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Introduction

In many branches of science, there has been a recent surge of interest in
complex systems. Although complex systems research has been around for almost a
century, interest in the topic has exploded since the mid 1980’s, resulting in new
journals, conferences, university departments, high-profile grants, and an avalanche
of textbooks.! In part, this surge is explained by technological progress. Digital data
gathering devices such as cell phones and satellites have become ubiquitous, and
powerful computers have become cheap. These changes allow scientists to extract
measurements from complex systems and compile enormous data sets on social,
technological, economic, and ecological phenomena that were previously
unthinkable. The story of that technological change is fascinating, but not directly
relevant to the philosophical concerns of this dissertation. There is, however,
another connection between technological progress and the topic of this
dissertation. The computational techniques used to search those data sets, and to
explore the behavior of models designed to represent the phenomena from which
those data were extracted, represent a new kind of scientific method. This new kind
of method is the primary concern of the dissertation.

There are many questions one might ask about this method. The questions of
primary interest here are to do more with the logic and epistemology behind the

method than with the details of its execution. Rather than ask about the algorithms

1 Advances in Complex Systems, Complexity, and Complex Systems are three of the most prominent
journals. However, the vast majority of high quality complex system modeling is published in more
mainstream physics journals like Nature Physics, Physical Review, and Physica A. General science
journals such as Science, Nature, and Proceedings of the National Academy of Sciences also publish
modeling studies of complex systems on a regular basis.



used to search those data sets, or the errors that might be introduced by numerical
analysis, I will ask much more general questions about the kind of knowledge that
these methods allow us to accumulate and the explanations that they furnish.

Not every innovation in scientific method warrants a philosophical
dissertation. The methods associated with complex systems science deserve special
attention because they are driven by an epistemological attitude towards scientific
method that I think has not yet been seen in the history of science. Moreover, this
new epistemological attitude contrasts in a number of philosophically interesting
ways with standard views about scientific epistemology. Whereas traditional
scientific methods go to great lengths to avoid complexity through the use of
idealization, complex systems science embraces complexity, and exploits it. To make
this possible, complex systems science has needed to develop new forms of
representation that are designed to reflect the peculiar manner in which individual
systems are organized. This emphasis on the organization of individual systems
leads away from the construction of general theories, and forces us to confront
questions about how scientific representations can justifiably be applied to
individual systems on the basis of purely local considerations. This approach, which
is characterized by its emphasis on organizational properties and local justification,
also leads to new forms of scientific explanation. The bulk of this dissertation is
dedicated to evaluating how those explanations work.

Some of the literature on scientific explanation is comprised by attempts to
offer completely general theories of scientific explanation. However, in the past

twenty years, this approach has become less popular, and much of the



contemporary work on scientific explanation has attempted to demonstrate how the
norms in one area of science are different than the norms in other areas, and to say
why this should be. This is the approach I have taken here.

There are two senses in which the construction of explanations in complex
systems science is an epistemologically novel project. In one sense, it introduces a
new range of explanatory ideals about which little has been said in the philosophical
literature. For this reason, much of the account I offer can be read as an addition to,
rather than a criticism of, existing accounts. In another sense, the construction of
explanations in complex systems science is novel because it introduces new ways of
conceptualizing existing explanatory virtues. Unification, for example, is one virtue
that takes on an entirely new meaning in this area. Because complex systems
explanations are novel in both of these senses, | am sure that the arguments |
provide here will raise more questions than they answer. But perhaps they will also
serve as a framework with which to organize a discussion that is of growing interest
in the philosophy of science.

The dissertation is organized into four chapters. In Chapter One, [ give an
account of what complex systems are, and why they force us to adopt new methods
of representation and explanation. In Chapter Two, I introduce the methods of
network science—a subfield of complex systems that offers a particularly refined
version of the explanatory strategy I claim is novel. In Chapter Three, I discuss the
manner in which scientists justify the application of mathematical devices to

complex systems. In Chapter Four, I defend an account of explanatory depth that is



appropriate in the domain of complex systems, and contrast that account with

traditional views.
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Chapter One

Complex Systems

Are Hard To Explain

1 Introduction

One of the persistent themes in the scientific literature on complex systems is
that complex systems are particularly difficult to explain. According to some
accounts, the property of being difficult to explain is even elevated to the status of a
necessary condition imposed on the definition of complex systems. This way of
proceeding puts the cart before the horse. In this chapter, I will identify some of the
properties that make it the case that complex systems are hard to explain. It is only
once we have acquired an understanding of why complex systems are hard to
explain that it is possible to appreciate the epistemological significance of the
scientific models that have succeeded in doing so. There are many kinds of complex
system, and, other than the fact that they are all composed of many distinct parts, it

is not entirely clear what they have in common. So, to make the project tractable, I



Chapter 1. Complex Systems Are Hard To Explain

focus on a particular class of complex systems that I call pattern-centric systems. In
short, the idea proposed in this chapter is this: the reason that pattern-centric
systems are difficult to explain is that, in order to do so, one must take into account
the peculiar manner in which the many component parts are organized with respect
to one another, and this constraint precludes certain representational shortcuts
which would otherwise make the task easier.

A brief note about the motivation for this discussion is in order. The study of
pattern-centric systems is not entirely new, but as a result of technological progress,
it is currently booming. The computerization of science has freed us from the need
to use some of the representational shortcuts that have long been characteristic of
scientific methodology. Now that simulation methods are widely available, pattern-
centric systems have become mainstream topics of research. Of course, these
methods are likely to be intrinsically interesting to anyone concerned with scientific
epistemology, but the fact that mainstream science is increasingly directed at
pattern-centric systems makes the project that much more pressing.

This chapter is organized as follows. In the second section, some examples of
pattern-centric systems will be introduced. In the third section, a definition of
pattern-centricity is given, and its properties are discussed in some detail. In the
fourth section, an argument is given that is designed to show that successful
explanations of pattern-centric systems cannot make use of two familiar kinds of
scientific idealization. Consequently, the epistemic character of explanations of
pattern-centric systems is quite novel. In the fifth section, a model from

evolutionary game theory is briefly described in order to illustrate some of the ways
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Chapter 1. Complex Systems Are Hard To Explain

in which such explanations are novel. The sixth and final section of the chapter
provides a definition of the kind of explanation that is appropriate in the domain of

pattern-centric systems, and compares that definition with an existing account.

2 Pattern-Centric Systems

2.1 Rough Sketch of Pattern-Centric Systems

One important strand in the somewhat convoluted literature® on complex
systems draws on Herbert Simon’s 1962 paper “The Architecture of Complexity”
which was perhaps the first explicit study of complex systems, and probably
remains one of the most illuminating. Simon refrains from defining complex systems,
but he does discuss a few properties that he thinks complex systems have in
common, and which ought to be counted as necessary conditions. The first two
properties are jointly expressed as follows. “Roughly, by a complex system I mean
one made up of a large number of parts that interact in a non-simple way” (Simon,
1962, p. 468). These properties are both vague, but they will at least serve to guide
our attention to the relevant properties of the examples below. The third property is
that complex systems make it quite difficult to infer the properties of the whole
from the properties of the parts. Although this third property may be easy to

understand in a loose way, it is also notoriously difficult to make precise. My hope is

2] should clarify that the literature in question has been produced almost entirely by scientists and
engineers, rather than philosophers. Nevertheless, as | hope this dissertation will show, many of the
themes in this literature are distinctly philosophical. Herbert Simon himself defies categorization: he
was a strangely talented thinker who produced novel work of lasting value in philosophy, but also in
economics, artificial intelligence, computer science, and ecology.

13



Chapter 1. Complex Systems Are Hard To Explain

to disambiguate Simon’s claims and relate them to the problems of scientific

idealization. Before doing so, however, some examples should be considered.

2.2 Three Examples of Pattern-Centric Systems

In ants and other hymenopterans (a family that includes bees and wasps)
there is a striking contrast between the cognitive limitations of individual organisms
and the apparent cleverness and degree of organization visible at the colony level.
African driver ants create above-ground tunnels that serve as roads along which
workers can rapidly and safely transport valuable food items. Perhaps the most
impressive property of these tunnels is the material from which they are
constructed: more ants. In particular, the tunnels are constructed from tangled
arches of worker ants standing on top of one another. Their larger siblings, known
as soldiers, stand guard and defend workers against theft or other forms of
unwanted interruption. The situation becomes more impressive when we reflect on
the fact that as individual organisms, driver ants have tiny brains. No single ant
carries in its brain a representation of this impressive feat of social organization. No
ant serves as lieutenant or general, and there is nothing in the social organization of
driver ants even remotely analogous to a chain of command (Hélldobler, 1990, p. 7).

We should distinguish between two possible explanation-seeking questions
that might be associated with this phenomenon. One of them is etiological: what is it
about this behavior that led to its success through the process of natural selection?
The other might be called mereological: given the cognitive simplicity of individual

ants (the parts), how do they achieve the complex social organization we observe

14



Chapter 1. Complex Systems Are Hard To Explain

(the whole)?3 The first question leads to difficult problems concerning the evolution
of cooperation and the possibility of group selection. For the most part, [ will leave
this kind of question aside. The second, ahistorical question is more directly related
to the complexity of the social organization of ant colonies. We are interested in how
such simple parts can sustain the highly organized and yet flexible macroscopic
pattern of activity that is clearly required for the colony to achieve ecological
success.

Another paradigmatic example of a complex system is the human brain.
Brains are composed of a large number of individual neurons, each of which
projects to a relatively small number of other neurons, and each of which receives
signals from a relatively large number of other neurons (with the exception of
sensory and motor neurons that constitute the interface between the brain and the
rest of the body). Each neuron has only one basic signal-type to send—an on-off
signal that is realized as a burst of electro-chemical activity known as an action
potential.* Somehow, through the coordinated activity of action potentials, brains
are able to function as extraordinarily sophisticated control systems. Deciding upon,
and then executing even simple behaviors, like, for example, shaking hands, requires
a degree of organized activity that is difficult to fathom. The offered hand must be

located in three dimensional space, the position of one’s own hand must be

3 This form of explanation is also sometimes called “constitutive explanation” (Piccinini & Craver,
2011).

4 Describing action potentials as on-off signals is potentially misleading because it fails to indicate the
functional importance of dynamical properties. There is considerable debate about the dynamics of
individual neurons: some hold that the average rate of firing over some moving temporal window is
functionally important; others hold that the precise interspike interval has a functional role. (For a
discussion of this debate, see Rieke et al. (1997)). For our purposes the only important point is that
neurons can only ever fire, or fail to fire; there is no third option.

15



Chapter 1. Complex Systems Are Hard To Explain

determined, the trajectory between the two must be found, and then the
appropriate level of firmness must be calculated, and it must be adjusted in real
time according to the firmness with which one’s own hand is being gripped. How
can a collection of simple on-off signals achieve that kind of sophistication?

Brains, like colonies of African driver ants, have many interesting properties
that are not relevant to the task at hand, and ought to be set aside. For our purposes,
it is not important that brains realize their functional roles by means of information
processing; nor is it important that the form of information processing used may be
a kind of parallel digital computation. There are many interesting philosophical
questions connected to information processing and computation, but here, we only
want to consider the fact that highly organized patterns of activity are achieved by
the coordination of a large number of relatively simple parts. It is also important
that, like the case of African driver ants, there is no central processor involved. No
single mechanism has direct control over the behavior of more than a tiny fraction
of all neurons in the brain. (This is roughly what is meant by the term “distributed”
in the phrase “parallel distributed processing.”)

A third paradigmatic example of a complex system is an economic market. In
this case, the simple components are either people or companies. Their interactions
consist in transactions in which a certain kind of product is exchanged. Fundamental
to microeconomic theory is the idea that economic agents are motivated by their
own preferences, which are free to vary across individuals (Kreps, 2013). One might
expect that the interaction of a large number of self-interested agents with variable

preference functions would yield a fairly random pattern when viewed from a
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macroscopic perspective, in the same way that mixing a random selection of
auditory frequencies results in pure noise. For better or worse, however, this is
clearly not the case. The housing market doesn’t simply fluctuate randomly around a
simple linear growth curve. Rather, it is subject to wild, unpredictable swings, and
the occasional unfortunate collapse.

One important difference between this case and the two previous cases is
that here, the relationship between the macroscopic pattern of activity and the
concepts of function and design is quite loose. (A market can be efficient or
inefficient, and in that minimal sense can be said to function well or poorly, but the
role played by the concept of function in explanations of market efficiency is far less
central than the role played by the concept of function in explanations of ecological
success and natural selection.) Despite the fact that the macroscopic pattern of
fluctuation in housing prices doesn’t accomplish a goal in the full-fledged sense in
which the coordinated activity of driver ants accomplishes a goal (i.e. - survivial), it
is certainly a phenomenon we would like to be able to explain. Like the driver ants
or the brain, it gives rise to a kind of imperfect order that is very difficult to predict,
and that is also not governed by any central controller. That sustained pattern of
activity is maintained by so many uncoordinated and locally-driven “microscopic”

activities—this is a fact that calls out for explanation.

2.3 Isolating Explanans and Explanandum
When considering systems like those just described, we are usually

interested in explaining some particular macro-level property, rather than in

17
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explaining the existence of the system as whole. It is therefore helpful to preserve a
distinction between the thing itself (e.g., the ant colony; the brain; the housing
market) and the property of that thing that we want to target as explanandum on
some occasion. In order to explain why some particular macro-level target property
obtains, we show that it depends on some property of the collection of parts. A
parallel distinction is important at the lower level too. There, we must keep in mind
the distinction between a property of the entire collection of parts (or perhaps of
the pattern of organization instantiated by that collection of parts) and the
collection itself.

Another complication involved in the study of systems like those above is
that they are typically recognizable at multiple levels of description. So we cannot
simply begin asking how the parts and their organization yield the macro-level
property of interest. Instead, we have to first determine which parts are relevant to
the explanatory task. If we ask a neurophysiologist to label the parts of the brain, for
example, we’ll get a very different list than we would if we had asked a cognitive
neuroscientist. For some macro-level properties of brain function, it may be
appropriate to draw explanatory resources from these two levels separately. If so,
then there is no matter of fact about which level of description is the explanatory
one.> Different macro-level neural properties will be best explained by properties

that are located at different levels in the mereological hierarchy.

5 This does not rule out the fact—and I think it is a fact—that the quality, depth, or degree of insight
provided by an explanation may vary depending on which mereological analysis constitutes the
background against which the explanans is described. The very best explanation is not necessarily
the only explanation. Questions concerning the notion of explanatory depth are discussed in Chapter
Four.

18
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Since pattern-centricity is a property that applies to a system defined
according to a specific mereological analysis, and since multiple mereological
analyses are often available, whether or not something is pattern-centric will
depend on which of its parts we are interested in representing. To give a somewhat
trivial example, we could explain why the brain has the mass that it does in terms of
a linear sum of the masses of its cells and intracellular fluids. Since the mass of the
brain does not depend on how these parts are organized, this “brain system” is not

pattern-centric.

2.4  Definition of Pattern-Centricity

A pattern-centric system is (i) one that is composed of many elements, (ii)
one in which the property of interest depends on fine-grained information about the
relations among the parts, and (iii) one in which the pattern of relations among the
parts falls between complete randomness and complete order.

The first condition is just as vague as Simon’s original expression of the idea,
and this problem will unfortunately not be solved by imposing a specific numerical
threshold. Nevertheless, we can say that typical examples of pattern-centric systems
will have tens or hundreds of parts. Some will even have millions.

The second condition says that there is some dependence relation between
the pattern of relations among the parts, on the one hand, and the macro-level
property of interest, on the other. Furthermore, it says that this dependence must be
sensitive to fine-grained information about the relations among the parts. If we

make fine-grained changes to the pattern at the lower level, the consequences of the
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change will be observed at the higher level. In the example of mass given above, the
pattern of relations among the parts makes no such difference. In the case of
successfully executing a handshake, however, rewiring neurons in pre-motor cortex
to different sites in motor cortex would certainly make a behavioral difference,
despite the fact that the set of component parts in the second case is identical to that
in the first. This condition makes the dependence in question more subtle than
brute ontological relations like constitution or supervenience. Although these latter
dependence relations often apply in mereological settings, the fact that they obtain
does not by itself suffice to show that the pattern of relations among the lower level
parts makes an explanatory difference.

The third condition in the definition of pattern-centricity might strike
readers as curious, and perhaps even arbitrary. In fact, the idea that patterns come
in random and ordered varieties, and also that there is a very interesting class of
patterns that falls in between these two extremes, has a considerable history in
discussions of complex systems. A brief overview of that history will help to

motivate and clarify the condition.

3 Between Order and Randomness

3.1 Description Length
Say we have a collection of 10? bricks. Compare the task of representing a
massive cube composed of those bricks with the task of representing an intricately

designed castle composed of the same. It is possible to provide a description of the
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cube that is both (i) sufficiently accurate and informative for the cube to be
reproduced by someone who had not observed the original, and (ii) extremely
concise. Here is an example of such a description: “3-dimensional lattice with each
side 103 bricks long.” The rooms, windows, and turrets of a castle are far more
difficult to describe accurately without the aid of elaborate blueprints. Despite its
crudeness, this example illustrates the idea that pattern-centric systems are hard to
describe concisely. This is the guiding idea behind the third condition in the

definition of pattern-centricity.

3.2 Applying the Condition to Strings

The history of the idea that complexity is to be analyzed as “hard to describe
concisely” comes originally from computer science, where it was applied to abstract
strings of data rather than physical systems. Theoretical computer science is often
concerned with the discovery of the limits of various kinds of computation.
Naturally, one very important limit is maximal data compression. For both
theoretical and practical reasons, it is helpful to know the size of the smallest
possible program that can reproduce a given data structure. This quantity has long
been viewed as measure of computational complexity, and has acquired a number of
different names including algorithmic complexity, Kolmogorov complexity,
program-size complexity, and description complexity. In the 1960’s, Ray Solomonoff,
Andrey Kolmogorov, and Gregory Chaitin independently gave formal statements of
the measure and showed that many of its properties are theoretically significant.

For example, they showed that the application of this measure faces a problem that
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is exactly analogous to the halting problem for Turing machines, and for exactly
analogous reasons, it is non-computable (J. Crutchfield, 1999). They also showed
that most finite strings have a high degree of complexity, and that the measure is
always language-invariant up to a constant. (Goldreich, 2008).

Consider the following two data strings:

LOW-AC: abcabcabcabcabcabcabcabcabcabcabcabcabcabcabce

HIGH-AC: vdskfodsfjhasfnbztueeopdjdsbasghagiodsmdhattdu

Both strings are 45 characters long, but the first can be reproduced by a very
short deterministic algorithm (i.e. a computer program) that says “concatenate
string ‘abc’ 15 times.” There is no deterministic algorithm that can represent the
second string in a very compressed form. The best that can be done is to write down
the string itself, along with the command to print it. Assuming that the language
used to write the algorithm is the same as the one used to specify the string in the
first place, it is clearly necessary that such an algorithm will be longer than the
string itself.

The example brings out two theoretically important properties of algorithmic
complexity. The first is that complexity is tantamount to randomness. In fact,
algorithmic complexity has been used as a test for one kind of randomness: if it is

impossible to write down a deterministic algorithm that can represent a string in
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fewer characters than the string itself, then the string is (algorithmically) random.®
The second property highlighted by the example concerns the exactitude of
computer science representations. Insofar as we would like to describe algorithmic
complexity as a measure of “difficulty of concise description,” we must interpret
“description” in the precise sense of “exactly reproducible by a deterministic
algorithm.” There is good reason for imposing this high standard of representational
fidelity in computer science: if the data structure in question is itself a program, it
will not do what it is intended to do if its representation contains even small
inaccuracies.”

However, there are many empirical contexts in which this kind of exactitude
is not desirable. In theoretical physics, complexity measures typically allow
probabilistic representations in addition to exact ones to count as legitimate forms
of description. This should not be very surprising. Since the mid-nineteenth century,
many of the greatest successes in physics have been based on probabilistic
reasoning.

Consider again the string HIGH-AC above. From the more ecumenical

perspective of physics, that string can indeed be represented by means of the

6 It is important to contrast the concept of randomness with the concept of order, rather than with
the concept of determinism. What randomness really amounts to is a deep philosophical issue, but it
is essential for our purposes that randomness not be identified a priori with indeterminism, and that
a deterministic process can result in a random outcome. This might sound counterintuitive, but it is
assumed in scientific practice all the time. For example, one of the random sampling methods in
social science is to select for survey every seventh person that passes a street corner, or every baby
whose exact time of birth has a ‘3’ in the first place after the decimal. The fact that these processes
count as legitimate methods of random sampling may itself depend on the fact that the processes that
underlie the sequence of individuals passing street corners, or the second at which babies are born,
are themselves influenced by genuinely indeterminstic events. But this is contentious, and should not
be assumed a priori.

7 The fact that disastrous effects can arise from even the most subtle error goes a long way toward
explaining the well-known “80/20 Rule” in software development. Twenty percent of one’s time is
spent writing code; eighty percent is spent debugging it.
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following very short algorithm: “print each letter with probability 1/26.” This
probabilistic representation does not contain enough information to reproduce the
data string exactly, but it does contain enough information to reproduce its
statistical properties. Since the statistical properties of genuinely random strings
can be captured by very short probabilistic algorithms, measures of complexity that
allow for probabilistic algorithms will assign very low levels of complexity to
random strings. However, embracing probabilistic representation does nothing to
alter the fact that highly ordered data strings can also be described concisely by
means of deterministic algorithms. It follows that any measure of complexity that
embraces probabilistic representation will assign very low values of complexity
both to strings that are highly ordered, and to those that are highly random. Higher
complexity values will be found somewhere in between these two extremes.8
Moreover, since algorithmic complexity can take on any positive natural number, it
also constitutes a measure of complexity, in the formal sense in which it allows us
not only to order strings (of the same size) with respect to their complexity, but also
make meaningful claims about the degree to which one string is more complex than

another.

3.3  Applying the Condition to Things
The idea that complexity is located in the regime between order and
randomness is not hard to grasp in the context of strings of data (despite the fact

that the discussion above leaves out many subtleties relating to the differences

8 Extensive formal arguments for the view that complexity falls between order and randomness can
be found in Crutchfield & Young (1989), Lloyd & Pagels (1988), and Gell-Mann & Lloyd (1996).
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between finite and infinite strings.) But to make sense of the definition of pattern-
centric systems, we need to provide an empirical interpretation of the idea, which is
considerably more difficult than providing a purely computational one. To make the
exposition easier, let us label the third condition in the definition of pattern-
centricity BOR (between order and randomness.)

In order to make sense of BOR in an empirical context, we must first
determine what kinds of things are appropriate candidates for satisfying the
condition. Here, it is helpful to highlight one property of algorithmic complexity: it is
the system itself, rather than the process responsible for producing the system, that
serves as a candidate for BOR. (In the context of computational theory, this
contrasts with Shannon-Weaver information theory, where complexity is a measure
applied to the source of a signal, rather than to the signal itself.) In the empirical
case too, it is important to focus on the product rather than the process because our
ultimate goal is to understand the norms of scientific explanations in which
mereological, rather than etiological, properties are taken into consideration. What
is important is the system “as it stands,” rather than the history of how it came to
have its current form.

[t is also the case that in both computational and empirical contexts, the
appropriate candidate for satisfying BOR is the whole system, rather than any of its
proper parts. In the case of data strings, we look to the complete string, rather than
to any unique substring that might be indicative of the properties of the whole.

Similarly, to determine whether an ant colony is pattern-centric, we do not look to
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any special subset of the colony, but to the pattern of interaction instantiated by the
whole population.

At least three substantial difficulties remain. The first difficulty is that even
once mereological questions have been answered, (which parts count as the parts?)
the pattern among the parts cannot be specified until the relations between
individual parts have been defined and individuated. So, in order to know whether a
system is pattern-centric, we must first know which relations count as constitutive
of that system. Here, no general philosophical criteria are likely to be forthcoming.
Instead, the theoretical background associated with the science of the system in
question must be consulted. In the case of ants, the relation might be one of
detecting a pheromone molecule left by another ant; in brains it might be
connection via synapse, and in the housing market, it might be the presence or
absence of a contract between two agents. In each case, the theoretical framework
must be sufficiently informative to allow us to define and individuate the relations
between individual parts. If that cannot be done, then we are not in position to judge
whether the system is pattern-centric.

The second difficulty is that, even once the component parts and the pattern
of relations among those parts have been defined, the extent to which the pattern is
random (or ordered) is unavoidably language-relative. Consider the example of the
castle mentioned above. We can imagine a language used by castle architects in
which the design specifications of the castle can be represented or communicated in
a very compact way, perhaps because the language includes some technical

vocabulary that is not available in standard English. The complexity of the castle
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relative to the builders’ language would then be smaller than the complexity of the
castle relative to standard English. This is a problem because the notion of a
complex system is not intended to be a purely subjective one. Rather, it is intended
to denote a property that is largely independent of both mind and language. The
solution to the problem is two-fold. First, recall that the algorithmic complexity of a
sequence is language-invariant up to a constant. More precisely, if A and B are

languages, and we write the algorithmic complexity of a string s as Ka(s) and Kz(s),

then there exists some constant C such that for any finite sequence, | Ka(s) - Ks(s) |
< C. For strings in which the level of complexity is small enough to be comparable to
the size of the constant, choice of language can make a significant difference. But for
complexity values that are large relative to the constant, choice of language makes
little difference. This invariance result makes algorithmic complexity reasonably
objective. As long as the representation of empirical object in question requires a
large number of symbols, the choice of language will matter very little.

The third difficulty with applying the BOR notion to empirical systems is that
in the algorithmic case, BOR was defined as a graded measure, but in the definition
of pattern-centricity itself (which is intended primarily for empirical cases) the
concept refers to a binary property. The solution to this problem is to consider the
extent to which loss of information can be tolerated in the explanation of a
particular problem. We can make pattern-centricity a matter of category rather than
degree by imposing a threshold based on the ability of the model to reproduce the

target behavior. If a system is close enough to random (or ordered) that modeling it

as completely random (or completely ordered) does not distort the nature of the
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system so badly that the macro-level explanandum cannot be reproduced at least
qualitatively, then we will be satisfied with calling the system random (or ordered,
as the case may be.) If the distortion that would be introduced by applying either
form of idealization is so great that target property can no longer be reproduced by
the model, then the system is pattern-centric.

Clearly, applying the concept of pattern-centricity to empirical systems is no
easy task, and the analysis provided thus far is clearly insufficient to referee all
disputes that might arise in particular cases. One might complain at this point that
the purpose of philosophical analysis is to provide formal measures that can be
applied with perfect precision. I agree that formal measures are preferable, but
unfortunately, they are not always available. Still, one often gains some insight by
looking at formal measures that can be applied only to a restricted range of simple
cases. If we began with the brick example introduced at the beginning of this section,
we might be able to define a formal measure by thinking of the castle (or cube) as a
three-dimensional matrix, with each element either filled (occupied by a brick) or
empty. We could then define relations such as “neighbor of,” and compute the
complexity of each possible arrangement of bricks by (i) treating the matrix as a
data structure (ii) choosing a standard computational language, and (iii) finding the
algorithmic complexity of the data structure in that language. Stephen Wolfram'’s
work on classifying the complexity of cellular automata is somewhat similar to this
idea. His classification schema, however, takes into account the time it takes a
cellular automaton to evolve into a certain pattern, and therefore mixes the process

approach with the product approach distinguished above (Wolfram, 2002).
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Perhaps unsurprisingly, Herbert Simon provided an example that comes
closer to the mark. Consider the following array of letters S, and the coding scheme
that follows below it. The coding scheme follows the convention in computer
science that the identity operator refers to a naming assignment such that the name
appears on the left and the object to be named appears on the right. Let us imagine,
furthermore, that the array represents some empirical structure such as a 2-
dimensional wall in which letters correspond to brick-type, and position in the array

corresponds to spatial position in the wall.
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Figure 1: An elementary compression scheme for matrix S. Matrices a, h,
m, and r are represented in matrices W and X according to their original

positions in S. This allows S to be represented as a composition of
instances of Wand X.
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As Simon notes, the original array consisted of 64 symbols. But because some
of the components of this matrix are repeated, S is compressible. Given the
elementary compression scheme in the caption, it can now be written in just 42
symbols (7 four-letter arrays; 7 variable names; 7 assignment operators). If we
assume that this compression scheme has succeeded in maximally compressing S
within the boundaries of the pseudo-language used here, then S will satisfy BOR. It
can be compressed, and therefore does not instantiate a completely random pattern,
but it cannot be compressed as efficiently as other arrays of the same size, and is
therefore also not completely ordered.

This example is intended to show that a low-dimensional empirical system
can be represented in a semi-formal way that allows us to determine algorithmically
whether it is pattern-centric. However, there are at least two reasons that this
example cannot serve as a paradigm for a more general strategy of classifying
pattern-centric systems. First, the relations in question here are artificially simple:
the positions in the array are themselves spatially arranged in a way that is
isomorphic to the literal spatial arrangement of the parts of the empirical system
represented. If the empirical system in question is not itself defined in terms of
spatial arrangement, this representational serendipity will disappear. For example,
say we wanted to represent an ant colony in which an ant A stands in an
explanatorily significant relation to another ant B just in case A happens to detect a
pheromone molecule left behind by B. If, in the relevant time window, A enters into

relations with more than eight other ants, then there are not enough neighboring
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positions in the array to represent those relations. The second reason that this
algorithmic approach cannot be generalized is that, as mentioned above, algorithmic
complexity is non-computable. In very simple cases like this, it may be possible to
prove that a certain compression scheme is maximal. But since this kind of proof is
not generally possible, even if we could work out a representational format that
captured all the information we needed to capture about a given empirical system,
there is no guarantee that a compression scheme will be found if it exists. These
thoughts suggest that the notion of pattern-centricity cannot be formalized in a non-
trivial way. Nevertheless, my hope is that the idea is now sufficiently clear that it can
be used to do some philosophical work.

To summarize briefly, the third condition in the definition of pattern-
centricity was that the system must be organized in such a way that the pattern of
relations among its elements is neither entirely random nor entirely ordered.
Randomness and order are conceptualized as two ends of a spectrum that measures
the concision with which the pattern of relations can be expressed, in a given
language. This definition is not intended to provide a quantitative operation because
it is doubtful that one such operation can be made to work for all the different kinds
of mathematical representation that are used in the study of pattern-centric systems.
Instead, the definition is meant to provide a background against which we can make

progress in understanding the methods that are used to study systems of this kind.
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4 An Explanatory Difficulty: Failed Idealization

4.1 Combating Combinatorial Explosion

The claim that something is “hard to explain” is highly ambiguous. It might
mean that the explanation is known in principle, but that some difficult concepts are
required to understand it; it might mean that we have a rough idea of how to explain
something, but the details have yet to be worked out satisfactorily; it might mean
that the concepts involved are not very clear; or perhaps that the apparently correct
explanation is in tension with other beliefs we have. In this context, “hard to explain”
has a rather specific meaning that doesn’t fit neatly into the above categories. Here,
it means that well-established scientific forms of representation are not empirically
adequate, and so scientists are forced to work with new, less well-established
alternatives. In particular, if the kinds of idealizations that scientists usually employ
to represent and reason about many-element systems are not empirically adequate,
then the system is hard to explain. It follows from this analysis that barriers to the
explanation of pattern-centric systems are derivative of barriers to the successful
representation of pattern-centric systems, where “successful” means that the
representation is sufficiently perspicuous for the explanatory or inferential task at
hand. In what follows, I draw on the definition of pattern-centric systems to show
that two well-established and very general methods of idealization are not

empirically adequate when applied to pattern-centric systems.
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There are many different kinds of scientific idealization, and different kinds
serve different purposes. When we are dealing with what I have been calling “many-
element systems,” (of which pattern-centric systems are a subset) one of the
reasons that idealization is necessary is the threat of combinatorial explosion. This
is the idea that when we want to represent the relationships between a large
number of elements, the number of relationships increases as an exponential
function of the number of elements.

A well-known example of combinatorial explosion is in the length of
polynucleotide sequences like DNA or RNA. If the length of chain we want to model
is n, the number of possible combinations is 4" (Schuster, 2000). As we consider
longer and longer polynucleotide chains, therefore, the number of possible
sequences becomes enormous very quickly. It is often impossible to write down
every such sequence and study its properties individually. Instead, scientists must
come up some cleverly idealized means of representing the system that captures the
essential information about the system and gets rid of the rest.

[ think the idealizations used to combat combinatorial explosion in many-
element systems can be usefully divided into two categories. These two categories
are not meant to be exhaustive, but they do cover a wide-spectrum of techniques in
the history of science. The first category involves idealizations in which many-
element systems are treated as if they were completely ordered. The second
involves idealization in which many-element systems are treated as if they were

completely random.
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4.2 Idealizations for Nearly-Ordered, Many-Element Systems

Often, when we want to study the behavior of a system composed of many
elements, the behavior of the many elements are dominated by a single force. An
intuitive example of this is a battalion of 1000 soldiers, all of whom march in unison
at the command of a single lieutenant colonel. Both the direction and speed of their
movement can be inferred from the commands of the lieutenant colonel, and so the
relations between individual soldiers does not need to be represented in order to
infer their position at a time. A more scientific example is the use of a concentration
gradient to model molecular diffusion of one gas into another. Diffusion is the
natural movement of particles from an area of high concentration to an area of low
concentration. The concentration gradient is the difference within a given area
between the highest and lowest concentration of a substance. In simple cases where
both gases are pure, the number of particles that move over an area per time unit is
given by the ratio of the concentration gradient to the distance travelled, scaled by a
coefficient for that pairing of gases. This relationship is known as Fick’s first law of
diffusion (Smith & Hashemi, 2003). In this case, the many particles are represented
as moving uniformly over an area. In fact, some molecules will move faster than
others, and they will move in three dimensions. But the law is representationally
successful despite these facts because the concentration gradient dominates the
behavior of the molecules. At macroscopic time and space scales, when temperature
is constant, differences between individual molecules can be ignored, and their

aggregate movement can be inferred from this simple law-like relation.
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Systems that can be explained in this way are ordered or nearly ordered.
Usually, the order that is expressed by a model of a system is not perfectly
instantiated in the system itself. Rather, the ordered system we study is an idealized
representation of some of the core properties of the real phenomenon. This kind of
idealization is not always appropriate. For example, when two gases are not pure,
the rate at which one gas mixes with another will not be constant. If this is the case,
and if we would like to know the time to equilibrium (the state in which the
positions of molecules are approximately uniformly distributed throughout the
container), calculations that depend on the idealized notion of a constant
concentration gradient will be inaccurate. Because the definition of pattern-centric
systems says that they are not nearly-ordered, idealizations of this kind will fail to
be empirically adequate. [ assume here that explanations must capture at least the
approximate truth of the matter. Therefore, idealizations that depend on a single
organizing force cannot be used to explain the behavior of pattern-centric systems.

Recall the three examples of pattern-centric systems described in Section 2.
In all three cases, it was emphasized that there is no central controller. That fact can
now be seen as a consequence of the third condition in the definition of pattern-
centricity. If there were a central controller, then, as in the case of the battalion, we
would be able to capture the explanatorily significant properties of the pattern of
relations among the parts of the system in a concise way by reference to that central

controller, and the system would thereby violate the definition of pattern-centricity.
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4.3 Idealizations for Nearly Random Systems

In Section 2.2 I mentioned that physics has long made use of probabilistic
forms of description. Within statistical mechanics, idealization techniques have been
developed that allow us to use the assumption of complete randomness to make a
host of modeling assumptions that would otherwise be unjustified. Typically, the
upshot of such assumptions is that only the frequency and number of particle-
particle interactions matter. No additional information about macroscopic states is
gained by adding information about the precise sequences of inter-particle
interaction.

Boltzmann’s explanation of the Second Law of Thermodynamics is an
excellent example. He wanted to explain the law, which relates macroscopic
variables, in terms of the properties of the distribution of particles at a lower level of
description. First, we imagine a large number of particles in an enclosure.
Occasionally, the particles bounce off of the walls of the container, and also into one
another. Boltzmann noticed that there are extremely many different ways that a
collection of particles can be distributed inside a container. Each of these ways is a
microstate, or complete description of how all the particles are at a time. Many of
those microstates yield one and the same macrostate; that is to say, macrostates are
multiply realizable. As a result, microstates can be partitioned into equivalence
classes, such that each class corresponds to a single macrostate. Crucially, some of
these classes are larger than others. The largest class is the one in which all
molecules are uniformly distributed throughout a container, and the smallest one is

one in which all molecules are clumped together in a maximally small space. (This
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way of describing the argument appeals to position, but it can also be done by
appealing to momentum.) One of Boltzmann’s greatest contributions to science was
a mathematical argument that a closed system—one that is not influenced by the
environment—is more likely to move into a large equivalence class than a small one.
This is because, mathematically, there is a much larger number of ways for a system
of particles to be uncorrelated with one another (with respect to an arbitrary
property) than there are for it to be correlated (Hill, 1986).

Boltzmann’s reasoning depends on the fact that the system of particles, more
often than not, follows a random uniform distribution. This claim should appear
somewhat suspect. Since the particles are interacting with one another causally,
they do indeed carry information about each other’s properties, at least over a short
time scale. How can this be reconciled with the assumption that that the pattern of
interaction is random? The following thought experiment helps illustrate the idea.

Imagine a very large collection of physically identical dice laid out in such a
way that they can be tossed without causal interaction. The law of large numbers
guarantees that when we take their average value after tossing, we will get a
number very close to 3.5. The law is applicable because the dice are both identical
(in the relevant sense) and independent. Compare this to a situation in which the
same dice are shaken in a box such that every individual die collides with many
other individual dice. The dice are no longer causally independent. Nevertheless,
when they settle, their average value will still be 3.5. In cases like this, causal

interaction does not disturb stochastic independence. Essentially, this is because the
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causal interaction is distributed randomly.’ By analogy, the energies of individual
molecules in a gas at equilibrium are stochastically independent despite their causal
interaction (Shang, 1985).

This example helps to bring out the force of the definition of pattern-centric
systems: the gas just described satisfies the first and second condition in the
definition, but does not satisfy the third. It satisfies the second condition because the
dependence relationship between the pattern of relations among the parts and the
macroscopic property of interest cannot be shown to hold without taking into
account the distribution of relations across molecules. It is in this sense that the
information about the pattern of interaction must be fine-grained. The idealizations
used in statistical mechanics would not be empirically adequate if it were not true
that the distribution of molecular energies is indeed random more often than not.

Let us return to the question of how pattern-centric systems can be
represented and explained. If we want to explain why African driver ants arrange
themselves in the form of a tunnel, and we want the explanation to be grounded in
the interactions of individual ants, then it is clear that an assumption that ant-ant
interactions are randomly distributed will not be empirically adequate. Regardless
of whether the interaction is defined spatially, temporally, or functionally, it will be
impossible to reproduce the qualitative property of tunnel formation if ant-ant

interactions are assumed to follow a random distribution.

9 This example is my own, but it is inspired by the discussion of the distinction between causal
independence and stochastic independence in Strevens (2006).
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4.4 Summarizing the Consequences of the Definition

The definition of pattern centricity has led to the following results. First,
when many-discrete elements interact, combinatorial explosion threatens to make
analysis of the system impossible for cognitively and technologically limited agents
like us. Second, we cannot simply ignore the interactions among the elements by
trying to derive collective behavior of the system directly from some single factor
that dominates their behavior, since the existence of such a factor is incompatible
with the “order” condition in the definition. Third, we cannot simplify our
representations by assuming that the pattern of interactions approximates the
degenerate case in which the microscopic property of interest is randomly
distributed over the population.

Instead, it becomes necessary to take the specific pattern of interaction into
account. Since the 1980’s, many kinds of modeling programs have been developed
that fit these requirements. Agent-based models, cellular automata, and neural
networks are the primary examples. It is in connection with these research
programs that many definitions of complex systems have been given. The following
list of definitions gives some indication of the extent to which the idea of pattern-

centricity is implicit in these areas.

* A highly structured system, which shows structure with variations
(Goldenfeld, 1999, p. 87).

* Large network of relatively simple components with no central
control in which emergent behavior is exhibited (Mitchell, 2011, p.
13).
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* Diverse rule-following entities whose behaviors are interdependent
(Wolfram, 2002, p. 3).
* Diverse, interdependent, networked entities that can adapt (Page,

2011, p. 17).

One can clearly see the overlap between these definitions of complex systems and
the definition of pattern-centric systems provided here. Each of these quotes,
moreover, is taken from a discussion of scientific methodology for automata, agent-
based models, and other paradigmatic forms of complex systems science. However,
as far as I am aware, no one has thus far made the connection between this strand of
thinking about the nature of complexity, and the constraints it imposes on scientific
idealization. The benefit of drawing attention to this relationship is not only that it
helps to clarify the meaning of these definitions, but also that it helps to clarify their
philosophical function. The best reason to taxonomize empirical systems in this way
is not to draw out fundamental ontological differences, as has often been supposed
or implied in the literature, but to draw out the empirical properties that force
scientists to use the kinds of modeling techniques that are associated with complex

systems.10

4.5 The Epistemology of Complex Systems
In one of the very few philosophical papers that discusses complex systems
in detail, Ladyman et al. (Ladyman, Lambert, & Wiesner, 2013) survey the various

scientific definitions of complex systems, discuss their properties, and then offer a

10 The question of whether the taxonomy of complex systems has any ontologically significant
consequences is revisited in Section 5 of Chapter 4.
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definition of their own. Their definition, which is closely related to my definition of
pattern-centric systems, reads as follows. “A complex system is an ensemble of
many elements which are interacting in a disordered way, resulting in robust
organization and memory” (Ladyman et al., 2013, p. 25)

While the Ladyman et al. paper is quite interesting and informative as far as
it goes, very little is said about why scientists would want to introduce the category
of complex systems in the first place. In one passage toward the end of the paper,
they claim that the definition they provide is necessarily cast in terms that are very
general, rather than subject-matter-specific, because many of the phenomena of
interest in complex systems do not fall clearly into any of the well-established
scientific disciplines. As an example, they claim that a thorough understanding of
human diseases will require knowledge of molecular bonding, cellular biology, the
psychology of the human mind, and the sociology of human interactions. They
suggest that it is this need to combine knowledge from different areas of science
that accounts for the rise of complex systems science as a discipline. I think
Ladyman et al are quite right that interdisciplinarity is an important feature of
complex systems science, but the fact that some phenomena do not fall neatly into
pre-established categories is not sufficient to explain the interest in complex
systems as such. After all, one can simply create a new subdiscipline that combines
knowledge from each previously existing discipline in the appropriate proportions.
Indeed there are now plenty of textbook treatments of human diseases that combine

elements form each of the aforementioned areas.!!

11 For an example of this, see Mulvihill et al., (2009).
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The excitement about complex systems science is not generated merely by
the pragmatic need to combine knowledge from disparate areas efficiently. Rather,
it is generated by a much more fundamental methodological problem. It is
generated by the fact that in order to study complex systems successfully, we
require, to use a phrase of Stephen Wolfram’s, a new kind of science altogether
(Wolfram, 2002). Wolfram’s own explanation for why the study of complex systems

has come into being is closer to the mark.

In the existing sciences much of the emphasis over the past century or
so has been on breaking systems down to find their underlying parts,
then trying to analyze these parts in as much detail as possible. And
particularly in physics this approach has been sufficiently successful
that the basic components of everyday systems are by now completely
known. But just how these components act together to produce even
some of the most obvious of the overall behavior we see has in the

past remained an almost complete mystery (Wolfram, 2002, p. 4).

Wolfram’s idea is that the study of how individual elements in many-element
systems give rise to collective behavior is not well understood. While I think this
point is largely correct, his expression of it in this passage is exaggerated. Statistical
physics is one area in which the way that component parts “act together” to
“produce overall behavior” is very well understood. However, as | have argued
above, only a select group of systems can be represented by using the methods of
traditional statistical physics. The reason for the rise of complex systems is that an

enormous class of systems cannot be represented in this way. More precisely,
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complex systems science has become a field of study in its own right because
complex systems are recalcitrant to the two primary methods of idealization for
many-element systems that have been used throughout the history of science. In my
view, this is the defining feature of complex systems science, and this is also the
reason that the methods of complex systems science have given rise to a new kind of
scientific epistemology.

Complex systems science is fundamentally about the study of new methods
of scientific representation. The approach to scientific representation that is
necessitated by complex systems is both liberating and debilitating. It is liberating
because the space of possible representations to which one can appeal becomes
much larger. For this reason, one has much more flexibility to represent properties
that may be unique to the target system one wants to capture. It is also debilitating
because it becomes much more difficult to explain how a system works by appealing
to the fact that it is a member of a larger class of systems that all behave the same
way. This means that it is much more difficult to transfer the lessons one learns

about one system to other systems that may appear to be similar.12

5 An Example

Despite the fact that two familiar forms of idealization cannot be used to

explain pattern-centric systems, explanations are possible nevertheless. Without

these idealizations however, it is often necessary to use computer simulations. In

12 Despite the difficulty with justifying the transfer of complex systems models, this is done all the
time in practice. This creates a somewhat paradoxical situation that is discussed in Chapter Three.
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what follows, I will describe a scientific explanation of a familiar problem from
evolutionary game theory. I have chosen this example because it satisfies the
definition of pattern-centricity, it is easy to understand, and because it highlights
some of the novel epistemological properties of such explanations.

It is prima facie difficult to see how cooperation could have arisen in an
evolutionary context that is governed by natural selection. The difficulty is that
natural selection should promote behaviors that are likely to increase the fitness of
the behaving agent. Cooperation often demands of agents that they sacrifice their
own fitness in order to boost the fitness of another agent. But through natural
selection, such self-sacrificing behavior would lead to the extinction of the genetic
profiles that give rise to it. Darwin already recognized that family structure was part
of the solution to this problem. If willingness to cooperate is restricted to those who
share our genetic heritage, then the genetic profile that gives rise to cooperative
behavior will be promoted. Under certain conditions, that cross-generational
promotion will be sufficient to overcome the loss in fitness to the individuals who
engage in cooperative behavior. This kind of solution appears to require
sophisticated psychological abilities. In order to behave in such a way as to give
preference to all and only one’s family members, one must, it seems, possess powers
of perceptual discrimination sufficient to recognize one’s own family, and memory
powerful enough to keep track of them over time. Since these properties are not
possessed by all the species that appear to engage in cooperative behavior, a more

general solution is required.
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During the 1980’s and 1990’s, it was realized that family, literally speaking, is
not necessary to overcome the problem of sacrifice. All that is required is some
assortativity in the population.

Recall the basic structure of a Prisoner’s Dilemma.

Column Player
Cooperate Defect
Cooperate R, R S, T
Row Player Defect T,S P,P

The payoff structure is labeled in the standard way: the first value in each cell
represents the payoff to the row player, and the second value represents the payoff
to the column player. If both players cooperate they receive a reward payoff R. If the
row player defects while the columns player cooperates, then the row player
receives the temptation payoff T, and the column player receives the sucker’s payoff
S. If this assignment of strategies is reversed, so are the payoffs. Finally, if both
players defect, both players receive punishment payoff P.

In order to be considered a Prisoner’s Dilemma, the payoff structure must
satisfy two conditions. First, T>R>P>S. This condition guarantees that defecting will
be the preferable strategy, no matter what the other player decides to do. Second,
2R >S +T. This condition guarantees that joint cooperation produces the highest
average payoff.

In order to evolutionize this game, imagine that we have a large population of
agents that interact at random and play a prisoner’s dilemma game. The playing

strategy of each agent is a behavior that is determined by its genetic profile.
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Cooperators have one genetic profile, and Defectors have another. Payoffs are now
to be interpreted as fitness advantages. If a Defector wins, then he or she is more
reproductively successful, and the population will become Defector-heavy. It has
been shown that in an iterated prisoner’s dilemma played between members of a
large population of agents, defection is an evolutionarily stable strategy. That is, the
system will eventually reach a well-defined state in which a population of players
becomes dominated by Defectors, and once this state is reached, it is mathematically
impossible for Cooperators to invade the population.

Nowak & May (1992) explored what would happen with such a model if the
game were played in such a way that every interaction between players is
determined by their position on a grid.!3 On each round of the simulation, a player
plays a round of prisoner’s dilemma with each of its immediate neighbors. The
fitness payoff per round is just the sum of payoffs received from each of the eight
games played. The player also changes its strategy (from Cooperation to Defection,
or from Defection to Cooperation) iff one of the eight neighbors has a higher net
payoff on a given round. This rule imitates the effect of natural selection: fitness is
measured in reproductive success, and each round of the simulation can be thought
of as a biological generation. If Cooperators are successful, their local part of the grid

will have more cooperators on the subsequent round, and likewise for defectors.

13 Actually the game was played on a torus - a doughnut shaped object that results from curving a
two-dimensional grid so the top-edge meets the bottom, and the left-edge meets the right. The reason
for using this shape is because it allows for what are known in the literature on differential equations
as “periodic boundary conditions.” In this context, that term refers to the fact that rules for the
players on the edges are interpreted so as to count cells at corresponding positions on the opposite
edge as neighbors.
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Surprisingly, once the play is confined to this kind of spatial interaction, it
turns out that defection is no longer evolutionarily stable. Sometimes, cooperation
emerges and takes over a large segment of the population. Mathematically, the
reason that cooperation can take over comes down to the fact that the spatial
constraints introduce positive assortment between player-types. Positive
assortment is just the idea that Cooperators are more likely to interact with other
Cooperators, and Defectors with Defectors. This assortment allows Cooperators to
benefit from their strategy at a rate that is not overwhelmed by the exploitative
strategy of Defectors.

Two main ideas should be drawn from this example. The first is that the non-
random pattern of interaction that is underwritten by spatial assortment is the key
to solving the problem of sacrifice. The second main idea is closely related to the
first: precisely because the non-randomness itself has explanatory significance, it is
necessary to represent the interactions in such a way that their globally non-
random character comes to the fore. The only method of achieving this goal that was
epistemically open to Nowak & May was to design a computer simulation in which
every interaction is represented explicitly. In other words, there is an explicitly
programmed calculation for every game, and no way of knowing the outcome of the
simulation until it runs.

The significance of this second point is not that pattern-centric systems must
be studied always and everywhere by means of computer simulation. Rather, the
point is that in order to make the non-random character of the pattern of

interactions visible, and therefore bring it into a position in which it can be made to
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do explanatory work, one needs a very intricate representational apparatus. As it
happens, computer simulations are almost always the most pragmatic way of
constructing such an apparatus. Another way of thinking about how the Nowak &
May model differs from traditional methods is that, although quite radical forms of
idealization are in play in the model, the purpose of those idealization is not to
combat the combinatorial explosion that results from the large number of
interactions between mereologically defined parts of the system. Instead, Nowak &
May embrace the combinatorial explosion, and focus on the nature of pattern that

emerges from it.

6 Philosophical Concerns Connected With Pattern-Centric Explanation

6.1 Huneman’s Theory of Topological Explanation

Because the idealization and representation of complex systems require non-
traditional methods, the explanation of complex systems imposes a different set of
epistemic norms than those that operate in traditional explanations. In many areas,
the goal of explanation is to capture as precisely as possible the material and causal
details of a system. In complex systems, the emphasis is instead on capturing
organizational properties. In the Nowak & May model, the possibility of cooperation
in a Darwinian context was explained by capturing the global spatial organization of
a biological population. In many scientific contexts, explanations of this form are
loosely called “topological.” Exactly what “topology” means is discussed in more

detail in Chapter Three. For now, we can think of topological representations as
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those that capture abstract structural or organizational properties, and topological
explanations as those in which topological properties do the bulk of the explanatory
work.

Although I do not know of any philosophical articles that specifically address
the topic of explanation in the domain of complex systems, Philippe Huneman
(2010) has an interesting paper on the slightly narrower topic of topological
explanations in complex biological systems such as genetic networks. Despite the
specifically biological orientation of his examples, the account of explanation he
ends up giving is quite general, and I would like to use it as a foil against which to

present my own account. Huneman’s account reads as follows.

“More precisely now, I call a topological explanation, an explanation in
which a feature, a trait, a property or an outcome X of a system S is
explained by the fact that it possesses specific topological properties
Ti. What “possess topological properties” means is the following: S has
elements, parts, features or capacities, moments of its regular
behavior, or of the set of its possible behaviors, which are likely to be
represented in a graph, a network or a variety S’ in a space E”

(Huneman, 2010, p. 216).

Huneman'’s definition of topological explanation leaves something to be
desired. In fact it is doubly unclear. One source of confusion is that it does not say
whether the possession of topological properties is objective and distinct from the
intentions of humans who choose to represent complex systems by means of

topological representations like graphs. Another source of confusion is that by using
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the phrase “likely to be represented” in the definition of class of systems that have
topological properties, Huneman’s account implicitly suppresses inquiry about why
we would want to use topological representations in the first place. Nothing in his
account, in other words, tells us about the conditions under which the topological
approach is more appropriate than other approaches.

From my perspective, this is a significant shortcoming. Philosophical
discussions of explanation are philosophical in large part because they are directed
at the epistemic reasons that can be given for proceeding with an explanation of a
particular kind. The discussion of pattern-centric systems above confronts this
shortcoming. In light of that discussion, we can now say that the reason that
“topological” explanations are central in the study of complex systems is that
topological representations—such as networks and graphs—are well-suited to
capturing the way in which a complex system is organized, and the representation
of such organizational structure is necessary to successfully isolate the most

important difference-making properties in pattern-centric, complex systems.

6.2 A New Definition of Topological Explanation

In the literature with which I am familiar, scientific explanations of complex
systems usually are given in the form of a deductive argument in which one first
justifies the use of a specific sort of representational apparatus, and then derives the
target property from that apparatus. This basic pattern of reasoning can be captured

more precisely in four steps. By presenting these four steps in schematic form, we
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have a new definition of topological explanation that avoids the problems that I have
identified in Huneman’s account.
An explanatory argument is a topological explanation just in case:

(1) It is sound.

(2) An isomorphism has been established between (i) the pattern of organization
of the components, and (ii) some representational apparatus.

(3) Some higher-level property is inferred from the representational apparatus

(4) That higher-level property maps onto the empirical target property.

By drawing on the concept of isomorphism, this new definition avoids the
relativism of Huneman'’s account. This definition also sets the stage for further
inquiry into the nature of explanation in complex systems science. Some of the
questions raised by this definition are: (i) what is a pattern of organization, exactly?
(i) What kinds of representations count as topological? (iii) What idealizations are
necessitated by the use of topological representation, if not the two classical forms
discussed above? (iv) Under what conditions are those idealizations justified? (v)
What determines the quality of a topological explanation?

Questions (i) and (ii) are discussed in Chapter Two, which is centered on a
particularly pure form of topological representation known as network science.
Questions (iii) and (iv) are discussed in Chapter Three, which is centered on the
some of the unique justificatory problems that are encountered when constructing
topological explanations. Question (v) is addressed in Chapter Four, in which a

theory of explanatory depth for topological explanation is given.
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Chapter Two

Network Explanation

1 Motivations for Studying Network Science

The goal of this chapter is to investigate in some detail the methodological
and explanatory strategy characteristic of network science. Network science is just
one subfield of complex systems science, but it deserves special attention for at least

the following four reasons.

1.1 Cohesion

Even when complex systems science is understood narrowly as the science of
pattern-centric systems, it is still a very large area of science, and includes many
different kinds of scientific method. One reason for this is that models in complex
systems science tend not to be tied down to the scientific field in which they
originated. Models originally constructed in the context of solid-state physics are
now applied to social phenomena, and models from population biology are applied

to study the Internet. Network science offers an internally cohesive approach to the
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representation and explanation of a very wide variety of empirical phenomena. It is
internally cohesive in the sense that the same kinds of representations can be used
despite the diversity of cases, and to a large extent, the same kinds of inference can

be made.

1.2 Technology

New technologies such as the Internet, rapid gene-sequencing devices,
financial trading software, and cell-phone communication are generating mountains
of data on the behavior of complex systems. If we are to exploit this data to increase
our knowledge of the world, we need to develop appropriate analysis techniques.
Network science is often advertised as a methodology designed to play this role
because the representations it relies upon are themselves very large data structures.
This allows us to construct representations that stand in an isomorphic relations to

very large data sets, even in those cases where the data-set is not very compressible.

1.3 A New Foundation

In a recent paper in Nature Physics entitled “The network takeover,” Barabasi
(2012) argues that if we are ever to have a theory of complex systems, it will be built
on the shoulders of network science. As support for this claim, Barabasi says that
network science is the only approach to complex systems that is driven by empirical
data rather than a priori models. This claim is probably an exaggeration. The global
climate will be counted as a complex system according to most definitions, but our

best models of the climate have little or nothing to do with network science, despite
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the fact that they are driven by quite enormous data sets. Moreover, even if network
science were the only current approach to complex systems that is genuinely data-
driven, Barabasi has not shown that alternative data-driven approaches to complex
systems won'’t be forthcoming. So Barabasi’s claim that network science will
inevitably become the foundation of complex systems theory is too strong.
Nevertheless, Barabasi’s claim is partially correct. Network science provides a very
natural foundation for a general approach of complex systems because it allows us
to represent patterns in data that get averaged out when we are using traditional
methods.1* As I discuss below, the behavior of many complex systems can only be
understood if the detailed pattern of interaction among system components is
represented explicitly. For the sake of tractability, traditional methods of
representing systems with many components are expressly designed to suppress
information about specific patterns of interaction. Network science brings that

information to the fore, and thereby makes new forms of explanation possible.

1.4  The Philosophical Status Quo

The fourth motivation for investigating network science has to do with the
status quo in the philosophy of science. Many philosophers disagree with the claim
made at the end of the previous chapter: that complex systems demand a new kind
of scientific explanation. In particular, members of the popular mechanist school

hold that the best way to gain an understanding of complex systems is to employ the

14 For reasons discussed in Chapter Four, I am doubtful about the prospects for a general theory of
complex systems. But this pessimism about general theory is quite compatible with optimism about
the fruitfulness of network methods.
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venerable strategy of localization and decomposition, the origins of which are found
in early modern philosophers such as Descartes and Gassendi, and which has been
extremely successful more recently in areas such as molecular biology.1> However,
certain dependence relations that help explain the behavior of complex systems
cannot be captured by this divide and conquer approach, and it is exactly these

dependence relations that network science is best suited to identify.

1.5 Organization of the Chapter

Since the mechanistic strategy for representing and explaining complex
systems dominates the philosophical literature, it will be helpful to begin with an
overview of that strategy, which I provide in the second section. Against that
backdrop, it will be easier to see what makes network science both distinctive and
novel. In the third section, I discuss the strategies of network science, and provide a
detailed example of its application. In the fourth section, I draw some
epistemological conclusions about how network science is capable of generating
good scientific explanations, and I also describe the sense in which they are good. In
the fifth and final section, I consider a skeptical position about the explanatory
power of networks, and end by providing a brief list of conditions under which

network science is most likely to be explanatorily successful.

15 In a recent paper, Daniel Nicholson (2012) argues biologists since Descartes have been using the
concept of mechanism in the study of complex phenomena. He lists some of the more prominent
biological mechanists, and discusses the various versions of mechanism they were committed to.

56



Chapter 2. Network Explanation

2 Near-Decomposability, Hierarchy, and Mechanism: The Mechanistic

Strategy for Mitigating Complexity

2.1 Herbert Simon and the New Mechanists

It is somewhat odd that most of the philosophical literature on complexity is
associated with the mechanistic theory of explanation, since, as I will argue, much of
the scientific work in complex systems has little to do with the mechanistic strategy.
[ say “somewhat odd” because there is perhaps an historical reason that
philosophers have been so focused on the relationship between complexity and
mechanism. The earliest paper on complex systems that could reasonably be called
philosophical was Herbert Simon’s (1962) paper “The Architecture of Complexity,”
which was already mentioned in Chapter One. In that paper, Simon argues that
complex systems are typically decomposable and hierarchically organized.1® In the
book that kicked off the currently popular mechanistic theory of explanation,
William Bechtel and Robert Richardson appeal directly to Simon’s work, and
explicitly agree with Simon’s claim that most complex systems have these
properties. In that book, which is entitled “Discovering Complexity: Decomposition
and Localization as Strategies for Scientific Research,” Bechtel and Richardson
ignore many of the developments in complex systems science that were just then
becoming popular. These are the systems of representation mentioned in Chapter

One, including artificial neural networks, cellular automata, and agent-based models.

16 Incidentally, these themes were discussed at great length by William Wimsatt, who was associated
primarily with the University of Chicago. Some of the most prolific mechanistic philosophers of
science today, such as William Bechtel, Robert Richardson, and Stuart Glennan are former graduate
students of Wimsatt’s, and seem to share his enthusiasm for these ideas.
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If they had considered the uses to which these newer forms of representation had
been put, it would have been far less plausible to claim, as they did, that almost all
complex systems will yield to the mechanistic strategy. Bechtel and Richardson’s
arguments are quite good as far as they go. But since they focused on a fairly narrow
set of biological phenomena to establish their claims about the norms of scientific
explanation, it is fair to say that their mistake is one of overgeneralization. Many
complex systems are neither hierarchical nor decomposable, and in these cases, the
mechanistic strategy collapses at step one.

[ want to argue that network science provides a new scientific strategy that
has very little to do with the aims of mechanistic explanation. To do this, I need first
to show why the mechanists have thought that their approach is so well-suited to
complex systems. No one has made the case better than Simon himself, and so it is to

his arguments that we now turn.

2.2 Mitigating Complexity

In that landmark (1962) paper, Simon introduced the concepts of near-
decomposability and hierarchy. Near-decomposability is the property of having
weak but non-negligible interactions between subsystems, and being such that
inter-system interactions are much weaker than intra-system interactions. Simon
gives the example of heat diffusion through a large building with many rooms, each
of which is separated by a thick wall. The rooms, furthermore, are divided into
cubicles, each of which is separated by a thin wall. Initially, there is a high degree of

temperature variation both within and across rooms. Simon asks us to assume that
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the building is a closed system, meaning that its heat exchange with the external
environment is minimal and can be ignored. When the heating system is turned off,
room temperature reaches internal equilibrium after about an hour, but building
temperature does not reach equilibrium for a day or more. At the one-hour time
scale, the temperature of individual rooms approach internal equilibria almost
independently of one another. It is in virtue of this that the system is nearly-
decomposable.

A system is said to be hierarchical when it is composed of subsystems that
are themselves composed of subsystems, and so on. In the heat diffusion example,
there are three-levels of hierarchy: building; room; cubicle. The reason the levels are
organized this way has to do with the high degree of compositional similarity among
components. For example, the walls between rooms are made to the same
specifications, and therefore have approximately the same thermal properties.
Clearly, some complex systems have additional levels of organization. The functional
components of a eukaryotic cell for example, include the nucleus, its chromosomes,
individual genes, nucleotides, and so on. Nevertheless, the simple three-level
organization of a building is fine illustration of the idea that complex systems can be
organized hierarchically.

Simon thought that near-decomposability and hierarchy are both
epistemically convenient properties, and that the scientific investigation of complex
systems ought to exploit them. Hierarchy allows us to examine one grouping of
subsystems at a time, and near-decomposability allows us to compress our

representations by ignoring redundant organization within that grouping. The heat
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diffusion example helps illustrate this. The near-decomposability of the building into
individual rooms is epistemically convenient because it provides us with
justification to ignore the interactions between rooms when calculating the time
required for individual rooms to reach equilibrium. The presence of hierarchy is
epistemically convenient because the compositional similarity among rooms
provides us with epistemic justification for simplifying the equation we use to
represent the building-wide heat diffusion. Specifically, we can compute the amount
of time the building needs to reach thermal equilibrium by multiplying the
temperature gradient between each pair of neighboring rooms by a single diffusion
coefficient. This kind of simplification not only lessens the computational burden
associated with this problem, it also allows us to model a spectrum of different wall
specifications and learn about how the thermal properties of the building vary as a

simple function of the insulating properties of its interior walls.

2.3 Simon’s Conditional

The connection between hierarchy and near-decomposability, on the one
hand, and mechanistic explanation, on the other, is revealed in a remark Simon
makes in the same 1962 paper: “If there are complex systems that are not
hierarchical and decomposable, they may to a considerable extent escape our
observation and understanding” (Simon, 1962, p. 477). In the book that inspired the
new mechanist theory of explanation, Bechtel and Richardson quote Simon’s

conditional approvingly.
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But what motivates the view that hierarchy and decomposability are
necessary for understanding complexity? In the discussion that follows the quote,
Bechtel and Richardson say that explanations, necessarily, serve to make
phenomena cognitively tractable: they make it possible for human agents to
manipulate mental models of the target system (Bechtel & Richardson, 2010, p. 229).
So the official story about why explanations of complex systems must exploit the
decomposability and hierarchy of the target systems is simply that this is the only
possible way to understand complex interactions.

This position is hard to accept at face value. We should not interpret it
literally as a demand that explanation always allow us to mentally inspect each
element in a system and examine the nature of its interaction with other elements. If
that were the case, there would be a host of counterexamples, including statistical
mechanics. Gases at equilibrium are prime examples of non-decomposable systems.
There are the many molecules, and there are the phenomenological properties such
as pressure and temperature. But no intermediary subsystems exist, and there is
therefore no empirically grounded way to break up the system into levels or
working components. Of course, we can trivially decompose the system into its
individual molecules, since their energies and momenta are largely independent.
But there are far too many molecules in a typical sample of gas for even powerful
computers, let alone human agents, to track their behaviors one-by-one. Therefore,
the idea that explanations necessarily afford human agents the opportunity to track
individual components entails that the behavior of gases is inexplicable, which is

surely incorrect.
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2.4  Why Simon’s Conditional is False

These considerations give us some reason to suspect that Simon’s conditional
is too strong. But we can also go further and challenge the truth of conditional in a
more direct fashion, as follows.

The crucial problem is that decomposition is only one method of simplifying
the representation of complex systems. Network science, as I show in the next
section, provides another method—one which is designed to work best when
decomposability and hierarchy are not present. If the systems that are typically of
interest in network science are indeed non-decomposable complex systems, then
the antecedent of Simon’s conditional is satisfied. So we can either embrace the
conditional and its unlikely consequent, or admit that there are ways of
understanding and explaining complex systems that do not depend on the presence
of hierarchy and near-decomposability. After introducing an example in the next
section, I'll show that the typical targets of network science are indeed non-
hierarchical and non-decomposable complex systems. Moreover, I'll show that
network science offers powerful methods for explaining the behavior of complex
systems, but that those methods are fundamentally different from those advocated

by the mechanistic program.
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3 The Distinctive Strategy of Network Science

3.1 Representing Networks

Network science is a systematic attempt to study properties that are hidden
in the pattern of connections among the elements that compose complex systems.1”
Whereas the mechanistic program insists on looking downward to the material
properties of the components of a system, network explanations are constrained
surprisingly little by the material properties of the system components. Moreover,
network models are topological models par excellence, in the sense that they focus
on the pattern of organization of a system in a more exclusive sense than other
topological modeling strategies such as the one illustrated by the agent-based
evolution of cooperation model in Chapter One.

The principal mathematical tool of network science is graph theory. A graph
consists of a set of points either on a plane, or in n-dimensional space, and a set of
line segments, each of which either joins two points to one another, or joins one
point back to itself (Gross & Yellen, 2006). The canonical form of graph theoretic
representation is known as an adjacency matrix, which is a matrix in which both

rows and columns are labeled by an ordered list of elements. If a connection exists

17 Of the other modeling strategies I’ve mentioned, network science is perhaps most similar to the study of
neural networks. Naturally, one might wonder what differences there are between them. One difference is
that artifical neural networks are composed of computational devices, and for networks that are capable of
learning, the weights attached to each neuron change as a function of the input it receives. Consequently,
individual neurons have their own internal dynamics to which the computational abilities of the network as
a whole are highly sensitive. The dynamical properties of individual neurons are intrinsic properties, since,
at any point in time, if all other neurons were removed from the system, those properties would remain the
same (At least in the model. The story is more complicated in biological neurons.) Another important
difference is that neural networks typically feature in explanations of computations in which input and
output data structures are clearly defined. This kind of computational input/output relation has no clear
parallel in the case of network science.
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between two elements, their intersection is marked with a 1; otherwise, it is marked

with a 0.18
0O 1 0 0 1 0
1 0 1 1 0 0
A — 01 0 1 1 1 ) ) .
01100 0 Figure 1: adjacency matrix for a 6-node graph.
1 01 0 0 0
O 0 1 0 0O 0

Adjacency matrix A in Figure 1 represents a graph with six nodes and seven
connections, or edges. The same information can also be represented in a diagram

that is easier to inspect visually.

4 Figure 2: The same system represented by the adjacency
\ matrix in Figure 1, here represented diagrammatically.

5 0\0 Vertex

[t is important to keep in mind that Figures 1 and 2 are equivalent from a
purely graph-theoretic perspective. In Figure 2, no information is carried by the
angles between lines or the spatial position of the elements. These characteristics
are chosen merely for the sake of visualization. However, once we begin using
graphs as models of empirical systems, the differences in representational format do
indeed have an influence on our psychological ability to recognize isomorphic

relations between the representation and the target system. So although there is no

'8 1t follows that unless one or more elements connect to themselves, the main diagonal will always be
empty.
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mathematical difference between the two representations, there is a significant
scientific difference. Choosing the right representations not only allows us to make
explanatory inferences, it allows us to discover the isomorphisms upon which those
inferences rest.

The information contained within graph-theoretic representations can be
used to model highly complex empirical systems. For example, each node might
represent a protein type, and each edge might represent a protein-protein
interaction that occurs in one species. Such a graph summarizes which protein
interactions depend on which others, and can yield predictions about the function of
proteins by relying on the fact that proteins with overlapping etiologies tend to have

a high degree of functional similarity. (Schwikowski, Uetz, & Fields, 2000).

3.2  Topology Influences Behavior: A Clear Case

There is a straightforward sense in which the behavior of a networked
system depends on the way in which its elements are organized with respect to one
another. One of the simplest possible examples of this dependence can be seen by

considering the star-network depicted in Figure 3.

Figure 3: A 25-node network
configured as a square lattice, and
another configured as a “star network.”
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One common network property that is often used in the analysis of complex
systems is path length. Path-length is defined as the number of edges on the shortest
path between two vertices. In Figure 3, it is easy to confirm visually that the longest
path length in the star-shaped network is two. Since every node is connected to the
central node, (other than the central node itself) one can trace a line between any
pair of nodes in two steps or less. Compare this to the lattice-like network to the
right. The path length along just one side of the lattice is four. While some path
lengths in the graph are smaller, others are larger. If we imagine that nodes
represent computers, for example, it is easy to see that information originating at
one computer can be distributed to the whole network in fewer steps in the star
network than it can be in the lattice-like network. This is just a toy example, but it
shows that the pattern of organization among the elements of a network can
influence the dynamical processes instantiated on that network. Now we’ll consider

a more scientific example.

3.3  An Influential Network Model

In the paper that might fairly be said to be the historical origin of
contemporary network science, Watts & Strogatz (1998) explore the effects of
network structure on a model of disease transmission. Throughout most of its
history, the mathematics of graphs had been considered a subdiscipline within
combinatorics, and had little impact on empirical science.1® For the most part,

mathematicians had restricted their investigations either to regular lattices (much

19 This history is discussed in Chapter Three.
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like the lattice in Figure 3), in which each node is connected to a fixed number of its
nearest neighbors, or to random graphs, in which every possible pairwise
connection is either drawn in or left blank at the flip of a coin. What intrigued Watts
& Strogatz was the empirical finding that most of the networked systems that had
been studied in the real world displayed neither of these topological structures.
Instead, empirical networks displayed irregular clustering at the local level, and
these local clusters were quite often connected to one another by means of a long-
range bridge.2? This kind of network structure had recently been discovered in
systems as diverse as the nervous system of a nematode worm, a network of actors
that had appeared in films together, and the power-grid of the Western United
States.

Because this empirical data looked so different from the kinds of graphs
typically studied in pure mathematics, Watts & Strogatz (among others) became
interested in developing algorithms to construct networks that shared some of the
statistical properties observed in empirical data.

The algorithm they devised takes as its input a ring-lattice in which each

node is connected to a fixed number of its closest neighbors on the ring.2! The

% The term “long-range” refers to path-length in a graph-theoretic space, rather than a physical metric. The
idea can be expressed intuitively in terms of a social network. In a graph of my social network, the set of all
my friends are represented as being one unit removed from me. The set of all the friends of my friends
(who are not also friends with me directly) are represented as being two units removed from me, and so on.
A long-range connection is one that directly connects two nodes that were previously separated by a long
path (relative to the global average).

21 The ring-format of the lattice was chosen for computational convenience, and is not meant to have
any representational significance. In graphs that have end-points, the algorithm must include an
additional step that gives instructions specifically for the end-points, and such special-case
instructions often have no clear empirical interpretation.
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algorithm then considers each edge in turn, choosing with some fixed probability to

rewire it to a new, randomly selected node.

S
Vs cessasas
(O

Figure 4: (a) close up of lattice construction in which each node is
connected to its 6 nearest neighbors (b) small version of the
complete ring lattice; (c¢) ring lattice with new edges added at
probability 0.2 to a randomly selected new node.

Watts & Strogatz decided to use this model to study how patterns of
connection among people might influence the spread of a disease.?2 To do this, they
adapted one of the traditional epidemiological models of disease spreading to fit the
network context. That model is known as the SIR model of disease spreading, which
can be expressed as three differential equations in which a population is divided
into susceptible (S), infected (I), and recovered (R) compartments. These quantities
vary as a function of time, but are conserved, such that S(¢)+I(¢t)+R(t)= N, where N is
the total population size. One infected person is introduced into a susceptible
population, and the disease then spreads to other people along the edges in the

network. After a fixed number of time steps, each infected person is moved into the

2 They also studied how the structure of networks influences the interactions of models of rational agents
using the Prisoner’s dilemma. Although the results of this initial work also led to a huge amount of
subsequent study, I am focusing on the epidemiological aspect of their work to avoid the complications of
modeling rational decision-making processes.
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recovered compartment, and then enjoys a fixed period of immunity before

becoming susceptible once again. The three equations that comprise the model are:

(1) dS/dt= R -pSI,
(2) dl/dt = SI - ¢,
(3) dR/dt =yl - SR,

where parameter f3is the rate at which the infection is transmitted, parameter yis
the (memory-less) rate of recovery, and parameter ¢ is a fixed period of immunity
acquired after recovery.2? By varying these biological parameter values, one can
represent a variety of different diseases.

One of the assumptions of the traditional SIR model is that the population is
randomly mixed. This assumption allows us to model the transmission probability g
as a uniform random variable, each value of which describes the proportion of the
population that becomes infected at one time-step in the computer simulation. This
idealization, which is known as ‘the homogenous mixing assumption,’ is nearly
equivalent to the hypothesis that the probability of coming into contact with a friend
or neighbor is the same as the probability of coming into contact with someone
randomly selected from the population. I say “nearly equivalent” because traditional
compartmental models do not represent individual disease transmission events

explicitly, so it is false, strictly speaking, to say that the model describes

2 Here I am following epidemiological practice by referring to the model parameters as “rates.” In fact they
are just proportions and do not literally have a temporal component.
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probabilities that are attached to individual transmissions. The value for § can be
more accurately thought of as the average number of infection opportunities
experienced by the whole population during a given time interval (Bansal, Grenfell,
& Meyers, 2007). However, when we constrain the disease to spread along a pre-
drawn graph of the population structure, S ceases to be a uniform random variable
and becomes instead a vector quantity that summarizes at each time step precisely
which contact opportunities exist.24 Of the list of all infection opportunities, only
some will result in a successful transmission, and this ratio represents the
transmission probability of the disease in a more fine-grained way than was
possible under the homogenous mixing assumption. Moverover, since this ratio can
be estimated from epidemiological data, the network science implementation of the
SIR model is often more accurate.

[t is worth pausing here to notice that we now have a good example of what
is meant by the claim that network science involves the explicit representation of
each component in a system. At each time step, the vector quantity version of the
parameter £ assigns a number to every person in the population that is connected to
anyone in the current members of the infected group 1.

[t turns out that the dynamical properties of diseases, as represented by the
SIR model, are highly sensitive to this population structure, as represented by the
vector quantity version of . This makes some intuitive sense. We might suspect

that the dynamics of a disease spreading process would be different in an urban

24Tl use the term “population structure” to describe the topology of the relevant biological
population. Some texts use the term “contact structure” because the set of relevant contacts -
instances of physical proximity between two organisms that make transmission biologically possible
- changes for each population/disease pairing.
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area packed full of people than it would be in a rural area in which large crowds are
rare. The beauty of the Watts-Strogatz model is that it allows us to explore the
impact of the organization of the population on the disease dynamics in a

quantitative way.

3.4  What the Watts-Strogatz Model Explains

What can be learned about real disease behavior from the Watts-Strogatz
model? I will focus on just one lesson that involves two simple network properties.
The first property is called the global path length. The definition of path length
provided above described a relation between two nodes: the number of edges found
on the shortest path between them. Global path length is a generalization of this
idea. It is defined as the average path length over all pairwise combinations of nodes
in the graph. The second property is called the clustering coefficient of the graph,
and it can also be defined as a generalization over a more local property. The local
clustering property can be described intuitively by means of an example.

Write down a list of your friends on Facebook. Then look and see how many
of those people are friends with one another. If there were k people on the list, then
the maximum number of possible friendships between people on the list would be
k(k-1)/2.Your personal clustering coefficient would be the proportion of that
number of allowable connections that actually exist. In other words, it is a measure

of how many of your friends are also friends with one another directly.

be either closed or open, depending on whether there exists a direct link

v Figure 5: a subgraph of a friendship network. The path from u to w via v can
. between u and w.
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In Figure 5, node v is connected to nodes u and w, so there exists a path from u to w
in the network via v. If u and w are also connected, we say that the path between u
and wvia v is closed. The global property corresponding to local clustering, which
we call the clustering coefficient of a network, can be defined as the ratio of closed
paths of length two to the set of all paths of length two. This gives us a measure of
how many three-node combinations form closed triads. Empirically speaking,
therefore, clustering is a measure of the cliquishness of a population.

Real human populations are highly clustered. Theoretically, high degrees of
clustering should prevent the disease from reaching a large proportion of the total
population quickly. High levels of clustering mean that the possible routes of disease
transmission are highly overlapping, so that a given chain of transmission is likely to
follow a closed loop back to one of the already infected individuals, rather than a
new, susceptible individual. When the disease follows closed loops like this, its
impact on the population as a whole is severely weakened, since people who are
already infected do not suffer any more for having been exposed a second time.2>

Watts & Strogatz found empirically, however, that many networks had very
short global path lengths despite the fact that the clustering coefficient remained
high. This means that the number of transmission events required to traverse from
any one node in the graph to any other was quite small. This was unexpected

because in both the random graphs and the lattice-like graphs that were known to

25 This is of course another idealization that is applicable to many, but certainly not all diseases.
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mathematicians, large clustering coefficients are always associated with large global
path lengths, and small clustering coefficients with small global path lengths. By
contrast, in the empirical data sets Watts & Strogatz inspected, they observed that
clustering coefficient and path length were very often anti-correlated. The Watts &
Strogatz algorithm was designed to construct graphs that matched the empirical
data in precisely this respect. The graph construction algorithm provides a way of
exploring the mathematical space in which the clustering coefficient and the global
path length come apart systematically.

Watts & Strogatz found that these two properties come apart much more
readily than expected. As the random, potentially long-range connections are
introduced via the re-wiring process, the path length of the resulting graph drops off

precipitously while the clustering coefficient hovers near its maximal value.
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Notice that the x-axis in Figure 6 is plotted logarithmically so that the
extremely steep descent into the low path length/high clustering regime is made

visible. This shows that the introduction of only a very small fraction of long-range
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connections has a radical impact on the path-length, but very little impact on the
clustering coefficient. Since path length can be thought of as a kind of distance
(albeit not a metrical distance), and since most of the graphs described by Figure 6
have a small path length, Watts & Strogatz named the phenomenon the small-world
property, a term that has since gained prominence both in scientific and popular
circles.

How does this relate to disease spreading? In a random graph, diseases can
spread very quickly because the global path length is small. Specifically, it is about
In(n)/In(k), where n is the number of nodes in the graph, and k is the number of
initially connected neighbors. Since it only takes a small number of long-range
connections to turn a highly clustered graph with high path length into a small
world with low path length, one might expect that very small perturbations to the
population structure might have an enormous impact on the dynamics of a disease.
Indeed, Watts & Strogatz observed that the very fast rate at which path length drops
off results in surprising sensitivity of disease dynamics to increased rewiring
probability. In particular, the value of S required for the disease to reach half the
total population, (a quantity they call rhair) drops off steeply with increasing

rewiring probability.
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The x-axis in Figure 7 is again plotted logarithmically so that the steep drop
of the rharr rate is visible. The figure shows that a very small percent change in the
number of long-range disease transmission events makes diseases with low critical
infectiousness rates, which are otherwise easily contained, capable of generating
massive epidemics. Moreover, these results carry implications for intervention
strategies such as vaccination. Watts & Strogatz themselves interpret their results as
evidence that if a disease can escape the quarantine-like effects of clustering early
on in the spreading process, it will be able to spread just as easily as if there were no
clustering at all.

The Watts-Strogatz algorithm was intended to produce a class of graphs that
shared just two statistical properties that were found in a wide variety of empirical
data sets. In most other respects, the model is extremely idealized, and by itself is
not sufficient to predict the dynamics of a specific historical epidemic. Nevertheless,
the model has considerable explanatory value. Consider the why-question: why do
diseases sometimes move so quickly through a population? There are many answers
to this question, but until the Watts & Strogatz paper, they all incorporated

information about the biological properties of infectious diseases. In other words,
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they all incorporated information about the values of the parameters in the
compartmental model described above. Perhaps the most basic and straightforward
response to a question of this kind cites the fact that the degree of infectiousness of
the disease happens to be above some threshold value. In particular, it cites the fact
that a quantity called the basic reproductive number is greater than one. The basic
reproductive number (usually written “Ro”) is a measure of the average number of
new infections at each time step, and can be calculated (approximately) as the ratio
of two biological parameters, 5/y. The Watts-Strogatz results provide an entirely
different answer that is based on the way the population is organized, rather than
the biological details, and thereby provides an entirely new way of understanding
the empirical situation. The why-question might be answered in the format of a

deductive explanatory argument as follows:

(1) The dynamics of real epidemics depend heavily on population structure.

(2) Measured populations have the small-world property.

(3) The small-world property leads to fast disease spreading, despite the
presence of high clustering coefficients.

(4) Therefore, many real diseases can spread rapidly despite high degree of

clustering in the real population.

A few words should also be said about the justification behind each of the
premises in the Watts & Strogatz argument. The first premise is supported by our
background knowledge about the spatial limitations of disease transmission. For

example, epidemic dynamics would not depend so directly on population structure
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if an airborne virus could travel miles through the air between infections. It is well
known, however, that disease transmission depends on close physical proximity,
even for the most virulent airborne viruses. Since the details of which hosts are
physically proximate to which potential contacts make a difference to the ability of a
disease to spread, the larger population structure, which reflects the distribution of
those details, will also make a difference to disease dynamics.

The second premise comes directly from epidemiological survey data; that is,
it comes from observation, and is therefore reasonably uncontroversial. However, it
is quite important to note that this observation only became an epistemic possibility
once the graph-theoretic tools of network science became available. The very
concept of small-worldness is one that arises from the study of graphs. Moreover,
small-worldness is a property that is always first located in a representation: the
sense in which we can say that a real population has the small-world property is
always derivative of the fact that the small-world property obtains in some
representation of that population.2é

The third premise is one that describes the results of studying the model,
rather than the results of an empirical investigation. So, although premise three
contains the term “disease spreading,” we should be careful not to identify disease
spreading in the model with disease spreading in the real world. Nevertheless, if
premise two is true, and the Watts & Strogatz model accurately describes typical

epidemiological populations, then premise three allows us to reason productively

26 The sense in which a real epidemiololgical population can be said to have the small-world property
is discussed in more detail in Chapter 5. The reason for postponing this discussion is that it is
intertwined with some metaphysical issues that are first introduced in Section 5.
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about a genuine dependence relation in nature between population structure and
disease dynamics. Without the graph-theoretic representational apparatus that
Watts & Strogatz provided, we had no way of systematically investigating this
dependence relation. Given the fact that disease dynamics depend on population
structure in the model, and given the isomorphic relationship between the model
and epidemiological populations, we can infer that real disease dynamics depend on
the structure of real epidemiological populations.

At this point, we can also show that the Watts & Strogatz argument satisfies
the definition of topological explanation that was presented in Chapter One. Recall
that an explanation counts as a topological explanation just in case (i) it is a sound
deductive argument, (ii) it establishes an isomorphism between the pattern of
organization of components and some representational apparatus, (iii) some higher-
level property is inferred from that representational apparatus, and (iv) that higher-
level property maps onto the empirical target property. In this case, the target
system is the epidemiological population, and the representational apparatus is the
graph that is constructed by the Watts & Strogatz algorithm. The small-world
property is inferred from the graph, and has, moreover, a clear empirical
interpretation in the real population. Namely, the epidemiological population is
organized in such a way that a disease must on average make its way between a
small number of people to get from one person in the population to another. Once
we have demonstrated that this organizational property obtains in real populations,

it is then easy to see why diseases can spread so quickly through a highly mobile
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population, and why it is necessary for quarantine efforts to be mobilized very

rapidly.

3.5  Abundant Representation and Sparse Representation

Now that we have seen a classical example of network science research, we
can make two observations about its methods. First, and most generally, notice that
there is one sense in which network science representations are abundant and
another sense in which they are sparse. Graphs are abundant representations in the
sense that every element in the system is represented explicitly, as is every pairwise
interaction between elements. In the example shown in Figure 1, the system in
question contains only six elements. But since the number of matrix elements grows
as the square of the number of system elements, these representations are subject
to combinatorial explosion. In one of the first large-scale, network-oriented studies
of protein-protein interactions in humans, Rual et al (2005) studied the interactions
between 8,100 protein types, creating a space of over 65 million possible
interactions. It is this capacity of graphs to explicitly represent every possible
pairwise interaction between elements that sets it apart from other forms of
representing complex systems.

The sense in which graph-theoretic representations are sparse is that they do
not admit of distinctions between kinds of connections. In the Watts & Strogatz
model, the only kind of connection considered between elements is disease
transmission. The sparse nature of graph-theoretical representations is precisely

what makes them useful despite the combinatorial explosion that is introduced by
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the inclusion of every inter-element interaction. By representing only one kind of
connection, scientists are able to create statistical summaries of the distribution and
patterning of connections without getting bogged down in questions about which

connections are to be grouped with which other connections.

3.6  The Fixation Condition

The second, and more important observation to be made about the methods
of network science concerns the meaning of the phrase “pattern of connections.” In
Section 1 it was claimed that the methods of network science bring the pattern of
connections in a system to the fore, and that this is in contrast to more traditional
methods in which the pattern of connections is averaged out. In the non-graphical
version of the SIR compartmental model, interactions among individual elements in
the system are represented by a uniform random variable: at each time-step in the
simulation, digital dice are rolled to determine how many additional infections are
successfully transmitted in total. Here, representation remains entirely at the
population level, so that none of the heterogeneity of real population structures can
be taken into account. In the network version of the model, dice are rolled at every
edge connecting a susceptible to an infected, and this requires that the pre-existing
pattern of contacts be represented explicitly. The rewiring probability p is a variable
that represents the structure of the population, and each of its values represents one
possible pattern that the collection of inter-element interactions might instantiate.

There is a more general way of saying what it means for the pattern of

connections to be represented explicitly. On each simulation trial, the graph retains
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the same number of nodes and the same number of edges. If, in addition to holding
fixed these two properties, we also hold the biological parameters fixed, our
explanatory variable p remains, nevertheless, free to vary. This thought leads to a
concise explication of the idea that the pattern of connections is represented
explicitly. The property of interest will be a “pattern of interaction” in the sense
intended here iff holding fixed (i) the number of components (ii) the number of
interactions and (iii) the kind of interaction (i.e. the quantities that describe
individual interactions) is not sufficient to fix the value of the explanandum variable.
Call this criterion the fixation condition. Compare a system like the population
structure of a biological population with a more traditional many-element system
like the particles of gas in an enclosure. In the epidemiological case, the macoscopic
property of interest—the rharr rate, for example—changes as a function of some
measure of the specific pattern of interaction among elements. In statistical
mechanics, the macrostate variable of interest—such as the internal energy of the
system—is given by the weighted mean of the energies of all microstates.?”

The focus on the pattern of interactions among the elements in a system,
rather than their average behavior, brings out one other salient epistemological

contrast between network science and more traditional methods. Typically,

27 Specifically, where U is the internal energy of the macrostate, E is energy of microstate i, and p is
the probability that the system will visit microstate i in its actual trajectory through state space, we
have:

N

U=(E)= 3 pE

Here, specific patterns of interaction are literally averaged out in the sense that the macrostate
property is computed by taking a weighted average over microstate properties.
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methods of idealization and simplification are used to mitigate or remove
complexity from a system altogether. The goal is to construct a model that is itself
no longer complex (and therefore hopefully tractable), but which nevertheless
remains empirically adequate. By contrast, in network science, the very properties
in virtue of which the system is complex - the peculiar pattern of interactions
among its elements - is embraced and made to do explanatory work. The idea that it
is possible to exploit complexity rather than idealize away from it is one of the
central themes in the explanation of complex systems.

In what follows, I will consider what light the foregoing claims about network

science shed on our ability to understand and explain complex systems.

4 Network Science Explanations Cannot Be Reproduced By Traditional

Scientific Methods

4.1 Epidemiological Populations Are Complex

Recall that Herbert Simon’s conditional claim says that if there exist non-
decomposable, non-hierarchical complex systems, they may remain beyond our
comprehension. Of course, if we interpret the word “may” in Simon’s conditional
very loosely, then the claim is not very interesting. Just about any phenomenon
“may” turn out - for some contingent reason or other - to escape our
comprehension. Clearly, Simon meant something more restrictive than this. So,

while noting that Simon expressed the point in his characteristically careful and
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conservative manner, [ want to consider the somewhat stronger claim that if there
exist non-decomposable, non-hierarchical systems, they will remain beyond our
comprehension. If we can show that the typical targets of network science
research—such as the kind of epidemiological population that Watts & Strogatz had
in mind—are both complex and non-decomposable, and we can also show that
network modeling provides some genuine understanding of such systems, then this
stronger conditional is false.

We know that the Watts-Strogatz model is itself a complex system because it
was designed with the signature of complexity in mind. Recall the discussion of in
Section 2. Complex systems are characterized by a large number of components and
a set of behaviorally significant relations between those components that are
neither completely random nor completely ordered. (Recall that this definition
closely mirrors Simon’s own definition put forward in the paper in which his
conditional claim is made.) The Watts-Strogatz algorithm takes a completely
ordered system as input, and manipulates it by introducing random variations in its
structure. Those variations only result in a random system at the extreme when the
rewiring probability is maximal. For the vast majority of rewiring values, therefore,
the output of the Watts-Strogatz algorithm yields a system that is neither random
nor completely ordered. More importantly than this, the real epidemiological
populations described by the model are also complex. This follows from premise
two, which says that measured populations have been shown to be isomorphic to
the graph described. The evidence for this claim comes from fairly complicated

epidemiological survey methods, which of course should be subject to scrutiny.
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However, the scientific methods that are used to gather that evidence have little to

do with network science proper, and, so for present purposes, must be left aside.

4.2 Networked Systems Are Non-Decomposable

In order for human epidemiological systems to be relevant to assessing
Simon’s conditional claim, we need to show that, in addition to being genuinely
complex, they are also non-decomposable.

To see that the Watts-Strogatz model is non-decomposable, we can examine
the various components of the model and check whether any of them meet the
criteria for decomposability (or near-decomposability). The obvious candidate is the
individual node. It is immediately clear, however, that decomposition into individual
nodes is trivial. The point of the decomposition strategy is to free us from the need
to represent every element explicitly. Decomposition into nodes is therefore no
decomposition at all.

As a second option, one might look to the dynamical aspect of the Watts-
Strogatz model, rather than the graph itself. In particular, the three SIR
compartments (susceptible, infected, and recovered) suggest themselves as natural
units of decomposition. This proposal fails however, because the key property
required for decomposition is not present: the SIR compartments are not
statistically independent of one another. Since the size of the whole population is
conserved, any change to one compartment necessitates a corresponding change in
another compartment. Each event in the model is equivalent to an individual

“moving” from one compartment into another. Changes in the size of the infected
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compartment are anti-corrleated with changes to the size of the susceptible
compartment, and the growth of the infected compartment is highly correlated with
the growth of the recovered compartment.

From this we conclude that the example above is both complex and non-
decomposable. Similar considerations show that the system cannot be hierarchical.
The contact network is similar to a volume of gas enclosed in a container in that it
has phenomenological properties at a higher level, and individual elements at a
lower level, with no subsystems at an intermediate perspective. There is nothing in
the model that corresponds to the distinction in Simon’s thermodynamic example of
rooms versus cubicles. The variables we have pinpointed—clustering coefficient
and global path length—reflect the global pattern of organization among the

elements in the system, rather than any discrete level in a hierarchy.

4.3 Network Properties Are Explanatorily Relevant

The comparison between the star network and the square lattice at the
beginning of the previous section provided a maximally simple illustration of the
way in which network properties can influence or constrain dynamic behavior. The
star cluster makes it obvious that there is some kind of dependence relation
between system topology and system behavior. Our task now is to confirm that that
dependence relation is explanatorily relevant.

This task is philosophically old hat. Ever since causal models of explanation
began to gain prominence as alternatives to subsumption-based accounts, the idea

that to explain is to cite certain kinds of dependence relations between properties or
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events has been standard fare. Equally standard is the idea that not all dependence
relations are equal. Some dependence relations are more explanatory than others,
and there is a popular, although not universal view, that some dependence relations
are explanatorily impotent. As a result, the history of philosophical work on
explanation over the past forty or so years is one that is largely concerned with two
normative prescriptions. First, locate some dependence relations. Second,
demonstrate that these dependence relations, more so than others, are relevant to
the explanation of the target phenomenon of interest.

The two most prominent criteria of explanatory relevance are the
probabilistic criterion and the counterfactual criterion. The probabilistic criterion,
due originally to Hans Reichenbach and developed to particular effect by Wesley
Salmon, goes as follows. For two variables A and B, P(A/B) > P(A). In our case, the
relevant inequality is this: the probability that variable rhartakes on a certain value x,
given information about the fraction of disease transmissions that are long-range, is
greater than the unconditional probability that variable rnartakes on value x.

It must be admitted that it is difficult to provide an empirical interpretation
of these probabilities since the rnarrate of a given disease cannot be observed
directly. Nevertheless, it is clear that within the confines of the model, the
proportion of long-range connections in the population structure carries a lot of
information about the rhasrate. Moreover, model-fitting studies show that
information about the population structure does, under many conditions, improve
the accuracy of models when they are used to retrodict historical epidemiological

data (Bansal et al., 2007). So we have some reason to believe that information about
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the structure of real populations carries information about the rnarof real diseases,
whatever the actual value may be.

The other well-known criterion of explanatory relevance is counterfactual: if
variable 4 had not taken value g, then variable B would not have taken value b.28
One of the counterfactuals prompted by the explanatory argument in Section 4.5 is
this: if human population structures did not typically have the small-world property,
then epidemics would not spread as quickly as they typically do during the early
stages. This counterfactual is almost certainly true. If we could somehow intervene
on the population in such a way as to lower the path-length of the population
structure, an epidemic would have fewer opportunities to spread. Alone, such an
intervention does not necessitate that every disease would spread more slowly.
(Imagine a situation where a bacteria is willingly introduced into the country’s
water supply en masse. In this case, person to person contact of the relevant
biological kind would no longer be the primary means by which the disease is
transmitted, so population structure would make little difference to the speed with
which the disease spreads). However, if the intervention were “surgical” and all
biological factors were held fixed, it would be mathematically impossible for the

epidemic spread as quickly as it would have without the intervention.

4.4  Summary of Section 4
Let me summarize what has been achieved thus far. First, it was shown that

the targets of network science are genuinely complex systems.

28 One such account, due to Hitchcock & Woodward (2003), is used to introduce some arguments
concerning the nature of explanatory depth in Chapter Four.

87



Chapter 2. Network Explanation

Second, it was shown that the targets of network science are at least in some cases
non-decomposable. Since the mechanistic strategy for representing complex
systems assumes decomposability in some form, the network strategy cannot
simply be counted as yet another method for discovering mechanisms. This point is
reinforced, moreover, by the discussion at the end of Section 4 in which it was
pointed out that network science methodology exploits the properties in virtue of
which systems are complex, whereas the mechanistic strategy attempts instead to
remove or idealize away from those properties.

Finally, we have also seen that the kinds of explanatory generalization
appealed to in network science satisfy popular philosophical criteria for explanatory
relevance. Together, these claims show that the strong version of Simon’s
conditional claim is false. It is indeed possible to gain some understanding of
complex systems even if they are non-decomposable.

More importantly, these claims allow us to evaluate the main claim I made in
Section 1: that network science deserves to be taken seriously as a novel paradigm
for the study of complex systems. Since the strategy behind network science has
been shown to be both epistemologically sound and genuinely distinct from the
predominant mechanistic strategy, the claim that it provides a novel paradigm for

the study of complex systems has been at least partially vindicated.

5 Metaphysics and the Limits of Network Science

5.1  Assessing the Limits of Network Science
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Thus far, my assessment of network science methods have been quite
positive. As with all new intellectual trends, however, we should be wary of over-
enthusiasm. It is therefore prudent to pose the question: under what conditions
should network science not be applied?

As far as I can tell, the only place this question has been addressed directly is
in a recent philosophical paper by Alan Baker (2012). There, Baker focuses not on
the methodological strategy network science offers, but on the metaphysical status
of networks themselves. The position he defends is subtle. On the one hand, Baker
acknowledges that the adoption of graph-theoretic concepts has led to genuine
empirical insights. On the other hand, he is reluctant to conclude that the methods of
network science have much explanatory promise. Baker provides a number of
reasons for his skepticism, but the most important of them is the idea that the
empirical targets of network science do not typically bear the signature of a unique
network structure. The network properties we identify in complex systems are very
often dependent upon conventional definitions of the relations in which we are
interested. These conventional definitions almost certainly reflect the biases of our
peculiar conceptual scheme, rather than any objective, underlying system
organization. If there are no objective (as opposed to conventional) facts about
which connections are instantiated, then there are equally no objective facts about
the presence or absence of network structure in any given empirical system. (This
problem is particularly salient in the social sciences, where it is more difficult to

assure ourselves that the properties of interest are not defined at least partially on
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the basis of convention.) Baker underscores this point by illustrating just how

fanciful network connections can sometimes be.

Consider the relation, defined between people, of having at least three
letters in common between their respective last names. There is no problem
in principle with drawing up a network where people are linked in virtue of
this relation holding. Or consider a network in which people are linked
together if they share a favorite color, animal, or ice-cream flavor. Such
networks might have interesting topological properties, and thus (perhaps)
repay mathematical investigation. But there remains a strong suspicion that
we would not thereby learn anything interesting or important about the
world from such networks. Why not, exactly? The obvious answer is that we
have not picked out genuine connections. But this in turn suggests that not

every definable relation should count as a connection.

Baker suggests that because not every definable relation should count as a
network connection, we ought to identify criteria that distinguish between genuine
and non-genuine kinds of connection. He offers two preliminary versions of such
criteria. The first says that genuine connections must be natural in some sense. At
first glance, the difficulty with this criterion is that some of the most prominent and
apparently successful applications of network science have been directed at
artificial systems. Baker realizes this, and in a footnote stresses that he does not
mean to construe natural as that which is entirely unrelated to human constructs.
He also weakens the criterion to include cases in which an artificial kind is used as a
proxy measure for some distinct kind that is natural. As an example of this, Baker

cites the use of a cell-phone data to measure the properties of the underlying social
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network—a phenomenon that he takes to be at least plausibly natural. However,
even this weakened criterion is questionable. Network science has shed light on the
behavior of thoroughly artificial systems in ways that cannot be fairly construed as a
mere proxy for some other, less artificial connection. For example, to explain why
Google’s Page-Rank Algorithm is capable of searching the web more efficiently than
its predecessors, it is necessary to cite the measured topology of the World Wide
Web, which is an uncontroversial case of an artificial system, and one that does not
serve as mere proxy for some more fundamental or more natural system (Mitchell,
2010).

Baker’s second criterion also runs into difficulties. It says that genuine
connections are, by definition, relevant to the prediction and explanation of the
behavior of the nodes.?? This formulation unnecessarily restricts the explanatory
scope of network science. As we saw in the previous section, network science
methods are well-suited to the explanation of global behaviors. This is not to deny
that network science can also be used to understand local behaviors, but it does
show that Baker’s formulation of the difference-making criterion is overly narrow.

At this point, it would be reasonable to continue Baker’s project by refining
or replacing the preliminary criteria he offers.3? But we should first consider
whether there might be a deeper problem associated with the presumed distinction
between genuine and non-genuine networks. One reason to suspect such a problem

can be seen in Baker’s own example of a network defined by the connections

29 Presumably, he means the behavior of the system elements that are represented by nodes in a
graph.

30 It must be emphasized that Baker suggests these criteria only as rough guidelines, intended to give
us some idea of how to get the analysis off the ground.
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between people whose last names share exactly three letters. It is clear from the
quoted passage that Baker chose this example because it appears to be a
paradigmatically trivial, non-genuine kind of connection. However, it is not hard to
imagine an empirical situation where precisely this kind of network analysis
provides the means by which expedient, useful, and true inferences can be drawn.
Imagine a message-passing game in which messages can be passed from person A to
person B iff A’s last name shares exactly three letters with B’s last name. We might
want to know, for example, whether it is possible for a message to be passed
through the game network in such a way that it traverses every path just one time
and then completes its path by returning to the originator of the message. Whether
this message-passing trajectory is possible is clearly an empirical question, the
answer to which depends on the topology of the network. Some readers will have
noticed that the question just posed is equivalent to the question of whether an
Eulerian path exists on the game-network. We could stipulate a further condition in
this game such that if a pair of last names share six letters (rather than just three),
then two paths (rather than just one) exist between the people to whom those
names refer. Keeping in mind the current popularity of the choice to create
hyphenated last names after marriage, imagine a multicultural family gathering in
which the message-passing game is played by a group with the following last names:
Sun-Lee, Sun-Niv, Bar-Cox-Niv, and Sun-Lee-Bar-Cox. | leave it as an exercise to the
reader to verify that the network that this set of family names instantiates
(according to the construction principles just specified) is isomorphic to Euler’s

Seven Bridges of Kénigsberg Problem, which is discussed in Chapter Three. As is
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well known, no Eulerian circuit exists on such a network. The answer to the
question posed above is therefore negative for this instantiation of the game.31

As Baker and others have agreed, the Konigsberg Bridge case is precisely the
kind of problem that graph theory can help to illuminate (Baker, 2012; Pincock,

2012).

5.2  Reification of Networks

Perhaps there is a sense in which the last-name network is trivial. But if
representing the problem in this way leads to explanations that are both
straightforward and true, then it should not be discounted lightly. This observation
can be turned into an argument designed to cast doubt on Baker’s distinction

between genuine and non-genuine kinds of connection.

(D For any allegedly non-genuine connection kind, it is possible to construct
an example in which true explanatory inferences can be made by
representing the problem in terms of that connection kind.

(2)  Iftrue explanatory inferences are made in terms of a connection kind,
that connection kind is genuine.

(3) Therefore, all allegedly non-genuine connection kinds are possibly

genuine connection Kinds.

Premise (1) is not obviously true, but it is motivated by the message-passing
example. It is not hard to think of an analogous case in which favorite ice-cream

flavor is the relevant connection kind. Given that these two examples are

31 Euler’s explanation of this fact is presented and discussed in Chapter Three.
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straightforward to overcome, it is reasonable to suppose that the trick could be
reproduced in other cases. Premise (2) presumes an analysis of what it is to be
genuine that Baker might disagree with. It is motivated by the idea that we should
use the concept of genuine connection kind—as Baker seems to do—to determine
which applications of network science methods are legitimate. [ simply assume here
that if a representational format licenses true explanatory inferences, and if it does
so more expediently than other known forms of representation, then we should
count its application as legitimate.

The conclusion of the argument shows that insofar as a distinction between
genuine and non-genuine connection kinds exist, it cannot support much
metaphysical weight: there is nothing necessary about being a genuine connection
kind, and there is therefore also nothing necessary about being a genuine network.
More precisely, the information that a system s, defined in terms of connection-type
C, can justifiably be represented by a graph-theoretic representation, is not, by itself,
a good reason to think that system s is a network of type C. Networks, and network
properties, are representational phenomena that are to be deployed wherever they
happen to be inferentially and explanatorily useful. They are not, as Baker seems to
suppose, designations for objective empirical kinds.

This claim brings us back to a point that was made briefly about the sense in
which epidemiological populations can be said to have the small-world property
only in a derivative sense. Since networks and network properties are
representational phenomena rather than empirical phenomena, it is false, strictly

speaking, to say of a real epidemiological population that it has the small-world
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property. To insist upon a literal interpretation of this claim is to confuse a body of
mathematics with the features of the world that that body of mathematics is
intended to represent. Despite this, it is very natural to make claims of this kind, and
a charitable interpretation of their meaning is not hard to find. Claims that an
empirical system has the small-world property (or some other network property)
are best viewed as elliptical for the more sensible claim an empirical system is
isomorphic to some representational apparatus, and that that representational
apparatus has the small-world property.

This way of thinking about networks, and about topological explanations
more generally, has many interesting implications, and some of them are discussed
in Chapters Three and Four. Here, I only want to emphasize that the
representational status of network properties should not be interpreted as a reason
for thinking that network science methods are explanatorily impotent. The

arguments in Sections 3 and 4, are I hope, sufficient to establish this conclusion.

53 Epistemic Guidelines for Network Science

Although Baker expresses deep skepticism about reifying networks, the ontic
orientation of his presumed distinction between genuine and non-genuine networks
suggests that at least some networks literally are empirical systems, rather than
representations of them. The metaphysics of Baker’s orientation toward network
science leads him to think of the epistemology behind network science in a very

traditional way. On Baker’s view, the epistemological problem faced by network
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science is one of determining whether a system s falls under a kind F. If it does, and
if we have established that all Fs are Gs, then we come to learn that s is G.

As I have argued, it is preferable not to reify networks in the way Baker
supposes, and instead to think of network phenomena as representational. The
metaphysics of my orientation toward network science leads me to think of the
epistemology behind network science in a very non-traditional way. On my view,
the epistemic norms behind network science have to do with figuring out which
kinds of questions can be answered truthfully and expediently by means of graph-
theoretic representation, regardless of the whether that representation licenses the
application of generalizations like all Fs are Gs.

This non-traditional epistemological outlook can be given a bit more
substance by indicating a few specific epistemological guidelines that network
scientists ought to follow when applying network models. First, network science
models are best used to address systems that, at some level of analysis, are fairly
homogenous in terms of the connections between components. Network science
methods are particularly good at representing interesting global properties of a
system in large part because they suppress information about local differences.
Second, the network properties in question must be explanatorily relevant to the
behavior in question. Unlike Baker, I do not suggest that the behavior must be
localized (although there are examples of this, such as the question of why a
particular species in an ecosystem is the keystone species. Here the topology
answers a question about an individual.) Third, the criteria of individuation must be

reasonably precise. If we do not have a reasonably good understanding of how to
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detect whether a connection is present or not, then any network we draw will be
unreliable for making inferences.

This last criterion brings me to a final remark about the relationship between
mechanistic approaches to complex systems and the network approach I have
outlined here. Mechanistic approaches are often necessary when the elements that
compose a system are not yet well-understood. But in epidemiology, sociology,
computer science, and other areas, we have quite a lot of mechanistic knowledge
about individual interactions because they are either visible (paying for milk at the
grocery store is a paradigmatic economic exchange) or constructed by us (we
construct the circuit boards that execute computations). But partly because that
kind of knowledge is relatively unproblematic in comparison with other scientific
concerns, we can let it to fade into the background. We often take that kind of
knowledge for granted in the sense that it does not always need to be explicitly
represented when we construct explanations that at least implicitly depend on it. It
is in part because we already have an intimate mechanistic knowledge of these
kinds of interaction that we are in position to know that certain details can be left
out (for certain purposes). What does the real explanatory work instead is the

pattern of interaction among a system’s many component.
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Chapter Three

Justifying

Topological Explanations

1 Introduction

In Chapter One, it was argued that pattern-centric systems are difficult to
explain because the dependence relations that are explanatorily significant in such
cases cannot be captured by traditional forms of idealization for many-body systems.
In Chapter Two, it was argued that new techniques in the field of network science
have yielded a general methodological strategy capable of overcoming those
difficulties. Because that strategy involves the explicit representation of every inter-
element interaction, its employment requires the use of reasonably powerful
computational resources. Whereas traditional forms of idealization compress our
representations so that combinatorial explosion can be avoided, the strategy
discussed in Chapter Two embraces and in fact relies upon the combinatorial

explosion that is incurred by its own exhaustive representational format. It is only
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by searching through the large space of inter-element interactions that the relevant
topological dependence relations can be identified.

Given the abundant nature of this kind of topological representation, it is
tempting to conclude that models of complex, pattern-centric systems have
managed, through the use of computers, to dispense with idealization altogether. In
fact, however, such models merely dispense with one particular variety of
idealization, and rely quite heavily on another. Moreover, this alternative form of
idealization turns out to be quite radical. In this Chapter, my goal is to discuss this
alternative form of idealization, and then to draw out some of its most striking
consequences. One consequence in particular occupies center stage, and has to do
with the justification we have for applying scientific models to the world. Roughly,
the idea is that many models seem to deliver some genuine understanding of an
empirical phenomenon, despite the fact that we cannot know that the process
described in the model accurately describes the physical process or event that
inspired its construction. Many models of pattern-centric systems are like this.

The game-theoretic model of the evolution of cooperation described in
Chapter One is a paradigmatic example of this kind of model, and in the final section
of the chapter, I will discuss the peculiar way in which that model comes to grips
with the real world. However, the analysis of that model can only be given against
the background of a philosophical account of topological models in general, and
much of the chapter is therefore dedicated to this anterior goal. In order to ease the
burden of exposition, this part of the discussion is centered on a model of a very

simple architectural system; one that is far simpler than the complex systems
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discussed thus far, but which nevertheless shares many of the characteristic
features of pattern-centricity. That system is the collection of bridges that cross the
river Pregel in the eighteenth-century city of Kénigsberg, in what was then
Prussia.32 The model of that system is a simple mathematical model described by
Leonard Euler and published in 1735. Euler’s paper about the bridges of Koénigsberg
has become famous in the history of mathematics as having provided the foundation
of both graph theory and topology proper. This historical fact provides additional
motivation for using the example, since the style of representation described in the
previous two chapters evolved out of a mathematical tradition that was initiated by

Euler’s paper.

2 The Seven Bridges of Konigsberg: A Paradigm of Topological

Explanation

2.1 Formulating Euler’s Argument

During Euler’s lifetime, a debate developed among some of the residents of
Konigsberg about whether it was possible to walk a path around the city in such a
way that one crosses each of the city’s seven bridges, and returns to one’s starting
position without re-crossing any bridge. Euler’s paper, which was entitled Solutio

Problematis ad Geometriam Situs Pertinentis, or The Solution to a Problem Relating to

32 The modern city is called Kaliningrad, and it is the capital of Kaliningrad Oblast—a small Russian
exclave on the Baltic coast between Lithuania and Poland. Incidentally, Kaliningrad is the city in
which Immanual Kant attended university and also where he spent his entire adult life.
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the Geometry of Position, provides a “proof” of the impossibility of such a walk.33
Euler’s demonstration is based on the crucial insight that the empirical problem of
walking the bridges depends only on their arrangement with respect to one another,
and nothing else. It also depends on the conviction that this arrangement is itself a
purely abstract, mathematical property of the system.

It is worth noting here that in light of contemporary mathematical
terminology, Euler’s title is quite strange: what topology and graph theory have in
common is precisely their concern with the position of objects without regard to
geometry. Topology and graph theory are similar to one another in that they share a
history, but they differ in important ways too: where topology is the study of
continuous transformations, and invariances across them, graph theory is a form of
discrete mathematics, often considered a branch of combinatorics. Since [ am chiefly
concerned here with representations of pattern-centric systems, and since pattern-
centric systems are by definition systems composed of many discrete elements, the
contemporary models I discuss make more use of graph theory than topology
strictly speaking. However, the distinction remains subtle, especially because graphs
can be defined as equivalence classes in which certain properties are preserved
under continuous transformations such as stretching, folding, and bending. So I will
continue to use the term “topological” in the somewhat loose way it is used in
scientific contexts, in which it means roughly the abstract structural organization of

a system.

33T have put the word “proof” in scare-quotes to flag the fact that the paper is at least nominally
about a physical, architectural object, and not literally about a mathematical one. The distinction
between the two is difficult to track in cases like this, and is discussed extensively below.
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Figure 1: Euler’s sketch of the river Pregel in Kénigsberg.

As depicted in Figure 1, Euler represents land masses with capital letters and
claims that the bridge-walking problem is equivalent to asking whether a sequence
of eight letters exists such that members of the pairs <4,B> and <4,C> appear
adjacent to one another twice (representing the fact that there are two bridges
between the two pairs of landmasses identified by those labels), but in which
members of all other pairs appear adjacent to one another once each (representing
the fact that all other pairs of landmasses are connected by only one bridge). He
then considered the bridges leading into A. When there are an odd number of
bridges, k, A appears Y (k+1) times. There are five bridges leading into 4, so A will
appear in the sequence three times. Since there are three bridges leading into B, C
and D, they must each appear in the sequence twice. This gives a total of nine letter
tokens, rather than eight, which entails that the problem has no solution. Euler
generalized this result to include cases in which there are also an even number of
bridges, in which case A appears %2k +1 times when 4 is the starting location, and
Yk times otherwise. After discussing the properties of odd and even numbers, Euler

arrives at three conclusions regarding the possibility of continuous bridge walks: (i)
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if there are more than two areas to which a number of bridges lead, then such a walk
is impossible; (ii) if the number of bridges is odd for exactly two areas, then the
journey is possible if it starts in either of those two areas; (iii) if there are no areas
to which an odd number of bridges lead, then the walk can be accomplished starting
from any area.3*

Euler’s explanation of the fact that no resident of Kénigsberg could have
completed the walk in question can be reconstructed in terms of the following

deductively valid argument, which I will refer to as KB.

(1) The Koénigsburg bridge system connects more than two of its component
landmasses with an odd number of bridges.

(2) The structure of the Kénigsburg bridge system is isomorphic to, and can be
represented by, a graph g in which more than two nodes have an odd-
numbered degree.

(3) The path one would have to take in order to complete the continuous walk
through Koénigsburg can be represented by an Euler-circuit on g.

(4) Euler-circuits do not exist on graphs in which more than two nodes have an
odd-numbered degree.

(5) The continuous walk through Kénigsburg is impossible.

34 An excellent overview of this paper, including its publication and citation history, can be found in
Wilson (1986)).
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2.2 Euler’s Argument is a Topological Explanation

KB is often considered to be a genuine explanation, although it is difficult to
find a philosophical discussion of what makes it so.3> Recall that, according to the
account provided in Chapter One, explanations of pattern-centric systems typically
have a topological character. An explanation has a topological character just in case
it has the following four features: (i) it takes the form of a sound deductive
argument, (ii) it establishes an isomorphism between the pattern of organization of
the components of the target system, on the one hand, and some representational
apparatus on the other (iii) some higher-level property is inferred from that
representational apparatus, and (iv) that higher-level property maps onto the
empirical target property. KB indeed displays all four features, and for this reason
counts as a topological explanation. Here, the system components are the bridges
and landmasses, and the higher-level property is the “non-walkability” of the bridge
system.

It is also quite easy to convince ourselves that KB satisfies well-established
criteria for explanatory relevance. One such criterion, as we saw in Chapter Two, is
the counterfactual criterion, which says that the dependence relation indicated by
the explanation must be counterfactual-supporting. KB supports counterfactuals of
the form “if the bridge system had been such that two or fewer landmasses

connected to an odd number of bridges, then the bridge system would have been

35 Pincock, (2007a) discusses Euler’s argument as an example in which the understanding one can
achieve is due almost entirely to the kind of mathematical representation used, as opposed to the
more standard kind of scientific explanation in which understanding is delivered by citing relations
between empirical properties. Pincock does not, however, discuss why Euler’s argument ought to be
considered explanatory in the first place.
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walkable.” I take it that this establishes that we have reason to think that KB is in
fact explanatory. My primary concern in this chapter is not, however, to defend the
idea that KB is explanatory (which, in any case, does not appear to be controversial
in the literature). Rather, my concern is to show that topological explanations like
KB depend on some idealizations that are quite peculiar, and which have some

striking epistemological consequences. It is to this topic that we now turn.

2.3 What Makes Topological Explanations Peculiar?

In order to see the sense in which topological explanations are peculiar, it
will help to compare topological explanations with some well-accepted standard
account. There is no doubt that the most well-accepted and most standard account
of scientific explanation is the deductive-nomological account due to Hempel.
Hempel, like most authors on scientific explanation, requires that the statements
that make up the explanans must all be true (or, at least approximately so). In
addition to this very natural requirement, Hempel’s deductive-nomological model of

explanation imposes the following three logical adequacy criteria:

(R1) The explanandum must be a logical consequence of the explanans.
(R2) The explanans must contain general laws that are necessary for the
derivation of the explanandum.

(R3) The explanans must have empirical content.

In order to bring out the peculiarity of topological explanations, we can assess KB in

light of these three criteria.
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It is not difficult to see that KB satisfies requirement (R1). Since (1)-(4) entail
the truth of (5), knowledge of the premises rationally compels one to expect the
truth of the conclusion. So the premises of KB confer something very much like
nomic expectability on its conclusion.3¢ Let us skip over (R2) for a moment and
consider (R3). In order to determine whether (R3) is satisfied, we must know what
is meant by empirical content, and this is a famously difficult concept to analyze. In
the passage that immediately follows the introduction of (R3), Hempel provides the
clarification that empirical content means that the statement must be “capable, at
least in principle, of test by experiment or observation” (Hempel & Oppenheim,
1948, p. 137.) While this clarification is helpful, it also leaves plenty of room for
interpretation. In topological explanations like KB, the question of empirical content
is particularly interesting, and [ will return to it in Section 6. For now, let us impose
a high standard and say that in order to have empirical content, a statement must be
falsifiable. That is, there must be some empirical state of affairs such that, if it
obtains, the fact that it obtains would show, without ambiguity, that the statement is
false. Premises (1) and (2) both satisfy this requirement. To see this, we must
presume some information about the individuation conditions on bridges and
landmasses, but this kind of information is commonplace background knowledge,
and is hardly controversial. Once we know how to identify individual bridges and
landmasses, the truth of premise (1) can be established just by counting, and indeed,
counting shows that all four landmasses have an odd number of bridges, which

makes (1) true. Moreover, it is easy to imagine the circumstances in which (1)

36 I say “very much like nomic expectability” because, as the discussion in this chapter will show,
there is reason to doubt that the expectability in question is really of the nomic variety.
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would be false. For example, (1) would be false if one bridge were to be added to
each landmass.

The truth of premise (2) is slightly trickier to establish since it invokes the
formal concept of isomorphism. One needs to recognize that in order to answer the
question about bridge-walking, the pattern of connections among the bridges is
what matters; once one has reached land, one’s choice of how to approach the next
bridge is entirely irrelevant. For this reason, it is natural to represent the problem
with a graph in which nodes correspond to landmasses and edges correspond to
bridges. Once we accept that this is how the representational relation works, it is
again only a matter of counting to confirm that premise (2) is true. And, once again,
it is easy to imagine circumstances in which (2) would be false. In fact, the example
given of a falsification instance for (1) also serves as a falsification instance for (2): if
one bridge were added to each landmass, the isomorphism would break down and
(2) would turn out false. This shows that, even when we impose the high standard of
falsifiability, KB does indeed have empirical content.

However, the way in which KB has empirical content is quite novel. That
novelty can be brought out through a discussion of (R2), which says that
explanations must include general laws. Hempel’s intention was that the term
“general law” be interpreted broadly enough to include both (true) mathematical
generalizations as well as empirical laws. Given this very broad notion of “general
law,” it would be possible for an explanation in which all generalizations were
mathematical to satisfy all three logical adequacy conditions. However, Hempel

makes it perfectly clear in his discussion of the model that at least one of the general
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laws cited in the explanans must be empirical. Hempel’s motivation for building this
requirement into the interpretation of (R2) was that his theory is one of nomic
subsumption. Since mathematical statements, according to Hempel, are purely
analytical truths that have no empirical content, there is no sense in which a
mathematical generalization can be said to subsume an empirical fact.3” So, on
Hempel’s view, in order to generate a valid explanatory argument, it is necessary to
include at least one empirical generalization, the content of which, when combined
with the particular matters of fact expressed in the explanans, logically entails some
additional matters of empirical fact.

This is where things get interesting. In the case of topological explanations,
Hempel’s motivation for this additional requirement that at least one generalization
be empirical in character is misplaced. In KB, the requirement is superfluous
because the logical connection between the mathematical generalization expressed
in (4) and the particular matters of fact expressed in (1) is already made explicit in
premises (2) and (3). I refer to premises of this kind, in which the representational
capacity of a piece of mathematics is expressed explicitly, as representational
theorems. Given that the representational theorems expressed in (2) and (3) serve
to underwrite the inferential connection between the particular matters of fact in
the explanans and the explanatory generalization upon which the explanation

depends, it is possible to construct scientific arguments that rationally compel us to

37 Hempel did not discuss the applicability of mathematics to empirical phenomena very often. But
his views on the subject are captured well by the following comment. “Mathematical as well as logical
reasoning is a conceptual technique of making explicit what is implicitly contained in a set of
premises. The conclusions to which this technique leads assert nothing that is theoretically new in the
sense of not being contained in the content of the premises” (Hempel, 1962).
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expect the truth of their conclusion, but which do not rely on the traditional device
of subsumption under empirical generalization.

In order to play this inferential role in an explanatory argument, a
representational theorem must show not only that the representational apparatus
(which will typically be a piece of mathematics) can represent the target system; it
must show that the representation is sufficient for the kind of inference one wants
to make. So the truth conditions for a representational theorem are context
sensitive in the sense that a given representational theorem might be true when
cited in an explanation of property P of system S, but false when cited in an
explanation of property P* of system S. (This point is quite obvious: if our
explanatory target had been the fact that the bridges are built of oak rather than
pine, then the fact that the bridge system is isomorphic to g would have been
irrelevant.) Representational theorems also imply that the representation is not
conventional. As the definition of topological explanation already indicates, the
representational relation in topological cases must be one of isomorphism. Given
these two facts, we can express very general truth conditions for representational
theorems as follows. A representational theorem linking representation R to system
S with target property P will be true just in case (i) R is isomorphic to S, and (ii) it is
possible to construct a valid deductive argument appealing to the theorem that has
as its conclusion that fact that S has P.38

The fact that topological explanations involve representational theorems is

one of the primary reasons that the kind of epistemic justification involved in

38 If P is quantitative, then we can say instead that the argument must have as its conclusion the value
of P.
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constructing explanations of pattern-centric systems is quite unique. Before taking
up a discussion of epistemic justification directly, I must first make some
observations about the kinds of generalization that are used in topological
explanations, as compared with traditional cases. The device of citing a
representational theorem allows us to construct explanations on the basis of
generalizations with a distinctively abstract, mathematical character. The direct
application of such abstract, mathematical generalizations to empirical systems

involves a novel kind of idealization that itself deserves commentary.

3 Idealization in Topological Explanations

3.1  The Suppression of Non-topological Information

KB is similar to the evolutionary explanation in Chapter One and also to the
network explanation in Chapter Two in virtue of the fact that it highlights the
relational properties among a set of discrete elements, and suppresses information
about the rest. It is important not to overstate this point: topological explanations do
not typically suppress information about non-relational properties completely.
Clearly, the examples in both Chapters One and Two include information about the
dynamical properties of individual system components.

The critical feature that these models bring to the fore, and the feature that
also is suppressed by the two traditional forms of idealization canvassed in Chapter
One, is the pattern of relations among elements: or, in other words, the system’s

topology. Because Euler’s explanation does not explicitly take dynamics into account,
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it comes closer than the examples in Chapters One and Two to delivering an
understanding purely on the basis of topological considerations. But, even in this
case, some background knowledge about bridge construction and some knowledge
of the distance between them is required to see that Premises (2) and (3) do not beg
the question against the would-be bridge walker who plans to jump from one bridge
to another and thereby skip over one of the positions or vertices in between. So we
cannot say that KB is purely topological.

Still, if we ignore the background information required to understand and
feel rationally compelled to accept the argument, and focus instead on the
information actually contained in the premises, it is clear that information about
non-topological properties is suppressed. Nothing in the argument appeals to the
metric or material properties of the bridges. It is this suppression of non-topological

information that constitutes the key idealization on which I would like to focus.

3.2 Radical Invariance

The almost purely topological character Euler’s explanation makes it abstract
in a radical sense not seen in traditional scientific explanations. In particular, KB is
invariant with respect to both metric and material properties. This means that the
skeleton of the argument expressed by KB would truly apply to any other situation
in which the topology was preserved but the metric and material properties were
changed. Scientific explanations are always invariant with respect to various
inconsequential details. But in the case of KB, the scope of the invariance is

particularly impressive. To see this, consider the following thought experiment.
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The four largest cities in the US are New York, LA, Chicago, and Houston.
Imagine that Big City Airlines has a flight plan that connects these cities as depicted

below:

Figure 2: The flight plan of a
fictitious airline.

In the diagram, nodes represent cities, and lines represent round-trip routes
that Big City offers. (I say “round-trip” in order to preserve the parallel to KB:
bridges generally allow two-way traffic.) We can now ask whether it is possible to
fly an Euler-circuit through these cities on Big City Airlines. To see that the answer is
no, simply replace the term “Koénigsburg bridge system” in KB with the term “Big
City flight plan.” Call the resulting argument BC. BC yields the new conclusion that
the Eulerian flight through the United States is impossible. Metric properties such as
distances between nodes and the angles formed by the lines between nodes present
no barrier to the transfer from KB to BC. Perhaps more strikingly, the transfer goes
through despite the profound differences in material properties. In fact, airplane
routes, unlike bridges, are not even material objects. The reason for this
transferability is grounded in the fact that the topological properties of the first case
are isomorphic to the topological properties of the second. Since the properties

called upon in the explanans of KB are almost exclusively topological, none of the
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radical differences between the two cases make a difference to the validity of the
representational theorem. The graph g can be used as a mathematical surrogate for
the real thing with equal facility in both cases.

Thus far, we have used KB as a test case to explore the peculiar character of
topological explanations. We have established that, at least in paradigmatic cases
like KB, topological explanations idealize away from non-topological properties, and
that this idealization has the consequence that material and metric properties make
no difference to the applicability of the explanation to individual cases. This leaves
us with the question: how do we determine, in general, whether a topological
explanation applies to an individual case? By asking this question, we have arrived
at the central epistemological concern that I would like to address. The short answer
to the question is this: the methods we use to determine whether a topological
explanation applies to a particular situation have a much more local character than
traditional scientific explanations, and this is why it is necessary to make the
inferential connection between the representational apparatus and the empirical
situation explicit in the form of a representational theorem. This very compressed
answer needs to be unpacked. However, it is perhaps already sufficient to raise the
suspicion that perhaps there is something artificial about the way Euler’s
explanatory argument has been presented. We might wonder whether there is an
alternative way of presenting Euler’s argument such that the Kénigsberg Bridge
system can be subsumed under a more traditional-looking empirical generalization.

Can we not, in other words, find another way to present Euler’s argument that is
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more in line with the norms of deductive-nomological explanation? [ now turn to an

argument that answers this question negatively.

4 Topological Explanations Have No Closed Domain of Application

4.1  The Necessity of Representational Theorems

From a traditional Hempelian perspective, and indeed, from the perspective
of any of the contemporary accounts of explanation in the philosophical literature,
representational theorems are quite strange. No models of explanation, as far as |
am aware, explicitly invoke claims about the applicability of mathematics as
premises in scientific explanations. So it is incumbent upon me to defend this way of
doing things. My defense is simple: when it comes to topological explanations, this is
the only way of doing things. The use of representational theorems, or at least,
something very much like representational theorems, is necessary in order to
ensure that topological explanations are valid arguments. They play the epistemic
role that, in the context of deductive-nomological explanations, is played by the
subsumption relation that holds between empirical generalization and particular
matters of fact.

Actually, this puts the point a bit too narrowly. The contrast | want to draw
here is between topological explanations, on the one hand, and a very large class of
explanations, on the other. This large class includes deductive-nomological

explanations, but it also includes all of the views that hold that explanation involves
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subsumption under generalization. Hempel’s nomological approach is no longer as
popular as it once was, and many authors now support the idea that empirical
generalizations that are weaker than laws in various respects can, despite their
weakness, play the same role in explanations that, on Hempel’s account, is reserved
for full-fledged laws (Andersen, 2011; Cummins, 2000; J. Woodward, 2000). Both
laws of nature and weaker forms of explanatory generalization, as they are typically
understood, share an important property vis-a-vis their application to individual
cases. They both have what [ will call a closed domain of explanatory application (or,
for the sake of brevity, closed domain of application.) Topological cases do not have a
closed domain of application, and this difference explains why topological
explanations really must incorporate representational theorems. This is also the
difference that raises the epistemological concerns about hard-to-confirm models

that I will discuss in Section 6.

4.2 Explanatory Generalizations and Domains of Application

To see what is meant by a closed domain of application, let us consider a very
traditional explanatory generalization: Newton’s universal law of gravitation. The
standard textbook statement of that law is the following.3°

F =mm,G/r’

39 Twould like to remain agnostic about whether Newton’s theory of gravitation really is a law of
nature. The theory does not hold true at all physical scales. If we insist, as many do, that laws must be
exceptionless and universal, then Newton’s theory of gravitation will not be counted as a law. Of
course, there is a substantial literature on ceteris paribus conditions, and it may be possible to
salvage the nomicness of Newton'’s theory by appealing to them.
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Let us refer to this expression as (LG). In (LG), F is the gravitational force between
two masses mi and my, G is the gravitational constant, and r is the distance between
the two masses. We would like to have a reasonably general answer to the question:
what is the class of empirical phenomena that this generalization can be used to
explain? There is a very straightforward answer to this question, which becomes

readily apparent if we express the law in natural language, as follows.

Every body with mass attracts every other body with mass by a force
that is proportional to the product of the two masses, and inversely

proportional to the square of the distance between them.

This natural language statement of the law quantifies over “bodies with mass.” So
the natural answer to our question is that the domain of application of Newton’s law
is the set of all bodies with mass.

[t is important to distinguish here between the notion of a domain of
application and the notion of a domain of discourse. The standard account of the
logical form of laws of nature holds that they are universally generalized
conditionals. According to traditional philosophical theories of laws, the domain of
discourse that is assumed in the expression of genuine laws of nature is the set of all
objects. If we apply this condition to Newton’s law, we have the claim that for any
object whatever, if it is a body with mass, then it will obey the equation (LG). There is
of course considerable disagreement about this issue, and a number of theorists
hold that even if laws are expressed as universally generalized conditionals, their

domain of discourse is substantially narrower than the set of all objects
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(Mittelstaedt & Weingartner, 2005, p. 17). However, this complication need not
detain us. Regardless of the proper domain of discourse of laws of nature, it is clear
that we cannot identify the domain of explanatory application with the domain of
discourse, for the simple reason that we cannot explain the behavior of an object by
citing a law of nature that says nothing whatever about objects of that kind. For
example, we clearly cannot construct an explanation of the behavior of photons by
citing Newton’s law of gravitation, since photons are massless particles, and
therefore outside the domain of application of Newton’s law.40

Above, I claimed that traditional explanatory generalizations not only have a
domain of application; I claimed also that that domain of application is closed. The
meaning of this claim is that the domain of explanatory generalizations can be
circumscribed by appeal to some established scientific concept. In the case of
Newton'’s law of gravitation, the concept that closes the domain is “body with mass.”
[t is important to stress that a generalization can have a closed domain of
application even in cases in which the concept that closes the domain is not well
understood. To see this, let us take another example of an explanatory
generalization that is almost certainly not a law of nature, but which does seem,

despite this fact, to have some explanatory import. Consider why the price of

oranges increases after a freeze. An explanation of this fact might run as follows.

40 The reason that one cannot identify the domain of discourse with the domain of explanatory
application is closely connected to the paradoxes of confirmation. “All ravens are black,” according to
most confirmation theorists, is not confirmed by the observation of a white shoe. Similarly, the
whiteness of a shoe cannot be explained by citing the generalization that all ravens are black, even if
“all ravens are black” is explanatory in other contexts.
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After a freeze, there is an upward shift in the supply curve, but the
demand curve remains unchanged. In a competitive market,
whenever the supply curve shifts upward relative to the demand

curve, equilibrium price increases.#1

The explanatory generalization in this argument is expressed in the second
sentence. Although most philosophers would not be willing to call this
generalization a law of nature due to its hypersensitivity to a wide range of
contingent factors, it is, nevertheless, a universally generalized conditional that
appears to offer some understanding of why the price of oranges increases after a
freeze. Economic generalizations like this are notoriously hard to make precise.
Economists routinely disagree, for example, about which real markets deserve the
label “competitive.” Despite this lack of conceptual refinement, the concept of a
competitive market (or more precisely, an upward shifting supply curve in a
competitive market) is a perfectly meaningful empirical concept that provides us
with epistemic guidance in determining where the quoted generalization can be
applied. It is, of course, highly desirable that we should develop a more precise
concept of supply curves in competitive markets. If, in the future, we succeed in
doing so, then we will have all the more epistemic guidance in determining where
economic generalizations can be applied. But this hope for future improvement is
quite compatible with the claim that our current understanding of the concept

already plays a vital epistemic role in constructing economic explanations.

41 James Woodward discussed a similar example in (James Woodward, 2005).
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4.3 Domains and Kinds

Now let us compare the two traditional generalizations just discussed to the
explanatory generalization in KB, which was identified above as Premise (4). Once
again, we would like to have an answer to the question: what is the class of
empirical phenomena that this generalization can be used to explain? This time, the
answer is less straightforward. Nevertheless, we can quickly rule out one possibly
tempting answer, which is that the domain is indeterminate. Recall the discussion
above in which falsification instances were given for the representational theorems
expressed in (1) and (2). These are clear cases in which (4) cannot be used to
explain the properties of the bridge system. There are, therefore, determinate facts
of the matter about which systems can be explained by an argument that cites (4),
and which cannot. So the domain of explanatory applicability of generalizations like
(4) is not indeterminate. The fact that the domain of application of generalizations
like (4) is determinate means that there is a set of all and only those systems that
can be explained in virtue of (4). Or, to put the point more precisely, there is a set of
all and only those systems that instantiate a property that can be explained in virtue
of (4).42

However, there is no established scientific concept that denotes this set, and
so, to use the terminology [ have suggested, the domain is not closed. To see this, just
think about how different the flight plan of Big City Airlines is from the bridge
system in Konigsberg. It would be a very odd empirical concept indeed that lumped

these two systems together. This intuitive argument can be strengthened by

42 This is more precise because topological explanations, as [ have defined them, always have
properties of a system as their targets, rather than a system itself.
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thinking about how we would go about constructing a definition of the empirical
kind that has this elusive set as its extension. The only thing that the bridge system
and the flight plan have in common is the fact that they are isomorphic to some
graph g. So the definition would need to make reference to the class of systems that
are isomorphic to g. This approach, however, yields a circularity. On the left hand
side of the definition, we have the domain of application of representation g. On the
right hand side, we have the set of all systems that are isomorphic to g. Since both
sides make reference to g, the definition is circular. Because it is circular, this
attempt at definition has not provided us with any additional epistemic grasp on
whether g can be applied to particular cases.

To summarize: we have seen that traditional explanatory generalizations,
whether laws of nature or not, are associated with an established scientific concept
that provides guidance in determining where the generalization can be applied. That
is to say, traditional generalizations have closed domains of application. We have
also seen that the generalizations in topological cases like KB are not associated
with an established scientific concept that provides guidance in determining where
it can be applied. That is to say, topological generalizations have open (albeit
determinate) domains of application. And now we are finally in position to provide
an explicit argument for the necessity of representational theorems in topological
explanations, which is the goal that was announced in Section 4.1. The argument
goes as follows. In traditional cases, if one can give a good argument that a given
system belongs in the extension of the concept that closes the domain of

generalization G, then one has, ipso facto, established proportionally good epistemic
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justification for applying G to that system. In topological cases, there is no such
closing concept associated with G, and therefore, the information encoded in G itself
is not sufficient to determine that G can be applied to any particular case. So, if one
wants to appeal to G in an explanatory argument that system S has property P, one
needs to include a premise that says representation R in G is a sufficient
representation for system S with respect to property P. That is to say, one needs to

cite a representational theorem.

4.4  The Role of Natural Kinds

[ want to step outside the main thread of the argument for a moment to
provide some additional support to the claim that topological explanations have no
closed domain of application. This can be done by considering the role of natural
kinds in scientific explanation. There is a widely held view, associated with David
Lewis among others, that natural kinds are to be defined in terms of intrinsic
properties only. [ will not attempt to defend this view here, but I will sketch a rough
argument that is merely intended to reveal something of its philosophical
motivation.

The concept of natural kinds is used to identify those kinds that are
metaphysically more fundamental than other kinds, and therefore serve at least as
candidates for being the conceptual “building blocks” of some empirical domain. If a
kind is defined in terms of a relational (as opposed to intrinsic) property, then
membership to that kind will depend on the presence or existence of members of

some other kind. That dependence relation violates the desideratum that natural
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kinds be defined in such a way that they can play a fundamental role in the theory of
some empirical domain. Therefore, natural kinds should be defined in terms of
intrinsic properties only.43

Now that we’ve seen something of the motivation for the view that natural
kinds should be defined exclusively in terms of intrinsic properties, we can see how
this thesis might strengthen the argument that topological explanations have no
closed domain of application. Let us assume that a given pattern-centric system is
composed of parts that are themselves members of some natural kind. A plausible
example of this would be the epidemiological population described by Watts &
Strogatz in Chapter Two, where the parts of the epidemiological system are
individual humans. (I am assuming that “human” is a natural kind.) In such a case,
the relational properties instantiated between parts cannot be used in the definition
of a new natural kind at a higher mereological level, since natural kinds are to be
defined in terms of intrinsic properties only. But those human-human relations are
the very relations that are used to identify the small-world topology that served as
the crucial explanatory property in the Watts & Strogatz argument. Therefore, the
small-world property is not a natural kind.#** Moreover, being unnatural will
presumably place limitations on the range of explanatory work those kinds are fit to
perform.

On my view, it is better to give up the idea that the only way to provide

epistemic justification for an explanatory generalization is to show that the target

43 See the (1998) paper by Rae Laengton and David Lewis titled “Defining Intrinsic.” For criticism, see
Brian Weatherson'’s (2006) paper “The Asymmetric Magnets Problem.”

44 This result fits naturally with the argument given at the end of Chapter Two in which it was argued
that “small-worldness” is not an empirical property at all.
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systems belongs in the extension of a particular concept. Instead, epistemic
justification should be sought on the basis of purely local knowledge about the
target system. This epistemological proposal, however, leads to a number of

complications, and those complications are the subject of the following two sections.

5 The Problem of Application Criteria

5.1  The Epistemic Convenience of Empirical Generalizations

The fact that the domain of application of explanations that incorporate
empirical generalizations is encoded in the generalization itself is, from an
epistemological perspective, quite convenient. Especially in cases in which the
generalization has been known for a sufficiently long period of time, and for which
the scientific community has had the opportunity to build up its store of knowledge
about the domain, much of the work required to generate explanations of some
novel empirical phenomenon has at least implicitly been accomplished ahead of
time. One only needs to recognize that the novel phenomenon in question does in
fact fall under the domain. Of course, we should be careful not to take this point too
far. Outside of textbook cases that are designed in such a way that the test for
whether a given system falls under the domain of generalization is made artificially
straightforward, this process usually requires a considerable amount of ingenuity.
Nevertheless, the epistemic difference between cases like those in the physical and
economic examples on the one hand, and cases like KB on the other, is considerable.

In KB-like cases, there is no information at all (complete or incomplete) about a
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“pre-formatted” domain to which the mathematical generalization regarding graphs

can be applied.

5.2 The Epistemic Inconvenience of Topological Explanation

In topological explanations, we do not have the luxury of relying on the
accumulated body of scientific knowledge about the kind to which our target system
belongs. Instead, our justification for applying a generalization to a particular case
must be grounded in whatever knowledge is available about that particular system
itself. One requires particular knowledge about the architecture in Koénigsberg
rather than general knowledge about “bridge systems”, in order to know that the
Konigsberg bridge system can be represented by graph g.

Now we can usefully distinguish two kinds of topological explanation. In the
first kind of case, this particularistic knowledge is quite extensive and sophisticated.
In the second kind of case, this particularistic knowledge is quite commonplace. KB
is an example of the latter. In such cases, the justification we have for asserting the
representational theorem is mostly background knowledge about what sorts of
things bridges and landmasses are. This is why the representational theorems
expressed by Premises (2) and (3) assert, but do not defend, the applicability of
Euler’s mathematical representation to the physical architecture of Kénigsberg. This
is also why I refer to such principles as theorems. Theorems are statements that are
provable, but which are sometimes used in such a way that the proof is taken for

granted. In easy cases like KB, it is acceptable to just assert the premises, since it is
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reasonable to assume that the justification we have for them belongs to the common
store of background knowledge.*>

Now it is time to think about the epistemic justification we have for applying
representational theorems in the former, more difficult kind of case. Recall the
Watts & Strogatz explanation of the speed of disease spreading in Chapter Two.
There, in order to justify the application of a particular graph to an epidemiological
population, one must accumulate evidence about the propensity of individuals to
transmit diseases to others. In order to quantify this relationship, one needs
sophisticated knowledge about the conditions under which the disease is
transmitted, and about the frequency with which those conditions are realized. This
kind of evidence is difficult to accumulate and requires a huge amount of inferential
work. Since the Watts & Strogatz article came out, epidemiologists have developed
an entire research program dedicated to acquiring and refining evidence of this kind.
For example, Shweta Bansal’s quantitative disease ecology lab at Georgetown is
dedicated to accumulating precisely this kind of knowledge.*¢ In these cases, one
cannot rely so heavily on background knowledge. So, in order to construct a valid

explanatory argument, one must provide specific evidence that the representations

45 Again, however, it is important not to overstate the point. That the mapping between Euler’s
combinatorics and the physical situation is representationally sufficient to infer the conclusion is
easy to see only after the representation is in place. Before such a representation has been singled
out, it is very difficult to figure out what sort of mathematics is applicable. (Hence the apparently
longstanding debate about the subject among the residents of Kénigsberg!) Euler was genius, and it
was no small intellectual feat to recognize in the first place that linear sequences of capital letters
might have any bearing on the problem. This point can be reinforced to some extent by noting that
almost all contemporary presentations of Euler’s argument make use of graph diagrams like the one
in Figure 2. Euler himself did not use such diagrams. In order to acquire an understanding of the
problem, these diagrams are helpful because one can, for example, work on the problem by trying to
trace a pen along the edges of the graph, and it is easy to see that this process is isomorphic to the
process of trying to walk the bridges themselves. Euler’s own insight into the problem came at a
much higher level of abstraction.

46 The lab’s website can be found at “bansallab.com”.
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one is using are applicable. If one looks to the scientific articles being produced by
groups like the Bansal lab, this is precisely what one finds: the introduction section
of such papers are typically centered around a discussion of the reasons for using a
particular kind of topological representation. The quantitative analysis and
interpretation of the results only make sense once the arguments about the
applicability of the topological representation have been accepted.*” So although the
examples introduced here are very simple in comparison with the arguments that
are currently being produced at the cutting edge of quantitative disease ecology, the
logic behind them is much the same as the logic behind KB and the small-world

argument.

6 Application Criteria for Harder Cases: EC

6.1 A Dismissive Attitude Toward Hard-to-Confirm Models

In the previous Section, | introduced a distinction between topological
explanations in which the application of some topological representation is easy to
justify, and those in which it is difficult to justify. In this section, I want to change
gears and look at a third class of cases in which the justification is either extremely
difficult or impossible to gather.

The evolution of cooperation model (hereafter, EC) discussed in Chapter One

is a good example of a model that is extremely hard to confirm. EC is an extreme

47 Examples such papers are (Bansal, Grenfell, & Meyers, 2007; Eames & Keeling, 2002; House &
Keeling, 2011; Shirley & Rushton, 2005)
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case of a hard to confirm model because the biological target system happens to
have existed in the distant past, and so our possible sources of confirmatory
evidence are exceedingly sparse. This leaves us in a situation in which a scientific
model seems to deliver some genuine understanding, but for all we really know, it
might have nothing to do with biological reality at all. This thought, plus a
respectable desire for epistemic humility, will tempt us to think of EC as if it were
nothing more than a work of fiction. Its epistemic status, the skeptical thought
continues, is lower even than the epicycle model of planetary orbiting, since at least
that model could be confirmed (and subsequently falsified) by observation. Since
this seems not to be true in the case of EC and other models like it, they should not
be counted as scientific explanations. Perhaps instead, they should be conceived of
as merely mathematical toys that might be suggestive of something empirical, but
which do not in fact provide an understanding of anything empirical. This attitude is
expressed in current writing on mechanistic explanation, in which the distinction
between how-possibly and how-actually models is emphasized.

For example, Carl Craver (2006) argues that in mechanistic areas of biology,
we must carefully distinguish between mere mechanistic hypotheses, and proper
mechanistic explanations. The difference is just that in the latter case, we have
accumulated sufficient justification to assert that the component parts of the
mechanism really behave in the way the model says they do. Craver suggests that
when we are engage in reasoning on the basis of a how-possibly model, we do not
learn anything new about the phenomenon in question. Rather, we learn about the

model itself: how it behaves under various external conditions, how various
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parameter values affect its output, etc. I agree with Craver about all this, but there is
a very natural extension of his position that I want to avoid. One might think, given
what has been said thus far, that the value that is to be had in studying models that
are very hard to confirm is purely pragmatic. Studying models like EC, which Craver
would categorize as a how-possibly model, provides information only about how
our representational tools work. It does not provide information about the real
world. I think that this extension of Craver’s position is very tempting in cases like
EC that are both topological and very hard to confirm. The temptation derives from
an argument along the following lines.

When it is very difficult or impossible to observe a particular system, or
otherwise obtain very direct evidence about its behavior, we can sometimes explain
its behavior nevertheless because we know that the system belongs to some natural
kind, and that all systems of this particular kind behave similarly. Geochemical
processes are good examples of this: even though geologists cannot hope to observe
the metamorphic processes that led to the gneiss formations in the Blue Ridge
Mountains, they can nevertheless explain how they formed because there are well-
established, chemically grounded theories available that describe the
metamorphosis of gneiss. This scenario is to be contrasted with models like EC,
which rely on generalizations for which there is no closed domain of application. In
this case, we have no grounds claiming that cooperation evolved as it is described in
the model. To put this point more generally, models that are both (i) very hard to

confirm and (ii) that have no closed domain of application, cannot teach us about
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the real world. The best they can do is serve as a cognitive aid for hypothetical
reasoning.

[ think that the skeptical argument expressed in the last paragraph is
incorrect, and that topological models like EC can provide a kind of empirical
understanding. Moreover, I think that this ability to confer empirical understanding

is intimately related to their topological character.48

6.2  Three-Step Taxonomy of the Modeling Process

The discussion will be facilitated by a common three-step taxonomy of the
modeling process. [ will draw on the taxonomy given by R.I.G. Hughes (1997), but
other accounts have been given that express roughly the same idea (Bueno &
Colyvan, 2011). Hughes describes the modeling process as one of denotation,
demonstration, and interpretation. Denotation refers to the initial specification or
articulation of a model. This first step already has a semantic or representational
outlook: we construct the model with some empirical target phenomenon in mind,
and build components into the model that imitate its properties of interest.
Demonstration refers to the second step in which we manipulate the model.
Manipulation begins by representing the known properties of the model that were
articulated in the first step, and then using mathematical techniques of various

kinds to infer other properties in the model that are not immediately obvious. The

48 Colleagues of mine at CUNY who are directly involved in the field of agent-based models of
cooperation report that the number of scientific articles on the subject has reached into the
thousands, with contributions from biologists, economists, anthropologists, and others. If models like
EC did not provide at least some genuine understanding, it would be hard to explain why people have
put so much effort into exploring them.
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manipulation might be done analytically, but very often in the study of pattern-
centric systems, it is done by creating a discrete version of the model that can be
programmed into a computer, and then explored by means of simulation techniques.
This is how the manipulation step was performed in the case of EC. The third step—
interpretation—is the process of justifying an inference about the target system on
the basis of the results collected in the demonstration step. Given the standard
constraint that scientific explanations must have empirical content, one might think
that in order for a model to count as explanatory at all, it is necessary to successfully
execute this third step. Since this third step is very difficult, and perhaps even
impossible to execute in cases like EC, we must conclude that EC is purely
hypothetical, and does not provide any genuine scientific understanding.

[ think this line of thought goes wrong by underestimating the degree to
which the demonstration step is constrained by the empirical content that is
introduced at the denotation step. If one does not recognize how constrained the
demonstration step is, it may appear that the inferences one makes in that step are
of purely mathematical, rather than of scientific interest. But, since the
demonstration step is in fact highly constrained by the content of the denotation
step, its results can provide us with knowledge of conditional truths about the
biological world. These are truths of the form: if conditions %, y, and z are ever
instantiated in the biological world, then cooperation emerges.

Perhaps there is little hope for coming to know that the antecedent of a
conditional like this is true. But the prospects for coming to know that the

conditional itself is true seem much less hopeless. If we can learn conditionals of this
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form, then models like EC contribute to empirical understanding, despite the fact
that they may not explain their intended target system.

In what follows I will expand on this argument in three steps. First, [ will
briefly review the Nowak & May model, and introduce one specific result Nowak &
May discuss. Second, I will show how the demonstration step that led up to that
result is in fact highly constrained by the content introduced in the denotation step.
Third, I will make some speculative remarks about why conditional truths of the
form just mentioned should be counted as contributions to our understanding of the

empirical world.

6.3 Border Phenomena in The Nowak & May Model

Notice that model-based reasoning often leads to a kind of ambiguity in our
terminology. In their paper, Nowak & May often use the term “emergence of
cooperation” in a way that clearly refers not to a biological phenomenon in the
distant past, but rather to a program state that a computer simulation may or may
not reach as it churns through the computations required to determine the outcome
of a torus-bound iterated prisoner’s dilemma. Roughly, this state is defined as a
sufficiently long series of simulation time-steps in which the proportion of agents
that play according to the cooperate rule rather than the defect rule remains above
half. Let us re-label that sense of the term cooperation, in which we mean to name a
phenomenon in our computer, rather than a phenomenon in evolutionary history,

cooperation*.
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Recall from Chapter One that the explanation offered by Nowak & May was
that cooperation* depends in a very direct way on the probability that a Cooperator
interacts with other Cooperators, and the probability that Defectors interact with
other Defectors. When the probability that like interacts with like is greater than
chance (in this case chance is 50-50 since there are two types of players) then the
charity that allows cooperators to benefit from other cooperators will pay off at a
faster rate (on average) than the losses accumulated through their exposure to
exploitation. Moreover, the model suggests that positive assortment is maintained
by something analogous to geographical constraints, which are represented by the
grid upon which the game is played. Let us sum up this line of reasoning by saying
that, in the Nowak & May model, cooperation* is explained by positive assortment.

[t turns out that in models like EC, the most important interactions are the
ones that take place along the border between clusters of defectors and clusters of

cooperators. Border regions like this can be represented as follows:

D D D

D D D
*

C C C

C C C

In a typical multi-player prisoner’s dilemma, the D’s will exploit the C’s, gain a
fitness advantage, and then replace the Cs one by one until they have taken over the
population. In the Nowak & May model, each player interacts with all eight

immediate neighbors, and its per-round fitness value is just the sum of the results
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from each of those eight interactions. At the end of each round, each location in the
grid is occupied either by a player that follows the same strategy, or by a player that
follows the alternative strategy, an outcome that is determined by the strategy of
the neighbor that receives the highest total score on the previous round. The nice
result Nowak & May show is that C* will under many conditions receive a greater
fitness advantage from interactions on the southern half of the board than it will
suffer fitness losses from interactions on the northern half. Because of this, it is
possible for the border between Cs and Ds to shift upward rather than downward
and cooperation can thrive.

To see that the demonstration step preserves the content of the denotation
step, consider the way that this result depends on getting the order of operations
right. Imagine that we let C* play with the neighbor to the north first, and then,
rather than waiting to accumulate the results of the interactions with other
neighbors, we immediately determine whether C* gets replaced by a C or a D on the
next round. If we order the computations this way, it will be much more difficult for
cooperation to take over, since the C* will now automatically yield a D on the next
round. Not only would this order of operations fail to get the desired results, it
would also be a case of misrepresentation. The fact that the strategy of the player to
replace C* is determined by a comparison across all 8 neighbors is not arbitrary. It is
designed to reflect the empirical idea that the genetic profile most likely to be
propagated through to the next generation is the one that is most successful among
the group with which a given agent interacts. By calculating the payoff after only one

interaction, this empirical content would be lost.
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The point of this example is to show that, just as in KB, the demonstration
step in EC involves much more than purely mathematical reasoning. It is
constrained by the representational relations that are introduced in the denotation
step. Because the empirical content introduced in the denotation step is preserved
during demonstration, the Nowak & May model appears to license the conditional
claim that if the conditions of spatial influence it describes ever did obtain, then
cooperative behavior would have emerged. [ will now present a fairly speculative
argument that conditional claims of this form can be interpreted as genuine

contributions to our empirical understanding of the world.

6.4  The Argument from Artifacts

Let me return briefly to the Konigsberg bridge system. Imagine that back in
eighteenth century Konigsberg, the disagreement about bridge-walking had broken
out among a team of engineers while the bridge system was still under construction.
Imagine also that bets are placed and that the lead engineer has an interest in
designing the system so that when it is done, no one will be able to complete the
bridge-walk. After discussing the matter with Euler, the engineer sees how the
problem is to be solved. At this point, only some of the bridges exist. But the
engineer has learned something quite valuable from Euler. Not only does the
engineer understand the abstract combinatorics, he (to suppose the engineer was
female seems historically unlikely) also gains the power to intervene on the bridge

system to achieve a specific end. His new knowledge can be expressed by a pair of
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conditionals: if we continue the project in this way, the bridge system will be
walkable. If we continue the project in that way, it will be unwalkable.

Notice that this argument uses the term “bridge system” somewhat
differently than it has been used up to this point. Now, “bridge system” refers to a
binary variable that has values that we might label “walkable” and “unwalkable.” In
everyday life, bridges are hard, heavy, and seemingly permanent things, so it is
natural to think of a whole system of bridges as similarly hard, heavy and
permanent. But from a scientific perspective, and certainly from the perspective of
an engineer, there is no reason to call upon the default ontology of everyday life
when answering questions about bridge-walking. The system of bridges is a genuine
part of the empirical world, and the two conditionals that the engineer has come to
know are conditionals about that system. It follows that the engineer has come to
learn something empirical. This argument from artifact shows that if we conceive of
the bridge system abstractly enough, then conditional claims about how it can be
constructed offer some genuinely empirical understanding.

Now let us see whether a similar argument can be given about the evolution
of cooperation. In that case, the dependence relation between cooperation* and
positive assortment can be mapped onto a more abstract empirical phenomenon
that we might call the “evolvability of cooperation.” The Nowak & May model
teaches us conditional truths about this abstract empirical phenomenon: fitness
benefits can be approximated by prisoner’s dilemma interactions, and if cooperative
organisms emerge in a landscape that promotes interaction with other cooperators,

then positive assortment will prevail, and cooperation is likely to emerge.
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Admittedly, it would take a lot of work to show that this conditional statement is
true of our world, and that is work that cannot be undertaken here. But that kind of
demonstration does not seem nearly as impossible to obtain as the demonstration
that there is a mapping of some kind between the dynamics of the Nowak & May
model, and the historical episode in which cooperation in fact emerged.

Another way of giving support to the idea that the Nowak & May model can
teach us conditional truths that deserve to be called empirical is by imagining an
artificial physical scenario that is tailor-made to be explained by the model. Imagine
an enormous chessboard covered with black and red playing pieces. It would be
tedious, but not particularly difficult, to play a game on such a board that
instantiates the Nowak & May model. Red players represent Defectors and black
players represent Cooperators. The game evolves according to the rules of the
model. The outcome of a game like this could be predicted and explained by the
dependence relation that assortativity drives cooperation*™ Probably, nobody has
ever actually carried out this task. But the fact that we could carry it out, and create
a real physical process that is tailor-made to be explained by EC puts considerable
pressure on the idea that there is no empirical content in EC. This argument is
perhaps even more speculative than the argument based on evolvability, but [ think
it highlights the claim made in Section 3 that topological models are highly
transferable to alternative situations. Our confidence that the Nowak & May model

would be relevant to the chessboard situation is driven by the simplicity of the
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mapping relation between model and target that is characteristic of topological

explanations.*?

49 In fact, it is not necessary to rely on appeal to imaginary scenarios to make this point. Thomas
Schelling (1971) describes an agent-based model of urban racial segregation that was designed to be
played on a large piece of paper with nickels and pennies as agents. That model became extremely
popular, and has in fact been played in many sociology classrooms.
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Chapter Four

The Depth of

Topological Explanations

1 Introduction

1.1 Background on Depth

The project of articulating the distinction between explanation and mere
description has always been the primary target of the philosophical literature on
scientific explanation. A somewhat less discussed, but equally important topic, is the

question of how different explanations of a single target measure up against one
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another. How do we assess the quality of scientific explanations in a way that
licenses judgments of the form: “explanation X of target T is better than explanation
Y of target T"?

The philosophical literature on this topic can roughly be divided into two
traditions. One tradition has striven to understand the explanatory power of
scientific theories and models; the other has striven to understand their explanatory
depth. The concept of explanatory power is one that applies to what Hempel called
potential explanations. Potential explanations are arguments that are known to
satisfy the logical criteria of adequacy for explanation, but are not known to satisfy
what Hempel called the empirical adequacy criterion, which is simply the criterion
of truth. So potential explanations are arguments that have the appropriate logical
structure, but might well turn out to be false. The explanatory power of potential
explanations is often invoked in discussions of the theoretical virtues, and in
particular, in discussions of the validity of abductive reasoning. In this context, the
goal is to assess the degree to which a potential explanation would be informative or
satisfying if the collection of explanans statements turns out to be true. According to
advocates of abductive reasoning, this graded property of explanatory power can be
used to help confirm the truth of the explanans. Unlike explanatory power,
explanatory depth is a concept that applies to actual, rather than merely potential
explanations. In other words, it applies to arguments that, in addition to having the
appropriate logical structure, are also sound. Consequently, discussions of
explanatory depth usually just assume the truth of the premises or components of

the explanation, and so questions of confirmation simply do not arise. In this
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chapter, [ will remain neutral about the nature of explanatory power, and focus
instead on the nature of explanatory depth.

In fact, the contemporary philosophical notion of explanatory depth is
somewhat narrower than the initial distinction between power and depth indicates.
According to the established contemporary usage, a philosophical account of depth
is an account that provides the theoretical background necessary to answer
questions of the following sort: given a particular set of explanans facts E, and given
some particular explanatory target T, which of several explanatory generalizations
G1... Gawill yield the best, most illuminating explanation of T in terms of E?
Questions of this form demand that we restrict our attention to one explanatory
target at a time, and compare the quality of various generalizations that underwrite
an inferential relationship between one set of particular facts and the explanatory
target. This project of comparing candidate generalizations for one explanatory
target should be distinguished from the related project of linking explanations
together to form an explanatory hierarchy. When one cites a set of explanans facts E
in an explanation of target T, it will almost always be instructive to marshal
additional information that explains why the claims that comprise E are true. For
example, say that we provide an explanation of why a helium balloon rises, given in
terms of Archimedes’ principle of buoyancy. According to Archimedes’ principle, the
buoyancy of an object is equal to the weight of the fluid displaced. A simple
explanation of the balloon rising can be constructed in which only two facts are
cited: (i) the amount of displaced air, and (ii) Archimedes’ principle. In this case, let

us imagine that the amount of displaced air is given by measurement, and is itself
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left unexplained. In a second step, we could explain why the balloon displaces as
much air as it does in terms of the properties of helium and the materials from
which the balloon is constructed. The latter explanation increases our
understanding of the balloon’s behavior, even though it does not explain it directly.
It is also possible of course, to explain why Archimedes’ principle itself is
approximately true in terms of the Navier-Stokes equations for fluid dynamics that
describe the relations among more fundamental properties such as momentum,
velocity, and viscosity. This is a case in which, to express the point schematically,
generalization G, rather than the particular explanans facts P have been subject to
explanatory extension.>? Nevertheless, this is also a case of linking explanations.
Since one cannot literally substitute the Navier-Stokes equations for Archimedes’
principle and preserve the validity of the original explanatory argument, the
assessment of this kind of explanatory extension falls outside the domain of a theory
of depth. There is no doubt that a body of information explaining both the buoyancy
and the trajectory of the balloon is more illuminating than a body of information in
which only the trajectory is explained. Nevertheless, in line with established usage
in the literature, a theory of depth is not the kind of theory that is designed to apply
to comparisons of this sort. Instead, a theory of depth is designed to address the

narrower question of which of several generalizations provides the most

50 In most theories of explanation, the set of facts that comprise the explanans can be cleanly
distinguished into two classes: particular matters of fact, which would typically be expressed as
existential statements, and law-like generalizations, which would typically be expressed as universal
generalizations. Writers often use the term “initial conditions” to refer the former class. However,
this indicates that we are dealing with a dynamical system, which is not always the case. So, following
Hempel (Hempel, 1966), I elect to use the broader term “particular facts” or “particular explanans
facts” to refer to the former, and “explanatory generalization” or just “generalization” to refer to the
latter.
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illuminating connection between a single set of particular explanans facts P and a

particular target T.

1.2 Depth, Scope, and Explanatory Unification

Most philosophical accounts of depth have focused, in one way or another, on
the generality of empirical generalizations. Specifically, most accounts of depth have
focused on the breadth of the range of different targets Tj,...Tn that a generalization
G can be recruited to explain. The broader the range of targets that can be explained
by subsumption under one explanatory generalization G, the more illuminating the
explanations in which G is cited. Since the term “generality” is quite ambiguous, I
will refer to this property as the scope of a generalization. The notion of scope is
closely related to the familiar notion of domain of application discussed in Chapter 3.
However, they are distinguished by the fact that the notion of scope is a metric
notion, while the notion of a domain of application is not. Scope indicates the size of
a set of logical individuals, while the domain of application refers to the set itself.

The central claim made in this chapter is that, in the case of topological
explanations, the intimate relationship between scope and explanatory depth
breaks down. I provide an argument for this claim, and also develop a positive
account of depth that is more appropriate for topological explanations. On my
account, depth of topological explanation is associated with the degree to which the
relationship between mathematical representation and target remains stable and
inferentially powerful across perturbations in the empirical details of the target

system. Roughly, therefore, my account emphasizes the intimacy of the relationship
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between reliability and depth, and downplays the relationship between scope and
depth.

The question of depth is particularly worth exploring in the context of
topological explanation for at least two reasons. First, the scope of topological
representations can be increased in trivial ways that make scope unsuitable as a
measure of explanatory quality. Moreover, the most popular contemporary account
of explanatory depth that explicitly rejects scope as a criterion for depth, due to
Hitchcock & Woodward, is, for technical reasons, inapplicable to topological
explanations. Consequently, there is a theoretical vacuum in this area that deserves
to be filled. The second motivation for investigating the depth of topological
explanations is that it has implications for an interesting scientific debate about the
potential for unifying the study of complex systems. On the one hand, complex
systems modeling lumps together systems from what appear to be very different
areas of empirical research. The traditional philosophical picture of a hierarchy of
science, in which physics sits below chemistry, chemistry sits below biology, and so
on, is not at all respected by complex systems modeling. In the absence of some
other ordering relation, it appears that the study of complex systems is highly
disunified. However, many advocates of complex systems modeling claim that there
exist general principles that do unify the theoretical content of complex systems
science. This view is typically grounded in the conviction that the some of the
mathematical models that have gained prominence in complex systems science
point to deeper relationships between empirical systems than the traditional

hierarchy of science picture allows. This deeper relationship, which is thought to
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hold in virtue of something like topological isomorphism between empirically
distinct systems, might provide the foundation for an entirely new kind of

explanatory unification.

1.3 Organization of Chapter

The rest of this chapter is organized as follows. In Section Two,
considerations are given for and against the idea that the scope of an explanatory
generalization is a good indicator of explanatory depth. Then, an argument is given
that scope-based theories of depth cannot be made to work in the context of
topological explanation. In Section Three, the Hitchcock & Woodward theory of
depth is introduced, and shown to be inadequate for cases of topological
explanation. Nevertheless, it is also shown that a closely related theory, which I call
the representational theorem robustness (RTR) theory of depth, fits topological
cases quite well. In Section Four, the RTR theory is clarified by means of an example
that concerns the topology of the World Wide Web, and one of the normative
consequences of the theory is discussed. In Section Five, the aforementioned debate

about the unity of complex systems science is assessed in light of the RTR theory.

2 The Relation Between Scope and Depth

2.1 Considerations In Favor of Scope
In Chapter Three, it was argued that the character of scientific explanations is

determined in large part by the character of the explanatory generalization(s) it
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incorporates. A generalization is general in the sense that it describes systems other
than the one that is the target of explanation on some particular occasion. Common
examples take us quickly from this observation to the popular thesis that
explanatory depth is tied to the scope of the cited explanatory generalization.
Consider a series of possible explanations for the configuration of planetary
position at a time. Assume that only position and momentum are important. Then,
where IC;indicates initial conditions for position and momentum, G; indicates an
explanatory generalization, and C indicates the planetary configuration we want to

explain, each possible explanation has the following logical structure:

(1)  ICy,1Cz,...ICs
(2) Gi
(3)  Therefore C

Now consider what possible empirical generalizations we might use to fill in the

content at Gi:

(a) Newton'’s laws
(b)  Kepler'slaws
(c) Whenever ICq, ICy,...ICy, then C.51

Even if we assume that each of these generalizations is approximately true, and that
the approximation is sufficiently close to infer the approximate values of target

property, there is nevertheless good reason to think that the explanation resulting

51 This argument is similar to an argument given in Weslake (2010).
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from the substitution of (a) is deeper than the one resulting from the substitution of
(b), and that each of these is deeper than the one resulting from the substitution of
(c). Newton’s laws are more fundamental than the other generalizations, and part of
the evidence for this is that they have a much broader domain that includes a wider
variety of natural kinds. Similarly, Kepler’s laws have a broader and more diverse
domain than the generalization expressed in (c), since (c) refers only to a particular
set of values for the initial conditions, rather than a range of values.>2 In this case,
scope appears to recover our intuitions about the proper ordering of the examples,
and this provides some support for the idea that explanatory depth is grounded in
scope.

The argument above illustrates what I take to be the core motivation for
scope-based theories of depth. Of course, much remains to be said about their
content. One important point that deserves to be made immediately is that we ought
not set our expectations for precision too high. No scope-based theories of depth
require that the number of targets to which a generalization applies be countable in
practice, since that task is clearly impossible, and its theoretical utility is, in any case,
doubtful. Consequently, no scope-based theory is intended to provide a measure of
depth in the formal sense. Nevertheless, an account of scope can be given that is
sufficiently discriminating to allow for meaningful comparisons between pairs of
generalizations, and this allows for the construction of a partial ordering. To make
this more clear, we can say by way of definition that a generalization G will have

greater scope than generalization G* just in case the number of explanatory targets

52 Despite the fact that these values are singular, the logical form of (c) is nevertheless a
generalization, since it is assumed that these values can be instantiated on multiple occasions.
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to which G applies is larger than the number of explanatory target to which G*
applies.

[ now turn to a brief commentary on some of the pro-scope ideas in the
literature. Hempel appears to have held that there is at least a weak relationship
between explanatory depth and scope. However, his writing on this topic is
somewhat ambivalent. The reason for this is that, at the core of Hempel’s account of
explanation was the thesis that explanation is expectability. If you can subsume
some particular matter of fact under a law of nature and thereby deduce a statement
of the explanatory target, then you have shown that the explanandum fact was to be
expected. By virtue of that demonstration, you have given an explanation. In cases
like the one above, in which all three generalizations (a), (b), and (c) are non-
probabilistic, there is no clear sense in saying that one provides a greater degree of
expectability than the others.>3 As a result, Hempel does not emphasize the role of
scope in the assessment of explanations. Nevertheless, there are some passages in

which he does appear to advocate at least a very similar idea.

Such subsumption under broader laws or theories usually increases both the
breadth and the depth of our scientific understanding. There is an increase
in breadth or scope, because the new explanatory principles cover a broader
range of phenomena; for example, Newton’s principles govern free fall on
earth and on other celestial bodies, as well as the motions of planets, comets,
and artificial satellites, the movements of pendulums, tidal changes, and
various other phenomena. And the increase thus effected in the depth of our

understanding is strikingly reflected in the fact that, in light of more

53 Hempel’s attitude toward indictive-statistical explanations was essentially the same, which can be
seen in the central emphasis he provides to the requirement that explanations allow us to deduce the
explanandum fact with high-probability.
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advanced explanatory principles, the original empirical laws are usually
seen to hold only approximately, or within certain limits (my italics) (Robert

G. Colodney, 1962, p. 48).

In this passage, the phrase “thus effected” suggests that the enormous scope of
Newton’s principles somehow makes it the case that the explanations generated
from them are often very deep.>* So, although Hempel was not a particularly vocal
advocate of the scope-theory of depth, he does at least appear to have accepted
some weak version of it, and this fact is important because Hempel’s influence on
the philosophy of scientific explanation is second to none.

Scope-based theories of depth can be refined in a number of ways. I'll
introduce just one such refinement. In his discussion of different modeling virtues,
Weisberg (2006) makes a useful distinction between what he calls a-generality and
p-generality. A-generality is the number of actual target systems to which a model
applies; p-generality is the number of logically possible target systems to which a
model applies. Each of these has been advocated by different pro-scope theorists.
Perhaps the best-known advocate of an a-generality theory of explanatory depth is
Phillip Kitcher. Kitcher’s theory of explanatory unification says that to explain a
phenomenon k is to show that it can be deduced from an explanation scheme e,
which is itself drawn from what Kitcher calls the explanatory store. The explanatory
store is represented as a function E(K), where K represents total set of scientific
beliefs about some domain, and E gives us some systematization of that set. On

Kitcher’s view, E(K) contains the smallest set of schemata from which the largest set

54 The last remark in the Hempel quote, which says that deeper generalizations can sometimes reveal
how shallower generalizations are only approximate, is discussed further in Section 3.
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of phenomena can be deduced (Kitcher, 1981). The details of the account are quite
extensive, but the core idea is that we should try to maximize scope while
minimizing the amount of representational apparatus required to deduce the
phenomena that are contained within that scope. Kitcher is an a-generalist because
his notion of scope is based on the number of local, particular matters of fact that
can be explained, and these matters of fact are themselves non-modal in character.5>

Michael Strevens’ (2008) theory of explanatory depth is a good example of a
p-generalist theory. On Strevens’ view, an explanation is a causal model that has
been made as abstract as it can be without losing the entailment of the fact that the
target phenomenon is causally produced. A model M is more abstract than another
model M* if (i) all the propositions entailed by M are also entailed by M*, and (ii) M*
contains some additional information relative to M. In other words, the more
abstract model will be the one that imposes fewer empirical constraints on the
phenomena that satisfy the descriptions given in the explanans. To explain why the
brick broke the window, it is not necessary to specify the exact mass and velocity of
the brick. Any one of a range of values would have been causally sufficient, and so it
is preferable to cite that range. Causal models that can be applied to a range of
possible values for the mass of the brick will be deeper than models that can be
applied only to the actual value. In this sense, Strevens is a p-generalist.

Thus far [ have only provided a very brief sketch of scope-based theories of
explanatory depth. Much more could be said about the relative merits of the

proposals I have mentioned. However, the goal of this discussion is to introduce

55 These facts, which Kitcher calls “Hume-facts,” are much like what David Lewis calls “local,
particular matters of fact” (Kitcher, 1995; Lewis, 1987).
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only as much material as is necessary to investigate the question of how scope-
based theories might fare when applied to cases of topological explanation. As I
argue below, they don’t fare very well at all. The argument I give for this conclusion
is closely connected to a classical objection to the thesis that scope is indicative of
depth—one which Hempel already saw in his first paper on the topic with Paul

Oppenheim in 1948. It is to that classical objection that [ now turn.

2.2 An Argument Against Scope-Based Theories

The argument against scope is extremely simple. One can always secure an
increase in scope by conjoining generalizations. Scope will be increased even in
those cases where the chosen generalizations are completely arbitrary. But
arbitrary conjunctions burden us with what is clearly irrelevant information. Citing
irrelevant facts distracts us from what really matters, and therefore weakens an
explanation. So no theory of explanatory depth should have scope as its primary
consideration.

This argument can be clarified by considering again the series of
generalizations listed above. Of the three generalizations listed, Newton’s laws of
motion were deemed most illuminating. But now consider the conjunction of
Newton'’s laws of motion and the ideal gas law. The scope of this new generalization
is much greater than the scope of Newton’s laws alone. Therefore, according to
scope-based theories, this arbitrary conjunction yields deeper explanations than
Newton'’s laws alone. But this is surely wrong: if we want to explain planetary

configuration, and we proceed by citing information about the macroscopic
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properties of gases, we have failed to obey the stricture that explanatory
information must always be relevant to the explanatory target. While irrelevant
information may be harmless with respect to the validity of a deductive argument, it
certainly weakens the force of a deductive explanation by distracting us from what
actually matters. Since the movement of the planets does not depend in any direct
sense on properties such as pressure and temperature, nor on parameters such as
Avagadro’s number, any explanation that invokes these properties and parameters
will be misleading because it suggests that those properties are difference-makers
when they are not.

This argument is powerful, but there are a number of responses available.
Kitcher, for example, introduces a notion he calls stringency to deal with this issue.
Roughly, the more syntactic restrictions an argument schema imposes on the
arguments that instantiate it, the more stringent it is. According to Kitcher’s view of
what constraints are, a simple conditional turns out to be more stringent than a
conjunction of two conditionals. The details would take us too far afield, but it is
worth mentioning that Kitcher’s account of stringency is closely related to a not-
often discussed passage in Hempel & Oppenheim (1948) in which they also place
syntactic restrictions on the logical form that generalizations are allowed to take,
precisely in order to avoid the kind of ad hoc maneuver just discussed. In their
terms, the “systematic power” of a generalization, by which they mean roughly its
power to unify, must be weighted against the degree of syntactic complexity of the

sentences required to express it (Hempel & Oppenheim, 1948, p. 164).

151



Chapter 4. The Depth Of Topological Explanation

One problem with both of these responses to the problem of arbitrary
conjunction is the degree to which they rely on syntactic form. Since philosophers of
science no longer maintain the positivist view that scientific theories and models are
essentially linguistic entities, this explicit reliance on syntax is subject to criticism
on the grounds that different languages will return different values for the
explanatory depth of one and the same generalization. As we will see below, any
response to the problem of arbitrary conjunction that relies on syntactic form will

become particularly problematic in the case of topological explanation.

2.3 Scope and Topology

In the vast literature on scientific explanation, it has virtually always been
assumed that whenever explanations are presented in the format of arguments,
whether deductive or inductive, the only way to underwrite an inferential
connection between particular matters of fact expressed in the explanans and
particular matters of fact expressed in the explanandum is to show that the
particular explanans facts are captured by an empirical generalization. If the
explanans facts fall within the domain of the generalization, then the generalization,
together with those facts, necessitate the truth of the explanandum.>6

As we saw in Chapter Three, however, topological explanations depend on
generalizations with a heavily mathematical character, and these heavily

mathematical generalizations have no closed domain of application. In such cases,

56 Of course, there exists a variety of philosophical views available on the nature of this necessity. [ do
not discuss the theoretical options, however, because I want to focus on the contrast between cases
in which the domain of the generalization underwrites the explanatory inference (regardless of
precisely what kind of inference it is) and cases in which it does not.
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the domain of application of the generalization no longer suffices to underwrite the
inferential link between explanans and explanandum. In order to construct a valid
argument, therefore, it is necessary to invoke a representational theorem that
explicitly describes the link between mathematical and empirical facts.
Representational theorems are designed to provide local epistemic
justification for the application of a topological representation to a particular
empirical system. In this context, “local” means that the justification does not derive
from subsumption under an empirical generalization. Instead, justification derives
from the demonstration that some mapping obtains between the mathematical
representation and the properties of the system that count as difference-makers
with respect to the target property.>? So not only is it the case that the empirical
content of a representational theorem concerns one particular system; we can also
say that the localized nature of this content is no accident. It stems directly from the
justificatory role representational theorems are designed to play. From this we can
conclude that the fact that representational theorems are not themselves
represented as universal generalizations is not the result of convention. Nor is it the
result of the common practice of representing explanations as deductive arguments.
On the contrary, the localized nature of representational theorems results directly
from their content itself, and this, in turn, implies that their logical form might be

theoretically significant.

57 As described in Chapters One and Two, the difference-making properties in topological
explanations are properties of the parts of the system, while the target property is typically (although
not always) a macro-level property of the whole.
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Since representational theorems are not universal generalizations, but scope-
based theories of depth are designed primarily with the assessment of universal
generalizations in mind, it is necessary to provide a slight reinterpretation of the
notion of scope to make it applicable to topological cases. Representational
theorems can be formulated schematically as follows: R is a sufficient
representation for system S with respect to property P. In formulating a
reinterpretation of the notion of scope, we should try to preserve the parallel to the
traditional notion as much as possible. Therefore, we should ask how many systems
exist that are made explicable by R. More precisely: how many systems exist that
instantiate at least one property P that is explained in virtue of the relation between
that system and R? The answer to this question will be the scope of R. To keep
things clear, let us refer to this topological reinterpretation of the notion of scope as
t-scope.

The t-scope of a given representation R will depend on what sort of relations
between a system and a mathematical representation are sufficient to make it the
case that the property P in system S is explained in virtue of R. As we saw in Chapter
Three, the topological explanation relation is satisfied only if two constraints are
met: (i) there is an isomorphism between S and R, and (ii) by invoking a
representational theorem linking R to S, one can construct a valid argument for the
value of P (or, if P is not a quantitative property, the fact that P obtains). With these
constraints in mind, we can now examine whether the explanatory depth of
topological explanations can be captured by a theory that is centered on the notion

of t-scope.
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2.4  The Problem of [Isomorphism

Weisberg's distinction between a-generality and p-generality permits us to
refine the notion of t-scope a bit further. Let us consider first whether an a-general
version of t-scope can be used as an indicator of explanatory depth in topological
cases. It is helpful to recall, once again, the isomorphic relation between the
Konigsberg bridge system and the fictional case of the Big City flight plan. Both
systems are isomorphic to a graph-theoretic representation g, and in both cases, we
have seen that by appeal to this isomorphism, it is possible to construct a valid
argument in which the target property can be deduced (non-walkability in the first
case; non-flyability in the second.) In order to assess the t-scope of g, we must ask:
how many other such isomorphic systems exist? It is easy to see here that our
reliance on the notion of isomorphism makes it very easy to locate additional
examples of systems with at least one property that is made explicable by g. One
does not need natural objects such as rivers or landmasses. A collection of buildings
and streets would do just as well. But then, the degree to which Euler’s original
argument is illuminating depends in part, not only on the configuration of buildings
and streets in Kénigsberg, but also on the configuration of buildings and streets in
Tokyo. But the configuration of building and streets in Tokyo is quite irrelevant to
the degree to which Euler’s explanation is illuminating! And it is not only irrelevant
because it is far away and causally disconnected from the architectural situation in
Konigsberg. It is irrelevant, more importantly, because the way the buildings and

streets in Tokyo are organized is a highly contingent matter. It so easily might have
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been otherwise. It seems absurd to think that phenomena that are both causally
disconnected and highly contingent such as this should be relevant to the depth of
an explanation that is grounded almost purely in mathematical insight. But that is
exactly what the a-general version of the t-scope theory says. And, as I hope is
obvious, my choice of Tokyo as an example was completely arbitrary. According to
the a-general t-scope theory, every actual well-defined physical system that is
isomorphic to g has the potential to increase the depth of Euler’s explanation. One
only needs to show that the system has at least one property that can be explained
by appealing to g. Since an enormous number of these systems will be, like the
configuration of streets in Tokyo, quite irrelevant to the depth of Euler’s explanation,
the a-general t-scope theory entails that depth increases as a positive function of the
number of irrelevant factors.>8

This is precisely the issue that was highlighted by the problem of arbitrary
conjunction earlier, and it is precisely this result we had hoped to avoid. Moreover,
the situation only gets worse when we consider a p-general version of the theory. To
see this, we need only notice that the set of possible isomorphisms to g strictly
includes the set of actual ones, and so the p-general version of a t-scope theory will
include more irrelevant factors than the a-general version.

The argument thus far has established that t-scope is not a good metric of
explanatory depth because many of the systems that contribute to the magnitude of

the t-scope of a given case seem clearly irrelevant to the norms of explanation.

58 In Chapter Three, it was claimed that material and metric properties are irrelevant to the success
of KB. Here | am describing a new kind of explanatory irrelevance. Here, it is not the properties of the
bridge system itself that are deemed irrelevant, but the number of other physical systems to which
the representational apparatus in KB is transferable.
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Should we also accept the stronger claim that t-scope has no bearing on explanatory
depth whatsoever? In cases like KB, which were described in Chapter Three as
almost purely topological, this stronger claim appears to be justified. If this is correct,
it follows that Euler’s explanation would be just as deep and insightful as it is, even
in a universe in which there are no physical systems other than the bridge system
that are isomorphic to g. This is quite a striking result, but [ am not altogether
confident that it will hold up in cases that rely less completely on topological
considerations.

Take, for example, the Watts & Strogatz explanation of the speed of disease
spreading discussed in Chapter Two. There, it seems more plausible that scope
might contribute to quality of explanation. In fact, epidemiologists report that the
small-world property is a very common feature of animal contact networks, which
means that the Watts & Strogatz explanation has large scope (Craft, Volz, Packer, &
Meyers, 2010). This fact seems to lend the Watts & Strogatz explanation some
degree of unificatory power because it helps to illuminate a generic feature of a very
large class of disease phenomena. In unificationist accounts of explanation, it is
generally true that the more unification one can get, the better. Therefore, if this
apparent unificatory power over a select natural grouping—i.e., disease
phenomena—is not only apparent, but genuine, then perhaps scope does have some
bearing on explanatory depth in some cases.>? Even if this is true, however, it does
not affect the strength of the argument that t-scope cannot generally serve as a

reliable indicator of depth. The small-world property is found in many other

59 The question of unification in cases like this is addressed, in an open-ended way, in Section 6.
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systems besides animal contact networks, including artifactual systems like the
distribution of telephone wires across the western half of the United States (Watts,
2004). The t-scope theory says that these systems must also be counted when we
calculate the magnitude of the scope of the Watts & Strogatz explanation. But here, it
is easy to see that an argument can be constructed that is parallel to the Tokyo

argument given above. Therefore, the t-scope theory of depth should be rejected.

2.5 Syntactic Form and the Appeal of Explanatory Unification

At this point, one might wonder whether there is a way of patching up the t-
scope theory so that it avoids the problem of isomorphism just discussed. I think the
prospects here are dim. The problem of isomorphism does not point out a mere
technical flaw with the t-scope theory. Rather, it illustrates that the t-scope metric is
systematically biased towards the inclusion of irrelevant factors. Given the
widespread agreement that the norms of scientific explanation ought to count
irrelevancies as detrimental, success is more likely to be met by attacking the
problem from a different angle altogether. Nevertheless, I think it is worthwhile to
briefly return to a comment made at the end of Section 2.2, where it was claimed
that syntactic responses to the problem of arbitrary conjunction are particularly
inadequate when applied to the problems confronting scope-based theories of the
depth of topological explanation. To see why this should be so, notice the following
parallel between the problem of arbitrary conjunction and the problem of
isomorphism. Both arguments are designed to show that the conceptual constraints

on the notion of scope are not sufficiently strong to ensure any reliable connection
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with explanatory depth. Hempel and Kitcher both tried to build in constraints on
scope by limiting the kinds of syntactic form that are permissible in the construction
of scientific explanations. The reason that their syntactic approach is particularly
inadequate in topological cases is that isomorphism is not a syntactic relation. The
weakness of constraint that drives the argument against t-scope is not the kind of
weakness that fluctuates with choice of language.

This point can be strengthened a bit by highlighting another interesting
difference between topological and non-topological explanations. We have already
witnessed the results of constructing an arbitrary conjunction in non-topological
cases. In topological cases, however, the situation is quite different. Consider what
happens when we conjoin an arbitrary mathematical generalization—such as, for
example, the Pythagorean theorem—to Euler’s generalization in KB. Since the t-
scope of KB is given by the representational theorem rather than the mathematical
generalization, it remains unaffected by appeal to an unnatural generalization such
as this. The version of KB that results from this substitution does, of course, appeal
to additional irrelevant information, and for that reason, constitutes a shallower
explanation. But the substitution does not affect the relationship between the bridge
system and the other systems that are isomorphic to graph g.

This result is connected to the question of unification in complex systems
science. That question will be discussed in Section 5, but deserves brief mention
here. Since the t-scope of KB is unaffected by the choice of an unnatural
generalization, the isomorphic relation between the bridge system and the fictional

Big City flight plan is also unaffected. Since the isomorphism between these two
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systems is unaffected by our choice of mathematical generalization, there is a sense
in which isomorphism is a more objective relation than the theoretical relation of
falling under the same empirical generalization. This suggests that one of the
reasons that complex systems theorists have been interested in a topological
approach to explanatory unification is that the relevant sense in which systems are
related to one another by topological isomorphism is theory-independent in a way
that most accounts of unification are not. Moreover, since modeling practices in
complex systems science violate the subject-specificity of theories (at least—
theories as traditionally conceived), this apparent independence from theory is

quite attractive.

3 An Invariance-Based Approach to Explanatory Depth

3.1 Hitchcock & Woodward’s Theory

Now that we have seen why scope is not an appropriate concept upon which
to ground a theory of depth of topological explanation, it is time to approach the
issue from another angle. Hitchcock & Woodward (2003) provide an innovative
account of depth that is explicitly designed to allow depth and scope to come apart.
On their view, an explanatory generalization will yield deeper explanations to the
extent that it remains true across a range of interventions on the target system.

Their account assumes that the canonical form of a scientific explanation is
an argument in which both the statement of the particular explanans facts and the

statement of the explanatory target are expressed as variables that take on some
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range of values. The explanatory generalization that serves to link these particular
matters of fact is expressed as a function that takes the values of the explanans
variable as its domain, and returns values of the explanandum variable as its range.
The interventions that set the values of the explanans variables are hypothetical
situations in which idealized procedures are used to disturb only the explanans
variables and no other properties of the system. If, when the new values that result
from the intervention are plugged into the explanatory generalization, it delivers
true values for the explanans variable, then the generalization is said to be invariant
with respect to that particular intervention. In order to assess how deep an
explanation is, Hitchcock & Woodward suggest that we pose the following “test
question.” How many ways might the target system have been different, but
nevertheless yielded to the same explanatory generalization?

An example will help clarify their theory. Imagine a scenario in which we are
dropping cannonballs from a height and recording the amount of time it takes them
to reach the ground. Galileo’s law of free fall says that h = (4.9m/s?)t?, (where h is the
height in meters and t is the time in seconds). In an explanation in which h is the
explanans variable, and t is the explanatory target, Galileo’s law will allow us to
deduce the observed value of t from the known value of h over some range of h-
values. If we intervene on the value of h and reset it to a value so large as to place
the cannonball in orbit, then Galileo’s generalization will fail. According to Hitchcock
& Woodward, the reason that Newton’s laws of motion are explanatorily deeper

than Galileo’s law of freefall is because they are not subject to this restriction in
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range. They are, in other words, invariant with respect to a larger range of
interventions on the height from which the cannonball is dropped.

The Hitchcock & Woodward theory avoids the problem of arbitrary
conjunction because it focuses on the variables that are directly relevant to the
target system rather than on the scope of the generalization under which that
system is subsumed. It is clear in the case just described that h is a variable that is
directly relevant to the target system because it is explicitly cited in both
generalizations under comparison. How would the explanation be affected if we
added to it a second generalization about, for example, the effects of air resistance?
This kind of theoretical addition would presumably render a slight increase in the
range of values under which both Newton’s and Galileo’s generalizations are
accurate. In other words, it would slightly increase the degree to which each
explanation is invariant over intervention, and therefore count as an increase in
explanatory depth.

So the Hitchcock & Woodward theory says that explanatory depth increases
when additional difference-making factors are cited that increase the range of
invariance of empirical generalizations. The scope of these generalizations, however,
has no explanatory import. This feature of the Hitchcock & Woodward theory makes
it well-suited to diffusing the problem of arbitrary conjunction. Recall that our
example from Section 2.2 was the conjunction of Newton’s laws of motions and the
ideal gas law—an arbitrary conjunction that has broader scope than either conjunct

has on its own.
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The Hitchcock & Woodward theory has a very natural way of handling such
cases. Let us assume again that the explanatory target in question is the
configuration of planets at a time, and that we want to test whether Newton’s laws
of motion are deemed more or less explanatory than the arbitrary conjunction. On
the Hitchcock & Woodward theory, we are instructed to inspect the range of
interventions on the planetary system under which each of these two
generalizations is invariant. Despite the fact that we cannot physically intervene on
the planetary system and move the planets wherever we would like them to be, we
have considerable justification for accepting counterfactuals of the form “had the
initial momentum and position been set to values i; and m;at t;, the observed values
would have been ijand m; at t2” for a very large range of i and j. The arbitrary
conjunction provides us with exactly the same information about the range of i and j,
but also provides us with information about the behavior of ideal gases. However,
that additional information does nothing to influence our grasp of how planetary
momentum and position would have changed under alternative initial conditions.
Consequently, the Hitchcock & Woodward theory delivers the verdict that the
arbitrary conjunction offers no more explanatory depth than Newton’s laws alone.
Moreover, since the arbitrary conjunction includes additional information without
offering any additional explanatory insight, relevance considerations provide
principled grounds on which to judge that Newton’s laws yield deeper explanations.

Because the Hitchcock & Woodward theory focuses on variables directly
relevant to the target system in question, rather than on matters of applicability to

other target systems, their view can be labeled an individualist theory of depth. For
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our purposes, the important feature of individualist theories is that they avoid the
problems associated with scope very naturally, and do not need to incorporate ad
hoc conditions to block cases in which increases in scope are purchased at the price

of irrelevance.

3.2  Adapting Hitchcock & Woodward’s Theory For Topological Cases

We now turn to the question of whether the Hitchcock & Woodward theory
can be applied to topological explanations. To apply the theory, we pose the test
question: how many ways might the target system have been different, but
nevertheless yielded to the same explanatory generalization? The proper way to
answer this test question is to examine the range of interventions over which the
explanatory generalization, G, is invariant. In topological explanations, this strategy
breaks down because G has no closed domain of application, and we are therefore
left without a standard against which to judge whether G can justifiably be applied
in particular cases.

Take KB once again as an example. Here, the content of G is that graphs in
which the number of two-degree vertices is odd have no Eulerian circuit. Taken on
its own, and extracted from the explanatory context in which it is used, this
generalization tells us nothing about how the answer to the empirical question
about bridge-walking would change if various interventions were to be made on the
bridge system. We confront a similar problem in the evolution of cooperation
example, despite the fact that the central generalization there is more empirically

constrained than the one in KB. Paraphrasing, it says “assortativity drives
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evolvability.” By itself, this generalization does not contain enough information to
tell us anything about the boundaries of its own application. In the context of the
spatially constrained iterated prisoner’s dilemma, we know what the term
“assortativity” applies to. But when we inquire into the range of interventions on an
evolutionary population that are compatible with the continued application of this
principle, the principle itself offers little guidance. Therefore, in order to apply the
Hitchcock & Woodward theory to topological explanations, a reinterpretation will
once again be necessary.

The reinterpretation proceeds much as it did in the case of t-scope. We
should look to the representational theorem, since that is where information about
applicability is explicitly encoded. Other factors should be kept as similar to the
original theory as possible. Given these ground rules, the test question for depth can
be reformulated as follows. How many ways might the target system have been
different, and nevertheless satisfied the truth conditions for the cited
representational theorem? Recall from Chapter Three that a representational
theorem will be true just in case (i) there is an isomorphism between the
representation and the system, and (ii) it is possible to construct a valid argument
that has the value of P as its conclusion.®?

In order to answer this new test question, we have to know the conditions
under which the representational theorem holds. If the representational theorem is
made true by some highly contingent or accidental process, then the inference as a

whole will be highly sensitive to changes in the target system, and as a result, the

60 Or, in cases where P is qualitative, it must be possible to construct a valid argument for the fact that
P is instantiated in the system.
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inference will not be reliable in future cases. If, however, underlying physical
conditions are working to maintain the topology of the target system, then the
representational theorem will indeed be stable under interventions, and for that
reason should be considered more reliable. That reliability, on my view, gives us
reason to think that our explanation has been grounded in a more satisfactory way
in the properties of the system. It is, for that reason, deeper.

On this new theory, the quantity we are striving to capture is the range of
interventions on variables relevant to the target system that are compatible with the
truth of the representational theorem. To keep this notion distinct from the more
general notion of invariance under intervention, I will refer to this property as
“representational theorem robustness,” or RTR.61 In line with this usage, I'll refer to
this theory as the RTR theory of explanatory depth.

This has only been a brief sketch of the RTR theory. Before attempting

further analysis, it will be helpful to have an example in mind.

4 The Robustness of Representational Theorems

4.1  Web Stability: An Example
Consider the following scientific question. Why are we able to search the
World Wide Web effectively despite the daily deletion of hundreds of web pages?

One popular answer to this question is that the Web is well-described by a scale-free

61 Just as scope is a metric property that measures the breadth of a domain of quantification,
robustness is a metric property that measures the breadth of the range of interventions on a system
that are compatible with the truth of a given representational theorem.
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distribution, and systems that follow scale-free distributions are highly resilient to
collapse (Barabasi, 2003). This explanation needs to be fleshed out in a number of
ways. I'll begin by introducing a very simple description of a generative model of the
Web due to Easley & Kleinberg (2010).

The model is based on the idea that the behavior that gives rise to webpage
construction depends on the fact that page authors copy one another. If it is often
the case that webpage authors choose their links by copying the links they see on
other websites, then very popular pages will attract new links at a faster rate than
unpopular pages. This is called a preferential attachment process, and it can be

modeled as follows.

() Pages are created in order, and assigned names 1, 2, 3,..., N.
(i)  When pagej is created, it either has no links, or, it produces a link to an
existing page. (This outcome is determined by a fixed probability f.)
(iii)  Inthe latter case, the page thatj selects is determined by the following
rule.
a. Some existing page i is chosen uniformly at random.
i. With probability p, page j generates a link to page i.
ii. With probability 1- p, page j instead creates a link to the page
to which page i points.
b. Repeat this process to create multiple, independently generated links

from page j.

The main result of this model is that if we let it run so that the model grows large,
the fraction of pages with k in-links will have a distribution that can be

approximated by a scale-free distribution 1/k¢, where the value of the exponent ¢
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depends on the probability of link creation, expressed by parameter p. Moreover,
the dependence relation between p and c is quite intuitive: as p gets smaller, so that
copying becomes more frequent, ¢ gets smaller as well, making the appearance of
extremely popular pages more likely.

The copying process described in stage (a-ii) is an example of what is known
as a preferential attachment process. By copying the selection made by an earlier
page, the probability that you end up linking to some page I is proportional to the
total number of pages that currently link to I. An equivalent way to express the rule
in (a-ii), therefore, is that with probability 1- p, page j selects page | with probability
proportional to I's current number of links. This model is an extremely simplified
description of how the Web actually grows and maintains its topology. In fact, there
is no centralized list of webpages anywhere, so measuring the real topology of the
Web is actually a very difficult task and there are reasons to think that this model is
not terribly accurate. Nevertheless, a very large number of reported attempts to
measure the Web'’s growth have reported dynamical processes such as this one, so it
is a reasonable example for our purposes (Willinger et al, 2004).

In order to construct an explanation of the Web’s searchability on the basis of
the preferential attachment model, we need additional information that links
searchability to the scale-free property. Scale-free distributions have a non-
negligible number of extreme values—a fact that is often expressed by saying that
they are right-skewed, or have long tails. In the context of a network representation,
this means that the degree distribution will include a non-negligible number of

extremely well connected nodes called hubs. In such a network, if we introduce a
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random process of node-deletion, we are overwhelmingly likely to delete low-
degree nodes rather than hubs. Moreover, the presence of hubs does much more
than the presence of low-degree nodes to maintain network connectivity. This claim
can be made more precise by using the tools of percolation theory, which is a branch
of network science developed to study threshold phenomena in materials involved
in various diffusion processes.®2 One such critical threshold concerns connectivity.

A graph in which there is at least one path between every node and every
other node is called a giant component. We can ask: on average, what percentage of
the nodes in a giant component have to be deleted before the graph splits up into a
number of smaller, unconnected fragments?63 As one might expect, graphs with
distinct topological properties tend to exhibit distinct fragmentation thresholds. In
2004, Shlomo Havlin used the tools of percolation theory to prove that, in scale-free
networks in which the degree exponent c is smaller than or equal to three, this
critical threshold does not exist (Cohen & Havlin, 2004).64 The proof of this claim is
quite involved, but for our purposes, it suffices to know that it is true. The claim is
relevant to understanding the Web because estimates for the degree exponent of the
Web usually come in around two. If the in-link distribution of the Web can be

represented accurately by a network model (and it is hard to think of a more natural

62 The name of the field derives from a canonical problem in the study of porous materials in which
one attempts to calculate the probability that a liquid will percolate from one edge of the material to
the other.

63 The average here refers to a mean value taken over what is known as a graph ensemble. An
ensemble of graphs is a large collection of graphs that share one statistical property but vary in other
details. The central property is usually guaranteed to hold in virtue of the generative algorithm used
to construct it.

64 This result only holds in the limiting case where n approaches infinity. Nevertheless, one can show
in finite cases in which n is large that the critical threshold for scale-free networks approaches an
ensemble average in which nearly all edges have to be deleted before connectivity is lost.

169



Chapter 4. The Depth Of Topological Explanation

candidate for graph-theoretic representation) then we have an explanation of this
empirical fact about searchability. Because the Web’s topology is scale-free with an
exponent less than three, it will remain connected despite very large numbers of

random deletions. Since it remains fully connected, it also remains searchable.

4.2  Filling Out the Account of RTR
The explanation above can be reconstructed schematically as follows.

(1) The in-link degree distribution of the World Wide Web can be represented by
a preferential attachment model with generating conditions C.

(2) The preferential attachment model necessarily yields a scale-free degree
distribution.

(3) Graphs with scale-free distributions maintain connectivity even under large
numbers of random node deletions.

(4) The Web therefore maintains connectivity under large numbers of random

page deletions, and this property makes it searchable.

This explanation is quite informative. It captures the target property by first
revealing fairly elemental, dynamical properties of the target system, and then, in a
second step, by showing that these properties logically entail the target property.
Now let us examine how the RTR theory can be applied to this case.

To apply the theory, we again pose the test question. In schematic form, the
test question was: how many ways might the target system have been different, and
nevertheless satisfied the truth conditions for the representational theorem? There
is a very significant difference between easy cases like KB and more sophisticated

cases like this. Here, the representational theorem does not describe a relation
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between the system and a fixed topological representation. Rather, it describes a
relation between the system’s dynamics, and a generative model that describes that
dynamics. Given that the dynamics are properly represented by the generative
model, it is mathematically necessary that the scale-free property obtains. With this
focus on the underlying generative conditions, the test question in this case
becomes: how many ways might the Web have been different but nevertheless have
been accurately described by the preferential attachment process?

We must therefore look to the properties of the Web that are isomorphic to
those properties in the preferential attachment model upon which the scale-free
result depends. What are those properties? One example is the size of N. Since the
scale-free result only holds where N is large, if we were to delete a huge number of
web-pages, the corresponding value of N in the model would drop below the lower-
bound at which the scale-free result holds. The precise value of that lower-bound
will be determined by our demands for precision, but the scale-free distribution is a
good approximation of the data at values as low as N = 104 (Newman, 2006).
According to simulation results, the preferential attachment model converges on a
scale-free distribution in the limit, which means that there is no meaningful upper
bound on the values of N that are compatible with premise one. This gives us some
specific information about the extremely large range of different values of N that
could be set by intervention, and which would not disturb the representational
relation between the preferential attachment model and the Web. That range is one
component of the robustness of premise (1). Since the range is very large, premise

(1) is very robust (at least with respect to this particular dimension).
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Another component of the robustness of premise one concerns the
expression of step (a-ii) in the preferential attachment model. Given the random
nature of the selection of the page to which page i links, the preferential attachment
process is linear. Let me say what this means. Recall that one intuitive way of
expressing the meaning of rule (a-ii) was that page j selects page [ with a probability
proportional to I's current number of links. In a linear preferential attachment
process, this proportion is one-to-one. It is also possible to create a non-linear
preferential attachment process in which this proportion is greater than one. In
such cases, the very well connected pages receive an even greater differential boost
in their ability to attract new pages. However, non-linear preferential attachment
processes do not give rise to the scale-free property (Barabasi & Albert, 1999).

Therefore, one limitation on the range of interventions with which our
explanation is invariant concerns the dynamics of preferential attachment. If we
were to construct a very high-powered website-creation engine that produced links
to popular websites at a rate much faster than the actual rate of website creation,
the topology of the Web would eventually lose the statistical properties that give
rise to the scale-free distribution. If this were to happen, then the explanation of
web searchability canvassed above would be inapplicable. This fanciful scenario
represents just one of many limitations of the explanation of searchability. It plays
the same role in clarifying the explanatory power of that explanation that was
played, in the discussion of Galileo’s law of freefall, by the suggestion that we drop a
cannonball from orbit. There are many less severe interventions with which the

applicability of the preferential attachment model is compatible, and, according to
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the RTR theory, it is the range of those interventions that determine the depth of the
explanation.

These two examples give some specific content to the judgment that premise
(1) is quite robust, and therefore also give some specific content to the claim that
the explanation of web searchability is a relatively deep explanation. Moreover,
these examples demonstrate the sense in which RTR links explanatory depth with
reliability. Because premise (1) describes a process that generates the topological
properties of the Web, rather than the topological properties themselves, the
interventions that the RTR theory asks us to imagine are interventions on
underlying physical processes that maintain or generate the system topology. In
cases like this, a topological explanation will be more illuminating and informative if
the processes in question are themselves stable, and unlikely to be disrupted by
superficial forms of intervention. Since the properties cited in the preferential
attachment model correspond to properties of the Web that are indeed stable under

a wide range of interventions, the explanation is deep and informative.

4.3 How to Deepen a Non-Topological Explanation

Now I would like to turn to an investigation of one of the consequences of the
RTR theory. It turns out that, although the RTR theory is individualist in the same
sense as the original Hitchcock & Woodward theory that inspired it, the two
theories yield strikingly different judgments about the effects of adding subject-

specific content to an explanation.
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To bring out this difference, we begin by making a distinction between
represented and unrepresented properties of the target system. In our assessment
of RTR, we examined the effects of hypothetical interventions on two of the
properties that are explicitly represented in the preferential attachment model - the
number of webpages and the linearity of the preferential attachment process. But
we might also consider how robust a representational theorem is against
interventions on “background variables.” Background variables are factors that are
not explicitly represented, but which must be held constant for a model to count as a
faithful representation. For example, in assessing the preferential attachment model,
we assume that all the various technologies required to keep the Web up and
running remain in place.

The RTR theory of depth does not take invariance with respect to
background conditions into account when assessing explanatory depth, and there is
good reason for this. Any true representational theorem—and likewise, any true
empirical generalization—can be shown to be invariant over an enormous range of
background conditions that have no bearing on the target system. For example, any
generalization about web topology will be invariant over the price of tea in China,
and countless other irrelevant factors. The same is true for an empirical
generalization such as Newton’s law of gravitation. Motivated by examples of this
kind, Hitchcock & Woodward rightly say that the invariance of an explanatory
generalization over interventions on such unrepresented background conditions

does not, by itself, serve to make a representation explanatory.
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However, Hitchcock & Woodward also claim that background conditions can,
under certain circumstances, make an explanatory difference. According to their
theory, if two generalizations are equivalent with respect to invariance over
explicitly represented properties, and if the first is more invariant over
unrepresented properties than the second, then the first should be attributed a
higher degree of explanatory depth than the second. Here we see an apparent
tension between two claims: (i) invariance with respect to background conditions is
not sufficient to confer explanatory status, and (ii) invariance with respect to
background conditions can contribute to increases in degree of explanatory depth.

The tension between these two claims is resolved by appealing to the fact
that realistic cases of this kind are almost always cases in which the more invariant
generalization is really just an extension of the less invariant one. To make this more
precise, let us stipulate that the term “background cases” refers to cases in which G*
acquires depth relative to G merely in virtue of having acquired some additional
invariance with respect to background conditions. Hitchcock & Woodward claim
that such “background cases” are virtually always ones in which the set of explanans
variables in G is a proper subset of the set of explanans variables in G*. In their own

words:

In these sorts of cases, claims about the invariance of a relationship under
changes in background conditions are transformed into claims about
invariance under interventions on variables figuring in the relationship
through the device of explicitly incorporating additional variables into the
relationship. For example, an intervention that increases the mass of the

earth would count as an intervention on background conditions with respect
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to Galileo’s law, but as an intervention on a variable explicitly figuring in
Newton’s laws. This is, perhaps, the most fundamental way in which one
generalization can provide a deeper explanation than another. At the heart
of explanation is showing what the explanandum depends on. If an
explanandum depends on some variable, a generalization that explicitly
describes this dependence achieves this aim more fully than a generalization
that does not make this dependence explicit (Hitchcock & Woodward, 2003,
p. 188).

According to Hitchcock & Woodward, then, the most fundamental way in which a
generalization can be improved is by moving properties from the unrepresented
class into the represented class. In other words, by adding additional properties to
the explanatory generalization, and thereby increasing the amount of empirical
detail in the explanation, one does a better job of showing what the explanatory

target property depends on.

4.4  How Not to Deepen a Topological Explanation

The RTR theory differs from the Hitchcock & Woodward theory in that it
focuses on the truth conditions of the representational theorem rather than on the
invariance of the explanatory generalization G under intervention. Still, RTR shares
the individualist spirit of the Hitchcock & Woodward theory, and in presenting RTR,
[ have tried to preserve the parallel to the Hitchcock & Woodward theory as much as
possible. It is surprising, therefore, that the RTR theory stands in complete
disagreement with the Hitchcock & Woodward theory with respect to the question
of adding detail. To see this, first consider that the preferential attachment model is

specified in highly generic terms. Although it does describe a causal process in
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which websites are created, it does not describe any specific mechanisms that drive
the process. As far as one can tell from the description of the model, website
creation could be a completely automated process that has nothing to do with
human interests. What we want to find out now is this: could we make the
explanation of web searchability a better, deeper explanation by recasting premise
(1) in more detailed, subject-specific terms? To answer this question, we can
formulate a new model in more detailed, subject-specific terms, and then compare
the robustness of the representational theorem that results from appealing to the
new model the robustness of premise (1).

For example, the new subject-specific model might incorporate the degree of
interest associated with individual webpages. Since the typical webpage author will
be more interested in Facebook than MySpace, new websites are more likely to be
built with a link to Facebook. This process drives the popularity of Facebook,
causing ever more potential webpage authors to be interested in it, and therefore
increasing the probability that newly authored webpages will include a Facebook
link. This positive feedback loop has the same course-grained causal structure as the
more generic process described in the orginal model, but it includes a lot of system-
specific information that the original lacks. (Of course, this is only a partial
description. To fill this out, we would have to include information about Amazon,
Wikipedia, and all the rest.) To determine whether the subject-specific model yields
a deeper explanation than the original, we pose our test question for topological

explanations: how many ways might the target system have been different, and
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nevertheless satisfied the truth conditions for the representational theorem? In this

case, the new representational theorem reads as follows:

The in-link degree distribution of the World Wide Web can be represented by

a preferential attachment model with generating conditions C*.

Here, C* refers to the more detailed empirical conditions that we are supposing have
been included in the new version of the preferential attachment model. Now
consider what would happen if we were to intervene on the Web in such a way that
MySpace, rather than Facebook, were to become the dominant social networking
site. In such a world, the new model would be false, and our new representational
theorem would remain unsatisfied. Other deviations from the actual webpage
rankings would, similarly, fail to satisfy the truth conditions for the new
representational theorem. This shows that the new representational theorem is less
invariant across interventions than the original. In this case, therefore, the addition
of subject-matter-specific information makes the explanation of web searchability
shallower rather than deeper. So, according to the RTR theory of depth, it is
preferable that the explanatory model be cast in generic terms, rather than terms

that are drawn from the details of the empirical subject matter.

4.5  Three Lessons About Scientific Explanation
This result is connected to three very general points about the nature of
explanation. The first is that explanatory relevance is not always improved by the

addition of system-specific detail. In topological cases, relevance is improved at least
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in part by removing unnecessary system-specific detail and focusing on the
demonstration that a given empirical system fits a description of a generic process
that generates the topology in question. Notice that this point is quite different from
the well-accepted and more general thesis that the mere addition of detail can
detract from explanatory relevance. The narrower and more novel idea here is that
citing generic, subject-matter independent conditions, rather than empirically
detailed, subject-matter-specific conditions, can lead to greater explanatory depth.
This idea can perhaps be seen more clearly by contrasting topological explanation
once again with mechanistic explanation. In the mechanistic tradition, it is of course
also necessary to distinguish relevant from irrelevant detail when choosing an
appropriate form of representation. However, the norms of mechanistic explanation
demand that all of the genuinely relevant facts will be of the subject-matter-specific,
empirically detailed variety.

Another general point about the nature of explanation is that one can have
non-reductive explanations that nevertheless do not require that we ascend to
higher-level kinds in the traditional hierarchy of science.®> Fodor (1974) famously
thought that explanations of special science phenomena in terms of physical
predicates would be absurd because massively disjunctive. He concludes from this
that we need to operate with special-science generalizations that pertain to a
particular level in a hierarchy of scientific kinds. The account of topological
explanation suggested here, however, shows that there is room for a view in which

the classical picture of Schafner-Nagel intertheoretic reduction is resisted, but which

65 Paul Humphreys reaches a similar conclusion on slightly the grounds of somewhat more general
considerations in Humphreys (in prep.)
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also does not require that we ascend any particular hierarchy. Instead, we appeal to
generic models whose application is to be justified on a case-by-case basis.

The third general point is related to traditional discussions regarding
accidental generalizations. Philosophers of science have long recognized that some
true generalizations are accidental, and that this renders them either explanatorily
weak or not explanatory at all. To use a famous example due originally to Hempel,
the fact that all the members of the school board are bald may be true, but appealing
to the truth of this generalization does little or nothing to explain why any particular
member happens to be bald. One can conceive of generalizations along a spectrum
from accidents like this at one extreme, to exceptionless natural laws at the other. In
light of the argument in Section 4.3, we can see that a similar spectrum can be
applied to representational theorems. Some, like the one that cites the revised,
subject-matter-specific preferential attachment model, will hold in virtue of
relatively superficial and highly contingent features of the target system. Others, like
premise (1) in the explanation of web searchability, will hold in virtue of more
fundamental or essential features. This line of reasoning helps illustrate one of the
benefits of the theory of depth I have suggested. Just as law-like generalizations are
explanatorily stronger than accidental ones, representational theorems that hold in
virtue of fundamental features of the target system will be explanatorily stronger
than those that hold in virtue of more fleeting, accidental, or contingent properties.
Moreover, those representational theorems that hold in virtue of the fact that they

highlight fundamental properties are precisely those that will be invariant over a
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greater range of interventions. It is in this sense that my account emphasizes the

relationship between reliability and explanatory depth.

5 The Potential for Unification in Complex Systems Science

In Section 2.5, it was argued that mapping relations like isomorphism are
theory-independent in a way that other relations that have been the focus of the
literature on unification are not. For example, Newtonian mechanics provided a
framework in which terrestrial and celestial motion could be unified. Exactly how
that unification works is the subject of considerable debate, but there is widespread
agreement that the crux of the matter was the demonstration that there is one
property—namely, the property of having mass—that is shared by virtually all
moving bodies, and that this property is subject to the same set of laws whether it is
instantiated in stars, cannonballs, or planet earth.

Traditional approaches to explanatory unification are intimately tied to
traditional accounts of intertheoretic reduction. In paradigmatic cases, unification
and reduction go together: the reduction of thermodynamics to statistical mechanics
was also a case in which the principles of moving bodies and the phenomenological
properties of gases were linked together against the backdrop of a single, very
powerful, theoretical framework. The idea that there is considerable extensional
overlap between unification and reduction is itself motivated at least in part by the
traditional idea of a hierarchy of science, according to which the various fields of

science are organized according to a vertical hierarchy in which the lower levels
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signify both greater scope and increased fundamentality. Philosophers have been
quite taken with this idea since it was first proposed in detail by Oppenheim and
Putnam (1958).66

However, outside of philosophy, there has been a movement toward the
establishment of a very different kind of unity of science that is much more closely
connected to the notion of isomorphism between systems. That movement began in
the 1940’s under the name of “General System Theory.” The idea is that various
mathematical models have application in a very diverse collection of empirical
domains, and that these models ought to be pursued as a self-standing topic of
investigation. The greatest proponent of this movement was the German-Canadian
biologist Ludwig von Bertalanffy, who argued that the unification of science was not
to be found in the reduction of everything else to physics, but in the blurring of
disciplinary boundaries and an emphasis on the isomorphic relations between

models in different disciplines.

So far, the unification of science has been seen in the reduction of all
sciences to physics, the final resolution of all phenomena to physical events.
From our point of view, unity of science gains a more realistic aspect. A
unitary conception of the world may be based, not upon the possibly futile
and certainly farfetched hope finally to reduce all levels of reality to the level
of physics but rather on the isomorphy of laws in different fields. Speaking in

what has been called the “formal” mode, i.e., looking at the conceptual

66 Indeed, it is worth mentioning here that the title of Fodor’s classic (1974) paper “Special sciences,
or the disunity of science as a working hypothesis” is a direct reference to Oppenheim and Putnam’s
famous (1958) paper. Although Fodor disagrees with Oppenheim and Putnam about the extent to
which science is becoming a unified body of knowledge, he accepts both the background idea that
science is organized into a hierarchy of levels, and also the idea that unity and reduction are typically
found together.

182



Chapter 4. The Depth Of Topological Explanation

constructs of science, this means structural uniformities of the schemes we
are applying. Speaking in “material” language, it means that the world, i.e.,
the total of observable events, shows structural uniformities, manifesting
themselves by isomorphic traces of order in the different levels or realms

(Bertalanffy, 1984, pp. 48-49).

Today, there is a movement to fund and popularize the topological study of
complex systems which began in the late 1980’s at the Santa Fe Institute but which
has since become quite widespread (Mitchell, 2009; Page, 2011; Sole & Goodwin,
2000). The topological modeling of complex systems can be seen as the latest
incarnation in the General System approach to science that was initiated by
Bertalanffy. At the very least, much of the rhetoric about overcoming

interdisciplinary boundaries is quite similar.

Ultimately, the study of complex systems illuminates the interest in between
the usual scientific boundaries. It is the interest in between various fields
like biology and economics and physics and computer science. Problems like
organization, adaptation, and robustness transcend all these fields. For
example, issues of organization arise when biologists think about how cells
form, economists study the origins of firms, physicists look at how atoms
align, and computer scientists for networks of machines (Miller & Page,

2007, p. 7).

The idea that complex systems modeling provides a way of unifying otherwise
disparate fields of science is often made. Claims like the one from Miller and Page

above are found in the introductions to most of the introductory complex systems
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textbooks. However, these claims are never supported by explicit argument, and as
far as I can tell, they have never been discussed in a philosophical setting.

The idea that mapping relations like isomorphism are theory-independent is
not itself an argument that complex systems science has the power to unify, but it
does provide some motivation for the view. If topological explanations, rather than
traditional, theory-based explanations could be used as the central units of
unification, then it would perhaps be possible to provide an account of unification
that is no longer constrained by the kind terms of each special science. Now, by
reflecting on the distinction between scope-based theories of depth and invariance-
based theories of depth as they have been discussed in this chapter, it is possible to
go beyond a discussion of the motivations for the unity idea by constructing an
explicit argument. Proponents of the unificatory power of complex systems science

might argue in the following way.

(1) The deeper the explanation, the greater the degree of unification it
provides.

(2) Scope is a metric for explanatory depth.

(3) Topological explanations have an extremely wide scope.

(4) Therefore, topological explanations have significant unificatory potential.

On my view, this argument is unsound because premises (1) and (2) are both

false.6” But premise one is a reasonably popular view, and is recognizable in

67 This point is merely an expression of my view that unificationist theories of explanation have not
generally been successful. I have not argued for this claim here, but that is acceptable because what
matters for this discussion is that the unificationist argument is unsound, and this can be established
by appeal to the falsity of (2)—a thesis for which I have argued. I should also mention that despite my
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scientific writing as much as it is in philosophical writing about science. So let us
grant premise (1) for the sake of argument. The account of depth I have provided
shows that premise (2) is also not generally true. In topological explanation, which
is the relevant kind of explanation in the context of this argument, breadth of
application not constitutive of depth. It is rather more like a side-effect.

To see this, consider what we have learned about the relationship between
scope and explanatory depth. When we appeal to generic rather than empirically
detailed conditions, we place fewer empirical constraints on the class of systems to
which a given topology can be applied, and therefore expand the range of systems
that are susceptible to a particular topological explanation. So there is indeed a
sense in which scope, if not unification, is indicative of explanatory depth. However,
for the purposes of strengthening any given topological explanation, adding
information about the breadth of application is just a distraction. Consider a
representational theorem that provides justification for the application of some
topological representation to a given system S. Compare this to a second
representational theorem in which justification is given for the application of that
representation to a whole range of otherwise unrelated systems. In such a case, the
incorporation of information about additional systems is clearly irrelevant. Lists of
other possible applications simply have nothing to do with the insight that is
provided by the application of a topological representation to a given system. The

fact that it is sometimes preferable to cite generic rather than subject-matter-

reservations about the general success of unificationist theories of explanation, I think that our
thinking about scientific explanation has an important unificatory strand, and that in some contexts,
unification is a powerful theoretical virtue.
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specific conditions to justify the application of a piece of mathematics means that
sometimes, the preferable explanation will be the one that is also more broadly
applicable to alternative systems. But this broad applicability is just a contingent
side effect of the normative demand for describing a model in generic rather than
subject-specific terms. What really matters for constructing deep explanations is
that the properties in virtue of which the application of the topological
representation is justified are themselves stable and projectible features of the
target system.

The presence of topological isomorphisms may allow for a kind of
information compression: the transferability of such topological representations
does reduce the number of representations needed to explain certain classes of
phenomena. However, as we have already seen in Section 2.4, mere representational
isomorphism can be had quite cheaply. Moreover, information-compression is not
sufficient to show why the topological representation holds in individual cases.
Since the theory of depth advocated here depends on the degree to which the
topological explanation is rooted in fundamental features of the target system, this
very thin “information-compression” version of unification should not be taken as
explanatorily significant.

I conclude by offering an open question that is raised by this discussion. It
has just been argued that if two systems are isomorphic, but the reasons that they
are isomorphic are merely accidental, then we ought to conclude nothing in
particular about the extent to which they can be unified. This is in line with the RTR

theory of depth: if the topological representation of the system holds in virtue of
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superficial or contingent features, the resulting explanation will be shallow, and
shallow explanations make bad candidates for unification. If, on the other hand, two
systems share a topology because they have similar generating conditions, then the
RTR theory says that their relationship can ground a deeper explanation. The
preferential attachment model discussed above is an excellent example of this, since
the preferential attachment process has been used to explain many other distinct
kinds of phenomena. For example, algorithms that are extremely similar to the
preferential attachment model can be used to model the generating conditions for
the distribution of city populations in the US (Newman, 2003). New York City
attracts new residents at a faster rate than Albany, and this preferential attachment
process sits at the core of a model that gives rise to the observed distribution. It is
an interesting question whether this latter kind of isomorphism between generating
conditions might be used as the seed for a new theory of unification. That project,

however, must be left for another occasion.
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