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Abstract

Modern processors often suffer from inefficient resource utilization, which leads to inferior per-

formance and energy efficiency. This dissertation scrutinizes the utilization of datapath and cache

resources in superscalar processors for opportunities to improve performance and energy efficiency.

Traditional superscalar processors usually employ a one-size-fits-all design approach that al-

locates a fixed amount of resources for all applications at all times to deliver the best overall per-

formance. However, the one-size-fits-all approach is not always energy efficient, because both the

application behavior and the use scenario are changing all the time and the demand for processor

resources is also changing accordingly.

To improve the utilization of datapath resources, this dissertation proposes an adaptive pro-

cessor that dynamically allocates datapath resources based on the needs of applications and use

scenarios. The adaptive processor is applied to two use cases to improve energy efficiency. In the

first use case (front-end throttling (FET)), the adaptive processor dynamically throttles the front-

end instruction delivery bandwidth as program behavior changes to optimize a target metric, being

performance, energy, or an arbitrary trade-off between them. In the second use case (dynamic core

scaling (DCS)), the adaptive processor extends performance-energy tradeoff capabilities in super-

scalar processors by scaling datapath resource rather than voltage. The adaptive processor ensures

that programs run at a given percentage of their maximum speed and, at the same time, minimizes

energy consumption by dynamically adjusting the active superscalar datapath resources. DCS is

more effective in performance-energy tradeoffs than DVFS at the high performance end. When

used together with DVFS, DCS significantly extends the range of performance-energy tradeoffs.

Caches also suffer from inefficient utilization in modern processors. To minimize the access
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latency of set-associative caches, the data in all ways are read out in parallel with the tag lookup.

However, this is energy inefficient, as only the data from the matching way is used and the others

are discarded. To improve the utilization of the L1 instruction cache, this dissertation proposes an

early tag lookup (ETL) technique for L1 instruction caches that determines the matching way one

cycle earlier than the cache access, so that only the matching data way need to be accessed. ETL

incurs no performance penalty and insignificant hardware overhead, but dramatically reduces the

read energy of L1 instruction cache.

For memory intensive workloads, caches often suffer from thrashing, i.e., high-reuse blocks

evicting each other from the cache due to the lack of space. To reduce thrashing, only a fraction of

the working set should be kept in the cache, so that at least this fraction stays longer in the cache to

enable reuse before eviction. However, prior insertion policies take an ad hoc approach to selecting

that fraction, e.g., inserting blocks with high priority at fixed or randomly determined fractions,

thus limiting the performance impact. This dissertation observes that the optimal fraction of the

workload that should be kept in the cache is related to the cache block reuse distance distribution

(RDD) of the application. Based on this observation, this dissertation provides an oracle analytical

model to determine this optimal fraction assuming that the reuse distance (RD) of each block is

known by oracle, and a practical model that is applicable without the oracle RDD. It then proposes

simple runtime mechanisms to determine the optimal fraction for each workload dynamically. Our

models are orthogonal to prior insertion policies and can significantly improve the performance of

the prior state-of-the-art insertion policies when applied on top of them.

Evaluating new energy efficient processors requires accurate information of area, delay, and

power of the new architectures. Prior works on energy efficient processor architectures either fail to

obtain such information or rely on modeling frameworks such as Wattch and McPAT, which are of

limited accuracy. Unlike prior works, this dissertation uses FabScalar, a circuit-level infrastructure,

to accurately evaluate area, delay, and power of the new architectures.
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Chapter 1

Introduction

Performance has always been the top priority when designing modern processors. Ever since the

end of Dennard scaling [21], power wall has become the hurdle that prevents the performance of

modern processors from growing. Nowadays, due to the thermal constraint, processors are usually

designed with a limited power budget. Extracting every bit of performance with a limited power

budget has become critical for processor companies to make their products competitive. Any reduc-

tion in power consumption without hurting performance will allow the processor to run at a higher

frequency, thus improving performance.

However, power is not the most direct metric for measuring the efficiency of processors. Ulti-

mately, the real concern is the amount of energy consumed to complete a certain amount of work,

defined as energy efficiency. The less energy consumed to complete a certain amount of work, the

more energy efficient the processor is. Not only does energy efficiency affect performance, but it

also has a big impact on the battery life of mobile electronic devices and the operating costs of

datacenters and warehouse-scale computers, a large fraction of which are incurred by electricity

costs.

Thus, performance and energy efficiency have become two important considerations when de-

signing modern processors. In the past decades, numerous architectural, circuit, and software tech-

niques have been proposed to improve these two metrics. Yet, there are still many more opportuni-

ties to further push the limit of processor performance and reduce processor energy consumption.

This dissertation focuses on using architectural techniques to realize these goals. More specifically,

1



Chapter 1. Introduction 2

it scrutinizes the utilization of datapath and cache resources in modern superscalar processors for

opportunities to improve performance and energy efficiency.

Scrutinizing datapath resource utilization. Modern superscalar processors often use datapath

resources aggressively to achieve high performance. They are usually designed with a one-size-fits-

all approach that delivers the best overall performance for a wide variety of applications. The one-

size-fits-all approach allocates a fixed amount of resources to all applications at all times, which,

however, is not always efficient because both the application behavior and the use scenario are

changing all the time.

Applications have diverse behavior, and even for a single application, its behavior changes from

phase to phase. Thus, the demand for processor resources changes from application to application

and from phase to phase. Always allocating a fixed amount of resources while ignoring application

behavior often results in resource under-utilization, which degrades the energy efficiency.

In addition to application behavior, the use scenario is also changing all the time. Modern pro-

cessors often need to switch among different power states based on the use scenario and the thermal

condition. The performance of the core is often adjusted according to the workloads, the available

power budget, and the chip temperature. In scenarios where high performance is demanded, the

processor should run to deliver the highest performance. In scenarios where high performance is

not needed (e.g., a user study [46] has shown that the low performance mode of an Intel Pentium

CPU with dynamic voltage and frequency scaling already satisfies the users for many applications)

or allowed (e.g., the power budget is constrained or the chip temperature is high), performance can

be lowered to reduce energy consumption. However, with the one-size-fits-all approach, processors

always operate with full set of resources, even in scenarios where high performance is not needed,

thus hurting energy efficiency.

Scrutinizing cache resource utilization. Caches have a big impact on performance and con-

sume a significant amount of energy in modern processors, as they are large, require high perfor-

mance, and are accessed mostly every cycle. However, cache resources are not utilized efficiently

in modern processors.

Set-associative caches are commonly used to reduce miss rate and achieve better performance.
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To reduce the access latency of set-associative level-one (L1) caches, the data in all ways are read

out in parallel with tag lookup. However, only the data in the matching way is used and the others

are discarded, resulting in significant energy waste. Accessing the non-matching data ways do not

contribute to getting the desired data and results in inefficient cache resource utilization.

The off-chip main memory is a major bottleneck for system performance, so modern processors

employ a large last-level cache (LLC) to hide the long latency of memory accesses. However, the

LLC is not utilized efficiently. Since the reference stream to the LLC is filtered by the L1 and L2

caches, it has been shown that a large portion of blocks in the LLC are not reused between insertion

and eviction if using the traditional least recently used (LRU) replacement policy [4, 5, 39, 43, 59].

The LLC stores a large amount of useless information and is poorly utilized. With the increasing

number of cores and new data intensive applications, it is now more important to manage cache

space as efficiently as possible.

Goal. The goal of this dissertation is to improve processor performance and energy efficiency

via more efficient utilization of datapath and cache resources. To improve the utilization of datap-

ath resources, this dissertation proposes an adaptive processor that dynamically allocates datapath

resources based on the needs of applications and use scenarios. The adaptive processor has better

energy efficiency and can greatly improve power management. To improve the utilization of cache

resources, this dissertation proposes a low power technique that dramatically reduces the power con-

sumption of the L1 instruction cache without incurring any performance penalty, and an improved

insertion policy that better utilizes the LLC and outperforms the recently proposed state-of-the-art

insertion policies.

1.1 Improving Datapath Resource Utilization

Modern superscalar processors, such as IBM POWER8 [51], can use aggressive datapath resources

to extract every bit of performance. These aggressive datapath resources, such as issue queue (IQ),

load/store queue (LSQ), and reorder buffer (ROB), account for a significant fraction of energy con-

sumption and often suffer from under-utilization when not needed by applications or use scenarios.
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This dissertation proposes an adaptive processor that dynamically adjusts the active datapath re-

sources in a large out-of-order core based on the needs of applications and use scenarios. The

datapath resources that can be dynamically adjusted include front-end width, issue width, and sizes

of IQ, LSQ, and ROB, all of which significantly influence performance and energy consumption.

Two use cases are then studied to show that the adaptive processor has better energy efficiency and

can greatly improve power management. The first use case applies the adaptive processor to throttle

the front-end instruction delivery rate, which is able to improve energy efficiency in different use

scenarios. The second use case applies the adaptive processor to trade off performance and energy

by dynamically scaling the active datapath resources rather than voltage, which greatly extends the

limit of DVFS in performance-energy trade-off.

1.1.1 Adaptive Front-End Throttling

Front-end instruction delivery consumes a significant fraction of energy and has a big impact on

the performance of dynamically scheduled superscalar processors. To achieve high performance,

the front-ends of conventional superscalar processors deliver instructions at peak rate at all times

to expose as much Instruction-Level Parallelism (ILP) as possible. However, this fixed peak-rate

instruction delivery scheme is often sub-optimal.

Previous work [8, 9, 23, 49] has shown that delivering instructions at peak rate often brings a

large number of wrong-path and early-fetched instructions into the pipeline, causing energy waste.

In scenarios where high performance is not required, instruction delivery could be slowed to save

energy without sacrificing user satisfaction. However, the conventional peak-rate instruction deliv-

ery cannot adapt when the priority metric shifts between high performance and low energy con-

sumption.

In addition, programs have diverse behaviors. The optimal instruction delivery rate that achieves

the lowest energy consumption differs from program to program and from phase to phase in a single

program. The conventional fixed-rate instruction delivery cannot adapt to the program behavior

changes and often puts the superscalar processor in sub-optimal state.

Given the aforementioned problems, it is desirable to have the capability to dynamically ad-



Chapter 1. Introduction 5

just the instruction delivery rate of superscalar processors to adapt to changes in priority metrics

and program behaviors. Based on the adaptive processor, this dissertation proposes an adaptive

front-end throttling technique and circuit-level design that dynamically adjusts the front-end width,

which controls the instruction delivery bandwidth, using software profiling or a run-time hardware

controller to optimize a target metric, being performance, energy, or an arbitrary trade-off between

them. In the software profiling approach, programs are analyzed prior to deployment and an op-

timal front-end width is selected for each program or phase given the target optimization metric.

In the runtime approach, a hardware controller samples the program’s execution information upon

triggering events and automatically adjusts the front-end width to optimize the target metric.

1.1.2 Dynamic Core Scaling

Dynamic voltage and frequency scaling (DVFS) is an effective way to trade off performance and

energy and has been commonly used in modern processors for power management. DVFS relies on

scaling the supply voltage, whose upper-bound is determined by the nominal supply voltage Vnom

and whose lower-bound is determined by the minimum operating voltage Vmin. As transistor size

scales down, Vnom tends to decrease, and Vmin tends to increase due to the larger process variation

and transistor count at smaller technology nodes [78]. Therefore, the voltage range where DVFS

can operate is shrinking, which limits its effectiveness. Moreover, once the voltage is scaled to Vmin,

DVFS stops reducing energy.

It has been shown in [7] that small out-of-order cores tend to have lower performance but better

energy efficiency, and large out-of-order cores tend to have better performance but worse energy

efficiency. Based on this observation, this dissertation proposes dynamic core scaling (DCS) to ex-

tend the performance-energy trade-off capabilities in modern processors. DCS dynamically adjusts

the active datapath resources in the adaptive processor and allows it to run at a given percentage of

its maximum speed while minimizing energy consumption, creating a performance-energy trade-off

by scaling datapath resources rather than the supply voltage. The maximum speed is the speed at

which the core runs when its datapath resources are fully sized.

Prior works [8, 9, 14, 23, 26, 36, 49, 50, 54, 57] have proposed various energy-saving techniques
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that dynamically allocate datapath resources according to the needs of applications. These energy-

saving techniques suffer from two problems. First, they aim to allocate just the amount of datapath

resources needed by the applications so as to reduce energy while incurring minimal performance

penalty. Thus, their energy savings are limited due to the constraint that performance should not be

hurt. Second, their resulting performance loss is often unpredictable and ranges from a few percent

to more than 20% in worst cases. However, performance-energy trade-off often requires the ability

to control performance when reducing energy. For example, when performance can be sacrificed to

reduce energy consumption, it is desirable to run an application at a known percentage, say 70%,

of its maximum speed rather than run it at a random reduced speed. Because of the limited energy

savings and the lack of mechanisms to control performance, these previously proposed techniques

have very limited ability to trade off performance and energy.

In contrast, this dissertation proposes a hardware controller to effectively manage performance-

energy trade-off using DCS. The hardware DCS controller allows an arbitrary target performance

(a certain percentage of the maximum performance) to be set and dynamically scales the datapath

resources to minimize energy while trying to ensure that applications are run at the target perfor-

mance, achieving much preciser and wider performance-energy trade-off.

In addition, DCS does not rely on voltage scaling and can be combined with DVFS to achieve

greater energy savings. Combining DCS and DVFS to trade off performance and energy is chal-

lenging. This dissertation proposes three control mechanisms to effectively manage performance-

energy trade-off using a combination of DCS and DVFS. First, an oracle controller is proposed

to demonstrate the optimal control strategy when the resulting performance and energy of DCS is

known by oracle. However, no such information is available at runtime. Then, two practical con-

trollers that are applicable in real implementations are proposed, including a simple controller that

performs effectively and a sophisticated controller that performs comparably to an oracle controller.

Detailed analysis of these control mechanisms in different scenarios are also provided.

DCS is able to provide precise performance control and is more effective in performance-energy

trade-off than DVFS at the high performance end. In addition, applying DCS together with DVFS

greatly extends the limits of DVFS in performance-energy trade-off.
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1.2 Improving Cache Resource Utilization

To improve the utilization of cache resources, this dissertation first proposes an early tag lookup

(ETL) technique that is able to remove the majority of non-matching data way accesses in the L1

instruction cache and dramatically reduce power consumption without incurring any performance

penalty. Then the dissertation proposes a dynamic insertion throttling (DIT) technique that better

utilizes the LLC and improves its performance.

1.2.1 Early Tag Lookup

To reduce the access latency of set-associative L1 caches, the data in all ways are read out in parallel

with tag lookup. However, only the data in the matching way is used and the others are discarded,

resulting in significant energy waste. Techniques that reduce cache power consumption without

hurting performance are therefore highly desirable.

A simple way to completely remove the accesses to the non-matching data ways is to perform

tag lookup and data access sequentially, such as phased caches. The tag array is accessed first to get

the matching way, and then (in the same cycle) the data array is accessed by reading out only the

matching way, eliminating accesses to non-matching ways. However, such a 2-phase single-cycle

method increases the cache access latency and hurts performance.

This dissertation proposes the early tag lookup (ETL) technique to reduce the read energy of

set-associative L1 instruction caches. ETL is also a 2-phase method, but it tries to determine the

matching way one cycle earlier than the actual cache access. If the matching way was determined

successfully, the matching data way can be accessed directly, eliminating non-matching way ac-

cesses and saving energy. If determining the matching way failed, cache access happens as normal

by accessing all the data ways, saving no energy. However, the first case accounts for more than

90% of the cache accesses, thus ETL can dramatically reduce the read energy of L1 instruction

cache. In addition, since data access always succeeds no matter determining the matching way in

the previous cycle is successful or not, ETL does not incur any performance penalty.
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1.2.2 Dynamic Insertion Throttling

Recent works [4,5,31,32,34,39,43,56,59,66,73,76] have shown that the traditional LRU replace-

ment policy is highly ineffective for two kinds of workloads. (i) When the working set is larger

than the cache size, high-reuse blocks evict each other due to the lack of space, making the cache

ineffective. This problem is referred to as cache thrashing. (ii) When the working set has mixed

reuse, little or no reuse blocks degrade performance by evicting blocks with high reuse from the

cache. This problem is referred to as cache pollution. A large number of works propose insertion

policies to solve these problems [31, 32, 34, 56, 59, 66, 73, 76]. To solve thrashing, recent insertion

policies protect a fraction of the working set in the cache (e.g., BIP [59], BRRIP [32]) by inserting

most of the missed cache blocks with low priority and only a small fraction (typically referred to

as 1/e) of the missed blocks with high priority. Blocks inserted with low priority get evicted from

the cache quickly, protecting a fraction of the working set in the cache long enough to get reused.

To solve pollution, recently proposed insertion policies predict the reuse behavior of missed cache

blocks and only insert high-reuse blocks with high priority so that these blocks can get reused (e.g.,

SHiP [76], EAF [66]).

The Problem. The aforementioned insertion policies all depend on inserting only a fraction of

the cache blocks with high priority to improve performance. Unfortunately, their approaches are ad

hoc. The works addressing thrashing empirically determine the fraction (1/e) of the working set

kept in the cache for thrashing workloads (e is 32 or 64) [32, 59]. The works addressing pollution

attempt to predict the high-reuse blocks and always insert them with high priority [66,76]. However,

such a mechanism without the knowledge of the optimal fraction cannot fully address thrashing

and can cause cache under-utilization. In this work, we argue that maximizing performance by

addressing cache pollution and thrashing depends on accurately determining the optimal fraction

of the working set that should be kept in the cache.

Our Goals. Our goals are twofold. First, we want to provide an understanding of how inser-

tion policies help improve cache performance and (with that understanding) develop an analytic

model to determine the optimal workload fraction that should be kept in the cache to maximize

performance. Second, we want to develop and demonstrate a simple and efficient mechanism to
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determine this optimal fraction dynamically for each workload at runtime.

This dissertation demonstrates that the optimal fraction depends on the reuse distance distribu-

tion (RDD) of the workloads. An oracle reuse model is first proposed to determine this optimal

fraction when the insertion policy has the accurate knowledge about the reuse distance (RD) of the

workload. Unfortunately, in practical cases, it is hard to have precise information about the RD

of the workload. Two practical models are then proposed to determine the optimal fraction in real

implementations.

Based on the practical models, we propose Dynamic Insertion Throttling (DIT) to insert the

optimal fraction of the cache blocks with high priority that maximizes hit rate. We propose two

simple and effective mechanisms to implement DIT. DIT is independent of the insertion policy

used in the cache and can improve any prior insertion policy.

1.3 Circuit Infrastructure for Accurate Evaluations

Any new energy efficient processors need to be validated, which usually requires an accurate eval-

uation of the area and delay overhead incurred by the new architecture and the resulting energy

savings. Prior works on energy efficient processor architectures either fail to obtain such informa-

tion or rely on modeling frameworks such as Wattch [13] and McPAT [45], which are of limited

accuracy. To accurately evaluate the area, delay, and power of the new architecture, this disserta-

tion utilizes a circuit infrastructure, FabScalar [17], which is an open-source tool that automatically

generates synthesizable RTL code of diverse superscalar cores. Included in the infrastructure is

FabMem, a multi-ported RAM/CAM compiler that can estimate read/write times and energies and

areas of user-specified RAMs/CAMs and can generate layouts of the desired RAMs/CAMs. A cou-

ple of modifications are made to the FabScalar tool to meet the project needs. A two-level cache

is added to FabScalar (no cache originally), and a store-set memory dependence predictor is also

added to solve a performance bug (performance decreases as instruction window increases due to

load violations). Multiple memory address generation units are added and the load/store unit is

redesigned to process multiple loads/stores per cycle.
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The area, delay, and power of the new architecture are accurately evaluated using the circuit-

level infrastructure. The RTL processor is synthesized using the FreePDK 45nm library [70] to

generate the gate-level netlist and the area and timing reports. Gate-level simulation is then per-

formed to collect the switching activity of the processor when executing benchmarks. The switch-

ing activity is used to annotate the gate-level netlist, which the power compiler takes to generate the

power report. The power of the unsynthesizable SRAM/CAM blocks are estimated using FabMem.

Because FabMem does not support large-size SRAMs/CAMs, the power of caches are estimated

using CACTI [1].

1.4 Dissertation Contributions

This dissertation identifies the problem that the datapath and cache resources in modern superscalar

processors are inefficiently utilized, leading to suboptimal performance and energy efficiency. The

main contributions of this dissertation are the four techniques proposed to improve processor re-

source utilization and thus its performance and energy efficiency. The contributions of each pro-

posed technique are summarized as follows.

Front-End Throttling (FET) dynamically adjusts the front-end width, which controls the

instruction delivery bandwidth, to optimize a target metric, being performance, energy, or an

arbitrary trade-off between them. The contributions of FET are as follows:

• Performed architectural simulations to show that the optimal front-end instruction delivery

bandwidth varies as target optimization metric or program behavior changes.

• Proposed a hardware controller that effectively manages front-end throttling to optimize a

given target metric for superscalar processors.

• Performed circuit-level synthesis (45nm FreePDK) and simulations to accurately evaluate

the overhead of adaptive front-end throttling and quantify the resulting energy savings.

Dynamic Core Scaling (DCS) extends the performance-energy trade-off capabilities in

superscalar processors. The contributions of DCS are as follows:
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• Proposed DCS as an alternative to DVFS that trades off performance and energy by

dynamically scaling datapath resources rather than voltage.

• Proposed a hardware DCS controller that minimizes energy and, at the same time, tries to

ensure that applications run at a given percentage of the maximum speed they would achieve

if datapath resources were fully allocated.

• Proposed an oracle controller, a simple controller, and a sophisticated controller for

combining DCS and DVFS to extend performance-energy trade-off, and provided detailed

analysis of these control mechanisms in different scenarios.

• Demonstrated the effectiveness of DCS and DCS+DVFS in performance-energy trade-off

and compared them with DVFS alone.

• Accurately evaluated the overhead of DCS and the resulting energy savings using 45nm

circuit infrastructure.

Early Tag Lookup (ETL) removes the majority of non-matching data way accesses and

dramatically reduces energy consumption in L1 instruction caches. ETL has the following

advantages over previous works:

• ETL does not cause any performance penalty. Since instruction cache misses can be

discovered one cycle earlier, ETL even improves performance slightly.

• ETL only needs a few simple and low-cost extensions to the existing hardware, and does not

incur any significant design complexity.

• ETL is more effective at removing non-matching data way accesses than way prediction and

L0 caches, saving significant dynamic energy in L1 instruction caches.

Dynamic Insertion Throttling (DIT) determines the optimal fraction of the cache blocks that

should be inserted with high priority in the LLC at runtime so that the hit rate is maximized. The

contributions of DIT are as follows:
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• Demonstrated that maximizing performance for cache polluting and thrashing workloads

requires an optimal fraction of the working set to be in the cache, and that prior insertion

policies that try to solve cache pollution and thrashing empirically determine this fraction

and, as a result, cannot maximize the performance.

• Provided an oracle model to determine this optimal fraction when the RD of each block is

already known. The model builds upon the key insight that by inserting only a fraction of

the blocks with a high priority, insertion policies effectively reduce the RD of blocks in the

cache. These blocks receive hits only if the effective RD becomes smaller than the cache

associativity. We show that it is possible to determine the optimal RD such that the fraction

of blocks with effective RD smaller than the cache associativity can be maximized.

• Provided two practical models based on the RDD when the oracle RD information of each

block is not available. (i) EBM treats all blocks equally and is applicable for simple

insertion policies (e.g., BIP, BRRIP) (ii) RDM differentiates high and low RD blocks and is

applicable for insertion policies that depend on prediction mechanisms (e.g., SHiP, EAF).

• Proposed two simple mechanisms, DIT-RD and DIT-SM, to determine the optimal fraction

dynamically at runtime. Experimentally demonstrated that our mechanisms (when applied

on top of prior insertion policies - BRRIP, SHiP and EAF) significantly improve

performance over a wide range of workloads in single/4-core configurations.

1.5 Dissertation Organization

Chapter 1, this chapter, identifies the resource utilization problem in modern processors, provides

the background information, and introduces the four techniques that this dissertation proposes to

improve processor resource utilization for better performance and energy efficiency.

Chapter 2 introduces the prior works that are closely related to this dissertation and differentiates

this dissertation from them.
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Chapter 3 presents adaptive front-end throttling, its hardware controller, and the evaluation

results [81].

Chapter 4 presents dynamic core scaling, DCS control, combining DCS with DVFS for greater

energy savings, and the evaluation results [82].

Chapter 5 presents early tag lookup, its implementation, and the evaluation results [83].

Chapter 6 presents dynamic insertion throttling, the analytical models that determine the optimal

fraction, DIT-RD and DIT-SM implementations, and the evaluation results.

Chapter 7 concludes the dissertation.



Chapter 2

Related Work

This chapter looks at prior works that are closely related to this dissertation and differentiates this

dissertation from them.

2.1 Front-End Throttling

Throttling front-end instruction delivery bandwidth helps reduce the number of wrong-path and

early-fetched instructions delivered into the pipeline, improving processor energy efficiency.

Pipeline gating [49] stalls instruction fetch when a low-confidence branch instruction is encoun-

tered to reduce wrong-path instructions. Just in time instruction delivery [36] stalls instruction

fetch when the number of in-flight instructions exceeds a threshold. Instruction flow based front-

end throttling [9] throttles instruction fetch to match the decode rate with the commit rate and

reduces early-fetched instructions. Selective throttling [6] focuses on reducing energy dissipated

by wrong-path instructions and dynamically chooses the optimal throttling technique applied to

each branch depending on the branch prediction confidence level. Fetch halting [50] stops fetching

instructions when long-latency critical load misses occur to reduce early-fetched instructions.

Compiler-based fetch throttling techniques were proposed in [74, 75], where the compiler is

used to analyze the ILP of the program and instruction fetch is stalled when the program’s ILP is

low. Software-directed fetch throttling was proposed in [35], in which the processor uses informa-

tion gained from the compiler to dynamically resize the issue queue to reduce power consumption.

14
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However, these existing front-end throttling techniques all focus on reducing energy consump-

tion while minimizing performance loss. Thus they cannot adapt to use scenario changes where the

priority metric changes between high performance and low energy. In contrast, the front-end throt-

tling technique proposed in this dissertation can optimize an arbitrary priority metric, is orthogonal

to, and can even leverage, most existing techniques, providing even greater savings. In addition, the

previous works either do not have a direct way to quantify the overhead of the throttling technique

and the resulting energy savings, or get this information relying on architecture-level modeling

frameworks, such as Wattch [13] and McPAT [45], which are known to have limited accuracy. In

this proposal, front-end throttling is implemented at the register transfer level (RTL), and circuit-

level synthesis and simulation are used to accurately analyze the area, delay, and power overhead

of the throttling technique and resulting energy savings.

2.2 Dynamic Datapath Resource Scaling

Many prior works have studied scaling datapath resources to save energy in superscalar processors.

These works can be grouped into three categories and DCS will be compared with each of them.

2.2.1 Saving Energy with Minimal Performance Penalty

In [57], the sizes of IQ, LSQ, and ROB are dynamically adjusted based on the demands of appli-

cations to save energy while minimizing performance loss. In [26], the major SRAM and CAM

structures are dynamically resized during cache miss events to reduce energy dissipated by these

structures. In [23], the IQ is dynamically resized to reduce the wake-up of empty entries and

operands that are ready, saving energy with minimal impact on performance. In [14], energy is

saved by matching the instruction fetch rate and the IQ size to the parallelism of the application.

In [54], an IQ adaptation mechanism is proposed to avoid hurting memory level parallelism and

reduce performance penalty associated with IQ adaptation. Pipeline balancing [8] dynamically

adjusts the issue width to reduce energy in IQ and execution units.
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All these previous techniques suffer from two limitations. First, their energy saving efforts

cannot tolerate any significant performance penalty, thus limiting the resulting energy savings. In

contrast, DCS can achieve a much wider trade-off range of performance and energy. Second, these

previous techniques have no mechanisms to control performance and the resulting performance

is random, limiting their ability to trade off performance and energy. In contrast, DCS is able to

maintain a variety of target performances through dynamic feedback while still minimizing energy

at the same time.

2.2.2 Pipeline Stage Unification

Dynamic pipeline scaling [42] and pipeline stage unification [68] lower the clock frequency and

merge pipeline stages to form shallower pipelines, which have better IPC than deep pipelines, thus

saving energy without scaling voltage. However, energy saving is limited by the number of pipeline

stages that can be merged. The resulting performance is also very restricted. For example, merging

two pipeline stages reduce performance by half, resulting in sub-optimal performance-energy trade-

off. In contrast, DCS is much more fine-grained.

2.2.3 Other Energy-Aware Processors

Flicker [55] divides a single core into equal slices and selectively powers on and off single slices

to trade off performance and energy. However, this approach is course-grained and performance-

energy trade-off is limited by the number of slices. In addition, datapath resources are allocated

by slice and this often results in suboptimal allocation as applications’ demands are quite diverse.

For example, Flicker puts fetch, decode, ROB, rename, and dispatch in one pipeline region, and

increasing ROB must increase front-end width, which may often be sub-optimal since programs

have diverse and changing demands on front-end widths. In contrast, DCS achieves fine-grained

performance-energy trade-off and balanced resource allocation by fine tuning the microarchitecture

parameters.

Core fusion [28] morphs groups of fundamentally independent cores into a larger CPU, or

uses them as distinct processing elements, according to the runtime needs of applications. Morph
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Core [40] dynamically transforms a traditional high performance out-of-order core into a highly-

threaded in-order SMT core when necessary. Both of them focus on exploiting both ILP and TLP

using the same reconfigurable hardware. Whereas DCS focuses differently on exploiting dynamic

reconfiguration to trade off performance and energy beyond DVFS.

Multiple Clock Domain (MCD) processors [29, 65] use independent frequency/voltage do-

mains, and reduce the frequency of some domains if possible to save energy without significantly

impacting performance. While DCS does not consider increasing clock frequency when resource

scaling reduces critical path delay, the MCD technique can be applied together with DCS and will

further improve the results.

2.3 Reducing Set-Associative Cache Energy

Previous work on cache energy reduction can be classified into three categories: way prediction, L0

caches, and acquiring matching way early. ETL is more effective at removing non-matching way

accesses than way prediction and L0 caches, and incurs no performance penalty and low hardware

overhead.

2.3.1 Way Prediction

Various way prediction techniques have been proposed to reduce the energy of set-associative

caches. In [27], the matching way is predicted using a most recently used algorithm. In [58],

way-prediction [12, 15] and selective direct-mapping [12] are used to predict the matching way.

In [71], BTB is extended by caching way predictions, and way prediction is done in parallel with

branch target prediction so that the matching way is known by the time cache access happens.

The aforementioned way prediction techniques suffer from two drawbacks. One is that they

incur performance penalty when the the prediction is wrong, because an extra cycle is needed to

access the correct way, increasing cache access latency. The other is that they require significant

amount of extra hardware to do way prediction. In [58], additional tables with significant sizes are

required to store way prediction information. In [71], non-branch instructions are also stored in
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BTB, significantly increasing the size of BTB as well as BTB power consumption. In comparison,

ETL does not cause any performance penalty and only needs some simple low-cost extensions to

the existing hardware.

2.3.2 L0 Caches

The filter cache [41] is a small low-power cache placed between the CPU and the L1 cache. It

reduces direct accesses to the L1 cache, thus saving energy. The L-Cache [24] is an additional mini

cache located between the CPU and the instruction cache. It saves energy by buffering instructions

that are nested within loops and are otherwise fetched from the instruction cache. The HotSpot

cache [77] adds a steering mechanism to the filter cache and improves the L0 cache utilization.

One drawback of the L0 caches is that they may significantly degrade performance, because

cache access latency increases when the access misses the L0 cache. Although HotSpot is claimed

to incur no performance penalty, the evaluations in [77] indeed show a worst-case 2-3% perfor-

mance degradation. In comparison, ETL does not incur any performance penalty. Another draw-

back of the L0 caches is that they need an extra cache, which increases design complexity and

hardware costs. While ETL does not need any extra piece of complex hardware and incurs insignif-

icant overhead.

2.3.3 Acquiring Matching Way Early

Tag check elision [84] determines the matching way early in the pipeline by doing a memory address

bounds check. Speculative tag access [10] speculatively compares tags earlier in the pipeline to

determine the matching way prior to cache access. The early tag access (ETA) cache [19] assumes

that the accesses to the LSQ and L1 data cache are performed in series in embedded processors.

Thus, ETA can be performed before L1 data cache access. The early load data dependency detection

technique [11] sequentially accesses the tag and data array when there is data dependency that

will cause stall cycles for in-order pipelines. However, accessing the tag array and the data array

sequentially is slow and not commonly used in high-performance processors. In addition, all these
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techniques only apply to the data cache and not the instruction cache. While ETL focuses on

reducing L1 instruction cache energy.

The Tag-Less Cache (TLC) [64] adds way information to the TLB and looks up the information

before accessing the cache, thus accessing only the matching way. However, it accesses the TLB

first to obtain the matching way before accessing the cache, which increases cache access latency.

Although a micro-page sub-banking technique is proposed to reduce the increased latency, the

technique adds extra complexity to the design of TLB and cache. Way-halting cache [80] and

cache line address locality [52] both store way information in a fully associative cache and search

it to determine the matching way before accessing the L1 cache. However, searching the way

information cache increases access latency and hurts performance. In comparison, ETL does not

increase cache access latency at all. The implementation efforts needed by ETL are low.

2.4 Replacement and Insertion Policies for LLC

Recent works [4,5,31,32,34,39,43,56,59,66,73,76] have shown that the traditional LRU replace-

ment policy is highly ineffective for workloads with cache thrashing and pollution. A large number

of works propose insertion policies to solve these problems [16,18,31,32,34,44,56,59,61,66,73,76]

by either statistically keeping a fraction of the working set in the cache or exploiting special mech-

anisms to differentiate the reuse locality of cache blocks and use that information to assist cache

block bypassing or insertion.

The aforementioned insertion policies all depend on inserting only a fraction of the cache blocks

with high priority to improve performance. However, the fraction of the cache blocks these poli-

cies keep in the cache is either fixed or randomly determined, which often leads to suboptimal

performance. This dissertation demonstrates that maximizing performance for cache polluting and

thrashing workloads requires an optimal fraction of the working set to be in the cache, and builds

analytical models to provide an understanding of how the RDD of workloads affects the optimal

fraction and proposes simple and efficient mechanisms to determine this optimal fraction at runtime.

However, none of the aforementioned policies provide any insight into this problem.
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Many cache replacement policies have been proposed in the past to improve cache perfor-

mance [20, 25, 32, 33, 60, 63]. Instead of focusing on inserting missed cache blocks, these policies

take various approaches to find the best victim blocks to replace on cache misses. Dead block

prediction predicts dead blocks that are unlikely to be reused in the near future and replace them

on cache misses [38, 39, 43, 47]. Reuse distance prediction directly predicts the reuse distances

of cache references [37]. The prediction information is then used to make cache replacement de-

cisions. Protecting distance (PD) is proposed to prevent replacing a cache block until a certain

number of accesses occur to the cache set to improve cache hit rate [22]. DIT is independent of

all these aforementioned cache replacement policies and can be combined with them to further

improve cache performance.



Chapter 3

Front-End Throttling

3.1 The Need for Flexibility

The necessity of a flexible front-end instruction delivery scheme that dynamically adapts to changes

in priority metrics and program behaviors is demonstrated in Figure 3.1, which plots the perfor-

mance and energy consumption of several SPEC CPU2000 benchmarks executed on an 8-way

superscalar processor under different front-end widths. The configurations of the 8-way processor

are shown in Table 3.1.

The optimal front-end width changes as the priority metric changes. When the priority metric

is high performance, width 8 is optimal for gcc, however, when the priority metric becomes low

energy, width 1 is optimal for gcc.

The optimal front-end width also changes as the program changes. For example, the lowest

energy consumption for gcc happens at front-end width 1, while this happens for bzip at width

6. Even for a single program, such as bzip, the optimal front-end widths in different phases are

different. For example, the lowest energy consumption for bzip-p1 and bzip-p2, representing two

phases of bzip, happens at front-end width 6 and 2, respectively.

Given these observations, a fixed conventional superscalar processor cannot adapt to priority

metric changes or program behavior changes and often works in a suboptimal state, making a flexi-

ble front-end instruction delivery scheme that dynamically adapts to these changes highly desirable.

21
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Figure 3.1: IPC and energy under different front-end widths of an 8-way superscalar processor.
Energy is measured for a fixed amount of workload.

3.2 Adaptive Front-End Throttling

Adaptive front-end throttling dynamically searches the optimal front-end width for the target met-

ric by comparing program execution information under all widths and adjusts the front-end to that

optimal width. Figure 3.2 illustrates how the flexible front-end instruction delivery works. The

instruction delivery paths, consisting of fetch, decode, rename, and dispatch, are enabled or dis-

abled dynamically by the control registers, which are added to each pipeline stage of the front-end.

Corresponding logic in each pipeline stage is modified if necessary to accommodate the flexible

instruction processing width. The instruction delivery paths to the branch predictor, branch target

buffer, decode units, instruction buffer, rename map tables, dispatch logic, issue queue, and re-

order buffer are all selectively enabled or disabled by the control registers. The instruction cache

only fetches the required number of instructions dictated by the control register. Unused pipeline

resources are clock-gated, but are still powered on.

Special instructions are added to the Instruction Set Architecture to directly access the width

control registers, allowing software or compiler based approaches to control front-end throttling.

Front-end width changes in a pipeline fashion, starting from the fetch stage and propagating down

to the subsequent stages until instructions reach the issue queue and the reorder buffer. Width
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Figure 3.2: Flexible front-end instruction delivery.

change can happen in one cycle for a single pipeline stage and does not need to be consecutive. It

can jump arbitrarily between any two values ranging from one to the maximum allowable width.

The basic unit that adaptive front-end throttling performs optimization on is an instruction

chunk, which consists of a fixed number of instructions. Programs are divided sequentially into

equal-sized instruction chunks, and optimization is made chunk-wise. Various control techniques

can be proposed to dynamically throttle the front-end width. In this work, software profiling and

run-time hardware controller are proposed as two approaches to throttle the front-end.

3.2.1 Software Profiling

Dynamic program behavior can be analyzed by software profiling, from which the front-end width

control information can be extracted and inserted into the programs. To find the optimal width, pro-

grams are run once under each front-end width prior to deployment, during which performance and

average power consumption of executing each chunk of instructions under that width are collected.

Using this information, two types of optimization are applied to the programs. One is optimization

by program, which uses a single fixed front-end width throughout the whole program but this width

is flexible when choosing it. The target optimization metric for executing the entire program under

each front-end width is calculated, and the width that achieves the best result for the target metric is

chosen as the optimal front-end width for that program under that metric. For example, on a 4-way

superscalar processor, the same program is executed four times under each of the four front-end
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widths. In each execution, the performance and average power of executing the entire program are

collected. Using this information, the target optimization metric under all four different widths are

calculated and compared. The width that achieves the best result for the target metric is selected as

the optimal width.

The other is optimization by phase, which allows a single program to use different optimal front-

end widths for different instruction chunks during execution. Optimization is made chunk-wise, in

which the target optimization metric for executing a single chunk of instructions under each front-

end width is calculated, and the width that achieves the best result for the target metric is chosen

as the optimal front-end width for that chunk of instructions under that given metric. The above

optimization process is repeated for each chunk of instructions in the program. For example, on a 4-

way superscalar processor, the same program is executed one time under each of the four front-end

widths. During each execution, the performance and average power consumption of executing each

chunk of instructions in the program are collected. For every chunk of instructions in the program,

the target optimization metric for that instruction chunk under each width from 1 to 4 is calculated

and the width that performs the best is selected as the optimal front-end width for that instruction

chunk under that metric.

Width control information can be inserted into the program by compilers via special width con-

trol instructions. Alternately, the width control information can be stored in a hardware controller

that throttles the front-end width when the width changing point arrives during program execution.

3.2.2 Run-Time Hardware Controller

Although software profiling is useful for characterizing dynamic program behavior, its efficacy of

identifying optimal widths could be degraded when program input changes. To effectively cap-

ture dynamic program behavior changes, a dedicated hardware controller is proposed to throttle

the front-end width during run-time. The hardware controller samples the program’s execution in-

formation and uses the sampling results to set the optimal front-end width in the near future. The

rationale behind sampling is that programs have such temporal locality that the front-end width that

achieves the optimal result for the target metric at present tends to achieve the optimal result in the
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Figure 3.3: Block diagram of the hardware controller.

near future as well. As observed in architectural simulations, this temporal locality can be as long

as the time taken to commit hundreds of millions of instructions. The question is when to sample?

Software profiling shows that program behavior changes are often accompanied by performance

and power changes. The hardware controller uses sudden changes in performance or power as in-

dications of potential program behavior changes, which may necessitate optimal front-end width

changes. A number of most recent performance and power data are kept by the hardware controller

and their average values are dynamically calculated. When the difference between the new per-

formance or power sample and the average historical performance or power sample, defined as the

absolute value of (newSample� averageSample)/averageSample, exceeds a threshold, a sudden

change in performance or power is identified. The hardware controller monitors the performance

and average power of executing each chunk of instructions, and upon detecting a sudden change in

either performance or power triggers a sampling process.

The block diagram of the hardware controller is shown in Figure 3.3. The performance counter

counts the number of cycles taken to commit every chunk of instructions. An on-chip digital power

meter, such as the one in the Intel Sandy Bridge microprocessor [62], is assumed to have already

been built on the processor chip that provides the power information. Performance and power data

are written into the register file. The trigger generator triggers a sampling process when detecting a

sudden performance or power change. A timer generates periodic trigger signals in case the trigger

generator misses certain program behavior changes. The target optimization metric for every single
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Figure 3.4: Run-time control flow. Metricwn is the sampling result of the target metric under width
w in sampling iteration n. Metricw is the average sampling result of the target metric under width
w. maxWidth is the maximum front-end width.

chunk of instructions is calculated in the arithmetic logic unit (ALU), and the results are stored in

the register file. The arbitrator compares the sampling results and determines the optimal front-end

width. The width controller manages the sampling process and sets the front-end width.

Figure 3.4 shows the major steps in the control flow using the hardware controller. In step

1, a trigger signal is generated if any of the following events is detected: sudden performance

change, sudden power change, and periodic trigger signals. In step 2, upon detecting a trigger

signal, the controller initiates a sampling process which consists of n iterations. In each iteration,

the controller takes a sample under each front-end width, starting from one and increasing the width

until the maximum, by first setting the front-end to that width and then sampling the target metric

for executing a single chunk of instructions under that width. Figure 3.5 shows an example of the

sampling process on a 4-way superscalar processor. In each sampling iteration, the controller first

sets the front-end width to 1 and takes a sample, then sets the front-end width to 2 and takes a

sample, and repeats this until width 4 is sampled. Next, the above sampling iteration is iterated

n times. The reason for making n sampling iterations is as follows. The performance and power

profile of program execution often fluctuates and Figure 3.6 shows an example of the performance

fluctuations over a few instruction chunks on a 4-way superscalar processor. If a sampling iteration

(s1, s2, s3, and s4) happens in locations shown in Figure 3.6, it would give the result that width

1 yields the best performance, which is not true. The sample under width 1 (s1) just happens to



Chapter 3. Front-End Throttling 27

Figure 3.5: Sampling process on a 4-way processor.
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Figure 3.6: An example of performance fluctuations in gcc on a 4-way processor. s1-s4 represent 4
sampling points under front-end width 1 to 4, respectively.

be in the valley. To reduce the influence of program fluctuations, the same sampling iteration is

repeated n times to average out the fluctuations. Because of the inherent temporal locality, despite

the large fluctuations in some programs the iterated sampling is still very effective as verified by

the evaluation results in Section 3.3. The workload does not have to be very stable in order for

the sampling process to work. In step 3, the sampling results under the same front-end width are

averaged over n iterations. In step 4, an optimal front-end width is selected by comparing the

average sampling results of the target metric under all widths. The width that gives the best result

is selected as the optimal width and used to set the front-end.

The run-time controller incurs control overhead, which comes from two sources. One is that

the controller needs to try suboptimal front-end widths in the sampling process before settling

on the optimal width. To limit this overhead, a minimum interval is enforced to prevent overly
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Table 3.1: Configurations of experimental processors.

Core type 4-way 6-way 8-way
Front-end width 4 6 8
Issue width 4 6 8
Functional units (sim-
ple,mult./div., branch,ld/st)

1,1,1,1 3,1,1,1 5,1,1,1

Issue queue 32 64 128
Load/Store queue 32 32 64
ROB 128 256 512
Branch predictor, BTB bimodal, 64K branch history table, 4K BTB
L1 I-Cache 32K, 64-byte block, 4-way, 1 cycle
L1 D-Cache 64K, 64-byte block, 4-way, 1 cycle
Unified L2 2M, 64-byte block, 8-way, 18 cycles

frequent sampling. After a sampling process is triggered, a second sampling is not allowed until

the minimum interval elapses. Because of the long temporal locality, a properly chosen minimum

interval won’t miss too many optimal front-end width changes. The other is that the run-time

controller may fail to detect some program behavior changes and use suboptimal front-end widths

for those program phases. To reduce such misses of program behavior changes, periodic trigger

signals are generated by the timer to trigger a sample if no program behavior change is detected for

too long.

3.3 Evaluation

3.3.1 Experimental Infrastructure

This work utilizes FabScalar [17] as the experimental platform (Section 1.3). Front-end throttling

and the hardware controller are implemented on the RTL processor generated by FabScalar. The

configuration of the experimental processor is shown in Table 3.1.

3.3.2 Overhead of Front-End Throttling

Table 3.2 shows the overhead of adaptive front-end throttling on the 8-way superscalar processor,

evaluated by the circuit-level analysis flow. A default switching activity is assumed when estimating
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Table 3.2: Overhead of adaptive front-end throttling on the 8-way superscalar processor.

Area
(µm2)

Delay
(ns)

Power
(mW )

Conventional fetch 431267 4.9501 62.2151
Adaptive throttling
(Overhead)

444623
(3.1%)

4.9503
(⇡ 0%)

63.0909
(1.4%)

Hardware controller
(Overhead)

3742
(0.9%)

3.7030
(0%)

0.2720
(0.4%)

the power. The adaptive throttling overhead in the table only represents the overhead of making the

front-end instruction delivery flexible and does not include the overhead of the hardware controller,

which is evaluated separately. A 64-bit integer ALU already provides enough precision for the

arithmetic operations in the hardware controller. Evaluation results show that adaptive front-end

throttling has almost no effect on critical-path delay and incurs negligible area and power overhead.

3.3.3 Evaluation Methodology

To evaluate adaptive front-end throttling, the simulation points, generated by the SimPoint tool [67],

of six SPEC CPU2000 benchmarks are executed on the RTL processors. Only integer benchmarks

are used because floating point instructions are not supported in FabScalar. SimPoint assigns a

weight to each simulation point and the weight sum of the performance of all the simulation points

is used to represent the performance of the entire benchmark. Each instruction chunk consists of

10000 instructions and each simulation point is sequentially divided into instruction chunks. The

selection of instruction chunk size is flexible, and 10000 is chosen in this evaluation because it is

relatively fine-grained but not too small to lose the meaningfulness of averaged program behavior.

Optimization is made chunk-wise. The average power of executing each chunk of instructions

is estimated using the power analysis flow mentioned in Section 1.3. Performance, energy, ED

product, and ED2 product are calculated for each instruction chunk. Energy consumed by each

simulation point is the sum of the energy consumed by all instruction chunks in that simulation

point. Energy consumed by each benchmark is estimated as the weight sum of the energy of all the

simulation points. In software profiling by phase and run-time hardware controller, it is impossible
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Figure 3.7: Average improvements of adaptive front-end throttling on the 8-way superscalar pro-
cessor. Energy, ED, and ED2 are all normalized to the conventional fixed-width 8-way superscalar
processor.

to optimize the ED or ED2 of the entire program at runtime. Instead, optimization is made to the

ED or ED2 of each single chunk of instructions, which still optimizes the ED or ED2 of the overall

program. The ED and ED2 of the overall program are calculated using the performance and energy

of the entire program, the estimation of which is described above.

Adaptive front-end throttling is applied to three superscalar processors with different super-

scalar widths (number of pipeline “ways”). Table 3.1 shows their configurations.

3.3.4 Evaluating Software Profiling

The results of adaptive front-end throttling using software profiling on the 8-way superscalar pro-

cessor are shown in Figure 3.7, in which profiling by program and profiling by phase are evaluated

against the conventional fixed-width 8-way superscalar processor. The input to the program is fixed.

For each of the metrics, the adaptive throttling is optimized for that metric. Adaptive throttling is

also applied to the 4-way and 6-way superscalar processors. Figure 3.8 shows the average improve-

ments of energy, ED, and ED2 over all benchmarks on all three processors.

Results show that adaptive throttling using software profiling always does better than conven-

tional fixed-width instruction delivery on all three processors for energy, ED, and ED2 metrics.

Compared with profiling by program, profiling by phase further enhances the average improve-

ments by 2-8% on the 8-way processor. Significant further improvements using profiling by phase
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Figure 3.8: Average improvements of adaptive front-end throttling on 4-way, 6-way, and 8-way
superscalar processors.

are observed for programs with large behavior variations, such as bzip and gcc. For processors with

smaller superscalar widths, 4-way and 6-way, adaptive throttling also achieves significant average

improvements over the aforementioned three metrics, shown in Figure 3.8.

The energy savings mainly come from reducing the number of wrong-path and early-fetched

instructions, which waste a significant amount of energy, and from reducing the switching activity

of the pipeline by disabling certain instruction delivery paths.

3.3.5 Evaluating Run-Time Controller

The runtime controller is evaluated by applying the runtime control algorithm to the performance

and power data obtained from software profiling. Through trial and error, the threshold for detecting

sudden performance or power changes and the number of history performance and power data

are chosen as 0.125 and 16, respectively. The sampling iteration number n should be kept small

to reduce the overhead of sampling but should also be large enough to average out the program

fluctuations. The minimum sampling interval should be much larger than the sampling duration to

prevent overly frequent sampling but should not be too large in case program behavior changes are

missed. The above two parameters are chosen as 12 and 5 million instructions, respectively. The
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timer generates a periodic trigger signal every 100 million cycles. Given the above parameters, the

duration of a complete sampling process on the 4-way superscalar processor is the time taken to

execute 4⇥ 12 = 48 instruction chunks, which is very short compared with the time between two

adjacent optimal front-end width changes.

The results of adaptive front-end throttling using run-time controller on the 8-way superscalar

processor are shown in Figure 3.7 and the average improvements of energy, ED, and ED2 over all

benchmarks on the 4-way, 6-way, and 8-way superscalar processors are shown in Figure 3.8.

Compared with software profiling by phase with fixed input, which represents the oracle con-

trol, the hardware controller performs 10%, 29%, and 26% worse for energy, ED product, and ED2

product, respectively, on the 8-way superscalar processor, and performs 5%, 9%, and 11% worse,

respectively, over all benchmarks on the same processor. The runtime controller causes negative

ED and ED2 results for mcf. The reason is that mcf has low ILP and the program’s performance

and power consumption plateau after the front-end width exceeds two, leaving little room for opti-

mization, which is offset by the control overhead of the run-time controller. In this case, the runtime

controller can be disabled or better control algorithms can be developed.

3.4 Summary

This work differs from previous work in a number of ways. First, existing techniques often focus on

reducing energy consumption while minimizing performance loss, but adaptive front-end throttling

can optimize an arbitrary priority metric. Second, this work is not targeted at improving any existing

techniques. Adaptive front-end throttling is orthogonal to, and can even leverage, most existing

techniques, providing even greater savings. For example, fetch gating based on branch prediction

confidence [6,49] and dynamic issue queue, reorder buffer, and load/store queue re-sizing [8,14,26,

54, 57] can be applied together with adaptive front-end throttling to achieve greater savings. Third,

previous work either does not have a direct way to quantify the overhead of the throttling technique

and the resulting energy savings, or gets this information relying on architecture-level modeling

frameworks, such as Wattch [13] and McPAT [45], which are known to have limited accuracy. In



Chapter 3. Front-End Throttling 33

this work, the new architecture is implemented at the register transfer level (RTL), and circuit-level

synthesis and simulation are used to accurately analyze the area, delay, and power overhead of the

throttling technique and resulting energy savings.
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Dynamic Core Scaling

This chapter presents the dynamic core scaling technique. Modern superscalar processors, such

as IBM POWER8 [51], can use aggressive datapath resources to extract every bit of performance.

These aggressive datapath resources, such as issue queue (IQ), load/store queue (LSQ), and reorder

buffer (ROB), account for a significant fraction of energy consumption. DCS trades off performance

and energy by scaling these datapath resources. The datapath resources that are dynamically scaled

include front-end width, issue width, and sizes of IQ, LSQ, and ROB, all of which significantly

influence the energy consumption of superscalar processors. Clock gating and power gating are

performed on usused datapath resources to save energy.

4.1 Scaling Datapath Resources

This section describes the hardware modifications needed to implement DCS. Although scaling

datapath resources may reduce the critical path delay of the processor, this work does not consider

increasing clock frequency or merging pipeline stages.

4.1.1 Resize Instruction Scheduling Components

DCS powers off portions of IQ, LSQ, and ROB to trade off performance and energy. To resize

IQ, LSQ, and ROB, the SRAMs and CAMs in these components are partitioned into a number

of independent sub-blocks, each of which is a standalone and usable SRAM/CAM block with its

34
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own peripheral circuitry. A controller selectively assembles the sub-blocks to form SRAMs and

CAMs with different sizes. Using smaller independent SRAM/CAM blocks reduces access latency

and read/write energy, but increases area because the peripheral circuitry, such as prechargers, sense

amplifiers, etc, cannot be shared and are duplicated in each sub-block. Partitioning the SRAM/CAM

into more sub-blocks offers finer granularity but causes higher area overhead. To provide fine

granularity while avoiding high area overhead, the IQ, LSQ, and ROB are partitioned and assembled

as shown in Table 4.1. The full sizes of the IQ, LSQ, and ROB used in the baseline experimental

processor are 128 entries, 64 entries, and 256 entries, respectively.

Table 4.1: Available sizes of IQ, LSQ, and ROB.

Partition sizes Sizes that can be assembled
IQ 16, 16, 32, 64 16, 32, 48, 64, 80, 96, 112, 128
LSQ 8, 8, 16,32 8, 16, 24, 32, 40, 48, 56, 64
ROB 32, 32, 64, 128 32, 64, 96, 128, 160, 192, 224, 256

Instruction dispatch is stalled when resizing IQ, LSQ, and ROB to first drain these components

to empty, and then change their sizes. If branch mispredictions or other recovery events that flush

the pipeline happen during resizing, IQ, LSQ, and ROB are resized immediately after the flush.

Stalling instruction dispatch incurs performance loss. The duration of instruction dispatch stall

depends largely on the occupancy of IQ, LSQ, and ROB when resizing happens. Simulations on the

experimental processor show that most instruction dispatch stalls are less than 100 cycles, discussed

in detail in Section 4.4.6. By carefully controlling the resizing events, the resulting performance

loss can be negligible. IQ, LSQ, and ROB can be resized independently and simultaneously. When

the processor starts, they are initialized to full sizes, and later are scaled quickly to the right sizes

according to application needs.

4.1.2 Throttle Front-End Instruction Delivery

DCS dynamically adjusts the front-end instruction delivery rate to the demands of applications,

which offers two benefits. First, the number of wrong-path and early-fetched instructions are re-

duced and less energy is wasted on processing them. Second, delivering fewer instructions lowers
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the occupancy of IQ, LSQ, and ROB, saving energy in these components. Flexible front-end in-

struction delivery is implemented on the experimental processor using similar techniques in [81],

shown in Figure 3.2. The instruction delivery paths, consisting of fetch, decode, rename, and dis-

patch, are enabled or disabled dynamically by the control registers added to each front-end stage.

Corresponding logic in each stage is modified if necessary to accommodate the flexible instruction

delivery width. The instruction cache only fetches the required number of instructions dictated by

the control register. Pipeline registers corresponding to the disabled instruction delivery paths are

clock-gated to save energy. Front-end width changes in a pipeline fashion, starting from the fetch

stage and propagating down to the subsequent stages until instructions reach the issue queue and

the reorder buffer. Width change takes only one cycle for a single stage, and can jump arbitrarily

between any two values ranging from one to the maximum allowable width.

4.1.3 Adjust the Issue Width

DCS reduces the effective issue width when necessary to save energy. The baseline experimental

processor has a total of 8 execution units, including 3 simple function units, 1 multiply/divide

function unit, 1 branch unit, and 3 load/store address generation units. The number of simple

instructions or load/store instructions issued per cycle in the baseline experimental processor can

change from 1 to 3. To reduce the issue widths of these two types of instructions, two of the three

granted instructions can be hold without being issued by disabling their grant signals using simple

control logic. The instructions being hold can participate in the selection process in the next cycle.

When the issue width is reduced, the back-end pipeline registers corresponding to the disabled

execution lanes are clock gated on a cycle by cycle basis.

4.2 Performance-Energy Tradeoff via DCS

4.2.1 Overview of DCS Control

Controlling DCS for performance-energy trade-off is challenging, because there is no fixed relation-

ship between performance/energy and the microarchitecture of the core. Scaling the core to half
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size does not necessarily reduce its performance or energy by half, and may result in very different

performance and energy consumption for different applications. However, it is often desirable to

have the ability to control performance when doing performance-energy trade-off. To achieve this

goal, this chapter proposes a hardware DCS controller that allows an arbitrary target performance to

be set and dynamically scales the datapath resources to try to ensure that the core runs at the target

performance. The target performance is a certain percentage of the maximum performance the core

would achieve if all datapath resources were allocated, and it can be set by the operating systems,

etc. At the same time with performance control, the DCS controller minimizes energy consumption

by dynamically allocating just the amount of datapath resources needed to meet the target perfor-

mance. Through simultaneous performance control and energy minimization, DCS achieves a wide

range of performance-energy trade-offs.

The performance metric which the DCS controller controls is the instructions per cycle (IPC).

To achieve a target IPC that is a certain percentage of the maximum IPC, it is sufficient to achieve

the target IPC at every instant of the program execution. This implies that the DCS controller must

know the maximum performance the program would achieve if the program was run on a full-size

core, and that the DCS controller must be able to effectively control performance at every instant of

the program execution. The proposed DCS controller realizes these two goals via calibration and

evaluation, which are two distinct phases during program execution. During the calibration phase,

the core is scaled to full size and the IPC of the program is sampled as the maximum IPC for the

near future. This is based on the assumption that the IPC of the program will be stable in the near

future after the sample. This assumption is true most of the time based on the SPEC benchmark

simulations done in this work, which show that programs have distinct phases and the IPC in each

phase can be relatively stable for long period of time. In situations where the IPC of the program

fluctuates, the effectiveness of using calibration to acquire maximum IPC suffers. However, this is

not the common case for most of the SPEC benchmarks. During the evaluation phase, the core’s

runtime IPC is monitored, and at the end of each evaluation phase, the core is resized if needed to

meet the target performance by comparing the runtime IPC with the target IPC.

To monitor performance, the program is divided sequentially into equal-sized instruction
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chunks, each of which consists of a fixed number of instructions. Each calibration phase and

each evaluation phase consists of one instruction chunk. Several evaluation phases follow one cal-

ibration phase to reduce the time when the core is in full size. Figure 4.1 shows the control flow.

Upon periodic performance calibration triggers, the core is set to full size and the maximum IPC is

sampled by executing one instruction chunk. The target IPC is then re-calculated by multiplying the

target percentage with the sampled maximum IPC. When the performance calibration finishes, the

core enters the evaluation phase and is scaled back to its previous size right before the performance

calibration triggers. The runtime performance for executing each instruction chunk is monitored.

At the end of each evaluation phase, an evaluation process is triggered, upon which the sampled

runtime IPC is compared against the target IPC. The DCS controller then decides how to resize the

datapath resources based on the comparison results.

Figure 4.1: Control flow for performance-energy trade-off using DCS.

The rest of the section will provide details on how the DCS controller dynamically scales data-

path resources to control performance while minimizing energy consumption at the same time.

4.2.2 Resize IQ, LSQ, and ROB

The controller calibrates the maximum IPC as well as the target IPC in the calibration phase, and

monitors the runtime IPC of the core in the evaluation phase. At the end of each evaluation phase, if

the runtime IPC is higher than the target IPC, the IQ, LSQ, and ROB are over-allocated and should

be downsized to save energy. If the runtime IPC is lower than the target IPC, the IQ, LSQ, and

ROB are under-allocated and should be upsized to raise the performance. Although the IQ, LSQ,

and ROB can be resized independently and simultaneously, the controller only resizes one of them

at a time by one smallest granularity. The reason is to avoid imbalanced resource allocation, such

as big IQ and small ROB, that causes low performance but high power consumption. The following
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Algorithm 1 Control algorithm for performance-energy trade-off using DCS.
1: procedure RESIZE CONTROL
2: if per f ormance < target per f ormance then
3: if ROB stall was more than IQ and LSQ then
4: upsize ROB by 32
5: else if IQ stall was more than ROB and LSQ then
6: upsize IQ by 16
7: else if LSQ stall was more than ROB and IQ then
8: upsize LSQ by 8
9: end if

10: else if per f ormance > target per f ormance then
11: if ROB stall was less than IQ and LSQ then
12: downsize ROB by 32
13: else if IQ stall was less than ROB and LSQ then
14: downsize IQ by 16
15: else if LSQ stall was less than ROB and IQ then
16: downsize LSQ by 8
17: end if
18: end if
19: end procedure

20: procedure FRONT-END WIDTH CONTROL
21: if IQ size < 32 and LSQ size < 16 and

22: ROB size < 64 then
23: front-end width = issued instructions/cycle
24: else if IQ size < 64 or LSQ size < 32 or

25: ROB size < 128 then
26: front-end width = issued instructions/cycle+1
27: else
28: front-end width = issued instructions/cycle+2
29: end if
30: end procedure

31: procedure ISSUE WIDTH CONTROL
32: if IQ size < 32 and LSQ size < 16 and

33: ROB size < 64 then
34: issue width = 4
35: else
36: issue width = 8
37: end if
38: end procedure
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method determines which component should be resized. The IQ, LSQ, and ROB generate signals

that stall the instruction dispatch if those components are full. The controller counts the number

of dispatch stalls generated by each component during the execution of each instruction chunk. If

upsize is needed, the component that generates the most number of stalls is upsized, because it

suffers from under-allocation more severely than the others and is likely the major contributor to

performance loss. If downsize is needed, the component that generates the fewest number of stalls

is downsized, because it is over-allocated more than the others and downsizing it is likely to cause

the least amount of performance loss. The control method is shown by the RESIZE CONTROL

procedure in Algorithm 1.

The instruction chunk size should be large enough to represent the averaged program behavior,

but should not be excessively large to lose fine-grained control. The performance calibration period

should be large to reduce the time when the core is in full-size for low energy, however, if it is

too large the calibrated full-size core’s performance may not be accurate. By varying the two

parameters in simulations, satisfying results are achieved when the instruction chunk size is 6000

and the performance calibration period is 20 instruction chunks.

4.2.3 Throttle the Front-End Width

The front-end width is kept the same as the number of instructions issued per cycle to deliver only

the instructions needed by the issue queue. If no instructions are issued in a cycle, the front-end

width is set to 1. If the number of instructions issued per cycle exceeds the maximum front-end

width, the front-end width is kept at the maximum. However, in real implementation, this scheme

is found to degrade performance more than desired because the instruction window is narrowed.

Given that larger IQ, LSQ, and ROB generally favor higher instruction delivery rate, 1 or 2 extra

instructions are fetched and delivered according to the sizes of these components, shown by the

FRONT-END WIDTH CONTROL procedure in Algorithm 1. Evaluations show that this scheme

gives better results than simply keeping the fetch width the same as the number of instructions

issued per cycle.
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4.2.4 Adjust the Issue Width

The back-end pipeline registers are clock gated on a cycle by cycle basis. Since the total number

of instructions to be executed in a program is fixed, the issue width should be kept at the maxi-

mum to issue ready instructions as soon as possible to maximize performance. However, recovery

events such as branch mispredictions flush the pipeline and the actual number of instructions is-

sued is usually larger than that in the program. Fetch gating based on branch prediction confidence

has been proposed in [49] to reduce wrong-path instructions. The same technique can also be ap-

plied to instruction issue. To make DCS control simple, this work keeps the issue width at the

maximum most of the time, but reduces it to 4 when the core is scaled very small, shown by the

ISSUE WIDTH CONTROL procedure in Algorithm 1.

4.2.5 Combine DCS with DVFS for Greater Savings

Applying DCS together with DVFS achieves greater energy savings, however, controlling DCS

and DVFS together is challenging, which is explained as follows. Assuming that the goal is to

maintain a target performance of p while minimizing energy, multiple approaches exist to achieve

this performance-energy trade-off, illustrated by Figure 4.2a. The first approach applies DVFS and

reaches point B through path 1. The second approach applies DCS and reaches point C through path

2. The third approach combines DCS and DVFS. First, DCS is applied to reach point A through

path 3, and then DVFS is applied to reach point D through path 4. The controller has to determine

which approach saves energy most, but this is complicated by two problems. First, the resulting

energy savings from DCS is unknown prior to scaling. When DCS is more effective than DVFS,

shown in Figure 4.2a, the third approach is most effective. When DCS is less effective than DVFS,

shown in Figure 4.2b, the first approach becomes the most effective. Unless all three approaches

are tried and compared, it is challenging to determine which one is the best. Second, finding out

the most effective combination of DCS and DVFS is virtually impossible at runtime, because there

exist numerous possible combinations. For example, in the third control approach when scaling

from point O to point D, the selection of point A on the DCS curve affects the performance-energy
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trade-off results, however, it is impractical to try all the possible points at runtime and then select

the most effective one.
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Figure 4.2: The challenges of controlling DCS+DVFS.

To address these challenges, the rest of this section proposes three control mechanisms to ef-

fectively manage performance-energy trade-off using a combination of DCS and DVFS. Section

4.2.5.1 proposes an oracle controller to demonstrate the optimal control strategy when the resulting

performance and energy of DCS is known by oracle. Section 4.2.5.2 and Section 4.2.5.3 propose

two practical controllers that are applicable in real implementations when no oracle information of

DCS is known.

4.2.5.1 The Oracle Controller

The oracle controller assumes that the resulting performance and energy of DCS is known be-

forehand, thus it knows the most effective combination of DCS and DVFS to achieve a certain

performance-energy trade-off. Before going into the details of the oracle controller, a few notations

are introduced first. Performance is denoted by p. Energy is denoted by E, or E(p), a function of

performance. The effectiveness of performance-energy trade-off is defined as the ability to reduce

energy when a certain performance is traded off, given by E f f = E 0(p) =
dE(p)

d p
.

The oracle control mechanism is shown in Figure 4.3, where O represents the point where the
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core is at the nominal voltage and in full size, P represents the point where only DVFS is applied

and the voltage is scaled to Vmin, and Q represents the point where only DCS is applied and the

core is scaled to minimal size. The effectiveness of performance-energy trade-off at points O, P,

and Q for DCS and DVFS are represented as E f fDCS,O, E f fDV FS,O, E f fDCS,P, and E f fDV FS,Q. The

effectiveness of DCS and DVFS decreases as they are applied from point O to point P or Q. Thus,

the following relationships are always true: E f fDCS,Q < E f fDCS,O and E f fDV FS,P < E f fDV FS,O.

Based on the effectiveness of DCS and DVFS, the oracle control is categorized into four scenarios:

1. E f fDCS,Q < E f fDCS,O < E f fDV FS,P < E f fDV FS,O, where DCS is always less effective than

DVFS, and

2. E f fDV FS,P < E f fDCS,O < E f fDV FS,O, where DCS is partially less effective than DVFS, and

3. E f fDCS,Q < E f fDV FS,O < E f fDCS,O, where DCS is partially more effective than DVFS, and

4. E f fDV FS,P < E f fDV FS,O < E f fDCS,Q < E f fDCS,O, where DCS is always more effective than

DVFS.

In the first scenario where DCS is always less effective than DVFS, shown in Figure 4.3a, there

is no need to apply DCS before DVFS is applied until the voltage is scaled to Vmin, because applying

DCS at any middle point of DVFS only leads to inferior performance-energy trade-off. Thus, the

oracle controller first applies DVFS from point O to point P where voltage is scaled to Vmin, then it

applies DCS from point P to point C where the core is scaled to minimum. In this scenario, DCS is

able to further extend performance-energy trade-off at Vmin when DVFS stops working.

In the second scenario where DCS is partially less effective than DVFS, shown in Figure 4.3b,

applying DCS has the potential of improving performance-energy trade-off over DVFS. Since

E f fDCS,O < E f fDV FS,O, DVFS should be applied first until a certain point A where E f fDCS,O =

E f fDV FS,A. From point O to point A on the DVFS curve, there is no need to apply DCS, because

applying DCS at any middle point M between O and A only leads to inferior performance-energy

trade-off since DCS is less effective than DVFS. Once DVFS is applied below point A, the effec-

tiveness of DVFS becomes smaller than E f fDCS,O and applying DCS becomes desired. But as DCS
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Figure 4.3: The oracle control mechanism when combining DCS with DVFS.
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is applied, its effectiveness will decrease and become smaller than that of DVFS, making applying

DVFS desired again. Thus, the desire to apply DVFS and DCS alternates from point A until point

B where the voltage is scaled to Vmin, during which the oracle controller should apply the optimal

combinations of DVFS and DCS that achieve Pareto-optimal performance-energy trade-offs, rep-

resented by the red curve in Figure 4.3b. Once the voltage is scaled to Vmin, DVFS stops working

and DCS is applied until point C where the core is scaled to minimum. In this scenario, the oracle

control method is able to extend DVFS slightly before the voltage is scaled to Vmin and significantly

at Vmin.

In the third scenario where DCS is partially more effective than DVFS, shown in Figure 4.3c, ap-

plying DCS improves performance-energy trade-off beyond DVFS. Since E f fDCS,O > E f fDV FS,O,

DCS should be applied first until a certain point A where E f fDCS,A = E f fDV FS,O. From point O to

point A on the DCS curve, there is no need to apply DVFS because DVFS is less effective than DCS.

Once DCS is applied below point A, the effectiveness of DCS becomes smaller than E f fDV FS,O.

The situation becomes similar to phase AB in Figure 4.3b. The oracle controller should apply the

optimal combinations of DVFS and DCS that achieve Pareto-optimal performance-energy trade-

offs from point A to B, represented by the red curve in Figure 4.3c. Once the voltage is scaled to

Vmin, DCS is applied until point C where the core is scaled to minimum. In this scenario, the oracle

control method is able to extend DVFS at all voltages.

In the fourth scenario where DCS is always more effective than DVFS, shown in Figure 4.3d,

applying DVFS before applying DCS until the minimum core only leads to inferior performance-

energy trade-off. Thus, the oracle controller first applies DCS from point O to point Q where the

core is scaled to minimum, then it applies DVFS from point Q to point C where the voltage is scaled

to Vmin. In this scenario, DCS is able to significantly extend DVFS in performance-energy trade-off.

The oracle controller demonstrates the optimal strategy for controlling performance-energy

trade-off using a combination of DCS and DVFS. However, no such oracle information of DCS

exists in practice. The next two sections propose a simple practical controller that performs well

when DCS is partially more effective than DVFS, and a sophisticated controller that performs com-

parably to an oracle controller in all four scenarios.
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4.2.5.2 A Simple Practical Controller

The control mechanism of the simple controller is shown in Figure 4.4. The simple controller

makes no effort to determine the effectiveness of DCS at runtime and always applies DCS first until

a certain point A on the DCS curve. The selection of point A will be discussed later. Once DCS is

applied until point A, the controller then applies DVFS until the voltage is scaled to Vmin at point

B. At this point, DVFS no longer works and the controller re-applies DCS until the core is scaled

to minimum at point C. In sum, the simple control method consists of three phases - OA where

DCS is applied, AB where DVFS is applied until the voltage is scaled to Vmin, and BC where DCS

is applied again until the core is scaled to minimum. Next the effectiveness of the simple controller

is analyzed for the aforementioned four scenarios.

In the first scenario where DCS is always less effective than DVFS, shown in Figure 4.4a,

applying DCS at the beginning will lead to inferior performance-energy trade-off. The controller is

only able to extend performance-energy trade-off when the voltage is scaled to Vmin.

In the second scenario where DCS is partially less effective than DVFS, shown in Figure 4.4b,

applying DCS at the beginning causes inferior performance-energy trade-off. As DVFS is applied

from point A, since E f fDV FS,P < E f fDCS,O, curve AB will go under curve DVFS after the effective-

ness of DVFS drops below E f fDCS,O. The simple controller causes inferior performance-energy

trade-off in the early phase of the scaling, but can slightly improve performance-energy trade-off at

the later phase of the scaling.

In the third scenario where DCS is partially more effective than DVFS, shown in Figure 4.4c,

applying DCS at the beginning improves performance-energy trade-off. If point A is properly cho-

sen such that E f fDCS,A = E f fDV FS,O, energy savings can be maximized. Applying DVFS subse-

quently from point A always saves more energy than DVFS alone. When the voltage is scaled to

Vmin, applying DCS further extends performance-energy trade-off. Compared with the oracle con-

troller, the drawback of the simple controller in this scenario is that DVFS is used from A to B

instead of the optimal combinations of DCS and DVFS, leading to less energy savings. However,

the effectiveness of the simple controller is already satisfying in this scenario.

In the fourth scenario where DCS is always more effective than DVFS, shown in Figure 4.4d,
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Figure 4.4: The simple control mechanism when combining DCS with DVFS.
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applying DCS at the beginning improves performance-energy trade-off. However, applying DVFS

before the core is scaled to minimum decreases energy savings. Thus, compared with the oracle

controller, the simple controller is less effective but still performs better than DVFS alone.

The remaining question is how to select point A to maximize energy savings. In the first two

scenarios, energy savings are maximized when point A is located at O. In the third scenario, energy

savings are maximized when E f fDCS,A = E f fDV FS,O. In the fourth scenario, the energy savings are

maximized when point A is located at Q. The optimal point A is different in different scenarios.

However, the evaluations in this chapter show that the third scenario is most common for the SPEC

benchmarks studied. Thus, the selection of point A is optimized for the third scenario and it is

chosen such that E f fDCS,A = E f fDV FS,O. But the point A that satisfies this condition varies for

different workloads. Since the simple controller has no mechanism to determine the effectiveness

of DCS at runtime, a workaround is to use a fixed point A for all the workloads. Evaluations

show that placing point A around the target performance of 0.9 is most effective on average. The

drawback of this approach is that a fixed point A cannot always be optimal and can lead to inferior

performance-energy trade-offs. Even so, the evaluations show that the simple controller is still

relatively effective.

4.2.5.3 A More Sophisticated Practical Controller

The lack of mechanisms to determine the effectiveness of DCS at runtime limits the simple con-

troller’s ability to make smarter control decisions. The on-chip digital power meter, such as the

one in the Intel Sandy Bridge microprocessor [62], has already been built in commercial processors

to assist power management. The sophisticated controller assumes that such a digital power meter

has already been built on the processor chip and provides power information. Using this power

information, the sophisticated controller is able to calculate the effectiveness of DCS at runtime

and make smarter control decisions.

In commercial processors, DVFS is often applied using power states [3], which define a couple

of voltage and frequency operating points. The processor is only allowed to operate in these power

states. Similarly, power states can also be defined for DCS and only allow it to operate on certain
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performance points, although DCS is able to operate at any performance. An example of power

states for DVFS and DCS is shown in Table 4.2, where f1 > f2 > f3 > · · · > fN and pDCS,1 >

pDCS,2 > pDCS,3 > · · ·> pDCS,N .

Table 4.2: Power states used in the sophisticated controller.

Power DVFS DCS
states Frequency Voltage Power Performance Power
1 f1 V1 PDV FS,1 pDCS,1 PDCS,1
2 f2 V2 PDV FS,2 pDCS,2 PDCS,2
3 f3 V3 PDV FS,3 pDCS,3 PDCS,3
...

...
...

...
...

...

N fN VN PDV FS,N pDCS,N PDCS,N

The sophisticated controller controls performance-energy trade-off by combining DCS and

DVFS in different power states. To achieve a certain performance-energy trade-off, the sophis-

ticated controller always tries DCS first for one instruction chunk, defined in Section 4.2.1, no

matter which power state the processor is in. Using the on-chip digital power meter, the controller

can dynamically calculate the effectiveness of DCS for executing this instruction chunk. The ef-

fectiveness of DVFS in different power states can be pre-computed using P = CV 2 f and stored in

the controller. Knowing the effectiveness of both DCS and DVFS, the controller can easily decide

which one is more effective. If DCS is more effective, it is confirmed that applying DCS is correct

and the controller continues to find the next power state. If DVFS is more effective, the controller

reverts DCS to the previous power state and applies DVFS instead. The control method is further

illustrated in Algorithm 2, where S represents power state, an integer ranging from 1 to N. Depend-

ing on whether performance is scaled up or down, the value of the power state is decremented or

incremented. The above process is repeated until the desired power target is met.

The effectiveness of the sophisticated controller is analyzed for the aforementioned four sce-

narios. In the first scenario where DCS is always less effective than DVFS, the controller is able

to detect this every time DCS is tried, thus the controller will apply DVFS until the voltage is

scaled to Vmin. Then the controller starts to apply DCS. The sophisticated controller is able to find

the optimal combination of DCS and DVFS and performs like the oracle controller, except that
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Algorithm 2 Control method for the sophisticated controller.
1: procedure CONTROL POWER STATE
2: while power target is not met do
3: SDCS,previous = SDCS,current
4: SDCS,current = SDCS,next
5: SDV FS,previous = SDV FS,current
6: SDV FS,current = SDV FS,next

7: run one instruction chunk

8: if E f fDCS � E f fDV FS then
9: if down scale then

10: SDCS,next = SDCS,current +1
11: else if up scale then
12: SDCS,next = SDCS,current �1
13: end if
14: SDV FS,next = SDV FS,current
15: else if E f fDCS  E f fDV FS then
16: SDCS,next = SDCS,previous
17: if down scale then
18: SDV FS,next = SDV FS,current +1
19: else if up scale then
20: SDV FS,next = SDV FS,current �1
21: end if
22: end if
23: end while
24: end procedure
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trying DCS incurs a little overhead. The performance-energy trade-off curve is similar to Figure

4.3a. The same is true for the fourth scenario where DCS is always more effective than DVFS. The

performance-energy trade-off curve is similar to Figure 4.3d. In both scenarios, the sophisticated

controller performs almost identical to the oracle controller.

In the second scenario where DCS is partially less effective than DVFS, the controller is able

to detect that and apply DVFS at the beginning until it discovers that DCS becomes more effec-

tive. Then, the sophisticated controller applies DCS and DVFS alternatively, shown in Figure 4.5a.

Although this is less effective than the oracle controller which could always find the optimal combi-

nations of DVFS and DCS, the sophisticated controller is able to approximate the oracle controller

and improves over the simple controller. The same is true for the third scenario where DCS is

partially more effective than DVFS. The performance-energy trade-off curve is shown in Figure

4.5b. In both scenarios, the sophisticated controller is more effective than the simple controller and

approximates the oracle controller.
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Figure 4.5: The sophisticated control mechanism when combining DCS with DVFS.

In sum, having the ability to determine the effectiveness of DCS at runtime makes the sophis-

ticated controller more powerful at making wiser control decisions and able to perform well in all

four scenarios.
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4.3 Evaluation Methodology

4.3.1 Experimental Platform

This work utilizes FabScalar [17] as the experimental platform (Section 1.3) to accurately eval-

uate the area, delay, and power of the DCS architecture. Table 4.3 shows the parameters of the

experimental processor. DCS and the hardware controller are implemented on the RTL processor

generated by FabScalar. The simulations use SPEC CPU2000 benchmarks. A single simulation

point is generated using SimPoint [67] for each benchmark. Only integer benchmarks are studied

because the FabScalar infrastructure does not support floating point instructions.

Table 4.3: Parameters of the baseline experimental processor.

Fetch/decode/rename/dispatch
width

6

Issue/RR/execute/WB width 8
Function units (simple, multi-
ply/divide, branch, ld/st)

3,1,1,3

Issue queue 128
Load/Store queue 64
Reorder buffer (ROB) 256
Branch predictor, BTB gshare, 8-bit GHR, 64K PHT, 4K BTB
L1 I-Cache 32K, 64-byte block, 4-way, 1 cycle
L1 D-Cache 64K, 64-byte block, 4-way, 1 cycle
Unified L2 2M, 64-byte block, 8-way, 18 cycles

4.3.2 Methodologies for Getting DCS Results

Figure 4.6 shows the average results of DCS over all benchmarks. The detailed results for each

benchmark are shown in Figure 4.7 and Figure 4.8. For DVFS, the voltage-delay relationship of the

experimental processor is characterized using FO4 inverters, which are simulated under different

voltages, from 0.7V until the nominal 1.1V. For simplicity, Vmin is assumed to be 0.7V, although in

reality it should be found out experimentally. Energy is estimated using the formula: E µ aCV 2 f .

The power states are selected based on performance, normalized to the nominal voltage for

DVFS and to the full-size core for DCS. The normalized performance in two adjacent power states

have a difference of 0.5. For DVFS, eight power states are defined with normalized performance
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from 1 to 0.65. For DCS, ten power states are defined with normalized performance from 1 to 0.5.

The DCS-potential and DCS+DVFS-potential curves show the potential of DCS in

performance-energy trade-off. These curves are obtained through an extensive design space ex-

ploration. A large number of carefully selected cores with varying DCS parameters are simulated

(under different voltages for DCS+DVFS-potential) and plotted on the performance-energy dia-

gram. No control techniques are applied at this moment and the datapath resources of the cores are

fixed. The cores located on the performance-energy Pareto frontier are selected and plotted to form

the potential curves. These cores have diverse DCS parameters, ranging from the smallest core

to the full-size core. The DCS-controller curve shows the performance-energy trade-off using the

DCS hardware controller. The DCS+DVFS-simple and the DCS+DVFS-sophisticated curves show

the performance-energy trade-off using the simple controller (Section 4.2.5.2) and the sophisticated

controller (Section 4.2.5.3) when combining DCS and DVFS. DCS+DVFS-potential can be viewed

as an approximation of the oracle controller (Section 4.2.5.1).

4.4 Results

This section first shows the effectiveness of DCS at controlling performance while minimizing

energy consumption. Then, it presents the results of using DCS to extend performance-energy

tradeoff. Finally, some further discussions about DCS are made.

4.4.1 The Effectiveness of DCS Performance Control

DCS tries to ensure that the core runs at the target performance and minimizes energy consumption

at the same time. Table 4.4 shows the average performance and energy when applying DCS to

the experimental processor under different target performances. The DCS hardware controller is

most effective for target performances ranging from 0.7 to 1, during which energy drops quickly

as performance is lowered. Below 0.7, energy plateaus and decreasing performance leads to lim-

ited energy reduction. The accuracy of performance control drops when the target performance is

below 0.7, because the lowest performance achievable by the smallest core is around 0.7 for some
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benchmarks, which prevents the average performance from being lowered. For target performances

between 0.7 and 1, the small inaccuracy in performance control is partly because performance sam-

pling in the calibration phase cannot accurately reflect the full-size core’s performance, and partly

because setting the core at full size in the calibration phase increases performance.

Table 4.4: Average performance and energy over all benchmarks for different target performances
using the hardware controller. The data are normalized to the full-size core.

target performance 0.3 0.4 0.5 0.6 0.7 0.8 0.9
average performance 0.56 0.59 0.61 0.66 0.71 0.81 0.88
average energy 0.49 0.49 0.49 0.51 0.53 0.61 0.69

4.4.2 Balancing Datapath Resource Allocation

Since scaling the core may result in faster performance loss than power reduction, could DCS

decrease performance but raise energy consumption at the same time? The evaluation results in

Table 4.4 show that energy only decreases monotonically first and then plateaus with very small

variations as the target performance decreases, and no significant energy increase is observed for

all the benchmarks studied. The reason behind this phenomenon is that the DCS controller resizes

datapath resources very carefully. Only one of the IQ, LSQ, and ROB that causes the most/least

instruction dispatch stalls is allowed to change size by one smallest granularity at a time. This

effectively avoids the imbalanced allocation of datapath resources, such as big IQ and small ROB,

that causes low performance but high power consumption.

4.4.3 Performance-Energy Trade-off Using DCS

Figure 4.6 gives an overview of DCS results. Beware that DCS-potential and DCS+DVFS-potential

do not represent the maximum ability of DCS in trading off performance and energy, instead, they

show that DCS has at least the potential shown in the figures. A number of observations are as

follows.

First, the DCS-potential curve lies below the DVFS curve at the high performance end, meaning

that DCS saves more energy than DVFS at the same performance and thus is more effective than

DVFS. The reason behind this is that using aggressive superscalar datapath resources to extract the
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Chapter 4. Dynamic Core Scaling 56

last bit of performance incur high energy costs. The DCS-potential curve then crosses the DVFS

curve and goes above it, where it becomes less effective than DVFS. On average, energy reduction

using DCS slows down when normalized performance drops below 70%.

Second, applying DCS on top of DVFS significantly extends the performance-energy Pareto

frontier of DVFS. At the same performance, DCS+DVFS-potential saves more than DVFS by

around 20% of a full-size core’s energy at nominal voltage on average.

Third, the effectiveness of DVFS stops when the supply voltage is scaled to Vmin. However,

DCS-potential further reduces 46% energy on average at Vmin by trading off performance.

Fourth, the DCS hardware controllers are effective in controlling DCS for performance-energy

trade-off. The controller curves display very similar characteristics as the potential curves and they

are close to each other. Like DCS-potential, DCS-controller is also more effective than DVFS at

the high performance end. At Vmin when DVFS becomes ineffective, DCS-controller also further

reduces energy by an average of 46%. When DCS and DVFS are combined, both the simple

controller and the sophisticated controller effectively extend DVFS in performance-energy trade-

off. The simple controller saves energy more than DVFS by 24-36% within the viable voltage range

and by 28-57% at Vmin, across all benchmarks studied. The sophisticated controller is able to find

better combinations of DCS and DVFS and performs comparably to DCS+DVFS-potential.

Figure 4.7 and Figure 4.8 show the detailed results of DCS and DCS+DVFS for each bench-

mark. Analyzing the results of each individual benchmark is similar to analyzing the average

results, and the aforementioned observations can also be found in each benchmark. By scaling

voltage from 1.1V to 0.7V, DVFS reduces 60% energy by trading off 34% performance. Com-

pared with DVFS, DCS-potential reduces 37-66% energy by trading off 29-59% performance,

and DCS+DVFS-potential reduces 68-84% energy by trading off 34-48% performance, across all

benchmarks. For gap and parser, DCS-potential always saves more energy than DVFS. mcf ex-

hibits a rapid drop of energy without performance loss. It is the most memory intensive SPEC

CPU2000 integer benchmark and this limits its ILP. A core with 16-entry IQ, 32-entry LSQ, and

64-entry ROB already achieves the same performance as the full-size core. Any core larger than

that only causes energy waste for mcf.
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Figure 4.7: Results of DCS for selected benchmarks.
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Figure 4.8: Results of combining DCS and DVFS for selected benchmarks.
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The DCS hardware controller achieves less energy savings than DCS-potential. The amount

of diminishing energy savings is because the core is operated in full size during performance cali-

bration, which increases the core’s energy consumption. Despite the imperfectness of the hardware

controller, it still achieves 28-57% energy reduction with 0-48% performance trade-off across all the

benchmarks. We believe that better DCS controller can still be developed to exploit more potential

of DCS, which is worth of future study.

4.4.4 Combining DCS with DVFS for Greater Savings

The major drawback of the simple controller is that it always starts to apply DVFS at a fixed per-

formance point for all benchmarks, which is often sub-optimal and leads to inferior performance-

energy trade-off. Since the sophisticated controller knows the effectiveness of DCS at runtime, it is

able to find better combinations of DCS and DVFS and make more effective performance-energy

trade-offs. Figure 4.6b shows that the sophisticated controller is more effective than the simple

controller around the normalized performance of 0.9, which is the point where the simple controller

starts to apply DVFS.

The sophisticated controller is able to perform comparably to the oracle controller. In Figure

4.6b, the gap between the DCS+DVFS-sophisticated curve and the DCS+DVFS-potential curve is

due to the limited effectiveness of the hardware DCS controller. Since the hardware DCS controller

is unable to fully exploit the potential of DCS, the sophisticated controller is unable to fully exploit

the potential DCS+DVFS either. This chapter also evaluated the effectiveness of the sophisticated

controller by using the oracle DCS controller. The gap between the DCS+DVFS-sophisticated

curve and the DCS+DVFS-potential curve then becomes very small and the sophisticated controller

is almost as effective as the oracle controller.

4.4.5 Overhead of DCS

Table 4.5 shows the overhead of DCS compared with the baseline experimental processor without

DCS. The core with DCS in the table only includes the overhead of making the core scalable and

does not include the overhead of the hardware controller, which is evaluated separately. DCS and
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the hardware controller together incur less than 5% area overhead and about 3% power overhead,

and almost do not affect critical-path delay.

Table 4.5: Percentage overhead of DCS compared with the conventional experimental processor
without DCS.

Area Delay Power
Core with DCS 2.16% 0.96% 1.13%
DCS controller 2.95% 0% 2.33%

4.4.6 Resizing Penalty

When resizing IQ, LSQ, and ROB, instruction dispatch is stalled until these components are drained

to empty, which incurs negligible performance penalty. Table 4.6 shows the average number of

cycles when instruction dispatch is stalled in each IQ, LSQ, and ROB resize event for executing

one million instructions, during which 21-116 resizing events happened across all benchmarks.

The worst-case total instruction dispatch stall is within 6000 cycles, which is very short compared

with the number of cycles taken to execute one million instructions. In addition, stalling instruction

dispatch does not stall the entire pipeline and there are still instructions being issued and executed

during that time. Based on the above analysis, the performance loss due to resizing IQ, LSQ, and

ROB is less than 1% in the worst case.

Table 4.6: Average number of cycles taken for resizing IQ, LSQ, and ROB when the DCS target
performance is 0.9.

bzip gap gcc gzip mcf parser vortex vpr
IQ 16 13 45 20 4 27 18 22

LSQ 20 11 41 21 26 25 18 19
ROB 27 12 48 22 9 16 21 20

4.4.7 Resource Utilization

The reduced occupancy of IQ, LSQ, and ROB reduce both dynamic and static energy in these

components, shown in Figure 4.9. Resource utilization under different target performances is shown

in Figure 4.10 and Figure 4.11. As the target performance decreases, the occupancy of IQ, LSQ,

and ROB and the front-end width decrease. The energy savings mainly come from reducing the
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effective sizes of the instruction scheduling components and the widths of the front-end and back-

end. Reducing the effective sizes of the instruction scheduling components reduces both dynamic

and static energy. Reducing the front-end and back-end widths reduces the switching activity and

thus the dynamic energy. The resource utilization drops most quickly at the high performance end,

which is in accordance with the fact that DCS energy reduction is most effective in this performance

range.

0%#
20%#
40%#
60%#
80%#
100%#

bz
ip# ga

p# gcc
#
gzi
p#

mc
f#

pa
rse
r#

vo
rte
x# vp

r#

IQ#
dynamic#energy# leakage#energy#

0%#
20%#
40%#
60%#
80%#
100%#

bz
ip# ga

p# gcc
#
gzi
p#

mc
f#

pa
rse
r#

vo
rte
x#

vp
r#

LSQ$
dynamic#energy# leakage#energy#

0%#
20%#
40%#
60%#
80%#
100%#

bz
ip# ga

p# gcc
#
gzi
p#

mc
f#

pa
rse
r#

vo
rte
x# vp

r#

ROB$
dynamic#energy# leakage#energy#

Figure 4.9: Dynamic and leakage energy reduction in IQ, LSQ, and ROB with target performance
of 0.9 at nominal voltage.
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Figure 4.10: Average sizes of IQ, LSQ, and ROB with different target performances over all bench-
marks.

4.4.8 Effectiveness of DCS on Smaller Processors

The baseline experimental processor is relatively large. The purpose of selecting a large processor

is to adapt to diverse performance and energy demand, which changes greatly as applications and

user scenarios change. Some user scenarios require high performance and can tolerate high energy

consumption, while others require low energy consumption and can tolerate performance loss. A

single fixed design can never satisfy both demand. A large fixed processor can deliver high perfor-

mance, but is inferior when energy becomes the top concern. A small fixed processor has better

energy efficiency, but is inferior when performance becomes the top concern. In contrast, a large

processor with DCS implemented has the flexibility to dynamically adapt to both high performance

and low energy demand with only a single design. However, applying DCS to smaller processors

diminishes this benefit, because smaller processors inherently cannot deliver high performance.
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Figure 4.11: Average front-end widths with different target performances over all benchmarks.

The effectiveness of DCS on smaller processors is also studied in this evaluation. DCS is
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Table 4.7: Applying DCS to a smaller processor with IQ, LSQ, and ROB at half sizes of those in the
baseline experimental processor. Performance and energy are normalized to the full-size processor.

performance tradeoff
range

energy tradeoff range performance range
where DCS is more
effective than DVFS

bzip 0.71 - 1 0.75 - 1 none
gap 0.65 - 1 0.43 - 1 0.76 - 1
gcc 0.61 - 1 0.76 - 1 none
gzip 0.56 - 1 0.48 - 1 0.78 - 1
mcf 1 0.61 - 1 0 - 1
parser 0.62 - 1 0.46 - 1 0.77 - 1
vortex 0.44 - 1 0.67 - 1 0.97 - 1
vpr 0.54 - 1 0.55 - 1 0.85 - 1

applied to another superscalar processor with the same parameters as the baseline experimental

processor shown in Table 5.2, except that the sizes of its IQ, LSQ, and ROB are reduced by half.

The potential of DCS in performance-energy trade-off using the extensive design space exploration

method is shown in Table 4.7. The results show the range of performance-energy trade-off by

DCS, and the range of performance where DCS is more effective than DVFS. It is observed that

after reducing the sizes of IQ, LSQ, and ROB by half, DCS is still significantly more effective

than DVFS in trading off performance and energy for five out of eight benchmarks. For gap, gzip,

mcf, parser, and vpr, DCS-potential saves more than DVFS by around 10-20% of a full-size cores

energy at nominal voltage on average. For bzip, gcc, and vortex, the advantage of DCS over DVFS

diminishes to none or a few percent. mcf exhibits a rapid drop of energy without performance loss

when DCS is applied, thus its performance trade-off range is 1 rather than a range, and DCS is

thought as more effective than DVFS at all performances for mcf.

Although shrinking the processor will diminish the gain of DCS, DCS is still very effective on

smaller processors. The advantage of DCS is most pronounced when the processor is large, which

provides the largest flexibility in adapting between high performance and low energy consumption.
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Early Tag Lookup

5.1 Overview

The traditional L1 instruction caches read out the data in all ways in parallel with tag lookup in

order to reduce the access latency of set-associative level-one (L1) caches, shown in Figure 5.1a.

However, only the data in the matching way is used and the others are discarded, resulting in

significant energy waste.

(a) Conventional cache (b) Early tag lookup

Figure 5.1: Comparison of conventional cache access and early tag lookup. Shaded blocks are
accessed.

To reduce this energy waste, ETL determines the matching way one cycle earlier than the actual

cache access, eliminating non-matching way accesses without sacrificing performance, shown in

Figure 5.1b. Unlike conventional instruction caches, ETL keeps two instruction fetch addresses.

64
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One is the current fetch address, stored in the program counter (PC), and the other is the next fetch

address, stored in the next program counter (NPC). In cycle i when instructions at PC are fetched,

the matching way has already been determined in the previous cycle (cycle i-1), when the current

PC was the next fetch address stored in NPC. The matching way was determined by looking up the

tag array using NPC, shown in Figure 5.1b. In the case when the matching way lookup in cycle i-1

failed, ETL fetches instructions at PC by accessing all the data ways in parallel, like in conventional

caches. Thus, ETL does not incur any performance penalty.

5.2 Early Tag Lookup

5.2.1 The Basics of ETL

ETL accesses the tag array and determines the matching way earlier than the actual cache access.

In each cycle, fetching instructions at the current fetch address and determining the matching way

for the next fetch address are performed in parallel. To do this, ETL needs both the current fetch

address, PC, and the next fetch address, NPC, at the same time. For now, we assume that NPC can

be obtained in some way and focus on the operations of the L1 instruction cache. The details of

acquiring NPC will be discussed in Section 5.2.2.

When program starts or exceptions happen, PC is loaded with a new address and its matching

way is unknown. The operations of the cache in this situation are shown in Figure 5.2a. PC accesses

the tag array and the data array in parallel, same as the conventional cache access shown in Figure

5.1a. Thus, the non-matching data ways are also accessed and no energy is saved. Simultaneously,

NPC also accesses the tag array to determine the matching way for the next fetch address. If NPC

is the correct next fetch address and hits the tag array, NPC is loaded into PC, its matching way

way NPC is loaded into way PC, and way PC is set to valid at the beginning of the next cycle.

If NPC is the correct next fetch address but misses the tag array, NPC is still loaded into PC but

way PC is set to invalid. A cache miss service is started. If NPC is not the correct next fetch

address, the correct next PC is loaded into PC and way PC is set to invalid. PC and NPC need

to look up the tag array simultaneously when way PC is unknown. To support two simultaneous
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accesses, the tag array is multi-banked with interleaved addresses. As it turns out later, there won’t

be bank conflicts in the tag array.

(a) Matching way for PC is unknown.

(b) Matching way for PC is known.

Figure 5.2: Cache access in ETL. Assume six 64-bit instructions are fetched per cycle. Shaded
blocks are accessed.

When the matching way for PC is known, the operations of the cache are shown in Figure 5.2b.

PC accesses the matching data way directly without touching the non-matching ways, thus saving

energy. PC does not need to access the tag array now, and only NPC accesses the tag array to

determine its matching way in advance. At the beginning of the next cycle, PC and way PC are

updated in the same way as when way PC is unknown. The remaining question is how to acquire
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NPC at the same time with PC, which is explained next.

5.2.2 Acquiring NPC

5.2.2.1 Multiple Branch Prediction

Branch target buffer (BTB) and branch predictor (BP) are commonly used in modern processors

to predict the next fetch address without decoding the instructions. One approach to acquire both

PC and NPC simultaneously is to extend BTB and BP to predict two fetch addresses in one cy-

cle. Predicting multiple branches in one cycle has been studied in [79]. However, this approach

significantly increases the size of the BTB by storing the secondary branch target information, and

requires multiple ports in BP to read counter bits of secondary branches, which is very expensive

in area, power, and timing. Due to the significant overhead, this approach will not be discussed

further.

5.2.2.2 A Simple Way to Predict NPC

To avoid expensive hardware overhead, an alternative approach is to obtain NPC through prediction.

This approach incurs insignificant hardware overhead, but successfully obtains the correct NPC

most of the time. The conventional processor acquires the next PC using information from BTB

and BP, shown in Figure 5.3a. An observation is that the next PC can be determined as long as PC

is known. If PC is substituted with NPC in Figure 5.3a, then the next next PC can be determined

as well. Suppose that both PC and the correct NPC are known at the beginning, then the next next

PC can be obtained by accessing BTB and BP using NPC. In the next cycle, the next next PC is

loaded into NPC and the address in NPC is loaded into PC, thus both PC and NPC are known

simultaneously. The remaining question is how to acquire the correct NPC at the very beginning?

The solution is to predict that NPC is the fall through of PC and later verify that the prediction

is correct. When NPC is unknown, the processor enters the prediction mode, meaning that NPC

is being predicted and may not be correct, shown in Figure 5.3b. NPC accesses BTB and BP and

obtains the next next PC. To verify that NPC is predicted correct, PC also accesses BTB and BP to

acquire the correct next PC. If NPC equals the correct next PC, NPC is predicted correct and the
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(a) Conventional.

(b) Prediction mode is true.

(c) Prediction mode is false.

Figure 5.3: NPC prediction. Assume the processor fetches six 64-bit instructions per cycle.
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processor exits the prediction mode. In the next cycle, the next next PC is loaded into NPC and

NPC is loaded into PC, thus both PC and NPC are acquired. If NPC does not equal the correct next

PC, NPC is predicted wrong and the processor stays in the prediction mode. In the next cycle, PC

is loaded with the correct next PC and NPC is loaded with the fall through of PC. The prediction

process is repeated until a correct NPC is obtained. Evaluations show that it is easy to encounter a

fall-through next PC after a few number of tries.

When the prediction mode ends, PC does not access BTB and BP anymore, and only NPC

accesses BTB and BP to get the next next PC, shown in Figure 5.3c. In each new cycle, the next

next PC is loaded into NPC and NPC is loaded into PC, thus both PC and NPC are acquired.

The processor enters the prediction mode when programs start or exceptions happen. The ex-

ceptions include BTB misses, branch mispredictions, load violations, and other exceptions that

change program order. The processor exits the prediction mode once NPC is predicted correct.

The above discussion assumes that the instruction cache has single-cycle latency. Some modern

processors, such as the Intel Core i7, pipeline L1 caches to achieve high clock frequency and may

still access the tag array and the data array in parallel to reduce latency. ETL can be applied to

pipelined instruction caches as well. The implementation depends on the pipeline depth of the tag

array. For instance, if the tag array is pipelined into two cycles, the tag lookup should start two

cycles earlier than the actual cache access for ETL to work. An additional next next PC (NNPC)

should be obtained together with PC and NPC. The method of acquiring NPC can be extended to

acquire NNPC. For simplicity, the rest of this chapter only considers instruction caches with single-

cycle access latency. Some hardware modifications are needed to support ETL, which is discussed

next.

5.2.3 Hardware Support for ETL

In the prediction mode, both PC and NPC access the tag array of the instruction cache, BTB, and

BP simultaneously. The number of banks in the tag array of the instruction cache is doubled to

support two simultaneous accesses. Each bank is independent and has its own address port. The

bank addresses are interleaved. The data array of the instruction cache is not modified. Since the tag
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array is much smaller than the data array, doubling the number of tag banks has only small impact

on the overall cache. The number of banks in BTB is doubled similarly to support simultaneous

accesses from both PC and NPC. Doubling the number of banks increases area but decreases access

time and energy. Since NPC is always predicted as the fall through of PC in the prediction mode,

there is no bank conflict.

The pattern history table (PHT) in BP is an array of two-bit counters implemented using SRAM.

To balance the word line and bit line lengths and delay, the PHT SRAM is organized in square

or near square shape, shown in Figure 5.4. Assume that the processor fetches eight instructions

per cycle and eight continuous counters are read out to predict eight branches in the worst case.

When a word line is activated, the entire row is accessed. Because each row contains many two-bit

counters, 16 in this example, the existing PHT is already able to provide enough bandwidth for both

PC and NPC accesses. Thus, the structure of PHT is not changed, and only its output data width is

doubled, which incurs small area overhead. The PHT has two banks to support fetching across line

boundaries.

Figure 5.4: PHT SRAM array.

ETL does not need any modifications to the translation lookaside buffer (TLB). Since NPC is

the fall through of PC in the prediction mode, their page addresses are the same and a single access

to TLB is enough. In the rare case when their page addresses differ, NPC prediction is paused for
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one cycle. When the processor is out of the prediction mode, only NPC accesses the TLB.

5.2.4 Working Flow of ETL

The working flow of ETL is shown in Figure 5.5, and a working example is given in Table 5.1. In

cycle 1, the program starts and the prediction mode is entered. PC is loaded with 0, and NPC is

predicted as the fall through of PC, which is 48. Because the matching way for PC is unknown, PC

accesses all data ways. There is a taken branch in the fetch block at address 0 and its target address

is 192. Thus, NPC is predicted wrong and the processor stays in the prediction mode.

Table 5.1: Working example of ETL. Assume six 64-bit instructions are fetched per cycle and
program starts at address 0.

cycle PC NPC prediction mode? prediction correct? cache access exception
1 0 48 yes no all ways no
2 192 240 yes yes all ways no
3 240 288 no null matching way no
4 288 48 no null matching way no
5 48 96 no null matching way yes
6 256 304 yes yes all ways no
7 304 128 no null matching way no
8 128 176 no null matching way no

In cycle 2, PC is loaded with the branch target address, 192, and NPC is predicted as the fall

through of PC, which is 240. PC accesses all data ways in the cache. There is no taken branch

in the current fetch block, thus NPC is predicted correct and the processor will exit the prediction

mode.

In cycle 3, PC is loaded with NPC and NPC is loaded with the next next PC acquired in cycle

2, which is 288. Since the matching way has been determined in cycle 2, PC only accesses the

matching data way. In cycle 4 and 5, the processor remains out of the prediction mode and works

similarly to cycle 3. Note there is a taken branch in the fetch block at address NPC in cycle 3. In

cycle 5, an exception happens and brings the program execution to address 256. Since the next

fetch address following address 256 is unknown, the processor will enter the prediction mode in the

next cycle.

In cycle 6, the prediction mode is entered. PC is loaded with the exception target address, 256,
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Start

Enter prediction mode

Load PC with nextPC;
Predict NPC as nextPC+48

Access all data ways in ICache with PC
and get instructions for PC;

Access ICache tag array with NPC and get way nextPC

Access BTB/BP with PC and get nextPC;
Access BTB/BP with NPC and get nextnextPC

nextPC=NPC ?

Exit prediction mode

Load PC with NPC;
Load way PC with way nextPC;

Load NPC with nextnextPC

Access matching data way in ICache with PC and way PC
and get instructions for PC;

Access ICache tag array with NPC and get way nextPC

Access BTB/BP with NPC and get nextnextPC

Are there exceptions?

unequal

equal

No

Yes

Figure 5.5: Working flow of ETL. Assume six 64-bit instructions are fetched each cycle.
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and NPC is predicted as the fall through of PC, 304. The other operations in this cycle are similar

to those in cycle 2. Cycles 7 and 8 are similar to cycles 3 and 4. There is a taken branch in the fetch

block at address 304 in cycle 6, and the target address is 128.

5.3 Experimental Platform

This work utilizes FabScalar [17] as the experimental platform (Section 1.3) to accurately evaluate

the area, delay, and power incurred by ETL. ETL is implemented on such an RTL superscalar core

generated by FabScalar. The new processor is synthesized and simulated to accurately quantify the

changes in area, delay, and power due to ETL. The parameters of the experimental processor are

shown in Table 5.2.

Table 5.2: Parameters of the experimental processor.

Fetch/decode/rename/
dispatch width

6

Issue/RR/execute/WB width 8
Function units (simple,
mult./div., branch, ld/st)

3,1,1,3

IQ, LSQ, ROB 128, 64, 256
Branch predictor bimodal, 64K-entry PHT
BTB 4K-entry BTB
L1 I-Cache 32KB, 64-byte block, 4-way, 1 cycle
L1 D-Cache 64KB, 64-byte block, 4-way, 1 cycle
Unified L2 2MB, 64-byte block, 8-way, 18 cycles

The performance and cache activities are evaluated by simulating SPEC CPU2000 benchmarks

on the experimental processor. A single simulation point is generated using SimPoint [67] for each

benchmark. Only integer benchmarks are studied because the FabScalar infrastructure does not

support floating point instructions. In each benchmark simulation, the total number of accesses to

the instruction cache are collected. The total dynamic energy of the instruction cache is estimated as

the product of the energy consumed by each access and the total number of accesses. The dynamic

energy of BTB and BP are estimated similarly.
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5.4 Results

5.4.1 Overhead of ETL

The hardware modifications required by ETL incur overhead. In the original experimental pro-

cessor, the instruction cache contains two banks to provide enough bandwidth for fetching six

instructions per cycle, and BTB contains eight banks to support six simultaneous read from the six

fetched instructions. ETL doubles the number of banks in the cache tag array from 2 to 4, and the

number of banks in BTB from 8 to 16. The overhead incurred to the instruction cache and BTB

are shown in Table 5.3. Doubling the banks in the cache tag array increases the tag area by 23.39%

but decreases the access time and read energy. Because the tag array is much smaller than the data

array, the impact on the overall instruction cache is tiny. Thus, ETL causes negligible overhead in

the instruction cache. BTB has an area overhead of 23.91%, but the access time and read energy

both decrease.

Table 5.3: Percent overhead incurred by ETL in instruction cache, BTB, and PHT.

Area Access time Read energy
Tag overhead 23.39% -9.07% -3.15%
ICache overhead 0.24% 0% -0.03%
BTB overhead 23.91% -15.14% -0.46%
PHT overhead 4.66% 0.14% 20.78%

Doubling the output data width of PHT incurs small area overhead and negligible access time

increase, shown in Figure 5.3. The read energy of PHT increases by 20.78%, however, this energy

increase only happens in the prediction mode when both PC and NPC access the PHT. When the

prediction mode ends, only NPC accesses PHT and the read energy is as normal.

ETL adds extra control logic in the fetch stage, the overhead of which is shown in Table 5.4.

The area of the extra fetch control logic is only a small fraction of the core area, there is no delay

overhead, and the power overhead is negligible.

Table 5.4: Percent overhead of the extra instruction fetch control logic incurred by ETL.

Area Delay Power
Overhead 1.95% 0% 0.43%

Overall, ETL incurs insignificant area overhead and does not affect the critical path delay of the
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processor. The small energy increase in PHT and the extra control logic will be completely offset

by the savings in the instruction cache.

5.4.2 Energy Savings of ETL

ETL effectively removes most of the non-matching data way accesses in the L1 instruction cache.

Figure 5.6 shows the percent of accesses that read all data ways and that read only the matching

way. On average, ETL removes 92% instruction cache accesses that read all data ways.

0%#
20%#
40%#
60%#
80%#
100%#

bzip# gap# gcc# gzip# mcf# parser# vortex# vpr#

access#all#ways# access#matching#way#

Figure 5.6: Percent of L1 instruction cache accesses that read all ways and that read only the
matching way using ETL.

In the prediction mode, both PC and NPC access the cache tag array, BTB, and BP, which

increases the accesses to these components compared with the conventional processor without ETL,

shown in Figure 5.7. The increase of the accesses is small for most of the benchmarks except for

gzip, in which it takes longer to encounter fall-through NPCs. The increased accesses to the tag

array, BTB, and BP consume extra energy, however, this amount of energy can be fully offset

by the energy savings in the cache data array. Note that outside the prediction mode, only NPC

accesses the tag array, BTB, and BP, while PC does not need to access them.

0%#
10%#
20%#
30%#
40%#

bzip# gap# gcc# gzip# mcf# parser# vortex# vpr#

Figure 5.7: Percent increase of accesses to the tag array, BTB, and BP when ETL is used.

Figure 5.8 shows the resulting energy savings using ETL. The majority of energy reduction

comes from the cache data array, since ETL removes most of the non-matching data way accesses.
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On average, the read energy of the data array is reduced by 69%. Doubling the banks of the cache

tag array contributes to energy reduction since the tag access energy is reduced, however, this

contribution may be offset by the simultaneous tag accesses from PC and NPC in the prediction

mode. Because the tag array is much smaller than the data array, its energy impact on the entire

instruction cache is negligible. On average, the read energy of the L1 instruction cache is reduced

by 68% after considering the tag energy. The simultaneous accesses to BTB and BP by both PC and

NPC in the prediction mode cause some energy overhead. After taking this energy overhead into

account, the average read energy reduction in instruction cache drops by only 1%. This is because

BTB and BP have much lower energy consumption than the instruction cache, and the increased

accesses to BTB and BP are only a few percent for most benchmarks.

0%#

20%#

40%#

60%#

80%#

bzip# gap# gcc# gzip# mcf# parser# vortex# vpr#

data#array# ICache# ICache#with#BTB/BP#overhead#

Figure 5.8: Percent read energy reduction in the cache data array, the L1 instruction cache, and the
L1 instruction cache with BTB/BP overhead considered.

5.4.3 Further Discussion

The effectiveness of ETL depends on two factors. One is the duration of the prediction mode, and

the other is how often the processor enters the prediction mode. ETL is more effective when the

duration of the prediction mode is short and the processor enters the prediction mode less often.

The duration of the prediction mode depends on the number of tries taken to predict NPC

correct. NPC prediction is correct when there are no taken branches in the current fetch block and

the next PC is fall through. Thus, the number of tries depends on the frequency of branches in the

program and the processor’s fetch width. ETL is more effective for programs with less branches

and for processors that fetch fewer instructions per cycle. Table 5.5 shows the average number

of tries before NPC is predicted correct in the prediction mode. Most of the benchmarks, except
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for gzip, have an average number of tries less than or equal to 5, which proves that NPC can be

predicted correct quickly. On average, gzip needs 20 tries before a fall-through NPC is encountered,

and this explains why it has less energy savings than the other benchmarks. The average number

of matching-way cache accesses after NPC is predicted correct until the next exception happens,

shown in Table 5.5, indicates that the energy-saving non-prediction mode is much longer than the

prediction mode for most benchmarks.

Table 5.5: Average No. of tries until NPC is predicted correct, and average No. of matching-way
cache accesses after NPC is predicted correct until the next exception happens.

bzip gap gcc gzip mcf parser vortex vpr
Avg. tries 2 3 4 20 1 5 2 4

Avg. accesses 196 29 465 24 277780 38 70 33

Upon exceptions that change program execution order, the processor enters the prediction mode.

Figure 5.9 shows the average number of exceptions for executing one million instructions in each

benchmark. The more exceptions there are, the less effective ETL is, which can be observed by

comparing Figure 5.8 with Figure 5.9. Techniques that reduce exceptions, such as larger BTB,

better branch predictors, and memory dependence prediction, can enhance the effectiveness of ETL.
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40000"

bzip" gap" gcc" gzip" mcf" parser" vortex" vpr"

Figure 5.9: Average number of exceptions (BTB misses, branch mispredictions, load violations,
etc.) during execution of one million instructions.

5.5 Comparison with Related Works

A couple of representative prior works are selected and compared with ETL, shown in Table 5.6.

The data comes directly from [58,64,77] and the experimental methodology for each work can also

be found there. The “all-way accesses removed” represents the percent of accesses to non-matching

data ways that are removed by applying those techniques to the L1 instruction cache. For HotSpot

cache [77], hitting the L0 cache is considered equal to removing accesses to non-matching data
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ways. Compared with way prediction [58] and HotSpot, ETL removes more non-matching data

way accesses, 92% versus 79% and 64%, respectively. The result of ETL will be even better if

the experimental processor fetches fewer than six instructions per cycle. While TLC [64] stores

way information in the extended TLB (eTLB) and theoretically removes all non-matching data way

accesses, it flushes all cache lines in a replaced page on eTLB misses, causing unnecessary cache

misses and thus performance loss. In addition, the eTLB increases the size of the TLB by more

than four times. In terms of performance, way prediction incurs up to 20% performance loss for

certain benchmarks and HotSpot incurs a worst-case 2-3% performance loss. The optimized TLC

incurs a worst-case 2% CPI loss and increases the access latency of a 32KB cache by at least 14%.

In comparison, ETL does not alter cache line replacement policies, increase cache access latency,

or incur any performance loss. The hardware modifications required by ETL are much simpler than

the other three techniques.

Table 5.6: Comparison with previous work.

All-way
accesses
removed

Performance loss Hardware overhead

Way prediction [58] 79% Up to 20% performance
loss, increase cache access
latency on wrong predic-
tions

Very large way prediction
tables

HotSpot [77] 64% Up to 3% performance loss,
increase cache access la-
tency on L0 misses

Additional L0 cache

TLC [64] 100% Up to 2% CPI loss, increase
32KB cache access latency
by at lease 14%

Increase TLB size by more
than 4 times

ETL 92% No performance loss, does
not increase cache access
latency

Simple low-cost extensions
to existing hardware
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Dynamic Insertion Throttling

6.1 Overview

The recent insertion policies that address cache thrashing and pollution [31,32,34,56,59,66,73,76]

all depend on inserting only a fraction of the cache blocks with high priority to improve perfor-

mance. The works addressing thrashing empirically determine the fraction (1/e) of the working

set kept in the cache for thrashing workloads (e is 32 or 64) [32, 59]. The works addressing pol-

lution attempt to predict the high-reuse blocks and always insert them with high priority [66, 76].

However, such a mechanism without the knowledge of the optimal fraction cannot fully address

thrashing and can cause cache under-utilization.

In this work, we argue that maximizing performance by addressing cache pollution and thrash-

ing depends on accurately determining the optimal fraction of the working set that should be kept in

the cache. We provide an understanding of how insertion policies help improve cache performance

and (with that understanding) develop an analytic model to determine the optimal workload fraction

that should be kept in the cache to maximize performance. Our model and analysis build upon the

reuse distribution of the cache blocks. The reuse distance (RD) of a block is measured as the num-

ber of unique accesses in a set between two consecutive accesses to that block. A reuse distance

distribution (RDD) demonstrates the total number of blocks with each RD. To this end, we show

that insertion policies improve cache hit rate by manipulating the RD of cache blocks. By inserting

blocks with low priority, insertion policies essentially make sure that these blocks get evicted at the

79
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next miss. Therefore, if we consider that these blocks do not contribute to the RD, the number of

unique accesses between two consecutive accesses decreases significantly when insertion policies

are applied. We refer to this new reduced RD as the effective reuse distance (ERD). The key insight

presented in this work is: a block will hit in the cache only when the ERD becomes less than the

associativity of the cache. Therefore, we demonstrate that in order to maximize the hit rate, the rate

that blocks are inserted with a high priority (1/e) must be controlled in a way that it maximizes the

fraction of blocks with ERD smaller than the cache associativity. Based on this insight, we present

an oracle reuse model (ORM) to determine this optimal fraction when the insertion policy has the

accurate knowledge about the RD of each block.

Unfortunately, in practical cases, it is hard to have precise information about the RD of each

block. In this work, we present two practical models to determine the optimal fraction to maximize

cache performance: (i) Equal Block Model (EBM): This model treats every block as equal. It is

targeted towards the first category of works (e.g., BIP, BRRIP) that have no information of block

RD and statically inserts every 32/64th block in the cache based on the empirically determined

parameter e. Our analytical model shows that by inserting a block with high priority after every e

misses, the ERD of high priority blocks essentially becomes reduced by e times. Given the RDD

of the workload, it is possible to obtain the optimal e that would reduce the ERD such that the hit

rate is maximized. (ii) Reuse Differentiating Model (RDM): This model is targeted towards the

second category of works (e.g., SHiP, EAF) that use a predictor to differentiate between low-reuse

and high-reuse blocks. Though these insertion policies increase the number of hits, RDM shows

that such policies can result in thrashing or cache under-utilization when the fraction of the blocks

inserted with high priority is not maintained properly.

Based on these practical models, we propose Dynamic Insertion Throttling (DIT) to insert the

optimal fraction of the cache blocks with high priority that maximizes hit rate. First, we propose

DIT-RD, which samples accesses to approximate the RDD and then uses that information to deter-

mine the optimal fraction based on our proposed models. Second, we propose DIT-SM, a simple

set sampling approach to determine the optimal fraction from a set of possible values when no in-

formation about RD is available. We want to emphasize that our mechanisms are independent of



Chapter 6. Dynamic Insertion Throttling 81

the insertion policy used in the cache and can improve any prior insertion policy.

6.2 Motivation

This section shows that (i) prior insertion policies that statistically insert 1/e of the missed blocks

with high priority (e.g., BIP, BRRIP) cannot fully address thrashing and (ii) prior insertion policies

that attempt to predict high-reuse blocks and always insert them with high priority can cause either

cache thrashing or under-utilization.
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Figure 6.1: Normalized IPC over LRU for selected workloads as e varies for BRRIP and SHiP inser-
tion policies. The values on the x-axis represent e. For SHiP, the 0/1 below the comma represents
applying BRRIP to the predicted low-reuse/high-reuse blocks, and the values above the comma
represent e.

Figure 6.1 shows the sensitivity of performance as e changes for one cache insensitive work-

load (bwaves), one LRU-friendly workload (bzip2), and four cache thrashing/polluting workloads

(cactusADM, gcc, hmmer, and mcf) under BRRIP and SHiP insertion policies. For BRRIP,

the performance of the cache-insensitive application bwaves almost does not depend on e. LRU-

friendly workload bzip2 performs the best when all the blocks are inserted with high priority.

The performance of the other thrashing/polluting workloads highly depends on what fraction of the

blocks are protected in the cache. In some cases, it is possible to get 1.2X improvement by choosing

the optimal e, which varies depending on the workload.

The prediction mechanism used by SHiP is not ideal and can mispredict. If SHiP predicts too
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many high-reuse blocks, always inserting them with high priority causes thrashing. To reduce this

thrashing, only 1/e of the predicted high-reuse blocks are inserted with high priority (apply BRRIP

to predicted high-reuse blocks). Figure 6.1b shows that SHiP causes thrashing for cactusADM,

hmmer, and mcf, because their performance benefit from keeping only a fraction of the predicted

high-reuse blocks in the cache. This fraction varies depending on the application. On the other

hand, if SHiP predicts too few high-reuse blocks, only inserting these blocks with high priority

causes cache under-utilization. To address this problem, 1/e of the predicted low-reuse blocks

are inserted with high priority as well (apply BRRIP to predicted low-reuse blocks) in addition to

inserting all the predicted high-reuse blocks with high priority. An example of such is gcc whose

performance significantly improves when a fraction of the low-reuse blocks predicted by SHiP are

also inserted with high priority.

We conclude that maximizing performance for cache polluting/thrashing workloads depends on

dynamically detecting the optimal fraction of the working set that should be kept in the cache.

Goal. We have two goals in this work. First, we want to understand how insertion policies help

improve performance and provide an analytical model to determine the optimal fraction. Second,

we want a simple and efficient mechanism to detect this optimal fraction dynamically for each

workload at runtime.

6.3 The Analytic Models

In this section, (i) we describe the definitions used in our analytical models, (ii) formalize the impact

of insertion policies on cache hits, and (iii) describe the models that demonstrate the factors that

determine the optimal fraction of the working set that should be kept in the cache.

6.3.1 Definitions

Cache Access Pattern. For a cache with size C and associativity A, the reference stream to a certain

set S is represented as

[l1][l2] · · · [lk] · · · [lN ] · · · [lN ] · · · [l1] · · · [l2] · · · [lk],
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where lk,1 6 k 6 N represents one of the N unique blocks mapped to set S. [lk] represents one or

more consecutive references to the block lk, and · · · represents zero or more references to any block

in that set.

Reuse Distance (RD). The reuse distance d of a block lk, mapped to the set S, is defined as the

number of unique block accesses to set S between two consecutive accesses to lk.

· · · lk [l1][l2] · · · [ld ]| {z }
reuse distance d

lk · · ·
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Figure 6.2: RDD of selected SPEC CPU2006 benchmarks. The percentages in brackets indicate
the percent of blocks displayed in the diagram. The y-axis represents the number of references with
the same RD.

Effect of RD on Workloads. The RD determines if a block will hit or miss the cache with the

LRU replacement policy. A block with an RD, d <A guarantees that the next reference to that block

will hit the cache, as the number of unique blocks inserted in the cache between the consecutive

accesses will not be able to evict the block. Similarly, an RD, d > A guarantees that before the next

reference to that block, it will get evicted from the cache and result in a cache miss. Figure 6.2

presents the reuse distance distribution (RDD) (i.e., the number of blocks with different RD) for

some selected SPEC CPU2006 benchmarks (where the cache associativity is16). This figure shows

that RDD varies significantly across the benchmarks. Based on RDD, cache references can be

divided into three categories:
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(i) LRU-friendly. If a large fraction of the blocks exhibits RD less than the associativity, the

RDD curve will be skewed towards d < A. Most of the blocks will hit the cache in this case,

making the workload LRU-friendly. Figure 6.2 shows that bzip2 is an LRU-friendly workload.

(ii) Thrashing. If a workload has a large fraction of blocks with RD greater than the associa-

tivity, all these blocks will evict each other thrashing the cache without providing any cache hit.

Figure 6.2 shows that cactusADM and sphinx3 are thrashing workloads. A streaming workload

has an RD, d = • providing no cache hit.

(iii) Mixed. There are some workloads which have both types of accesses. For example, hmmer

and mcf have some LRU-friendly references, but also a large fraction of thrashing references.

6.3.2 Insertion Policies and Reuse Distance

Recent insertion policies [31,32,59] address cache thrashing by inserting only 1/e of missed blocks

with high priority. The vast majority of the blocks inserted with low priority are evicted out of the

cache very quickly (at the next miss). For simplicity, if we assume that these blocks occupy no

cache space, only the blocks inserted with high priority will affect RD. Thus, a new RD, called

the effective reuse distance (ERD) can be defined. For a block lk mapped to set S, its ERD, d0

is defined as the number of unique block accesses to set S between two consecutive accesses to lk,

that are inserted with high priority. As a result, insertion policies essentially reduce the RD of the

blocks and if the ERD becomes less than the cache associativity, the block will be retained long

enough in the cache to receive a hit.

Consider the following access pattern to a certain cache set S:

· · · lk [l1][l2] · · · [ld ]| {z }
d > A

lk · · · ,

where the RD of block lk is larger than the cache associativity A. The second reference to lk will

miss under the LRU replacement policy. However, if only every eth block is actually kept in the set

S and we make the assumption that the possibility of referencing any block li (1 6 i 6 d) is equally

likely at any time, the blocks inserted in the cache becomes:
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· · · lk [l1][le+1][l2e+1] · · · [lb d
e ce+1]| {z }

d0 = b d
e c+1 = d d

e e

lk · · · (d mod e 6= 0) or

· · · lk [l1][le+1][l2e+1] · · · [l(b d
e c�1)e+1]| {z }

d0 = b d
e c= d d

e e

lk · · ·(d mod e = 0).

The ERD, d0 of block lk then becomes approximately dd
e e. Since only blocks inserted with a high

priority affect the replacement of block lk, the second reference to lk will hit as long as

d0 = dd
e
e< A ) e > d

A
(6.1)

Therefore, we provide a key insight that the ERD, d0 determines whether the second reference to a

thrashing block will hit or miss the cache when insertion policies (e.g., BIP, BRRIP) are applied to

the cache. As a result, it is possible to control the insertion rate of the high priority blocks (1/e)

such that the ERD maximizes the number of cache hits. Based on this insight, we propose analytical

models to determine the optimal fraction of the working set based on RDD. First, we provide an

oracle model that has information about the RD of each block (Section 6.3.3). Then, we propose

two practical models applicable to the current insertion policies that do not have any knowledge

about the RD of blocks (Section 6.3.4 and 6.3.5).

6.3.3 Oracle Reuse Model (ORM)

To reveal the relationship between the optimal fraction and its determinant factors, the ORM as-

sumes that the RD of all cache references are known by oracle. With this oracle information,

missed blocks with small RD should be given higher priority than missed blocks with large RD. To

meet this priority condition, the following ideal insertion policy can be applied when a cache miss

happens: the missed block is inserted with high priority only if its RD is smaller than or equal to a

threshold RD, dth, otherwise the missed block is inserted with low priority. Next we discuss how to

determine this optimal threshold RD so that the hit rate can be maximized.

The impact of dth on hit rate is illustrated by Figure 6.3. This figure demonstrates two param-

eters: (i) the RDD of the blocks mapped to a certain cache set S, which is represented by function

f (d) in Figure 6.3a, and (ii) the cumulative distribution of the RD of the blocks mapped to set S,
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Figure 6.3: ORM under the case of dth < dopt . The RDD f (d) represents the number of references
that have an RD of d. The cumulative distribution F(d) represents the percent of references that
have an RD smaller than or equal to d.
which is represented by the function F(d) in Figure 6.3b. This cumulative distribution represents

the percent of references that have an RD smaller than or equal to d, and is defined as follows:

F(d) =

d
Â

x=0
f (x)

•
Â

x=0
f (x)

(6.2)

Note that only a single set, rather than all the sets in the cache is considered here, which makes

the analysis easier to understand. In addition to that, the RDD shown in Figure 6.3 is only for

illustrative purpose. Our models do not depend on the actual RDD shape and are applicable for any

RDD.

For a block lk with an RD of d

· · · lk [l1][l2] · · · [ld ]| {z }
d

lk · · · ,

its ERD, d0 becomes dF(dth) after the ideal insertion policy is applied. The access stream becomes

· · · lk [li1][li2] · · · [lidF(dth)]| {z }
d0 = dF(dth)

lk · · · ,

where li1, li2, · · · , lidF(dth) are the blocks inserted with high priority and they are a subset of blocks

l1, l2, · · · , ld . To understand this, recall that F(dth) represents the percent of blocks with RD smaller

than or equal to dth. Thus, for d unique blocks, approximately dF(dth) blocks will be inserted with a

high priority using the ideal insertion policy, under the assumption that the possibility of referencing
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any block in the working set is equally likely at any time. This assumption may not stand when

the working set is large and consists of different program phases. However, if the working set is

divided into individual phases and the ORM is applied to each single phase, this assumption will be

mostly true.
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Figure 6.4: ORM under the case of dth = dopt .

When the ERD is smaller than the cache associativity such that:

d0 = dF(dth)< A ) d <
A

F(dth)
, (6.3)

the next reference to block lk will hit, which means that any block with RD smaller than A
F(dth)

will

receive a hit on the next reference. The hit rate is maximized for set S when

dth =
A

F(dth)
(6.4)

In order to determine why this condition maximizes hits, let’s consider three cases: (i) dth <
A

F(dth)
,

(ii) dth =
A

F(dth)
, and (iii) dth >

A
F(dth)

, respectively shown in Figure 6.3, 6.4, and 6.5.

When dth <
A

F(dth)
, shown in Figure 6.3, all the blocks inserted with a high priority will receive

hit on the next references. The total number of hits in this case is given by

S =
dth

Â
d=0

f (d) (6.5)

shown by the shaded area under the f (d) curve in Figure 6.3a. However, any block with RD larger
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than dth and smaller than A
F(dth)

can receive hit too if inserted with high priority. This means that the

total number of hits can still be increased if dth is increased.

When dth =
A

F(dth)
, shown in Figure 6.4, the total number of hits, represented by the shaded area,

is maximized. This is because if dth >
A

F(dth)
, as shown in Figure 6.5, any block with reuse distance

larger than A
F(dth)

will be evicted out of the cache before the next reference, reducing the shaded area

and thus the total number of hits. In other words, in this case too many high-reuse blocks are kept

in the cache and they start to cause thrashing.
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Figure 6.5: ORM under the case of dth > dopt .

The optimal threshold RD, dopt is given by

dopt =
A

F(dopt)
(6.6)

The maximum number of hits to set S is given by

Smax =
dopt

Â
d=0

f (d) (6.7)

represented by the shaded area in Figure 6.4a.

ORM assumes that the RD of all cache blocks are known by oracle. Unfortunately, this is im-

possible in practice. Therefore, next we provide two practical models applicable to recent insertion

policies that address cache thrashing.
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6.3.4 Equal Block Model (EBM)

EBM targets insertion policies that statistically keep a fraction of the working set in the cache and

do not differentiate the reuse behavior of missed blocks, such as the bimodal insertion policies, BIP

and BRRIP, which insert one out of every e missed blocks with high priority and the other e� 1

blocks with low priority. EBM aims to answer the following question: what should e be in order to

maximize hit rate using the bimodal insertion policy?

Consider a workload with RDD f (d) for a cache set S, shown in Figure 6.6a. Using the tra-

ditional LRU replacement policy, all missed blocks are inserted with high priority at the MRU

position. Only blocks with RD smaller than the cache associativity will receive hit, thus the total

number of hits for LRU replacement policy is given by

S =
A�1

Â
d=0

f (d) (6.8)

represented by the shaded area shown in Figure 6.6a.
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Figure 6.6: EBM.

Inserting all missed blocks at the MRU position may maximize the number of hits for LRU-

friendly workloads, however, this is rarely true for thrashing workloads, whose hit rate can be

increased by using the bimodal insertion policies. To see why, the RDD of the blocks inserted with

high priority are plotted, shown by the orange curve in Figure 6.6b. Since the blocks inserted with

high priority are statistically selected, their RDD function is approximately f (d)
e . As discussed in

Section 6.3.2, for a block lk with RD d
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· · · lk [l1][l2] · · · [ld ]| {z }
d

lk · · · ,

its ERD becomes d0 = dd
e e after applying the bimodal insertion policies. As long as d0 is smaller

than the cache associativity A

d0 = dd
e
e< A ) d < eA (6.9)

the next reference to block lk will hit. In other words, for any block on the orange curve shown in

Figure 6.6b that has an RD smaller than eA, the next reference to the block will hit. Thus, the total

number of hits when applying the bimodal insertion policies is represented by the shaded orange

area in Figure 6.6b, given as follows:

S(e) =
eA�1

Â
d=0

f (d)
e

=
1
e

eA�1

Â
d=0

f (d) (6.10)

If this shaded orange area is larger than the shaded blue area in Figure 6.6a, the bimodal insertion

policies can increase the total number of hits and reduce thrashing. The number of hits S(e) is a

discrete function of e and it is maximized when its derivative equals to zero

S0(e) = S(e+1)�S(e)
e+1� e

= 0 ) S(e+1)�S(e) = 0 (6.11)

which gives the optimal e that maximizes hit rate.

6.3.5 Reuse Differentiating Model (RDM)

RDM targets insertion policies that exploit some prediction mechanisms to differentiate high-reuse

blocks from low-reuse blocks, such as SHiP and EAF. These insertion policies insert the predicted

high-reuse blocks with high priority and the predicted low-reuse blocks with low priority. However,

as discussed in Section 6.2 they cannot fully address thrashing. The reason is that their prediction

mechanisms are not ideal and can mispredict. Thus, the predicted high-reuse blocks are actually

a mixture of both high-reuse and low-reuse blocks. Figure 6.7a shows the RDD of the predicted

high-reuse blocks, the orange curve f 0(d), as well as the original RDD of all blocks, the blue curve
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f (d). The orange curve covers both short and long reuse distances, but has a higher portion of

high-reuse blocks than the blue curve.
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Figure 6.7: RDM.

Assume block lk is a predicted high-reuse block and has an RD of d

· · · lk [l1][l2] · · · [ld ]| {z }
d

lk · · · .

Further assume that the fraction of predicted high-reuse blocks is r. With the reuse prediction

mechanisms, the access pattern of the blocks inserted with high priority is as follows:

· · · lk [li1][li2] · · · [lidr]| {z }
d0 = dr

lk · · · ,

where li1, li2, · · · , lidr are the predicted high-reuse blocks, a subset of blocks l1, l2, · · · , ld . The ERD

becomes d0 = dr if the possibility of referencing any block in the working set is equally likely at

any time. As long as

d0 = dr < A ) d <
A
r

(6.12)

the next reference to block lk will hit. Thus, the total number of hits for the traditional insertion

policies that exploit reuse prediction mechanisms is represented by the orange shaded area in Figure

6.7a, given by

S =

A
r

Â
d=0

f 0(d) (6.13)

If the orange curve has a thrashing RDD, which is the case for cactusADM, hmmer, mcf, and

sphinx3 shown in Figure 6.2, inserting all predicted high-reuse blocks with high priority can still
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cause thrashing. To address this problem, the bimodal insertion policies, BIP and BRRIP, can be

applied to the blocks on the orange curve and keep only a fraction of the predicted high-reuse blocks

in the cache. According to EBM, the total number of hits would become

S(e) =
A
re

Â
d=0

f 0(d)
e

=
1
e

A
re

Â
d=0

f 0(d) (6.14)

represented by the purple area in Figure 6.7b. If this shaded purple area is larger than the shaded

orange area in Figure 6.7a, thrashing is reduced. The optimal e that maximizes the total number of

hits is given by

S0(e) = S(e+1)�S(e)
e+1� e

= 0 ) S(e+1)�S(e) = 0 (6.15)

6.3.6 Protecting High-Reuse Blocks

For mixed workloads with both high-reuse and low-reuse blocks, cache pollution can happen when

low-reuse blocks evict high-reuse blocks out of the cache, hurting performance. As discussed in

EBM, for a block lk with an RD of d, to make sure that the second reference to block lk hits, the

ERD of lk after applying the bimodal insertion policies should satisfy Equation (6.9).

This means that up to A�1 blocks are allowed to be inserted with high priority between the two

adjacent accesses to lk. If these A�1 blocks are largely low-reuse, they could evict the high-reuse

blocks already present in the cache set, causing misses when these high-reuse blocks are referenced

again. To prevent the high-reuse blocks from being evicted, the number of blocks inserted with high

priority should be reduced. This can be realized by allocating fewer ways in the set for low-reuse

blocks. In EBM, all A ways are allocated to low-reuse blocks. To protect high-reuse blocks, the

modified EBM allocates fewer ways, represented by A0 (A0 6 A), to low-reuse blocks. A0 is called

the reserved associativity. With this modification, to make sure the second reference to lk hits, the

ERD, d0 should satisfy

d0 = dd
e
e< A0 ) e > d

A0 (6.16)

meaning that e needs to be larger in order to protect high-reuse blocks.
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6.3.7 Sensitivity to Cache Size and Associativity

The analytic models show that the optimal fraction is related to cache size and associativity. In

this section, the sensitivity of the optimal fraction to cache size and associativity is discussed using

EBM. Suppose that the cache size is increased by a times to aC, where a is a positive integer. The

number of sets will increase by a times. For a given workload, the number of blocks mapped to

a given set S will decrease by approximately a times. Since RD is measured using the number of

unique blocks mapped to the same set, the RD will decrease by approximately a times. In addition,

the number of references with the same RD will also decrease by approximately a times. Thus, the

RDD for a given set S becomes approximately
f (ad)

a
, which is lower and left-pushed compared

with the original f (d). The total number of hits becomes

S(e) =
eA�1

Â
d=0

f (ad)
ae

(6.17)

which is also lower and left-pushed compared with the original S(e). Thus, the optimal e that

maximizes the number of hits decreases as cache size is increased, meaning that more blocks will

be inserted with high priority. The above analysis also applies when the cache size is decreased, in

which case a is a positive real number smaller than 1 and e increases as cache size decreases.

To see how cache associativity affects the optimal e, suppose that the cache size is fixed and the

associativity is increased by b times to bA, where b is a positive integer. The number of sets will

decrease by b times, thus the number of blocks mapped to a given set S will increase by b times.

The RD will increase by approximately b times. In addition, the number of references with the

same RD will also increase by approximately b times. Thus, the RDD for a given set S becomes

b f (
d
b
). The total number of hits becomes

S(e) =
ebA�1

Â
d=0

b f (d
b)

e
= b

eA�1

Â
d=0

f (d)
e

(6.18)

which has similar form as the original S(e). Although the new RDD, b f (
d
b
) is taller and right-

pushed compared with the original f (d), this effect on e is offset by the increase of the associativity.
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Thus, the number of hits, as well as the optimal e, is insensitive to changes of cache associativity.

The analysis also applies when the associativity decreases.

6.4 Dynamic Insertion Throttling

The analytical models have demonstrated that the optimal fraction of the working set that should be

kept in the cache depends on the RDD of the workloads. Since different workloads have different

RDDs, this optimal fraction varies as workload behavior changes and should be carefully con-

trolled. This work proposes dynamic insertion throttling (DIT) to determine the optimal fraction

at runtime. Two approaches are proposed to implement DIT. The first approach, DIT-RD, samples

cache accesses to approximate the RDD and then uses that information to determine the optimal

fraction based on the proposed analytical models. The second approach, DIT-SM, uses a simple set

sampling based approach to determine the optimal fraction from a set of possible values when no

RDD information is available.

6.4.1 DIT-RD

DIT-RD uses the RD sampling technique described in [22] to obtain an approximation of RDD at

runtime. The technique samples a fraction of the total cache sets and uses their RDD to approximate

the RDD of the application. The sampling sets can be randomly selected. It has been shown

that sampling only 1/64 of the total sets is sufficient to capture the behavior of an application

[22, 32, 39, 59]. To get the RD of cache references, a FIFO is attached to each of the sampling sets.

The addresses of all the cache references to each sampling set are inserted to its attached FIFO.

Each new access to a sampling set compares its address with the set’s FIFO entries to determine

its RD. Since the RD in this work only measures unique references, a valid bit is added to each

FIFO entry to invalidate previously inserted duplicate addresses. An RD counter array is then used

to store the sampled RDs and obtain the RDD. The ith counter in the array stores the number of

references with an RD of i. Prior work [22] has shown that an array of 256 16-bit RD counters

is sufficient to get an accurate RDD sample for most applications and the hardware overhead is
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manageable. If any of the 256 RD counters saturates, the entire RD counter array is cleared and

RDD sampling is restarted. Clearing the RD counter array makes it possible to capture the reuse

behavior changes in the workload and get up-to-date RDD.

With the RDD information available at runtime, DIT-RD applies the analytical models to obtain

the optimal fraction. When applying EBM, Equation (6.10) is applied to the sampled RDD to find

the e that maximizes the total number of hits. When applying RDM, two RD counter arrays are

used to store the RDDs of both the predicted high-reuse blocks and the predicted low-reuse blocks.

Equation (6.14) is applied to the RDD of the high-reuse blocks to determine the optimal e. The

fraction of the predicted high-reuse blocks, r, in Equation (6.14) can be easily obtained by two

counters. If the sampled RDD indicates that the workload is LRU-friendly and r is low, it is likely

that the insertion policies predict too few high-reuse blocks and the cache is under-utilized. In this

case, Equation (6.14) is applied to the RDD of the low-reuse blocks to determine what fraction of

the low-reuse blocks should also be inserted with high priority in order to remove cache under-

utilization.

When deriving the optimal e using Equation (6.10) and Equation (6.14), Equation (6.16) is

also applied to adjust the e to protect high-reuse blocks. The reserved associativity A0 in Equation

(6.16) is determined by subtracting the number of high-reuse blocks from the cache associativity

A. A block is regarded as high-reuse if it is reused after insertion. A0 typically ranges from 1 to 8

when the cache associativity is 16. In fact, our evaluations show that always fixing A0 at 1 actually

performs better.

Although the analytical models are based on the RDD of a single set, getting an RDD for each

cache set will incur exorbitant hardware overhead. DIT-RD uses a single RDD for all the cache sets

and obtains a single optimal fraction for the entire cache. The evaluations show that this still gives

satisfying results.

When applied to multi-core processors, each processor maintains its own RDD sampler and

applies the analytical models independently, similar to [31].

The drawback of DIT-RD is that the RD sampler and the control logic incur hardware overhead,

which is evaluated in detail in [22]. Section 6.4.2 proposes DIT-SM, a low-cost approach to find
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the optimal e.
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Figure 6.8: DIT-SM using set sampling.

6.4.2 DIT-SM

DIT-SM requires negligible additional hardware. Instead of applying the analytical models, DIT-

SM dynamically samples a predefined set of possible fractions and selects the best performing one

as the optimal fraction. It uses an idea similar to set dueling [59]. The total cache sets are divided

into sampling sets and follower sets. In set dueling, half of the sampling sets are dedicated to the

LRU policy (e = 1) and the other half are dedicated to the BIP policy (e = 32 or 64). Different from

set dueling, the e for the sampling sets are not fixed and can dynamically change in DIT-SM. Half

of the sampling sets use a big e, and the other half use a small e, shown in Figure 6.8. The follower

sets use the e from the half of the sampling sets that perform better.

The performance of the two types of the sampling sets are evaluated periodically using the

policy selector (PSEL) counter. Upon hit to the sampling sets using the big e, the PSEL counter

is incremented by 1, and upon hit to the sampling sets using the small e, the PSEL counter is

decremented by 1. A miss counter counts the number of misses to both sampling sets. When the

counter reaches a preset threshold, the evaluation is triggered. The preset threshold should guarantee

that enough misses occur to the sampling sets so that the performance difference between the big
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Table 6.1: Possible e values used by DIT-SM.

possible values
e 1, 2, 4, 8, 16, 32, 64, 128, 256

and small e parameters is noticeable. Evaluations show that a miss counter threshold of 65536 gives

satisfying results.

When the evaluation is triggered, the PSEL counter is compared with its initial value PSELinit .

If PSEL > PSELinit , the big e performs better. The e of the follower sets is set to the big e, and

both the big e and the small e are incremented. Otherwise, the small e performs better. The e of

the follower sets is set to the small e, and both the big e and the small e are decremented. After

every evaluation, PSEL is reset to PSELinit . The set of predefined possible e is shown in Table

6.1. The rule of selecting the possible e is that they should cover the optimal e of a wide range

of applications and the performance difference between two adjacent values should be noticeable.

When e is incremented or decremented, e is set to the next adjacent larger or smaller value.

The insertion policies that use reuse prediction mechanisms, e.g., SHiP and EAF, can predict

either too many or too few blocks as high priority. When too many blocks are inserted with high

priority, thrashing can still happen. In this case, DIT-SM keeps a fraction of the predicted high-

reuse blocks in the cache and inserts all predicted low-reuse blocks with low priority. When too

few blocks are inserted with high priority, the cache suffers from under-utilization. In this case,

DIT-SM inserts a fraction of the predicted low-reuse blocks with high priority as well in addition to

inserting all predicted high-reuse blocks with high priority.

The additional hardware needed by DIT-SM are only a few counters and some simple control

logic, which are negligible. In multi-core processors, each processor maintains its own sampling

sets and optimal e [31].

6.5 Experimental Methodology

DIT is evaluated using the simulation framework, CMP$im [30], released by the First JILP Work-

shop on Computer Architecture Competitions [2]. The CMP$im simulation framework models a

4-way out-of-order processor with a 128-entry reorder buffer and a three-level cache hierarchy,
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Table 6.2: Configuration of the experimental processor.

L1 I-Cache 32KB, 4-way, Private, 1 cycle
L1 D-Cache 32KB, 8-way, Private, 1 cycle

L2 Cache 256KB, 8-way, Private, 10 cycles
LLC 1MB per-core, 16-way, Shared, 30 cycles

MSHR 32 outstanding misses
Main Memory 32 outstanding requests, 200 cycles

Table 6.3: Categories of the selected SPEC CPU2006 benchmarks used for evaluation.

LRU-friendly astar bzip2 gromacs wrf zeusmp dealII
Thrashing cactusADM gcc h264ref

hmmer libquantum mcf sphinx3
Insensitive bwaves milc lbm

shown in Table 6.2. The three-level cache hierarchy is based on an Intel Core i7 system. The L1

and L2 caches use the LRU replacement policy. The LLC is evaluated using BRRIP, SHiP, and EAF

with DIT-RD and DIT-SM applied.

The evaluations use sequential and multi-programmed workloads, constructed from 16 appli-

cations from the SPEC CPU2006 benchmarks. All the SPEC CPU2006 benchmarks are grouped

into three categories - LRU-friendly, thrashing, and insensitive using a single-core processor with

1MB LLC. Thrashing applications are those whose performance increases if only a fraction of the

working set is kept in the cache. LRU-fiendly applications are those whose performance degrades if

only a fraction of the working set is kept in the cache. Insensitive applications are those whose per-

formance almost does not change when the fraction of the working set kept in the cache is varied.

All the thrashing applications, six LRU-friendly applications, and three insensitive applications are

selected, shown in Table 6.3.

A shared LLC with four cores is evaluated using 100 multi-programmed workloads constructed

from these 16 applications. The 100 multi-programmed workloads are grouped into four categories:

homogeneous, LRU-friendly, thrashing, and mix. Homogeneous workloads consist of four identical

applications. Thrashing/LRU-friendly workloads consist of only thrashing/LRU-friendly applica-

tions. Mix workloads consist of a mixture of thrashing, LRU-friendly, and insensitive applications.

Traces are collected using PinPoints [53]. SimPoint [67] is used to select one simulation point for

each application. Each application is run for 2 billion instructions. The first 1 billion instructions
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are used to warm up the cache, and statistics are collected for the second 1 billion instructions. For

multi-programmed workloads, if the end of the trace is reached, the simulator rewinds the trace

until the slowest thread finishes execution.

6.6 Results

6.6.1 Single-Core Results

Figure 6.9 shows the single-threaded performance, instructions per cycle (IPC), when applying

DIT-RD and DIT-SM to BRRIP, SHiP, and EAF. cactusADM, hmmer, mcf, and sphinx3 have signif-

icant thrashing. On average, DIT-RD/DIT-SM improves the performance of thrashing applications

by 3%/3%, 6%/6%, and 7%/7%, respectively, over DRRIP, SHiP, and DEAF. For gcc and zeusmp,

SHiP inserts too few blocks with high priority and causes cache under-utilization. DIT-RD/DIT-SM

is able to compensate that by keeping a fraction of the predicted low-reuse blocks in the cache as

well and improves performance over SHiP by 18%/15% and 14%/14%, respectively, for gcc and

zeusmp. For the majority of the other LRU-friendly and insensitive applications, DIT-RD/DIT-SM

does not hurt performance and can improve performance for some of them. When all applications

are considered, DIT-RD/DIT-SM improves performance by 1%/1%, 3%/2%, and 2%/2%, respec-

tively, over DRRIP, SHiP, and DEAF on average.

6.6.2 Multi-Core Results

Figure 6.10 shows the average multi-programmed performance, throughput, when applying DIT-

RD and DIT-SM to BRRIP, SHiP, and EAF. DIT is most effective for thrashing workloads and

mix workloads that consist of LRU-friendly, thrashing, and insensitive applications. On average,

DIT-RD/DIT-SM improves the throughput of thrashing workloads by 6%/7%, 4%/7%, and 5%/6%,

respectively, and the throughput of mix workloads by 2%/1%/, 5%/3%, and 5%/5%, respectively,

over DRRIP, SHiP, and DEAF. For mix workloads, DIT is able to significantly reduce the cache

occupancy of insensitive applications that do not benefit from larger cache space, leaving more

space for LRU-friendly and thrashing applications whose performance benefits from larger cache.
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Figure 6.10: Average throughput normalized to LRU for 100 multi-programmed workloads,
grouped by categories.
On average, DIT does not hurt the performance of LRU-friendly workloads and can improve the

performance of homogeneous workloads. When all the multi-programmed workloads are consid-

ered together, DIT-RD/DIT-SM improves throughput by 3%/2%, 4%/3%, and 3%/4%, respectively,

over DRRIP, SHiP, and DEAF on average. The performance improvements over DRRIP, SHiP, and

DEAF for all the 100 workloads are shown in Figure 6.11. DIT is able to improve performance for

roughly 75% of the 100 workloads. For the majority of the rest 25% of the workloads, performance

degradation is less than 5%.

Besides throughput, weighted speedup (WS) [31, 69] and harmonic mean fairness (HMF) [31,

48] are also evaluated for multi-programmed workloads. Table 6.4 shows the improvements of WS

and HMF by DIT. We conclude that DIT improves both performance and fairness compared to

DRRIP, SHiP, and DEAF.

6.6.3 Validating the Analytical Models

EBM and RDM are validated by comparing the e they obtain dynamically with the e obtained

by static profiling. BRRIP and EAF are selected to validate EBM and RDM, respectively. The

dynamic e for the models are obtained by running DIT-RD-BRRIP and DIT-RD-EAF. The static

profiling simulates BRRIP and EAF multiple times with different e parameters in Table 6.1. In

each simulation, a single e is used throughout the entire run. The e that maximizes performance is
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Figure 6.11: Normalized throughput of DIT-RD and DIT-SM for 100 multi-programmed work-
loads.
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Table 6.4: Average percentage improvements (DIT-RD/SM-BRRIP over DRRIP, DIT-RD/SM-
SHiP over SHiP, and DIT-RD/SM-EAF over DEAF) of WS and HMF by DIT for thrashing work-
loads and all the 100 multi-programmed workloads.

WS HMF
Policies Thrash All Thrash All
DIT-RD-BRRIP 5% 2% 4% 2%
DIT-SM-BRRIP 4% 2% 4% 2%
DIT-RD-SHiP 5% 4% 3% 2%
DIT-SM-SHiP 6% 3% 4% 3%
DIT-RD-EAF 3% 3% 2% 3%
DIT-SM-EAF 3% 3% 3% 3%

selected as an approximation of the optimal e.
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Figure 6.12: Comparison of the best e obtained by static profiling and by the analytical models.
EBM is applied to the BRRIP insertion policy and RDM is applied to the EAF insertion policy.

Figure 6.12 shows the comparison of the dynamic e obtained via the models and the static

e obtained via profiling for five selected thrashing workloads. EAF does not cause cache under-

utilization for these workloads. The dynamic e obtained by the models changes with time as pro-

gram executes. e is initialized to 1 at the beginning of program execution. The results show that

DIT is able to adapt to program behavior changes by changing e, such as hmmer, libquantum, and

mcf, whereas, BRRIP and EAF always use a fixed e. Generally, the dynamic e obtained via the

models matches the e obtained via static profiling. Some big gaps between the models and static
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Table 6.5: The optimal e obtained via static profiling using BRRIP for different LLC sizes with
cache associativity fixed at 16.

Optimal e
Benchmarks 0.5MB 1MB 2MB 4MB
astar 8 2 1 1
cactusADM 256 256 256 4
gcc 16 4 4 8
gromacs 2 1 1 1
h264ref 32 8 1 1
hmmer 32 16 4 128
mcf 64 64 32 16
sphinx3 128 128 32 2

profiling are due to static profiling’s inability to adapt to program behavior changes.

6.6.4 Sensitivity to Cache Size

To study the sensitivity of the optimal fraction to cache size, the LLC size is varied from 512KB/core

to 4MB/core with the associativity fixed at 16. The optimal fractions for these LLC sizes are

determined by simulating the BRRIP insertion policy with all the e values shown in Table 6.1.

The optimal fraction is given by the e that performs best. The study was done for single-threaded

applications only.

Table 6.5 shows the optimal e for a number of selected applications under different LLC sizes.

As predicted by the EBM model, larger cache suffers less from thrashing and prefers a larger frac-

tion of the working set to be kept in the cache, which is validated by the simulation results. Gener-

ally, as the LLC size increases, many thrashing workloads become less thrashing or LRU-friendly

and the optimal e decreases, meaning that more blocks are kept in the cache.

Figure 6.13 shows the performance of DIT under different LLC sizes. DIT improves perfor-

mance over prior insertion policies for all four LLC sizes. DIT is more effective for smaller caches

that suffer more from thrashing. As the LLC size increases to 4MB/core, thrashing is significantly

reduced and the improvements by DIT also become smaller.
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Figure 6.13: Average performance over LRU under different LLC sizes.
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Table 6.6: The optimal e obtained via static profiling using BRRIP for different LLC associativities
with LLC size fixed at 1MB/core.

Optimal e
Benchmarks 8-way 16-way 32-way
astar 2 2 2
cactusADM 256 256 192
gcc 4 4 4
h264ref 8 8 8
hmmer 16 16 16
mcf 64 64 64
sphinx3 128 128 128

6.6.5 Sensitivity to Cache Associativity

To study the sensitivity of the optimal fraction to cache associativity, the associativity of the LLC is

varied from 8 to 32 with the size fixed at 1MB/core. The optimal fractions for these associativities

are determined by simulating the BRRIP insertion policy with all the e values shown in Table

6.1. Table 6.6 shows the optimal e for a number of selected applications under different LLC

associativities. As predicted by the EBM model, the optimal e is insensitive to the changes of

associativity, which is validated by the simulations. For most workloads, the optimal e stays almost

unchanged as associativity varies, except for cactusADM, whose optimal e decreases when the

associativity reaches 32. The reason is that cactusADM suffers more from conflict misses, which

becomes less severe when the LLC associativity reaches 32. Thus, the workload becomes less

thrashing and the optimal e decreases.

6.6.6 Interaction with Prefetching

Hardware prefetching is commonly used to improve cache performance. To study the interaction

of DIT with prefetching, the prefetcher in the CMP$im simulator is turned on. According to [31],

CMP$im uses a per-core stream prefetcher similar to [72]. Figure 6.14 shows the average per-

formance of all the single-threaded and multi-programmed workloads under the different insertion

policies when the prefetcher is turned on. The results show that both DIT-RD and DIT-SM are still

effective in the presence of prefetching. On average, DIT improves single-threaded performance

by up to 1% across all the 16 selected SPEC CPU2006 applications, and multi-programmed perfor-
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Figure 6.14: Average results when prefetch is truned on.
mance by up to 4% across all the 100 multi-programmed workloads, over prior insertion policies -

DRRIP, SHiP, and DEAF.



Chapter 7

Conclusions and Future Work

7.1 Dissertation Summary

This dissertation identifies the problem that the datapath and cache resources in modern super-

scalar processors are inefficiently utilized, leading to inferior performance and energy efficiency.

The one-size-fits-all design approach employed by the traditional superscalar processors allocates

a fixed amount of resources for all applications at all times to deliver the best overall performance,

which is not always energy efficient, because both the application behavior and the use scenario are

changing all the time and the demand for processor resources is also changing accordingly. Caches

in modern processors also suffer from inefficient utilization. In set-associative L1 caches, the non-

matching data ways are accessed unnecessarily, which causes energy wastes. For memory intensive

workloads, caches often suffer from thrashing, but prior insertion policies that manages the LLC

took ad hoc approaches and failed to fully address this problem, limiting the performance impact.

This dissertation aims to improve processor performance and energy efficiency via more ef-

ficient utilization of datapath and cache resources. It demonstrates that dynamically allocating

datapath resources based on application needs and use scenarios significantly improves proces-

sor energy efficiency, and that managing cache resource utilization via more efficient methods can

lead to dramatic energy savings and performance improvement. It proposes an adaptive processor

that dynamically changes the active datapath resources according to application behavior and use

scenarios to improve energy efficiency. When applied to front-end throttling, the adaptive proces-

108
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sor achieves average improvements of 28%, 28%, and 32% for energy, energy-delay product, and

energy-delay-squared product, respectively, over all selected benchmarks on an 8-way superscalar

processor. When applied to dynamic core scaling, the adaptive processor saves an additional 20%

of a full-size cores energy on average and achieves an average of 46% further energy reduction

at the minimum operating voltage. It also proposes the ETL and DIT techniques to reduce cache

power consumption and improve cache performance. ETL is able to remove the majority of non-

matching data way accesses and reduce read energy by 68% on average on a 4-way set-associative

L1 instruction cache. DIT improves performance of prior state-of-the-art insertion policies, DRRIP,

SHiP, and DEAF, by 7%, 7%, and 6%, respectively, for thrashing workloads, and by 3%, 4%, and

4%, respectively, for 100 mixed workloads in a 4-core configuration. All these proposed techniques

are orthogonal to each other and can be applied together. The contributions of these proposed

techniques are summarized as follows.

Adaptive front-end throttling. This technique dynamically adjusts the front-end instruction

delivery bandwidth using software profiling or a runtime hardware controller to optimize arbitrary

target metrics, being performance, energy, or any trade-offs between them, as user scenario and

program behavior change. Adaptive front-end throttling is orthogonal to, and can even leverage,

most existing techniques, providing even greater savings. The new architecture is implemented at

the register transfer level (RTL), and circuit-level synthesis and simulation are used to accurately

analyze the area, delay, and power overhead of the throttling technique and resulting energy sav-

ings. Evaluation results show that this technique incurs negligible overhead and provides significant

energy savings.

Dynamic core scaling. Instead of scaling voltage, DCS dynamically adjusts the active su-

perscalar datapath resources and tries to ensure that programs run at a given percentage of their

maximum speed while minimizing energy consumption. A hardware controller is proposed to ef-

fectively manage performance-energy trade-off using DCS. Since DCS does not rely on voltage

scaling, it can be combined with DVFS to achieve greater energy savings. To effectively man-

age performance-energy trade-off using a combination of DCS and DVFS, an oracle controller is

proposed to demonstrate the optimal control strategy, and two practical controllers are proposed
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for real implementations. The proposed hardware controllers effectively extend the performance-

energy trade-off capabilities in superscalar processors.

Early tag lookup. ETL effectively removes the majority of the accesses to the non-matching

data ways in L1 set-associative instruction caches, achieving significant read energy reduction com-

parable to the phased caches. ETL does not cause any performance penalty, and incurs insignificant

hardware overhead and low design complexity. Narrower fetch width, larger BTB, better branch

predictors, and memory dependence prediction help enhance the effectiveness of ETL.

Dynamic insertion throttling. This work demonstrates that maximizing performance for cache

polluting and thrashing workloads requires an optimal fraction of the working set to be in the cache.

Prior insertion policies cannot maximize performance as they determine this fraction empirically.

This work provided a theoretical and practical analysis of insertion policies and determined that

by inserting only a fraction of the blocks with a high priority, these policies effectively reduce the

RD of blocks in the cache. It was also determined that these blocks receive hits only if the ERD

becomes smaller than the cache associativity. Using this key insight, an analytical model is derived

to show that it is possible to determine the optimal RD such that the fraction of blocks with ERD

equal to or less than the cache associativity can be maximized. Two practical models applicable

to recent policies when the oracle RD information is not available are provided and two simple

mechanisms to determine the optimal fraction based on these models are proposed. The proposed

mechanisms significantly improve performance compared to recent insertion policies over a wide

range of applications and system configurations.

7.2 Future Work

The future work that are related to this dissertation are summarized as follows.

Adaptive processor. In DCS, both a simple hardware controller and a sophisticated one are

proposed to dynamically manage resource allocation for performance-energy trade-off. Although

the proposed hardware controllers are efficient, a small gap still exists between DCS-controller

and DCS-potential. To extend this work in the future, more effective control algorithms can be
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developed to further reduce this gap or even outperform DCS-potential.

Early tag lookup. The proposed ETL technique uses a gselect branch predictor. Commercial

processors usually use more sophisticated branch predictors, which are usually pipelined and take

multiple cycles to make one prediction. Future work can investigate how to apply the existing ETL

technique with more sophisticated branch predictors and pipelined instruction fetch.

LLC management. Applications running on different cores usually have different demands

on the shared LLC resource. In the traditional LLC, cache space is allocated based on demands.

However, applications could issue many cache accesses but do not benefit from more cache space,

for example, some applications may have scanning accesses that evict useful blocks. Future work

can investigate cache management policies that allocate the LLC resources based on whether an

application benefits from larger cache space rather than demands.

7.3 Related Publications

During my PhD study, I have authored and co-authored the following publications.

Wei Zhang, Hang Zhang, and John Lach. “Extending Performance-Energy Trade-off via Dy-

namic Core Scaling”. In submission.

Wei Zhang, Samira Khan, and John Lach. “DIT-Cache: Understanding, Modeling, and Ex-

ploiting the Theory behind Insertion Policies to Improve Performance”. In submission.

Wei Zhang, Hang Zhang, and John Lach. “Reducing Dynamic Energy of Set-Associative L1

Instruction Cache by Early Tag Lookup”. In International Symposium on Low Power Electronics

and Design, 2015. (Best paper nominee.)

Wei Zhang, Hang Zhang, and John Lach. “Dynamic Core Scaling: Trading Off Performance

and Energy Beyond DVFS”. In International Conference on Computer Design, 2015.

Wei Zhang, Hang Zhang, and John Lach. “Adaptive Front-End Throttling for Superscalar

Processors”. In International Symposium on Low Power Electronics and Design, 2014.

Hang Zhang, Wei Zhang, and John Lach. “A Low-Power Accuracy-Configurable Floating

Point Multiplier”, In International Conference on Computer Design, 2014.
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The acronyms used in this dissertation are collected here for easy reference.

ALU Arithmetic Logic Unit

BIP Bimodal Insertion Policy

BP Branch Predictor

BRRIP Bimodal Re-Reference Interval Prediction

BTB Branch Target Buffer

CAM Content Addressable Memory

CPI Cycles Per Instruction

DCS Dynamic Core Scaling

DIT Dynamic Insertion Throttling

DVFS Dynamic Voltage and Frequency Scaling

EAF Evicted Address Filter

EBM Equal Block Model

ED Energy Delay

ED2 Energy Delay Square
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ERD Effective Reuse Distance

ETL Early Tag Lookup

FET Front-End Throttling

HMF Harmonic Mean Fairness

ILP Instruction-Level Parallelism

IPC Instructions Per Cycle

IQ Issue Queue

LLC Last Level Cache

L1 Level one

L2 Level two

LRU Least Recently Used

LSQ Load Store Queue

MRU Most Recently Used

NNPC Next Next Program Counter

NPC Next Program Counter

ORM Oracle Reuse Model

PC Program Counter

PHT Pattern History Table

PSEL Policy Selector

RAM Random Access Memory
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RD Reuse Distance

RDD Reuse Distance Distribution

RDM Reuse Differentiating Model

ROB Reorder Buffer

RTL Register Transfer Level

SHiP Signature-based Hit Predictor

SRAM Static Random Access Memory

TLB Translation Lookaside Buffer

WS Weighted Speedup
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