Degradation Study of Cu-SSZ-13 Selective Catalytic Reduction Catalysts

А

Dissertation

Presented to

the faculty of the School of Engineering and Applied Science University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

Yu-Ren Chen

January 2023

APPROVAL SHEET

This

is submitted in partial fulfillment of the requirements for the degree of

Author:

Advisor:

Advisor:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Accepted for the School of Engineering and Applied Science:

J-62. W-+

Jennifer L. West, School of Engineering and Applied Science

Acknowledgements

First, I would like to thank my advisor, Prof. William S. Epling. When I failed and was down multiple times in my PhD life, he gave me positive energy and encouraged me to face the challenges. I could not finish my PhD without his encouragement and support. In addition, his fruitful ideas always enlighten me, and his teaching style gives me different angles to see through a problem. He equipped me all the tools to become a better researcher. I am very thankful to become one of his students.

Next, I would like to thank Prof. Robert J. Davis and Prof. Christopher Paolucci. They pointed out problems in my research during group meetings, gave me different opinions when I interpreted my data, and gave me lessons when I was confused in the discussions. These are valuable experiences in my PhD journey.

I would like to thank all my lab members, Dr. Yasser Jangjou, Dr. Yuntao Gu, Dr. Ryan Zelinsky, Silvia Marino, Sugandha Verma, Carlos Weiler, Fatima Mahnaz, Natalia Diaz Montenegro, and Kanika Meena. Thank you for helping me when I faced problems and welcomed me like I was in a big family. I want to give special thanks to Silvia and Sugandha. Thank you for fully supporting and helping me at the end of my PhD journey. I also want to thank all the postdoctoral researchers and visiting scholars, Dr. Marina Cortés-Reyes, Dr. Lai Wei, Dr. Zhuoran Gan, Dr. Poonam Rani, Prof. Izabela Pieta, Sergio Monlina Ramírez, Umberto Iacobone, and Costanza Preziosi. I would like to thank all of you for giving me help and support, especially for Dr. Marina Cortés-Reyes and Dr. Lai Wei, in my PhD journey. Thank you for making my PhD life wonderful. Finally, I want to thank Keka Mandal and Asanka Wijerathne who cooperated with me in the new project. Thank you for helping me and giving me research input. I also want to thank all the students in Prof. Paolucci and Prof. Davis groups, especially for Dr. Lu Yang, Dr. Gordon

Brezicki, Colby Arthur Whitcomb, and Konstantin Mamedov. Thank you for inspiring me and teaching me all the characterization techniques I need.

I want to thank my funding company Cummins Inc. and researchers in the company, Dr. Ashok Kumar, Dr. Di Wang, Dr. Rohil Daya, and Dr. Krishna Kamasamudram. Thank you for funding my PhD project and giving me research guidance. I also want to thank my internship manager, Abraham J Yanez-Mckay, and the SPA team in Cummins. Thank you for the internship opportunity and a chance to work with talented people. I have learned a lot during the internship.

I am extremely lucky to have so many Taiwanese people around when I first came to UVA. I want to give special thanks to Dr. Kevin Chang. He took care of me when I first came to UVA. He also inspired me how to become a better researcher. I am grateful to have him as my senior and as my important friend.

Finally, I want to thank my parents who allowed me to study abroad. I feel very sorry that I could not go back to Taiwan and see my parents in these past three years because of the pandemic. I am grateful that they fully understood this and unconditionally supported me physically and mentally in my PhD life, especially during the pandemic. I can only say thank you from the bottom of my heart.

Abstract

 NO_x reduction in a diesel engine after-treatment is challenging. Unlike three-way catalysts in a gasoline engine that operate under stoichiometric conditions, where NO_x can react with stoichiometric amounts of CO and hydrocarbons, in diesel exhaust there is an excess of O_2 under which conditions three-way catalysts are ineffective at reducing NO_x . The current solution for NO_x reduction in diesel engine exhaust is selective catalytic reduction of NO_x by NH_3 (NH_3 -SCR). The current commercialized catalyst for the NH_3 -SCR reaction is Cu-SSZ-13.

Even though many advantages can be found with Cu-SSZ-13 catalysts compared to others, sulfur poisoning is still a problem. In this work, we first measured SCR and NH₃, NO, CO, and SO₂ oxidation performance after SO₂ or SO₂ + SO₃ exposure on catalysts that had been exposed to mild hydrothermal aging conditions. We found there is a strong correlation between the extent of sulfur poisoning and the catalyst oxidation ability. The results suggest that with a great extent of SO₂ oxidation, or more oxidation of SO_x species on the catalyst surface, more extensive catalyst poisoning occurs.

Next, we studied which Cu species were more strongly affected by sulfur. Calculations performed by Keka Mandal, Asanka Wijerathne and Professor Paolucci suggest that Cu dimers strongly bind sulfur. A CO titration method and diffuse reflectance ultra-violet spectroscopy (DR UV-Vis) were used to evaluate a change in amount of static Cu dimers sites before and after sulfur exposure. We found out that Cu dimers were lost after SO₂ or SO₂ + SO₃ exposure and there appear to be at least two different Cu/sulfur species based on different impacts of regeneration after SO₂ or SO₂ + SO₃ exposure conditions.

Finally, we studied if different exhaust gas components might have different effects on mild hydrothermal aging. We found that mild hydrothermal aging with ethylene can lead to different oxidation conversion and slightly different high-temperature SCR performance compared to mild hydrothermal aging without any in the exhaust mixture. We believe this is due to different Cu site distributions during mild hydrothermal aging with and without ethylene. We further propose that during mild hydrothermal aging with ethylene, Z2Cu can be transformed back to ZCuOH.

Table of Contents

Abstract	III
List of Figures	VII
List of Tables	XII
Chapter 1. Introduction and Background	1
1.1 Diesel engine	
1.2 Diesel engine emissions and regulations	
1.3 Diesel engine after-treatment	
1.4 NH ₃ -SCR chemistry	
1.5 NH ₃ -SCR catalysts	7
1.6 Cu active sites on Cu-CHA	
1.6 NH ₃ -SCR mechanism on Cu-CHA	9
1.7 Deactivation mechanisms of Cu-CHA	
1.8 Research Objectives	
Chapter 2 How Changes in Cu-SSZ-13 Catalytic Oxidation Activity via Mil Hydrothermal Aging Influence Sulfur Poisoning Extents	l d 15
2.1 Abstract	
2.2 Introduction	
2.3 Experimental Methods	
2.4 Results and Discussion	
Catalyst NH ₃ -SCR and CO, NO, NH ₃ and SO ₂ oxidation performance befor	e sulfur exposure 22
How catalyst surface SO ₂ oxidation activity impacts SO ₂ poisoning	
How catalyst surface SO_2 oxidation activity impacts SO_2 poisoning in the planet.	resence of water
A.5.0. 1 ·	
2.5 Conclusions	
2.6 Acknowledgements	
Chapter 3. Probing Cu Dimers before and after Sulfur Poisoning	
3.1 Introduction	
3.2 Experimental Methods	
3.3 Results and discussion	
Sulfur poisoning study without regeneration after sulfur exposure	

Sulfur poisoning study with regeneration after sulfur exposure	48
3.4 Conclusions	50
3.5 Acknowledgements	50
Chapter 4. Ethylene Effect on Cu Sites Transformation during Hydrothermal Aging	51
4.1 Introduction	51
4.2 Experimental Methods	53
4.3 Results and Discussion	56
Catalyst oxidation activity decreases less after HTA + C_2H_4 compared to after just HTA	56
4.4 Conclusions	61
4.5 Acknowledgements	62
References	63
Appendix A. Supporting Information of Chapter 2. How Changes in Cu-SSZ-13 Catalyti	c
Oxidation Activity via Mild Hydrothermal Aging Influence Sulfur Poisoning Extents	79

List of Figures

Fig. 1.1. Heavy-duty FTP transient cycle.	3
Fig. 1.2. US EPA urban dynamometer driving schedule (FTP-75)	3
Fig. 1.3. Tier 3 regulations of average federal test procedure (FTP) NMOG + NO _x standards fo	r
(a) light-duty vehicles and (b) heavy-duty vehicles [7].	4
Fig. 1.4. NO _x conversion over Cu, Fe, and vanadium based SCR reaction as a function o	f
temperature [15]	7
Fig. 1.5. CHA type crystal topology [36].	8
Fig. 1.6. Standard SCR performance over a Cu-SSZ-13 catalyst with $Si/Al = 12$ and $Cu/Al = 0.13$	\$.
Reactant feed contains 350 ppm NO, 350 ppm NH ₃ , 14% O ₂ , and 2.5% H ₂ O balanced with N ₂ a	ıt
a gas hourly space velocity (GHSV) of 400,000 h ⁻¹ [25].	9
Fig. 1.7. Low-temperature SCR catalytic cycle [33]	1
Fig. 2.1. (a) NH ₃ -SCR and (b) NH ₃ , (c) NO, (d) CO, and (e) SO ₂ oxidation for the degreened and	d
HTA catalysts before sulfur exposure. Reaction conditions are described in Table 2.1	4
Fig. 2.2. DRIFTS spectra of (a) NH ₃ oxidation and (b) He purge at 300 °C after 10% O	2'
pretreatment at 500 °C for 1 h and 1000 ppm NH ₃ adsorption at 300 °C for 1 h 27	7
Fig. 2.3. SCR results after 50 ppm SO ₂ exposure at 400 °C on (a) degreened and (b) HTA catalysts	5.
The comparison between SCR conversion after SO ₂ exposure at 400 °C on degreened and HTA	ł
catalysts is in (c). The SCR reaction conditions are described in Table 2.1	8
Fig. 2.4. SCR results after 25 ppm SO ₂ and 25 ppm SO ₃ exposure at 200 °C for 6.5 h, (a) and (b)),
and 50 ppm SO ₂ exposure at 200 $^{\circ}$ C for 6.5 h, (c) and (d), on degreened, (a) and (c), and HTA, (b)
and (d), catalysts. The SCR reaction conditions are described in Table 2.1	1

Fig. 2.5. (a) SCR results after 50 ppm SO ₂ exposure at 400 $^\circ$ C for 6.5 h with 10 and 1% O ₂ on
degreened catalysts. (b) NH ₃ oxidation results with 10 and 1% O ₂ on degreened catalysts. Reaction
conditions are shown in Table 2.1
Fig. 2.6. SCR results obtained using the degreened and HTA catalysts after 50 ppm SO ₂ exposure
in the presence of 7% water at (a) 200 °C and (b) 400 °C for 6.5 h. The SCR reaction conditions
are described in Table 2.1
Fig. 2.7. SCR results comparing exposure to 50 ppm SO ₂ in the presence and absence of 7% H ₂ O
for 6.5 h on the (a) degreened catalyst at 200 °C, (b) HTA catalyst at 200 °C, (c) degreened catalyst
at 400 °C, and (d) HTA catalyst at 400 °C. The SCR reaction conditions are described in Table
2.1
Fig. 2.8. SCR results after exposing the HTA catalyst to 50 ppm SO ₂ for 6.5 h with different water
concentrations: 0, 0.5, and 7% at (a) 200 °C and (b) 400 °C. The SCR reaction conditions are
described in Table 2.1
Fig. 3.1. (a) NO _x conversions and (b) Arrhenius plots obtained during the SCR reaction with
conditions described in Table 3.2. Catalysts include before sulfur exposure and with and without
regeneration after SO ₂ and SO ₂ + SO ₃ exposure
Fig. 3.2. DR UV-Vis spectra of the fresh catalyst before, during, and after a 400 °C dry air
pretreatment. The spectra before and after the 400 °C dry air pretreatment were collected at 27 °C.
(b) CO titration with 7% H ₂ O included on the hydrothermally aged Cu-SSZ-13 catalyst. The gas
concentration was 200 ppm CO, 7% H_2O and balance N_2 . This CO titration experiment was done
at 200 °C
Fig. 3.3. DR UV-Vis spectra obtained from the Cu/SSZ-13 catalysts before and after SO ₂ and SO ₂
+ SO ₃ exposure, with and without regeneration. (a) Comparison spectra of catalysts before and

after SO_2 and $SO_2 + SO_3$ exposure without regeneration. (b) Comparison spectra with and without
regeneration after SO ₂ exposure. (c) Comparison spectra with and without regeneration after SO ₂
+ SO ₃ exposure. (d) Comparison of all 5 spectra. All 5 spectra were collected at 27 °C after a 400
°C dry air pretreatment for 1 h 47
Fig. 4.1. Comparison of C_2H_4 concentration change during HTA + C_2H_4 . The aging condition is
detailed in Table 4.1 in the Experimental Methods section. In one experiment 1% O2 was included
in the other 10% O ₂
Fig. 4.2. Comparison of (a) SCR performance and (b) NH ₃ oxidation performance before and after
HTA and HTA + C_2H_4 and (c) the SCR performance after HTA + NH_3 or NO or CO. The aging
conditions are listed in Table 4.1 and the SCR reaction conditions are listed in Table 4.2. Note that
fresh catalyst was not hydrothermally aged57
Fig. 4.3. DRIFTS spectra of NH_3 adsorption on fresh (before HTA), HTA, and HTA + C_2H_4
samples. The aging conditions are listed in Table 4.1. NH ₃ adsorption conditions: 1000 ppm NH ₃
and balance He at 120 °C
Fig. 4.4. (a) NH ₃ -SCR, (b) NH ₃ oxidation, (c) NO oxidation, and (d) CO oxidation performance
comparison between the catalyst before HTA, the catalyst after 50 h HTA and the catalyst after
additional 25 h HTA + C ₂ H ₄ after 50 h HTA. The SCR, NH ₃ oxidation, NO, and CO oxidation
conditions are listed in Table 4.2. The HTA conditions are listed in Table 4.1
Fig. 4.5. DRIFTS spectra of NH ₃ adsorption on fresh (before HTA), 50 h HTA, and an additional
25 h HTA + C_2H_4 after 50 h HTA samples. The aging conditions are listed in Table 4.1. NH ₃
adsorption conditions: 1000 ppm NH_3 and balance He at 120 °C
Fig. A.1. N ₂ O formation comparison between degreened and HTA pretreated Cu-SSZ-13 catalysts
during NH ₃ -SCR reactions

Fig. A.2. DRIFTS results obtained during (a) NH₃-TPD and (b) NH₃-TPO experiments on the Cu-SSZ-13 catalyst after scraping from a monolith brick. Both experiments were conducted after oxygen pretreated at 500 °C for 1 h, cooling to 120 °C in He and then 1000 ppm NH₃ balance in He. For the TPD, He was used while 10% O₂ balance in He was used in the TPO experiment. The Fig. A.3. DRIFTS NH₃ adsorption spectra comparison between the degreened and HTA catalysts in (a) the T-O-T vibration region and (b) the Brønsted and Lewis acid sites region. The spectra were normalized separately in these two regions. In (a), the spectra were normalized using the 900 Fig. A.4. NH₃ oxidation conversion over the degreened catalyst before and after sulfur exposure at 400 °C SO₂. During the NH₃ oxidation experiment, 10% O₂, 7% H₂O, 8% CO₂, 200 ppm NH₃ Fig. A.5. A comparison of SCR results after (a) 25 ppm SO2 and 25 ppm SO3 exposure at 200 °C and after (b) 50 ppm SO₂ exposure at 200 °C for the degreened and HTA catalysts. The SCR Fig. A.6. A comparison of SCR results after a 50 ppm SO₂ exposure at 200 and 400 °C on the (a) degreened and (b) HTA catalysts. The SCR reaction conditions are described in Table 1....... 82 Fig. A.7. A comparison of degreened, 10 h HTA and HTA (for 25 h) after (a) 200 °C and (b) 400 $^{\circ}$ C SO₂ + H₂O exposure. The NH₃ oxidation comparison before sulfur exposure between three samples is shown in (c). The SCR and NH₃ oxidation conditions are listed in the experimental

List of Tables

Table 2.1 Reaction conditions used 2	20
Table 3.1 Pretreatment conditions	41
Table 3.2 Reaction conditions used 4	41
Table 3.3 SCR reaction activation energies and pre-exponential factors measured using catalys	sts
with different sulfur exposure conditions	44
Table 3.4 CO titration results after different sulfur exposure conditions	45
Table 4.1 Mild hydrothermal aging at 600 $^{\circ}$ C for 25 h with different exhaust conditions	54
Table 4.2 Reaction conditions used 5	54

Chapter 1. Introduction and Background

1.1 Diesel engine

Internal combustion engine vehicles are widely used. Fuel is combusted in a chamber and the high temperature and pressure produced during combustion expands the combustion gases, which applies force to a piston and forces the piston to move, and this mechanical energy is used to move the vehicle. The chemical energy stored in the fuel thus converts to mechanical energy, powering the vehicles.

Diesel and gasoline engines are two common types used in internal combustion engine vehicles. The differences between these two engines are different air-to-fuel ratios and how combustion is induced. The diesel engine is a compression-ignition engine. Air is injected to a combustion chamber and compressed to raise temperature. Because the temperature is so high, when injected, the fuel is ignited. High air-to-fuel ratios are used, ranging from near stoichiometric at 14:1 to as high as 25:1 [1]. The gasoline engine is a spark-ignition engine. Air is mixed with fuel and injected into a combustion chamber and the fuel is ignited by a spark. High air-to fuel ratios, those beyond the stoichiometric amount, are not used [1].

1.2 Diesel engine emissions and regulations

The diesel engine is more fuel efficient compared to the gasoline engine and therefore it generates less carbon dioxide (CO₂) [2]. Due to the inhomogeneous mixing of air and fuel in the combustion chamber, there is incomplete combustion of fuel which leads to soot, some unburned hydrocarbons, and carbon monoxide (CO). In addition, high temperature and pressure inside the combustion chamber provide an environment for nitrogen oxides (NO_x) production, which includes nitric oxide (NO) and nitrogen dioxide (NO₂). Nitrogen (N₂) and oxygen (O₂) is usually

inert in air, but they react when the temperature is high enough through the Zeldovich mechanism [3]. Sulfur dioxide (SO₂) is another common emission. Sulfur compounds are in the diesel fuel and the lubricant oil. S levels in the fuel are regulated to under 15 ppm [4].

These emissions can lead to environmental and health problems if not properly treated. To evaluate these emissions, a common method used is the federal test procedure (FTP) for heavyduty vehicles, defined by the Environmental Protection Agency (EPA). The test was developed to take into account the driving patterns of different trucks and buses in different cities. The testing cycles include New York Non-Freeway (NYNF), Los Angeles Non-Freeway (LANF), Los Angeles Freeway (LAFY), and a repetition of the first NYNF. The cycle is described in Fig. 1.1 [5]. In terms of light-duty vehicles, the FTP-75 is commonly used. The testing cycle includes a cold start transient phase, stabilized phase, and a hot start phase. The cycle is described in the Fig. 1.2 [6].

Fig. 1.1. Heavy-duty FTP transient cycle.

Fig. 1.2. US EPA urban dynamometer driving schedule (FTP-75).

The current regulation for an on-road vehicle is the Tier 3 emission standards. It includes nonmethane organic gasses (NMOG), NO_x, and particulate matter (PM) standards for light and heavyduty vehicles, with an end date to meet these of 2025. These standards are meant to reduce volatile organic compounds and NO_x by 80% and PM by 70% compared to 2014 levels, if the vehicle and fuel quality are meeting the standards [7]. The Tier 3 regulations plots of NMOG + NO_x for lightduty and heavy-duty vehicles are shown in 1.3 (a) and (b).

Fig. 1.3. Tier 3 regulations of average federal test procedure (FTP) NMOG + NO_x standards for (a) light-duty vehicles and (b) heavy-duty vehicles [7].

1.3 Diesel engine after-treatment

To meet these emission regulations, a catalytic after-treatment system is currently used to reduce emissions from a diesel engine. Although the arrangement and setup might differ, typically it includes a diesel oxidation catalyst (DOC), a diesel particular filter (DPF), a selective catalytic reduction (SCR) catalyst, and an ammonia slip catalyst (ASC). The DOC is mainly used to oxidize unburned hydrocarbons and CO into CO₂ and water (H₂O). It also oxidizes NO to NO₂ and SO₂ to sulfur trioxide (SO₃). The DPF is used to filter soot. The SCR catalyst is used to reduce NO_x by using ammonia (NH₃), which comes from urea decomposition. Lastly, the ASC is used to oxidize

any residual NH₃ slipping by the SCR catalyst. Even though the current technologies have improved over the last two decades, and they meet the current regulations, more stringent regulations in future years drive the need for catalyst research and improvement.

1.4 NH₃-SCR chemistry

NO_x reduction in the diesel engine after-treatment is challenging. The traditional three-way catalyst used in gasoline engine after-treatment is not sufficient to reduce NO_x in diesel engine exhaust because the excess O₂ removes reductants that would otherwise be used to reduce NO_x. The current solution for NO_x reduction is the selective catalytic reduction of NO_x by NH₃ (NH₃-SCR). This technique requires NH₃ as a reductant, as mentioned above from the decomposition of injected urea into the exhaust upstream of the SCR catalyst. The urea decomposition includes two different steps, thermolysis of urea and hydrolysis of isocyanic acid, shown in the following equations [8,9]:

$$(NH_2)_2CO \rightarrow NH_3 + HNCO \tag{1-1}$$

$$HNCO + H_2O \rightarrow NH_3 + CO_2 \tag{1-2}$$

The SCR reactions consist of standard SCR, fast SCR, and NO₂ SCR reactions, depending on the NO₂ to NO ratio. NO₂ is not common in the diesel exhaust, but the DOC can oxidize NO into NO₂ and increase the NO₂ to NO ratio. If the NO₂ to NO ratio in the feed is low, standard SCR is the normal reaction considered [10,11]. The reactions are listed below:

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O \text{ (standard SCR)}$$
(1-3)

$$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O \text{ (fast SCR)}$$
(1-4)

$$4NH_3 + 2NO_2 + O_2 \rightarrow 3N_2 + 6H_2O (NO_2 SCR)$$
(1-5)

Other than the main SCR reactions, there are several side reactions that might occur. The most notable side reaction is NH₃ oxidation which becomes significant at higher temperatures. In addition, NH₃ oxidation can lead to undesired product, NO. Possible NH₃ oxidation reactions are shown below [10,12,13]:

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$
 (1-6)

$$4\mathrm{NH}_3 + 5\mathrm{O}_2 \rightarrow 4\mathrm{NO} + 6\mathrm{H}_2\mathrm{O} \tag{1-7}$$

Other side reactions, such as NO oxidation and nitrous oxide (N₂O) formation can occur. The NO oxidation reaction is shown in (1-8). N₂O is a byproduct of NH₃-SCR reactions. In general, N₂O can be formed in two different temperature regions. At lower temperatures (<300 °C), N₂O is generated by ammonium nitrate (NH₄NO₃) decomposition [10,14], while at higher temperatures (>300 °C), N₂O is generated from NH₃ oxidation. The reactions for these two regions are shown in equations (1-9) to (1-11) [10].

$$2NO + O_2 \rightarrow 2NO_2 \text{ (NO oxidation)} \tag{1-8}$$

NH4NO3 generation and decomposition to N2O at low temperatures [10]:

$$2NH_3 + 2NO_2 \rightarrow NH_4NO_3 + N_2 + H_2O \tag{1-9}$$

$$\mathrm{NH_4NO_3} \rightarrow \mathrm{N_2O} + 2\mathrm{H_2O} \tag{1-10}$$

NH₃ oxidation to N₂O at high temperatures [10]:

$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O \tag{1-11}$$

1.5 NH₃-SCR catalysts

To effectively drive NH₃-SCR reactions to reduce NO_x, catalysts are important. Early in SCR research, the V₂O₅-WO₃-TiO₂ catalyst was used. The optimum operation temperature of this catalyst is reported to be between 300 to around 400 °C [15]. However, many drawbacks of the catalyst were found, such as low high temperature stability and toxicity of the catalyst. Zeolite-based catalysts were used as alternatives. Among all the zeolite-based catalysts, SSZ-13 and SAPO-34 received most attention because of hydrothermal stability at high temperatures, resistance to hydrocarbon poisoning, and wide working temperature windows compared to other zeolites, such as Zeolite Y, ZSM-5, and beta [16]. In terms of active metal, Fe and Cu are the most common choices [17-34]. Higher SCR conversion at high temperatures is mostly observed on Fe catalysts compared to Cu catalysts. However, lower SCR conversion at low temperatures for SCR reactions in heavy-duty vehicles are between 200 to 400 °C [5]. For this reason, Cu-based catalysts are more commonly selected for the SCR catalyst.

Fig. 1.4. NO_x conversion over Cu, Fe, and vanadium based SCR reaction as a function of temperature [15].

Cu-SSZ-13 and Cu-SAPO-34 have similar crystallinity framework, chabazite (CHA). The structure can be identified as double six-membered rings (d6r) interconnected with four-membered rings (4r). The AABBCCAA stacking sequence of the double six-membered rings leads to a cage with 8 membered ring windows [13,35,36]. The structure is shown in Fig. 1.5 [36].

Fig. 1.5. CHA type crystal topology [36].

The difference between Cu-SSZ-13 and Cu-SAPO-34 is the composition of the structures. Cu-SSZ-13 primarily contains silicon dioxide (SiO₂) and a various amount of Al substitution of Si, depending on its Si/Al ratio, whereas Cu-SAPO-34 contains mainly AlPO₄ with various amount of Si substitution into AlPO₄ structure [29,37].

1.6 Cu active sites on Cu-CHA

Based on the X-ray diffraction (XRD) data on Cu-SSZ-13, Fickel et al. found that Cu²⁺ ions are located at the double six-membered ring [38]. Two different Cu active sites were then proposed by Kwak et al. Based on their XRD and DRIFTS results, they found that Cu distribution was dependent on the Cu ion-exchange level. Cu primarily filled in the six-membered ring when the ion-exchanged level was low. When the ion-exchanged level was high enough, Cu started to fill in the eight-membered ring [39]. More studies later found out that Cu speciation does not only depend on the ion-exchange level, but also depends on the Si/Al ratio. Giordanino et al. proposed $[Cu-OH]^+$ species by probing oxidized Cu-SSZ-13 at low temperature (100 K) with CO [40]. Anderson et al. studied the location of Cu²⁺ by XRD. They further suggested that the [CuOH]⁺ species is stable at the eight-membered ring [41]. After these studies, Z2Cu and ZCuOH were then used to identify Cu²⁺ at six-membered rings and eight-membered rings, respectively, where Z denotes an Al site.

1.6 NH₃-SCR mechanism on Cu-CHA

The NO_x conversion profile during steady state SCR, figure shown in Fig. 1.6, shows there is a non-monotonic profile, defined by two different temperature regions, when the Cu loading is considered low [25]. This shows that the SCR mechanism might be dependent on the temperature region.

Fig. 1.6. Standard SCR performance over a Cu-SSZ-13 catalyst with Si/Al = 12 and Cu/Al = 0.13. Reactant feed contains 350 ppm NO, 350 ppm NH₃, 14% O₂, and 2.5% H₂O balanced with N₂ at a gas hourly space velocity (GHSV) of 400,000 h^{-1} [25].

Most research has been regarding the low-temperature SCR mechanism. With kinetic measurements, Gao et al. found that the SCR rate as a function of Cu loading on the catalyst is second order when the Cu loading is low. This suggests that the low-temperature SCR reactions are catalyzed by transient Cu dimers [25]. Paolucci et al. did a SCR reactant cut-off experiment and showed that NO together with NH₃ can effectively reduce Cu^{II} to Cu^I [31]. The reduced Cu site, Cu^I(NH₃)₂, was further proposed by considering the coordination number from Ab-initio molecular dynamics (AIMD) [32]. From Cu^{II} reduction to Cu^I, this process is recognized as the reduction half cycle. To better understand the oxidation half cycle, second order fits from the CuI fraction calculation from X-ray absorption near-edge structure (XANES) spectra over multiple Si/Al ratio were derived. The second order relationship again suggests Cu dimers are present, in the form of (NH₃)₂Cu^{II}-O₂-Cu^{II}(NH₃)₂. Finally, DFT Calculations show that Cu becomes mobile after NH₃ solvation. Cu^I(NH₃)₂ can move a certain range to find another Cu^I(NH₃)₂ to form dimers shown above. The dimer species are recognized to be the key species for the oxidation half cycle [33]. Combined with the reduction half cycle, the catalytic cycle of low-temperature SCR was found. The figure describing the reduction half cycle and oxidation half cycle is shown in Fig. 1.7.

Fig. 1.7. Low-temperature SCR catalytic cycle [33].

In terms of the high-temperature SCR mechanism, fewer studies have been done, likely because of the convoluted factors at high temperatures, such as the NH₃ oxidation side reactin and mass transfer limitation problems [29]. Gao et al. found a linear relationship of SCR rate with respect to Cu loading when the Cu loading is low, suggesting that the monomeric Cu sites are catalyzing the SCR reactions at high temperatures [25].

1.7 Deactivation mechanisms of Cu-CHA

Even though the Cu-SSZ-13 catalysts are commercialized for NO_x removal, they still suffer from deactivation. Among the deactivation modes, sulfur poisoning is a main one. Sulfur is common in the diesel fuel and lubricant oil. Even though ultra-low sulfur diesel fuel is mandated in the US, sulfur can still have an impact on the catalyst as accumulation of sulfur on the catalyst can deactivate the catalyst [36].

Sulfur in the exhaust can be SO₂ and SO₃. SO₃ comes from the oxidation of SO₂ on the DOC. In an early work, Cheng et al. tested the SCR performance before and after SO₂ or SO₃ exposure. They found that the low-temperature SCR performance decreased much more after the Cu-zeolite catalyst was exposed to SO₃ compared to SO₂. Using XANES and extended X-ray absorption fine structure (EXAFS), they confirmed that Cu remained dispersed even after SO₃ exposure, but the formation of copper sulfate (CuSO₄) after SO₃ exposure was much more stable compared to copper sulfite (Z-CuSO₃) and copper hyposulfite (Z-CuSO₂) formed after SO₂ exposure. This supports the fact that SO₃ poisoning is more severe than SO₂ [42].

In most studies, sulfur decreases the catalyst low-temperature SCR activity, but has less effect on high-temperature SCR activity [4,36,42,43]. NH₃, a reactant in the SCR reactions, can react with sulfur species and form ammonium sulfate ((NH₄)₂SO₄). This species decomposes at around 350 °C [44]. This may explain why sulfur only affects the low-temperature SCR activity but not the high-temperature one. The catalyst regeneration process by NH₃ has been called "chemical deSOx" [4].

Multiple deactivation mechanisms related to SO₂ exposure have been proposed. Zeolite pore blocking caused by SO₂ is a common mechanism. Wijayanti et al. found the pore volume and area decreased after SO₂ exposure under SCR reaction conditions [45]. (NH₄)₂SO₄ formed by NH₃ and SO₂ is recognized as one of the pore blocking species [46]. Other mechanisms are based on the catalyst active sites that are inhibited by different sulfur species, such as CuSO₄, copper bisulfite (CuHSO₃), and (NH₄)₂SO₄. Based on the experiments using DRIFTS, TPD results, and DFT calculations, SO₂ only adsorbed on Z2Cu when cofed with NH₃ and formed (NH₄)₂SO₄. However, SO₂ interacts with ZCuOH readily and form CuHSO₃ or even CuSO₄ [47]. From the TPD results, CuSO₄ requires temperatures higher than 600 °C to decompose [48], while desorption of (NH₄)₂SO₄ only requires around 350 °C [47]. The results imply that catalysts with more ZCuOH lead to harder to desorb sulfur. Luo et al. confirmed this mechanism using DRIFTS with probe gas NH₃, showing that the T-O-T zeolite vibrational peak associated with ZCuOH disappeared, and the vibrational peak intensity associated with Z2Cu decreased after SO₂ exposure [49]. Shih et al. showed that sulfur preferably stored on ZCuOH. Their computational results further showed that sulfur species can persist to higher temperature on ZCuOH than on Z2Cu, indicating that ZCuOH is more likely to remain poisoned relative to Z2Cu until higher temperatures are reached [50].

Other than sulfur poisoning, hydrothermal aging (HTA) is also considered as a deactivation mode. It can happen when the DPF periodically regenerates. The temperature of the DPF increases to burn the carbon particles when the particle loading reaches a certain limit. A large amount of heat due to C oxidation transfers to the downstream SCR catalyst. The high-temperature exposure (>650 °C) with the presence of moisture in the feed may lead to zeolite structure damage.

Many previous studies have focused on the hydrothermal stability of Cu-CHA. Fickel et al. showed that the small pores of Cu-CHA are an advantage. Since Cu-CHA has a pore size around 3.8 Å, smaller than the kinematic diameter of Al, the catalyst is less vulnerable to dealumination than other mesoporous catalysts [51]. Although the Cu-CHA catalyst is less likely to dealuminate during hydrothermal aging, it will still undergo deactivation if exposed to high temperature conditions. Schmieg et al. showed that aging temperature and aging time are important variables for hydrothermal aging. Their results showed that when the catalysts were hydrothermally aged at 3 h/900 °C, 8 h/875 °C, 12 h/850 °C, or 72 h/800 °C, the highest NO_x conversion of catalysts decreased to lower than 70% [52]. The distribution of Cu sites was also found to determine the catalyst's hydrothermal stability. The Cu located in the eight-membered ring had lower hydrothermal stability. During hydrothermal aging, it aggregated and formed CuO_x particles which damaged the zeolite structure [53–55]. Although the catalyst structure damage during hydrothermal aging is the usual concern, Luo et al. proposed that mild hydrothermal aging (<750 °C) did not affect the zeolite structure. Instead, the copper distribution changed, with a shift from

ZCuOH to Z2Cu sites [56]. The transformation was then proposed to change the catalyst's oxidation activity [49].

1.8 Research Objectives

Even though many sulfur poisoning mechanisms on Cu-SSZ-13 have been proposed, detailed studies of combined sulfur poisoning and hydrothermal aging are few. Wei et al. [57] and Xi et al. [58] both found out that sulfur poisoning extent decreased after the Cu-SSZ-13 catalyst was mildly hydrothermally aged, at temperatures below 750 °C. We explored the reason behind this, with focus on how the change in the Cu site distribution during HTA affects the extent of sulfur poisoning. Next, we focused on quantification of Cu sites before and after sulfur poisoning, especially for the static Cu dimers, as predictions by our collaborators suggest those would bind sulfur strongly. We used CO titration and diffuse reflectance ultraviolet-visible (DR UV-vis) spectra techniques to quantify and characterize the change. Finally, we were interested in the impact of hydrothermal aging with different exhaust gas components on the catalyst. Understanding what, if any, gas components affect the changes associated with hydrothermal aging is important.

Chapter 2 How Changes in Cu-SSZ-13 Catalytic Oxidation Activity via Mild Hydrothermal Aging Influence Sulfur Poisoning Extents

This chapter was reproduced with permission from the Royal Society of Chemistry. It has been published and can be found in Chen et al., *Catal. Sci. Technol.*, 2022, **12**, 6891-6902. The introduction may be redundant with the Introduction section in the thesis, but for completeness, it is still presented here. The supplementary materials for this paper/chapter are in appendix A. The reference numbers were relabeled to be consistent in the thesis.

2.1 Abstract

Cu-SSZ-13 is widely used as a NO_x reduction catalyst in diesel engine after-treatment systems. However, sulfur, a common although trace component in diesel fuel, can lead to catalyst deactivation. Literature has shown that the relative amounts of Cu sites identified as Z2Cu and ZCuOH under inert conditions lead to different S poisoning extents and those relative Cu site amounts can be influenced by mild hydrothermal aging. Our results confirm this finding, but only for specific conditions, in other words the different Cu distributions leading to different extents of S poisoning is not universally true. Here, we show that the extent of sulfur poisoning by SO₂ in the absence of water is related to SO₂ oxidation on the Cu sites, and more specifically the ZCuOH sites. Therefore, since different pretreatment conditions lead to different relative ZCuOH and Z2Cu distributions, the extent of SO₂ oxidation and therefore S poisoning is influenced by these different pretreatment conditions. The catalyst with more ZCuOH had higher SO₂ oxidation conversions and more deactivation compared to a catalyst with less relative ZCuOH. However, if SO₃ was included during sulfur exposures or if the experiment was performed at relatively low temperature with an SO₂ exposure, changes in the Cu distribution made less or no difference. This is correlated to S oxidation extents. In the presence of water, the extent of sulfur poisoning is also

affected by the catalyst's ability to oxidize SO₂. And, the presence of water leads to further deactivation than in its absence. The water effect is apparent when the oxidation activity is relatively weak and is less significant when the SO₂ oxidation extent is relatively strong.

2.2 Introduction

Selective catalytic reduction (SCR) of NO_x by NH₃ over metal-exchanged zeolites is a common approach to eliminate nitrogen oxides (NO_x) from diesel engine exhaust. Among metal exchanged zeolite-based catalysts, Fe- and Cu-exchanged zeolites appear to be the most commonly studied [17-34]. And among Cu-zeolite catalysts studied, the Cu-SSZ-13 formulation has received significant attention as it is reported to be less prone to hydrothermal degradation compared to Cu-ZSM-5, Cu-beta, and Cu-Y and its small pores makes it more resistant to hydrocarbon poisoning than other mesoporous catalysts [16,51,59,60].

Although Cu-SSZ-13 is commercially used as an SCR catalyst to reduce NO to N₂ in diesel engine exhaust [56,61–65], it is still susceptible to sulfur poisoning. Using temperature programmed desorption (TPD) experiments, Su et al. proposed that several sulfur species form on Cu-SSZ-13 catalysts with sulfur exposure, including H₂SO₄, CuSO₄, and Al₂(SO₄)₃ [48]. When NH₃ is included during a sulfur exposure, (NH₄)₂SO₄ like species are also observed [44,46,66,67].

The impact of SO₂ and SO₃ on SCR activity has mainly been observed or studied at temperatures below 350 °C [42,68]. Research has shown that the activity can be recovered by high temperature treatment, for example at temperatures over 550 °C [4,36]. Kumar et al. showed that by including NH₃ or C₃H₆ in the regeneration mixture, which the authors termed chemical deSO_x, sulfur was released from the catalyst at a lower temperature, around 400 °C [4]. Jangjou et al. further showed that ammonium sulfate species, formed on SCR catalysts during exposure to SO₂

in the presence of NH₃, decomposed at around 350 °C [44,66]. This may explain why decreased SCR activity has primarily been observed in the low-temperature region, because NH₃, a reactant in the SCR reaction, leads to formation of ammonium sulfate, which decomposes at temperatures higher than 350 °C, allowing activity to be regenerated.

Multiple deactivation mechanisms associated with SO₂ exposure have been proposed. A common one is pore blocking by sulfur containing species. Zhang et al. used NH₃ TPD to characterize a catalyst and proposed that after NH₃ and SO₂ exposure, (NH₄)₂SO₄ species formed and might poison the active sites and block catalyst pores [46]. Wijayanti et al. found the catalyst surface area and pore volume decreased after SO₂ exposure under SCR reaction conditions [45]. Other proposed sulfur poisoning mechanisms include SO₂ interacting with different Cu sites. Z2Cu and ZCuOH have been identified as two ion-exchanged Cu species on the catalyst (where Z denotes an isolated Al site) under inert conditions [39,55,56,69–72] and recent research has found that different sulfur species form on these two Cu site types after sulfur exposure. For example, it has been proposed that CuSO₄ or CuHSO₄ forms on ZCuOH while (NH₄)₂SO₄ forms on Z2Cu [44]. Luo et al. studied a SCR catalyst using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) during NH₃ adsorption and showed the loss of a T-O-T zeolite vibration feature associated with ZCuOH after sulfur exposure, suggesting that NH₃ no longer interacted with ZCuOH [49]. Shih et al. showed that sulfur stored preferably on ZCuOH compared to Z2Cu. Their computational results further showed that sulfur species persist to higher temperature on ZCuOH than Z2Cu, indicating that ZCuOH is more likely to remain poisoned relative to Z2Cu until higher temperatures are reached [50].

Based on these findings, one approach proposed to protect a Cu-SSZ-13 catalyst from sulfur poisoning is to decrease the amount of ZCuOH in favor of more Z2Cu sites. It has been shown

that ZCuOH can be transformed to Z2Cu by mild hydrothermal aging without zeolite damage, using hydrothermal aging conditions at temperatures below 750 °C [52,56,72]. Wei et al. showed that the extent of SO₂ poisoning decreased after a 750 °C pretreatment [73]. Xi et al. found that increasing the mild hydrothermal aging duration at 650 °C prior to SO₂ and SO₃ exposure under SCR reaction conditions reduced the impact of sulfur on SCR activity [58].

We observed similar trends, with mild hydrothermal aging decreasing the extent of SO_2 poisoning when SO_2 was used as the sulfur species in a 400 °C exposure. However, with SO_3 poisoning, the mild hydrothermal aging treatment *did not* mitigate the impact of poisoning on SCR activity. We used in situ DRIFTS to identify the relationship between the oxidation activity and the amount of ZCuOH, and these combined with SCR and oxidation reaction results show a relationship between the catalytic oxidation activity and the extent of sulfur poisoning whether in the presence or absence of water. We here propose that the extent of sulfur poisoning is dependent on the extent of SO_2 oxidation on the catalyst surface, which in itself is a function of the relative amounts of ZCuOH and Z2Cu, further clarifying differences observed with different Cu type distributions and differences in our observations and those in the literature.

2.3 Experimental Methods

The Cu-SSZ-13 catalyst was provided by Cummins Inc. and came as a honeycomb monolith structure with a cell density of 300 cells/in² (cpsi). Cylindrical samples were core drilled from the monolith and were 2.9 cm in length with a diameter set such that each had 21 cells. The catalyst was wrapped with ceramic fiber strings and placed in a quartz tube, purchased from Quartz Scientific, which was placed in a Lindberg Blue M Mini-Mite tube furnace. Two K-type Omega thermocouples placed in the upstream and downstream radial center of the monolith were used to measure the catalyst temperature.

Sulfinert coated tubing and fittings from Swagelok were used upstream and downstream of the quartz tube reactor. Upstream and downstream tubing were heated to 150 °C using heat tape and wrapped in insulation to prevent H₂O condensation on the tubing surface. All gases, except some of the N₂ used as a carrier for the steam, were metered using MKS Instruments mass flow controllers. A N₂ generator purchased from Parker Balston was used to supply some of the balance N₂ and all other gases originated from cylinders purchased from Praxair or Matheson. Steam was introduced using a Bronkhorst controlled evaporator mixer. CO, CO₂, H₂O, NO, NO₂, N₂O, NH₃, SO₂, SO₃, and H₂SO₄ reactor outlet concentrations were measured using a MKS MultiGas 2030 FT-IR.

For the reactor experiments, a total flow rate of 1360 sccm was used, which corresponds to a GHSV of 62300 h⁻¹. The monolith-supported catalysts were either "degreened" or exposed to mild hydrothermal aging conditions, hereafter denoted HTA, prior to experiments. For degreening, the catalyst sample was exposed to 10% O₂, 7% H₂O, 8% CO₂ and balance N₂ at 550 °C for 4 h, while the mild HTA was done with the same gas concentrations but at 600 °C for 10 or 25 h. The results obtained for the 25 h sample are used throughout the paper, and the results from the 10 h sample are included in the Supporting Information. SO₂ exposure was conducted at 200 or 400 °C with 50 ppm SO₂, 10% or 1% O₂, 0, 0.5% or 7% H₂O and balance N₂. SO₃ exposure was conducted at 200 °C with 25 ppm SO₂, 25 ppm SO₃, 10% O₂ and balance N₂. The mild HTA temperature used and S exposures, based on prior literature, should not lead to any changes in zeolite crystallinity or structure [56,58,62,63,68]. Before an experiment, the catalyst was exposed to 10% O₂ and balance N₂ at 500 °C for 1 h, except for the experiments after the catalyst was exposed to sulfur. After the O₂ exposure pretreatment, the temperature was cooled to 150, 200, or 400 °C depending on the experiment to be run. Catalyst performance test conditions are listed in Table 2.1.

Reactions	NH ₃	NO	СО	SO ₂	H ₂ O	CO ₂	O ₂	N2
	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)	(%)	
SCR	200	200	-	-	7	8	10	Balance
NO	-	200	-	-	7	8	10	Balance
oxidation								
NH ₃	200	-	-	-	7	8	10	Balance
oxidation								
CO	-	-	200	-	7	-	10	Balance
oxidation								
SO_2	_	-	-	50	-	-	10	Balance
oxidation								

Table 2.1 Reaction conditions used

Calculations include:

NO_x conversion during SCR reaction =
$$\frac{NO_{xin} - NO_{xout}}{NO_{xin}} \times 100\%$$
 (2-1)

NO oxidation conversion =
$$\frac{NO_{in} - NO_{out}}{NO_{in}} \times 100\%$$
 (2-2)

NH₃ oxidation conversion =
$$\frac{NH_{3in} - NH_{3out}}{NH_{3in}} \times 100\%$$
 (2-3)

CO oxidation conversion =
$$\frac{CO_{in} - CO_{out}}{CO_{in}} \times 100\%$$
 (2-4)

SO₂ oxidation conversion =
$$\frac{SO_{2in} - SO_{2out}}{SO_{2in}} \times 100\%$$
 (2-5)

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) during NH₃ adsorption was used to characterize the degreened and HTA catalysts T-O-T vibration region. We used a

Nicolet iS-50 FT-IR spectrometer with a Harrick Scientific Praying Mantis cell and ZnSe windows. Catalyst powder was scraped from the commercial monolith-supported catalysts. These were filled into a sample cup and the sample surface was leveled to the cup height. A mixture of dry ice and isopropanol was used as a cold trap to remove residual water from the inlet line into the cell. The total flow rate for all experiments and treatments was 50 sccm. Before experiments, catalysts were exposed to 10% O₂ and balance He at 500 °C for 1 h (O₂ pretreatment). Then, the system was cooled down to the experiment temperature. The background spectrum was taken after the catalyst had cooled to the target temperature. For NH₃ adsorption experiments, the experiments were conducted at 120 °C with 1000 ppm NH₃ and balance He.

NH₃ temperature programmed desorption (TPD) and NH₃ temperature programmed oxidation (TPO) experiments were also conducted. From these, for example, we determined the temperature for the onset of NH₃ oxidation temperature in the DRIFTS cell, ~300 °C. The NH₃ oxidation experiments and experiments with NH₃ exposure followed by a He purge at that temperature were used to characterize the relationship between ZCuOH and the NH₃ oxidation activity of the catalyst. For NH₃-TPD and TPO experiments, background spectra were taken and recorded every 10 °C during the cool down phase after the pretreatment, to 120 °C. After NH₃ adsorption, NH₃ was turned off and there was a He purge for 30 min before the TPD phase. For the TPO experiments, 10% O₂ was introduced after NH₃ was turned off. Then, the temperature was ramped to 500 °C at 10 °C/min. During the temperature ramp, spectra were taken every 10 °C. The background spectrum for each temperature was subsequently subtracted from each spectrum at its corresponding temperature. For the isothermal NH₃ oxidation and He purge experiments at 300 °C, after a 10% O₂ in He pretreatment at 500 °C for 1 h, the temperature was cooled to 300 °C. After a background spectrum was taken, O₂ was turned off and 1000 ppm NH₃ in He was

introduced for 1 h. Then, 10% O₂ was introduced for the NH₃ oxidation experiment, or only He when doing the He purge experiment. We note that NH₃ TPD experiments are often used to characterize SCR catalyst acidity, but after S exposures the formation of ammonium sulfates convolute any interpretation [43,44,49].

2.4 Results and Discussion

Catalyst NH₃-SCR and CO, NO, NH₃ and SO₂ oxidation performance before sulfur exposure

Before sulfur exposure, SCR and NO, CO, NH₃ and SO₂ oxidation experiments were conducted using the degreened and HTA catalyst samples. The SCR results are shown in Fig. 2.1 (a). Below 350 °C, similar SCR conversions were obtained over both catalysts. These results are consistent with other literature results that show similar SCR conversions if the catalysts were pretreated below 700 °C [49,52,62,63,74]. Above 350 °C, the HTA catalyst resulted in higher NOx conversions compared to the degreened catalyst. SCR reactions at high temperatures are affected by NH₃ oxidation, where a loss in NH₃ through oxidation by O₂ instead of NO can lead to a decrease in NO_x conversion [17,49,63]. The higher NO_x conversion attained over the HTA catalyst is explained by lower NH₃ oxidation conversion, as is confirmed in Fig. 2.1 (b). Not only does NH₃ oxidation conversion decrease after HTA, but NO to NO₂, CO to CO₂, and SO₂ to SO₃ oxidation conversions also decrease, as shown in Fig. 2.1 (c), (d), and (e). These results demonstrate there is a consistent loss in oxidation reaction conversion, at least for these four reactants, due to the HTA pretreatment. This is somewhat consistent with Luo et al.'s work where although they used higher temperatures for hydrothermal aging, it was shown that NO and NH₃ oxidation conversions decreased after 700 and 800 °C compared to 550 °C aging exposures [49].
As a note, in terms of N₂O formation, as shown in the Appendix A, Fig. A-1, the amount of N₂O formation over both catalysts was similar. N₂O formation follows the pattern typically observed in other literature studies, with a low temperature peak via ammonium nitrate decomposition and a high temperature peak associated with N₂O formed during NH₃ oxidation [14,75]. In terms of how the aging affects N₂O formation, our results do not parallel those in the literature [73] where different relative amounts of N₂O formed in the low temperature regime with changes in hydrothermal aging temperature. A likely explanation for this discrepancy is the different experimental and aging conditions. There is a larger difference between the "degreened" and HTA samples in the literature cited compared to those we used. In general, the amount of N₂O formed was low as is consistent with literature for this Cu-SSZ-13 catalyst. As no NO₂ was formed, N₂ selectivity can be calculated based on NO conversion and N₂O formed.

Fig. 2.1. (a) NH₃-SCR and (b) NH₃, (c) NO, (d) CO, and (e) SO₂ oxidation for the degreened and HTA catalysts before sulfur exposure. Reaction conditions are described in Table 2.1.

Evidence in the literature shows a relationship between NO and NH₃ oxidation and ZCuOH amount [17,49,76]. To further support the relationship between the oxidation activity and the amount of ZCuOH, we used in-situ DRIFTS to characterize the sample during NH₃ oxidation experiments at 300 °C, see Fig. 2.2 (a). Note, other techniques are sometimes used to quantify Cu site distributions, such as H₂ temperature programmed reduction (H₂-TPR) [39,44,56,77]. However, the sample used here is a commercial sample, with an unknown initial amount of Cu/CuO particles. The reduction of CuO particles occurs at a similar temperature as ZCuOH, which could therefore complicate any quantification analysis [18]. Furthermore, relative amounts of Z2Cu and ZCuOH are sufficient to explain the findings and conclusions, as demonstrated below. In the DRIFTS results used here, the T-O-T vibration region is shown, where the 900 cm⁻¹ peak has been assigned to NH₃ interacting with Z2Cu and the 950 cm⁻¹ peak has been assigned to ZCuOH [39,44,56,63]. The NH₃ oxidation temperature was determined from NH₃ TPD and NH₃ TPO experiments using separate DRIFTS experiments, see Appendix A, Fig A2. From 120 to 300 °C during both the TPD and TPO experiments, the intensities of both the 900 and 950 cm⁻¹ features decrease at similar rates. Above 300 °C, however, both the 900 and 950 cm⁻¹ peaks diminished much faster during the TPO experiment compared to those peaks during the TPD experiment. These results suggest that below 300 °C, NH₃ desorption from both ZCuOH and Z2Cu occurred, while above 300 °C, NH₃ oxidation started to be significant. With this observation, 300 °C was chosen as a temperature to compare NH₃ oxidation characteristics. In Fig. 2 (a), the intensities of both the 900 and 950 cm⁻¹ decreased during NH₃ oxidation at 300 °C. The 950 cm⁻¹ feature, in particular, decreased more than 900 cm⁻¹ feature, suggesting that NH₃ on ZCuOH was oxidized more rapidly than on Z2Cu. To rule out the possibility that NH₃ desorption at 300 °C is significant compared to the oxidation, the NH₃ adsorption and then He purge at 300 °C experiment was

conducted, with results shown in Fig. 2.2 (b). Compared to NH₃ oxidation, NH₃ desorbed much slower from both ZCuOH and Z2Cu, corroborating that the decrease in the intensities of both peaks in Fig. 2.2 (b) was not because of NH₃ desorption, but stems from NH₃ oxidation. And, these results are also consistent with the observations in Figure 2.1 (a) and 2.1 (b).

ZCuOH has been hypothesized to be the more active NH₃ oxidation active site [17,49,76]. Literature [56,61,62,78] and our results show that during mild hydrothermal aging, Cu can migrate from ZCuOH to Z2Cu sites. For example, as shown in Figure A3 (a) in the Appendix A, the intensity of the 950 cm⁻¹ peak, after normalizing the 900 cm⁻¹ intensities, for the degreened catalyst is greater than that for the HTA sample. This suggests a loss in ZCuOH, with an increase in Z2Cu after a mild HTA treatment. Furthermore, this migration of Cu from ZCuOH to Z2Cu results in the loss of Brønsted acid sites. In the DRIFTS results shown in Appendix A, Figure A3 (b), the 1620 cm⁻¹ peak, representing NH₃ adsorption on Lewis acid sites [49,79,80], is normalized in order to compare its intensity with the intensity of 1460 cm⁻¹ peak, representing NH₃ adsorption on Brønsted acid sites [49,79,80]. The results show that after HTA, there are fewer Brønsted acid sites, suggesting that the Brønsted acid sites are consumed during HTA. In summary, the results suggest that the degreened sample has more ZCuOH than the HTA samples at temperatures above 300 °C, shown in Fig. 2.1 (b), further supported by the DRIFTS results in Fig 2.2 (a).

Fig. 2.2. DRIFTS spectra of (a) NH_3 oxidation and (b) He purge at 300 °C after 10% O₂ pretreatment at 500 °C for 1 h and 1000 ppm NH_3 adsorption at 300 °C for 1 h.

How catalyst surface SO₂ oxidation activity impacts SO₂ poisoning

Based on literature results, ZCuOH has been proposed to accumulate more sulfur than Z2Cu at 200 °C (0.6 S/Cu vs. 0.3 S/Cu) [50]. In addition, the sulfur species on ZCuOH require higher temperatures to decompose compared to sulfur species on Z2Cu [44,50], so reducing the amount of ZCuOH in the catalyst has been proposed to reduce the extent of sulfur poisoning [58,73]. We first exposed both the degreened and HTA catalysts to SO₂ at 400 °C and NO_x conversions during subsequent SCR reaction experiments were evaluated, with results from before and after SO₂ exposure shown in Fig. 3. The results show that after SO₂ exposure, the degreened catalyst led to lower NO_x conversions from 150 to 300 °C compared to the HTA catalyst, suggesting that the hydrothermal aging treatment indeed helped reduce the extent of sulfur poisoning as has been previously suggested.

Fig. 2.3. SCR results after 50 ppm SO₂ exposure at 400 °C on (a) degreened and (b) HTA catalysts. The comparison between SCR conversion after SO₂ exposure at 400 °C on degreened and HTA catalysts is in (c). The SCR reaction conditions are described in Table 2.1.

As an aside, an interesting finding from the results in Fig. 3 (a) and (b) is that both catalysts resulted in higher NO_x conversions during SCR above 350 °C after SO₂ exposure relative to the samples not exposed to SO₂. A possible explanation is that NH₃ oxidation was inhibited by SO₂. If so, since NO conversions under SCR conditions at high temperatures can be lower due to loss of reactant NH₃ by NH₃ oxidation, NH₃ oxidation inhibition could lead to higher NO_x conversions. To test the NH₃ oxidation inhibition by SO₂ hypothesis, we did an NH₃ oxidation experiment after

400 °C SO₂ exposure, see Appendix A, Fig. A4. The results show that the NH₃ oxidation was inhibited below 500 °C compared to the NH₃ oxidation results using the catalyst prior to SO₂ exposure. This NH₃ oxidation inhibition by SO₂ might explain the increased NO_x conversion during SCR between 350 and 450 °C after SO₂ exposure.

After exposure to a mixture containing SO₃, both the degreened and HTA catalysts were significantly deactivated below 350 °C, see Fig. 2.4, and that loss led to similar NO_x conversions over both samples in this lower temperature range, see Appendix A, Fig. A5 (a) for a direct comparison. Contrary to the results shown above and the associated literature discussed, here the hydrothermal aging treatment did not mitigate the extent of SO₃ poisoning. Literature has consistently shown that SO₃ leads to a higher level of SCR catalyst deactivation compared to SO₂ [36,42,81], with one explanation being higher levels of copper sulfate formation [42]. Our results show a similar trend in that the extent of SO_3 poisoning is higher compared to SO_2 poisoning, see Fig. 2.4 (a) and (c) for the degreened catalyst and Fig. 2.4 (b) and (d) for the HTA catalyst. Furthermore, after the catalysts were exposed to SO₂ at 200 °C in the absence of SO₃, see Fig. 2.4 (c) and (d), both degreened and HTA catalysts had similar NO_x conversions below 350 $^{\circ}$ C. Even though the degreened catalyst had slightly lower NO_x conversions below 350 $^{\circ}$ C after SO₂ exposure compared to the NO_x conversions of the HTA catalyst, for a direct comparison, see Appendix A, Fig A5 (b), the difference is relatively small. From these two sets of experimental results, reducing the amount of ZCuOH by using a mild hydrothermal aging treatment does not effectively protect the catalyst from SO₂ or SO₃ poisoning at 200 $^{\circ}$ C, but does for SO₂ exposure at 400 °C. The 400 °C results are consistent with prior work by Xi et al [58], but here the additional data at 200 °C show that the transformation of ZCuOH to Z2Cu unfortunately does not universally lead to enhanced sulfur poisoning resistance.

To resolve the seemingly contradictory results in Figures 2.3 and 2.4, and with aspects of prior literature, we propose that SCR catalyst deactivation via sulfur poisoning has some dependence on SO₂ oxidation activity over the catalyst surface. For the exposures that include SO₃, SO₃ being the product of SO₂ oxidation, there is no observed difference in the loss in NO_x conversion over the two catalysts. The HTA catalyst shows similar SCR conversions below 350 °C when compared to the degreened catalyst. In terms of the SCR activity after the 200 °C SO₂ exposure, both degreened and HTA catalysts have poor SO₂ oxidation at 200 °C, see Fig. 2.1 (e) as a surrogate to support this assumption, so again they appear to respond similarly. Furthermore, neither was significantly deactivated. Therefore, under conditions where there is not significant SO₂ oxidation activity or the oxidation product is included in the reactant gas mixture, the two catalysts respond similarly.

However, this is not the case when experiments were run with SO_2 in the absence of SO_3 at the higher temperatures, where there would be an increase in the extent of SO_2 oxidation. Results from the experiments where the samples were exposed to SO_2 at 200 or 400 °C are shown in Figures 2.3 and 2.4 with the overlaid comparisons shown in Appendix A, Fig. A6 (a) and (b). Both the degreened and HTA catalysts after 400 °C SO_2 exposure were deactivated more than after the 200 °C SO_2 exposure. We relate this to SO_2 oxidation extent on the catalyst surface, with higher levels of oxidation at the higher temperature.

The hypothesis was further tested by evaluating SCR of NO_x conversions after SO₂ exposure at 400 °C but with a lower O₂ concentration, 1%, during the SO₂ exposure, see Fig. 2.5 (a). The results show that SO₂ exposure with 10% O₂ deactivated the catalyst more than with 1% O₂. As an ancillary test of oxidation activity, NH₃ oxidation was also evaluated, see Fig. 2.5 (b). The results show that with 10% O₂, higher NH₃ oxidation conversions are also attained relative to those

with 1% O₂. These results are consistent with higher oxidation activities leading to more significant sulfur-derived SCR catalyst deactivation.

Fig. 2.4. SCR results after 25 ppm SO₂ and 25 ppm SO₃ exposure at 200 °C for 6.5 h, (a) and (b), and 50 ppm SO₂ exposure at 200 °C for 6.5 h, (c) and (d), on degreened, (a) and (c), and HTA, (b) and (d), catalysts. The SCR reaction conditions are described in Table 2.1.

Fig. 2.5. (a) SCR results after 50 ppm SO₂ exposure at 400 °C for 6.5 h with 10 and 1% O₂ on degreened catalysts. (b) NH₃ oxidation results with 10 and 1% O₂ on degreened catalysts. Reaction conditions are shown in Table 2.1.

How catalyst surface SO₂ oxidation activity impacts SO₂ poisoning in the presence of water

The results above show the SCR of NO_x conversions change after sulfur exposure in the absence of water (dry). However, the effect of water needs to be considered as it is a primary component of engine exhaust and is known to affect oxidation reactions among others.

We first tested whether catalyst deactivation with exposure to SO₂ still showed a dependency on SO₂ oxidation activity in the presence of water. We compared SCR results of the degreened and HTA catalysts after SO₂ exposure in the presence of water at 200 and 400 °C, with NO conversion results shown in Fig. 2.6. Similar to the trend with SO₂ exposure under dry conditions at 200 °C, both catalysts had similar NO_x conversions below 350 °C after SO₂ exposure in the presence of water at 200 °C. And again, the SCR performance after SO₂ exposure at 400 °C in the presence of water led to different NO_x conversions below 350 °C than the HTA catalyst, again which we attribute to the degreened catalyst having a higher SO₂ oxidation activity. These trends are consistent with those observed under dry conditions.

SCR experiments after a HTA pretreatment for 10 h and after this pretreatment and a sulfur exposure in the presence of water have also been conducted. The SCR comparison results are shown in the Appendix A, Fig. A7 (a) and (b). NO_x conversions below 350 °C are similar no matter what pretreatment conditions after the 200 °C SO₂+H₂O exposure, with results shown in Appendix A, Fig A7 (a), but 25 h HTA > 10 h HTA > degreened after 400 °C SO₂+H₂O exposure, with results shown in Fig A7 (b). These results again can be attributed to the catalyst surface SO₂ oxidation activity difference during SO₂ exposure. At 200 °C, poor oxidation activity is observed for all three catalysts. However, at 400 °C, the oxidation activity of the degreened catalyst is higher than that of the 10 h HTA catalyst, which is higher than that of the HTA catalyst aged for 25 h. NH₃ oxidation activity results were also obtained and are shown in Appendix A, Fig. A7 (c).

Fig. 2.6. SCR results obtained using the degreened and HTA catalysts after 50 ppm SO₂ exposure in the presence of 7% water at (a) 200 $^{\circ}$ C and (b) 400 $^{\circ}$ C for 6.5 h. The SCR reaction conditions are described in Table 2.1.

However, when comparing the extents of deactivation after the samples were exposed to SO_2 under dry or wet conditions at 200 °C, it is apparent that including water with SO₂ led to a loss in NO_x conversion, as shown in Fig. 2.7 (a) and (b). In addition, when exposing the samples to SO_2 at 400 °C under wet or dry conditions, see Fig. 2.7 (c) and (d), the degreened catalyst led to a similar extent of deactivation whether water was included or not, but the NO_x conversion over the HTA catalyst was still more impacted with water present. These results show that there is not only a dependency on SO₂ oxidation activity, but that there is also an additional effect of water. And this water + SO₂ effect is more significant, or becomes apparent, for the catalyst that showed weaker SO₂ oxidation activity under dry conditions. At 200 °C, the SO₂ oxidation activity is relatively poor over both catalysts, but during SO₂ exposure in the presence of water at 200 $^{\circ}$ C, for both the degreened and HTA catalysts, there is deactivation. Thus, this inclusion of water during the SO₂ exposure is relatively significant, and deactivation mainly stems from its effect over just SO₂ exposure alone. However, at 400 °C, the SO₂ oxidation activity of the degreened catalyst is relatively high, so the individual dependence on SO₂ oxidation activity is still observed. The SO₂ oxidation activity of the HTA catalyst is relatively lower, so the inclusion of water during the SO₂ exposure is more apparent than that for the degreened sample.

At this stage, we may only speculate as to the origin of this water effect. For example, one possible explanation is that the presence of water affects the catalytic oxidation of the S species. Water solvates copper sites leading to higher mobility [32,74], which might influence oxidation activity. We indeed found that SO₂ oxidation conversion to SO₃ is higher in the presence of water compared to in the absence of water, see in Appendix A, Fig. A8. This does not verify increased oxidation of surface sulfur species at lower temperatures, but does show improved oxidation at least. At 400 °C, the catalyst would be relatively dehydrated and an effect of water less likely.

However, there was still an effect of H₂O during the 400 °C exposure, suggesting that even some residual H₂O has an impact on oxidation. With SO₃ or oxidized surface sulfur species formation, H₂SO₄ formation is another possibility. For example, if SO₂ oxidation is strongly inhibited by product SO₃, as NO oxidation is by NO₂ [82], then it is possible the immediate formation of H₂SO₄ from SO₃ and H₂O would diminish the SO₃ inhibition. Yet another possibility is the role of H₂O itself as an oxidant, as has been proposed for CH₄ conversion to CH₃OH over Cu-zeolite catalysts [83,84], which might influence the extent of SO₂ or surface sulfur species oxidation.

Fig. 2.7. SCR results comparing exposure to 50 ppm SO₂ in the presence and absence of 7% H₂O for 6.5 h on the (a) degreened catalyst at 200 °C, (b) HTA catalyst at 200 °C, (c) degreened catalyst

at 400 °C, and (d) HTA catalyst at 400 °C. The SCR reaction conditions are described in Table 2.1.

The effect of water was further tested by comparing the effect of an intermediate water concentration during SO₂ exposure on the HTA catalyst, with results shown in Fig. 2.8. With 0.5% H₂O during SO₂ exposure at 200 °C, there was an impact on the extent of NO_x conversion loss, much like that when including 7% water. However, for the SO₂ exposure at 400°C, the addition of 0.5% water did not impact catalyst deactivation. Extrapolating on the idea of the water affecting SO₂ oxidation extent, the HTA catalyst has relatively poor oxidation activity at 200 °C under dry conditions, but with the addition of water either SO₂ or surface sulfur species oxidation is enhanced. The HTA catalyst has higher oxidation activity at 400 °C than at 200 °C, and is also more dehydrated especially with the smaller gas-phase H₂O level, and therefore the effect of the smaller amount of water is again not as significant.

Fig. 2.8. SCR results after exposing the HTA catalyst to 50 ppm SO₂ for 6.5 h with different water concentrations: 0, 0.5, and 7% at (a) 200 °C and (b) 400 °C. The SCR reaction conditions are described in Table 2.1.

2.5 Conclusions

SCR of NO_x by NH₃ over a Cu-SSZ-13 can be inhibited by sulfur poisoning. In terms of the commonly identified Cu species in this formulation, literature and our own data suggest that a sample with more Z2Cu relative to ZCuOH is less susceptible to sulfur poisoning under some conditions. Furthermore, the catalyst with more ZCuOH appears to be, in general, a better oxidation catalyst. Mild hydrothermal aging induces the migration of the Cu from ZCuOH to Z2Cu and at the same time leads to decreased CO, NO, NH₃ and SO₂ oxidation conversions. DRIFTS also correlates the change in NH₃ oxidation to a change in relative ZCuOH amounts. We here show a relationship between the extent of sulfur poisoning in the absence of water to the catalyst's oxidation ability. The results after different sulfur treatments, such as SO₃ exposure, higher temperature and higher O₂ concentration during SO₂ exposure all support a mechanism that includes surface SO₂ oxidation leading to more deactivation. This therefore implies that the extent of poisoning is dependent on the oxidation activity of the different Cu species, not solely on their relative amounts. For the case of sulfur exposure in the presence of water, similar trends were observed, with the extent of sulfur poisoning correlated to the catalyst's SO₂ oxidation reaction activity. However, the inclusion of water causes further deactivation during SO_2 exposure at 200 °C, and also at 400 °C, but to a lesser extent, likely due to a more dehydrated condition. We speculate that the inclusion of water affects oxidation reaction extents over this Cu-SSZ-13 catalyst.

2.6 Acknowledgements

The authors gratefully acknowledge Cummins Inc. for financial support. The authors also acknowledge Professor Chris Paolucci and Professor Robert Davis and their research groups for informative discussions.

Chapter 3. Probing Cu Dimers before and after Sulfur Poisoning

3.1 Introduction

Cu-SSZ-13 is commonly used in the diesel engine after-treatment system as a catalyst to reduce NO_x. It can reach high NO_x conversion over a wide range of temperatures, has good hydrothermal stability, and good hydrocarbon poisoning resistance compared to other Cu zeolite catalysts [16,24,51,61,63,85].

Even though Cu-SSZ-13 has advantages over other SCR catalysts and is commercially used, sulfur, an element in the diesel fuel and lubricant oil, can deactivate the catalyst. Two types of deactivation mechanisms have been proposed. One is pore-blocking by SO₂-related species [45,86–89]. The other proposed is that SO₂-related species poison the Cu active sites. Z2Cu and ZCuOH have been identified under inert conditions, and are the ion exchanged Cu associated with the active sites [25,32,39]. Prior studies showed that sulfur interacts with Z2Cu and ZCuOH differently. SO₂ is more likely to interact with ZCuOH and forms CuSO₄ species which requires relatively high temperature to decompose [44,49,50]. Based on this, Wei et al. and Xi et al. both found that catalysts after mild hydrothermal aging, which transforms ZCuOH to Z2Cu, were less poisoned by sulfur [58,73]. Our previous work in Chapter 2 further showed that the extent of sulfur poisoning had a strong correlation with the catalyst oxidation activity, which is influenced by the relative ZCuOH and Z2Cu amounts. With S species oxidation on the catalyst surface, more deactivation is observed [90].

A recent study showed that SO₂ reacts with $[Cu^{II}_2(NH_3)_4O_2]^{2+}$ dimers under SCR conditions [91]. Based on this study, we tried to understand whether other Cu dimers formation without NH₃ in the environment, such as ZCuOCuZ species, could react with sulfur species. Li et al. showed that the Cu-SSZ-13 sample with predominantly ZCuOH when synthesized could form Cu dimers after high temperature treatment with O_2 [70]. Göltl et al. suggested that Z2Cu in a six member ring is too narrow for a dimer to form [92], which further supports that Cu dimers can only be formed by ZCuOH.

In this work, we further conducted SCR rate experiments to understand the sulfur poisoning and regeneration effects on the catalysts. We found that SCR reaction rate decreased after sulfur exposure. We hypothesize this decrease is likely due to the Cu dimers poisoned by sulfur species. CO titration and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy were used to study the amount of the Cu dimers before and after sulfur poisoning. Da Costa et al. showed that Cu²⁺ monomers cannot reduce with CO, but CO can react with Cu dimers and form CO₂ [93]. The reaction is shown in equation (3-1). By using this method, we can quantify and compare the CO₂ formed during CO exposure before and after sulfur exposure and using the stoichiometry in equation (3-1) can quantify the amount of Cu dimers on the catalyst.

$$[ZCu-O-CuZ]^{2+} + CO \rightarrow 2ZCu^{+} + CO_2$$
(3-1)

In terms of DR UV-Vis spectroscopy, literature shows that four peaks representing ZCuOH and Cu dimers appear in the d-d transition region after catalysts containing ZCuOH are exposed to O_2 at high temperature [40,70,94]. We therefore used this technique to see if exposure to sulfur would affect this region and how.

3.2 Experimental Methods

A Cu-SSZ-13 monolith-supported catalyst with 600 cells per square inch (cpsi) cell density was provided by Cummins Inc. The catalysts were core drilled from the monolith, to 45 cells with 2.9 cm length for the experiments. Each piece of monolith catalyst was wrapped with ceramic fiber strings and loaded in a quartz tube, purchased from Quartz Scientific. The tube was then put in a

Lindberg Blue M furnace. Catalyst upstream and downstream temperatures were measured by K type thermocouples, purchased from Omega.

The total flow rate for each reactor experiment was 1403 sccm, which corresponds to a 60,000 h⁻¹ space velocity. Gas cylinders were purchased from Praxair. Gas flow rates were metered by mass flow controllers, purchased from MKS Instruments. The steam flow rate was metered by a controlled evaporation mixer (CEM) purchased from Bronkhorst. The carrier gas of the steam was N₂. Sulfinert tubing, purchased from Swagelok, was used to prevent corrosion by sulfur and limit its adsorption on the tubing walls. The tubing was heated to 150 °C. Gas mixture concentrations and catalyst outlet gas concentrations were monitored by a MKS MultiGas 2030 FT-IR.

Before experiments, a mild hydrothermal aging (HTA) was conducted at 650 °C for 5 h with the conditions listed in Table 3.1. For experiments with catalysts was not exposed to sulfur, an O₂ pretreatment was conducted at 500 °C for 1 h with the conditions listed in Table 3.1. Then the temperature was cooled to 150 °C for experiments. CO exposure and NH₃-SCR experimental conditions are listed in Table 3.2. CO titration experiments were done for 24 h if the catalyst was not exposed to sulfur. If the catalyst was exposed to sulfur, CO titration experiments were done long enough to make sure that the CO₂ concentration decreased to zero. SCR experiments were conducted in a steady-state condition and stepwise decreased temperature. SO₂ and SO₂ + SO₃ exposure were conducted at 425 °C. The total sulfur exposure corresponds to a loading on the catalyst of 55 g/L, i.e. this would be the loading if all sulfur adsorbed. If there was a regeneration process after sulfur exposure, it was conducted at 575 °C for 1 h with the conditions listed in Table 3.1. After sulfur exposure, an O₂ pretreatment was conducted at 400 °C, with a temperature ramp rate of 2 °C/min. The conditions are listed in Table 3.1. Based on the literature and our

experimental data, no sulfur was released up to or at 400 °C [48,95]. Then, the temperature was cooled to 150 °C for CO and SCR experiments.

Reactions	SO ₂ (ppm)	SO ₃ (ppm)	H ₂ O (%)	O ₂ (%)	N_2
HTA	-	-	7	10	Balance
O ₂ pretreatment	-	-	-	10	Balance
SO ₂ exposure	30	-	7	10	Balance
$SO_2 + SO_3$ exposure	5	25	7	10	Balance
Regeneration after	_	_	7	10	Balance
sulfur exposure*					

Table 3.1 Pretreatment conditions

* If not specified, the regeneration process was not conducted.

Reactions	NH ₃ (ppm)	NO (ppm)	CO (ppm)	H ₂ O (%)	O ₂ (%)	N2
SCR	200	200	-	7	10	Balance
CO titration*	200	-	1000	-	-	Balance

* Unless specified, CO titration was conducted at 150 °C.

Calculations include:

NO_x conversion during SCR reaction =
$$\frac{NO_{xin} - NO_{xout}}{NO_{xin}} \times 100\%$$
 (3-2)

A PerkinElmer Lambda 850 DR UV-vis spectrometer was used to characterize whether Cu dimers appear on the Cu-SSZ-13 catalyst before and after sulfur exposure. We used a Harrick Scientific Praying Mantis cell and UV grade SiO₂ windows. Catalyst powder was scraped from the monolith-supported catalysts before and after S exposure. These were filled into a sample cup and the sample surface was leveled to the cup height. The total flow rate for these experiments was 50 sccm. The gas was Ultra Zero Air, purchased from Praxair, with 19.5 - 23.5% O₂, < 2 ppm H₂O, 0.5 ppm CO₂, 0.5 ppm CO, 0.5 ppm total hydrocarbon content, and balance N₂. Spectra were scanned before, during, and after a dry air pretreatment on the sample at 400 °C with dry air for 1 h.

3.3 Results and discussion

Sulfur poisoning study without regeneration after sulfur exposure

NO_x conversions were measured at levels under 20%, using this as simply a rule of thumb type of value to obtain the SCR kinetic results, before and after sulfur exposure. The plot of conversions as a function of temperature is shown in Fig. 3.1 (a) and the SCR reaction pre-exponential and activation energy results are listed in Table 3.3. Dhillon et al. calculated the Weisz-Prater number of the SCR reaction on a Cu-SSZ-13 monolith catalyst with 66,000 h⁻¹ space velocity. They found that the number is larger than 1 when the reaction temperature is higher than 250 °C. Since their reaction conditions are similar to us, we assume that our results presented here were not in internal mass transfer limitation [96].

After SO₂ or SO₂ + SO₃ exposure without regeneration, catalyst NO_x conversions decrease compared to the NO_x conversion before sulfur exposure. The Arrhenius plots from the SCR results are shown in Fig. 3.1 (b). Both pre-exponential factor and activation energy values on the sulfur poisoned samples decreased from 93 kJ/mol (before sulfur poisoned) to 53 (SO₂ poisoned) and 55 (SO₂ + SO₃ poisoned) kJ/mol. The inclusion of SO₃ decreases the NO_x conversion slightly more than that compared to SO₂ poisoning, but the SCR activation energy and pre-exponential factor after SO₃ poisoning are similar to those after SO₂ poisoning. The values of the SCR reaction activation energy before and after sulfur exposure are also close to the values reported in the literature [44,58]. The decrease might be related to a mass transfer limitation or a change in the reaction mechanism, or rate determining step of the mechanism [97]. However, our current results cannot definitively differentiate which leads to the decrease of the activation energy.

If the activation change after sulfur exposure is not due to a mass transfer limitation, something in the SCR mechanism changes. The usually used SCR mechanism at low temperature, without sulfur exposure, is driven by two $Cu^{I}(NH_{3})_{2}$ reacting with an O₂ molecule to form a $Cu(NH_{3})_{2}$ -O₂- $Cu(NH_{3})_{2}$ dimer [33]. However, this Cu dimer species can react with sulfur species [91] and with its loss might lead to a decrease in SCR activity. Another possibility is that the Cu(NH₃)₂-O₂- $Cu(NH_{3})_{2}$ dimer might not be able to form after sulfur exposure, with the Cu bound to sulfur inhibiting its mobility or ability to form the dimer. If so, the SCR reaction is not limited to the monomer.

The research of sulfur could react with Cu dimers led us to probe whether Cu dimers were still on the catalysts after sulfur exposure. We studied the static Cu dimers which are ZCu-O-CuZ like species, different from the literature that there was NH₃ on the catalyst [91]. To titrate the amount of static Cu dimers, literature shows that CO titration can be used, with the equation shown in equation (3-1) [93].

Fig. 3.1. (a) NO_x conversions and (b) Arrhenius plots obtained during the SCR reaction with conditions described in Table 3.2. Catalysts include before sulfur exposure and with and without regeneration after SO₂ and SO₂ + SO₃ exposure.

 Table 3.3 SCR reaction activation energies and pre-exponential factors measured using catalysts

 with different sulfur exposure conditions

Conditions	No sulfur	SO ₂	$SO_2 + SO_3$	SO ₂ , regen	$SO_2 + SO_3$, regen
Ea (kJ/mol)	93	53	55	85	58
A (s ⁻¹)	2.4×10^{8}	1.2×10^{3}	1.4×10^{3}	2.1×10^{7}	4.9×10^3

The results of CO titration experiments are listed in Table 3.4. After sulfur exposure without regeneration afterwards, the amount of CO₂ formed from CO titration experiments decreased significantly, from 29 μ mol/g before S exposure to lower than 0.5 μ mol/g. Based on the stoichiometry from Equation (3-1), the amount of Cu dimers can be obtained. The results show that Cu dimers cannot be titrated by CO after sulfur exposure, or were not formed. It implies that

Cu dimers are one of the sites that sulfur species can poison either by blocking their formation or blocking their ability to be titrated from CO.

Conditions	No sulfur	SO_2	$SO_2 + SO_3$	SO ₂ , regen	$SO_2 + SO_3$, regen
CO ₂ (µmol/g)	29	0.46	0.33	12.5	1.1

Table 3.4 CO titration results after different sulfur exposure conditions

DR UV-Vis spectroscopy can be used to characterize some Cu species. Li et al. showed that after a high temperature O₂ pretreatment, 4 peaks were observed in the d-d transition region on catalysts with ZCuOH. These 4 peaks shrank to one single peak after CO exposure, leaving behind isolated ZCuOH [70]. If indeed these peaks characterize Cu dimer species, then if the CO titration results above accurately show that Cu dimers are not present after S exposure, then the UV-Vis peaks should also be absent.

The UV-Vis spectra for the catalyst before sulfur exposure are shown in Fig. 3.2. Three curves are shown in the spectra, which are spectra collected before, during, and after a 400 °C dry air pretreatment. Before a high temperature dry air pretreatment, there was only a peak shown in the d-d transition region. Moisture inhibits the Cu dimer formation. Giordanino et al. showed similar spectra with only one peak in the d-d transition region for hydrated Cu-SSZ-13 [40]. As there was no pretreatment for our sample, it is likely hydrated via ambient exposure. We also did a CO titration experiment with 7% H₂O at 200 °C, see Fig. 3.2 (b). Little, 0.42 μ mol/g, CO₂ was detected during the CO titration experiment. These results provide support that little to no Cu dimers were formed in a hydrated environment. During and after a high temperature dry air pretreatment, three

peaks are shown in the d-d transition region. The high temperature dry air pretreatment removed water in the catalyst, so that Cu dimers were formed. Since the UV-Vis spectrometer cannot scan the region higher than 900 nm, or lower than 11111 cm⁻¹, the fourth peak that is reported close to 10000 cm⁻¹ cannot be detected. The remaining three peak positions are similar to the peak positions reported in the literature [40,70].

Fig. 3.2. DR UV-Vis spectra of the fresh catalyst before, during, and after a 400 °C dry air pretreatment. The spectra before and after the 400 °C dry air pretreatment were collected at 27 °C. (b) CO titration with 7% H₂O included on the hydrothermally aged Cu-SSZ-13 catalyst. The gas concentration was 200 ppm CO, 7% H₂O and balance N₂. This CO titration experiment was done at 200 °C.

The DR UV-Vis comparison spectra of all 5 catalysts with and without sulfur exposure are shown in Fig. 3.3. The spectra were collected after a 400 °C dry air pretreatment. The spectra obtained from catalysts that were exposed to sulfur without a following regeneration did not show a clear peak in the d-d transition region, see Fig. 3.3 (a). This suggests that both SO₂ and SO₂ +

SO₃ exposed catalysts lose most of the Cu dimers during sulfur exposure. The results are consistent with the CO titration results.

Fig. 3.3. DR UV-Vis spectra obtained from the Cu/SSZ-13 catalysts before and after SO₂ and SO₂ + SO₃ exposure, with and without regeneration. (a) Comparison spectra of catalysts before and after SO₂ and SO₂ + SO₃ exposure without regeneration. (b) Comparison spectra with and without regeneration after SO₂ exposure. (c) Comparison spectra with and without regeneration after SO₂ exposure. (d) Comparison of all 5 spectra. All 5 spectra were collected at 27 °C after a 400 °C dry air pretreatment for 1 h.

Sulfur poisoning study with regeneration after sulfur exposure

After regeneration at 575 °C, the SO₂ + SO₃ exposed catalyst has a slight improvement in NO_x conversion compared to no regeneration, see Fig. 3.1 (a). The activation energy remained about the same, measured as 55 kJ/mol before and 58 kJ/mol after, see Table 3.3. The pre-exponential factor increased slightly, from 1.4×10^3 to 4.9×10^3 , after regeneration compared to no regeneration. This suggests that some active sites were regenerated. This suggests overall that the high temperature regeneration used with the SO₂ + SO₃ exposed sample did not change the rate limiting step of the SCR reaction mechanism or mass transfer limitations were still maintained, compared to the case of no regeneration.

In the case of regeneration after SO₂ exposure, SCR NO_x conversion increased and is close to the conversions obtained from the fresh catalyst. The activation energy and pre-exponential factor also increased and are similar to the original values. The increase in activation energy suggests that the SCR mechanism changes back to the original pathway, or the mass transfer limitations by sulfur are removed.

CO titration results show similar trends as the SCR rate results. Little CO₂ was formed, 1.1 μ mol/g, when CO titrated the sample that was regenerated after SO₂ + SO₃ exposure, but 12.5 μ mol/g of CO₂ was detected when CO titrated the sample that was regenerated after SO₂ exposure. The results suggest that the regeneration process recovered little Cu dimers for the sample that was poisoned by SO₂ + SO₃, but the regeneration process recovered a significant amount of Cu dimers for the sample that was poisoned by SO₂ + SO₃, but the regeneration process recovered a significant amount of Cu dimers for the sample that was poisoned by SO₂.

DR UV-Vis results, see Fig. 3.4, are also consistent with the CO titration results. The spectrum from the catalyst exposed to SO₂ and regeneration afterwards shows 3 peaks in the d-d transition

region, see Fig. 3.4 (b). This is consistent with the CO titration data that showed regeneration of SO_2 exposed catalyst can recover Cu dimers. On the other hand, the spectrum of the catalyst exposed to $SO_2 + SO_3$ and regeneration afterwards does not contain such distinct peaks in the d-d transition region, see Fig. 3.4 (c). This is again consistent with the CO titration data where regeneration of the $SO_2 + SO_3$ exposed catalyst can only recover a limited amount of the originally observed Cu dimers.

It is interesting to note that the regeneration process did not have a clear impact on the sample that was poisoned by $SO_2 + SO_3$, but it did on the sample that was poisoned by SO_2 . A possible explanation is that there were at least two sulfur species formed during sulfur exposure. Assuming so, one of them is more stable than the other. The more stable species formed either from SO_3 in the feed binding with Cu sites or from SO₂ oxidation on the Cu sites to a more oxidized S species. The less stable species was formed by SO₂ binding on the Cu sites, possibly forming CuHSO₃ species [44]. Deka et al. did a TPD experiment on a 0.41 wt% of sulfur loaded field aged Cu-SSZ-13 catalyst. They assigned a SO₂ release peak at 590 °C to copper bisulfite, formed as in reaction, and assigned another SO₂ release peak at 680 °C to copper bisulfate [95]. These assignments might explain our results. The 575 °C regeneration can lead to the decomposition of the copper bisulfite but cannot decompose the copper bisulfate. However, those TPD results are not further supported by other characterization techniques, so such assignments need more verification. For example, Su et al. did TPD experiments with a sulfur poisoned Cu-SSZ-13 catalyst and they assigned the peak at around 600 °C to copper sulfate [48]. Thus, we can only hypothesize that there are two different sulfur species. The exact species require further characterization.

3.4 Conclusions

In this portion of the research, we studied how exposure of a Cu-SSZ-13 catalyst to SO_2 or $SO_2 + SO_3$ impacted the SCR conversion as well as number of Cu dimer sites that could be titrated by CO exposure. From the SCR experiments, the SCR reaction activation energy and preexponential factor decreased after SO₂ or SO₂ + SO₃ poisoning. CO titration and UV-Vis results both show that catalysts lost Cu dimers after sulfur poisoning.

In terms of regeneration impact, the regeneration process led to more significantly recovered conversion for the catalyst exposed to SO₂ compared to the catalyst exposed to SO₂ + SO₃. The SCR reaction pre-exponential factor and activation energy of the catalyst exposed to SO₂ both increased after regeneration. The CO titration and UV-Vis results suggest that Cu dimers were recovered during regeneration. On the other hand, regeneration of the catalyst exposed to SO₂ + SO₃ only led to a slight increase in the pre-exponential factor, and the activation energy did not change. The CO titration and UV-Vis results again followed the SCR reaction test trend, with little recovery of UV-Vis features associated with dimers and no CO₂ formed during the CO titration experiment. The different impact of regeneration on SO₂ exposed and SO₂ + SO₃ exposed catalysts are hypothesized to be because of two different sulfur species formed on the catalyst.

3.5 Acknowledgements

The authors gratefully acknowledge Cummins Inc. for financial support. The authors also acknowledge Professor Chris Paolucci, Keka Mandal, and Asanka Wijerathne whose research using DFT calculations initially showed that sulfur species bind on Cu dimers strongly. Finally, the authors acknowledge both Professor Chris Paolucci and Professor Robert Davis and their research groups for informative discussions.

Chapter 4. Ethylene Effect on Cu Sites Transformation during Hydrothermal Aging 4.1 Introduction

The inhomogeneous fuel and air mixture in the diesel engine leads to different types of emissions, such as unburned hydrocarbons, CO, NO_x, SO_x, and particular matter. A typical diesel engine aftertreatment system contains a diesel oxidation catalyst (DOC), diesel particular filter (DPF), and selective catalytic reduction (SCR) and ammonia slip catalysts (ASC). Even though the DOC upstream of the SCR catalyst oxidizes most of the hydrocarbons and CO, there are still some ppm levels of hydrocarbons detected before the SCR catalyst [98,99], particularly during the cold-start period [26,100–102], where the temperature of the DOC is not high enough to oxidize the hydrocarbons.

Hydrocarbon poisoning of SCR catalysts has been researched. Cu-ZSM-5, Cu-beta, Fe-ZSM-5, and Fe-beta were first investigated, and the SCR reaction conversions over all four catalysts decreased with exposure to propylene (C₃H₆) [85,98,100,101,103]. Luo et al. investigated C₃H₆ poisoning and dodecane poisoning over Cu-beta and Cu-CHA catalysts. They found that the smallpore catalyst, Cu-CHA, could resist both C₃H₆ and dodecane poisoning compared to the Cu-beta catalyst [85]. Even though the Cu-CHA catalyst can better resist the hydrocarbon poisoning, Ma et al. reported that the Cu-SSZ-13 catalyst still suffered from C₃H₆ poisoning during SCR reactions [104].

Hydrothermal aging at high temperatures is another factor resulting in deactivation of SCR catalysts. Even though the hydrothermal stability of the Cu-CHA catalyst is higher compared to other Cu-zeolite catalysts, Cu-CHA still suffers from hydrothermal aging deactivation if the temperatures are too high [52–55]. Some literature further investigated the extent of hydrocarbon

poisoning before and after the hydrothermal aging [19,102]. The extent of hydrocarbon poisoning on Cu-SSZ-13 became more severe after hydrothermal aging compared to the extent of hydrocarbon poisoning on the fresh catalyst [19,102].

One area that has not been explored is the effect of hydrocarbons in the composition of the gas stream during hydrothermal aging. In this study, we used C_2H_4 as a representative short chain hydrocarbon, see Fig. 4.1, and show that after 1 hour of mild hydrothermal aging at 600 °C, 100% conversion of C_2H_4 was no longer observed and that the conversion slowly decreased with further time. We found that high temperature SCR and oxidation activity of the Cu-SSZ-13 catalyst after HTA with C_2H_4 included was affected when compared to HTA with no C_2H_4 included. We hypothesized that either the formation of coke hinders the Cu sites transformation from ZCuOH to Z2Cu or a back transformation from Z2Cu to ZCuOH occurs during HTA + C_2H_4 . Other effects of hydrothermal aging with other different exhaust components included on SCR performance were also investigated.

Fig. 4.1. Comparison of C_2H_4 concentration change during HTA + C_2H_4 . The aging condition is detailed in Table 4.1 in the Experimental Methods section. In one experiment 1% O_2 was included in the other 10% O_2 .

4.2 Experimental Methods

The catalysts used in the experiments were taken from a Cu-SSZ-13 washcoated monolith provided by Cummins Inc. The cell density of the monolith is 300 cpsi and 21 cells with 2.9 cm in length of the monolith were used in the experiments. Every catalyst was wrapped with ceramic fiber strings before loading into a quartz tube, purchased from Quartz Scientific. The tube was then placed in a Lindberg Blue M furnace. The upstream and downstream temperatures of the catalyst were measured by K-type thermocouples purchased from Omega.

The total flow rate for all reactor experiments was 1360 sccm, which corresponds to a 62,300 h⁻¹ space velocity. NO, NH₃, CO, C₂H₄, N₂, O₂, and CO₂ gases were used in the experiments. Gas cylinders were either purchased from Praxair or Matheson. A N₂ generator, purchased from Parker Balston, was used for the supplementary N₂. Gas flow rates were metered by mass flow controllers (MFC), purchased from MKS Instrument. The steam flow rate was metered by a controlled evaporator mixer (CEM), purchased from Bronkhorst. The carrier gas for the steam was N₂. All reactor tubing was kept at 150 °C using heating tapes and wrapped insulation.

A mild hydrothermal aging at 600 °C for 25 h with different simulated exhaust mixtures was conducted before experiments. Details of the concentrations are listed in Table 4.1. Prior to each experiment, an O₂ pretreatment with 10% O₂ and N₂ balance at 500 °C was conducted for 1 h. After the O₂ pretreatment, the temperature was cooled to 150 or 200 °C depending on the experiment. Gas concentration details for each experiment are listed in Table 4.2. NH₃-SCR, NH₃ oxidation, and NO oxidation experiments were conducted under steady-state conditions, starting from 200 °C (150 °C if the experiment is SCR) and stepwise increasing to 550 °C, while CO

oxidation was conducted with a temperature program, starting from 200 °C and with a 10 °C/min of increasing rate to 550 °C.

Conditions	O ₂ (%)	H ₂ O	CO_2	NH ₃	NO	CO	C_2H_4	N_2
		(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
HTA	10	7	8	-	-	-	-	Balance
HTA +							-	
NH ₃	10	7	8	200	-	-		Balance
HTA + NO	10	7	8	-	200	-	-	Balance
HTA + CO	10	7	8	-	-	200	-	Balance
HTA +	10:1						500	
C_2H_4	10*	7	8	-	-	-		Balance

Table 4.1 Mild hydrothermal aging at 600 °C for 25 h with different exhaust conditions

* If not specified, 10% O_2 was used during HTA + C_2H_4 .

Reactions	NH ₃	NO	СО	SO_2	H ₂ O	CO_2	O ₂	N_2
	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)	(%)	
SCR	200	200	-	-	7	8	10	Balance
NO oxidation	-	200	-	-	7	8	10	Balance
NH ₃ oxidation	200	-	-	-	7	8	10	Balance

 Table 4.2 Reaction conditions used

CO								
	-	-	200	-	7	-	10	Balance
oxidation								

Calculations include:

NO_x conversion during SCR reaction =
$$\frac{NO_{xin} - NO_{xout}}{NO_{xin}} \times 100\%$$
 (4-1)

NO oxidation conversion =
$$\frac{NO_{in} - NO_{out}}{NO_{in}} \times 100\%$$
 (4-2)

NH₃ oxidation conversion =
$$\frac{NH_{3in} - NH_{3out}}{NH_{3in}} \times 100\%$$
 (4-3)

CO oxidation conversion =
$$\frac{CO_{in} - CO_{out}}{CO_{in}} \times 100\%$$
 (4-4)

NH₃ adsorption experiments with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to characterize the T-O-T vibration region of catalysts after the HTA with exposure to different simulated exhaust mixtures. A Nicolet iS-50 FT-IR spectrometer with a Harrick Scientific Praying Mantis cell and ZnSe windows were used. Catalyst powder was scraped from the monolith-supported catalysts. The powder was filled into a sample cup and the sample surface was leveled to the cup height. A mixture of dry ice and isopropanol was used as a cold trap to remove residual water from the inlet line into the cell. The total flow rate for all experiments and treatments was 50 sccm. Before experiments, catalysts were exposed to 10% O₂ and balance He at 500 °C for 1 h (O₂ pretreatment). Then, the system was cooled to 120 °C. The background spectrum was taken after the catalyst had cooled to the target temperature. For NH₃ adsorption experiments, the experiments were conducted at 120 °C with 1000 ppm NH₃ and balance He.

4.3 Results and Discussion

Catalyst oxidation activity decreases less after $HTA + C_2H_4$ compared to after just HTA

SCR reaction conversion results before and after mild HTA are shown in Fig. 4.2 (a). Below 350 °C, similar NO_x conversions are obtained. The results are consistent with the literature [49,52,62,63,74] and the results shown in Chapter 2. Above 350 °C, the HTA catalyst resulted in a higher NO_x conversion compared to the fresh catalyst. SCR reactions at high temperatures are affected by the NH₃ oxidation reaction, which becomes significant at high temperatures, shown in Fig. 4.2 (b). The loss of NH₃ reacting with O₂ instead of NO leads to the loss of NO_x conversion at high temperatures [17,49,63].

The SCR performance after HTA with different exhaust components included were measured to understand the effect of these components on the catalyst aging. The results are shown in Fig. 4.2 (c). In this set of experiments, NH₃, NO, and CO were chosen as different components. The results show that these have little impact on the catalyst changes during HTA. However, SCR performance at high temperatures increased slightly less after HTA + C₂H₄, compared to HTA. The results are shown in Fig. 4.2 (a). From previous discussion, SCR performance at high temperatures is affected by NH₃ oxidation reactions. The results in Fig. 4.2 (b) illustrate that the NH₃ oxidation activity of the catalyst after HTA + C₂H₄ was higher than that after HTA, which is consistent with the previous discussion.

Fig. 4.2. Comparison of (a) SCR performance and (b) NH_3 oxidation performance before and after HTA and HTA + C₂H₄ and (c) the SCR performance after HTA + NH_3 or NO or CO. The aging conditions are listed in Table 4.1 and the SCR reaction conditions are listed in Table 4.2. Note that fresh catalyst was not hydrothermally aged.

DRIFTS characterization was used to help understand the change in NH₃ oxidation and SCR performance after HTA + C₂H₄ compared to after HTA only. Based on the literature, the T-O-T vibration region of the DRIFTS spectra, $850 - 1000 \text{ cm}^{-1}$, can be used to distinguish the relative amount of ZCuOH and Z2Cu by NH₃ adsorption [39,44,56,63], results shown in Fig. 4.3. The 900 cm⁻¹ peak is assigned to NH₃ adsorption on Z2Cu and the 950 cm⁻¹ peak is assigned to NH₃

adsorption on ZCuOH [39,44,56,63]. The 900 cm⁻¹ peak was normalized for better comparison of the 950 cm⁻¹ peak between fresh (before HTA), HTA, and HTA + C₂H₄. The results show that HTA + C₂H₄ had a "lower" peak than HTA. This indicates that the proportion of ZCuOH/Z2Cu is more on the HTA + C₂H₄ sample compared to that of the HTA sample. Literature [17,49,76] has shown that the catalyst NH₃ oxidation activity is related to the amount of ZCuOH. The DRIFTS results and the literature explain that the difference of the NH₃ oxidation activity between the catalyst after HTA and HTA + C₂H₄ is due to a different amount of ZCuOH.

Fig. 4.3. DRIFTS spectra of NH₃ adsorption on fresh (before HTA), HTA, and HTA + C_2H_4 samples. The aging conditions are listed in Table 4.1. NH₃ adsorption conditions: 1000 ppm NH₃ and balance He at 120 °C.

There are two possible hypotheses to explain why the amount of ZCuOH on the catalysts changed after including C₂H₄ during the mild hydrothermal aging. The first one is pore blocking caused by C₂H₄ which slightly hinders the ZCuOH transformation to Z2Cu during HTA. The second is a back transformation of Z2Cu to ZCuOH. Here, only the second hypothesis was tested. The results are shown in Fig. 4.4. A 50 h HTA was first done, to transform some ZCuOH to Z2Cu. Then, a 25 h HTA + C₂H₄ was done with the same catalyst that had experienced 50 h HTA. The
comparison of SCR performance shown in Fig. 4.4 (a) shows that the hydrothermal aging with ethylene after 50 h HTA had slightly lower NO_x conversion above 400 °C. The higher temperature SCR performance difference between two aging conditions indicates that the ZCuOH amounts in the catalyst after these two different aging conditions are different. To be specific, the catalyst after the additional hydrothermal aging with ethylene has more than the catalyst that only experienced 50 h HTA. If ethylene does not have any effect during the hydrothermal aging process, less ZCuOH amount should be expected. Thus, the results imply that a back transformation from Z2Cu to ZCuOH occurred when including ethylene during mild hydrothermal aging. The NH₃ oxidation comparison results, shown in Fig. 4.4 (b), support this finding. The NH₃ oxidation activity of the catalyst after additional HTA + C₂H₄ is higher than that after HTA only. Based on the previous discussion that NH₃ oxidation activity is related to the amount of ZCuOH, the catalyst after additional HTA + C₂H₄ had more ZCuOH than the catalyst after HTA only. Furthermore, NO oxidation and CO oxidation performance, shown in Fig. 4.4 (c) and (d), were also done and they both show the same trend as NH₃ oxidation.

Fig. 4.4. (a) NH₃-SCR, (b) NH₃ oxidation, (c) NO oxidation, and (d) CO oxidation performance comparison between the catalyst before HTA, the catalyst after 50 h HTA and the catalyst after additional 25 h HTA + C_2H_4 after 50 h HTA. The SCR, NH₃ oxidation, NO, and CO oxidation conditions are listed in Table 4.2. The HTA conditions are listed in Table 4.1.

The DRIFTS experiments with NH₃ adsorption as a probe technique were used to further characterize the amount of ZCuOH and Z2Cu between catlaysts before HTA, after 50 h HTA, and the additional HTA + C_2H_4 after 50 h HTA. The results are shown in Fig. 4.5. The 900 cm⁻¹ peaks were normalized to compare the 950 cm⁻¹ peaks between samples. The results show that the peak intensity of the catalyst after additional HTA + C_2H_4 is slightly higher than the catalyst

after 50 h HTA only. The results again illustrate that the ZCuOH amount of the catalyst after additional HTA + C_2H_4 is more than the catalyst after 50 h HTA. This further supports that a back transformation from Z2Cu to ZCuOH occurred after including ethlyene during HTA.

Fig. 4.5. DRIFTS spectra of NH₃ adsorption on fresh (before HTA), 50 h HTA, and an additional 25 h HTA + C_2H_4 after 50 h HTA samples. The aging conditions are listed in Table 4.1. NH₃ adsorption conditions: 1000 ppm NH₃ and balance He at 120 °C.

4.4 Conclusions

Catalyst SCR performance and oxidation conversion are measured after hydrothermal aging with different exhaust mixtures. We found that mild hydrothermal aging with ethylene leads to high-temperature SCR reaction conversion decrease and NH₃ oxdiation conversion increase compared to the same after mild hydrothermal aging without ethylene included. DRIFTS spectra showed that the Cu distribution changed between mild hydrothermal aging with and without ethylene. We propose that the inclusion of ethylene can transform part of the Z2Cu to ZCuOH. An additional mild hydrothermal aging with ethylene after 50 h of mild hydrothermal aging was conducted to test this. The SCR raciton conversion decreased and NH₃, NO, and CO oxidation conversion increased compared to the performance after 50 h mild hydrothermal aging. The

DRIFTS spectra show that the ZCuOH peak intensity after the additional mild hydrothermal aging with ethylene is greater than the ZCuOH peak intensity after 50 h mild hydrothermal aging. These DRIFTS and oxidaiton results support the hypothesis that the Z2Cu transforms to ZCuOH during HTA, opposite of the normal trends.

4.5 Acknowledgements

The authors gratefully acknowledge Cummins Inc. for financial support. The authors also acknowledge Dr. Marina Cortés-Reyes for the initial reactor setup and the informative discussions.

References

- P. Breeze, Diesel Engines, in: Pist. Engine-Based Power Plant, 2018: pp. 47–57. https://doi.org/10.1016/B978-0-12-812904-3.00005-7.
- [2] H. Jääskeläinen, M.K. Khair, Diesel engines, (2021). https://doi.org/10.1201/b13974.
- Y.B. Zeldovich, 26. Oxidation of Nitrogen in Combustion and Explosions, in: Sel. Work.
 Yakov Borisovich Zeldovich, Vol. I, 1992: pp. 404–410. https://doi.org/10.1515/9781400862979.404.
- [4] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, A. Yezerets, Chemical deSO_x: An effective way to recover Cu-zeolite SCR catalysts from sulfur poisoning, Catal. Today. 267 (2016) 10–16. https://doi.org/10.1016/j.cattod.2016.01.033.
- [5] DieselNet, Emission Test Cycles: HD FTP Transient, (2019). https://www.dieselnet.com/standards/cycles/ftp_trans.php.
- [6] DieselNet, Emission Test Cycles FTP-75, (2019) 20–22.
 https://dieselnet.com/standards/cycles/ftp75.php%0Ahttps://www.dieselnet.com/standards
 /cycles/ftp75.php.
- [7] R.K. Lattanzio, J.E. McCarthy, Tier 3 motor vehicle emission and fuel standards, U.S. EU
 Mot. Veh. Stand. Elem. Considerations Trade Issues. (2014) 37–54.
- [8] M. Koebel, M. Elsener, M. Kleemann, Urea-SCR: a promising technique to reduce NO_x emissions from automotive diesel engines, Catal. Today. 59 (2000) 335–345. https://doi.org/10.1016/S0920-5861(00)00299-6.
- [9] M. Kleemann, M. Elsener, M. Koebel, A. Wokaun, Hydrolysis of isocyanic acid on SCR

catalysts, Ind. Eng. Chem. Res. 39 (2000) 4120–4126. https://doi.org/10.1021/ie9906161.

- [10] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The state of the art in selective catalytic reduction of NO_x by ammonia using metal-exchanged zeolite catalysts, Catal. Rev.
 Sci. Eng. 50 (2008) 492–531. https://doi.org/10.1080/01614940802480122.
- [11] A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, M. Weibel, The chemistry of the NO/NO₂-NH₃ "fast" SCR reaction over Fe-ZSM5 investigated by transient reaction analysis, J. Catal. 256 (2008) 312–322. https://doi.org/10.1016/j.jcat.2008.03.027.
- [12] F. Gao, E.D. Walter, E.M. Karp, J. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H.F. Peden, Structure-activity relationships in NH₃-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies, J. Catal. 300 (2013) 20–29. https://doi.org/10.1016/j.jcat.2012.12.020.
- [13] F. Gao, J.H. Kwak, J. Szanyi, C.H.F. Peden, Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO_x Catalysts, Top. Catal. 56 (2013) 1441–1459. https://doi.org/10.1007/s11244-013-0145-8.
- K. Kamasamudram, C. Henry, N. Currier, A. Yezerets, N₂O Formation and Mitigation in Diesel Aftertreatment Systems, SAE Int. J. Engines. 5 (2012) 688–698. https://doi.org/10.4271/2012-01-1085.
- [15] G. Cavataio, J. Girard, J.E. Patterson, C. Montreuil, Y. Cheng, C.K. Lambert, Laboratory testing of urea-SCR formulations to meet tier 2 bin 5 emissions, SAE Tech. Pap. 2007 (2007) 776–790. https://doi.org/10.4271/2007-01-1575.
- [16] J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H.F. Peden, Effects of hydrothermal aging on NH₃-SCR reaction over Cu/zeolites, J. Catal. 287 (2012) 203–209.

https://doi.org/10.1016/j.jcat.2011.12.025.

- [17] J.M. González, A.L. Villa, High Temperature SCR Over Cu-SSZ-13 and Cu-SSZ-13 + Fe-SSZ-13: Activity of Cu²⁺ and [CuOH]¹⁺ Sites and the Apparent Promoting Effect of Adding Fe into Cu-SSZ-13 Catalyst, Catal. Letters. 151 (2021) 3011–3019. https://doi.org/10.1007/s10562-021-03550-7.
- [18] F. Gao, Fe-exchanged small-pore zeolites as ammonia selective catalytic reduction (NH₃-SCR) catalysts, Catalysts. 10 (2020) 1–33. https://doi.org/10.3390/catal10111324.
- [19] A. Wang, Y. Wang, E.D. Walter, N.M. Washton, Y. Guo, G. Lu, C.H.F. Peden, F. Gao, NH₃-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects, Catal. Today. 320 (2019) 91–99. https://doi.org/10.1016/j.cattod.2017.09.061.
- [20] D. Zhang, R.T. Yang, N₂O Formation Pathways over Zeolite-Supported Cu and Fe Catalysts in NH₃-SCR, Energy and Fuels. 32 (2018) 2170–2182. https://doi.org/10.1021/acs.energyfuels.7b03405.
- [21] K. Kamasamudram, N. Currier, T. Szailer, A. Yezerets, Why Cu- and Fe-zeolite SCR catalysts behave differently at low temperatures, SAE Int. J. Fuels Lubr. 3 (2010) 664–672. https://doi.org/10.4271/2010-01-1182.
- [22] S.A. Bates, A.A. Verma, C. Paolucci, A.A. Parekh, T. Anggara, A. Yezerets, W.F. Schneider, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13, J. Catal. 312 (2014) 87–97. https://doi.org/10.1016/j.jcat.2014.01.004.

- [23] K. Leistner, O. Mihai, K. Wijayanti, A. Kumar, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions, Catal. Today. 258 (2015) 49–55. https://doi.org/10.1016/j.cattod.2015.04.004.
- [24] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO_x with NH₃, J. Catal. 275 (2010) 187–190. https://doi.org/10.1016/j.jcat.2010.07.031.
- [25] F. Gao, D. Mei, Y. Wang, J. Szanyi, C.H.F. Peden, Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis, J. Am. Chem. Soc. 139 (2017) 4935–4942. https://doi.org/10.1021/jacs.7b01128.
- [26] Y. Zheng, M.P. Harold, D. Luss, Effects of CO, H₂ and C₃H₆ on Cu-SSZ-13 catalyzed NH₃-SCR, Catal. Today. 264 (2016) 44–54. https://doi.org/10.1016/j.cattod.2015.06.028.
- [27] A.M. Beale, I. Lezcano-Gonzalez, W.A. Slawinksi, D.S. Wragg, Correlation between Cu ion migration behaviour and deNO_x activity in Cu-SSZ-13 for the standard NH₃-SCR reaction, Chem. Commun. 52 (2016) 6170–6173. https://doi.org/10.1039/c6cc00513f.
- [28] F. Giordanino, E. Borfecchia, K.A. Lomachenko, A. Lazzarini, G. Agostini, E. Gallo, A. V. Soldatov, P. Beato, S. Bordiga, C. Lamberti, Interaction of NH₃ with Cu-SSZ-13 catalyst: A complementary FTIR, XANES, and XES study, J. Phys. Chem. Lett. 5 (2014) 1552–1559. https://doi.org/10.1021/jz500241m.
- [29] S.Y. Joshi, A. Kumar, J. Luo, K. Kamasamudram, N.W. Currier, A. Yezerets, New insights into the mechanism of NH₃-SCR over Cu- and Fe-zeolite catalyst: Apparent negative activation energy at high temperature and catalyst unit design consequences, Appl. Catal. B

Environ. 226 (2018) 565–574. https://doi.org/10.1016/j.apcatb.2017.12.076.

- [30] F. Gramigni, N.D. Nasello, N. Usberti, U. Iacobone, T. Selleri, W. Hu, S. Liu, X. Gao, I. Nova, E. Tronconi, Transient Kinetic Analysis of Low-Temperature NH₃-SCR over Cu-CHA Catalysts Reveals a Quadratic Dependence of Cu Reduction Rates on Cu^{II}, ACS Catal. 11 (2021) 4821–4831. https://doi.org/10.1021/acscatal.0c05362.
- [31] C. Paolucci, A.A. Verma, S.A. Bates, V.F. Kispersky, J.T. Miller, R. Gounder, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13, Angew. Chemie Int. Ed. 53 (2014) 11828–11833. https://doi.org/10.1002/anie.201407030.
- [32] C. Paolucci, A.A. Parekh, I. Khurana, J.R. Di Iorio, H. Li, J.D.A. Caballero, A.J. Shih, T. Anggara, W.N. Delgass, T. Miller, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis in a Cage : Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites, J. Am. Chem. Soc. (2016). https://doi.org/10.1021/jacs.6b02651.
- [33] C. Paolucci, I. Khurana, A.A. Parekh, S. Li, A.J. Shih, H. Li, J.R. Di Iorio, J.D. Albarracincaballero, A. Yezerets, J.T. Miller, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, R. Gounder, Dynamic multinuclear sites formed by mobilized copper ions in NO_x selective catalytic reduction, Science 357 (2017) 898–903.
- [34] W. Hu, U. Iacobone, F. Gramigni, Y. Zhang, X. Wang, S. Liu, C. Zheng, I. Nova, X. Gao,
 E. Tronconi, Unraveling the Hydrolysis of Z2Cu²⁺ to ZCu²⁺(OH)⁻ and Its Consequences for
 the Low-Temperature Selective Catalytic Reduction of NO on Cu-CHA Catalysts, ACS
 Catal. (2021) 11616–11625. https://doi.org/10.1021/acscatal.1c02761.
- [35] E. Borfecchia, P. Beato, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, Cu-CHA-a model

system for applied selective redox catalysis, Chem. Soc. Rev. 47 (2018) 8097–8133. https://doi.org/10.1039/c8cs00373d.

- [36] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, H. An, A. Yezerets, Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst, Catal. Today. 231 (2014) 75–82. https://doi.org/10.1016/j.cattod.2013.12.038.
- [37] H.-Y. Chen, Urea-SCR Technology for deNO_x After Treatment of Diesel Exhausts, 1st ed., Springer New York, NY, 2014. https://doi.org/10.1007/978-1-4899-8071-7_5.
- [38] D.W. Fickel, R.F. Lobo, Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD, J. Phys. Chem. C. 114 (2010) 1633–1640. https://doi.org/10.1021/jp9105025.
- [39] J. Hun Kwak, H. Zhu, J.H. Lee, C.H.F. Peden, J. Szanyi, Two different cationic positions in Cu-SSZ-13?, Chem. Commun. 48 (2012) 4758–4760. https://doi.org/10.1039/c2cc31184d.
- [40] F. Giordanino, P.N.R. Vennestrøm, L.F. Lundegaard, F.N. Stappen, S. Mossin, P. Beato, S. Bordiga, C. Lamberti, Characterization of Cu-exchanged SSZ-13: A comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios, Dalt. Trans. 42 (2013) 12741–12761. https://doi.org/10.1039/c3dt50732g.
- [41] C.W. Andersen, M. Bremholm, P.N.R. Vennestrøm, A.B. Blichfeld, L.F. Lundegaard, B.B. Iversen, Location of Cu²⁺ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method, IUCrJ. 1 (2014) 382–386. https://doi.org/10.1107/S2052252514020181.

- Y. Cheng, C. Lambert, D. Heui, J. Hun, S. June, C.H.F. Peden, The different impacts of SO₂ and SO₃ on Cu/zeolite SCR catalysts, Catal. Today. 151 (2010) 266–270. https://doi.org/10.1016/j.cattod.2010.01.013.
- Y. Jangjou, M. Ali, Q. Chang, D. Wang, J. Li, A. Kumar, W.S. Epling, Effect of SO₂ on NH₃ oxidation over a Cu-SAPO-34 SCR catalyst, Catal. Sci. Technol. 6 (2016) 2679–2685. https://doi.org/10.1039/c5cy02212f.
- Y. Jangjou, Q. Do, Y. Gu, L.G. Lim, H. Sun, D. Wang, A. Kumar, J. Li, L.C. Grabow, W.S.
 Epling, Nature of Cu Active Centers in Cu-SSZ-13 and Their Responses to SO₂ Exposure,
 ACS Catal. 8 (2018) 1325–1337. https://doi.org/10.1021/acscatal.7b03095.
- [45] K. Wijayanti, K. Leistner, S. Chand, A. Kumar, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Deactivation of Cu-SSZ-13 by SO₂ exposure under SCR conditions, Catal. Sci. Technol. 6 (2016) 2565–2579. https://doi.org/10.1039/c5cy01288k.
- [46] L. Zhang, D. Wang, Y. Liu, K. Kamasamudram, J. Li, W. Epling, SO₂ poisoning impact on the NH₃-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst, Appl. Catal. B Environ. 156–157 (2014) 371–377. https://doi.org/10.1016/j.apcatb.2014.03.030.
- [47] Y. Jangjou, Q. Do, Y. Gu, L.G. Lim, H. Sun, D. Wang, A. Kumar, J. Li, L.C. Grabow, W.S.
 Epling, Nature of Cu Active Centers in Cu-SSZ-13 and Their Responses to SO₂ Exposure,
 ACS Catal. 8 (2018) 1325–1337. https://doi.org/10.1021/acscatal.7b03095.
- [48] W. Su, Z. Li, Y. Zhang, C. Meng, J. Li, Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst, Catal. Sci. Technol. 7 (2017) 1523–1528. https://doi.org/10.1039/c7cy00302a.

- [49] J. Luo, D. Wang, A. Kumar, J. Li, K. Kamasamudram, N. Currier, A. Yezerets, Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning, Catal. Today. 267 (2016) 3–9. https://doi.org/10.1016/j.cattod.2015.12.002.
- [50] A.J. Shih, I. Khurana, H. Li, J. González, A. Kumar, C. Paolucci, T.M. Lardinois, C.B. Jones, J.D. Albarracin Caballero, K. Kamasamudram, A. Yezerets, W.N. Delgass, J.T. Miller, A.L. Villa, W.F. Schneider, R. Gounder, F.H. Ribeiro, Spectroscopic and kinetic responses of Cu-SSZ-13 to SO₂ exposure and implications for NO_x selective catalytic reduction, Appl. Catal. A Gen. 574 (2019) 122–131. https://doi.org/10.1016/j.apcata.2019.01.024.
- [51] D.W. Fickel, E. D'Addio, J.A. Lauterbach, R.F. Lobo, The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites, Appl. Catal. B Environ. 102 (2011) 441–448. https://doi.org/10.1016/j.apcatb.2010.12.022.
- [52] S.J. Schmieg, S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, D.H. Kim, Thermal durability of Cu-CHA NH₃-SCR catalysts for diesel NO_x reduction, Catal. Today. 184 (2012) 252–261. https://doi.org/10.1016/j.cattod.2011.10.034.
- [53] Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I.S. Nam, B.K. Cho, Hydrothermal stability of Cu-SSZ-13 for reducing NO_x by NH₃, J. Catal. 311 (2014) 447–457. https://doi.org/10.1016/j.jcat.2013.12.012.
- [54] J. Song, Y. Wang, E.D. Walter, N.M. Washton, D. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, Toward Rational Design of Cu / SSZ-13 Selective Catalytic Reduction Catalysts : Implications from Atomic-Level Understanding

of Hydrothermal Stability, (2017). https://doi.org/10.1021/acscatal.7b03020.

- [55] F. Gao, J. Szanyi, On the hydrothermal stability of Cu/SSZ-13 SCR catalysts, Appl. Catal.
 A Gen. 560 (2018) 185–194. https://doi.org/10.1016/j.apcata.2018.04.040.
- [56] J. Luo, F. Gao, K. Kamasamudram, N. Currier, C.H.F. Peden, A. Yezerets, New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH₃ titration, J. Catal. 348 (2017) 291–299. https://doi.org/10.1016/j.jcat.2017.02.025.
- [57] A. Kumar, M.A. Smith, K. Kamasamudram, N.W. Currier, H. An, A. Yezerets, Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst, Catal. Today. 231 (2014) 75–82. https://doi.org/10.1016/j.cattod.2013.12.038.
- [58] Y. Xi, C. Su, N.A. Ottinger, Z.G. Liu, Effects of hydrothermal aging on the sulfur poisoning of a Cu-SSZ-13 SCR catalyst, Appl. Catal. B Environ. 284 (2021) 119749. https://doi.org/10.1016/j.apcatb.2020.119749.
- [59] Q. Ye, L. Wang, R.T. Yang, Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5, Appl. Catal. A Gen. 427–428 (2012) 24–34. https://doi.org/10.1016/j.apcata.2012.03.026.
- [60] P.G. Blakeman, E.M. Burkholder, H.Y. Chen, J.E. Collier, J.M. Fedeyko, H. Jobson, R.R.
 Rajaram, The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts,
 Catal. Today. 231 (2014) 56–63. https://doi.org/10.1016/j.cattod.2013.10.047.
- [61] L. Ma, Y. Cheng, G. Cavataio, R.W. McCabe, L. Fu, J. Li, Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH₃-SCR of NO_x

in diesel exhaust, Chem. Eng. J. 225 (2013) 323–330. https://doi.org/10.1016/j.cej.2013.03.078.

- [62] J. Luo, H. An, K. Kamasamudram, N. Currier, A. Yezerets, T. Watkins, L. Allard, Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts, SAE Int. J. Engines. 8 (2015) 1181–1186. https://doi.org/10.4271/2015-01-1022.
- [63] D. Wang, Y. Jangjou, Y. Liu, M.K. Sharma, J. Luo, J. Li, K. Kamasamudram, W.S. Epling, A comparison of hydrothermal aging effects on NH₃-SCR of NO_x over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Appl. Catal. B Environ. 165 (2015) 438–445. https://doi.org/10.1016/j.apcatb.2014.10.020.
- [64] I. Bull, W. Xue, P. Burk, R.S. Boorse, W.M. Jaglowski, G.S. Koermer, A. Moini, J.A. Patchett, J.C. Dettling, M.T. Claude, United State Patent No: US 7,601,662 B2, 2 (2009). https://patents.google.com/patent/US7601662B2/en.
- [65] P.J. Andersen, H. Chen, M. Fedeyko, G. Mills, E. Weigert, (12) United States Patent, 2 (2012).
- [66] Y. Jangjou, D. Wang, A. Kumar, J. Li, W.S. Epling, SO₂ Poisoning of the NH₃-SCR Reaction over Cu-SAPO-34: Effect of Ammonium Sulfate versus Other S-Containing Species, ACS Catal. 6 (2016) 6612–6622. https://doi.org/10.1021/acscatal.6b01656.
- [67] A. Wang, L. Olsson, Insight into the SO₂ poisoning mechanism for NO_x removal by NH₃-SCR over Cu/LTA and Cu/SSZ-13, Chem. Eng. J. 395 (2020) 125048. https://doi.org/10.1016/j.cej.2020.125048.
- [68] M. Shen, Y. Zhang, J. Wang, C. Wang, J. Wang, Nature of SO₃ poisoning on Cu/SAPO-34

SCR catalysts, J. Catal. 358 (2018) 277–286. https://doi.org/10.1016/j.jcat.2017.12.008.

- [69] R. Villamaina, F. Gramigni, U. Iacobone, S. Liu, I. Nova, E. Tronconi, M.P. Ruggeri, J. Collier, A.P.E. York, D. Thompsett, The H₂O effect on Cu speciation in Cu-CHA-catalysts for NH₃-SCR probed by NH₃ titration, Catalysts. 11 (2021) 1–11. https://doi.org/10.3390/catal11070759.
- [70] H. Li, C. Paolucci, I. Khurana, L.N. Wilcox, F. Göltl, J.D. Albarracin-Caballero, A.J. Shih,
 F.H. Ribeiro, R. Gounder, W.F. Schneider, Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13, Chem. Sci. 10 (2019) 2373–2384. https://doi.org/10.1039/c8sc05056b.
- [71] H. Lee, I. Song, S.W. Jeon, D.H. Kim, Inter-particle migration of Cu ions in physically mixed Cu-SSZ-13 and H-SSZ-13 treated by hydrothermal aging, React. Chem. Eng. 4 (2019) 1059–1066. https://doi.org/10.1039/C8RE00281A.
- [72] J. Luo, K. Kamasamudram, N. Currier, A. Yezerets, NH₃-TPD methodology for quantifying hydrothermal aging of Cu/SSZ-13 SCR catalysts, Chem. Eng. Sci. 190 (2018) 60–67. https://doi.org/10.1016/j.ces.2018.06.015.
- [73] L. Wei, D. Yao, F. Wu, B. Liu, X. Hu, X. Li, X. Wang, Impact of Hydrothermal Aging on SO₂ Poisoning over Cu-SSZ-13 Diesel Exhaust SCR Catalysts, Ind. Eng. Chem. Res. 58 (2019) 3949–3958. https://doi.org/10.1021/acs.iecr.8b04543.
- [74] H. Lee, I. Song, S.W. Jeon, D.H. Kim, Mobility of Cu Ions in Cu-SSZ-13 Determines the Reactivity of Selective Catalytic Reduction of NO_x with NH₃, Phys. Chem. Lett. (2021) 1– 7. https://doi.org/10.1021/acs.jpclett.1c00181.

- [75] Y. Xi, N.A. Ottinger, C.J. Keturakis, Z.G. Liu, Dynamics of low temperature N₂O formation under SCR reaction conditions over a Cu-SSZ-13 catalyst, Appl. Catal. B Environ. 294 (2021). https://doi.org/10.1016/j.apcatb.2021.120245.
- [76] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H.F. Peden, J. Szanyi, Recent advances in automotive catalysis for NO_x emission control by small-pore microporous materials, Chem. Soc. Rev. 44 (2015) 7371–7405. https://doi.org/10.1039/c5cs00108k.
- [77] F. Gao, N.M. Washton, Y. Wang, M. Kollár, J. Szanyi, C.H.F. Peden, Effects of Si/Al ratio on Cu/SSZ-13 NH₃-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity, J. Catal. 331 (2015) 25–38. https://doi.org/10.1016/j.jcat.2015.08.004.
- [78] Y. Ma, X. Wu, S. Cheng, L. Cao, L. Liu, Y. Xu, J. Liu, R. Ran, Z. Si, D. Weng, Relationships between copper speciation and Brønsted acidity evolution over Cu-SSZ-13 during hydrothermal aging, Appl. Catal. A Gen. 602 (2020) 117650. https://doi.org/10.1016/j.apcata.2020.117650.
- [79] L. Ma, Y. Cheng, G. Cavataio, R.W. McCabe, L. Fu, J. Li, In situ DRIFTS and temperatureprogrammed technology study on NH₃-SCR of NO_x over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Appl. Catal. B Environ. 156–157 (2014) 428–437. https://doi.org/10.1016/j.apcatb.2014.03.048.
- [80] D. Wang, L. Zhang, K. Kamasamudram, W. Epling, In situ-DRIFTS Study of Selective Catalytic Reduction of NO_x by NH₃ over Cu-Exchanged SAPO-34, ACS Catal. 3 (2013) 871–881. https://doi.org/10.1021/cs300843k | ACS Catal. 2013, 3, 871–881.
- [81] X. Auvray, M. Arvanitidou, Å. Högström, J. Jansson, S. Fouladvand, L. Olsson, Comparative Study of SO₂ and SO₂/SO₃ Poisoning and Regeneration of Cu/BEA and

Cu/SSZ-13 for NH₃ SCR, Emiss. Control Sci. Technol. 7 (2021) 232–246. https://doi.org/10.1007/s40825-021-00203-4.

- [82] T. Selleri, F. Gramigni, I. Nova, E. Tronconi, NO oxidation on Fe- and Cu-zeolites mixed with BaO/Al₂O₃: Free oxidation regime and relevance for the NH₃-SCR chemistry at low temperature, Appl. Catal. B Environ. 225 (2018) 324–331. https://doi.org/10.1016/j.apcatb.2017.11.068.
- [83] H. Zhang, J. Lv, Z. Zhang, C. Du, S. Wang, J. Lin, S. Wan, Y. Wang, H. Xiong, Oxidation of Methane to Methanol by Water Over Cu/SSZ-13: Impact of Cu Loading and Formation of Active Sites, ChemCatChem. 14 (2022). https://doi.org/10.1002/cctc.202101609.
- [84] V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. Van Bokhoven, Selective anaerobic oxidation of methane eables direct synthesis of methanol, Science 356 (2017) 523–527.
- [85] J.Y. Luo, A. Yezerets, C. Henry, H. Hess, K. Kamasamudram, H.Y. Chen, W.S. Epling, Hydrocarbon poisoning of Cu-zeolite SCR catalysts, SAE Tech. Pap. (2012). https://doi.org/10.4271/2012-01-1096.
- [86] L. Zhang, D. Wang, Y. Liu, K. Kamasamudram, J. Li, W. Epling, SO₂ poisoning impact on the NH₃-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst, Appl. Catal. B Environ. 156–157 (2014) 371–377. https://doi.org/10.1016/j.apcatb.2014.03.030.
- [87] C. Wang, Z. Chen, J. Wang, J. Wang, M. Shen, Unraveling the nature of sulfur poisoning on Cu/SSZ-13 as a selective reduction catalyst, J. Taiwan Inst. Chem. Eng. 118 (2021) 38– 47. https://doi.org/10.1016/j.jtice.2020.12.033.
- [88] D.W. Brookshear, J.G. Nam, K. Nguyen, T.J. Toops, A. Binder, Impact of sulfation and

desulfation on NO_x reduction using Cu-chabazite SCR catalysts, Catal. Today. 258 (2015) 359–366. https://doi.org/10.1016/j.cattod.2015.04.029.

- [89] H. Jiang, B. Guan, X. Peng, Y. Wei, R. Zhan, H. Lin, Z. Huang, Effect of sulfur poisoning on the performance and active sites of Cu/SSZ-13 catalyst, Chem. Eng. Sci. 226 (2020) 115855. https://doi.org/10.1016/j.ces.2020.115855.
- [90] Y.-R. Chen, L. Wei, A. Kumar, D. Wang, W.S. Epling, How changes in Cu-SSZ-13 catalytic oxidation activity via mild hydrothermal aging influence sulfur poisoning extents, Catal. Sci. Technol. 12 (2022) 6891–6902. https://doi.org/10.1039/d2cy01394k.
- [91] A.Y. Molokova, E. Borfecchia, A. Martini, I.A. Pankin, C. Atzori, O. Mathon, S. Bordiga,
 F. Wen, P.N.R. Vennestrøm, G. Berlier, T.V.W. Janssens, K.A. Lomachenko, SO₂
 Poisoning of Cu-CHA deNO_x Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy, JACS Au. 2 (2022) 787–792.
- [92] F. Göltl, S. Bhandari, M. Mavrikakis, Thermodynamics Perspective on the Stepwise Conversion of Methane to Methanol over Cu-Exchanged SSZ-13, ACS Catal. 11 (2021) 7719–7734. https://doi.org/10.1021/acscatal.1c00691.
- [93] P. Da Costa, B. Modén, G.D. Meitzner, D.K. Lee, E. Iglesia, Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5, Phys. Chem. Chem. Phys. 4 (2002) 4590–4601. https://doi.org/10.1039/b203700a.
- [94] B. Ipek, M.J. Wulfers, H. Kim, F. Göltl, I. Hermans, J.P. Smith, K.S. Booksh, C.M. Brown,
 R.F. Lobo, Formation of [Cu₂O₂]²⁺ and [Cu₂O]²⁺ toward C-H Bond Activation in Cu-SSZ13 and Cu-SSZ-39, ACS Catal. 7 (2017) 4291–4303.

https://doi.org/10.1021/acscatal.6b03005.

- [95] D.J. Deka, R. Daya, A. Ladshaw, D. Trandal, S.Y. Joshi, W.P. Partridge, Assessing impact of real-world aging on Cu-redox half cycles of a Cu-SSZ-13 SCR catalyst via transient response measurements and kinetic modeling, Appl. Catal. B Environ. 309 (2022) 121233. https://doi.org/10.1016/j.apcatb.2022.121233.
- [96] P.S. Dhillon, M.P. Harold, D. Wang, A. Kumar, S.Y. Joshi, Enhanced transport in washcoated monoliths: Application to selective lean NO_x reduction and ammonia oxidation, Chem. Eng. J. 377 (2019) 119734. https://doi.org/10.1016/j.cej.2018.08.120.
- [97] H.S. Fogler, Elements of Chemical Reaction Engineering, Third, 2004.
- [98] I. Malpartida, O. Marie, P. Bazin, M. Daturi, X. Jeandel, An operando IR study of the unburnt HC effect on the activity of a commercial automotive catalyst for NH₃-SCR, Appl. Catal. B Environ. 102 (2011) 190–200. https://doi.org/10.1016/j.apcatb.2010.11.041.
- [99] A. Kumar, K. Kamasamudram, A. Yezerets, Hydrocarbon Storage on Small-Pore Cu-Zeolite SCR Catalyst, SAE Int. J. Engines. 6 (2013) 680–687. https://doi.org/10.4271/2013-01-0508.
- [100] I. Heo, Y. Lee, I.S. Nam, J.W. Choung, J.H. Lee, H.J. Kim, Effect of hydrocarbon slip on NO removal activity of CuZSM5, FeZSM5 and V₂O₅/TiO₂ catalysts by NH₃, Microporous Mesoporous Mater. 141 (2011) 8–15. https://doi.org/10.1016/j.micromeso.2010.02.005.
- [101] J.-Y. Luo, O. Harry, C. Henry, W. Epling, Effect of C₃H₆ on selective catalytic reduction of NO_x by NH₃ over a Cu/zeolite catalyst: A mechanistic study, Appl. Catal. B Environ. (2012) 296–305. https://doi.org/10.1016/j.apcatb.2008.07.001.

- [102] H. Zhao, X. Wu, Z. Huang, H. Shen, J. Dong, X. Li, G. Jing, Changes of the C₃H₆-Poisoning Effect over a Cu-SSZ-13 NH3-SCR Catalyst upon Hydrothermal Treatment at Different Temperatures, Energy and Fuels. 36 (2022) 2712–2721. https://doi.org/10.1021/acs.energyfuels.1c04336.
- [103] C. He, Y. Wang, Y. Cheng, C.K. Lambert, R.T. Yang, Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia, Appl. Catal. A Gen. 368 (2009) 121–126. https://doi.org/10.1016/j.apcata.2009.08.020.
- [104] L. Ma, W. Su, Z. Li, J. Li, L. Fu, J. Hao, Mechanism of propene poisoning on Cu-SSZ-13 catalysts for SCR of NO_x with NH₃, Catal. Today. 245 (2015) 16–21. https://doi.org/10.1016/j.cattod.2014.05.027.

Appendix A. Supporting Information of Chapter 2. How Changes in Cu-SSZ-13 Catalytic Oxidation Activity via Mild Hydrothermal Aging Influence Sulfur Poisoning Extents

Fig. A.1. N₂O formation comparison between degreened and HTA pretreated Cu-SSZ-13 catalysts during NH₃-SCR reactions.

Fig. A.2. DRIFTS results obtained during (a) NH₃-TPD and (b) NH₃-TPO experiments on the Cu-SSZ-13 catalyst after scraping from a monolith brick. Both experiments were conducted after oxygen pretreated at 500 °C for 1 h, cooling to 120 °C in He and then 1000 ppm NH₃ balance in

He. For the TPD, He was used while 10% O_2 balance in He was used in the TPO experiment. The temperature ramp was 10 °C/min.

Fig. A.3. DRIFTS NH₃ adsorption spectra comparison between the degreened and HTA catalysts in (a) the T-O-T vibration region and (b) the Brønsted and Lewis acid sites region. The spectra were normalized separately in these two regions. In (a), the spectra were normalized using the 900 cm^{-1} feature while in (b), the spectra were normalized using the 1620 cm⁻¹ feature.

Fig. A.4. NH₃ oxidation conversion over the degreened catalyst before and after sulfur exposure at 400 °C SO₂. During the NH₃ oxidation experiment, 10% O₂, 7% H₂O, 8% CO₂, 200 ppm NH₃ and balance in N₂ were used.

Fig. A.5. A comparison of SCR results after (a) 25 ppm SO₂ and 25 ppm SO₃ exposure at 200 °C and after (b) 50 ppm SO₂ exposure at 200 °C for the degreened and HTA catalysts. The SCR reaction conditions are described in Table 1.

Fig. A.6. A comparison of SCR results after a 50 ppm SO₂ exposure at 200 and 400 °C on the (a) degreened and (b) HTA catalysts. The SCR reaction conditions are described in Table 1.

Fig. A.7. A comparison of degreened, 10 h HTA and HTA (for 25 h) after (a) 200 °C and (b) 400 °C $SO_2 + H_2O$ exposure. The NH₃ oxidation comparison before sulfur exposure between three samples is shown in (c). The SCR and NH₃ oxidation conditions are listed in the experimental methods session.

Fig. A.8. SO₂ oxidation over the degreened catalyst. The SO₂ oxidation conditions in the absence of water were 50 ppm SO₂, 10% O₂ and balance in N₂ and the SO₂ oxidation conditions in the presence of water were 50 ppm SO₂, 10% O₂, 7% H₂O and balance in N₂.