

Approachable Code: Developing With Abstraction in Mind

Structuring a Club for Busy Introverts

A Thesis Prospectus

In STS 4500

Presented to

The Faculty of the

School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By

Ian Harvey

October 27, 2022

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Benjamin Laugelli, Department of Engineering and Society

Rosanne Vrugtman, Department of Computer Science

2

Introduction

 The Student Game Developers club (SGD) at the University of Virginia (UVA) is a club

made up of a variety of individuals, each passionate to contribute towards making video games.

It is a club reliant on the necessity that its members dedicate significant amounts of time each

semester towards this process despite their already busy schedules. This entails the learning of

niche, complex software that many find scary while learning. It follows that the club struggles to

retain the members it manages to bring in each year. In order to ensure the club’s continued

existence, its members are tasked with structuring it so that the technically complex aspects of

game design do not drive away individuals due to their fears of technical inadequacy.

 After analyzing the current structure of SGD’s projects, I propose the implementation of

known professional coding standards to reduce the effect unfamiliarity has on new members.

These standards include naming conventions, code flexibility, hierarchical structuring, and

example-based programming that simplify the process of understanding and writing code. As

each SGD project is reliant on both technical and social aspects, an understanding of how both

factors work together is critical for the technical project’s success. To develop this

understanding, I will use the STS Framework of actor-network theory to determine how current

niche and messy code produces an environment where new members do not see a benefit to

working on these projects.

 Understanding the technical project as a solution to the technical problem, but not the

social aspect, increases the likelihood the problem will reappear as new people present new

coding styles to the club. Therefore, addressing both the social and technical aspects of this

challenge produces a more lasting and proper solution to this problem. In the next sections, I

examine, first, a technical project aimed at improving the club’s code structure and, second, an

3

STS project examining the social factors of this challenge. The insights gained from observing

sociotechnical aspects present in the STS project will allow further tuning of the technical project

to accommodate new members.

Technical Project

 The Student Game Development club’s code consists of unchecked, niche, hastily put

together script files that are extremely difficult for an outsider to understand. James Connors

(2023), former SGD club president, attributes this in part to the fact that the club’s game

directors, “won’t make a very maintainable codebase when they start.” This is in part because the

club’s directors are often asked to independently create a demo to present to the club at the start

of the semester in the hopes of getting people interested in joining their project. This results in

the creation of poorly written, barely functional code that serves as the basis of the team’s project

for its entire duration. Code like this is a problem because a codebase’s readability plays a

significant role in a programmer’s comprehension capabilities (Johnson et al., 2019), and when

code becomes incomprehensible, a programmer finds it much more difficult to contribute to a

codebase (Storey, 2005). Inexperienced members are being asked to add onto this codebase, but

they often struggle to do so. Calls to misnamed sections of code do not provide what an

individual would expect them to provide. Certain scripts are too functionally rigid to be reused

anywhere else. The placement of files inside of the folder hierarchy is a jumbled mess. Overall,

the code is unapproachable by anyone who did not themselves write it.

 Directors have attempted to address this issue through the use of version control,

allowing them to review the code and ensure that it is of quality. This, in theory, prevents bad

code from ever being used in the main build that everyone bases their changes on. It also allows

4

for work on simultaneous changes so long as they do not overlap in what they are changing,

theoretically increasing the project’s throughput. But because of time crunches and a lack of

specification for good code format, directors are often left feeling forced to accept bad code out

of a fear that their projects will not progress without it. This causes the codebase to become

increasingly unapproachable throughout the semester, reducing work output and efficiency, and

damaging the quality of the final game.

 This technical project tries to avoid that pitfall by introducing a strict standard for code

quality, introducing requirements for naming conventions and script reusability, and providing

template code for programmers to use to base their changes on. When it comes to code

comprehensibility, individuals newer to programming often fail to map value to code when it is

named incorrectly (Gross and Kelleher, 2009). In addition, when they are provided with code

similar to what they need to produce, they are able to understand the code much better (Sadowski

et al., 2015). In addition to this, all members will be made aware of the code that was introduced

into the main branch throughout the week during team meetings. The code’s functionality will be

explained, its current usage will be demonstrated, and suggestions on how it may further be used

or applied to current jobs will be provided. These implementations build on the version control

approach and may provide as an example as to how one may more easily attain the

aforementioned benefits of said practice.

 The evaluation of success for this projection will be dependent on three factors. First, the

rate over a one-month period at which non-developer individuals contribute to the codebase in

this project in comparison to the rate at which they contributed within previous projects. Second,

the number of members initially interested in programming for the project who subsequently did

not contribute anything throughout the course of the semester. Third, the rate and reason for

5

which members of the group required assistance from the director of the project in implementing

their code. These three factors respectively will help evaluate the ability of new members to

comprehend and contribute to the codebase, the likelihood an individual was able to contribute to

the codebase, and finally the level of standalone independence new members have when

introduced to the codebase.

STS Project

 Game development is a highly technical process that requires a carefully procured subset

of niche programmatic knowledge in order for one to succeed. The Student Game Development

club at UVA is a club that takes the complex process of game development and attempts to make

the experience of working in such a field more accessible to students interested in doing so. SGD

experiences a consistent pattern in which they begin a semester full of individuals interested in

participating in such a project and end said semester with a fraction of them remaining. Multiple

meeting notes of officers from the club recognize this phenomenon and make comments

wondering why exactly it always tends to happen (Student Game Developers at UVA, 2019).

 It is believed that people leave the club for reasons such as the lack of gender diversity

within the club, the stress of an added responsibility the projects present, or the overall

intimidation factor of learning Unity, the game engine software the club uses to produce its

games (Xu, 2023). While these factors certainly contribute to attrition in the club and working to

address them has slightly reduced its effect, they overlook the effects that other more pressing

factors have on people’s decisions to stick with the club. For one, the individuals joining the club

by nature of the club are comprised mostly of introverted individuals. Introverted individuals

tend to stick with activities that they find more beneficial to personal development (Toma, 2015,

6

p. 123). Secondly, college students stand to benefit academically from good time management in

their already busy schedules (Britton and Tesser, 1991). Finally, the club’s code is not written

with a quality that makes changes easily implementable, causing them to take more time than

initially intended.

 In looking at these factors on top of the currently considered factors, one is able to

develop a better overall understanding as to why the club consistently fails to maintain a stable

membership count. Overall, new members consider a single benefit in joining the club: learning

game development. However, this single benefit is largely outweighed by the numerous

detriments joining the club presents. This, altogether, makes it unlikely that new members will

choose to stick with the club.

 Using the science, technology, and society (STS) framework of actor-network theory

(ANT) I plan to argue how it is a lack of diversity, added stresses, intimidation, introverted

personalities, time management, and poor code quality that all comes together to cause the club

to fail in this avenue. More specifically, all of these factors work in tandem as observable

detriments to new members who join the club. As they consider these elements together, they are

convinced to stop contributing to the club, thus further contributing to the club’s membership

attrition. The theory I will use to argue this, ANT, is a theory developed by Michel Callon,

Bruno Latour, and John Law. It makes the claim that engineers build networks comprised of

actors, both human and non-human in nature, that relate to certain parts of a network such as

aspects in technical, social, natural, and conceptual standings. ANT makes the claim that the

relationship between all of these actors in a network is what determines whether or not a network

succeeds (Cressman, 2009). When supporting my argument, I will draw on information gathered

primarily from interviews with club officers, responses to club wide surveys, and reports on

7

sociology and psychology, such as Shannon Paige Toma’s report on the effect personality has on

college experiences (Toma, 2015).

Conclusion

 The results of the technical project will provide insights into the effect introducing

standardized coding has on the likelihood that an individual will participate in, and continue

participating in, the activities of clubs with a high technical barrier to entry. My STS project will

provide insight into the reasons why individuals currently choose to abandon participation in said

club in the first place. With the results of the STS project, I will be provided a better

understanding of the factors affecting individuals’ choices to leave the club and will be able to

apply my knowledge regarding their tendencies and desired environments to my technical project

in order to alter the environment of the club to their expected liking. In applying my knowledge

from the STS project to the technical project, I am able to reduce the effects that the technically

complex environment of SGD has on new members by making the code of the club more

approachable. In turn, the new environment will encourage people to stay in the club and help

resolve the club’s problems with attrition.

8

References

Britton, B., & Tesser, A. (1991). Effects of time-management practices on college grades.

Journal of Educational Psychology, 83, 405–410. https://doi.org/10.1037/0022-

0663.83.3.405

Connors, J. (2023, October 19). Interview with James Connors. personal.

Cressman, D. (2009, April). A brief overview of Actor-Network Theory: Punctualization,

heterogeneous engineering & translation.

Gross, P., & Kelleher, C. (2009). Non-programmers identifying functionality in unfamiliar code:

Strategies and barriers. https://openscholarship.wustl.edu/cse_research/19

Johnson, J., Lubo, S., Yedla, N., Aponte, J., & Sharif, B. (2019). An empirical study assessing

source code readability in comprehension. https://doi.org/10.1109/ICSME.2019.00085

Sadowski, C., Stolee, K. T., & Elbaum, S. (2015). How developers search for code: A case

study. Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, 191–201. https://doi.org/10.1145/2786805.2786855

Storey, M.-A. (2005). Theories, methods and tools in program comprehension: Past, present and

future. 13th International Workshop on Program Comprehension (IWPC’05), 181–191.

https://doi.org/10.1109/WPC.2005.38

Student Game Developers at UVA. (2019, September 22). Meeting notes 9/22. personal.

Toma, S. P. (2015). Personality and the College Experience: How Extraversion-Introversion

Measures Shape Student Involvement and Satisfaction. [Doctoral Dissertation, University

of California, Los Angeles]. UCLA Electronic Theses and Dissertations

Xu, C. (2023, October 22). Interview with Catherine Xu. personal.

