12 of them had accepted the
singular, and largest gap of the fifteen gaps randomly presented to each subject and explains the
skew of the boxplot presented in Figure 20.

This skew in the data led to a re-review of the video footage for the subjects who accepted the
14 second gaps. In doing so, it was found that 5 of these 12 subjects had a very similar experience
in which they entered the crosswalk into the opposing traffic lane in which no vehicles were
approaching, expected cars to yield to them, and observed that no cars were going to yield for them
so they waited in the middle of the road until a large enough gap would arrive (which would be
the 14 second gap) and then crossed. This behavior is not very realistic as, typically, approaching
vehicles would yield for the pedestrian in the crosswalk, as is stat law in Virginia, and even if one
didn’t yield, the likelihood of many vehicles not yielding is even lower. It was determined that this
condition was to be reassessed for all instances across the whole dataset, not limited to just the 14
second gaps. Across the entirety of the dataset, 9 of the 49 subjects experienced a similar situation.
Table 9 below provides the participant number, some demographic information, and some of the
post-test questionnaire responses that offer some insight into what was happening in these

situations.
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Table 9 — Survey resposnes and demographics for 9 subjects who experienced unrealistic crossing scenarios

Do you feel more
or less compelled
How immersed How realistic Did the traffic " to observe the " How realistic
. . . rules of the road
.. were you in the | was the vehicle seem responsive . L was your sense
Participant ? . . while walking in A
Sex Age virtual traffic in the to your actions - of risk in the
No. - - - - the virtual .
environment virtual in the virtual ; virtual
. h . environment .
experience? environment? environment? environment?
compared to
walking in real
life?
1 Male 28 5 4 5 3 3
7 Male 20 5 3 5 3 4
8 Male 20 5 4 4 5 4
10 Female 30 5 4 5 2 3
11 Male 26 5 2 5 1 2
19 Female 18 4 2 3 2 3
37 Male DNA 4 3 4 5 2
43 Male 19 3 1 5 2 2
44 Female 66 5 4 4 3 3

From this table, it could be inferred that survey responses varied the regarding the realism
of the vehicle traffic, how compelled subjects were to follow road rules, and how realistic their
sense of risk was in the VR environment and that nearly all of these subjects were under 30 years
of age. Furthermore, nearly all of the subjects felt immersed in the environment. Vehicle
responsiveness is helpful and shown to be agreed upon that it was indeed responsive, however
these responses may be influenced by the other alternative environments in which vehicles and
pedestrians interact different through technology.

One possible interpretation of these survey responses could be that subjects felt that the
vehicle traffic was not realistic because the vehicles didn’t stop for them when they attempted to
cross the road. Another is that subjects’ perception of risk in the IVE may not have been as realistic,
thus, they were willing to cross into the opposing lane of traffic to wait out a gap to cross in. Table
10 below provides some of the individual statistics regarding their behavior in the As-Built IVE

and what occurred during their test.
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Table 10 — Crossing behavior in VR for 9 subjects who experienced unrealistic scenarios in VR and explanation of experience

Start Up Average
Delay in Crossing What Happened During Test
Crosswalk Speed

Participant | Order | Accepted Accepted Accepted
No. No. Gap No. Gap No. Gap Size

Subject starts to walk into crosswalk
and stops in opposing lane, creeps
along crosswalk until 14 second gap
appears.

1 3 4 1 14 6.9 3.82

Subject goes halfway into crosswalk
and stops in opposing lane, cars don't
stop, then crosses during 5.4 second
gap.

7 3 5 3 6.2 9.86 3.21

Subject starts to walk into crosswalk
and stops in opposing lane, creeps
along crosswalk until 14 second gap
appears.

8 1 9 0 14 22.43 2.16

Subject starts to cross into crosswalk

during second gap, cars don’t stop so

10 1 3 0 14 5.18 2.59 subject waits in opposing lane, then

waits again for a long time until 14
second gap

Subject starts to cross, then the gap
the subject is crossing for doesn't
11 3 4 1 8.2 6.87 1.78 yield, so subject waits mid crosswalk
in opposing lane for the next car to

pass to Cross.

Subject starts to cross, then waits in
opposing lane for vehicles to stop but
they don't, then crosses once there is

a gap.

19 2 4 1 10.8 6.6 2.64

Subject starts crossing at second gap,
notices car coming down hill and
37 1 3] 3 14 &5 2.25 doesn't trust it to stop so subject
waits for it to pass in opposing lane,
and then takes 14 second gap.

Subject starts to cross, stops in
opposing lane for car to yield,
crosses after vehicle doesn't yield
and passes crosswalk.

43 1 2 1 7 2.9 2.73

Subject creeps into the crosswalk

early in flow of traffic, but no cars

45 3 7 2 14 19.61 3.56 yield for her, so she waits in

opposing lane until 14 second gap
and then crosses.

Based on the results from the chi-squared analyses, skew in accepted gap distribution, and
unrealistic observed behavior for these 9 participants, it was determined that these subjects’ data

be removed from the data set and the data set be reanalyzed.
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5.3.2 Accepted Gap Size — Adjusted

The results of the independent samples median test for the adjusted dataset are shown below in
Figure 26. Previously, the significance in this median test was .078, which has now shifted to .358,
indicating that the removal of these unrealistic observations has led to further conclusion that the
two datasets are similar. Furthermore, the Mann-Whitney U test is now able to be computed by
SPSS after removal of some of the larger gap sizes, reducing the skew as seen before. This analysis
does show that there is a significant difference in between in the median between the two datasets,
which is still most likely due to the fact that there is still a large number of data points in the 14
second gap bin. Figure 26 below also shows the box plot data for this independent samples median
test. The removal of five of the twelve 14 second accepted gap sizes and fixed some of the skew
in the box plot data, though, has not removed it entirely. Overall, though, the removal of these 9

subjects’ data has provided better results for the independent samples median test.

Independent-Samples Median Test

16.00 Hypothesis Test Summary
o Grand Median = 8.165 Mull Hypothesis Test Sig.*? Decision
14.00 o - 1 The medians of Gap are the Independent-Samples Median .358°  Retain the null hypothesis
. o same across categories of Test
Environment.
12.00 2 The distribution of Gap is the Independent-Samples Mann- 046  Rejectthe null hypothesis
same across categories of Whitney U Test
Environment.
g' 10.00 H The distribution of Gap isthe Independent-Samples 023 Rejectthe null hypothesis.
(U] same across categories of Kolmogorov-Smirnoy Test
Environment.
8.00 4 The distribution of Gap is the IndependentSamples Kruskal- 046  Rejectthe null hypothesis
same across catzgories of Wallis Test
Environment.
6.00
a. The significance level is 050
b. Asymptotic significance is displayed
4.00 ¢. Yates's Gontinuity Gorrected Asymptotic Sig
=]
200
RealWorld VR

Environment

Figure 26 — Independent samples mediant test beween real world and VR environments

Chi-Square Analysis
The chi-square analysis was reconducted with the new 40 subject data set. The results of this

study for 1 second, unconsolidated bins, is shown in Figure 27 below.
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Observed

Figure 27— 1 second bins for chi-square analysis

As previously, unconsolidated, this test fails to meet the chi-square test assumptions. The
skew in the 14 second gaps bin isn’t as large, but still remains. Further analyses were conducted
based on the interval size previously calculated as 1.83 in Chapter 5.3.1 for 2 second and 1.5
second bins; however, none of these analyses managed to meet the chi-square assumptions prior

to meeting the chi-square statistic. One analysis did though, and met it using 1 second consolidated

bins as shown in Figure 28 below.
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Bin Expected Observed | (O-E)"2/E
<1 0.0 0.0
2 0.0 0.0
8 0.7 0.0 0.7
4 11 0.0 11
5 14 1.0 0.1
6 3.9 4.0 0.0
7 5.6 5.0 0.1
8 7.7 7.0 0.1
9 8.4 5.0 14
10 6.3 6.0 0.0
11 25 5.0 2.6
12 1.1 0.0 1.1
13 0.4 0.0 0.4
14 0.4 7.0 126.0
15 0.7 0.0 0.7
16+ 0.0 0.0
% Sum 134.16
x2 23.34




Accepted Gaps - Chi Square 1 Second

Bins
14.00
12
12.00 Bin Expected Observed | (O-E)"2/E
10.00 <6 7.0 5.0 0.6

7 5.6 5.0 0.1
7.7 7.0 0.1

(o]

8.00

8.42
7.72
7.02 7
6.32 9 8.4 5.0 1.4
5.61 ° 10 6.3 6.0 0.0
6.00 5 5 5 4.91 g . g
11+ 4.9 12.0 10.2
4.0 % Sum 12.35
22 12.83
2.0
0.00
<6 7 8 9 10 11+

M Expected Observed

o

o

Figure 28— 1 second bins for chi-square analysis condensed

While this analysis does not necessarily show the distribution of data as nicely as the
unconsolidated 1 second binned data, it met all chi-squared assumptions and the statistic with six

bins, the largest number of bins to be significant in this analysis.

5.3.3 Crossing Speed

Analysis Methods Discussion
Crossing speeds will be analyzed with the same approach as accepted gap sizes were — first as a
full 49 subject data set, then as the adjusted 40 subject data set. Multiple approaches were taken to

analyze crossing speed for validation between the IVE and real-world environments.

This first method considered was constructing a linear model of crossing speed and its

relationship with accepted gap size to fit the real-world data and then analyzing how this model fit
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the VR data — the null hypothesis being that the model would fit both data sets and, thus, validating
crossing speeds in the As-Built IVE. This method did not work, as a model could not be fit to the
real-world data first: the residuals of the data set did not follow any pattern for linear fit, not did
any linear model come close to representing the data in any way. To possibly correct for this, two
transformations were considered: square root and natural log, in the hopes that the residuals of the
data would be compressed enough to form some sort of correlation. This method also did not work,
as the residuals for both transformations did not follow any correlations.

The second approach take was to conduct a median split of the data to compare the upper
and lower splits of crossing speeds against on another for each environment — real-world and VR
—and determine whether there is a relative difference in upper and lower mean split speeds between
each environment that could be used to validate crossing behavior. The first step to this approach
was to split the real-world data about the median and compare the upper and lower splits to
determine whether there is a significant difference in the means, then determine the difference in
the mean which would be compared against the mean difference between the VR median splits.
Similar to the previously described approach, it was found that there was no significant difference
in the means of the upper and lower median splits of the real-world data, thus, this method also
could not be used. The calculations and outputs for both of these methods are shown in Appendix
F.

Since neither of these methods could be used for validating crossing speeds in the real-
world and VR environments based on model fitting or relative median split differences, the last
approach considered was to conduct an independent samples t-test to determine whether or not

there were any differences in the mean for crossing speed.
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Table 11 — Independent samples t-test statistics and results

Group Statistics

Std. Error
Environment [ Mean Std. Deviation Mean
Speed 0 114 3.3324 GEGGT 06244
1 49 3.3814 7224 A1032

Independent Samples Test

Levene's Test for Equality of
Wariances

ttest for Equality of Means

95% Confidence Interval of the

Wean std. Error Difierence
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Speed  Equalvariances 3.659 058 -.493 161 623 -.05894 11954 -.29501 17714
assumed
Equal variances not -465 80.183 643 -.058594 12676 -.31120 18332

assumed

Table 11 above shows that there was not a significant difference in crossing speed means

between the real-world and VR environments. Furthermore, the Levene’s test shows that there is

no significant difference in the variance of the data set.

Table 12 — Independent samples t-test effect sizes

Independent Samples Effect Sizes

95% Confidence Interval

Foint
Standardizer® Estimate Lower pper
Speed Cohen's d 68981 -.084 -418 281
Hedges' correction 70308 -.084 - 417 2560
Glass's delta 77224 -076 411 259

a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation of the contral group.

The estimated effects size for difference in VR and real-world crossing speeds is shown in

Table 12 above. As shown, there is a nearly no effect on crossing speeds when switching between

real-world and VR data, thus, it could be validated that subjects cross in the VR IVE similarly to

98



the real-world; however, this data needs to be reanalyzed based off of the adjusted sample size

previously discussed.

5.3.4 Crossing Speed — Adjusted

The independent samples t-test for the adjusted subject pool of 40 subjects is shown in

Table 13 below.

Table 13- Independent samples t-test statistics and results

Group Statistics

Std. Error
Environment [+l Mean Std. Deviation Mean
Speed O 114 33324 BEEET 06244
1 40 3.5183 71428 112594
Independent Samples Test
Levene's Test for Equality of
‘ariances t-test for Equality of Means
G5% Confidence Interval of the
Mean Std. Error Difference
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Speed  Equalvariances 1.446 23 -1.489 162 138 -.18588 12482 -.43249 06072
assumed
Equal variances not -1.440 64.408 155 -.18588 12908 -.44366 07189
assumed

Based on this analysis with the adjusted data set, there is still no significant
difference in the means of crossing speeds between the as-built VR IVE and real-world
environments. Furthermore, the Levene’s test shows that there is no significant difference in the

variance of the data set.
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Table 14— Independent samples t-test effect sizes

Independent Samples Effect Sizes

. 95% Confidence Interval
Foint
Standardizer® Estimate Lower Upper
Speed Cohen'sd GB7820 -.274 - B35 .088
Hedges' correction B8258 =272 - 632 088
Glass's delta 71428 - 260 - 623 106

a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.
Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation ofthe control group.

Table 14 above re-illustrates the estimated effect size of crossing speeds when switching
from real-world to VR environments. The reported effect sizes are smaller than they were with the
49 subject data set, still indicating that the use of VR had no effect on the average crossing speed

of subjects, further validating that crossing speed behavior in VR is similar to real-world behavior.

5.3.5 Survey Data

The post-experiment survey data is presented in Table 15 below. Negative (1 and 2) and Positive

(4 and 5) Likert scale responses have been compiled for the sake of simplicity in reading the results.

Table 15— Overview of survey results including all responses

Question Negative (1-2) | Neutral (3) | Positive (4-5) | # Responses
T ilepertorming th ssigned ks n te vl enironmenty | SL0%  184%  306% 4
How responsive was the environment to actions that you performed? 0.0% 8.0% 92.0% 50
How immersed were you in the virtual environment experience? 0.0% 6.0% 94.0% 50
Did the virtual environment feel appropriately to scale? 0.0% 4.0% 96.0% 50
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To what extent did your experiences in the virtual environment seem
consistent with your real-world experiences of crossing a street?

How realistic was your sense of movement inside the virtual environment?

How realistic was your sense of walking speed inside the virtual
environment?

How distracting were the controllers in your hands?

How realistic was the vehicle traffic in the virtual environment?

Did the traffic seem responsive to your actions in the virtual environment?

Do you feel more or less compelled to observe the "rules of the road" while
walking in the virtual environment compared to walking in real life?

How realistic was your sense of risk in the virtual environment?

How safe did you feel crossing the road using the mobile phone
application?

How safe did you feel crossing the road using the rapid flashing beacons?

How safe did you feel crossing the road without additional safety devices?

2.0%

2.0%

0.0%

6.0%

10.0%

2.0%

18.0%

12.0%

16.0%

0.0%

32.7%

12.0%

6.0%

8.0%

14.0%

36.0%

12.0%

64.0%

30.0%

20.0%

4.0%

40.8%

86.0%

92.0%

92.0%

80.0%

54.0%

86.0%

18.0%

58.0%

56.0%

90.0%

26.5%

50

50

50

50

50

50

50

50

50

50

49

5.4 Simulator Validation Discussion

Goal | of this dissertation was to prove the feasibility of utilizing VR technology as a tool for
conducting real-world experimentation of pedestrian’s behavior. Chapter 5 provided a validation
analysis between real-world and virtual behavior in an IVE that was modelled on a one-to-one
scale of a real-world, high-risk environment. To prove the validation of the virtual environment,

two variables were considered as the main indicators of pedestrian behavior and safety: accepted

gap size and average crossing speed.

Accepted Gaps

Accepted gap size is indicative of pedestrians’ perception of safety at a crosswalk and is arguably

the standard for determining the safety of an uncontrolled crossing aside from crash analyses. It
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represents the threshold of risk pedestrians are will to accept before rejecting a gap. To validate an
IVE, it is paramount that this risk be similar to the real-world environment it is modelled after so
that further analysis of the crossing location in VR could be used for real-world practice.

To validate the IVE to the real-world environment, chi-square distributions were used for
determining whether the distribution of accepted gaps was similar between the two environments.
There was a likeness of distributions between real-world and VR chi-square analyses, and some
distributions of the data were statistically similar.

It is believed that, in analyzing pedestrian gap acceptance, VR and real-world environments
are similar and the use of IVEs for studying pedestrian safety at uncontrolled crossings is a valid
approach. There are a few drawbacks to this study, though, that would need to be improved so that
more accurate results could be drawn. The primary factor considered as the cause for some skew
in the gap acceptance of the IVE towards larger gap sizes is the vehicle behavior. As previously
discussed in Chapter 5, vehicle behavior was modelled so as to avoid making arbitrary decisions
as to when vehicles would stop for pedestrians attempting to cross at the crossing and instead,
never stopped for the pedestrian unless the subject was in the lane of the vehicle itself. While both
of the distributions of gap acceptance only analyzed data in which the pedestrian crossed before a
vehicle yielded for them, there are significant differences between the real-world and IVEs that
may have led pedestrians to not trust vehicular traffic as much in the IVE.

Firstly, there are no drivers visible in the approaching vehicles for the pedestrians to
visually make eye contact with or communicate with; therefore, there is a level of trust or
accountability in the driver to slow down for the pedestrian should they cross in front of the vehicle.
Second, though the distribution of gap sizes presented to the pedestrians is modelled directly after

real-world gap sizes based off of the cumulative distribution of this data, there is still an
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overexposure of 14 second gaps to subjects in the IVE as compared to the real-world data. This
becomes apparent when considering the statistical significance between the accepted gap sizes
when looking at the independent median tests and the Mann Whitney U test, where it is clear that
the medians of accepted gap sizes of the real-world and I\VE are similar, but the ranks of these data
as produced by the Mann Whitney U test are not and are skewed because of the IVE’s 14 second
gap acceptance rate. Furthermore, a larger sample size for analysis would also prove ideal as there
is still a loss in data from the 50 subject data set used in this study. While a 50 subject data pool is
still larger than many previous tests using VR technology to study pedestrian behavior, a larger
sample size would help in providing a better distribution to compare against the real world data
and would be less susceptible to changes in variance.

Despite these limitations, subjects still reported very positive results in the post test survey
shown in Chapter 5.3.5. 94% of subjects felt they were immersed in the environment, 86% felt that
their experience in the IVE was consistent with their real-world experiences, and 92% felt that
their sense of movement and walking speed was realistic in the IVE. With respect to risk, 58%
reported that their sense of risk was realistic, though, 30% reported it was somewhat realistic and
only 12% reported that it was unrealistic. Comparing these results with the 54% of subjects who
felt that the traffic was realistic in the IVE, it can be inferred that the realism of the traffic was
most likely the cause for any changes in perception of risk, but that, generally, the IVE was well
received and considered realistic, further validating the use of IVE for studying pedestrian safety

at uncontrolled crossings.
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Crossing Speed

Average crossing speeds are indicative of the safety of a pedestrian’s crossing. Uncontrolled
crossings experience variances in crossing speeds based off of pedestrians’ behavior and
perception of risk — pedestrians may walk across a road slowly with caution or may dart across the
road to reduce their exposure to oncoming traffic, the latter approach being considered a sign of
unsafe crossing behavior in research.

To validate the IVE to the real-world environment, multiple approaches were taken to show
the determine whether there was a difference in crossing speeds and, thus, crossing safety. While
many of the first approaches failed to sample the real-world data accurately, the independent
samples t-test did show that the means of crossing speeds in the IVE and real-world environments
were not statistically significant from one another. Furthermore, the Levene’s test shows that there
was no significant difference in the variance between the crossing speeds in the two environments
either, validating that pedestrians crossed with the same behavior and risk in the IVE as they did
in the real-world.

Comparing these results with the survey responses in Chapter 5.3.5, 92% of subjects felt
that their sense of movement and their sense of walking speed inside the IVE was realistic, further

validating the efficacy of the use of IVEs.
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Chapter 6: Safety Analysis of Pedestrians in VR with Alternative
Technologies

6.1 Alternative Design Testing

The purpose of the alternative design phase was to understand pedestrian behavior, acceptance,
and compliance with different roadway designs, infrastructure, and technology as compared to the
as-built design at the midblock crossing at Water St and 1% St S. This portion of the experiment
tested subject’s behavior with two new forms of technology at the Water St and 1% St S midblock
crossing: (1) Subjects crossed with the inclusion of a rapid flashing beacon at the midblock
crossing (2) Subjects crossed with the inclusion of the cellular midblock crossing application as
discussed in detail in Chapter 3. The participants took a pre-experiment questionnaire and
personality test (the same as in the validation test) and then experienced the alternative scenarios
in the IVE. Pedestrian speeds, accelerations, head movements, field of vision, and physiological
data were be collected as well as behavior (did they cross at the crosswalk or near it, did they wait
longer for a vehicle to stop, did they dart into the road without waiting). After the experiment,
participants took a post-test questionnaire to assess their perceptions of the alternative technologies
and perceived safety. Data collected from this experiment was directly compared to that of the
validation study described in Chapter 5.1.2 to understand any changes in observed and perceived

safety.

Performance metrics
In addition to the performance metrics included in the validation study in Chapter 5.2.2, the

following performance metrics were be used for the alternative design/technology testing:
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Table 16 — New dependent variable included in VR testing with alternative technology

alternative safety features to aid in their crossing.

Variable Type Variable Units Interpretation How it is Measured
The use of the alternative technology will hel .
D dent Technology Nominal determine whether subjects are mo?glwillin t'(]) use Record whether alternative technology was
ependen Acceptance ! 9 activated or not

Pre and post-test questionnaires were conducted to understand pedestrian stated behaviors

and preferences and can be compared to their actual behaviors in the virtual environment. This

safety analysis was primarily focused on how the behavior of pedestrians changed with the

inclusion of alternative safety technologies and not what individual factors or perceptions

influenced or correlated with pedestrian behavior in the IVE; therefore, survey data was only

reported (not statistically analyzed) and used for understanding anomalies in overall pedestrian

crossing behavior.

6.2 Experimental Design

6.2.1 Rapid Flashing Beacon

Within the last five years, many midblock crossings around the university grounds have been

upgraded with rectangular rapid flashing beacons (RFBs). Figure 29 below shows one of such

crosswalks along University Avenue by Little Johns sub shop.
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Figure 29 Midblock crosswalk with RFBs along University Ave (61)

The beacons work by pedestrians approaching the crosswalk from either side of the road,
pressing a button that initiates the yellow flashing pattern, and crossing when approaching vehicles
have stopped.

This scenario will consist of the pedestrian entering the virtual environment and approaching
the crosswalk heading westbound on Water Street on the Northside of the road. The pedestrian
should be allowed to cross the road whenever they feel appropriate, whether it be at the crosswalk
or not; subjects will simply be instructed to cross the road. Pedestrians should be able to interact
with the RFB by pressing the button located on the sign pole to initiate the flashers on the beacon.
Vehicles approaching the crosswalk should react accordingly to the pedestrian:

o Ifthe pedestrian is at the crosswalk attempting to cross and uses the RFB, they should yield

for the pedestrian immediately.

o Ifthe pedestrian is at the crosswalk waiting for a gap without pressing the RFB, cars should

not stop.

o If the pedestrian is in the crosswalk, vehicles should yield for the pedestrian.
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6.2.2 Mobile Phone Application

The last scenario for study incorporated the capability for use of the midblock crossing application
discussed in Chapter 3. This application was designed to allow users to use their cellphone to send
in vehicle messages to approaching vehicles to alert them of the pedestrian’s intent to cross at the
midblock crosswalk. The application does not allow users to send these types of messages when
they are not near a crosswalk, so they cannot spam approaching messages to approaching drivers.

For the purposes of this study, pedestrians had a cellphone in their hand while in the virtual
environment (they will have a controller in their hand in real life, but will see a phone when they
look at their hand). On the screen of the phone, a simplified user interface was shown to make
operations easier to understand for the pedestrian. There were two screens that the pedestrians saw

on the mobile phone during testing had they interacted with it fully during their crossing.

« The first screen of the mobile phone application asked the pedestrian if they wished to cross
the crosswalk and provided a button labeled “Yes” for use if the subject wished to use the
application.

e Should the pedestrian answer “Yes”, a new screen appeared that stated “Your request is
being broadcast”. The pedestrian was free to cross the crosswalk and vehicles yielded when

subjects responded by pressing the “Yes” button.

The user interface design is included below in Figure 30.
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Would you Your request

like to cross is being
at the broadcast.
crosswalk?
YES

Figure 30 User interface layout for two screens pedestrians could interact with while in the IVE

Vehicle behavior with the mobile phone application.

« If the pedestrian was at the crosswalk attempting to cross and uses the application, they
should yield for the pedestrian immediately.

o If the pedestrian was at the crosswalk waiting for a gap without using the app, vehicles did

not yield for the pedestrian.

o If the pedestrian was in the crosswalk in the approaching lane of vehicles, vehicles yielded

for the pedestrian.

6.3 Results

The results presented in this analysis are based off of a few adjustments made to the datasets of

the VR environments:

109



e The As-Built environment consists of the same 40 subject group that was used in Chapter
5, instead of the 49-subject dataset (for full 49-subject dataset calculations, refer to
Appendices G and H). This was done to preserve the continuity of data use and to remove
any data that might skew the differences in subject behavior in the IVEs.

e The Flashing Beacon and Phone App IVEs have been reduced as well by removing
subjects with poor data that couldn’t be used for analysis as well as subjects who did not
use the alternative technologies. The breakdown for data removal is as follows:

o Flashing Beacon — 16% data removed, total of 42 subjects retained
= 3 subjects’ data was removed for poor data collection reasons, representing
6% of the data
» 5subjects’ data was removed because they did not use the flashing beacons,
representing 10% of the data
o Phone App — 14% of data removed, total of 43 subjects retained
= 3 subjects’ data was removed for poor data collection reasons, representing
6% of the data
» 4 subjects’ data was removed because they did not use the phone app,

representing 8% of the data

6.3.1 Correlations

First, a Spearman correlation was conducted to determine if there were any correlations between
the independent variable of the VR tests, the environment, and the dependent variables of the
experiment: the accepted gap number, accepted gap size, crossing speed, and reaction to last

vehicle. Variable coding for this analysis is as follows:
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Table 17 — Variable coding for statistical analysis in calculations

Variable Code
As Built 1
Flashing Beacons 2
Phone App 3

Spearman correlation was chosen because the environment, accepted gap number, and
vehicle model variables are both nominal and ordinal sets of data and a Spearman’s correlation is
designed to analyze these data sets in a monotonic relationship — where two variables change
together, but not at a constant rate — unlike a Pearson correlation which can only evaluate two
continuous variables as they proportionally change together. Table 18 below provides the
correlation coefficient and the significance of the correlations between the independent variable,

the environment, against the four dependent variables.

Table 18 — Spearman correlation coefficients and significance values between alternative technology environments

Accepted Gap Crossing Reaftlon
Gap No Size Speed to Last
: Vehicle
Correlation Coefficient -.629** -.255%* - 431* .698**
Environment - -
Sig. (2-tailed) 0.000 0.004 0.000 0.000

**_Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

As shown in above, there are significant differences between the environments for all four
of the dependent variables. Accepted gap number, accepted gap size, and crossing speed all had
negative correlations with the environment variables, indicating that as the environment switches
between the As Built to the Flashing Beacons and Phone App, gaps are accepted sooner, accepted
gap size decreased, and crossing speed decreased.

There was a strong positive correlation between the environments and the reaction to the

last vehicle which is categorized as (1) crossed during gap and (2) waited for approaching vehicle
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to stop. This variable is expected to be positive because the As Built environment vehicles never
yielded for the pedestrian before they were crossing, but only when they were in the lane of traffic,
in which case the reaction to the last vehicle would still be coded as “1”. With the alternative

technologies, most subjects waited for traffic to yield before crossing, though not all did.

Furthermore, in order to determine whether the dynamic constants in the experiment, the
order of which each environment was experienced and the randomized vehicle models presented
to the subjects, had a significant impact on subject behavior, these constants were treated as
variables in the Spearman correlation. As shown in Tables 19 and 20 below, neither one of these
dynamic constants had a significant impact on subject behavior nor was there any significant bias

in the randomization of the order of vehicle model in any of the environments.

Table 19 — Spearman correlation coefficients and significanve values with respect to dynamic control variable “Order”

Environment Accepted Vehicle Gap Crossing Reaction to
Gap No. Model Size Speed Last Vehicle
Correlation 0.048 -0.076 -0.040 | 0.001 0.117 0.058
Order Coefficient
Sig. (2-tailed) 0.593 0.402 0.656 0.992 0.194 0.522

**_Correlation is significant at the 0.01 level (2-tailed).
*, Correlation is significant at the 0.05 level (2-tailed).

Table 20— Spearman correlation coefficients and significanve values with respect to dynamic control variable “Vehilce Model”

. Accepted Gap Crossing Reaction to

Environment | Order Gap No. Size Speed Last Vehicle
Vehicle %‘;‘gﬁ:ﬁfm 0.132 -0.040 -0.150 -0.119 0.035 0.120
Sleds Sig. (2-tailed) 0.142 0.656 0.096 0.186 0.700 0.184

**_Correlation is significant at the 0.01 level (2-tailed).
*, Correlation is significant at the 0.05 level (2-tailed).
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6.3.2 Accepted Gaps

Descriptive statistics of the accepted gap sizes for each environment are provided in Table 21

below. The mean values presented are recorded gap times in seconds.

Table 21 — Descriptive statistics for three VR environments’ accepted gaps

Descriptives

Gap
95% Confidence Interval for
Mean

[ Mean Stdl. Deviation  Std. Error Lower Bound Upper Bound  Minimum  Maximum
1.00 40 51400 278170 43883 8.2504 10.0296 4.20 14.00
2.00 42 66476 3.08349 ATETY 56867 76085 1.20 14.00
3.00 43 6.89721 3182587 48534 5.9926 7.8515 1.20 14.00
Total 125 7.5568 319613 28587 6.9910 8.1226 1.20 14.00

Repeated Measures ANOVA

A repeated measures ANOVA test was conducted to determine whether there were significant

differences in gap size selection for each participant. The dataset was reduced to a total of 33

subjects who had complete and uncompromised data and used each of the technologies in the

alternative technology environments. The descriptive statistics as well as the results of the repeated

measures ANOVA are shown in Table 22 below.

Table 22 — Repeated measures ANOVA descriptive statistsics between three VR environments and within subject effects for

accepted gap sizes

Descriptive Statistics

Mean Std. Deviation I
AsBuilt B.7818 277280 33
FlashingBeacons G.8545 279431 33
FhoneApp 6.9354 3.39687 33
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Tests of Within-Subjects Effects

Measure: MEASURE_1

Type Il Sum FPartial Eta
Source of Squares df Mean Square F Sig. Squared
Environment Sphericity Assumed T78.277 2 39139 4 462 015 122
Greenhouse-Geisser T8.277 1.924 40.680 4.462 .07 122
Huynh-Feldt 78277 2.000 391349 4462 015 122
Lower-bound 78277 1.000 78277 4. 462 043 122
Error(Ervironment)  Sphericity Assumed 561.403 64 8.772
Greenhouse-Geisser 561.403 61.574 9117
Huynh-Feldt 561.403 §4.000 8.772
Lowerbound 561.403 32.000 17.544

The results of the repeated measures ANOVA show that there is a significant difference in
accepted gap sizes between the three environments within-subjects. To determine which
environments differed from one-another, a pairwise comparison was also conducted utilizing a
Bonferroni correction to account for repeated analyses being conducted on the data sets to

minimize Type | error. This analysis is shown below in Table 23.

Table 23 — Pairwise comparisons between VR environment gap acceptance

Pairwise Comparisons

Measure: MEASURE_1

895% Confidence Interval for

Mean Difference”
Difference (-
{ly Environment  {J) Environment J) Std. Error sig.” Lower Bound  Upper Bound
1 2 1.927 688 026 180 3.664
3 1.842" 697 038 .082 3.602
2 1 -1.927 688 026 -3.664 -.1490
3 -.0B5 798 1.000 -2.101 1.931
3 1 -1.842° Ba7 038 -3.602 -.082
2 085 798 1.000 -1.931 21mMm

Based on estimated marginal means
* The mean difference is significant atthe .05 level.

b. Adjustment for multiple comparisons: Bonferroni.
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As seen in Table 23 above, there was a significant difference in accepted gap size between
the As-Built environment when compared to the Flashing Beacons and Phone App environments;
however, there was no significant difference in accepted gap size between the Flashing Beacons
and Phone App environments. This analysis further confirms that subjects behave similarly in the
Flashing Beacons and Phone App environments and differently with alternative technologies than

in the As-Built condition.

Paired Means T-Test

Paired t-tests were also conducted to discern differences in accepted gap size between the As-Built
environment and the alternatives separately. This was done for two reasons: (1) to determine the
effect size of each of these alternatives and (2) to look at the full datasets for each paired
comparison without reduction from having to have all three datasets reduced to the same subjects.
This process yielded 36 paired comparisons between the As-Built and Flashing Beacons

environments and 35 paired comparisons between the As-Built and the Phone App environments.

As Built vs Flashing beacon

The descriptive statistics and results of the paired t-test are shown in Table 24 below.

Table 24 — Independent means paired t-test for gap acceptance between As Built and Flashing Beacons

Paired Samples Statistics

Std. Erraor
Mean [+l Std. Deviation Mean
FPair1  AsBuilt 28111 36 266016 44336
FlashingBeacons G.5833 36 287029 47838
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Paired Samples Test
Faired Differences

95% Confidence Interval ofthe

St Error Difference

Sid. Deviation Mean Lower

Mean Upper

t df Sig. (2-tailed)

AsBuilt-
FlashingBeacons

Pair1 222778 305435 65806 .8Boe2

3.56574

3380 35 .00z

From this analysis, it can be further confirmed that there is a significant difference in

accepted gap size between the As-Built and Flashing Beacons environment. Table 25 below shows

that the estimated effect size is .563, indicating a moderate effect on accepted gap size. Again, this

is expected as the As-Built scenario was weighted towards larger gap sizes, whereas in the

alternative technologies, subjects almost always selected the first or second gap to cross during.

Table 25— Independent means paired t-test for gap acceptance between As Built and Flashing Beacons effect sizes

Paired Samples Effect Sizes

95% Confidence Interval

Foint
Standardizer® Estimate Lower Upper
Pair1  AsBuilt- Cohen's d 385435 563 208 812
FlashingBeacons Hedges’ carrection 3.99736 557 206 802

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation ofthe mean difference.

Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

As Built vs Phone App

The descriptive statistics and results of the paired t-test are shown in Table 26 below.

Table 26— Independent means paired t-test for gap acceptance between As Built and Phone Application

Paired Samples Statistics

Std. Error
Mean M Std. Deviation Mean
Fair1  AsBuilt B.8629 35 2714587 458845
Phonehpp 7.0087 35 3370488 BRS8N
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Paired Samples Test

Faired Differences

95% Confidence Interval of the
Std. Error Difference

Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)

Pair1  AsBuilt- PhoneApp  1.85714 3.91605 66183 51183 3.20235 2.806 34 .008

From this analysis, it can be further confirmed that there is a significant difference in
accepted gap size between the As-Built and Phone App environment. Table 27 below shows that
the estimated effect size is .474, indicating a nearly moderate effect on accepted gap size. Again,
this is expected as the As-Built scenario was weighted towards larger gap sizes, whereas in the

alternative technologies, subjects almost always selected the first or second gap to cross during.

Table 27— Independent means paired t-test for gap acceptance between As Built and Phone App effect sizes

Paired Samples Effect Sizes

95% Confidence Interval

Foint
Standardizer® Estimate Lower Upper
Fair1  AsBuilt- FhoneApp  Cohen's d 391605 A74 A2 821
Hedges' correction 3.850482 AES 20 812

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation of the mean difference.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

This effect size is similar to what we see in the Flashing Beacons environment, though it
is a little smaller. Variance in the effect size could be attributed to gap size exposure during the
first or second gaps; while the correlation matrix showed that accepted gap size wasn’t correlated
with gap order, that was for the entirety of the study including the As-Built scenario and may be

slightly different in this particular analysis.

6.3.3 Crossing Speeds

Descriptive statistics of the crossing speeds for each environment are provided in Table 28

below. The mean values presented are average crossing speeds in miles per hour.
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Table 28 — Descriptive statistics for three VR enviornments’ crossing speeds

Descriptives

Speed
95% Confidence Interval for
Mean

I Mean Std. Deviation  Std. Error  Lower Bound Upper Bound  Minimum  Maximum
1.00 40 3.5363 72437 11452 3.3047 3.7680 2149 5149
2.00 42 3.0163 43375 06693 2.8811 314814 2.23 4.49
3.00 43 2.8446 50403 07686 2.6895 2.84987 2.03 446
Total 125 31236 63173 05650 30118 3.2385 2.03 5149

Repeated Measures ANOVA

A repeated measures ANOVA test was conducted to determine whether there were significant

differences in crossing speeds for each participant in each environment. The dataset was reduced

to a total of 33 subjects who had complete and uncompromised data and used each of the

technologies in the alternative technology environments. The descriptive statistics as well as the

results of the repeated measures ANOVA are shown in Table 29 below.

Table 29 — Repeated Measures ANOVA descriptive statistics and within subject effects for crossing speeds

Descriptive Statistics

Mean Std. Deviation M
AsBuilt 3.6482 J2732 33
FlashingBeacon 3.0857 46035 33
PhoneApp 2.9013 49969 33
Tests of Within-Subjects Effects
Measure: MEASURE_1
Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Environment Sphericity Assumed 10.260 2 5130 27.250 .ooo AE0
Greenhouse-Geisser 10.260 1.637 6.674 27.250 .0oo 460
Huynh-Feldt 10.260 1.600 6.413 27.250 .0oa 460
Lower-bound 10.260 1.000 10.260 27.250 .000 460
ErroriEnvironment)  Sphericity Assumed 12.049 G4 188
Greenhouse-Geisser 12.049 49188 245
Huynh-Feldt 12.048 51.195 235
Lower-bound 12.048 32.000 377
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The results of the repeated measures ANOVA show that there is a significant difference in
crossing speeds between the three environments within-subjects. To determine which
environments differed from one-another, a pairwise comparison was also conducted utilizing a
Bonferroni correction to account for repeated analyses being conducted on the data sets to

minimize Type | error. This analysis is shown below in Table 30.
Table 30 — Repeated Measures ANOVA pairwise comparisons between three VR environments
Pairwise Comparisons

Measure: MEASURE_1

96% Confidence Interval for

Mean Difference®
Difference (-
(h Ervironment  (J) Environment J) Std. Error sig.” Lower Bound  Upper Bound
1 2 592 16 .0oo 300 R:1:1a
&l 747 125 .000 432 1.062
2 1 -592" 16 000 -.885 -.300
3 154 073 123 -.028 338
3 1 74T 125 .000 -1.062 -432
2 -154 073 123 -.338 029

Based on estimated marginal means
* The mean difference is significant at the .05 level.

. Adjustment for multiple comparisons: Bonferrani.

As seen in Table 30 above, there was a significant difference in crossing speed between
the As-Built environment when compared to the Flashing Beacons and Phone App environments;
however, there was no significant difference in crossing speeds between the Flashing Beacons and
Phone App environments. This analysis further confirms that subjects behave similarly in the
Flashing Beacons and Phone App environments and differently with alternative technologies as

compared to the As-Built condition.
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Paired Means T-Test

Similar to the accepted gap size analysis, paired t-tests were also conducted to discern differences
in crossing speeds between the As-Built environment and the alternatives separately. This was
done for two reasons: (1) to determine the effect size of each of these alternatives and (2) to look
at the full datasets for each paired comparison without reduction from having to have all three
datasets reduced to the same subjects. This process yielded 36 paired comparisons between the
As-Built and Flashing Beacons environments and 35 paired comparisons between the As-Built

and the Phone App environments.

As Built vs Flashing Beacon

The descriptive statistics and results of the paired t-test are shown in Table 31 below.

Table 31- Independent means paired t-test for crossing speeds between As Built and Flashing Beacons

Paired Samples Statistics

Std. Error
Mean I Std. Deviation Mean
Fair1  AsBuilt 3.5967 36 72410 12068
FlashingBeacon 3.0457 36 44352 07382
Paired Samples Test
Faired Differences
95% Confidence Interval of the
Std. Error Difference

Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Fair1  AsBuilt- FlashingBeacon 55106 (65575 10928 32918 77293 5042 35 .0oo

From this analysis, it can be further confirmed that there is a significant difference in
crossing speeds between the As-Built and Flashing Beacons environment. Table 32 below shows

that the estimated effect size is .840, indicating a large effect on average crossing speed.
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Table 32— Independent means paired t-test for crossing speeds between As Built and Flashing Beacons effect sizes

Paired Samples Effect Sizes

Point 95% Confidence Interval

Standardizer® Estimate Lower Upper
Pair1  AsBuilt- FlashingBeacon  Cohen's d B5ATE 840 455 1.7
Hedges' correction BE288 831 A50 1.204

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation of the mean difference.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

As Built vs Phone App

The descriptive statistics and results of the paired t-test are shown in Table 33 below.

Table 33— Independent means paired t-test for crossing speeds between As Built and Phone App

Paired Samples Statistics

Std. Errar
Mean M Std. Deviation Mean
Fair1  AsBuilt 36357 35 70803 1968
PhoneApp 28776 35 49740 08408
Paired Samples Test
Faired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Fair1  AsBuilt- Phonefpp 75818 rooE 11841 51755 99882 6.403 34 .00o

From this analysis, it can be further confirmed that there is a significant difference in
accepted gap size between the As-Built and Phone App environment. Table 34 below shows that

the estimated effect size is 1.082, indicating a large effect on average crossing speed.
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Table 34— Independent means paired t-test for crossing speed between As Built and Phone App

Paired Samples Effect Sizes

i, 96% Confidence Interval
Point
Standardizer® Estimate Lower Upper
Pair1  AsBuilt- PhoneApp  Cohen's d 70051 1.082 G588 1.488
Hedges' correction 708336 1.070 651 1.480

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation of the mean difference.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

This effect size is similar to what we see in the Flashing Beacons environment, though it
is a little larger. Variance in the effect size could be attributed subjects either feeling safer with the
phone app technology, rather than the flashing beacons, or, adversely, subjects may be more
cautious when crossing the road when using the phone app and cross slower. Referencing the
survey data in Table 15 from Chapter 5.3.5, 56% of subjects stated that they felt safe crossing the
road using the mobile phone app, whereas 90% of subjects felt safe when crossing the street using
the flashing beacons, thus, it may be inferred that the latter interpretation that subjects may be
more cautious when crossing the road with the phone app due to the unfamiliarity of the technology
is the more likely reasoning for this larger effect size. Comparatively, 26.5% of participants stated
that they felt safe crossing the road in the As-Built environment, thus, the alternative technologies
not only increased pedestrians’ perception of safety when crossing, but decreased their crossing

speeds, indicating safer crossing behavior.

6.4 VR Safety Analysis Discussion

The second goal of this dissertation was to understand pedestrian preferences (both stated and
observed) and behavior in regards to alternative infrastructure technology and design at midblock

crosswalks. Chapter 6 provided an analysis between alternative safety measures in an IVE, proving
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the efficacy of VR technology in studying the safety implications of such designs without the time,

cost, and safety risks of implementing these alternatives in the real world.

Correlations

Bivariate correlations were conducted to determine the effect coefficients of each of the dependent
variables to best understand how they were affecting pedestrian behavior as well as to what extent
they were impacting it.

Accepted gap number, accepted gap size, and crossing speed all had negative correlations
with the environment variables, indicating that as the environment switches between the As Built
to the Flashing Beacons and Phone App, gaps are accepted sooner, accepted gap size decreased,
and crossing speed decreased. The negative accepted gap number correlation was a strong
correlation as most subjects used the alternative technologies on either the first or second gap of
the study for each environment. Gap size decreased between the As-Built and the alternative
scenarios because the accepted gap size of the As-Built scenario was weighted towards larger gap
sizes, whereas the accepted gap size of the alternatives was limited to whatever gap showed up
first or second. Crossing speed also had a moderately negative correlation because pedestrians
didn’t have to cross in between vehicles that were not yielding for the pedestrian in the alternative
environments, but instead waited for or expected them to yield the right of way and crossed slower.

There was a strong positive correlation between the environments and the reaction to the
last vehicle which is categorized as (1) crossed during gap and (2) waited for approaching vehicle
to stop. This variable is expected to be positive because the As Built environment vehicles never

yielded for the pedestrian before they were crossing, but only when they were in the lane of traffic,
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in which case the reaction to the last vehicle would still be coded as “1”. With the alternative
technologies, most subjects waited for traffic to yield before crossing, though not all did.

With respect to the Flashing Beacons environment, 9 of the 42 — 21.4% — subjects who did
use the flashing beacons crossed before vehicles yielded the right of way. In the Phone App
environment, 10 of the 43 — 23.3% — subjects who did use the phone app crossed before vehicles
yielded the right of way. Since both of these percentages are similar, it could be inferred that the
level of trust for each technology is similar. Further analysis with eye tracking is suggested with
respect to the implications of this behavior to determine whether or not this is unsafe behavior.
Analyzing whether pedestrians are attentive during crossing and actively looking at approaching
vehicles may suggest safer crossing behavior rather than pedestrians not watching approaching
traffic and blindly trusting the alternative technologies. The argument could be made that in a fully
connected and autonomous environment where approaching vehicles would yield the right of way,
as did all vehicles in this study, that this would be efficient behavior, but this simply not the reality
of modern-day crossing scenarios. Another argument could be made to further test the mobile
phone application with feedback provided to the pedestrian when approaching vehicles are
yielding the right of way, rather than just confirming that the pedestrian’s intent to cross is being
broadcasted. This approach would essentially act like a handshake where both users express their
intent to cross and yield, offering the safest approach, and could offer further insight into pedestrian
trust in the technology with this added layer of information and possibly answer the question:
would pedestrians cross before receiving this confirmation that it is safe to cross at the same rate?

Furthermore, in order to determine whether the dynamic constants in the experiment, the
order of which each environment was experienced and the randomized vehicle models presented

to the subjects, had a significant impact on subject behavior, these constants were treated as
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variables in the same Spearman correlation and were not found to have a significant impact on
subject behavior nor was there any significant bias in the randomization of the order of vehicle
model in any of the environments. This analysis demonstrated the capability IVEs provide for

controlling environmental factors that may otherwise have an influence on real-world data.

Accepted Gaps

Alternative safety treatments and technologies were shown to have large impacts on the crossing
behavior of pedestrians at uncontrolled crossings. With respect to gap size, the use of a repeated
measures ANOVA test has proven that there are strong statistically significant differences between
gap acceptance with and without alternative technologies. The explanation for these differences
was found to be rather simple: pedestrians accepted the first or second gap with alternative
technologies because they could use it immediately, whereas in the As-Built scenario, they didn’t
have any means of communicating with approaching traffic and had to choose a gap they felt was
safe without that communication, thus leading to more rejected gaps.

There was no significant difference found between gap size between the Flashing Beacons
and the Phone App because both alternatives operated the same way; however, subject perceptions
of these technologies did differ in the post-experiment survey. 56% of subjects felt safe crossing
the road using the mobile phone application whereas 90% of subjects felt safe crossing the road
using the flashing beacons. There are multiple reasons for why the perception of these two
technologies may be different, even though they operated in nearly the exact same way. For one,
Flashing Beacons have been around for quite a while and most people are very familiar with using
them. Similarly, CV technology is rather new and there may be a lack of trust in this technology.

Fundamentally, the two alternatives acted in the same way, there was no feedback sent to the
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pedestrian that indicated it was safe to cross with either technology, but only a visual response that
their intent to cross was being communicated: for the flashing beacons, the flashing is visible, for
the phone app, a message is sent indicating that their request to cross is being broadcasted. The
difference between these two is that for the Flashing Beacons, the pedestrian’s intent to cross iS
globally visual, anyone near it could see it; however, with the Phone App, only the pedestrian can
see the message on their phone that their request is being broadcasted. While the driver is still
receiving this message, there may be a level of mistrust in message being sent out because it is a
personal message and not a global one, even if the message is being sent to all drivers globally

within range.

Crossing Speed

Crossing speed is used to understand whether pedestrians are crossing the road safely or feel the
need to dash across the road. A repeated measures ANOVA test was used again and showed strong
statistically significant differences in crossing speeds in the As-Built environment when compared
to the environments with alternative technologies. Pedestrians crossed the street at higher speeds
in the As-Built environment than either alternative technology, however there was no significant
difference in crossing speeds between the Flashing Beacons and Phone App. Furthermore, when
comparing speeds, it was found that the impact of alternative technologies on crossings speeds had
a large effect in reducing the mean crossing speed at the crossing while also reducing the variance
of crossing speeds, indicating a safer crossing environment. In comparing the post-experiment
survey responses, 26.5% of respondents felt safe in the As-Built environment, 90% with the

Flashing Beacon, and 56% with the Phone App. These responses further confirm that uncontrolled
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crossing safety could be analyzed in IVEs as well as for determining the impacts the alternative

technologies have on crossing safety.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions and Contributions

This dissertation investigated the use of VR technology for studying pedestrian behavior and

safety. The goal of this dissertation was twofold:

I.  Pedestrian VR Simulator Validation: Prove the feasibility of utilizing virtual reality
technology as a tool for conducting real-world experimentation of pedestrian behavior.

Il.  Safety Analysis of Alternative Pedestrian Crossing Technologies: Understand pedestrian
behavior and preferences (both stated and observed) in regards to alternative safety

technology at midblock crosswalks.

7.1.1 Goal I: Pedestrian VR Simulator Validation

Chapter 5 provided a validation analysis between real-world and virtual behavior in an IVE that
was modelled on a one-to-one scale of a real-world, high-risk environment, proving the feasibility
of utilizing VR technology as a tool for conducting real-world experimentation of pedestrian
behavior. Two variables were considered as the main indicators of pedestrian behavior and safety:

accepted gap size and average crossing speed.

Accepted Gaps

Accepted gap size is indicative of pedestrians’ perception of safety at a crosswalk and is arguably
the standard for determining the safety of an uncontrolled crossing aside from crash analyses. It
represents the threshold of risk pedestrians are will to accept before rejecting a gap. To validate an
IVE, it is paramount that this risk be similar to the real-world environment it is modelled after so

that further analysis of the crossing location in VR could be used for real-world practice.
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Comparing gap acceptance via chi-square analysis of distributions, VR and real-world
environments are similar and the use of IVEs for studying pedestrian safety at uncontrolled
crossings is a valid approach. 94% of subjects felt they were immersed in the environment, 86%
felt that their experience in the IVE was consistent with their real-world experiences, and 92% felt
that their sense of movement and walking speed was realistic in the IVE. With respect to risk, 58%
reported that their sense of risk was realistic, though, 30% reported it was somewhat realistic and
only 12% reported that it was unrealistic. Comparing these results with the 54% of subjects who
felt that the traffic was realistic in the IVE, it can be inferred that the realism of the traffic was
most likely the cause for any changes in perception of risk, but that, generally, the IVE was well
received and considered realistic, further validating the use of IVE for studying pedestrian safety

at uncontrolled crossings.

Crossing Speed

Average crossing speeds are indicative of the safety of a pedestrian’s crossing. Uncontrolled
crossings experience variances in crossing speeds based off of pedestrians’ behavior and
perception of risk — pedestrians may walk across a road slowly with caution or may dart across the
road to reduce their exposure to oncoming traffic, the latter approach being considered a sign of
unsafe crossing behavior in research. Analyses showed that both average crossing speed and
crossing speed variance did not differ between the VR simulator and real-world pedestrian
behaviors, validating that pedestrians crossed with the same behavior and risk in the IVE as they
did in the real-world. Comparing these results with the survey responses in Chapter 5.3.5, 92% of
subjects felt that their sense of movement and their sense of walking speed inside the IVE was

realistic, further validating the efficacy of the use of IVEs.
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7.1.2 Goal I1: Safety Analysis of Alternative Pedestrian Crossing Technologies

Chapter 6 provided an analysis between alternative safety measures in an IVE, proving the efficacy
of VR technology in studying the safety implications of such designs without the time, cost, and

safety risks of implementing these alternatives in the real world.

Correlations

Bivariate correlations were conducted to determine the effect coefficients of each of the dependent
variables to best understand how they were affecting pedestrian behavior as well as to what extent
they were impacting it. Accepted gap number, accepted gap size, and crossing speed all indicated
that as the environment switched between the As Built to the Flashing Beacons and Phone App,
gaps were accepted sooner, accepted gap sizes decreased, and crossing speeds decreased. With
respect to the Flashing Beacons environment, 9 of the 42 — 21.4% — subjects who did use the
flashing beacons crossed before vehicles yielded the right of way. In the Phone App environment,
10 of the 43 — 23.3% — subjects who did use the phone app crossed before vehicles yielded the
right of way, suggesting that the level of trust for each technology was similar. Furthermore, the
dynamic constants in the experiment — the order of which each environment was experienced and
the randomized vehicle models presented to the subjects — did not have a significant impact on
subject behavior. This analysis demonstrated the capability IVEs provide for controlling

environmental factors that may otherwise have an influence on real-world data.

130



Accepted Gaps

Alternative safety treatments and technologies were shown to have large impacts on the crossing
behavior of pedestrians at uncontrolled crossings. With respect to gap size, the use of a repeated
measures ANOVA test has proven that there are strong statistically significant differences between
gap acceptance with and without alternative technologies.

There was no significant difference found between gap size between the Flashing Beacons
and the Phone App because both alternatives operated the same way; however, subject perceptions
of these technologies did differ in the post-experiment survey. 56% of subjects felt safe crossing
the road using the mobile phone application whereas 90% of subjects felt safe crossing the road

using the flashing beacons.

Crossing Speed

Crossing speed were used to understand whether pedestrians were crossing the road safely or felt
the need to dash across the road. A repeated measures ANOVA test showed strong statistically
significant differences in crossing speeds in the As-Built environment when compared to the
environments with alternative technologies. Pedestrians crossed the street at higher speeds in the
As-Built environment than either alternative technology, however there was no significant
difference in crossing speeds between the Flashing Beacons and Phone App. Furthermore, when
comparing speeds, it was found that the impact of alternative technologies on crossings speeds had
a large effect in reducing the mean crossing speed at the crossing while also reducing the variance
of crossing speeds, indicating a safer crossing environment. In comparing the post-experiment
survey responses, 26.5% of respondents felt safe in the As-Built environment, 90% with the

Flashing Beacon, and 56% with the Phone App. These responses further confirm that uncontrolled
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crossing safety could be analyzed in IVEs as well as for determining the impacts the alternative

technologies have on crossing safety.

7.1.3 Research Contributions

This dissertation contributes to the body of knowledge in pedestrian simulation, behavior, and

connected vehicle technology in the following ways:

Validation of VR Simulator

This dissertation presents a validation analysis between real-world and virtual behavior in
an IVE that is modelled on a one-to-one scale after the real-world environment that proved
the feasibility of utilizing VR technology as a tool for conducting real-world
experimentation of pedestrian behavior. Previous literature shows that few simulation
studies validate their IVEs or even model them off of real-world locations to replicate and

understand on-site operations and those that do rely mostly on stated response surveys.

Alternative Safety Technology

This dissertation presents an analysis of alternative safety measures in an IVE compared
against the as-built design. This analysis proved the efficacy of VR technology in studying
the safety implications of such designs without the time, cost, and safety risks of

implementing these alternatives in the real world.

VR Simulation Methodology
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This dissertation discussed in detail the development of a VR simulation experiment
methodology for validating and testing pedestrian safety. Previous literature shows that
there is a lack of standard practices when testing pedestrians within VR, hence, there is no
cross comparison between VR simulator results. The presented methodology in this
research could be used by researchers as a guideline for standard practices for developing

discrete simulators that could be cross-analyzed.

VR Simulator Development
This dissertation discussed in detail the considerations, elements, system design, and
development of a comprehensive, multimodal data-collecting, VR simulator that provides
never before collected data sources with commercially available technologies. The data
collected by the simulator developed in this dissertation offers new insight into the
behaviors of VRUs to fully understand and design for behavior and preference.
Furthermore, the presented simulator is entirely replicable and may be used for many
purposes, not limited to:

e Safety and/or human factors research

e Public demonstration and outreach by local or state governments

e Education for children and/or citizens

e Operations and/or design simulation for contractors

Vulnerable Road User Simulation and CV/AV Technology
This dissertation expands the traditional methods of simulation research to include VRUs

in a fully immersible, interactable, and realistic simulation that offers full range of
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movement. Previous simulation research is highly driver-centric, focusing more on only
driver behavior and less on driver-VRU interaction, primarily because of the risks and need
for unrealistic control for safety inherent in real-world pedestrian studies. Furthermore, this
dissertation also provides a novel approach to the development and implementation of
connected and automated vehicle technology applications from the perspective of a VRU.
With the development and deployment of CV/AV technology there is greater emphasis
placed on understanding VRU behavior and safety since VRUs may be the only
unconnected or human decision-making users on the roadway, thus, this research addresses
the space in which researching the safety implications of new technologies without the risk

to VRUs is possible.

7.2 Future Work

During the development and use of the VR simulator in this dissertation, several topics were

identified as areas of future research.

i.  Multiple subjects in VR
This research only included one user within the simulation to understand their behavior in
a very controlled setting, though, in real-life, multiple users are on the roadway. Expanding
the simulators capabilities to multiple users within VR would offer a completely new and
safe way to understand operations and safety as never before. The incorporation of a
driving simulator into the environment alongside both the pedestrian and cyclist simulators
would provide a platform to test and understand new roadway designs and technologies

with all of the perceived risks inherent in the real-world environment.
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Multiplayer Online Roleplaying Simulation

The simulator developed within this research was done using entirely commercially
available technology and is entirely replicable by anyone who wishes to do so. A research
area not mentioned in any literature is the development of an entirely virtual environment
that is accessible by multiple users remotely, and synchronously, similar to how an online
video game is accessed. This first step to this approach would probably require a
partnership with another research facility, university, state DOT, or other funding source
to develop identical simulators running not on the same computer, but on the same server,
so that multiple users may access the IVE and interact with one another. This could be used
as a crowd-sourced approach to collecting data on user interactions, simply replacing a
simulated user in the environment with a real one when they would enter it. Furthermore,
this would serve as a great demonstration for how new technologies and designs can be

remotely experienced by many stakeholders, contractors, etc.

Pedestrian feedback on CV mobile crossing app

Within the mobile phone crossing application simulation environment in this study,
participants who used the phone app to assist in crossing received a message on the cell
phone app that their request to cross is being broadcasted. As previously mentioned, this
message confirms that the message is being sent out, but it does not inform the user of
approaching vehicle intent. Based on the feedback of subjects in the experiment, it would
be interesting to test operations should the cell phone provide a message back to the user

when it is safe for them to cross. This approach would be beneficial both for testing
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pedestrian behavior and preference with connected technology but also for understanding

pedestrian trust in autonomous technology.

7.3 Previous Publications and Conference Presentations

2017 VASITE/ITSVA Guest Speaker — User Recognition at Mid-Block Crossings via Connected
Vehicle Technology
Presentation of experimental design of research being conducted at Turner Fairbank
Highway Research Center in developing a cellular application to warn drivers of

pedestrians’ intent to cross midblock crosswalks.

2018 TRB FHWA Exhibition — User Recognition at Mid-Block Crossings via Connected Vehicle
Technology

Demonstrations at 2018 TRB of the cellular midblock crossing application.

2018 University of Virginia, Civil Engineering - School of Engineering and Applied Science, MS

(Master of Science) — User Recognition at Midblock Crossings via Connected Vehicle

Technology: An Evaluation of Driver Awareness via Eye Tracking and Stated Preference Data
Master’s Thesis regarding the cellular midblock crossing application detailing the
experimentation and results of daytime driver response and feedback testing of the

application.
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2019 TRB DDTEFP Innovative Doctoral Research Showcase — User Recognition at Midblock
Crossings via Connected Vehicle Technology: An Evaluation of Driver Awareness via Eye
Tracking and Stated Preference Data
Selectee of doctoral Eisenhower Fellowship recipients to present and showcase research at
the 2019 TRB conference. Presentation discussed the findings from the master’s thesis

including the night time testing that was also conducted in the summer of 2018.

2019 TRB Presentation — Advance In-Vehicle Warning Messages on Drivers Approaching Mid-
Block Crosswalks
Podium presentation at the 2019 TRB conference detailing the same findings as discussed

in the 2019 TRB DDTEFP Innovative Doctoral Research Showcase.

2019 TRB Presentation - Development of virtual reality simulators to assess perceived safety of
vulnerable road users. *Federal Highway Administration’s Dwight D. Eisenhower Innovative

Doctoral Research Showcase

2019 TRB Presentation - Should DSRC and C-V2X Coexist? Debate.

2020 TRB Presentation - The use of virtual reality simulators in bicycle and pedestrian human

subject testing: A synthesis.

2021 TRB Presentation - Development of virtual reality simulators to assess perceived safety of

vulnerable road users.
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7.4 Expected Papers

Papers in Review
Evaluation of driver performance with a prototype cyber physical mid-block crossing advanced
warning system
Submitted to: Journal of Safety Research
Date: September 2020
Status: This paper was reviewed and some minor revisions were requested for publication.
Currently, the paper has be returned with revisions and is under further review for
publication.
This paper is a more comprehensive statistical approach in analyzing the performance
metrics from my master’s thesis. Statistical methods involved include covariance analysis
and binomial logit modelling to determine what factors had the strongest statistical
significance in subject decision making. Analysis proved that the warning application was
the most statistically significant factor in whether the drivers stopped for the pedestrian at

the midblock crossing.

Papers to be Written
The Use of Virtual Reality Simulators in Bicycle and Pedestrian Human Subject Testing: A
Synthesis
Target Journal: Frontiers in Future Transportation - In Prep
This paper was written to serve as a comprehensive literature review pertaining to the use
of virtual reality experimentation with pedestrians and cyclists over the last three decades,

describing the inception of the technology’s use in vulnerable road user related research
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through the current state of the art research. The paper discusses the goals, methods,
technologies, and performance measures used in these studies so the reader has a better
understanding of the trends in use of virtual reality and how it may be used in the near

future as well as an understanding of the limitations and research gaps in these experiments.

Validation of Virtual Reality as a Tool for Simulating Pedestrian Crossing Behavior at Midblock
Crosswalks
Target Journal: Transportation Research: Part F: Traffic Psychology and Behavior
This aim of this paper relates to Goal | of this proposal to demonstrate the similarities
between observed crossing behaviors of pedestrians at midblock crossings in both real
world and virtual environments. This paper will serve as a proof of concept for researchers

interested in the rapidly growing field of virtual reality testing in transportation studies.

Understanding Pedestrian Behavior and Interaction with Alternative Technological Assistance at
Midblock Crosswalks in Virtual Reality
Target Journal: Transportation Research: Part F: Traffic Psychology and Behavior or TRB
TRR.
The aim of this paper relates to Goal Il of this proposal to demonstrate the similarities and
differences between pedestrian crossing behavior at midblock crossings with marked
crosswalks, marked crosswalks with rapid flashing beacons, and marked crosswalks with
the cellular midblock crossing application as tested from the driver perspective in the
Cellular Midblock Crossing Warning Application: The Effects of Advanced Warning

Messages on Driver Behavior and Reaction paper submitted for review. This paper will
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expand upon the aforementioned Validation of Virtual Reality as a Tool for Simulating
Pedestrian Crossing Behavior at Midblock Crosswalks paper by demonstrating the use of
virtual reality to study new design and technology concepts in pedestrian crossing behavior
at midblock crosswalks without the need of constructing a test bed nor worry of designing

a risk-free real-world test.

Understanding Pedestrian Preferences, Choice Factors, and Physiological Feedback in Virtual
Reality
Target Journal: Transportation Research: Part F: Traffic Psychology and Behavior or TRB
TRR.
The aim of this paper is to analyze the physiological data collected within this paper to
determine the differences in pedestrian stated preference responses and physiological
feedback. This paper would offer new insight into what scenarios trigger certain
physiological responses — in this instance eye tracking behavior and hear rate — and how
these responses may influence the choices pedestrians make when crossing the street in the

As-Built and technology environments.
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Appendix A: Pre-Experiment Questionnaire

See attached
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Appendix B: Post-Experiment Questionnaire

See attached
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Appendix C: Testing Script

Welcome

Welcome to the Omni-Reality and Cognition Laboratory and thank you for this participation in
this study and for taking the time to complete the pre-experiment questionnaire. Today, you will
be entering a virtual environment modeled after the Water Street corridor parallel to the
downtown mall in Charlottesville, VA as a pedestrian. Your task as a pedestrian is to cross the
street within the virtual environment.

During this experiment, you will be wearing a virtual reality headset equipped with eye tracking
technology, and handheld controllers. Before we begin the experiment, you will be placed within
the virtual environment so that you can familiarize yourself with the controls and we can
calibrate your movements. Video recording of your actions will be recorded in the virtual
environment as well as in the testing room.

Should you have any questions or concerns during the test please feel free to ask me at any time.
Should you experience any motion sickness and wish to exit the virtual environment, please let
me know at any moment. Once the test is complete, | will ask you to remove the headset and you
will be given a questionnaire. Once that is complete, we will advance to the next part of the
experiment, afterwards, you will fill out one more questionnaire and be paid for your time here.
All data from this test will be made public, however, none of the data collected will in any way,
shape, or form, identify you as having been a test subject. Do you have any questions for me
before we begin the calibration and testing?

Place smartwatch on participants’ wrist and start the recording app

Familiarization

Start by facing in the direction of the arrow on the ground. Clip the battery pack to yourself, and
then put on the HTC VIVE headset and make any appropriate adjustments so that it fits snug on
your head. There is a strap on the top of the headset that adjusts the height that the headset sits on
your head and a knob on the back of the headset that adjusts the width of the headset (Researcher
can use spare headset as a demonstration here).

Pick up the controllers at your feet and face in the direction of the arrow on the ground. On the
bottom of each virtual controller you will see a hand logo indicating which hand each controller
represents, please be sure that the hand with the thumb on the right side of the hand is in your left
hand and that the controller with the thumb on the left side of the hand is in your right hand. You
will be placed within the testing environment shortly so that you many familiarize yourself with
the controls and experience of virtual reality.

Eye Tracking

Next, | will guide you through the eye tracking process. Look at the controller in your right hand,
there is a button located at the bottom of the controller with a square on it. Press this button and a
window will appear in front of you. On that window, in the bottom panel, there is a blue symbol
of an eye; with your controller, point the laser pointer at this symbol and pull the trigger on the
back of the controller. If there is no laser emitting from your right controller, pull the trigger on
the back of the controller first.
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Hit calibrate and follow the instructions
Once virtual environment has been loaded...

In order to move forwards, you walk forwards. You may change the direction you are walking by
changing direction or turning around, but do note that the space that you may walk around within
is limited and shown by a light blue grid that appears when you are near the edge of the space
you can walk in. The virtual space is designed to be contained within the space of this room so
that you do not walk into any objects or walls. Walk around for a bit to familiarize yourself with
the environment.

Now that you have been familiarized with the environment, we may proceed to the next phase of
the experiment. Should you wish you spend a bit more time within the familiarization
environment, you are more than welcome to do so. When you feel that you are ready to move
forward, let me know.

Experiment 1 - As Built

You will now be placed within the first of three environments. Your task is to cross the road
when you are ready. Wait for the first car to drive by before you begin crossing.

Experiment 2 - RFB

You will now be placed within the second of three environments. There is a rapid flashing
beacon with a functional button which you can use to cross the road if you wish. Your task is to
cross the road when you are ready, wait for the first car to drive by before you begin crossing.

Experiment 3 - Phone Application

You will now be placed within the third of three environments. In this environment, you will
have a cell phone in your right hand equipped with a cellular application that allows you to send
a message to approaching vehicles of your intent to cross the road. The ability to send this
warning message is restricted to the vicinity of the midblock crosswalk, you will know that you
are able to send this message when the phone screen asks you if you’d like to cross the road.
Your task is to cross the road in the manner you wish.

Debrief

You may now remove the headset and place it on the designated spot on the ground with your
controllers. Experimentation within the virtual environment is now complete. During this test,
we monitored your crossing behavior at the Water Street corridor and how that behavior changed
with alternative technologies.

Post-Test
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Now that you have finished the VR phase of the experiment, we ask that you fill out the survey
on this computer. Once you have finished, let me know and | will pay you for your time. Once
complete, pay test subjects for their time.
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Appendix D: Participant Recruitment Email

The Omni-Reality and Cognition Lab (ORCL) at the University of Virginia invites you to participate in
an exciting new experiment utilizing Virtual Reality technology to understand bicyclist and pedestrian
behavior. Participation in this study involves entering a virtual environment as both a pedestrian and a
bicyclist and navigating through multiple scenarios within the environment.

For a better understanding of what you will be doing during the experiment, vou may watch these videos
of the pedestrian experiment and bike experiment which show a lab view and a virtual reality view.

You must be 18 or older to participate in this study. Participants with colorblindness cannot participate in
this study due to the nature of the virtual reality equipment. Furthermore, if vou wear glasses, we highly
recommend that you wear contacts if you wish to participate in the study, as those with glasses often have
trouble wearing the headset comfortably. We apologize for any inconvenience.

University COVID-19 protocols are being strictly followed in this laboratory. All equipment will be
sanitized prior to your use of it, and hand sanitizer and gloves will be available. Masks are required at all
times in the lab. Please do not participate if you have anv symptoms of COVID-19. We will give you a
brief health screening 24 hours prior to vour testing time, and again upon your arrival on grounds. All
researchers present in the lab are participating in weekly COVID testing and daily health screenings. The
lab is approximately 1000 square feet, with an occupancy of 4 people there is sufficient space for greater
than 6 feet of distance between people.

Participation in this study will require one hour of time and participants will be compensated $15.

To sign up for a time slot, please follow this Ijnk. We are currently scheduling times into March.

If you are interested in getting more information about the study or have any concerns or questions, please
contact us at orcl@virginia.edu. More information about our lab can be found here.

Domna Chen, Assistant Professor, Principal Investigator
Arsalan Hevdarian, Assistant Professor

Austin Angulo, PhD Candidate

Erin Robartes, PhD Candidate

Xiang Guo, PhD Candidate

IRB-SBS Protocol #2148
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&= [ INIVERSITY | & APPLIED SCIENCE
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Appendix E: Consent Form

Informed Consent Agreement
Please read this consent agreement carefully before you decide to participate in the study.

Purpose of the research study: The purpose of this research is to test the effectiveness of
Virtual Reality (VR) as tool to replicate realistic environmental settings at a low cost while
reducing risk to the user during experimentation. In this experiment, we aim to increase
understanding of perceived safety and technological acceptance as it relates to bicyclists,
pedestrians, and the road environment. This information can be used by planners and engineers
to better design technology and infrastructure for bicyclists and pedestrians.

With VR, we can study human behaviors in settings/scenarios that (1) we have limited or no
access to (e.g., design of a new intersection that has not been built yet) or (2) are considered
high-risk environments for collecting real-life data (e.g., bicyclist safety or crash rates at an
intersection and pedestrian crash rates at mid-block crossings). Additionally, these tools provide
us the freedom to control and manipulate different variables of interest, which we might not have
access to in real-life environments. By coupling VR tools with biometric sensors (e.g., eye
trackers, biometric wearables, EEG devices) in addition to behavioral information, users’
physiological information can also be collected and analyzed.

What you will do in the study: You will participate in one of two studies: the Pedestrian or
Bicyclist study.

The goal of the Pedestrian Study is to place pedestrians in an environment in which they can
naturally interact with vehicles. Specifically, this research aims to study how pedestrians behave
in scenarios where they have to cross the street at a midblock crosswalk while interacting with
multiple types of connected vehicle technologies and lack thereof. Furthermore, this research
aims to alter this interaction by changing multiple factors in the experiment such as whether or
not an approaching vehicle is autonomous with no driver. In this study, you will be asked to wear
physiological sensing and virtual reality equipment. You will be placed in multiple virtual
environments, each different from one another, and will be asked to perform actions such as
“cross the road when you feel safe”. You will be given a short questionnaire after each test in
which you will respond to your thoughts and feelings regarding your experience.

The goal of the Bicyclist Study is to place bicyclists in an environment in which they can
naturally interact with vehicles. The participant will be seated on a stationary bike and will be
wearing a VR headset and physiological sensing. The instrumented bicycle will allow their
actions to be replicated in the virtual environment (speeding up, slowing down, steering).
Specifically, this research aims to study how bicyclists behave in scenarios where they are
presented with different elements of roadway environments. These may include factors such as
different types of bicycle infrastructure, lane widths, traffic volumes or surroundings. You will
be given a short questionnaire after each test in which you will respond to your thoughts and
feelings regarding your experience.

Time required: The study will require about 1 hour of your time.
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Risks: The physical components of these tasks are not stressful, and include head and body
turning, moving, and pointing. Light and sound intensities are well within normal ranges. The
only foreseeable physical risks are slight eye strain, dizziness, and mild nausea. There are no
known mental risks. You will be asked to remove the head mounted display if they experience
any eye strain, dizziness, or nausea during the sessions. They will be given rest breaks in
between the sessions. Upon request, you will also be allowed to stop and leave the experiment if
you feel uncomfortable or cannot continue the experiment.

A loss of confidentiality would not put you at risk, and the researchers will use caution in
handling the data.

Benefits: There are no direct benefits associated with the participation in this study. The
proposed experiments are straightforward tests of performance and visual comfort using standard
virtual environments displays and trackers.

Confidentiality: The information that you give in the study will be handled confidentially. Your
information will be assigned a code number. The list connecting your email to this code will be
kept in a locked file. When the study is completed and the data have been analyzed, this list will
be deleted. Your name will not be used in any report. Once any data is deleted from a request,
the changes will propagate correspondingly to the backup drives.

Voluntary participation: Your participation in the study is completely voluntary. Deciding not
to participate will have no effect on your education at the University of Virginia.

Right to withdraw from the study: You have the right to withdraw from the study at any time
without penalty.

How to withdraw from the study: If you want to withdraw from the study, please contact the
ORCL lab at orcl@virginia.edu indicating that you would like to withdraw from the

study. There is no penalty for withdrawing. You may request that your archived data to be
destroyed upon withdrawing from the study.

Payment: You will receive a $15 gift card as payment for participating in the study.

If you have questions about the study, contact:

Donna Chen

Engineering Systems and Environment

151 Engineer’s Way, Room 101G

University of Virginia, Charlottesville, VA 22904
Telephone: (434) 924-6224

Email address: tdchen@virginia.edu

Arsalan Heydarian

Engineering Systems and Environment

151 Engineer’s Way, Room XXXXX

University of Virginia, Charlottesville, VA 22904
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Telephone: (434) 924-1014
Email address: ah6rx@virginia.edu

Research Assistants

Austin Valentine Angulo

Engineering Systems and Environment

Thornton Hall, Room D101

University of Virginia, Charlottesville, VA 22904
Email address: ava7gw@virginia.edu

Erin Robartes

Engineering Systems and Environment

Thornton Hall, Room D101

University of Virginia, Charlottesville, VA 22904
Email address: emrdxb@virginia.edu

To obtain more information about the study, ask questions about the research procedures,
express concerns about your participation, or report illness, injury or other problems,
please contact:

Tonya R. Moon, Ph.D.

Chair, Institutional Review Board for the Social and Behavioral Sciences
One Morton Dr Suite 500

University of Virginia, P.O. Box 800392

Charlottesville, VA 22908-0392

Telephone: (434) 924-5999

Email: irbsbshelp@virginia.edu

Website: www.virginia.edu/vpr/irb/sbs

Refer to IRB-SBS Protocol #2148

Agreement:
| agree to participate in the research study described above.

Signature: Date:

You will receive a copy of this form for your records.
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Appendix F: Crossing Speed Model Fitting and Median Split
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Square Root Speed
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Natural Log Speed

In Speed
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0
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Real-World Median Split
Group Statistics
Std. Error
WARDDDOZ M Mean Std. Deviation Mean
YARDOOO1 .00 a9 33836 0803 09218
1.00 58 32574 B1122 08026
Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
VARDD0D1  Egual variances 1.078 an 1.028 115 306 12575 12237 - 11665 36815
assumed
Equal variances not 1.029 113120 306 12575 12222 - 11639 36788

assumed
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Appendix G: Accepted Gaps and Crossing Speeds for 49 Subject

Dataset
Correlations
Spearman Correlations
) Accepted Vehicle . Crossing Reaction to
Environment Order Gap Model Gap Size Speed Last Vehicle
. Correlation Coefficient 1 0.046 -.679** 0.139 -.314** -.350** 737**
Environment : :
Sig. (2-tailed) 0.600 0.000 0.109 0.000 0.000 0.000
ord Correlation Coefficient 1 -0.046 -0.012 -0.016 0.158 0.054
raer Sig. (2-tailed) 0.600 0.889 0.855 0.069 0.537
Correlation Coefficient 1 -0.147 293 276* -.640**
Accepted Gap . X
Sig. (2-tailed) 0.091 0.001 0.001 0.000
Correlation Coefficient 1 -0.137 0.059 0.126
Vehicle Model = =
Sig. (2-tailed) 0.113 0.495 0.148
. Correlation Coefficient 1 0.025 -.483**
Gap Size - -
Sig. (2-tailed) 0.774 0.000
. Correlation Coefficient 1 -0.151
Crossing Speed . -
Sig. (2-tailed) 0.082
Reactionto Last  Correlation Coefficient 1
Vehicle Sig. (2-tailed)
**_Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 734
Bartlett's Test of Approx. Chi-Square 247 414
Sphericit
L= df 21
Sig. 000
Accepted Gaps
Descriptives
Gap_Accepted
95% Confidence Interval for
hean
I Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum
1.00 49 95469 298825 42689 8.6886 10.4053 420 14.00
2.00 42 6.6476 3.08349 ATETS 5.6BE7 7.6085 1.20 14.00
3.00 43 6.9721 318257 48534 5.9926 7.9515 1.20 14.00
Total 134 7.8118 3.33428 28804 7.2422 g3y 1.20 14.00
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Repeated Measures ANOVA

Descriptive Statistics

Mean Std. Deviation I
AsBuilt 9.2000 297884 38
FlashingBeacons 7.03186 282853 38
PhonehApp 7.0263 3.29582 38
Mauchly's Test of Splheri-::if:]ra
Measure: AcceptedGapSize
Epsilunh
Approx. Chi- Greenhouse-
Within Subjects Effect  Mauchly's W Square df Sig. Geisser Huynh-Feldt  Lower-bound
Environments 951 1.790 2 409 954 1.000 500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variahles is proportional

to an identity matrix.

a. Design: Intercept
Within Subjects Design: Environments

b. May be used to adjustthe degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the

Tests of Within-Subjects Effects table.

Measure: AcceptedGapSize

Tests of Within-Subjects Effects

Type I Sum Partial Eta
Source of Squares df Mean Sguare F Sig. Squared
Environmenis Sphericity Assumed 118.408 2 559.704 6.945 .00z 158
Greenhouse-Geisser 118.408 1.907 62.600 6.945 .00z 1568
Huynh-Feldt 119.408 2.000 59.704 6.945 002 158
Lower-bound 118.408 1.000 119.408 6.945 .12 1568
Error(Enviranments)  Sphericity Assumed 636.192 74 8.587
Greenhouse-Geisser 636.192 70.577 9.014
Huynh-Feldt 636.192 74.000 8.6597
Lower-bound 636.192 37.000 17184
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Pairwise Comparisons

Measure: AcceptedGapSize

95% Confidence Interval for

Mean Difference®
Difference (I-
() Environments  (J) Environments J) Std. Errar sig * Lower Bound  Upper Bound
1 2 2168 619 004 B17 37149
3l 2174 653 006 A3T 3.810
2 1 -2.168" 619 004 -37149 - 617
3 .00& T4 1.000 -1.853 1.863
3 1 2174 653 006 -3.810 - 537
2 -.005 T4 1.000 -1.863 1.853
Based on estimated marginal means
* The mean difference is significant at the .05 level.
b, Adjustrment for multiple comparisons: Bonfarroni.
Independent Means T-Test
As Built vs Flashing Beacon
Group Statistics
Std. Error
Environment I Mean Std. Deviation Mean
Gap_Accepted  1.00 49 9.5469 2.98825 42689
2.00 42 6.6476 3.08348 ATATE

Independent Samples Test

Levene's Test for Equality of
Variances

t-test for Equality of Means
95% Confidence Interval of the

Mean Std. Errar Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Gap_Accepted  Equalvariances a7o 793 4.547 a9 0oo 289932 63767 1.63228 416636
assumed
Equal variances not 4536 B85.985 0oo 289932 63923 1.62857 417007
assumed
Independent Samples Effect Sizes
Point 95% Confidence Interval
Standardizer? Estimate Lower Lpper
Gap_Accepted Cohen's d 3.03250 H56 518 1.3849
Hedges' correction 3.05835 S48 B14 1.377
Glass's delta 3.08349 840 ATE 1.395

a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation of the control group.
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As Built vs Phone App
Group Statistics

Std. Error
Environment [+l Mean Std. Deviation Mean
Gap_Accepted  1.00 49 9. 5469 288825 A2689
3.00 43 69721 318257 48R34

Independent Samples Test

Levene's Test for Equality of

Variances ttest for Equality of Means
495% Confidence Interval ofthe
Mean Std Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Gap_Accepted  Equalvariances 074 T8E 4.000 a0 ) 257485 643609 1.28604 385365
assumed
Equal variances not 3.084 86.713 000 2.57485 64637 1.28006 385963

assumed

Independent Samples Effect Sizes

95% Confidence Interval

Foint
Standardizer® Estimate Lower Lpper
Gap_Accepted Cohen's d 3.08046 836 A06 1.261
Hedges' correction 310643 8248 403 1.251
Glass's delta 318257 8049 361 1.2449
a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.
Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation of the control group.
Paired Means T-Test
As Built vs Flashing beacon
Paired Samples Statistics
Std. Error
Mean [+ Std. Deviation Mean
Fair1  AsBuilt_AcceptedGap 9.3085 42 2.93081 45223
FlashingBeacon_Accepte 6.6476 42 3.083449 47574

dGap

Paired Samples Test

Paired Differences

95% Confidence Interval of the

Difference
Lower Up

Std. Error

Mean Stil. Deviation Mean

per t df Sig. (2-tailed)

AsBuilt_AcceptedGap - 4.09342 63163 1.38631

FlashingBeacon_Accepte
dGap

Pair 1 2.66190

3.83750

4214 41 .000
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Paired Samples Effect Sizes

Paint 95% Confidence Interval
Standardizer® Estimate Lower Upper
Pair1  AsBuilt_AcceptedGap - Cohen's d 409342 6A0 314 880
FlashingBeacon_Accepte
dGap Hedges'correction 413134 a4 A1 A7

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation of the mean differance.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

As Built vs Phone App

Paired Samples Statistics

Std. Error
Mean M Std. Deviation Mean
Fair 1 AsBuilt_AcceptedGap 9.2651 43 294351 44388
PhonefApp_AcceptedGap 6.9721 43 318257 48534
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  AsBuil_AcceptedGap - 2.29302 393019 59935 1.08348 3.50256 3826 42 000
PhoneApp_AcceptedGap
Paired Samples Effect Sizes
Point 95% Confidence Interval
Standardizer® Estimate Lower Upper
Pair1  AsBuilt_AcceptedGap - Cohen's d 3.93019 AB3 257 .a04
PhoneApp_AcceptedGap = oot correction 3.96572 578 254 86

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation ofthe mean difference.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

Crossing Speeds

Only includes data from alternative environments in which subjects used the technology.
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ANOVA

Crossing_Speed

Descriptives

95% Confidence Interval for
Mean
I+ Mean Stol. Deviation  Std. Error Lower Bound Upper Bound Minimum  Maximum
1.00 49 33918 J7188 1027 31702 36136 1.78 518
2.00 43 2.9833 48005 07321 2.8355 3130 1.60 448
3.00 43 2.8447 50386 07684 26896 2.9997 2.03 446
Total 135 3.0874 64924 05588 29769 31979 1.60 518
ANOVA
Crossing_Speed
Sum of
Squares df Mean Sguare F Sig.
Between Groups 7.543 2 3771 10472 000
Within Groups 48.940 132 371
Total f6.483 134

Since the number of comparisons is small (n is <50), the Bonferroni test is more powerful as
well as more conservative to prevent Type | data (data from incorrectly appearing to be
statistically significant). This test was used in previous literature as well.

Dependent Variahle:

Multiple Comparisons

Crossing_Speed

Diff:1:3?1r;e 0 95% Confidence Interval

{1y Environment  (J) Environment J) Std. Errar Sig. Lower Bound  Upper Bound

Tukey HSD  1.00 2.00 40862 A2724 .00& 070 7102
3.00 54722 2724 .0oo 2458 8488

2.00 1.00 -.40862" 12724 .005 - 7102 -1070

3.00 13860 A3132 543 -A727 4489

3.00 1.00 -54722° A2724 .000 -.B4B8 -.2456

2.00 -.13860 13132 543 -.4499 AT27

Bonferroni  1.00 2.00 40862 A2724 .005 A001 T1T1
3.00 54722 A2724 .ooo 2387 8558

2.00 1.00 - 40852 2724 005 -7 - 1001

3.00 13860 A3132 879 - 1798 A5T0

3.00 1.00 - 54727 2724 .ooo - BE58 -.2387

2.00 - 13860 A3132 879 - 4570 1798

* The mean difference is significant at the 0.05 level.
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Independent Means T-Test
As Built vs Flashing Beacon

Group Statistics

Std. Errar
Environment [+ Mean Std. Deviation Mean
Crossing_Speed  1.00 49 338149 Jr7i1ga 1027
2.00 43 289833 AB00s 0731

Independent Samples Test

Levene's Test for Equality of

Wariances t-testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Crossing_Speed  Equalvariances 11.322 0m 2.899 a0 004 40862 13627 13789 67935
assumed
Equal variances not 3.087 81.535 003 40862 13236 14528 67194
assumed
Independent Samples Effect Sizes
Paint 95% Confidence Interval
Standardizer? Estimate Lower Lpper
Crossing_Speed Cohen'sd B5215 B27 2058 1.045
Hedges' correction BATES G211 204 1.036
Glass's delta 48005 851 389 1.285
a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.
Hedges' correction uses the pooled standard deviation, plus a correction factaor.
Glass's delta uses the sample standard deviation of the control group.
As Built vs Phone App
Group Statistics
Std. Error
Environment [+l Mean Std. Deviation Mean
Crossing_Speed  1.00 49 338149 JT7188 1027
3.00 43 2.8447 50386 07684
Independent Samples Test
Levene's Test for Equality of
Wariances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Crossing_Speed  Equal variances 7.221 00§ 3.965 a0 .0oo 54722 13801 27303 82141
assumed
Equal variances not 4072 83 446 0oo 54722 13440 27993 81452
assumed
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Independent Samples Effect Sizes

Paint 95% Confidence Interval
Standardizer® Estimate Lower Upper
Crossing_Speed  Cohen's d 6048 8248 389 1.253
Hedges' carrection EBEE0S .822 386 1.243
Glass's delta A03BA 1.086 11 1.652

a. The denominator used in estimating the effect sizes.
Cohen's d uses the pooled standard deviation.
Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation of the control group.

Paired Means T-Test
As Built vs Flashing Beacon

Paired Samples Statistics

Std. Error
Mean [+ Std. Deviation Mean
Fair 1 AsBuilt_Speed 34618 43 ATTR3 11858
FlashingBeacon_Speed 28833 43 AB00& 073N
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  AsBuilt_Speed- 47860 5736 10025 27630 68091 4774 42 000
FlashingBeacon_Speed
Paired Samples Effect Sizes
Paint 95% Confidence Interval
Standardizer® Estimate Lower Upper
Pair1  AsBuilt_Speed- Cohen's d GAT36 728 .3g8 1.061
FlashingBeacon_Speed 4 0es' comection 66331 722 384 1.052

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation of the mean difference.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.

As Built vs Phone App

Paired Samples Statistics

Std. Error
Mean [+l Std. Deviation Mean
Pair1  AsBuill_Speed 34518 43 JE060 2087
FhonefApp_Speed 2.8447 43 B0386 07684
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Paired Samples Test
Paired Differences

95% Confidence Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  AsBuilt_Speed - 60721 73604 11238 38041 83401 5.403 42 .000
PhoneApp_Speed
Paired Samples Effect Sizes
Point 95% Confidence Interval
Standardizer® Estimate Lower Upper
Pair1  AsBuilt_Speed- Cohen's d 73694 824 474 1167
PhoneApp_Speed Hedges' correction 74360 817 469 1157

a. The denominator used in estimating the effect sizes.
Cohen's d uses the sample standard deviation of the mean difference.
Hedges' correction uses the sample standard deviation of the mean difference, plus a correction factor.
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Appendix H: Full Spearman Correlation Matrix and KMO Test

Correlations

Accepted_Ga  Vehicle_Mode Crossing_Sp Reaction_to_
Environment Order p_# | Gap_Size eed Last_Yehicle
Spearman's tho  Environment Correlation Coefficient 1.000 048 629" 132 258" 431”7 698"
Sig. (2-tailed) . 593 000 142 004 000 000
i 125 125 125 125 125 125 125
Order Caorrelation Coefficient D48 1.000 -.076 -.040 .0m AT 058
Sig. (2-talled) 593 . 402 656 992 194 522
i 125 125 125 125 125 125 125
Accepted_Gap_# Correlation Coeflicient 629" -076 1.000 -150 226" 345" 600"
Sig. (ailed) 000 402 . 096 011 000 000
i 125 125 125 125 125 125 125
Vehicle_Model Correlation Coefficient 132 -.040 -150 1.000 -118 035 20
Sig. (2-tailed) 142 656 096 . 186 700 184
i 125 125 125 125 125 125 125
Gap_Size Correlation Coefiicient 255" 001 226 -119 1.000 070 4507
Sig. (2-tailed) 004 992 011 186 440 000
i 125 125 125 125 125 125 125
Crossing_Speed Correlation Coefficient 437 17 3457 035 070 1.000 -208"
Sig. (2-ailed) 000 194 000 700 440 . 019
i 125 125 125 125 125 125 125
Reaction_to_Last_Vehicl  Gorrelation Goeflicient 6ag” 058 -600" 120 -450" -208 1.000
s Sig. (2-tailed) 000 522 000 184 000 019
i 125 125 125 125 125 125 125
** Caorrelation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed).
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 710
Bartlett's Test of Approx. Chi-Square 239913
Sphericity df 21
Sig. 000
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