
"

1SFTFOUFE�UP
UIF�GBDVMUZ�PG�UIF�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF�

6OJWFSTJUZ�PG�7JSHJOJB

JO�QBSUJBM�GVMGJMMNFOU
PG�UIF�SFRVJSFNFOUT�GPS�UIF�EFHSFF

CZ

SenseBody: A Multi-agent Human Activity Recognition
System Using Wearable Devices

Thesis

Master of Science

Kai Lin

May 2021

"11307"-�4)&&5

5IJT

JT�TVCNJUUFE�JO�QBSUJBM�GVMGJMMNFOU�PG�UIF�SFRVJSFNFOUT
GPS�UIF�EFHSFF�PG

"VUIPS�

"EWJTPS�

"EWJTPS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

"DDFQUFE�GPS�UIF�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF�

$SBJH�)��#FOTPO
�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF

Thesis

Master of Science

Kai Lin

This Thesis has been read and approved by the examing committee:

Bradford Campbell

Yuan Tian

Tom Fletcher

May 2021

Abstract

The exploding of the Internet of Things (IoT) has brought in an enormous number
of smart devices into humans’ everyday lives. People start to carry more devices on the
body to monitor vital signals or increase their lifestyle convenience, for instance, wearing
an Apple Watch or an Airpods. These new devices bring new opportunities for accurate
body gesture recognition. However, traditional methods that rely on a single device can-
not precisely recognize more complex gestures. Cooperating between multiple devices to
achieve better accuracy while minimizing computation and communication costs is still a
challenge for existing methods. Recognizing complex gestures with various devices is still
kind of left blank. This thesis presents SenseBody, a system that utilizes multiple wearable
sensors and devices in the di↵erent body parts to enable gesture recognition. Our system
utilizes machine learning techniques focusing on its easy pairing and energy preserving
techniques. We use the current state-of-art machine-learning methods to classify the cur-
rent dataset and collaborate di↵erent body part sensor data to make better classifications.
We built a prototype based on COTs on-body wearable devices and evaluated the system’s
accuracy and energy performance. Our results have shown that by applying the proposed
multi-agent framework, we can achieve an average of 98.3% of recognition accuracy on nine
everyday activities and achieve more than 98.9% auto-pairing accuracy. From an energy-
saving perspective, our result also shows that our system can save more than 90% of the
energy consumed in data transmission over traditional methods while only sacrificing 3%
of accuracy. Our evaluation has demonstrated great potential for future human activity
recognition systems.

iii

Acknowledgements

Two years of my master’s journey is too short for me to explore and enjoy life at the
University of Virginia, one page of acknowledgment can not express how I am grateful for
all people who make this work possible and be there with me during my grad school.

To begin with, I would like to thank my advisor Brad Campbell, who gave me a chance
to learn and work with him at Link Lab and meet more labmates. I still remember the first
time I was chatting with him about di↵erent projects the group was doing and discussed
some potential thesis topics in his o�ce, it was a shiny afternoon, and it made me love the
research since then. Prof. Brad has given me so many valuable insights and suggestions
on my projects. I also want to appreciate my committee members - Prof. Yuan Tian and
Prof. Tom Fletcher, who have provided me valuable feedback on this thesis. Further, I
want to thank Prof. Sebastian Elbaum and Prof. Yangfeng Ji, whom I have learned a lot
from during the coursework.

I would also acknowledge my labmates Wenpeng Wang, Jiechao Gao, and Nabeel Nasir,
who have supported me through this project and guide me for the first several months of
joining the lab. I am grateful to be at Brad’s lab working with them and the rest of the
fantastic people in the lab.

Outside of the lab, I am grateful to have all my CS classmates and teammates, Chijung
Jung, Yiwen Su, Dexuan Zhang, Anastasia Lalamentik, Zhanhong Tian, and Yufeng Yan,
who give me valuable domain knowledge that constantly broadens my horizons.

Besides, I am lucky to have all people from the badminton team, David Xiao, Zihe
Ye, Emily Zou, Leo Wang, and Danial Xiao, to give me a chance to walk outside the
department of computer science and have a wonderful time in di↵erent tournaments and
learning time. I am also proud to be part of the VISAS program and become good friends
with Ariana Kim, Joyce Lee, Wynter Early, and Ciarra Moses. They have helped me learn
the language and the US culture. I also want to thank Dr. Xue Feng at Carina Medical
and my co-workers at eBay for giving me the flexibility to finish this thesis while as an
employee.

In addition, I want to thank my parents, who have shown their massive support during
grad school. People come and go, but they are always on my side, and I can not express
how wonderful they are to help me learn, grow and be independent.

Last but definitely not least, I want to express my gratitude to Diyu Zheng. My
grad school life will still exist without her, but it will never become my once-in-a-lifetime
experience. She has provided many insights and help of this work and o↵ered continued
support in my course works, job-seeking, and badminton courts.

iv

Dedication

To my parents, for their continued, selfless, dedicated support, without expecting any-
thing in return.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Body Sensor Networks . 1

1.2 Human Activity Recognition . 1

1.3 Contributions . 3

1.4 Thesis Overview . 4

2 Related Work 6

2.1 Sensor Based HAR . 6

2.1.1 Single Agent HAR . 6

2.1.2 Multi Agent HAR . 6

2.2 Vision Based HAR . 7

2.3 Energy Management in WSNs . 7

3 SenseBody Overview 8

4 Multi-Agent HAR Coordination in SenseBody 10

4.1 Design . 10

4.1.1 Energy optimization design . 10

vi

4.1.2 Activity recognition design . 14

4.2 System Implementation . 14

4.2.1 Environment setup . 15

4.2.2 Energy Management . 15

4.2.3 Activity recognition . 16

4.3 Machine Learning Implementation . 16

4.3.1 Data preparation . 17

4.3.2 Feature selection . 18

4.3.3 Classifications . 18

4.4 Evaluation . 18

4.4.1 Evaluation Metrics . 18

4.4.2 Result . 19

5 Auto Pairing in SenseBody 26

5.1 Background . 26

5.2 Auto Pairing Design . 26

5.3 Implementation . 27

5.4 Evaluation . 28

6 Discussion 30

6.1 Limitations . 30

6.2 Future work . 30

6.2.1 Algorithm Enhancements . 30

6.2.2 New Applications . 31

7 Conclusion 33

References 34

APPENDICES 40

vii

A Code Sample 41

A.1 Insert system data into Grafana using influxdb 41

A.2 Main jupyter notebook code for SenseBody 43

viii

List of Figures

1.1 Nintendo Switch game - Just Dance: Since this game only registers your Joy-
Con movements, you could technically just wave your arms around without
even moving your whole body. 3

1.2 A person is running with multiple wearable devices. The trend of IoT is
bringing more on-body devices, making it possible to collaborate between
them and perform complex tasks that can’t be done on a single wearable
device in the past. 5

4.1 Overall architecture of SenseBody. The central device manages the exist-
ing auxiliary devices, and control the auto-pairing of new devices. Energy
control and activity recognition tasks are all done on the central node. . . . 11

4.2 Three levels of network transmission optimization and comparison explained
in a single sensor (accelerometerX) . 12

4.3 Duty cycle optimization design . 13

4.4 SenseBody system implementation . 14

4.5 SenseBody environment setup, we use Raspberry PI to act like central de-
vice, and use SensorLog in iPhone, apple watch attached to di↵erent body
part to record sensor data . 15

4.6 Machine learning implementation flow chart 17

4.7 Data size compression process . 20

4.8 CPU and memory consumption visualization using Grafana of SenseBody . 21

4.9 F1 score comparison with di↵erent optimization mechanism 21

4.10 Data size optimization with di↵erent optimization mechanism 22

ix

4.11 F1 score comparison for single agent and multi agent 23

4.12 HAR tasks confusion matrix for single agent and multi agent 25

5.1 Opportunity dataset collecting figure [14]. More wearable devices attached
to human body will result in more pairing e↵ort. 27

5.2 Auto-pairing design. New devices going through a 6-step joining procedure
to join the network. 28

x

List of Tables

4.1 Activities summary . 16

4.2 Activity Recognition evaluation results . 19

5.1 Auto pairing evaluation results . 29

xi

Chapter 1

Introduction

1.1 Body Sensor Networks

As the world of IoT and mobile devices continues to increase, we continue to transform
everyday items into digital accessories. Internet of Things is bringing far more connected
devices than before. Analysts from government agencies have predicted an estimation of
25 to 50 billion connected devices by the year 2025 [22, 49, 42, 36].

These new digital technologies purport to enhance our quality of life and productivity
while also o↵ering the freedom of wireless communications. With more research happened
on the wearables and body sensor networks (BSNs) [57, 19], which are a branch of wireless
sensor networks(WSNs), wearable products have been coming out to join the BSNs [33].
More researchers have put e↵ort into investigating use cases, devices, and topics on the
BSNs. Wearable devices, such as smartwatches, fitness trackers, and earphones, are be-
coming commonplace in commercial products and research projects. With people regularly
wearing multiple devices, full-fledged body sensor networks (BSNs) are no longer impossi-
ble. In the recent future, wearables will no longer be limited to smartwatches and fitness
trackers. Other products including smart-eyeglasses [61, 27], smart-bandages [40, 39] and
smart-shoes [55, 18, 26] are under development in research and will soon join the BSNs.

1.2 Human Activity Recognition

BSNs enable new applications like human activity recognition (HAR). Being able to au-
tomatically identify what a user is doing using on-body wearable sensors has many use

1

cases [34], such as in healthcare [51, 43, 58, 30] to manage and reduce the risk of many
diseases including obesity, cardiovascular and diabetes, in entertainment [16, 5] to develop
sensor-based games like ring fit adventure and fitness boxing [4], and in fitness [13, 3, 5] to
help improve body strength and flexibility.

One key characteristic of human activities is that di↵erent activities require di↵erent
body parts to move. However, many of the current HAR devices using on-body sensors only
utilize one body part’s sensor data, such as one mobile phone and one smartwatch. The
current state-of-art algorithms perform activity recognition using CNN [59, 44], or spatial-
temporal attention methods on smart devices such as smartphones and smartwatches [38,
15]. Using a single sense point is su�cient for detecting activities that involve most body
parts, for example running or walking. Still, systems with a single sensor fail to accurately
classify more specific actions or activities involving only one or more body parts. For
exercises such as pull-ups or push-ups, using smartwatch data to classify will fail since the
wrist barely moves. Similarly, for activities like sit-ups or weight lifting, a smartphone
will not be able to classify the activity since the waist sees little movement. So in certain
situations, using only a single sensor to perform activity recognition is insu�cient and will
result in inaccurate activity recognition. Take Just Dance [4] from Nintendo Switch as an
example; its score system will only base on the gestures from a single Joy-Con, which means
you can achieve a high score by only waving your hands around as shown in Figure 1.1.

One potential remedy to improve activity recognition for more subtle gestures is to
use multiple on-body sense points. Luckily, the increasing number of on-body devices
and sensors enables multi-devices coordination. About one-in-five Americans have at least
one wearable [1]. The number of connected wearable devices worldwide has exceeded 550
million [7] and wrist-worn wearable have reached 150 million in 2020 [8]. At least 13 types
of sensors [33] are present in di↵erent kinds of wearable devices. Other than the existing
smartwatches and smartphones, more devices now include accelerometer and gyroscope
sensors, for example, recent smart earphones [2].

Previous works have shown accuracy improvements with multiple wearable devices
and state of the art algorithm implementation [15, 52] with the development of machine
learning and deep learning for classification tasks. Accuracy increases as the number of
devices increases. However, this leads to more devices to charge, configure and coordinate
with higher energy consumption.

2

Figure 1.1: Nintendo Switch game - Just Dance: Since this game only registers your Joy-
Con movements, you could technically just wave your arms around without even moving
your whole body.

1.3 Contributions

In this thesis, we focus on the challenge of energy e�ciency and pairing overhead. We
develop a multi-agent HAR coordination system that lowers the total energy use while
maintaining high accuracy. Our key insight is a new strategic duty cycling approach tuned
with multi-agent HAR classification output. The energy preserving mainly deals with the
sampling frequency and communication frequency for sensors can be as high as 100Hz [34,
14], which would consume an enormous portion of energy when doing communication inside
the BSNs. However, if the classification confidence is high enough for the given sampling
frequency for the specific device, or the device did not involve a lot in this activity, we can
lower the sampling and communication frequency by prioritizing the importance of the
devices and only send necessary features instead of raw data to reduce the energy cost.

Second, we also address the overhead of pairing multiple on-body devices. The pairing
e↵ort is related to the human e↵ort that each time the new devices are attached to the body,
we need to let the new device join the current BSNs, the current state of art techniques

3

includes NFC pairing [48], smart pairing using Bluetooth technology [41]. However, the
BSN has its features because of attaching to the same person. It will follow a similar moving
trend, which can facilitate the pairing phase easier with the human’s body movements.

The main contributions of this thesis are as follows:

• We propose SenseBody, a system with multi-agent human activity recognition that fo-
cuses on easy pairing and energy e�ciency using COTs wearable devices.

• We design a new pairing and data transmission framework among wearable devices that
minimized pairing and data transmission costs.

• We perform a thorough evaluation of SenseBody, demonstrates the high accuracy (more
than 98%) for both HAR tasks and auto-pairing, we can also sacrifice approximately 3%
accuracy for 10x less energy consumption.

1.4 Thesis Overview

This thesis is organized as follows.

Chapter 2 describes the related work of this thesis, including sensor-based HAR, vision-
based HAR, and energy management in wireless sensor networks. We compared the ad-
vantages and disadvantages of di↵erent methods. We also emphasize di↵erences compared
to this project.

Chapter 3 describes the SenseBody system overview. It shows the scenario of this work,
what devices and components are included in the system and how they interact as a whole.
Furthermore, it provides the goals of this work that will be accomplished by the rest of the
thesis.

Chapter 4 describes how we design and build the SenseBody system, including the
energy optimization techniques and machine learning techniques we used. We also run
a thorough evaluation of the system to demonstrate the system’s accuracy and energy
consumption.

Chapter 5 describes the auto-pairing we developed for the SenseBody system. It de-
scribes why this application matters in the future development of multi-agent HAR and
how we design and implement auto-pairing. We also evaluate the auto-pairing accuracy to
demonstrate the great potential of this application.

Chapter 6 and Chapter 7 summarize the work in this thesis, point out limitations and
possible future works of this system.

4

Figure 1.2: A person is running with multiple wearable devices. The trend of IoT is
bringing more on-body devices, making it possible to collaborate between them and perform
complex tasks that can’t be done on a single wearable device in the past.

5

Chapter 2

Related Work

Our work focuses on the energy and pairing optimization on sensor-based multi-agent HAR
using only wearable devices. Some previous work on HAR prioritizes accuracy improvement
using one device, while others combine additional environmental sensors with improving
accuracy without considering the synchronization overhead and configuration e↵orts.

2.1 Sensor Based HAR

2.1.1 Single Agent HAR

Triaxial accelerometers and gyroscopes are the most broadly used sensors for HAR [11, 20,
21]. Artificial-neural-nets (ANNs) perform well with up 98% accuracy [28] on recognizing
ambulation activities such as walking, running, and lying, and is present in any of today’s
wearable devices and smartphones. However, other activities such as doing sit-ups or
weight lifting are challenging to recognize from a single device point of view [34].

2.1.2 Multi Agent HAR

Multi-agent activity recognition [24, 47, 60] have been done largely based on the public
HAR dataset such as Opportunity human activity dataset [14], and MIT PlaceLab dataset
[23]. However, these datasets have environmental sensors involved. The Opportunity
dataset is specific to the morning activities setting, and the activities defined at MIT
PlaceLab dataset are vague, like talking on the phone and searching for items. These

6

factors will cause the accuracy drop if only involving body sensors. Most importantly,
even though these projects tried to accomplish a higher accuracy than a single device, they
fail to consider the energy consumption of wearable devices.

2.2 Vision Based HAR

HAR tasks can also be achieved through videos taken by various cameras, majorly based
on the computer vision [50] has also evolved in recent years. Methods including optical
flow [54, 32], Kalman filtering [46, 12], Hidden Markov models [35, 25], etc. have been
applied on several projects under di↵erent modalities such as single-camera, stereo, and
infrared. In addition, researchers have considered multiple aspects of this topic, including
single pedestrian tracking, group tracking, and detecting dropped objects. However, vision-
based HAR will consume much more energy than the sensor-based HAR due to camera
usage, and the model will be complex due to the high dimension of the computer vision
techniques. User privacy is also a major roadblock for applying vision-based HAR tasks.

2.3 Energy Management in WSNs

Energy management in wireless sensor networks and body sensor networks has also been
identified and investigated [10, 29, 53, 45]. These projects tried to find the minimum
sampling frequency with di↵erent sensors while maintaining relatively high accuracy. Our
work di↵ers from these projects by using the state-of-art minimum sampling rate and
further save energy by dynamically reducing the duty cycle and active devices for the
HAR tasks,

There are other methods for performing HAR, with most prior works only focused
on algorithm improvements, which is highly a↵ected by the training data [31]. Some
additionally require that environmental sensors are involved in reaching high accuracy. This
is not entirely practical since the model inside wearable devices cannot include a complex
model to handle di↵erent environments. Our work overcomes some of these limitations by
focusing on on-body sensors only and their optimizations. SenseBody is less dependent on
the environment and has better energy performance.

7

Chapter 3

SenseBody Overview

Our system involves several wearable devices trying to classify both daily activities such
as sitting, walking, running and complex training activities, including sit-ups and weight
lifting with features calculating from triaxial accelerometers and gyroscopes.

Wearable devices will automatically join the network if they are nearby. And these
devices will be separated into two categories, a central device and several auxiliary devices.
A central device is usually a smartphone or smartwatch with strong computation power
to handle system-level tasks. Auxiliary devices have two statuses in the system: joined
(existing auxiliary device) and not joined(new auxiliary device). These devices can be any
device shipping the sensors and provide help and better classification for the central device.

The central device includes three main components: the pairing controller, the energy
controller and the activity recognition controller. The pairing controller is responsible for
letting the new devices automatically pair to the existing SenseBody network. The energy
controller handles all policies to save energy in both the central device and auxiliary de-
vices. The activity recognition controller is responsible for collecting features from di↵erent
devices, applying machine learning models to the data, and classifying activities. It also
provides data to the pairing controller and energy controller in the central device.

New auxiliary devices communicate with the existing central device using the pairing
controller. The existing auxiliary devices send features to the activity recognition controller
in the central device and get feedback from the energy controller. Detailed explanations
for these communications will be shown in Chapter 4 and chapter 5.

Project goals Our goal is to develop a system that can coordinate wearable devices
and sensors to accurately determine a person’s activity in cases where a single device is

8

insu�cient. The approach will also reduce human e↵ort in an easy pairing way and will
save the total energy usage for devices.

To achieve this research goal, there are several sub-goals that we completed at each
stage of the research:

• Reduce the required sensor data for at least 90% comparing to the traditional multi-agent
HAR

• Achieve higher accuracy compared to the single device HAR,
• Hands-free pairing procedure with at least 95% auto-pairing accuracy

9

Chapter 4

Multi-Agent HAR Coordination in
SenseBody

4.1 Design

Our design has three main components as highlighted in Figure 4.1. When a new device
is attached to the human body and actively moving, it will communicate with the pairing
controller inside the existing central device to make auto-pairing to check if it belongs to
the same person. After the network has formed, the central device will coordinate with the
existing auxiliary device to make activity recognition within the activity recognition con-
troller. The energy controller will prioritize the device and make a judgment on changing
the duty cycle of the existing devices.

4.1.1 Energy optimization design

Energy is one of the critical considerations in developing this system. The battery capacity
in the wearable device is limited to its size, so we have come up with methods that can
reduce energy consumption. In that way, we can preserve more energy and possibly stop
recharge with the development of energy harvesting techniques. We lower the energy con-
sumption in 3 di↵erent techniques: the network transmission optimization, which reduces
the overhead to transmit the time series signals; the device duty cycle reduction, which re-
duces the working time for the sensor; and the feature reduction, which reduces the model
complexity, benefit for computation and network transmission.

10

Figure 4.1: Overall architecture of SenseBody. The central device manages the existing
auxiliary devices, and control the auto-pairing of new devices. Energy control and activity
recognition tasks are all done on the central node.

Network transmission optimization

We firstly reduce our energy consumption by optimizing the network flow between devices.
Three levels of cross-device communications are identified in our projects, raw-data level,
feature-level, and gesture-level.

The naive way to perform multi-agent HAR is to send raw sensor signals to the central
device. The central device will group those signals and perform activity recognition tasks.
However, due to the high sampling rate (at least 30Hz) needed for HAR, it would be
unrealistic to send each data record in real-time. The advanced way to perform multi-agent
HAR is to calculate features from the recording window on each sensor and then send these
features to the central device, and the central device will group these features from di↵erent
devices to make the HAR tasks. The third way is to perform gesture classification in each
distributed device, and the central device will make a prediction based on the gesture the
auxiliary devices send.

Figure 4.2 shows the comparison between these three levels of cross-device communi-
cations. In our design, we use feature level to optimize the network transmission as well
as the human labeling e↵ort. Furthermore, this will increase user privacy since features

11

Figure 4.2: Three levels of network transmission optimization and comparison explained
in a single sensor (accelerometerX)

might be hard to guess and infer information even if being exposed to a malicious attacker.
The gesture classification is the best to optimize the network transmission. However, this
method will need a large gesture dataset in the di↵erent body parts and require substantial
human e↵ort to segment gestures and label the segmented data. We will accomplish this
in future work.

Devices duty cycle reduction

We use the exponential backo↵ algorithm to reduce our duty cycle. Since activity will last
for several seconds or several minutes depending on activities, there is no need to keep
sending features to the central device to perform HAR tasks. When the same activity
happens in consecutive sampling points, we gradually increase the gap between the sample
period (i.e. reduce the duty cycle). We store the last saved activity in the energy controller,
and when the new activity from activity recognition controller comes in, and a change of
an activity is detected by the energy controller, we decrease the gap between the sample
period (increase the duty cycle). Figure 4.3 shows how we optimize the duty cycle.

12

Figure 4.3: Duty cycle optimization design

Linear Increase The initial sampling interval will be T i(s). When the current activity
is the same activity of the previous record, we gradually increase the sampling interval by
⌧(s), and the new sampling interval will be the (T i + ⌧)(s), and after N same activity, the
sampling interval will become (T i +N ò ⌧)(s)
Exponential DecreaseWhen activity changes, we reduce sampling interval exponentially
by a factor of 2, so the new sampling interval will become (T i +N ò ⌧)/2(s)
Feature reduction

Even though the computation power for wearable devices is becoming stronger, we still need
to only calculate the most valuable features because of the limited battery life a wearable
device has. We reduce our features by identifying the most critical features during the
training phase and limiting our features to the target numbers to maintain high accuracy
while saving energy for the wearable devices.

13

Figure 4.4: SenseBody system implementation

4.1.2 Activity recognition design

SenseBody system will synchronize clock and agree on the next checking time, all devices
will send another sampling record (features) to the central device, and the central device
will invoke the model and provide a prediction, after then, the central device will talk to
auxiliary devices for the next checking time.

We follow the state-of-art design for HAR tasks and features in this project. We use
50Hz, 2.56s, with 128 sampling points as a window and with 50% overlap for collecting
data. Detailed implementation is shown in the following section.

4.2 System Implementation

We implemented a prototype of SenseBody in Raspberry Pi in python, which can be
used to run the auto-pairing algorithm and multi-agent human activity recognition. We
use sensorLog[9] application using two apple watch, two iPhone and an iPad to simulate
sensor data and monitor the energy consumption. Due to the engineering e↵ort for the
IOS and WatchOS devices, we decided to collect data from these devices first and later
run the system using the collected data.

14

Figure 4.5: SenseBody environment setup, we use Raspberry PI to act like central device,
and use SensorLog in iPhone, apple watch attached to di↵erent body part to record sensor
data

4.2.1 Environment setup

Figure 4.5 shows devices we use in this experiment. We attach di↵erent devices into four
di↵erent body parts for demonstration, including waist, wrist, shoulder and ankle. We
then perform various activities as shown in table 4.1.

The data collection happens on the Raspberry pi using multiple nc command, the
algorithm and ML development are using jupyter notebook in Python3, related libraries
are numpy, pandas, sklearn, and matplotlib packages.

4.2.2 Energy Management

We implemented energy optimization methods based on the Section 4.1.1. Since we run our
experiments on Raspberry pi, we can not measure the e↵ect of only transmitting features
instead of raw data.

When we optimize the duty cycle, We chose Ti = 15.36s, which is six times one window

15

Table 4.1: Activities summary

Activities Time collected (s) Label

Sit 180.48 0
Walk 134.4 1
Run 138.24 2
Push up 84.48 3
Sit up 92.16 4
Squat 115.2 5
Lying 138.24 6
Dumbbell Lateral Raise 99.84 7
Front Dumbbell Raise 80.64 8

time. Within 18s, we can consider the activity is highly likely to be the same and so that
only one feature sample point needs to be calculated and send to the central device. We
also implemented the maximum sampling interval time Tmax so that the time interval will
not be too much and cause an accuracy drop. Whenever the current interval time hits the
maximum sampling interval, the system will not increase the sampling interval.

To further optimize the feature numbers and reduce the calculation, training, and
testing overhead, we use the Random Forest classifier to determine the importance of
variables. We then use the get support function to select the features we are going to
use automatically. Later, when training and applying models, well will only use filtered
features.

4.2.3 Activity recognition

For the activity recognition, we invoke models trained from Section 4.3 and then predict
both auto-pairing and HAR tasks.

4.3 Machine Learning Implementation

Figure 4.6 shows the overall flow chart for the implementation of the machine learning.
Three phases will be discussed in the following sections, data preparation, feature selection
and classifications.

16

Figure 4.6: Machine learning implementation flow chart

4.3.1 Data preparation

We open the 5004 - 5009 port on the central device to establish a TCP connection for the
di↵erent wearable devices. After collecting data, we filter the sensor data to what we use in
the classification tasks. We delete data involving user privacy, including latitude, longitude,
altitude, and IP address. Also, we remove unnecessary data such as magnetic fields and
pedometer. The final raw data including device id, timestamp, tri-axial accelerometer and
gyroscope data, and heading data.

Finally, we synchronize the time of collected raw data and make a further calibration
to make sure that the collected sensor data from di↵erent devices are happening simulta-
neously.

17

4.3.2 Feature selection

After pre-processing the raw sensor data, we first calculate the statistical features of the
tri-axial accelerometers, gyroscope, and headings, including mean value, maximum value,
minimum value, standard deviation, and window. And then We also use the random forest
classifier to determine the importance of variables. This can be used to filter the most
important features.

4.3.3 Classifications

For the classification tasks, we separate the dataset into 67% for training and 33% for
testing. We used several di↵erent machine learning models to perform the classification,
including SVM, decision tree, neural network.

We also utilize a stacking classifier [17], which consists of stacking the output of in-
dividual estimators and use a classifier to compute the final prediction. Stacking allows
utilizing the strength of each individual estimator by using their output as input of a final
estimator.

4.4 Evaluation

4.4.1 Evaluation Metrics

We followed the state-of-the-art classification evaluation metrics [34] in this work. This
includes accuracy score, precision, F1 score, and recall rate. These are measured by dif-
ferent equations for true positive (TP), true negative (TN), false positive (FP), and false
negative (FN).

Accuracy in multi-label classification is the percentage the predicted label matches the
actual label.

Precision is calculated with the ratio of PT

PT+PF
where PT is the number of true positives

and PF is the number of false positives.

F1 score can be interpreted as a weighted average of the precision and recall. It reaches
its best value at 1 and its worse value at 0. The relative contribution of precision
and recall to the F1 score are equal. The formula for the F1 score is: F = 2pr

p+r
where

F is the F1 score, p is the precision, and r is the recall.

18

Recall is the ratio of PT

PT+NF
where PT is the number of true positives and NF is the number

of false negatives. The recall is, intuitively, the ability of the classifier to find all the
positive samples.

When doing multi-label classification, the evaluation score can be calculated by doing
macro, micro or weighted and None. Macro calculates metrics for each label and finds
their unweighted mean. This does not take label imbalance into account. Micro calculates
metrics globally by counting the total number of true positives, false negatives, and false
positives. In our model comparison, we use the macro to eliminate data imbalance when
the data is not at the same frequency.

Since embedded devices have limitations in computing power and memory, we evaluate
the CPU and memory usage on our central device to show how running the classification
model would a↵ect normal operations of our embedded central node. For visualization, we
select the famous Grafana platform to demonstrate the result.

Energy consumption is another key component for battery-powered devices. We eval-
uate the battery level change on each auxiliary sensor to demonstrate the e↵ect on the
battery life of these devices. We test the system performance under three di↵erent energy
modes: no energy optimization, optimization designed by SenseBody, and low sample rate
optimization. SensorLog is applied to report the battery level of each device under three
scenarios to the central node.

4.4.2 Result

Table 4.2: Activity Recognition evaluation results

ML method F1-score Accuracy Precision Recall

SVM(rbf) 0.799 0.834 0.831 0.798
Decision Tree 0.969 0.971 0.974 0.967
Random Forest 0.973 0.975 0.974 0.974
Ridge Classifier 0.914 0.928 0.925 0.913
Logistic Regression 0.921 0.931 0.927 0.918
Stacking Classifier 0.982 0.983 0.981 0.981

Table 4.2 shows the activity recognition evaluation results versus di↵erent ML methods.
The result follows SVM < Ridge Classifier ⌅ Logistic Regression < Decision Tree ⌅ Random

19

Figure 4.7: Data size compression process

Forest < Stacking Classifier in both F1-score, accuracy, precision and recall due to the same
reason as we discussed in Table 5.1.

Figure 4.7 shows the compression process of our proposed system. The size of raw data
is 60 MB. After the feature transmission process, the size of transmitted data reduced to
1MB. Then we optimize the duty cycle further to reduce the size of transmitted data into
100KB.

Figure 4.8 shows the memory and CPU usage while we are running the proposed system.
We demonstrate a test case between 19:38 and 19:41. The average memory usage increases
from 0 to 3 percent during the system running time for memory usage. CPU usage first
has a massive jump of about 20 percent, which is caused by the python programming
problem [37]. Then it shows an increase of 5 percent on average. Since in our system,
we proposed the energy management optimization mechanism to benefit the system for
computation and network transmission, so we can achieve lower overhead in memory and
CPU usage while the system is running.

Figure 4.9 and Figure 4.10 show the F1 score and data size transmitted within 5 min-

20

Figure 4.8: CPU and memory consumption visualization using Grafana of SenseBody

Figure 4.9: F1 score comparison with di↵erent optimization mechanism

21

Figure 4.10: Data size optimization with di↵erent optimization mechanism

22

Figure 4.11: F1 score comparison for single agent and multi agent

23

utes versus di↵erent optimization methods respectively. The F1 score follows No duty cycle
optimization > SenseBody System Optimization > Low Sample Rate System Optimization.
The data size optimization follows No duty cycle optimization > SenseBody System Op-
timization = Low Sample Rate System Optimization. For No Duty Cycle Optimization,
all data are transmitted between the devices, which leads to the highest F1 score but also
causes the most energy since the total data transmission rate is the highest. For SenseBody
System Optimization, we utilize the advantage of network transmission and duty cycle re-
duction to achieve 12x energy saving with only 2.6% F1 score lose. Low Sample Rate
System Optimization can also save 12x energy compared to No duty cycle optimization.
It sacrifices a 6.5% F1 score, which is much higher than SenseBody System Optimization.

Figure 4.11 shows the F1 score versus di↵erent classifiers in both single-agent and multi-
agent. The result follows Stacking > Random Forest > Logistic > Ridge Classifier in both
single and multi-agent cases due to the same reason as we discussed in Table 5.1. We
also observe that, in both 4 classfier methods, multi agent is about 6% higher in F1 score
comparing with single agent, we are safe to say that the performance for multi agent is
better than single agent in our system.

Figure 4.12 show the confusion matrix for both single-agent and multi-agent system.
As shown in the figure, the Y-axis is the predicted label and X-axis is the actual label,
which means the squares on the catercorner diagonal are the correct prediction result. For
the single-agent HAR, we can see that gestures 2,3,4 and 8 achieve lower results than the
rest of the gestures. For multi-agent, all gestures achieve 90% or higher accuracy, which
can illustrate the same result as shown in Figure 4.11.

24

Actual Label

Pr
ed

ic
te

d
La

be
l

Single Agent Confusion Matrix

Mul� Agent Confusion Matrix

Actual Label

Pr
ed

ic
te

d
La

be
l

Figure 4.12: HAR tasks confusion matrix for single agent and multi agent

25

Chapter 5

Auto Pairing in SenseBody

5.1 Background

With more wearable devices existing on the markets and being developed, we are getting
more functionalities enhancing our lives as well as putting more e↵ort when connecting
and pairing di↵erent devices. Traditionally, we use NFC technology to hold devices near
each other, use QR code or Bluetooth pairing code to establish a pairing between devices,
and this works fine if there are only limited devices. However, if more wearable devices are
connected to the BSNs, it will cause more human e↵orts to pair these wearable devices.

Figure 5.1 shows one example of what will happen with more wearable devices. This is
how researcher collected di↵erent sensor data from Opportunity dataset [14]. Even though
we will not have these wires attached to our body, how to easily connect and configure
these devices remain challenging

Due to the fact that wearable devices will be on the same person and follow similar
activity patterns, we can actually utilize these sensor data to provide authentication for
the pairing for wearable devices. We can group the existing device’s accelerometer and
gyroscope data with the new device’s sensor data to make a binary classification on whether
these two devices belong to the same person and use this authentication to pair new devices.

5.2 Auto Pairing Design

Figure 5.2 shows the design of the auto-pairing workflow. When a new device is nearby
the existing network, it will search and communicates with the existing central device to

26

Figure 5.1: Opportunity dataset collecting figure [14]. More wearable devices attached to
human body will result in more pairing e↵ort.

perform auto-pairing.

A new device will first communicate to a public access point generated by the pairing
controller and then synchronize the time with the central device. Then they will agree on
a time point to start sampling and calculating features, the new device will then send its
pairing features to the central device, and the central device will check with its activity
features with the existing activity features to judge whether the new device should join the
current SenseBody network. The central device will share the authentication to join the
SenseBody network, and it will become an auxiliary device within the SenseBody.

5.3 Implementation

Our implementation for pairing is when the new device connects to the pairing controller.
It will send its timestamp and the pairing controller will check the central device to get
the time di↵erence between the new device and the central device and arrange it for the
next sending time for the new device. When the new device sends features to the pairing
controller, Algorithm 1 will be invoked and generate a result, either a token or an error
message. We collected data from 3 collecting points, two of them belong to the same person
while the other one belongs to the other person, and ask them to do daily activities.

27

Figure 5.2: Auto-pairing design. New devices going through a 6-step joining procedure
to join the network.

5.4 Evaluation

Table 5.1 shows the auto-pairing evaluation results versus di↵erent ML methods. The
result follows SVM < Ridge Classifier ⌅ Logistic Regression < Decision Tree ⌅ Random
Forest < Stacking Classifier in both F1-score, accuracy, precision and recall. The result is
that, for SVM, the feature dimension is 136, and the dataset size for each gesture is around
100. So the performance for SVM is not promising. On the other hand, our problem is
non-linear, so it’s hard to choose the kernel function. In our experiment, we choose poly,
RBF, and sigmoid as our kernel function, respectively, and the best result is SVM with
RBF as kernel function, which achieves 0.948 in F1-score and 0.955 in accuracy. The

28

Algorithm 1: Auto Pairing procedures
Input: E: The existing set of devices. ei " E is i-th device

PM : Pairing model we trained for the auto pairing
Output: res: Either a valid token or not able to connect error message

1 procedure pairNewDevice(PM)
2 res ⇥ error
3 curFeature = getNewActivityFeatures ()
4 for ei " E do
5 if PM.predict (curFeature, ei) == 1 then
6 token = generateNewToken ()
7 res = token
8 break

9 return res

stacking classifier contains a meta classifier to multiple aggregate classifier to perform a
better classification result, which can achieve 0.982 in F1-score and 0.991 in accuracy.

Table 5.1: Auto pairing evaluation results

ML method F1-score Accuracy Precision Recall

SVM(rbf) 0.948 0.955 0.965 0.934
Decision Tree 0.980 0.982 0.986 0.973
Random Forest 0.983 0.985 0.989 0.977
Ridge Classifier 0.969 0.973 0.980 0.959
Logistic Regression 0.959 0.964 0.971 0.948
Stacking Classifier 0.989 0.991 0.993 0.986

29

Chapter 6

Discussion

In this section, we discuss some of our system’s limitations for the implementation, as well
as some future directions and work that can be done based on the system.

6.1 Limitations

Even though our SenseBody system indicates that we can improve HAR tasks accuracy
when coordinating di↵erent devices in an energy-e�cient way, and provides possible appli-
cations like auto-pairing. There are still challenges existing since the system is not built
in di↵erent platforms/operating systems due to the engineering e↵orts. Still, we do expect
that a standard protocol needs to be made and adopted into wearable devices to facilitate
the interaction among devices.

Also, the current data only records one person for demonstration purposes. We expect
to get more data from di↵erent people and come up with better results and more persuasive
results.

6.2 Future work

6.2.1 Algorithm Enhancements

Our algorithms are built in a relatively simple configuration with one person involved due
to the Covid-19. Thus, the model e↵ectiveness and robustness still need to be improved.

30

We have provided two insights for improving the algorithms, handling di↵erent gestures for
the same activities, and dealing with dynamic sampling windows to fit in various activities.

Di↵erent gestures for the same activities

Our classification model is built based on prior data collected for specific gestures. Thus,
with the fact that di↵erent people might have di↵erent gestures for a particular meaning,
our model needs to be calibrated before the model can apply it to di↵erent users. To make
our system more adaptive to various users, we will need to enlarge our dataset and include
more gestures from di↵erent people. We might use some other machine learning techniques
such as reinforcement learning or federated machine learning to improve our model.

Dynamic sampling window to fit in di↵erent activities

SenseBody is currently using a fixed sampling window for all activities. However, in our
experiment, we have witnessed di↵erent duration times for di↵erent activities. Optimizing
sampling window for di↵erent activities have more energy-saving potential for these em-
bedded wearable devices. Activities with longer duration and fewer movements can have
a longer sampling period. For example, the sampling rate on running could be faster than
lying since the latter activity is more stable and static.

6.2.2 New Applications

We have built our prototype on existing COTs devices and have demonstrated that coop-
erating between multiple devices can greatly increase activity recognition accuracy on the
human body. As we have mentioned in the previous subsection, we plan to extend our al-
gorithm to more generalized scenarios. This includes extending our system to a generalized
scenario, creating a data collection and activity recognition framework that can be used on
any on-body devices. There are two major directions for the potential new applications:

Opportunities for human computer interaction

One direction is to extend our recognition system to complex gestures on di↵erent body
parts; this requires more on-body sensors and even some device-free sensing techniques.
Achieving complex gesture recognition on top of activity recognition can help better un-
derstanding what the user is doing and is introducing more opportunities for the user to

31

control surrounding devices. For example, when the system recognizes the user is lying
on a sofa, the user can then control the volume of music by just waving his/her hand
without using the remote control. This brings significant benefits for the HCI in future
smart homes.

Adaptive duty cycling method

Another direction is to design an adaptive duty cycling method to fit the need for di↵erent
activities. For example, increase the duty cycle in sports like playing tennis can record each
stroke and achieve higher accuracy. For activities like sitting and lying, we can reduce the
duty cycle and extend the data collection period to prolong the operating time for wearable
devices.

32

Chapter 7

Conclusion

Our work evaluates the possibility and energy e�ciency for connecting wearable devices in
the BSNs, which is critical for human activity recognition using multiple on-body devices.
The SenseBody demonstrates how we design a secure data transmission and storage among
these wearable devices and collaborate to auto-pairing and conduct HAR tasks. The eval-
uation results validate the contributions of the proposed system. Our results show that we
can achieve an average of 98.3% of recognition accuracy on nine common activities running
our proposed multi-agent framework and achieve more than 98.9% auto-pairing accuracy.
From an energy-saving perspective, our result also shows that our system can save more
than 90% of energy consumed in data transmission over traditional methods while only
sacrificing 3% of accuracy.

33

References

[1] About one-in-five americans use a smart watch or fitness tracker.
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-
use-a-smart-watch-or-fitness-tracker/: :text=As 2020 begins – and health,June 3-17,
2019., [Accessed in JUL. 2020].

[2] Airpods pro - technical specifications. https://www.apple.com/airpods-pro/specs/, [Ac-
cessed in JUL. 2020].

[3] Apple fitness. https://www.apple.com/apple-fitness-plus/, [Accessed in JUL. 2020].

[4] Nintendo switch system software. https://www.nintendo.com/switch/, [Accessed in
JUL. 2020].

[5] Ring fit adventure. https://en.wikipedia.org/wiki/Ring Fit Adventure, [Accessed in
JUL. 2020].

[6] Smartwatch unit sales in the us 2016-2020. https://www.statista.com/statistics/381696/wearables-
unit-sales-forecast-united-states-by-category/, [Accessed in JUL. 2020].

[7] Wearables sales worldwide by region 2015-2022.
https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region/,
[Accessed in JUL. 2020].

[8] Wrist-worn wearable shipments worldwide 2019-2024.
https://www.statista.com/statistics/296565/wearables-worldwide-shipments/, [Ac-
cessed in JUL. 2020].

[9] Hasan Faik Alan, Bert Arnrich, Cem Ersoy, and Burcu Cinaz. Sensor log: A mo-
bile data collection and annotation application. In 2014 22nd Signal Processing and
Communications Applications Conference (SIU), pages 1375–1378. IEEE, 2014.

34

[10] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri. An adaptive sampling
algorithm for e↵ective energy management in wireless sensor networks with energy-
hungry sensors. IEEE Transactions on Instrumentation and Measurement, 59(2):335–
344, Feb 2010.

[11] Ling Bao and Stephen S Intille. Activity recognition from user-annotated acceleration
data. In International conference on pervasive computing, pages 1–17. Springer, 2004.

[12] Robert Bodor, Bennett Jackson, and Nikolaos Papanikolopoulos. Vision-based human
tracking and activity recognition. In Proc. of the 11th Mediterranean Conf. on Control
and Automation, volume 1. Citeseer, 2003.

[13] Ryan Burchfield and S Venkatesan. A framework for golf training using low-cost
inertial sensors. In 2010 International Conference on Body Sensor Networks, pages
267–272. IEEE, 2010.

[14] Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digumarti,
Gerhard Tröster, José del R Millán, and Daniel Roggen. The opportunity challenge:
A benchmark database for on-body sensor-based activity recognition. Pattern Recog-
nition Letters, 34(15):2033–2042, 2013.

[15] Kaixuan Chen, Lina Yao, Dalin Zhang, Bin Guo, and Zhiwen Yu. Multi-agent atten-
tional activity recognition. arXiv preprint arXiv:1905.08948, 2019.

[16] Luke Conroy, Ciarán Ó Conaire, Shirley Coyle, Graham Healy, Philip Kelly, Damien
Connaghan, Noel E O’Connor, Alan F Smeaton, Brian Caulfield, and Paddy Nixon.
Tennissense: a multi-sensory approach to performance analysis in tennis. 27th Inter-
national Society of Biomechanics in Sports Conference, 2009.

[17] Saso Džeroski and Bernard Ženko. Is combining classifiers with stacking better than
selecting the best one? Machine learning, 54(3):255–273, 2004.

[18] Bjoern M Eskofier, Sunghoon Ivan Lee, Manuela Baron, André Simon, Christine F
Martindale, Heiko Gaßner, and Jochen Klucken. An overview of smart shoes in the
internet of health things: gait and mobility assessment in health promotion and disease
monitoring. Applied Sciences, 7(10):986, 2017.

[19] Ra↵aele Gravina, Parastoo Alinia, Hassan Ghasemzadeh, and Giancarlo Fortino.
Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges.
Information Fusion, 35:68–80, 2017.

35

[20] Yuya Hanai, Jun Nishimura, and Tadahiro Kuroda. Haar-like filtering for human
activity recognition using 3d accelerometer. In 2009 ieee 13th digital signal processing
workshop and 5th ieee signal processing education workshop, pages 675–678. IEEE,
2009.

[21] Zhen-Yu He and Lian-Wen Jin. Activity recognition from acceleration data using ar
model representation and svm. In 2008 international conference on machine learning
and cybernetics, volume 4, pages 2245–2250. IEEE, 2008.

[22] McKinsey Global Institute. The Internet of Things: Mapping the Value Beyond the
Hype, 2015.

[23] Stephen S Intille, Kent Larson, J Beaudin, E Munguia Tapia, Pallavi Kaushik, Jason
Nawyn, and Thomas J McLeish. The placelab: A live-in laboratory for pervasive
computing research (video). Proceedings of PERVASIVE 2005 Video Program, 2005.

[24] Stephen S Intille, Kent Larson, Emmanuel Munguia Tapia, Jennifer S Beaudin, Pallavi
Kaushik, Jason Nawyn, and Randy Rockinson. Using a live-in laboratory for ubiqui-
tous computing research. In International Conference on Pervasive Computing, pages
349–365. Springer, 2006.

[25] Ahmad Jalal, Shaharyar Kamal, and Daijin Kim. A depth video-based human de-
tection and activity recognition using multi-features and embedded hidden markov
models for health care monitoring systems. International Journal of Interactive Mul-
timedia & Artificial Intelligence, 4(4), 2017.

[26] Yong Won Jang. Smart shoes, method of providing sensor information to smart
shoes, smart device and method of providing guidance program via smart device,
November 12 2019. US Patent 10,473,483.

[27] Ga-hyun Joo. Wearable glasses and method of providing content using the same,
July 31 2018. US Patent 10,037,084.

[28] Adil Mehmood Khan, Young-Koo Lee, Sungyoung Y Lee, and Tae-Seong Kim. A
triaxial accelerometer-based physical-activity recognition via augmented-signal fea-
tures and a hierarchical recognizer. IEEE transactions on information technology in
biomedicine, 14(5):1166–1172, 2010.

[29] Aftab Khan, Nils Hammerla, Sebastian Mellor, and Thomas Plötz. Optimising sam-
pling rates for accelerometer-based human activity recognition. Pattern Recognition
Letters, 73:33–40, 2016.

36

[30] Yasser Khan, Aminy E Ostfeld, Claire M Lochner, Adrien Pierre, and Ana C Arias.
Monitoring of vital signs with flexible and wearable medical devices. Advanced Mate-
rials, 28(22):4373–4395, 2016.

[31] Eunju Kim, Sumi Helal, and Diane Cook. Human activity recognition and pattern
discovery. IEEE pervasive computing, 9(1):48–53, 2009.

[32] S Santhosh Kumar and Mala John. Human activity recognition using optical flow
based feature set. In 2016 IEEE international Carnahan conference on security tech-
nology (ICCST), pages 1–5. IEEE, 2016.

[33] Xiaochen Lai, Quanli Liu, Xin Wei, Wei Wang, Guoqiao Zhou, and Guangyi Han. A
survey of body sensor networks. Sensors, 13(5):5406–5447, 2013.

[34] Oscar D Lara and Miguel A Labrador. A survey on human activity recognition using
wearable sensors. IEEE communications surveys & tutorials, 15(3):1192–1209, 2012.

[35] Young-Seol Lee and Sung-Bae Cho. Activity recognition using hierarchical hidden
markov models on a smartphone with 3d accelerometer. In International conference
on hybrid artificial intelligence systems, pages 460–467. Springer, 2011.

[36] Knud Lasse Lueth. State of the iot 2018: Number of iot devices now at 7b – market
accelerating, Aug 2018.

[37] Mark Lutz. Programming python. ” O’Reilly Media, Inc.”, 2001.

[38] Haojie Ma, Wenzhong Li, Xiao Zhang, Songcheng Gao, and Sanglu Lu. Attnsense:
Multi-level attention mechanism for multimodal human activity recognition. In IJCAI,
pages 3109–3115, 2019.

[39] Anna McLister, Jolene McHugh, Jill Cundell, and James Davis. New developments in
smart bandage technologies for wound diagnostics. Advanced Materials, 28(27):5732–
5737, 2016.

[40] Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour,
Gita Kiaee, Iman K Yazdi, Sara Bagherifard, Mehmet R Dokmeci, Babak Ziaie,
et al. Smart bandage for monitoring and treatment of chronic wounds. Small,
14(33):1703509, 2018.

[41] Adam E Newham. Smart pairing using bluetooth technology, November 17 2015. US
Patent 9,191,988.

37

[42] UK Government O�ce of Science. The Internet of Things: Making the Most of the
Second Digital Revolution, 2014.

[43] Godwin Ogbuabor and Robert La. Human activity recognition for healthcare using
smartphones. In Proceedings of the 2018 10th International Conference on Machine
Learning and Computing, pages 41–46, 2018.

[44] Madhuri Panwar, S Ram Dyuthi, K Chandra Prakash, Dwaipayan Biswas, Amit
Acharyya, Koushik Maharatna, Arvind Gautam, and Ganesh R Naik. Cnn based
approach for activity recognition using a wrist-worn accelerometer. In 2017 39th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 2438–2441. IEEE, 2017.

[45] X. Qi, M. Keally, G. Zhou, Y. Li, and Z. Ren. Adasense: Adapting sampling rates
for activity recognition in body sensor networks. In 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 163–172, 2013.

[46] Muhammad Asif Razzaq, Javier Medina Quero, Ian Cleland, Chris Nugent, Usman
Akhtar, Hafiz Syed Muhammad Bilal, Ubaid Ur Rehman, and Sungyoung Lee. umodt:
an unobtrusive multi-occupant detection and tracking using robust kalman filter for
real-time activity recognition. Multimedia Systems, 26(5):553–569, 2020.

[47] Hesam Sagha, Sundara Tejaswi Digumarti, José del R Millán, Ricardo Chavarriaga,
Alberto Calatroni, Daniel Roggen, and Gerhard Tröster. Benchmarking classification
techniques using the opportunity human activity dataset. In 2011 IEEE International
Conference on Systems, Man, and Cybernetics, pages 36–40. IEEE, 2011.

[48] Stephen Schooley, Paul Heninwolf, and Christopher Jones. Home automation device
pairing by nfc-enabled portable device, July 30 2013. US Patent 8,498,572.

[49] Congressional Research Service. The Internet of Things(IoT): An Overview, 2020.

[50] Roshan Singh, Ankur Sonawane, and Rajeev Srivastava. Recent evolution of modern
datasets for human activity recognition: a deep survey. Multimedia Systems, pages
1–24, 2019.

[51] Abdulhamit Subasi, Mariam Radhwan, Rabea Kurdi, and Kholoud Khateeb. Iot based
mobile healthcare system for human activity recognition. In 2018 15th Learning and
Technology Conference (L&T), pages 29–34. IEEE, 2018.

38

[52] Halim Tannous, Dan Istrate, Aziz Benlarbi-Delai, Julien Sarrazin, Didier Gamet,
Marie Christine Ho Ba Tho, and Tien Tuan Dao. A new multi-sensor fusion scheme
to improve the accuracy of knee flexion kinematics for functional rehabilitation move-
ments. Sensors, 16(11):1914, 2016.

[53] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. Activity recognition
in the home using simple and ubiquitous sensors. In International conference on
pervasive computing, pages 158–175. Springer, 2004.

[54] Amin Ullah, Khan Muhammad, Javier Del Ser, Sung Wook Baik, and Victor Hugo C
de Albuquerque. Activity recognition using temporal optical flow convolutional fea-
tures and multilayer lstm. IEEE Transactions on Industrial Electronics, 66(12):9692–
9702, 2018.

[55] Thomas L Wood. Smart shoes, December 20 1994. US Patent 5,373,651.

[56] Allen Y Yang, Roozbeh Jafari, S Shankar Sastry, and Ruzena Bajcsy. Distributed
recognition of human actions using wearable motion sensor networks. Journal of
Ambient Intelligence and Smart Environments, 1(2):103–115, 2009.

[57] Guang-Zhong Yang and Guangzhong Yang. Body sensor networks, volume 1. Springer,
2006.

[58] Jerald Yoo, Long Yan, Seulki Lee, Hyejung Kim, and Hoi-Jun Yoo. A wearable ecg
acquisition system with compact planar-fashionable circuit board-based shirt. IEEE
Transactions on Information Technology in Biomedicine, 13(6):897–902, 2009.

[59] Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang Zhu, Pang Wu, and Joy
Zhang. Convolutional neural networks for human activity recognition using mobile
sensors. In 6th International Conference on Mobile Computing, Applications and
Services, pages 197–205. IEEE, 2014.

[60] Mi Zhang and Alexander A Sawchuk. Usc-had: a daily activity dataset for ubiqui-
tous activity recognition using wearable sensors. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, pages 1036–1043, 2012.

[61] Rui Zhang and Oliver Amft. Monitoring chewing and eating in free-living using smart
eyeglasses. IEEE journal of biomedical and health informatics, 22(1):23–32, 2017.

39

APPENDICES

40

Appendix A

Code Sample and Link

The code and sample data will be available at https://github.com/Lichking1/senseBody

A.1 Insert system data into Grafana using influxdb

import psutil
from influxdb import InfluxDBClient
import time

client = InfluxDBClient(host=’localhost’, port=8086)
client.create_database(’system’)

measurement_name = ’system_data’
data_end_time = int(time.time() * 1000)
data = []
cpu_p, mem_p, disk_read, disk_write, net_sent_now, net_recv_now, temp, \

boot_time, net_sent_prev, net_recv_prev = \
0, 0, 0, 0, 0, 0, 0, 0, \
psutil.net_io_counters().bytes_sent, psutil.net_io_counters().

0 bytes_recv

def get_system_data():

41

global cpu_p, mem_p, disk_write, disk_read, net_recv_now, net_sent_now
0 ,\
temp, boot_time, data_end_time

data_end_time = int(time.time() * 1000)
cpu_p = psutil.cpu_percent()
mem_p = psutil.virtual_memory().percent
disk_read = psutil.disk_io_counters().read_count
disk_write = psutil.disk_io_counters().write_count
net_sent_now = psutil.net_io_counters().bytes_sent
net_recv_now = psutil.net_io_counters().bytes_recv
boot_time = psutil.boot_time()

data.append(
{

"measurement": "system_data",
"tags": {

"boot_time": boot_time
},
"fields": {

"cpu_percent": cpu_p,
"memory_percent": mem_p,
"disk_read": disk_read,
"disk_write": disk_write,
"net_sent": net_sent_now-net_sent_prev,
"net_received": net_recv_now-net_recv_prev,
"temperature": temp,

},
"time": data_end_time

}
)

client.write_points(data, database=’system’, time_precision=’ms’,
protocol=’json’)

def run(interval=3): # interval in seconds

global net_recv_prev, net_sent_prev
print("Script is running, press Ctrl+C to stop!")

42

while 1:
try:

get_system_data()
net_sent_prev = psutil.net_io_counters().bytes_sent
net_recv_prev = psutil.net_io_counters().bytes_recv
time.sleep(interval)

except KeyboardInterrupt:
quit()

except Exception as e:
print(e)
pass

run()

A.2 Main jupyter notebook code for SenseBody

#!/usr/bin/env python

coding: utf-8

#

import seaborn as sns
from sklearn.metrics import confusion_matrix
import warnings
import time
from sklearn.metrics import *
from sklearn.neighbors import *
from sklearn.svm import *
from sklearn.naive_bayes import *
from sklearn.linear_model import *
from sklearn.model_selection import *
from sklearn.preprocessing import *
from sklearn.feature_selection import *
from sklearn.tree import *
from sklearn.ensemble import *

43

import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import numpy as np
import os
import pandas as pd
from IPython.display import display, HTML

sz = 10000000
Header function

def hf(string):
print("========" + string + "==========")

rawPCols = [’loggingTime’, ’loggingSample’, ’locationTimestamp_since1970’,
0 ’locationLatitude’, ’locationLongitude’,

’locationAltitude’, ’locationSpeed’, ’locationCourse’, ’
0 locationVerticalAccuracy’,

’locationHorizontalAccuracy’, ’locationFloor’, ’
0 locationHeadingTimestamp_since1970’,

’locationHeadingX’, ’locationHeadingY’, ’locationHeadingZ’, ’
0 locationTrueHeading’, ’locationMagneticHeading’,

’locationHeadingAccuracy’, ’accelerometerTimestamp_sinceReboot’
0 , ’accelerometerAccelerationX’,

’accelerometerAccelerationY’, ’accelerometerAccelerationZ’, ’
0 gyroTimestamp_sinceReboot’, ’gyroRotationX’,

’gyroRotationY’, ’gyroRotationZ’, ’
0 magnetometerTimestamp_sinceReboot’, ’magnetometerX’, ’
0 magnetometerY’,

’magnetometerZ’, ’motionTimestamp_sinceReboot’, ’motionYaw’, ’
0 motionRoll’, ’motionPitch’, ’motionRotationRateX’,

’motionRotationRateY’, ’motionRotationRateZ’, ’
0 motionUserAccelerationX’, ’motionUserAccelerationY’,

’motionUserAccelerationZ’, ’motionAttitudeReferenceFrame’, ’
0 motionQuaternionX’, ’motionQuaternionY’,

44

’motionQuaternionZ’, ’motionQuaternionW’, ’motionGravityX’, ’
0 motionGravityY’, ’motionGravityZ’,

’motionMagneticFieldX’, ’motionMagneticFieldY’, ’
0 motionMagneticFieldZ’, ’motionHeading’,

’motionMagneticFieldCalibrationAccuracy’, ’
0 activityTimestamp_sinceReboot’, ’activity’,

’activityActivityConfidence’, ’activityActivityStartDate’, ’
0 pedometerStartDate’,

’pedometerNumberofSteps’, ’pedometerAverageActivePace’,
’pedometerCurrentPace’, ’pedometerCurrentCadence’, ’

0 pedometerDistance’, ’pedometerFloorAscended’,
’pedometerFloorDescended’, ’pedometerEndDate’, ’

0 altimeterTimestamp_sinceReboot’, ’altimeterReset’,
’altimeterRelativeAltitude’, ’altimeterPressure’, ’

0 IP_Timestamp_since1970’, ’IP_en0’, ’IP_pdp_ip0’, ’deviceID
0 ’,

’deviceOrientationTimeStamp_since1970’, ’deviceOrientation’, ’
0 batteryTimeStamp_since1970’, ’batteryState’,

’batteryLevel’,
’avAudioRecorder_Timestamp_since1970’, ’

0 avAudioRecorderPeakPower’, ’avAudioRecorderAveragePower’,
0 ’label’]

p2Cols = [’locationTimestamp_since1970’,
’locationHeadingX’, ’locationHeadingY’, ’locationHeadingZ’,
’accelerometerAccelerationX’, ’accelerometerAccelerationY’, ’

0 accelerometerAccelerationZ’,
’gyroRotationX’, ’gyroRotationY’, ’gyroRotationZ’, ’batteryLevel’

0]

p1Cols = [’locationTimestamp_since1970(s)’,
’accelerometerAccelerationX(G)’, ’accelerometerAccelerationY(G)’,

0 ’accelerometerAccelerationZ(G)’,
’motionRotationRateX(rad/s)’, ’motionRotationRateY(rad/s)’, ’

0 motionRotationRateZ(rad/s)’,
’deviceOrientation(Z)’,
’batteryLevel(Z)’]

45

rawWCols = [’locationTimestamp_since1970(s)’, ’locationLatitude(WGS84)’,
’locationLongitude(WGS84)’, ’locationAltitude(m)’, ’

0 locationSpeed(m/s)’, ’locationCourse()’,
’locationVerticalAccuracy(m)’, ’locationHorizontalAccuracy(m)’,

0 ’locationFloor(Z)’,
’accelerometerTimestamp_sinceReboot(s)’, ’

0 accelerometerAccelerationX(G)’,
’accelerometerAccelerationY(G)’, ’accelerometerAccelerationZ(G)

0 ’, ’motionTimestamp_sinceReboot(s)’,
’motionYaw(rad)’, ’motionRoll(rad)’, ’motionPitch(rad)’, ’

0 motionRotationRateX(rad/s)’,
’motionRotationRateY(rad/s)’, ’motionRotationRateZ(rad/s)’, ’

0 motionUserAccelerationX(G)’,
’motionUserAccelerationY(G)’, ’motionUserAccelerationZ(G)’, ’

0 motionAttitudeReferenceFrame(txt)’,
’motionQuaternionX(R)’, ’motionQuaternionY(R)’, ’

0 motionQuaternionZ(R)’, ’motionQuaternionW(R)’,
’motionGravityX(G)’, ’motionGravityY(G)’, ’motionGravityZ(G)’,

0 ’motionMagneticFieldX(T)’,
’motionMagneticFieldY(T)’, ’motionMagneticFieldZ(T)’, ’

0 motionHeading()’,
’motionMagneticFieldCalibrationAccuracy(Z)’, ’

0 activityTimestamp_sinceReboot(s)’, ’activity(txt)’,
’activityActivityConfidence(Z)’, ’activityActivityStartDate(txt

0)’, ’pedometerStartDate(txt)’,
’pedometerNumberofSteps(N)’, ’pedometerAverageActivePace(s/m)’,

0 ’pedometerCurrentPace(s/m)’,
’pedometerCurrentCadence(steps/s)’, ’pedometerDistance(m)’, ’

0 pedometerFloorAscended(N)’,
’pedometerFloorDescended(N)’, ’pedometerEndDate(txt)’, ’

0 altimeterTimestamp_sinceReboot(s)’,
’altimeterReset(bool)’, ’altimeterRelativeAltitude(m)’, ’

0 altimeterPressure(kPa)’, ’batteryState(N)’,
’batteryLevel(R)’, ’deviceID(txt)’]

complexWCols = [’locationTimestamp_since1970(s)’,

46

’accelerometerAccelerationX(G)’, ’accelerometerAccelerationY
0 (G)’, ’accelerometerAccelerationZ(G)’,

’motionYaw(rad)’, ’motionRoll(rad)’, ’motionPitch(rad)’,
’motionRotationRateX(rad/s)’, ’motionRotationRateY(rad/s)’,

0 ’motionRotationRateZ(rad/s)’,
’motionUserAccelerationX(G)’,
’motionUserAccelerationY(G)’, ’motionUserAccelerationZ(G)’,

0 ’motionAttitudeReferenceFrame(txt)’,
’motionQuaternionX(R)’, ’motionQuaternionY(R)’, ’

0 motionQuaternionZ(R)’, ’motionQuaternionW(R)’,
’motionGravityX(G)’, ’motionGravityY(G)’, ’motionGravityZ(G)

0 ’, ’motionMagneticFieldX(T)’,
’motionMagneticFieldY(T)’, ’motionMagneticFieldZ(T)’, ’

0 motionHeading()’,
’motionMagneticFieldCalibrationAccuracy(Z)’, ’

0 activityTimestamp_sinceReboot(s)’, ’activity(txt)’,
’activityActivityConfidence(Z)’, ’activityActivityStartDate(

0 txt)’, ’pedometerStartDate(txt)’,
’pedometerNumberofSteps(N)’, ’pedometerAverageActivePace(s/m

0)’, ’pedometerCurrentPace(s/m)’,
’pedometerCurrentCadence(steps/s)’, ’pedometerDistance(m)’,

0 ’pedometerFloorAscended(N)’,
’pedometerFloorDescended(N)’, ’pedometerEndDate(txt)’, ’

0 altimeterTimestamp_sinceReboot(s)’,
’altimeterReset(bool)’, ’altimeterRelativeAltitude(m)’, ’

0 altimeterPressure(kPa)’, ’batteryState(N)’,
’batteryLevel(R)’, ’deviceID(txt)’]

wCols = [’locationTimestamp_since1970(s)’,
’accelerometerAccelerationX(G)’, ’accelerometerAccelerationY(G)’,

0 ’accelerometerAccelerationZ(G)’,
’motionRotationRateX(rad/s)’, ’motionRotationRateY(rad/s)’, ’

0 motionRotationRateZ(rad/s)’,
’motionHeading()’,
’batteryLevel(R)’]

lCols = [’locationTimestamp_since1970(s)’,

47

’accelerometerAccelerationX(G)’, ’accelerometerAccelerationY(G)’,
0 ’accelerometerAccelerationZ(G)’,

’gyroRotationX(rad/s)’, ’gyroRotationY(rad/s)’, ’gyroRotationZ(rad
0 /s)’, ’batteryLevel(Z)’, ’label(N)’]

folder = ’./data7/’
p2TimeStamp = ’locationTimestamp_since1970’
wTimeStamp = ’locationTimestamp_since1970(s)’

def getCols(k):
return p1Cols if k[0:2] == ’p1’ else wCols if k[0] == ’w’ else p2Cols

0 if k[0:2] == ’p2’ else lCols

def readData(path):
res = {}
dataDir = os.listdir(path)

for fileName in dataDir:
if os.stat(os.path.join(path, fileName)).st_size == 0:

continue
if fileName[0] != ’p’ and fileName[0] != ’w’ and fileName[0] != ’l’

0 :
continue

key = fileName[0:2]
hf(key)
curFile = os.path.join(path, fileName)
print(getCols(key))
csvContent = pd.read_csv(curFile,

usecols=getCols(key))
print(list(csvContent))

print("============" + key + "========" + str(len(list(csvContent))))

res[key] = csvContent
return res

48

rawData = readData(folder)

def visualizeData(rawData):
hf("Visualize Data")
for key in rawData.keys():

print(key + ": " + str(len(rawData[key])))
display(HTML(rawData[key].head(3).to_html()))

visualizeData(rawData)

def getCurrentTimeStampHeader(k):
return pTimeStamp if k[0] == ’p’else wTimeStamp if k[0] == ’w’ else

0 ’NA’

return p2TimeStamp if k[0:2] == ’p2’else wTimeStamp

def findTimeInterval(rawData):
hf("Find global time interval")
maxStart = 0.0
minEnd = float("inf")
for key in rawData.keys():

maxStart = max(maxStart, rawData[key][0:1]
[getCurrentTimeStampHeader(key)].values[0])

minEnd = min(minEnd, rawData[key][-2:-1]
[getCurrentTimeStampHeader(key)].values[0])

print("start Time: " + str(maxStart))
print("end Time: " + str(minEnd))
return maxStart, minEnd

start, end = findTimeInterval(rawData)

def preProcessingDiscardGarbageTime(rawData, startTime, endTime):
hf("Disgard out of bound time")

49

for key in rawData.keys():
df = rawData[key]
df.drop(df[df[getCurrentTimeStampHeader(key)]

<= startTime + 1].index, inplace=True)
df.drop(df[df[getCurrentTimeStampHeader(key)]

>= endTime - 1].index, inplace=True)
df.drop(columns=[getCurrentTimeStampHeader(key)], inplace=True)

preProcessingDiscardGarbageTime(rawData, start, end)

visualizeData(rawData)

singleMap = {}

def calSingle(df):
res = []
res = np.append(res, df.mean().to_numpy())
res = np.append(res, df.max().to_numpy())
res = np.append(res, df.min().to_numpy())
res = np.append(res, df.std().to_numpy())

If the accuracy is not that high enough, consider adding energy, and

0 other features in

return res

Pre process to calculate features, and save as key-features.csv

def preProcessingCalculateFeatures(rawData):
X = []
Y = []
endFlag = False
i = 127
while endFlag == False:

i += 1
if i % 64 != 0:

50

continue
cur = []
for key in rawData.keys():

df = rawData[key]
if(i >= len(df)):

endFlag = True
break

skipX = 0
if key == "la":

curLa = df[’label(N)’].iloc[i]
if curLa == 0:

skipX = 1
break

Y.append(curLa)
continue

cur = np.append(cur, calSingle(df[i-128: i]))

if (endFlag != True) and (skipX == 0):
X.append(cur)

return X, Y

X, Y = preProcessingCalculateFeatures(rawData)

def saveCSV():
np.savetxt(folder+"X.csv", X, delimiter=",")
np.savetxt(folder+"Y.csv", Y, delimiter=",")

print(type(X))
print(len(X))
print(len(Y))
print(Y)

saveCSV()

51

warnings.filterwarnings("ignore")

classifiers = [
KNeighborsClassifier(5),
SVC(kernel="rbf"),
DecisionTreeClassifier(),
RandomForestClassifier(),
GaussianNB(),
RidgeClassifier(),
LogisticRegression(max_iter=200)

]

def evalRes(X, Y):
X_train, X_test, y_train, y_test = train_test_split(

X, Y, test_size=0.33, random_state=12)

f_score(X_train, X_test, y_train, y_test)
estimators = [

(’RFC’, RandomForestClassifier(n_estimators=500, random_state=42)),
(’KNC’, KNeighborsClassifier(5)),
(’DTC’, DecisionTreeClassifier()),
(’SVC’, SVC(kernel="rbf")),
(’RC’, RidgeClassifier()),

]
clf = StackingClassifier(

estimators=estimators,
final_estimator=GradientBoostingClassifier()

)
s = time.time()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
e = time.time()
print(f"time consumed: {round(e-s,3)}" + " for stacking classifier")
print(f1_score(y_true=y_test, y_pred=y_pred, average="macro"))

print(clf.predict(X))

52

cf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(cf_matrix, annot=True)

print("===========")
sns.heatmap(cf_matrix/np.sum(cf_matrix), annot=True,

fmt=’.2%’, cmap=’Blues’)
return clf

def f_score(X_train, X_test, y_train, y_test):
for clf in classifiers:

s = time.time()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
f = f1_score(y_true=y_test, y_pred=y_pred, average="macro")
e = time.time()
print(

f"Score: {round(f,3)} \t Time(in secs): {round(e-s,3)} \t
0 Classifier: {clf.__class__.__name__}")

print("Acc:" + str(accuracy_score(y_test, y_pred)))
print("Prec:" + str(precision_score(y_test,

y_pred, average=’macro’, zero_division=1)))
print("Recall:" + str(recall_score(y_test,

y_pred, average=’macro’, zero_division=1)))

Multi agent

clf = evalRes(X, Y)

def optimizeDutyCycleEval(clf, Y, full_Y_pred):
skip = 1
prevStat = None

cur = 3

newY_pred = []
cnt = 0
skipmax = 0

53

for rec in full_Y_pred:
if cur < skip:

newY_pred.append(prevStat)
cur += 1
cnt += 1
continue

else:
cur = 0
if rec == prevStat:

skip += 1
else:

skip = skip // 2 + 1

skipmax = max(skipmax, skip)
newY_pred.append(rec)
prevStat = rec

print(len(Y))
print(cnt)
print(skipmax)
print(f1_score(y_true=Y, y_pred=newY_pred, average="macro"))

optimizeDutyCycleEval(clf, Y, clf.predict(X))

def lowIntervalEval(clf, Y, full_Y_pred):
skip = 10
prevStat = None

cur = 100

newY_pred = []
cnt = 0
skipmax = 0
for rec in full_Y_pred:

if cur < skip:
newY_pred.append(prevStat)

54

cur += 1
cnt += 1
continue

else:
cur = 0
newY_pred.append(rec)
prevStat = rec

print(len(Y))
print(cnt)
print(skipmax)
print(f1_score(y_true=Y, y_pred=newY_pred, average="macro"))

lowIntervalEval(clf, Y, clf.predict(X))

Pre process to calculate features, and save as key-features.csv

def calSingleFunc(rawData):
X= np.array([], dtype=np.float64)

X = []
Y = []
endFlag = False
i = 127
while endFlag == False:

i += 1
if i % 64 != 0:

continue
cur = []
for key in rawData.keys():

df = rawData[key]
if(i >= len(df)):

endFlag = True
break

if key == "la":
Y.append(df[’label(N)’].iloc[i])
continue

if key != "":

55

continue
cur = np.append(cur, calSingle(df[i-128: i]))

if(endFlag != True):
X.append(cur)

return X, Y

sinX, sinY = calSingleFunc(rawData)

Single agent

print(len(sinX))
print(len(sinX[0]))
clf = evalRes(sinX, sinY)

56

