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Abstract

Forest biomass accounts for the vast majority of aboveground terrestrial car-
bon storage, but biomass magnitude and spatial distribution is highly uncertain.
Global biomass estimates are inextricably linked to tree-level estimates of biomass
by way of allometry – an indirect relationship relating tree stem diameter and/or
height to destructively harvested dry weight. The difficulty and cost of creating
allometric equations has led to spatially biased, low-certainty relationships that
limit confidence in global carbon estimates. Efficient, non-destructive biomass
estimation with terrestrial laser scanning (TLS) or terrestrial LiDAR can poten-
tially improve single-tree, plot-level, and global biomass estimates through three-
dimensional modeling, but little is known of how this approach impacts uncer-
tainty at these spatial scales. With a scale-driven analysis, this work explores the
potential for TLS to reduce uncertainty in biomass estimates from tree to land-
scape. At the single-tree scale, a novel algorithm – the Outer Hull Model (OHM) –
was developed and validated with 21 destructively harvested Pinus contorta trees
in the Colorado State Forest. The OHM accurately estimated component (e.g.
trunk, branch, foliage) and whole-tree biomass, outperforming other approaches.
In a broadleaf deciduous Virginia forest, TLS was used to model over 300 trees
for developing species-specific allometry and quantifying errors in commonly used
national allometry. TLS-derived non-destructive allometry had lower uncertainty
than the national equations. A allometric sample-size-based sensitivity analysis
was conducted with and without trees above 50 cm diameter, revealing a strong
dependency on large trees for accurate biomass prediction with allometry. The de-
pendency of airborne and spaceborne LiDAR biomass estimates on plot-level cali-
bration provided an avenue for landscape-scale improvements in uncertainty with
TLS. TLS-based LiDAR calibration was compared to traditional methods with
three different models based on mean canopy height and return intensity. TLS
reduced uncertainty primarily by accurate direct estimates of standing biomass,
improvements in allometric uncertainty, and reduced RMSE LiDAR calibration.
The scale-driven approach of this work emphasizes the need for improved allom-
etry in forest ecosystems, especially when high quality calibration and validation
data is needed – a goal that can be realized with the strategic deployment of TLS
in high uncertainty environments.
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CHAPTER 1. FOREST STRUCTURE AND CARBON 2

1.1 The Role of Uncertainty in Understanding

Forest Structure at Multiple Spatial Scales

Uncertainty in forest biomass estimation is entirely dependent on plot-level esti-

mates that rely on quality representative allometric equations. Developing local

allometry is costly due to the laborious process of destructive sampling, increasing

uncertainty when quality relationships are non-existent or more suited to broad-

scale applications for biomass mapping. Non-destructive estimates of biomass with

terrestrial LiDAR can potentially improve plot-level estimates of forest biomass

with the creation of local allometry, requiring a fraction of the time and cost of

analogous traditional approaches. While several methods using terrestrial LiDAR

have been proposed as suitable for biomass estimation, few use destructive samples

for validation. Little is known of how these estimates will affect landscape level

estimates of biomass using airborne LiDAR and other remote sensors. These con-

siderations lead to a central question: Can terrestrial LiDAR reduce uncertainty

in biomass mapping?

Trees are structurally complex organisms that provide a snapshot in time of

the individuals life history. Long term changes in climate, disturbance events,

and competitive effects are represented in the form of trees, but are difficult to

quantify from a single observation. Structure is modulated according to deeper

genetic effects that are the product of centuries of adaptation to a region. The

limits on tree size are directly driven by all of these factors. In drylands, trees are

shorter in stature (Nogueira et al., 2008), while moist climates are home to the

tallest trees on Earth (Koch et al., 2004). Interactions between all of these factors

are apparent when generalizing tree form and biomass with scaling relationships;

what results is a high degree of uncertainty in tree structure that is exacerbated

with large trees. A non-destructive method of measuring the structural complexity

and biomass of trees is needed in order to improve existing allometry.

When trees are considered across the landscape as a forest those driving char-

acteristics change. Important factors to the individual tree are not of great conse-

quence to the entire forest. Competitive effects transition to gradients in moisture

and light. Landscape-scale variations in structure are best investigated with re-
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mote sensing. Two- and three-dimensional measurements from aircraft and space

provide the means to ask unprecedented questions about forest structure. Global

distributions of biomass have been created, but uncertainty pervades and dis-

agreement in maps is common in high biomass locations, due to local variations

in tree structure. As these large-scale mapping efforts continue, uncertainty re-

duction must be focused on the application of locally derived allometry. A non-

destructive method of biomass retrieval will provide the means to reduce uncer-

tainty in biomass distributions across the landscape and the globe, providing a

greater understanding of the large-scale factors that influence structure.

The scale at which we observe a forest clearly impacts the way it is understood.

A single tree interacts with direct competitors, altering the structural allocation

of carbon. Though competition impacts all trees, the forest stand is driven more

greatly by environmental gradients. Using traditional methods, these variations

have been documented, but, with the advent of terrestrial LiDAR as a means to

non-destructively measure forest structure, these variations can be quantified with

immense detail in three dimensions. This presents an opportunity to determine

how plot-level applications of local allometry alter landscape level maps of forest

structure. For global biomass uncertainty reduction this offers a framework for the

creation of local allometric equations that will improve estimates in areas where

values are commonly divergent.

1.2 Forests in the Global Context

Rising atmospheric CO2 levels due to anthropogenic fossil fuel combustion are ex-

pected to produce significant warming over the next century (IPCC, 2006). Con-

cerns about the consequences of human interactions with the carbon cycle have

uncovered the need to understand carbon storage and dynamics with greater detail

(Schimel, 1995). Terrestrial carbon is primarily located belowground in organic

soil and aboveground in the biomass of the worlds forests (Schlesinger & Bern-

hardt, 2013b). Photosynthesis in forests, as well as other vegetated ecosystems,

drives the interannual carbon dynamics and the removal of CO2 from the atmo-

sphere – as made clear by the striking latitudinal differences in magnitude (Con-

way et al., 1988) produced by the 2/3rds of terrestrial vegetation in which growth
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is seasonal (Box, 1988). As carbon dioxide is removed from the atmosphere by

physical or biological means, these sinks reduce the climate forcing caused by the

radiatively-active gas, effectively cooling the atmosphere, on average (Schlesinger

& Bernhardt, 2013a). It follows that in order to confidently predict the effects of

rising CO2 concentrations on the planet, understanding the fluxes of the carbon

cycle is imperative.

Several of the fluxes in the carbon cycle are known with a high level of certainty

because of the physical nature of these processes. Driven by diffusion, oceans act

as a sink for a portion of atmospheric CO2 as the gas is converted to carbonic

acid and calcium carbonate (Schlesinger & Bernhardt, 2013b). Of these compo-

nents, only a small fraction are permanently buried and removed from the carbon

cycle. Atmospheric concentration and dynamics can be measured reliably in the

free-atmosphere, as shown in the well-known Mona Loa observations (Keeling CD

et al., 1995), remaining relatively stable due to the long residence time of CO2, with

variations primarily caused by glacial and interglacial periods from Milankovitch

Cycles. However, since the Industrial Revolution, carbon dioxide concentrations

have increased sharply (Barnola et al., 1995). The atmospheric trend from these

observations has made clear the strong positive relationship between fossil fuel

emissions and atmospheric CO2 concentration – as combustion has increased, so

have carbon dioxide concentrations, and thus the climate forcing (Mann et al.,

1998). As confirmation, the proportion of fossil fuel derived CO2 has been deter-

mined using isotopic analysis of atmospheric dilution from carbon depleted of C14

(Keeling, 1979). Though not a natural physical process, fossil fuel emissions are

regularly estimated with reasonable certainty.

Unlike the physical processes in the carbon cycle, biophysical processes and

anthropogenic influences drive the remaining fluxes of the carbon cycle: land use

change and the terrestrial sink estimated to be 2.2 ± 0.8 and -2.9 ± 1.1 PgC yr−1

respectively (Houghton, 2003). Land use change depends on human interaction

and disturbance processes, both of which are highly variable on an annual basis.

The primary issue for quantifying land use change is monitoring, a problem that

can likely be solved with remote sensing (Asner et al., 2014). The terrestrial sink

has been estimated using a subtractive mass balance approach, but this method

is not directly derived and results in extreme variability as it is driven by all other
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estimated processes (Canadell et al., 2007). Other independent estimates indicate

the northern hemisphere is the primary location of the terrestrial carbon sink (Fan

et al., 1998) and the productivity of forests in this part of the globe fuel the sink

strength (Pan et al., 2011). Yet, uncertainty is still pervasive in these estimates –

differing methods of estimating the magnitude of the terrestrial flux may not even

agree if the flux is positive or negative (Houghton, 2005).

While these trends in carbon dynamics are useful for determining the potential

of forests to remove carbon from the atmosphere, they reveal little about the

storage and distribution of carbon across the land surface. The United Nations

Framework Convention on Climate Change (UNFCCC) has pushed to improve

monitoring of forest cover for Reducing Emissions from Deforestation and Forest

Degradation (REDD+). The three tier system implemented in these assessments of

C storage are categorized specifically according to the level of uncertainty and level

of detail within the estimates (IPCC, 2006). Many of the initial goals of REDD+

could be addressed and much of the uncertainty surrounding the terrestrial flux

could be reduced with a quality baseline carbon map (Houghton et al., 2009).

Global biomass carbon density distributions have since been created with ICESat

GLAS LiDAR data (Saatchi et al., 2011; Baccini et al., 2012). However, these

maps have poor agreement and uncertainty estimates are not as low as originally

estimated – a finding thought to be attributed to variations in wood density and

allometric relationships (Mitchard et al., 2014).

In order to reduce the uncertainty of global forest biomass it follows that a

combination of improvements will be needed at every scale of measurement from

the individual tree to the continental scale. Quality plot level measurements are

essential for baseline biomass maps, as they represent the only true values that

will validate and drive all other inferred values. Of these plot level measurements,

improvements in allometric biomass estimation and wood density will provide the

greatest boost in confidence at all scales (Mitchard et al., 2014). Plot level esti-

mates can successfully be scaled to the landscape using LiDAR in combination with

other environmental variables (Asner et al., 2012), but success depends on the in-

corporation of the variability of wood density and allometry. Global-scale estimates

of biomass have the potential to be greatly improved with data fusion approaches

(Mitchard et al., 2012), especially considering the most recently planned satellite
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launches that will use both radar (Le Toan et al., 2011) and LiDAR (GEDI and

ICESat-2). However, as with detailed mapping across smaller areas, both types

of satellite remote sensing platforms will require high confidence ground-truthing

locations for calibration (Hall et al., 2011). It is clear that improvements in global

biomass carbon estimation will only come from improvements in the methodol-

ogy and technology used at each scale of measurement, so the current range of

successful methods of biomass mapping must be evaluated.

1.3 Traditional Methods of Biomass Estimation

and Limitations

Traditional techniques of determining the total quantity and distribution of forest

biomass carbon rely on extensive networks of field-based measurements (e.g. the

Forest Inventory and Analysis (FIA) plots that exist in the United States). At

each plot, information on tree diameter at breast height (DBH) and height are

measured. Species-specific or plant functional type-specific relationships between

diameter, height, and biomass are determined with a small number of destructive

samples and applied to the field measurements (TerMikaelian & Korzukhin, 1997).

Plot-level data can be aggregated to create maps of the spatial distribution of

biomass over large areas (Brown et al., 1999; Jenkins et al., 2001).

Biomass mapping hinges greatly on a complex destructive sampling process

that is fraught with difficulties — invariably leading to measurement errors and

increased uncertainty. In the simplest form, destructive sampling requires the

weight of the entire tree and a number of subsamples of the main components of

the tree that can be dried (Brown, 1997). Tree components are dried in order to

determine the dry biomass, reducing error due to variation in water content in

the wood. The entire process can take a number of weeks or months to complete,

depending on the wood characteristics. At each step there is a potential for mea-

surement error, from the time the tree is felled to the drying of subsamples. Field

equipment may be in poor condition or weighing may not be completed correctly.

In some instances, tree components may not be measured at all. At the dry-

ing stage, residual water content from insufficient drying may bias measurements.
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Destructive sampling is made more difficult in areas of extreme topography and

climate, where the work becomes dangerous, vulnerable to measurement error,

or impossible to complete. In many countries, political or social factors play a

major role in when and where harvesting can take place. For example: sampling

in protected areas is often strictly prohibited due to cultural significance. All of

these factors contribute to uncertainty from reduced sample sizes and bias from

an uneven spatial distribution of destructive sampling locations.

Measurement error is not always a major component of the total uncertainty of

allometric relationships, but spatial bias is. Often these relationships are created

on the national-scale in order to allow for a single or limited number of equations

that are applicable to the largest area possible (Chave et al., 2005). Tree growth

form varies greatly due to the unique life history of each individual that has been

exposed to a combination of environmental factors: climatic, topographic, intra-

and interspecific competition, and unexplainable variation. A trees capacity to

change growth characteristics is essential for maximizing success under situations

that are not optimal – the end result being a degree of individuality that makes

generalization of allometry difficult. For this reason, the aforementioned allometric

relationships are often not applicable or not advisable to be used at local scales

(Jenkins et al., 2003) and, in most instances, using a locally- or regionally derived

equivalent is preferable for reducing spatial bias (TerMikaelian & Korzukhin, 1997).

Under ideal conditions of low measurement error and the availability of a lo-

cally derived allometric relationship, applications beyond the measured diameter

or height range will have high uncertainty. Since the limitations of destructive

sampling are so great, the largest trees in forests often go unmeasured, resulting in

a limit to the applicability of these relationships (Brown, 2002). The vast majority

of allometric equations for hardwood species have a maximum of around 70-90 cm

(Chojnacky et al., 2014), but greater diameter trees are frequently observed in plot

measurements and allometric equations are still applied. This poses a problem for

plot-level estimates of biomass where large trees drive the differences in biomass.

On the stand-scale, trees greater than 70 cm DBH account for between 30-40% of

total aboveground biomass (Brown, 1997). If the uncertainty of these large trees

is not reduced, estimates of biomass across the landscape have the potential to be

drastically over- or underestimated.
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1.4 Remote Sensing for Biomass Estimation

Remote sensing has become the most ideal method of extrapolating plot-level

biomass estimates to the landscape. The very basis of remote sensing relies on the

remote observation of the emission or reflectance of the area of interest. Sensors

may be passive relying on the illumination of the surface by solar radiation and

sensing this reflectance or they may be active illuminated by a source of energy

located near the sensor. The reflectance, under both sensor types, depends on the

spectral reflectance of the vegetation and the atmosphere, since the measurement

includes both components. A two-dimensional grid of reflectance characteristics

is produced, essentially equivalent to a digital photograph, with each pixel repre-

senting an intensity of reflectance over a known geolocated area. Active sensors

can add an extra dimension of vertical structural measurement that helps improve

biomass estimates (Shugart et al., 2010). Each platform type may be preferable

under specific requirements and limitations surrounding biomass mapping, depend-

ing highly on the level of detail required, the standing biomass density, the climate

of the study area, as well as a whole host of other considerations. Reflectance and

measures of forest structure are used along with the plot-level field measurements

to model their relationship for biomass estimation across the landscape.

1.4.1 Passive Optical Remote Sensing

The variation in horizontal forest structure across the landscape is clear from any

view above the forest canopy. This structural heterogeneity is closely linked to

the biomass of a forest stand and is the primary determining factor of estimat-

ing biomass using passive optical remote sensors. These sensors vary widely in

resolution, from sub meter (Quickbird) to 30 m (Landsat) to 250 m (MODIS) to

1 km (AVHRR). The scale of study and phenomenon of interest will determine

which resolution is ideal in any biogeographical study (Delcourt et al., 1982), but

availability of specific bands and measurement frequency should also be consid-

ered. Global and long-term biomass dynamics have been estimated with the lower

resolutions of AVHRR and MODIS, while the higher resolution options are used

for detailed regional or local scale applications.
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Biomass has been estimated using empirical regression (Hall et al., 2006), non-

linear parametric analysis (Baccini et al., 2004), and crown allometry (Soenen

et al., 2010) using models of simple reflectance or measurements of canopy at-

tributes. Reflectance is frequently converted to Normalized Difference Vegetation

Index (NDVI) and can be used to estimate biomass effectively, but will saturate

at high values and under dense vegetation. LAI is strongly correlated to biomass

and can be estimated with optical sensors (Myneni et al., 2002). By modeling

the reflectance of a forest canopy in three dimensions, estimates of crown size and

density can be made – both of which allow for biomass assessment (Li & Strahler,

1985). Shadow fraction, representing a combination of shaded crown and ground,

has also been found to be proportional to biomass (Greenberg et al., 2005). In-

corporating environmental gradients such as elevation can further improve all of

these methods. Crown allometry methods apply plot-scale measurements to re-

mote sensing data by approximating canopy geometry – shadow fraction (Soenen

et al., 2010), crown diameter (Palace et al., 2008), or foliage biomass (Zhang &

Kondragunta, 2006) – and linking this information to existing allometric relation-

ships. Finally, species identification with hyperspectral sensors has the potential

to improve existing optical biomass mapping methods.

1.4.2 Radar Remote Sensing

Synthetic Aperture Radar (SAR) is an active sensor type that allows for a more

complex view of forest structure than passive optical sensors. Radar emits a pulse

in the microwave spectrum that scatters off vegetation and returns as a charac-

teristic representation of the area of interest. Radar measurements must be made

off-nadir, so images will always contain some degree of shadowing due to the slanted

view angle. Radar is of particular interest in tropical, or other areas with frequent

cloud cover, because of the relative insensitivity to atmospheric moisture. While

radar is not a new technology the applications in forestry are only beginning to be

explored.

Biomass estimation using SAR has been approached by using information on

the backscatter, coherence, and phase of the returning pulse (Koch, 2010). Meth-

ods using backscatter – essentially providing a two-dimensional map of the inten-
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sity of the backscatter – can effectively characterize areas of lower forest biomass,

but quickly saturate in the presence of high biomass (Rauste, 2005). Coherence

methods rely on SAR interferometry – multi temporal radar data at differing

view angles - to detect temporal change and the height dimension (Wegmuller

& Werner, 1995; Bamler & Hartl, 1998). Satellites like the scheduled BIOMASS

mission (Le Toan et al., 2011) rely on the wavelength of the emission pulse and

polarization of scattering in order to determine biomass (Le Toan et al., 1992).

Longer wavelengths (L- and P-bands) are capable of capturing larger forest at-

tributes such as trunks or large branches and have been found to be strongly

linearly correlated to forest biomass (Saatchi et al., 2007), but saturate at high

levels (greater than 200 Mg/ha with P-band). Issues with saturation can be ad-

dressed with Polarimetric SAR Interferometry (Pol-InSAR) by estimating forest

height in order to extend the usable biomass estimation range.

1.4.3 LiDAR Remote Sensing: Technological Overview and

Biomass Mapping

Light Detection and Ranging (LiDAR) provides extremely high-resolution data

that is useful for quantifying biomass and forest structure over large areas (Lefsky

et al., 1999). LiDAR technology functions by measuring the distance between the

sensor where a laser pulse is emitted and target of interest, by precisely measuring

the time between the emission and detection of the reflected return pulse (M. A.

Lefsky et al. 2002). Distance between the sensor and target is determined by:

d = (tc)/2 (1.1)

Where, t is time elapsed and c is the speed of light (299,792,458 m s−1). This

essentially uses the constant speed of light to determine a distance with nanosec-

ond time differences. LiDAR instruments are often flown in aircraft in order to

measure topographic features over a wide area. In forested environments the laser

intercepts the canopy proportionally to the density of vegetative cover, resulting in

a mixture of canopy and ground returns. The measured difference between these

two classified returns is useful in determining average canopy height of a forest
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with a resolution equivalent to the spacing of returns in the data.

The two main categories of LiDAR sensors are discrete-return and waveform-

recording. Discrete-return sensors may measure only one return or multiple re-

turns by using waveform analysis to determine interception with a solid object.

Information such as the leading edge of pulse peaks, peaks, and, often, the peak

intensity is recorded a product of the reflectance of the object at the laser’s wave-

length, the portion of the beam intercepted, the incidence angle of the object,

and the power of the emitted laser pulse. Waveform-recording sensors record the

intensity of the waveform as it varies throughout the acquisition time over the

measurement area. Both categories of sensors record essentially the same informa-

tion, however, waveform-recording provides the raw uninterpolated data as the end

product. When this data is combined with Global Positioning System (GPS) data

that measures position in space and Inertial Navigation Systems (INS) that mea-

sure the attitude of the laser, the exact location of each return can be determined.

Discrete-return LiDAR is ideal for detailed mapping of topographic features due

to the high pulse rate and small diameter of the laser beam. This advantage over

waveform sensors makes it ideal for imaging of complex forest canopies and de-

lineation of individual tree crowns. Since waveform-recording systems display a

continuous stream of data from a constant beam source and the beam diameter is

generally much larger, they are ideal for measuring the structural characteristics

of forest canopies over a large area.

LiDAR has become the standard for accurate large-scale mapping efforts in

forestry (Lefsky et al., 2002). The most common approach is a two-stage pro-

cedure (Naesset, 2002) that relies on many field inventory plots that are located

within the range of the LiDAR data. Structural measures such as basal area or

biomass are summed over the plots and related to the structure of the LiDAR

point cloud. LiDAR returns are statistically analyzed and decomposed into height

percentiles, cover estimates, as well as canopy height models. In tropical systems,

where detailed plot measurements are sparse, generalized allometric equations for

biomass density have been related to a mean canopy height (Asner, 2009). Similar

methods have been used in conjunction with spaceborne LiDAR to estimate global

canopy height (Simard et al., 2011) and biomass (Saatchi et al., 2011). Manage-

ment applications are also common ranging from fire fuel estimation (Andersen
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et al., 2005) to habitat characterization (Nelson et al., 2005). High density small

footprint LiDAR can used measurements of crown diameter to allometrically esti-

mate biomass of whole forest stands (Popescu et al., 2004). Alternative functional

models of the canopy from high density LiDAR are useful for low RMSE biomass

estimates (Zhao et al., 2009). Return intensity can be useful in differentiating be-

tween forest types (Garcia et al., 2010), but fusion of hyperspectral data to LiDAR

allows for further improved biomass estimation by approximating species assem-

blages in broadleaf and coniferous forests (Popescu et al., 2004). Many of these

methods of biomass mapping provide detailed structural information that will be

used to verify and validate models of global forest dynamics (Shugart et al., 2015).

1.5 Terrestrial LiDAR in Forestry

Terrestrial LiDAR or Terrestrial Laser Scanners (TLS) function by the same basic

concept surrounding airborne LiDAR or airborne laser scanning (ALS), relying

on the minute differences in laser pulse return timing or shift in phase between a

continuously emitted and received laser beam. However, instead of moving over

the forest landscape, these scanners are stationary, requiring a different analysis

approach. The range specifications for most TLS units is on the order of 100-500

m and, since the objects within the scan area are much closer to the beam source,

density of the resulting point cloud is orders of magnitude higher than ALS over

a smaller area of interest. For instance, a typical ALS point cloud may have an

average horizontal point spacing of 1 m, while the point spacing of a TLS point

cloud may be close to 1 cm. This significant increase in point cloud density results

in the resolution of fine scale structural information, not only on the plot scale,

but also on the individual tree scale. Similarly, accuracy of TLS is on the order of

several millimeters, while ALS data ranges from a few centimeters in the vertical

to a meter in the horizontal. A plethora of approaches have been used to interpret

the immense quantity of data from this novel technology for forestry mensuration

purposes.
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1.5.1 Traditional Forestry Measurements with TLS

Tree diameter at breast height (DBH), height, and location are the basic fun-

damental measurements of a forest. Terrestrial LiDAR potentially presents the

opportunity of accelerating the speed and quality of these measurements. Au-

tomatic diameter measurement, tree separation, and stem mapping are common

applications of TLS (Tansey et al., 2009). Early studies using ground-based Li-

DAR focused primarily on extracting these measurements (Hopkinson et al., 2004).

TLS captured over 95% of the stems that were manually measured, indicating this

technology could be a suitable and less biased method of creating stem maps.

Stem maps of over 200 trees were created with similar algorithms on a leaf-off

plot (Brolly et al., 2009). They found a 2D multiple height circle-fitting algo-

rithm outperformed the cylinder-fitting algorithm, having a lower RMSE, due to

the independence of the circular shapes, however the cylinder method was able

to capture non-vertical stems, which may be of use when modeling crown branch

structure (See Section 1.4.3). Improvements can be made leading to automation

by reducing the effects of topography or noise by creating terrain and canopy

models. Similar to airborne LiDAR, TLS data can be normalized by topographic

differences by creating a Digital Terrain Model (DTM) from the point cloud data

(McDaniel et al., 2012) converting the z-coordinates to height above ground. This

method has simplified the process of finding the appropriate level to measure DBH

and has lead towards automation. The addition of a Canopy Height Model (CHM)

is useful for reducing the presence of points not associated with solid objects (e.g.

noise from low intensity returns) (Henning & Radtke, 2006b). Moreover, a topo-

graphic correction is necessary when analyzing the vertical profile of vegetation

or this distribution will not be representative of the true structure of the forest

(Calders et al., 2014) (see Section 1.4.2).

Separation and detection of individual trees from surrounding objects can be

accomplished with a Hough-transformation and stem diameter can be measured

with either a circle- or ellipse-fitting algorithm (Aschoff & Spiecker, 2004; Tansey

et al., 2009; Chmielewski et al., 2010). Similar approaches reported RMSE on the

order of 1.5 cm and 80 cm for DBH and height respectively (Bienert et al., 2006a).

These algorithms were used to compare the advantages and disadvantages of using
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multiple scanning locations in order to reduce occlusion effects finding the major

tradeoff being processing time or measurement accuracy (Bienert et al., 2006b). In

a collaboration with the company TreeMetrics, these developments were compiled

into a program, AutoStemTM, which automatically computed inventory parame-

ters within managed forests (Bienert et al., 2007). All of these algorithms were

validated against field measurements in a pilot study that showed promise for the

technology, but indicated the need for further developments before being opera-

tional (Maas et al., 2008). Others have attempted to develop the technology and

apply it to mobile mapping with UAVs with relatively successful results under ex-

tremely controlled conditions, further reducing the effort required to acquire these

forestry measurements (Jaakkola et al., 2010; Rutzinger et al., 2010). Recently,

stem mapping with TLS was accomplished with greater than 80% detection rate

on a plot of bamboo with a stem density of over 7,500 stems/ha (Xia et al., 2015).

As algorithms have improved, automation has become the main focus, making

terrestrial LiDAR a reliable alternative to traditional forestry methods (Liang &

Hyyppa, 2013; Yang et al., 2016). All of these studies are representative of many

of the other approaches for measuring these particular tree-level attributes (Hosoi

et al., 2005; Liang et al., 2008).

Outside of cylinder or circle-fitting, intensity of the return laser pulse can be

used as a reliable variable to estimate DBH within the three-dimensional point

cloud (Lovell et al., 2011). The intensity of the reflected laser pulse from TLS

across a forest transect can fit a simple model based on the range and diameter of

the tree trunk. The basic concept relies on the curvature of the tree trunk – the

intensity of the returns vary proportionally to the trunk of the tree, decreasing as

it curves less and less perpendicular to the laser source. This suggests that adding

intensity as a validation metric in DBH measurement could significantly improve

the usefulness of TLS data. A similar approach using range imagery analysis can

be used to provide automatic TLS point cloud registration of multiple scans by

using the approximated central trunk location along the x-y axis for each tree of

interest, rather than relying on artificial registration targets (Henning & Radtke,

2006a). Once registered, diameter can be measured and compared to manual

measurements of the tree trunk. Error increases with height above ground, due

to the higher upper canopy density and occlusion effects. Registration of multiple
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scans allows for a more detailed examination of the structure of the forest in the

three-dimensional data (Henning & Radtke, 2006b).

1.5.2 Vegetation Structure: Gap Fraction and Voxel Ap-

proaches

Vegetation structure measurements (e.g. foliage profiles) are essential for under-

standing many aspects of a forest, but traditional methods are extremely labor

intensive, requiring elaborate field setups (MacArthur & Horn, 1969). The tech-

nique essentially involves many strings extending vertically throughout the plot.

If a leaf is intersected the height aboveground is noted and the process is repeated

until the plot area is measured. The acquired measurements can be used to ap-

proximate the distribution of foliage throughout the plot. If one can imagine laser

beams that measure distance replacing the elaborate number of strings, the tran-

sition to a more modern approach is clear. Terrestrial LiDAR units emit millions

of these beams that each measure the distance of any object they intersect – vastly

improving the number and quality of these measurements.

Estimation of vegetation profiles in the form of plant area index (PAI) or leaf

area density (LAD) is commonly accomplished with the use of a gap probability

and gap fraction. This method was originally used in airborne LiDAR studies with

great success and then adapted to terrestrial LiDAR in order to account for the

range of inclination angles present (Lovell et al. 2003). The basic premise draws

from MacArthur and Horn in the types of measurements, but the conversion must

be made between the measured ranges from the scanner to heights above ground.

For terrestrial LiDAR, the gap probability can be defined by 1 minus the ratio of

the number of laser interceptions at a particular height above ground to the total

number of emitted pulses. The fraction at any particular point in the canopy is

equal to the gap probability. It follows that, as height aboveground increases the

overlying vegetation will decrease. Thus, a gap probability function is often highest

at the top of the canopy (i.e no vegetation) and lowest at ground level. The gap

probability at the ground level will be proportional to the total vegetation cover

above that point, often expressed as leaf area index (LAI). The conversion between

gap probability to LAD or PAI is made by approximating the first derivative of
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this curve (Jupp et al., 2008). The first derivative represents the shape of the

vegetation profile because the rate of change in gap probability is proportional to

the presence of vegetation in the path of the emitted laser pulse. This method has

be used in many studies analyzing forest structure (Danson et al., 2007; Jupp et al.,

2007), seasonal changes (Hosoi & Omasa, 2009a; Calders et al., 2015a) and leaf

bulk density (Pimont et al., 2015). In comparison with traditional hemispherical

photography (Chen et al., 1991), the gap probability method in conjunction with

TLS was found to be as effective at estimating LAI, while simultaneously providing

three-dimensional structural information (Seidel et al., 2012).

Voxelization is useful for reducing the variable point density effects of TLS and

has been applied in many investigations of forest structure. This process analyzes

adjacent points in space, orders via a grid structure, and produces a set of voxels

– evenly-spaced points in space. Voxels can be used to examine the frequency

distribution with respect to height of TLS and ALS returns in order to infer LAD

from the point cloud (Chasmer et al., 2004). Using a scanner with a narrow field of

view placed in symmetrical locations around two different trees, Hosoi and Omasa

(Hosoi & Omasa, 2006) were able to accurately model LAD and LAI profiles using

voxels. Leaf-on and leaf-off tree voxel models were created for both species and

used as a means to separate photosynthetic tissue from non-photosynthetic tissue

in the TLS point cloud. This work notes the importance of a priori knowledge of

leaf inclination distribution of the trees being measured when determining LAI,

however this measure is extremely time consuming to complete across the entirety

of the tree. When the laser zenith angle, θ, is 57.5◦ the correction for leaf incli-

nation is almost independent of leaf inclination: α(θ) ≈ 1.1. Thus, all returns

at this this so-called hinge angle can be used to determine cumulative LAI of the

tree. The primary source of error from using the aforementioned methods is the

presence of non-photosynthetic tissue in the final leaf-only point cloud. The error

associated with TLS-derived LAD measurements was reported to range from 9.5%

- 37%, depending primarily on the measurement method and location (Hosoi &

Omasa, 2007). Omasa et al. (2006) integrated this type of processing into existing

methods of ecological remote sensing to show a range of potential applications of

the TLS data such as determining canopy height, canopy structure, and carbon

stocks. They then combined the 3D data with high resolution imaging techniques
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to determine leaf-level information including chlorophyll florescence, photochemi-

cal reflectance index, and leaf temperature. This type of data fusion was also used

to combine airborne and terrestrial LiDAR in order to model species of coniferous

trees (Omasa et al., 2008) and broadleaved species (Hosoi et al., 2010). Alter-

natively, similar analysis steps prove to be equally effective in estimation of plant

characteristics when applied to other plant types, such as grasses (Hosoi & Omasa,

2009b). Determination of plant area index (PAI) was completed in a similar fashion

to Chasmer et al. ( 2004) using a voxel-based ray tracing method that summarizes

the total volume of aboveground material that occupies the point cloud relative

to the total scan area. Leaf area index (LAI) was determined by subtracting the

leaf-off voxels from the leaf-on voxels and summarizing the horizontal voxel density

over the plot area.

1.5.3 Biomass and Volume Retrieval: Voxel Approaches

Voxelization is not only useful for vegetation profiling, but can also be used to

estimate volume and biomass of the woody portion of the tree (Hosoi & Omasa,

2006). By ordering the points in a 3D grid structure the produced set of voxels

represent defined volumes of space within the point cloud (Meagher, 1980; Hinks

et al., 2012). Each voxel cell may be given a quantifiable volume, depending on

the presence or absence of points within the point cloud (Moskal et al., 2009).

Voxelizing also retains point density information from the original point cloud and

can be useful for distinguishing between different structures in the cloud. This

very simple process allows for a relatively quick and highly detailed estimation of

volume in forested areas.

Creating detailed solid volumes from voxel based analysis is inherently difficult

due to the lack of infilling within the woody portion of the trees being measured.

Thus, all woody volume estimates derived from the voxel method will be underes-

timated with any trees that have trunks larger than the specified voxel size. One

method of infilling the point cloud and creating solid volumes is to connect the

outer voxels by way of Moores neighbor tracing algorithm (Ghuneim, 2009). This

algorithm functions by utilizing the Moore neighborhood, or the set of 8 pixels

that share a corner or edge with that pixel. In a clockwise direction, the algorithm
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encircles a cluster of pixels or, in 3 dimensions, voxels connecting the outer points

until the origin of the algorithm is reached. This creates a totally enclosed contour

of the voxels being analyzed. Any empty voxels within this contour can be filled

and added to the final volume determination. This process is repeated at even in-

tervals moving from the bottom to the top of the tree and the entirety of the tree

is filled with voxels representing wood volume. In order for accurate volumetric

estimates to be made on the smallest branches voxel size must be related to the

laser beam diameter and average smallest branch size (Hosoi et al., 2013b). By

summing the volume at each vertical section the distribution of biomass can be

observed and compared directly to calculated LAD (Hosoi et al., 2013a).

A bounding box method has been shown to provide higher accuracy estimates

of wood volume because there is little overestimation since the enclosed area is

defined by the original TLS returns (Bienert et al., 2014). Infilling methods often

rely on the interpolated exterior of the tree stem to act as an indicator for internal

space, external space, and noisy points or branches that do not require infilling

(Bienert et al., 2014; Hosoi et al., 2013a). The algorithms search each column of

voxels along the y-direction for a filled voxel. Once found, the entire column is

checked from Ymin < Y < Ymax and once a filled voxel is encountered a counter is

increased by 1 for that column. The process is repeated along the x-direction, the

result of which are labeled potential voxel infilling candidates for all voxels that

have been marked twice or have a count of 2. A second verification of these voxels

is made by searching the voxels nearest neighborhood with a radius no larger than

half of the largest stem diameter. Filled voxels or voxels with a count of 2 within

the immediate neighborhood are considered as the interior.

1.5.4 Biomass and Volume Retrieval: Primitive-fitting Ap-

proaches

Volume and biomass are two of the most complex measurements derived from

noisy TLS point cloud data. Voxelization methods can lead to a host of problems

if applied incorrectly and in order to perform as expected infilling must be a

key component of any algorithm. Fitting of cylinders or other three-dimensional

shapes (i.e. primitives) to the point cloud will circumvent many of the issues
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surrounding voxelization methods. Most primitive-fitting methods iteratively fit a

shape to the points in the point cloud – in a least-squares sense – building from the

bottom to the top of the tree. Small height intervals are often used to suppress

unexpected fitting and overestimated cylinder size (Pfeifer et al., 2004). If the

central trunk scan is of high quality and the trunk structure is not cylindrical, other

non-cylindrical fitting methods may be used that are more representative (Pfeifer

& Winterhalder, 2004; Hildebrandt & Iost, 2012; Feliciano et al., 2014; Olagoke

et al., 2016). A hybrid cylinder-voxel method has also been used on a variety of

complex tree structures when branches are too difficult to model directly (Lefsky &

McHale, 2008). Multi-scan plot design is common in modeling for biomass or stand

volume, but single-scan methods can provide acceptable results if a correction

factor is considered for occluded trees (Ducey & Astrup, 2013; Astrup et al., 2014)

Cylinder fitting methods outweigh other methods greatly in their application

prevalence due to the availability of cylinder fitting algorithms that exists in several

software packages (Dassot et al., 2012), but semi-automated (Schnabel et al., 2007)

and fully-automated algorithms (Raumonen et al., 2013) are becoming more com-

mon. Validation of cylinder fitting available in software packages with destructive

samples suggests that these methods provide an acceptable non-destructive esti-

mate of biomass, as long as scan resolution can accurately represent branches (Das-

sot et al., 2012). Automated methods like Quantitative Surface Models (QSMs)

(Raumonen et al., 2013) have been applied to accurately estimate individual tree

biomass (Calders et al., 2015b), but similar validation studies are not completed

routinely. Validation using parameters that are more easily measurable in the

field (e.g. stem diameter) are more often used due to reduced cost and labor

expenditure (Hackenberg et al., 2014; Liang et al., 2014). Open source versions

of automated QSMs are being made available and are in development currently

(Hackenberg et al., 2015). These algorithms are being used to investigate large

forest areas with a radiative transfer model by modeling every tree in both leaf-on

and leaf-off conditions (Calders et al., 2016). This approach is even applicable for

volume quantification of root structures (Smith et al., 2014).

The most visually complex versions of cylinder fitting approximate every struc-

ture of the modeled tree from trunk to foliage using computer vision techniques

(Côté et al., 2011). Though this approach similarly relies on cylinder fitting meth-
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ods the primary function uses the point cloud as a guide for estimating and recreat-

ing tree structure based on generalized tree form, rather than recreating an entirely

accurate model of the tree of interest (Côté et al., 2012). Several field measure-

ments are required in order to parameterize the model, but this method reduces

errors due to occlusion of trunk shapes and models foliage in great detail, which

is otherwise not currently possible. This method has been proposed as ideal for

complex investigations of three-dimensional radiative transfer of individual trees

and forests (Côté et al., 2009).

1.6 General Knowledge Gap and Main Questions

Terrestrial LiDAR represents the smallest-scale and most detailed forestry mea-

surement tool, but the potential for these measurements to be applied across the

landscape is great. Although there has been an explosion of work aimed at ad-

dressing the potential of TLS for forestry measurements, the range of applications

are still limited and many questions exist. Very few studies have validated TLS

biomass estimates against destructively harvested data – an essential component

of modeling studies that increases confidence. Exploration of the implications of

applying alternative TLS allometry to plot or stand level forest biomass estimates

are non-existent and essential information that will allow the technology to be-

come operational. Moreover, the relationship between remote sensing estimates

of biomass from radar or LiDAR and those estimates using terrestrial LiDAR are

unknown. These several knowledge gaps form a scale-driven set of questions that

will be addressed and investigated:

[1] Can terrestrial LiDAR be used to estimate biomass at the individual tree scale?

[2] How does locally derived terrestrial LiDAR allometry influence estimates of

biomass compared to the more commonly used allometric relationships?

[3] Can terrestrial LiDAR directly reduce uncertainty in sensor calibration, vali-

dation, and biomass mapping through plot-level 3D modeling and non-destructive

allometric equations?
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1.7 Dissertation Structure and Study Motivation

The four stated questions will be addressed throughout this dissertation in the

following chapters:

Chapter 1: Forest Structure and Understanding Global Carbon

Chapter 2: Non-Destructive Biomass Estimation from Terrestrial LiDAR

Chapter 3: Implications of Applying Non-Destructive Local Allometry

Chapter 4: Improved Biomass Calibration with Terrestrial LiDAR

Chapter 5: Moving Forward with Terrestrial LiDAR

The introductory chapter provides the foundational knowledge for the subsequent

investigations. Chapters 2-4 provide a scale-driven analysis – providing insight into

the potential of targeted application of terrestrial LiDAR to improve landscape-

scale carbon estimates. The final chapter is a reflection on the findings of this

dissertation and the next steps for terrestrial laser scanning in the context of

forestry.

Chapter 2: Non-Destructive Biomass Estimation from Ter-

restrial LiDAR

The first study of this project will be focused primarily on the development of an

algorithm that will allow for biomass estimates of individual trees from terrestrial

LiDAR data. Discrepancies in global estimates of forest biomass originate from

spatial variations in allometry and wood density. Since wood density is not possible

to measure with terrestrial LiDAR, improvements to allometry will be the most

promising avenue of development.

Several investigators have approached biomass estimation with terrestrial Li-

DAR using voxelization, pixel counting, or cylinder fitting. Voxelization ap-

proaches generally overestimate tree biomass because the external voxels extend

past the boundary of the outside of the tree (Bienert et al., 2014). Pixel count-

ing methods are essentially a simplified form of voxelization, but do not include a
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stem-modeling step. This approach works well for small individuals (Seidel et al.,

2011), but applications to larger trees would likely be unsuccessful, as the interior

space, representing the bulk biomass of the tree, is unaccounted for. Cylinder fit-

ting approaches are extremely promising (Calders et al., 2015b) and represent the

best current options for TLS stem modeling, but generalization using cylinders is

not always the most accurate representation of tree form errors often occur with

non-cylindrical tree shapes like buttress roots or multiple trunks. Finally, of the

existing algorithms created to estimate tree volume or biomass from terrestrial

LiDAR data, very few validate their methods with destructive samples.

In Chapter 2, the primary question is: Can terrestrial LiDAR be used to esti-

mate biomass at the individual tree scale? This question will be addressed with

an alternative approach to stem modeling that accounts for external tree form and

accurately estimates biomass. The algorithm will be validated with destructive

measurements by the component method trunk, branches, and foliage will be

measured individually in order to assess the contribution of each component to

the total error of the estimate.

Chapter 3: Implications of Applying Non-Destructive Local

Allometry

The primary focus of this chapter will be the creation of several local non-destructive

species-specific allometric equations for the dominant canopy species in the forest.

The largest of these trees can contain nearly half of the total forest biomass, yet

few relationships include information of these individuals, suggesting the need for

targeted improvement of their allometry. Moreover, of those studies that have used

terrestrial LiDAR to estimate biomass none have evaluated the implications of ap-

plication of these new allometric relationships. By applying alternative allometric

equations we can evaluate changes in biomass magnitude and uncertainty.

In Chapter 3, the primary question is: How does locally derived terrestrial

LiDAR allometry influence estimates of biomass compared to the more commonly

used allometric relationships? This question will be addressed by three-dimensionally

modeling hundreds of trees, creating allometric equations, and comparing biomass

estimates and uncertainty directly to national scale equations.
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Chapter 4: Improved Biomass Calibration with Terrestrial

LiDAR

While the previous chapter provides a detailed local application of terrestrial Li-

DAR, Chapter 4 will concentrate on the landscape applications of this technology.

Terrestrial LiDAR is unique in that it provides a comparable type of data to air-

borne LiDAR (e.g. a point cloud format), but contains far more detailed informa-

tion about the structural attributes of the forest. However, many of the methods

of estimating biomass from terrestrial LiDAR are in the development stages and

no current studies have evaluated how plot level estimates of biomass can be ex-

trapolated to the landscape with other remote sensing platforms. Since plot level

measurements are used to train the algorithms that ultimately estimate biomass

on the landscape, changes in these values may result in changes in landscape-scale

models of biomass. In the case of airborne LiDAR data – relying on the structure

of the point cloud or canopy height to estimate biomass – the significant predictor

variable may change. Plot level changes from TLS estimates will also likely change

larger scale estimates, potentially shifting the distribution across the landscape.

In Chapter 4, the primary question is: Can terrestrial LiDAR directly reduce

uncertainty in sensor calibration, validation, and biomass mapping through plot-

level 3D modeling and non-destructive allometric equations? This question will be

addressed by calibrating LiDAR biomass estimates with terrestrial LiDAR-derived

biomass estimates and national-scale allometry. Changes in biomass magnitude

and uncertainty will be quantified in order assess TLS as a means for reducing

uncertainty in biomass mapping in the sensor calibration stage.
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Abstract

Global estimates of forest aboveground biomass and carbon storage have major
discrepancies linked to limitations in tree-level biomass estimates. Robust allo-
metric equations can improve biomass estimates; however, destructive sampling
to measure single-tree biomass is expensive, challenging, and prone to measure-
ment error. We present a method to efficiently and non-destructively estimate
single-tree biomass from terrestrial LiDAR scan data and test the approach on 21
destructively-sampled lodgepole pine (Pinus contorta) trees. The approach esti-
mates branch and foliage volume using voxelization and estimates trunk volume
using a method developed in this study called the Outer Hull Model (OHM). The
OHM iteratively fits convex hulls, accurately handles noisy scan data, and fits the
true shape of the trunk rather than forcing a cylindrical fit. Volume from the
LiDAR scans is converted to biomass using density values from the literature and
from field sampling to assess model sensitivity to density values. Whole-tree above-
ground biomass estimates derived from the LiDAR scans were nearly unbiased and
agreed strongly with destructive sampling data (R2=0.98, RMSE=20.4 kg). Esti-
mation of the trunk component biomass (R2=0.99, RMSE=12.3 kg) was stronger
than foliage and needle component estimates (R2=0.54, RMSE=21.4 kg). The
approach presented in this study accurately and non-destructively estimated the
aboveground biomass of needleleaf trees with minimal user input. The promising
performance on coniferous trees advances efficient sampling of single-tree biomass.1

1This chapter is based on: Stovall, A.E.L., Vorster, A.G., Anderson, R.S., Evange-
lista, P.H., Shugart, H.H., 2017. Non-destructive aboveground biomass estimation of conif-
erous trees using terrestrial LiDAR. Remote Sensing of Environment 200(Oct.), 31-42.
doi:10.1016/j.rse.2017.08.013
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2.1 Introduction

Forest biomass quantification is important for ecosystem service management and

understanding terrestrial carbon dynamics (Houghton et al., 2009). However,

global estimates of aboveground biomass and carbon storage have major discrep-

ancies linked to limitations in single-tree biomass estimates (Saatchi et al., 2011;

Baccini et al., 2012; Mitchard et al., 2014). Converting tree diameter and height to

biomass using allometric equations is uncertain - relying on the ability of an indi-

vidual equation to capture variations, not only by species and growth form, but also

spatially, depending on climate, soil, nutrient availability, and intra/interspecific

competition (Feldpausch et al., 2011). Uncertainty in biomass distribution would

be substantially reduced by increasing the sample size for allometric equations

to capture the variability in tree form across the landscape. However, collecting

large sample sizes through cutting and weighing trees, or destructive sampling,

is a time-consuming and expensive process that is subject to sampling bias and

high uncertainty (Chave et al., 2004; Picard et al., 2012). The feasibility of de-

structive sampling is further limited by capital, labor, logistics and protected areas

(Brown, 1997; Picard et al., 2012) and samples are often underrepresented in areas

of complex topography, variable climatic conditions, cultural significance, or polit-

ical restriction. These limitations are especially prevalent in mature forests, where

large, difficult to sample trees drive high biomass density. Many of these challenges

can be reduced or eliminated by estimating single-tree biomass non-destructively

using terrestrial LiDAR (Light Detection and Ranging).

In recent years, forestry applications of terrestrial LiDAR, or terrestrial laser

scanning (TLS), have been explored to automate the measurement of standard

forestry inventory parameters, as well as non-destructively estimate tree-level biomass

(Dassot et al., 2011; Liang et al., 2016). Terrestrial laser scanning has been used

in forestry to automate tree diameter and height measurements (Hopkinson et al.,

2004; Bienert et al., 2006; Henning & Radtke, 2006; Maas et al., 2008; Lovell et al.,

2011). More complex forest structure characteristics, such as vertically distributed

leaf area index (LAI) and gap fraction, have been measured by applying techniques

from airborne LiDAR (Lovell et al., 2003; Danson et al., 2007; Jupp et al., 2008;

Yao et al., 2011; Zhao et al., 2011; Griebel et al., 2015).
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Volume is typically extracted from terrestrial LiDAR scan data using two main

approaches: voxelization procedures, which convert structured point clouds to

cubes (Lefsky & McHale, 2008; Hosoi et al., 2013), and cylinder-fitting algorithms,

which model the tree stem and branches with a best-fit cylindrical shape (Côté

et al., 2009, 2011; Raumonen et al., 2013; Hackenberg et al., 2014; Calders et al.,

2015). Volume derived from either of these methods is combined with estimated

or sampled species-specific wood density to non-destructively estimate biomass.

Current techniques to estimate biomass from terrestrial LiDAR data vary consid-

erably in effectiveness, are not applicable across all tree growth forms, and few

validate with destructive measurements. Performance of many methods relies on

low-noise data (Hackenberg et al., 2015a), which presents a significant obstacle

for automated volume extraction from noisier data collected with portable, lower-

cost, phase-based LiDAR scanners. Voxelization algorithms provide an excellent

representation of branch complexity from the raw data, but tends to overestimate

stem volume (Bienert et al., 2014). Overestimates occur because only a portion

of the voxels associated with the exterior of the tree can be attributed to tree vol-

ume. Cylinder-fitting approaches are nearly fully automated and have been vali-

dated against a large number of destructive biomass measurements (Calders et al.,

2015). This method can be very accurate for simple tree structures, but in dense or

clumped tree canopies that have significant occlusion, this approach can result in

unexpected and unrealistic volumes (Hackenberg et al., 2015b). Also, algorithms

that rely on cylinders are invariably error-prone when applied to non-cylindrical

tree structures (e.g. buttress roots, multiple trunks, etc.). No cylinder-fitting ap-

proaches that we are aware of include the foliage component when quantifying

whole-tree biomass with validated destructive measurements.

Our objective was to develop and validate a method that efficiently estimates

whole-tree and component biomass from terrestrial LiDAR data. Our approach

estimates branch and foliage volume using voxelization and estimates trunk volume

using a convex hull peeling method developed in this study that we term the

Outer Hull Model (OHM). This method overcomes limitations present in the most

common algorithms in the handling of noisy scan data, non-cylindrical shapes,

and occlusion. We validated our algorithm using 14 live and 7 dead lodgepole

pine (Pinus contorta) trees that were destructively sampled in the Colorado State
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Forest State Park, USA. We also use these samples to determine the error in

biomass estimation attributed to per-tree density variability.

2.2 Methods

We destructively harvested 21 lodgepole pine trees to measure component biomass

trunk, branches, and needles and estimated diameter at breast height (DBH), to-

tal height, and aboveground biomass of each component using terrestrial LiDAR.

We evaluated the contribution of density-driven biomass uncertainty by apply-

ing density measured from each destructively-sampled tree to our non-destructive

biomass estimation.

2.2.1 Study Area

This study was conducted at the Colorado State Forest State Park in northern Col-

orado’s Medicine Bow Range, USA. The 28,732 ha forest is managed for multiple

uses, including timber, recreation, grazing, water quality, education, and wildlife.

Mountain pine beetles (Dendroctonus ponderosae) caused extensive lodgepole pine

mortality within the park between 2005 and 2011 (USDA Forest Service, 2013)

where 75% of the basal area was killed in the stand where this study was con-

ducted. The stand is situated at 2,708 m above sea level on an average slope of

14% on a north-northeast aspect. Average annual precipitation and temperature

in the area are 560 mm and 2◦C, respectively. The trees used in this study grew

in an even-aged lodgepole pine stand, although some of the smaller-diameter trees

we sampled were younger than the overstory pine. Stand density averaged 735

trees ha−1 (min=238, max=1366) and basal area averaged 26.9 m2 ha−1 (min=0.5,

max=50.0). An average of 14.7 m2 ha−1 (min=0.0, max=43.4) was removed when

the stand was last thinned (Vorster and Anderson, unpublished data).

2.2.2 Destructive Sampling

Twenty-one lodgepole pine trees were selected to represent the diameter range and

typical growth form in the stand (Table 2.1). We selected both live trees (n=14)
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and trees killed by mountain pine beetles approximately seven years before sam-

pling (n=7). Needles drop from trees several years after being killed by mountain

pine beetles. This provided an opportunity to scan pine trees with LiDAR without

occlusion by needles, similar to leaf-off scanning of deciduous trees (Dassot et al.,

2011; Hosoi et al., 2013). One additional live tree was only sampled for trunk

biomass (n=22). We scanned and destructively sampled the trees between July

and September, 2014.

Field Sampling

Each sample tree was felled on a tarpaulin to begin destructive sampling. We

recorded total stem height, crown height (starting at first live branch) and height

to the four-inch diameter of the main stem. The crown, the section between the

first live branch and the four-inch diameter, was measured next. For each crown

branch, we measured diameter and the distance from the tree base and for every

third branch, we measured length. Six subsample branches from the crown were

intensively sampled to determine wood and foliage mass and were then oven dried.

All other crown branches were sorted as live or dead and weighed. We only had

four subsample branches for one tree and five for another due to rain and a lack

of crown branches below the four-inch diameter. The tree top, defined as the

biomass above the four-inch diameter, was next weighed in three groups: the top

main stem, live top branches, and dead top branches. Once the crown branches

and tree top were stripped from the bole, we cut the bole of the tree from the base

to the four-inch diameter into four-foot segments to be weighed. A disk was cut

from the top of each four-foot segment to measure bole density and bark.

Several of the procedures varied for dead trees. Five branches from two dead

trees, for a total of ten branches, were weighed and oven dried. The average

moisture content from these ten branches was used to calculate the dry mass of

dead branches on dead trees and in the crown and top of live trees. The first

branch, rather than the first live branch, was considered the start of the crown

for dead trees. The bark on the dead trees did not cleanly peel off the disks, so a

roughly 10 cm portion of bark was shaved into a bag, but the rest of the bark was

kept on the disks.
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Table 2.1: Summary statistics for 21 destructively-sampled lodgepole pine (Pinus
contorta) trees. Trunk biomass was measured for 22 trees.

Component Status Mean St. Dev. Min Max

DBH (cm) Both 21.4 6.4 10.2 33.6
Live 19.9 6.1 10.2 29.9
Dead 24.5 5.4 16.5 33.6

Height (m) Both 16.5 5.2 5.9 22.4
Live 15.1 5.4 5.9 21.1
Dead 19.4 2.8 14.4 22.4

Total Biomass (kg) Both 178.5 123.9 13.9 458.0
Live 152.3 113.4 13.9 354.8
Dead 230.9 136.2 62.7 458.0

Woody Biomass (kg) Both 169.6 122.8 10.8 458.0
Live 139.0 107.7 10.8 332.9
Dead 230.9 136.2 62.7 458.0

Trunk Biomass (kg) Both 146.6 108.2 4.5 388.1
Live 121.7 100.0 4.5 303.9
Dead 200.1 112.9 56.3 388.1

Branch Biomass (kg) Both 30.5 22.3 5.6 70.1
Live 30.3 21.7 5.6 70.1
Dead 30.8 25.3 6.4 69.9

Branch and Needle Biomass (kg) Live 43.6 28.1 9.4 92.0

Needle Biomass (kg) Live 13.3 6.8 3.1 27.1

Wood Density (g cm−3) Both 0.39 0.03 0.33 0.45
Live 0.39 0.03 0.33 0.45
Dead 0.39 0.04 0.34 0.44
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Component Calculations

The whole-tree dry biomass and bole, branch wood, and foliage components were

calculated for each tree. The disks, bark, subsampled branch wood, and subsam-

pled foliage were dried at 105◦C (de Miguel et al., 2014) until the sample mass

changed by less than a gram over three days. The moisture content determined

from oven drying was used to estimate dry biomass. We calculated the density of

each tree as the average dry density of all bole disks from a tree.

To calculate trunk component biomass, the summed four-foot bole segments

were separated into bole wood and bark wet mass. The average water proportions

determined from the oven-dried disks and bark subsamples from each tree were

then subtracted from the bole wood and bark wet mass, respectively. Bole wood

and bark dry mass were summed to arrive at trunk dry mass. The branch wood

and needle components were composed of biomass from the crown and the top

of the tree. Crown branch length was only measured for every third branch, so

we used linear regression to predict length of unmeasured branches from branch

diameter (n=255, R2=0.54, RMSE=0.4 m, 31%). We modeled wet mass of foliage

and wood for each branch using linear and nonlinear models with branch diameter

and length as predictor variables (Kershaw & Maguire, 1995; Temesgen et al.,

2011; Poudel et al., 2015). We selected linear regression because of its strong fit

and the residuals met the assumptions of normality and homoscedasticity. Branch

length was not a significant predictor variable for foliage mass so it was dropped

from the foliage model. The following models were trained with 90 branches for

foliage and 89 branches for wood mass:

ln(F i) = β0 + β1ln(BDi) + εi (2.1)

ln(W i) = β0 + β1ln(BDi) + β2ln(BLi) + εi (2.2)

where F is foliage wet mass (g), W is branch wood wet mass (g), BD is branch

diameter (cm), and BL is branch length (m) for the ith branch. The βs are the

estimated regression parameters, εi is the random error, and ln is the natural

logarithm. Model fit was evaluated for foliage (R2=0.69, RMSE=0.2 kg, 55%)

and branch wood (adj R2=0.90, RMSE=0.2 kg, 37%) models. We did not apply
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a correction factor for the reported negative bias caused by back-transforming

logarithmic regressions (Poudel et al., 2015). Equations 1 and 2 were applied to

the branch diameters and lengths of all crown branches to estimate the wet foliage

and branch wood biomass in the crown. The proportion of crown foliage to crown

biomass and crown branch wood to crown biomass was then multiplied by the

total crown biomass and the top branches biomass. This method was used to

scale crown foliage and branch wood estimates to the field measurements of total

crown biomass and to estimate foliage and wood in the tree top where we did not

measure branch diameter. Moisture content from the subsample branches was used

to calculate dry mass for foliage and branch wood. Dry dead branch weight was

calculated using the water weight of dead branch samples. We calculated the top

main stem dry mass using the moisture content of the disks. Finally, the branch

wood component was calculated as the sum of crown branches (live and dead), top

branches (live and dead), and the top main stem. Foliage was the sum of crown

and top foliage. Bole, branch wood, and foliage components were summed to get

the total bone dry aboveground biomass.

2.2.3 Terrestrial LiDAR

Scans were collected using a FARO Focus3D 120 terrestrial LiDAR scanning unit,

which is a phase-based system that collects up to 976,000 points per second with

a ranging error of approximately 2 mm. Scans were collected with a resolution

of 6 mm at 10 m distance. Three to four scans were collected per tree from

multiple angles selected to limit occlusion. Scan distance from the target tree was

approximately 10 m, though this distance varied dependent on tree size and stand

openings. Styrofoam spheres were placed near the target tree as reference objects

for scan registration.

Preprocessing

The raw point cloud data were imported into Faro SCENE (2015) to complete

preprocessing before volume extraction. Within SCENE, spherical registration

points were used to register the multiple scan locations. Once the registration

was completed with an acceptably low placement error, the trees of interest were
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Figure 2.1: Flowchart detailing the method developed in this study to estimate
tree biomass from terrestrial LiDAR scans.

segmented from the point cloud, removing the majority of noise and extraneous

scan points (Figure 2.1). Stray points were filtered using two methods: [1] a

custom stray point filter and [2] a statistical outlier removal filter.

Phase-based TLS units suffer from stray points in complex vegetation caused

by ambiguous distance measurements in the return signal that make noiseless

scan data difficult to achieve without filtering. Scans that contain fine branches or

needles are particularly vulnerable to this type of noise. We filtered the tree scans

using a custom stray point filter and statistical outlier removal (Appendix; Figure

2.10).

The stray point filter relies on three parameters: allocation threshold, distance

threshold, and grid size (Newnham et al., 2012). The grid size defines the area to

include in the filtering procedure. If a percentage of points, given by the allocation

threshold fall outside the distance threshold, they are removed from the scan data.

A statistical outlier removal filter was used that is based on an algorithm provided

in the open source Point Cloud Library (Rusu & Cousins, 2011). This algorithm
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functions by analyzing the neighborhood around an individual scan point for the

mean distance to all surrounding points, comparing this distribution to a Gaussian

distribution, with a mean and standard deviation, and removing all points whose

mean distances deem them as outliers.

The use of a phase-based scanner resulted in significant noise near the central

bole, so the point cloud was manually segmented the point cloud, rather than

using automated methods, to differentiate between the trunk and branch points.

The segment tool was used in CloudCompare to remove all branch points and

expose the trunk. Often times, large portions of the central trunk were lost from

the scan data due to occlusion effects. In situations such as this, the point cloud

was roughly segmented leaving as many points attributed to the central bole as

possible. In the case of trunk bifrication or complex branching structure on larger

trees, the main large branches underwent the same segmentation process. Each

tree took 10-20 minutes to preprocess. As this is a manual process, it is dependent

on user skill, but the segmentation of branch from trunk points is an intuitive and

relatively simple step. Finally, each component was exported in ASCII format in

order to be used in the volumetric modeling process.

Tree height was estimated at this stage by subtracting the ground elevation

from the 99.9th percentile of elevation in the point cloud. The use of a phase-

based scanner resulted in significant noise near the central bole, so we manually

segmented the point cloud, rather than using automated methods, to differentiate

between the trunk and branch points (Figure 2.2). The segment tool was used in

CloudCompare (2015) to remove all branch points and expose the trunk. Each

tree took 10-20 minutes to preprocess. Finally, each component was exported in

ASCII format in order to be used in the volumetric modeling process.

Voxel-based Branch and Needle Volume Estimation

Point-cloud voxelization is common in TLS volume quantification and is an effec-

tive means of simplifying the complex branching structure of tree point clouds into

manageable volumetric units (Hosoi et al., 2013). This method directly converts

points into volumetric units by dividing the point cloud into an evenly spaced grid

of cubes, essentially shifting all points to the nearest cubic center. Within each
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voxel, we retained point density and used this information to differentiate compo-

nents with high (e.g. large branches) and low point density (e.g. small branches

and needles). We calculated the percent density rather than a point count within

each voxel to allow direct comparison of point clouds with differing densities caused

by varying scan distance and resolution. The percent density was calculated as

the total number of returns within an individual voxel divided by the maximum

possible number of returns within any voxel. We filtered the point cloud to create

an even grid spacing of 5 mm and subsequently selected a 2 cm voxel size for all

trees. Selecting this voxel size balanced the tradeoff between captured voxel den-

sity variation and spatial resolution. Fine voxel resolution enhances spatial detail,

but reduces the range of voxel densities, while larger voxels have a coarse resolution

that increases the range of densities found in a voxelized point cloud.This combi-

nation of filtering and voxel size allowed for a potential maximum of 64 returns per

voxel, which captured fine variation in point density while retaining high enough

spatial resolution to differentiate between large branches and small branches and

needles. The voxels with the highest density were considered to be large branches

and voxels below this threshold were treated as small branches or needles. The

algorithm automatically selects a threshold for each tree such that approximately

25% of the total branch and needle volume was attributed to needles, based on

the Jenkins et al. (2003) component ratio estimates.

The distribution of voxel density from crown center to edge will approximate

the branch volume distribution if fully and evenly covered by TLS points since

point coverage is a function of branch surface area (Figure 2.3). However, clumping

of foliage and direct occlusion from branches significantly reduces return density

in the inner crown. If left uncorrected, the exceedingly low percent density of the

inner crown underestimates branch volume. Voxel percent density is corrected with

a three step process: [1] use height specific trunk radius to estimate inner branch

size using a relationship derived from West et al. (1999), [2] use inner branch

size with a logarithmic curve to approximate the distribution of branch size and

local variability along the horizontal length of the tree crown, and [3] correct the

horizontal mean percent density distribution with the logarithmic model.

Inner crown occlusion is mitigated by estimating inner branch radius using

West, Brown, Enquist (WBE) allometric scaling theory (West et al., 1999). West
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Figure 2.3: Flowchart detailing the method of crown branch and foliage biomass
estimation. The [A] crown returns under a [B] full coverage scenario are expected
to be proportional to total volume, but [C] occlusion reduced the point coverage
in the inner crown. The [D] voxel density is not representative of branch volume
in the presence of significant occlusion effects. [E] The observed mean horizontal
voxel density distribution is corrected using the height-specific trunk volume. [F]
Trunk radius is used with [G] WBE allometric scaling theory to estimate the
approximate radius of an inner crown branch (rbranch) and then innermost mean
voxel density (β1). Voxel density represents the percent of filled space in a 2 cm
cube and can be directly converted to an estimate of branch volume. The average
innermost crown voxel density is used in a [H] logarithmic model spanning the
horizontal distance from the bole to the crown edge. [I] The corrected distribution
is modeled from the observed and modeled distributions, correcting crown voxel
density for occlusion effects.

et al. (1999) theorized that the radius of a specific branching order can be ap-

proximated for a given trunk radius if the tree grows as a hierarchical structure.

We used the radius of the trunk to estimate the largest or 2nd order branch size

in each 1 m crown subsection with the equations from West et al. (1999). The

estimate of the inner branch voxel density was made with:

rtrunk =

√
Vn
lπ

(2.3)
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rbranch = rtrunkb
−a/2 (2.4)

β1 = 2rbranch (2.5)

Where rtrunk is the mean trunk radius at each 1 m vertical subsection, Vn is the

trunk volume at each subsection, and l is the length of the subsections. rbranch is

the mean inner branch radius at each 1 m vertical subsection, b is the branching

order of which size is estimated, and a is a parameter relating daughter to parent

branches (a = 2, is area preserving). For this study, we estimated the inner branch

radius of 2nd order branches that are area preserving (a = 2 and b = 2 in Equation

2.4). β1 is a coefficient estimating the innermost mean voxel density as the branch

diameter closest to the trunk.

The largest branch size (β1) and horizontal crown extent are used as parame-

ters for the logarithmic model estimating the horizontal mean density distribution

(Figure 2.3). The normalized density percent values are then multiplied by the log-

arithmic model for a corrected estimate of the mean density distribution with local

variability in voxel density captured. We use β1 to create a logarithmic correction

model of the mean voxel density distribution in the form:

Bmodel = β1ln(1 +Dmax −Drange) (2.6)

Where β1 is the innermost mean voxel density from Equation 2.6, Dmax is the

maximum distance of crown branches from the central bole for crown subsections,

and Drange is the horizontal 10 cm intervals over which voxel density is calcu-

lated. Bmodel replaces the mean percent density distribution and the residuals of

normalized density percent guide the local variability in branch size.

We normalize the percent density by the mean percent density and subse-

quently correct the distribution with our modeled mean voxel density distribution

with:

Bcorrected =
draw
dmean

Bmodel (2.7)

Where, draw is the voxel density as calculated on the filtered crown point cloud
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and dmean is the mean horizontal voxel density distribution as derived from each

individual 1 m subsection of the crown. Voxels are finally converted to volume by

multiplying corrected percent density by voxel volume. Our approach of informing

the branch modeling with the output of the OHM algorithm provides realistic

crown volume estimates based primarily on the trunk volume and theoretical tree

scaling relationships.

Outer Hull Model for Trunk Volume Estimation

The Outer Hull Model (OHM) algorithm presented in this manuscript functions

on very simple principles, relying primarily on an iterative convex hull procedure

(Figure 2.2). Essentially, the model takes the following approach: [1] initialize by

locating the lowermost set of three or more points within a specified thickness, [2]

fit a circle if the quality of fit is below a user-specified root mean squared error

(RMSE) threshold, [3] if the circle-fitting fails, apply a convex hull algorithm to

the segmented points, [4] use convex hull peeling to remove noise points, and [5]

calculate the area of the peeled convex hull and multiply by the slice thickness

to retrieve volume (Figure 2.4). The following sections describe these individual

steps.

The trunk points are sectioned along the z-axis in even intervals in order to

facilitate the iterative modeling process. The result of this first step creates evenly

spaced horizontal slices of TLS returns that can be modeled. The algorithm begins

at the first newly created section containing 3 or more points, starting from the

lowest section and increasing along the z-axis.

Each section of the trunk point cloud is evaluated to determine if the best fit

is obtained by a circle or the convex hull. We determine this by using a least

squares circle fit algorithm (Coope, 1993). Under circumstances of low noise and

highly cylindrical tree shapes this form of modeling provides an excellent method

of determining tree diameter and volume from TLS data (Tansey et al., 2009).

The model calculates a convex hull rather than a circle if one of two conditions is

met: (1) the circle fitting exceeds an RMSE threshold or (2) the circle has a larger

diameter than field-measured DBH. These cases of the model using a convex hull

rather than a circle address instances where trunks are not circular or when the
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Figure 2.4: Flowchart detailing the method of trunk biomass estimation. [A]
The TLS data is separated to obtain the [B] trunk point cloud and the modeling
process is initiated. The algorithm begins from the lowest point cloud height and,
moving upward, finds the first [C] trunk subsection height (zi) with three or more
points within a specified thickness. [C] A circle is fit to the subsection points and,
if the error in fit exceeds a threshold, the convex hull is computed and points
are removed that fall along this initial outer hull. [D] The point removal process
continues iteratively (p1, p2...pn), ”peeling” the outermost points of the set until the
percent of returns removed reaches a threshold (OHMp) defined by the calibration
process. Occluded portions of the trunk sections (zi) are partially filled using a
[E] vertical buffer (Db) that includes trunk points from above (zi+Db

) and below
(zi−Db

) for use in the convex hull peeling procedure. The algorithm proceeds until
all trunk subsections are modeled [F].

fitted circle diameter is artificially large due to noise. The convex hull procedure

is exclusively used below DBH height since most trees become less cylindrical,

exhibiting some degree of flaring, as the stem transitions to the rooting structure.

We used a two-dimensional convex hull algorithm (Eddy, 1977) for each subset

of points delineated during the slicing procedure. A convex hull is the outermost

area that encloses a finite set of points that may exist in two-dimensional to n-

dimensional space. The polygon that is created from the algorithm defines the

outermost points of the trunk slice of which area can easily be calculated. The

convex-hull method contrasts with cylinder or frustum fitting algorithms in that
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the shape of the point set at each height interval defines the shape of the modeled

surface, rather than relying on a best-fit primitive. This method is preferable to

cylinder fitting when point coverage of the trunk is sufficient because irregular

trunk shapes are quantified with greater certainty.

We improved the convex hull estimation method with two approaches: [1]

slice buffering and [2] convex hull peeling. The variable distance buffer acts as a

smoothing filter, encompassing all points within a set vertical distance around the

trunk slice being modeled. The buffering approach reduces occlusion effects and

model robustness by increasing the number of points being modeled. We used a

single 20 cm buffering distance for every tree since this value filled most gaps from

occlusion, but retained the unique trunk shape.

Terrestrial LiDAR datasets that have incomplete coverage of returns from the

trunk section due to occlusion effects require an alternative method to help reduce

gaps in data. Since this algorithm uses a convex hull method, the point set will

always be enclosed, regardless of the shape of the sliced trunk in the point cloud.

This function is of great benefit because area, and thus volume, can be computed

at any trunk section, assuming it contains 3 or more points. However, in situations

where point coverage is incomplete and large sections of the trunk are unmeasured

there can be significant volume underestimation, because the polygon created from

the convex hull process will simply connect the next closest and outermost point,

which may not be representative of the reality of the trunk shape. A convex hull

method of gap-filling has been used in a modeling algorithm applied to mangrove

trees (Olagoke et al., 2016), however the significant gaps present from occluded

trunk points in our data would have produced unacceptable volume errors.

In order to reduce this source of error we implement a buffering procedure at

each successive slice that the convex hull was computed for. The buffer functions

by including all points above and below the slice being modeled, increasing the

likelihood of the outer trunk points being included in the final model. The dis-

tance of the buffer can be varied according to the coverage of LiDAR returns and

level of occlusion present on the individual tree. Increasing the buffer produces a

smoothing effect on the final model that is ideal in circumstances of occlusion, but

may alter the accuracy of the representation of trunk shape. This buffering pro-

cess has the added benefit of increasing the likelihood that the modeling procedure
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will complete at each section because sections with less than 3 points will likely

increase in point density. The option for buffering at each successive trunk slice is

essential for providing the most complete and representative volumetric model of

the central bole of the tree.

We implement what is, to our knowledge, the first example of convex hull

peeling in the context of volume quantification of trees using terrestrial LiDAR, in

hopes of reducing the influence of noise in the data and subsequent bias. Convex

hull peeling is used in computational geometry to give order to non-organized

point sets by calculating the convex hull of the point set and then recalculating the

convex hull without the points that fall on the first convex hull (Chazelle, 1985).

With each iteration of the process, layers within the data are created, allowing

for the underlying structure to be analyzed. For our purposes, this method is

useful for simultaneous noise removal and volume quantification. The convex hull

peeling process removes these outermost points attributed to noise and continues

this process iteratively until the innermost points remain.

A threshold is set to determine the number of convex hull peeling iterations

based on the desired percentage of points to remove from the original cloud. If

this threshold is set to 0%, the first and outermost convex hull is used – essentially

turning off the peeling process. A peeling threshold of 100% will eliminate all

points and no convex hull will be calculated. A conservatively low threshold of

5% is effective in low noise point clouds and will reduce spurious noise points, but,

with noisier data, higher thresholds such as 45% are appropriate. If the threshold

is set too high and too many peeling iterations occur there is the potential for the

removal of a significant number of true trunk points, so a moderately low threshold

is preferable to an extremely high threshold.

The calibration for the OHM algorithm required a single tree to determine the

best balance between the peeling and buffering process. The convex hull peeling

process removes spurious points and the buffering process increases the number

of points. It follows that the two procedures will interact. Substantial occlusion

within the trunk point cloud requires a larger buffering region, but also a greater

number of peeling iterations in order to reduce the likelihood of volume overes-

timation. The calibration procedure used the known trunk biomass in order to

find this balance under a range of occlusion scenarios. We modeled the interaction
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between buffering and convex hull peeling with a power function in the form:

OHMP = aDb
b (2.8)

Where OHMP is the convex hull peeling threshold, Db is buffer distance, and a

and b are the model coefficients. This approach requires the user to provide only

the buffering distance needed to reduce occlusion effects.

The final steps of the modeling process are the same regardless of the procedure

implemented on each individual vertical section. Once the area of the section has

been determined by either convex hull or circle fitting, the height of the section is

used to estimate volume. Each successive section is modeled until the volume of

the entire trunk is determined. We use this same procedure to estimate diameter

though the length of the trunk; DBH is estimated at 1.3 m from the lowest point

in the LiDAR data. The area calculation of each section is converted into a filled

point cloud representation of the modeled tree that can be visualized, allowing for

comparison to the raw point cloud to identify errors that would produce significant

deviations from actual biomass.

Validation of Non-destructive Biomass Estimates

We converted volume to biomass for all tree components using an average lodgepole

pine specific gravity of 0.38 (Chojnacky et al., 2014). We evaluated error using

this average specific gravity by comparing to biomass estimates generated from

measured per-tree density values. Though density was calculated on the bole

sections alone, average per-tree density values were applied across all components.

Biomass estimates derived from the TLS data were compared to destructively-

sampled biomass estimates to evaluate model performance. For consistency, we

used a single set of input parameters for every tree modeled, rather than relying on

parameter selection by the user. Bias, RMSE, and RMSE% were reported using:

bias =

n∑
i=1

(yi − ŷi)

n
(2.9)
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RMSE =

√√√√√ n∑
i=1

(yi − ŷi)2

n
(2.10)

RMSE% =
RMSE

ŷi
(2.11)

Bias gave an indication of the tendency of our approach to over- or underesti-

mate biomass. RMSE was reported both in kg and as a percentage of the mean

of the sample to provide a clear comparison to other methods of non-destructive

biomass estimation using terrestrial LiDAR. The RMSE difference in biomass esti-

mates between the two density values were determined for the whole tree and each

component. The density effects are reported as total difference in RMSE, both in

kg and as a percentage.

2.3 Results

2.3.1 Diameter and Height

The convex-hull peeling approach produced an accurate (Figure 2.5a) and unbiased

(bias=0.0 cm) estimate of trunk diameter when compared to the field measure-

ments (Table 2.2). The circle-fitting RMSE threshold of 10 cm was exceeded 63%

of the time, requiring the convex-hull peeling approach. Tree height estimates

were also very accurate (Figure 2.5b; Table 2.2). Height estimates were negatively

biased by 30 cm due to a single outlier in the live tree subsample (Figure 2.5b).

Excluding this outlier reduced bias to -16 cm and RMSE to 0.3 m for all trees.

Across all samples, diameter and height error was low, but living trees had higher

error than dead trees. The dead samples were unbiased.

2.3.2 Parameter Optimization

A single tree was used to parameterize the OHM algorithm. The number of peel-

ing iterations were negatively correlated with biomass estimates, while buffering

distance was positively correlated (Figure 2.6). In order to achieve low error trunk
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Figure 2.5: Comparison of field measured and TLS-based estimates of (a) diameter
at breast height and (b) height for living (black) and dead (hollow circles) trees.

biomass estimates, the percentage of points removed through peeling must in-

crease as buffering distance increases; in essence, buffering increases the number

of points that must be removed through the peeling operation. The peeling per-

centage stabilized near 60% above 50 cm of buffering. The relationship between

buffering distance and peeling iterations was best described using a power func-

tion (R2=0.99). The computation time of this process was roughly exponential,

increasing with buffering distance. The 20 cm buffer used for the trunk modeling

procedure required five seconds to 53 seconds for processing, averaging 25 seconds

per tree and increasing linearly with the number of trunk points in the point cloud.

2.3.3 Validation of Non-destructive Biomass Estimates

Whole-tree aboveground biomass estimates derived from the terrestrial LiDAR

scans strongly agreed with the destructive sampling estimates (Figure 2.7; Ta-

ble 2.2). The OHM method performed well when estimating tree trunk biomass

(8.4%), but RMSEs (%) were higher for branch (49.4%) and needle (38.9%) biomass

(Figure 2.8). When branches and needles were combined as a single component,

the model performed slightly better (Table 2.2). LiDAR estimates of biomass
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gorithm. Biomass error was compared to the primary input parameters for each
volume estimation approach. Red lines approximate the effect of varying input
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column (right) shows the final optimized model based on the training subsample
used to automate parameter selection.

were more accurate for dead trees than live trees for whole tree (3.3%), woody

(3.2%), and trunk (7.5%) biomass (Table 2.2). All biomass estimates were nearly

unbiased except branch and branch with needle biomass, which consistently un-

derestimated. All dead trees had lost their needles before sampling, so the needle

component could not be compared between live and dead trees. The average per-

tree density reduced the trunk RMSE to 7.3%, with dead trees averaging 3.0%.

The application of per-tree density tended to only slightly improve RMSE for other

components.

2.4 Discussion

The approach presented in this study combined voxelization and the OHM to

accurately and non-destructively estimate the aboveground biomass of needleleaf

trees using terrestrial LiDAR with minimal user input. We derived nearly unbiased

and highly accurate diameter and height measurements from the LiDAR data using

an automated method. Biomass estimation required manual segmentation of the

central bole, but this preprocessing time was minor relative to the time and cost

associated with destructive sampling. Once the central bole was segmented, the

convex hull peeling approach was used to accurately recreate its unique exterior
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Figure 2.7: Non-destructive (a) whole-tree and (b) woody aboveground biomass
estimates with terrestrial LiDAR compared to destructively sampled reference
biomass for living (black) and dead (open-circles) trees.

structure – ideal in circumstances of non-cylindrical tree structure. Needle and

branch biomass estimates were derived using a voxelization subroutine. Branch

biomass estimates had higher RMSE, but were relatively unbiased considering

significant inner crown occlusion and noise present in the raw point cloud. Error of

every component was lower overall for dead trees. Density was not a major control

over biomass variability, but inclusion of individual tree density measurements did

reduce error.

2.4.1 Basic Forestry Measurements

Diameter at breast height was accurately estimated using the same convex hull

peeling algorithm that forms the basis for the OHM. The major sources of di-

ameter measurement error using terrestrial LiDAR, and phase-based scanners in

particular, were exhibited in this dataset: low return density, high noise, and high

occlusion. At breast height, point cloud density was high and occlusion was low in

larger diameter trees, allowing for accurate diameter measurement. Alternatively,

the smallest trees had the greatest error since foliage was dense at breast height
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Figure 2.8: Comparison of destructively-sampled and non-destructive TLS-based
estimates of (a) trunk, (b) branches, (c) needles, and (d) branches with needles
for living (black) and dead (open-circles) trees.
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(Figure 2.5), reducing point density and increasing occlusion at the trunk. Despite

these issues, the error in diameter estimation is exceptionally low and unbiased.

The percentile approach successfully retrieved height from the TLS point cloud,

with the exception of one outlier. This underestimation had no returns present at

the correct height, suggesting too many points were filtered during preprocessing.

Our method outperformed common manual (Hopkinson et al., 2004) and automatic

(Calders et al., 2015) approaches of estimating height with TLS and were also

more accurate than tree height estimates collected with airborne LiDAR in conifer

stands (Falkowski et al., 2006), albeit airborne LiDAR spans a much broader area.

The strong performance of our height estimation may be due to the relatively low

height of the stand sampled, selecting trees with a clear line-of-sight, and scanning

the trees from multiple directions. We anticipate multiple return instruments

would have even lower error. The use of TLS for height measurement should

be preferable to manual methods of validating tree height at the plot level using

airborne or spaceborne LiDAR.

2.4.2 Non-destructive Biomass Estimation

Several recent publications have successfully non-destructively estimated biomass

with cylinder-fitting (Calders et al., 2015; Hackenberg et al., 2015a; Yu et al.,

2013), but the same algorithm applied to our dataset produced undesirable re-

sults as representations of tree structure were not realistic or reliable (Hackenberg

et al., 2015b). We developed an alternative approach that uses minimal user input

to accurately estimate biomass of individual tree components. Trunk form was

retained with the OHM algorithm as it relies on the exterior returns to create a

solid volumetric model. This unique form is lost with cylinder-fitting approaches,

potentially becoming a major source of error in some species or individuals with

non-cylindrical trunks. Our OHM approach is effective and accurate under con-

ditions of noisy scan data, where cylinder fitting is often unpredictable. Trunk

estimates were even reliable in the canopy, where trunk occlusion is high (Figure

2.9). We cannot yet evaluate the accuracy of the OHM algorithm with respect to

broadleaf species, but anticipate success under leaf-off conditions. The primary

drawback of our algorithm in the current form is the inability to differentiate be-
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Table 2.3: Comparison of the RMSE (%) of the Outer Hull Model algorithm to
other algorithms validated with destructive samples. Only trunk biomass RMSE
% was compared to minimize bias from higher uncertainty foliage estimates.

Publication RMSE (%) Tree Type

Calders et al. 2015 16.1 Broadleaf
Hackenberg et al. 2015a 15.3 Broadleaf
Yu et al. 2013 12.5 Needleleaf
OHM Algorithm 10.2 Needleleaf

tween branches and trunk, requiring manual segmentation for accurate biomass

estimates. This could become a cumbersome task for trees with a high branching

order. However, this is a minor issue for trees that have a central bole where

manual segmentation is a simple and efficient process.

The OHM algorithm is one of the most accurate methods of estimating stem

volume and biomass. Our method performs better than other studies that validate

biomass estimates from LiDAR with destructive sampling data (Table 2.3). The

low RMSE of our algorithm can partially be attributed to the greatest contribu-

tion of biomass in our samples existing in the trunk, reducing the complexity and

potential for error when modeling this component. Broadleaf and higher order

branching trees tend be more difficult to model accurately, ultimately increasing

model uncertainty (Calders et al., 2015; Hackenberg et al., 2015a). Further reduc-

tions in error were obtained when the OHM algorithm was used in concert with

measured wood density of the trunk component; RMSE for the trunk decreased

to 7.3%. Error was further reduced to 3.0% for dead trees . To our knowledge,

this is the first attempt to validate branch and needle biomass estimates from TLS

with coincident destructive sampling on the whole-tree scale. Other work has re-

lated point cloud return density to destructive measurements of juvenile trees, but

did not attempt a direct estimate of individual components (Seidel et al., 2011).

A voxelization approach has been used to estimate wood volume and leaf area

density, but these measurements were not extensively validated with destructive

sampling and thus cannot be directly compared to our approach (Hosoi et al.,

2013; Omasa et al., 2006). While the raw point cloud data was greatly influenced
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Figure 2.9: Comparison of destructively sampled and non-destructive TLS-based
estimates of trunk section biomass (n = 232). Black circles are live tree samples
and open circle are dead tree samples.

by inner crown occlusion, our method of modeling the branch size distribution

using information from the trunk allowed crown biomass to be estimated without

the need for empirically derived calibration. This method of branch biomass esti-

mation in needleleaf trees is a clear improvement over QSM methods in high noise

scenarios where biomass can be extremely overestimated. Branches and needles

contained an average of approximately 20% of the whole tree biomass, but this

contribution decreased with increasing tree size, which may reduce overall biomass

uncertainty when modeling larger trees since our trunk estimates were accurate.

The OHM can potentially be applied to most trunk structures without further

calibration for accurate biomass estimation. Parameter selection and calibration

was based on a single destructively-harvested tree. Since the OHM is modeling

a variably occluded stem structure, the OHM parameters may not change signif-

icantly for other tree species and growth forms. Our final calibrated algorithm

required the buffering extent as the only user defined parameter when model-
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ing biomass. The component voxelization procedure only required height specific

trunk volume to accurately estimate biomass, but needs further validation with

other needleleaf species. Species specific variation in the relationship between

trunk volume and inner branch radius needs to be captured for this method to be

applied universally across a range of needleleaf tree structures. Future work will

focus on fine tuning the voxelization approach to other species for more precise

biomass estimation.

We included seven dead trees as an attempt to emulate leaf-off conditions

for a needleleaf species and reduce uncertainty in woody biomass estimates. As

expected, whole tree and woody biomass estimates had lower error in dead trees.

Root mean squared error decreased by nearly 8% when dead samples were used.

The occlusion effects at the trunk were lower in the dead trees as needles were not

present to block the majority of returns. Our findings suggest that dead trees may

be useful for non-destructively studying the structural allocation of biomass with

terrestrial LiDAR.

Wood density is widely known to cause significant variation in the accuracy

of biomass estimation especially across continental scales (Mitchard et al., 2014).

Wood density contributed to approximately 1.3% of the trunk biomass estima-

tion uncertainty. While this increase in accuracy is significant, coincident field-

measured density subsamples may not provide these same improvements in esti-

mation error; within tree density variability can contribute as much or more to

biomass uncertainty. Several subsample-based density estimation approaches using

tree cores have been proposed, but are only useful with a priori knowledge of the

tree species characteristics (Williamson & Wiemann, 2010). Moreover, although

trunk RMSE improved when applying the tree specific density, whole tree biomass

uncertainty increased slightly, suggesting density differences among components

of the tree. As such, we suggest that species-specific wood density estimates are

adequate when coincident field measurements are not feasible.

This approach to non-destructive estimation of aboveground biomass of trees

can potentially reduce uncertainty within current allometric equations by allow-

ing for more efficient sampling of single-tree biomass. The logistical and financial

limitations surrounding destructive sampling are reduced substantially with the

method introduced in this work. We approximate that biomass estimation us-
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ing the method in this study is 16 times faster than destructive sampling. These

time savings increase substantially with larger trees. Moreover, one of the pri-

mary issues surrounding allometric equation development is a high coefficient of

variation caused by insufficient sample size (Chave et al., 2004); non-destructive

sampling with terrestrial LiDAR can significantly increase sample size, in turn

reducing uncertainty. Currently, national-scale allometric equations are widely

applied, but local applications of these relationships may result in significant er-

rors (TerMikaelian & Korzukhin, 1997; Jenkins et al., 2003; Chave et al., 2005;

Chojnacky et al., 2014), which are exacerbated when applied to trees outside of

the measured diameter, height, and geographic range. The development of high

sample size non-destructive allometric equations that include trees that span the

realistic range of diameters found in forests have far-reaching implications. Appli-

cation of these relationships to identified high-uncertainty regions may be one of

the most efficient methods of improving confidence in global estimates of above-

ground biomass.

2.5 Conclusion

Our approach to non-destructively estimate biomass using terrestrial LiDAR with

voxelization and the OHM algorithm was nearly unbiased and had exceptionally

low error. Density controlled variability across the samples in this study and re-

duced estimation error, but applying an average species-specific density still pro-

duced low error biomass estimates. Accurate and efficient non-destructive biomass

estimation has the potential to reduce uncertainty in local allometric equations

by greatly increasing sample size over large areas with minimal cost, relative to

traditional destructive harvesting. As unrepresentative allometric relationships

contribute a substantial proportion of uncertainty in landscape-scale biomass and

carbon distributions, this approach aids in improving these estimates for more

effective global forest carbon management.
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2.6 Appendix

Model Parameters

Table 2.4 shows the regression parameters used in the models to estimate foliage

and wood mass of individual branches. Table 2.5 shows calibration parameters for

OHMP.

Table 2.4: Regression parameter values (standard error) for estimating foliage
(Equation 1; n=90) and wood (Equation 2; n=89) wet mass for branches.

Equation β0 β1 β2

1 3.9583 (0.1181) 1.9426 (0.1377)
2 4.1965 (0.0699) 1.9184 (0.1031) 0.7696 (0.1418)

Table 2.5: Calibration parameter values (standard error) for the OHM algorithm
(OHMP).

Model Parameter Coefficient p
OHMP a 10.06 (1.04) <0.001

b 0.46 (0.01) <0.001

Preprocessing of TLS Data

Phase-based TLS units suffer from stray points in complex vegetation caused by

ambiguous distance measurements in the return signal that make noiseless scan

data difficult to achieve without filtering. Scans that contain fine branches or

needles are particularly vulnerable to this type of noise. We filtered the tree scans

using a custom stray point filter and statistical outlier removal (Figure 2.10).

The stray point filter relies on three parameters: allocation threshold, distance

threshold, and grid size (Newnham et al., 2012). The grid size defines the area to

include in the filtering procedure. If a percentage of points, given by the allocation

threshold fall outside the distance threshold, they are removed from the scan data.

A statistical outlier removal filter was used that is based on an algorithm provided

in the open source Point Cloud Library (Rusu & Cousins, 2011). This algorithm
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Figure 2.10: Example of noise removal procedure. The raw point cloud (top)
is denoised with stay point removal and statistical outlier removal. Noise points
(middle, in red) are removed for a clean point cloud (bottom).
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functions by analyzing the neighborhood around an individual scan point for the

mean distance to all surrounding points, comparing this distribution to a Gaussian

distribution, with a mean and standard deviation, and removing all points whose

mean distances deem them as outliers.

The use of a phase-based scanner resulted in significant noise near the central

bole, so the point cloud was manually segmented the point cloud, rather than

using automated methods, to differentiate between the trunk and branch points.

The segment tool was used in CloudCompare to remove all branch points and

expose the trunk. Often times, large portions of the central trunk were lost from

the scan data due to occlusion effects. In situations such as this, the point cloud

was roughly segmented leaving as many points attributed to the central bole as

possible. In the case of trunk bifrication or complex branching structure on larger

trees, the main large branches underwent the same segmentation process. Each

tree took 10-20 minutes to preprocess. As this is a manual process, it is dependent

on user skill, but the segmentation of branch from trunk points is an intuitive and

relatively simple step. Finally, each component was exported in ASCII format in

order to be used in the volumetric modeling process.

Vertical Buffer for Reducing Occlusion

Terrestrial LiDAR datasets that have incomplete coverage of returns from the

trunk section due to occlusion effects require an alternative method to help reduce

gaps in data. Since this algorithm uses a convex hull method, the point set will

always be enclosed, regardless of the shape of the sliced trunk in the point cloud.

This function is of great benefit because area, and thus volume, can be computed

at any trunk section, assuming it contains 3 or more points. However, in situations

where point coverage is incomplete and large sections of the trunk are unmeasured

there can be significant volume underestimation, because the polygon created from

the convex hull process will simply connect the next closest and outermost point,

which may not be representative of the reality of the trunk shape. A convex hull

method of gap-filling has been used in a modeling algorithm applied to mangrove

trees (Olagoke et al., 2016), however the significant gaps present from occluded

trunk points in our data would have produced unacceptable volume errors.
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In order to reduce this source of error we implement a buffering procedure at

each successive slice that the convex hull was computed for (Figure 2.11). The

buffer functions by including all points above and below the slice being modeled,

increasing the likelihood of the outer trunk points being included in the final model.

The distance of the buffer can be varied according to the coverage of LiDAR returns

and level of occlusion present on the individual tree. Increasing the buffer produces

a smoothing effect on the final model that is ideal in circumstances of occlusion, but

may alter the accuracy of the representation of trunk shape. This buffering process

has the added benefit of increasing the likelihood that the modeling procedure will

complete at each section because sections with less than 3 points will likely increase

in point density. The option for buffering at each successive trunk slice is essential

for providing the most complete and representative volumetric model of the central

bole of the tree.

[A] [B]

Figure 2.11: Comparison of [A] trunk point cloud slice and [B] trunk point cloud
slice with vertical buffer. Prominent gaps in the lower right of the point cloud due
to occlusion are filled using this method.
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Convex Hull Peeling

The final modeled fit of the convex hull peeling operation outperformed circle

fitting (Figure 2.12). RMSE increases when voxelization is used to reduce compu-

tational time, but the OHM algorithm still performs well (Figure 2.13).

Figure 2.12: Comparison of [A] least squares circle fit to [B] convex hull peeling as
implemented in the OHM algorithm. The reduction in RMSE (m) is substantial
on this low noise trunk slice. Points are slightly transparent in order to show
locations of high return density (darker).
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Figure 2.13: Comparison of [A] least squares circle fit to [B] convex hull peeling
as implemented in the OHM algorithm. This example includes the voxelization
procedure for reduced computation time. Note: RMSE (m) is higher when the
point cloud has been voxelized. Points are slightly transparent in order to show
locations of high return density (darker).
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Table 2.6: Comparison of absolute difference in RMSE (%) with an average density
value (0.38) versus measured average individual tree density. Negative differences
indicate improvement in RMSE.

Average Density Measured Density
Component Status RMSE (%) RMSE (%) RMSEMEAS-RMSEAVE (%)

Total Biomass Whole 11.1 12.9 1.8
Live 15.2 16.6 1.4
Dead 3.3 6.5 3.2

Woody Biomass Whole 10.2 12.1 1.9
Live 14.4 16.1 1.7
Dead 3.2 6.4 3.2

Trunk Biomass Whole 8.4 7.0 -1.4
Live 8.9 9.5 0.6
Dead 7.5 3.3 -4.2

Branch Biomass Whole 49.4 49.4 0.0
Live 47.1 46.5 -0.6
Dead 54.9 56.7 1.8

Branch and Needle Biomass Live 41.8 41.6 -0.2

Needle Biomass Live 38.9 39.0 0.1

Density Effects

We evaluated the effect of density on our biomass estimates. Trunk biomass esti-

mates were improved when using measured biomass, while most other component

estimates showed no improvement.(Table 2.6; Figure 2.14).

Comparison to QSMs

Quantitative surface models (QSMs) do not perform well with the high noise data

common to phase-shift TLS when scanning needleleaf trees. We estimated the

volume and biomass of the trees in this study using a QSM approach implemented

in the SimpleTree plugin within Computree (Hackenberg et al., 2015b). We found

many low noise, dead samples performed well, but higher noise samples signif-

icantly overestimated biomass (Figure 2.15). In one case, the QSM approach

overestimated biomass by more than 250%. Low noise samples are clearly mod-

eled well, but large cylinders become common in the high noise crown, leading to

unrealistic biomass estimates. One other finding from using the QSM method in
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comparison to OHM and branch voxelization was the increase in computational

time to 7.5 hours (21 minutes per tree on average). We modeled the isolated

trunk point cloud to evaluate the location of the main errors in biomass estima-

tion. Trunk biomass was estimated with accuracy approaching that of the OHM

algorithm when the QSMs were run on the trunk point cloud (Figure 2.16). Our

method of estimating branch and needle biomass could easily be integrated into

a QSM approach by isolating the trunk point cloud and feeding the trunk volume

information into the branch estimation algorithm. Future developments of the

branch biomass algorithm will be capable of using QSM input data for needleleaf

trees.
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Success Failure

Figure 2.15: Example of successful and unsuccessful cylinder fitting of two different
tree point clouds. The successful scenario (left) was completed on a dead individual
with low noise and branches are clearly accurately represented. The unsuccessful
scenario (right) was completed on a living tree with dense foliage and high point
cloud noise, resulting in unrealistic cylinder sizes withing the crown.
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Figure 2.16: Non-destructive estimates of biomass using a QSM approach on the
(a) segmented trunk point cloud and (b) the entire unsegmented point cloud for
living (black) and dead (open-circles) trees.
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Abstract

Estimates of the quantity and spatial distribution of global forest carbon are built
on the assumption that regional- or national-scale allometry accurately captures
growth form across the wide spectrum of plant size. Allometry is painstaking
to create: trees must be cut, dried, and weighed over the span of months. This
bottleneck has left most equations low in sample size and without the largest
trees, which can contain around 40% of forest carbon. Terrestrial laser scanning
can potentially increase the range and sample size of allometric equations through
non-destructive biomass estimation and must be evaluated in this context. We
used TLS to virtually reconstruct 329 trees ranging from 4 to 123 cm diameter.
Three-dimensional tree models were the basis for 34 local allometric relationships
for comparison to the Jenkins et al. (2003) and Chojnacky et al. (2014) equations.
Overall, TLS allometry had lower RMSE and predicted higher biomass compared
to the equivalent national equations. We evaluated site-wide allometry for errors
from insufficient sample-size and diameter range. We found allometric equations
did not stabilize to a consistent set of parameters until 100-200 samples were
reached, suggesting many current biomass equations may be inadequate. This
work highlights TLS stem modeling as an appropriate method of non-destructive
allometric equation development that can immediately impact the magnitude and
reduce uncertainty in landscape-level biomass estimates.1

1This chapter is based on: Stovall, A.E.L., Texiera-Anderson, Kristina, Shugart, H.H., In
Prep. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. in-
tended for Forest Ecology and Management.
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3.1 Introduction

Forests contain the vast majority of aboveground biomass and carbon (Houghton

et al., 2009), but remain incredibly difficult to measure with a high degree of

certainty (Mitchard et al., 2014). Currently, most estimates of forest biomass are

inferred rather than measured (Saatchi et al., 2011; Baccini et al., 2012). The most

commonly measured variable in studies of forest structure is diameter at breast

height (DBH), as this is indicative of several other biophysical variables of interest

to forest ecologists and managers – namely biomass. DBH is converted to standing

aboveground biomass with empirically derived scaling relationships, or allometric

equations. Allometric relationships are created with extensive destructive sampling

of trees (Picard et al., 2012) and are essential, as they form the backbone of all

landscape-level biomass and carbon mapping (Jenkins et al., 2001). Any error or

uncertainty within the relationships ultimately propagates to higher-level estimates

(Chen et al., 2015), thus it is imperative they be representative of the trees being

measured. For this reason, substantial efforts have been made to create species-

and regionally-specific allometric equations (TerMikaelian & Korzukhin, 1997) for

reducing uncertainty in biomass mapping.

Allometric equations require a high sample size to be dependable, but logis-

tical limitations often limit the number of samples collected in the field (Chave

et al., 2004). These limitations primarily stem from the significant cost and labor

expense involved with destructive sampling. The destructive sampling process is

fraught with difficulties that can lead to measurement errors, ultimately propagat-

ing to the final relationships and subsequently to stand-level estimates of biomass.

Biomass estimates are even more uncertain in areas of cultural significance due to

sampling being prohibited. All of these factors are worsened in areas of complex

topography, undesirable climatic conditions, and political restriction, spatially bi-

asing the creation of allometric relationships. The above mentioned issues are

especially true in mature forests, where large trees drive the high biomass den-

sity of plot measurements (Brown, 1997). Sampling trees at the fringe of current

allometry data will reduce uncertainty in stand-level biomass estimates, but the

difficulty and complexity of destructive sampling poses a severe limitation.

Non-destructive sampling overcomes nearly every complicating factor associ-
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ated with destructive sampling and opens up avenues for more complex long term

ecological research. Efficient non-destructive sampling offers a solution to the is-

sue of insufficient sample size in allometric equations (Chave et al., 2004). The

time consuming portion of destructive methods is two-fold: field work and drying.

Non-destructive methods exclude this drying step. Moreover, sampling on private

and protected land becomes more feasible when the forest is not at a higher risk of

degradation from destructive sampling. A unique benefit also arises since measure-

ments can be made over the entire lifespan of the tree, allowing investigation into

fine-scale structural changes over time. Finally, increased sampling efficiency from

non-destructive approaches may allow even more specific development of allomet-

ric equations that take into account environmental variation across the landscape

that impacts the growth structure at the scale of the individual tree.

Terrestrial LiDAR, or terrestrial laser scanning (TLS), has become the most

viable current option for low-cost non-destructive allometric equation development

with increasing levels of accuracy (Calders et al., 2015). Several approaches have

been employed for biomass estimation that generally fall into 5 categories (ordered

with increasing levels of accuracy): [1] allometric estimation, [2] point structure

estimation, [3] voxel derived-volume, [4] quantitative surface models (QSMs), and

[5] outer hull models (OHMs). Similar to traditional plot-level approaches, allo-

metric methods rely on measurements of the diameter of the tree with TLS and

an allometric equation is used to convert diameter to biomass (Sheridan, 2011;

Yao et al., 2011; Seidel et al., 2013). This approach has been applied in many

forest types, but disregards information provided by the scanner on tree struc-

ture. Point structure estimation is inherited from analysis techniques of airborne

LiDAR point clouds. Similar point cloud structure metrics such as total number

of returns, height percentiles, and canopy volume are related to allometrically de-

termined biomass (Kankare et al., 2013). This approach has been used to show

temporal change in biomass in conifer forests (Srinivasan et al., 2014). However,

it is rare that this method is used in concert with destructive samples, essentially

negating the benefits of terrestrial LiDAR because the true tree structure is be-

ing used to estimate the allometrically derived biomass. Voxel derived methods,

described extensively in Chapter 1, use the structure of the raw point cloud to

estimate volume (Hosoi et al., 2013). Infilling of the point cloud is necessary in
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large trees to avoid underestimation of biomass (Bienert et al., 2014). QSMs are

the most commonly employed automated method that has a significant amount

of validation data (Raumonen et al., 2013; Hackenberg et al., 2014; Calders et al.,

2015). While automation is ideal, approximation of tree structure using cylinders

is not always appropriate. OHMs attempt to improve upon the QSM method, by

directly modeling the trunk surface. OHMs have the lowest documented RMSE%

of all of the aforementioned methods, but coincident validation data is sparse.

Our primary objective is to determine how locally derived terrestrial LiDAR

allometry compares to more commonly used allometric relationships at the stand-

level. We estimated biomass using QSMs and created several species-specific al-

lometric equations using diameter and height. These equations were compared to

the regional and national equivalents in order to assess the differences in slope and

RMSE. The impact of sample size and the inclusion of large trees were evaluated

for the equations.

3.2 Methods

329 individuals of the most dominant canopy species in the SIGEO forest were

modeled with TLS data to estimate volume and biomass. These estimates of

biomass were the basis of several species-specific allometric equations that we de-

veloped using DBH and height as predictor variables. The equations were directly

compared to the coefficients and uncertainty of the national allometry. A sample

size analysis was conducted to investigate the influence of sample size on coefficient

and biomass estimation.

3.2.1 Site Location and Dominant Species Selection

The study site is the 25.6 ha (400 m x 600 m) Smithsonian Institute Global Earth

Observatory (SIGEO) temperate Large Forest Dynamics Plot in the Smithsonian

Conservation Biology Institute near Front Royal, VA (38◦53’36.6” N, 78◦8’43.4”

W; Figure 3.1). We used a stem map at this site with data on all, approximately

40,000, woody stems greater than 1 cm diameter at breast height (DBH) (Bourg

et al., 2013). Each individual stem contains information on the following: DBH,
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Figure 3.1: Smithsonian Conservation Biology Institute SIGEO forest with stem
map (green points) and terrestrial LiDAR plot locations (brown circles). TLS
samples are color coded according to diameter and proportionally sized. Elevation
is represented in the background (low: cool, high: warm).
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species, x-y coordinates relative to the plot origin. Since this wealth of information

is available a priori, determining the most important and influential species for

biomass analysis is possible. For each species, an importance value – an index

that takes into account the stem density and the dominance of a species – was

calculated in order to determine the top 10 most important species across the

SIGEO site. We calculated species-specific importance values using:

IV =

n∑
i=1

BAspp +Dspp

2
(3.1)

where BAspp is the basal area and Dspp is the stem density of an individual species

in the forest stand. Ultimately, the ten species selected and associated average

wood density values (g cm−3) were: Carya cordiformis (0.62), Carya glabra (0.62),

Carya ovalis (0.62), Carya tomentosa (0.62), Fagus grandifolia (0.56), Fraxinus

americana (0.55), Liriodendron tulipifera (0.40), Quercus alba (0.60), Quercus

prinus (0.57), Quercus rubra (0.56) (Chojnacky et al., 2014). These species were

used for local allometric equation development, as they were likely to contribute

to the majority of biomass within the forest. We estimated biomass using the

Chojnacky et al. (2014) equations and determined the top ten species contributed

to approximately 80% of the total forest biomass (Figure 3.2).

3.2.2 Terrestrial LiDAR Aquisition and Processing

Terrestrial LiDAR Sampling

The 14 1/10th ha circular plot locations were chosen at random using ArcGIS

mapping software. Individual plots were located using a handheld Garmin eTrex

unit and plot centers were found on the marked grid intersections of the 20 m

SIGEO plot grid network. We reduced occlusion from the presence of high-density

vegetation by scanning 5 times in a diamond pattern oriented at approximately

each cardinal direction to provide sufficient coverage and a standardized sam-

pling scheme. At times, an additional scan was required for full coverage. White

polystyrene registration spheres were placed throughout each plot to aid in digital

registration of individual scans, as described in the following section. Additional
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Figure 3.2: The top 10 dominant species contributing over 80% of biomass within
the SIGEO forest as estimated using the Chojnacky et al. (2014) equations. [A]
Absolute and [B] relative contributions to biomass.

tree height measurements were manually collected across a transect following an el-

evation gradient in the north-direction transect on the site to serve as independent

validation of the height allometry created with TLS.

Post Processing

Individual scans were registered using the automatic registration algorithms in-

cluded in Faros proprietary software package SCENE and overlapping redundant

points were fused together to create a seamless 3D point cloud that could be used

for analysis (SCENE 2015). The registration process relied on the spheres used

on each field plot. Spheres were located within every scan and aligned with each

corresponding sphere within other scans from the same plot. We evaluated the reg-

istration error within SCENE. The fully registered scan was then exported with

intensity values, column and row numbers, which correspond to scan azimuth and

angle, as well as intensity values.
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Volume and Biomass Estimation

We modeled individual trees using the CompuTree software (Othmani et al., 2011).

The processing occured in four steps: (1) ground point classification and DTM cre-

ation, (2) stem identification, (3) tree segmentation, and (4) stem reconstruction

with quantitative structure models (QSMs). The ground points were identified

using a local minima ground estimation algorithm for DTM reconstruction. Stem

identification was completed using a nearest neighbor and connected components

at DBH height parallel to the DTM. Stem spacing facilitated the identification of

unique trees and the point clusters identified using connected components became

the initial seed point to initiate cylinder modeling using SimpleTree (Hackenberg

et al., 2015). Trees were then automatically segmented from the point cloud with

an iterative nearest neighbor approach, moving vertically from the initial seed

point along the stem while expanding in area with increasing crown size. The seg-

mented tree was then reconstructed through cylinder fitting with the SimpleTree

QSM algorithm. The best fit cylinders were used for creating an allometric rela-

tionship between trunk size and branching order, guiding all low certainty cylinder

measurements. Gaps in the tree model were filled using this allometric approach,

replacing sections with likely cylinder sizes that correspond to branching order.

SimpleTree was validated with a number of destructive samples and was found to

estimate biomass with approximately 5-15% error (Hackenberg et al., 2015). Con-

sidering our similar forest system in leaf-off conditions, we expected a comparable

level of precision and accuracy.

The cylinder models (referred to as TLS models hereafter) provided an estimate

of volume, which were converted to estimates of biomass using:

Biomass = ρs VTLS (3.2)

where VTLS is modeled volume (m3) and ρs is average species specific wood

density (g cm−3). Biomass estimates were converted to kg for direct comparison

to other allometric equations..
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Figure 3.3: Models produced from the SimpleTree algorithm within Computree.
Coregistered plot data [left] was used to produce plot-level models of tree structure
[right].

3.2.3 Allometric Development and Analysis

Allometric Equation Development

Allometric equations were created for height and biomass estimated using TLS

measurments. We used log-linear regression as it is the most common equation

form used in national biomass allomery (Jenkins et al., 2003; Chojnacky et al.,

2014). Species-specific height allometric relationships were created in the form:

Height = exp(β0 + β1ln(DBH)) (3.3)

where β0 and β1 are the model coefficients. Log-linear relationships with high

RMSE tend to underestimate the predicted value when back-transformed from

log-units, so a correction factor has been proposed to remove this bias (Sprugel,

1983). The correction factor uses the mean square error (MSE) and is calculated

as:

CF = e
MSE

2 (3.4)
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The application of this correction factor in small sample sizes has been found to

bias equations incorrectly (Flewelling & Pienaar, 1981), so was only implemented

in cases of high equation sample size and high equation RMSE.

Species-specific biomass allometry was developed using three different equation

forms with predictors: height, diameter, and diameter and height. Least-squares

linear regression was used on the log transformed variables across all biomass

equations to determine the scaling coefficient, β1, and intercept, β0 in the form:

Biomass = exp(β0 + β1ln(Height)) (3.5)

Biomass = exp(β0 + β1ln(DBH)) (3.6)

Biomass = exp(β0 + β1ln(DBH2Height)) (3.7)

Allometric Equation Evaluation

Each allometric equation was evaluated in terms of the coefficient of determination

(R2) and uncertainty. Model uncertainty was expressed in terms of RMSE in the

form:

RMSE =

√√√√√ n∑
i=1

(yi − ŷi)2

n
(3.8)

RMSE was calculated in log units for comparison to national equations, but

relative RMSE (%) was reported as the value is more representative of equation

uncertainty. Considering RMSE is not constant, but increases with increasing

diameter we estimated relative RMSE by calculating the mean relative RMSE at

10 cm intervals of tree diameter. Relative RMSE at each diameter interval was

calculated as the RMSE divided by the mean biomass of that interval and tended

to remain approximately constant across this range. The equation-level relative

RMSE was reported as the average of relative RMSE estimates across all diameter

increments. Our estimate of relative RMSE is more representative of equation

error compared to the RMSE in log units typically reported because it can be

directly applied to a biomass estimate and produce an estimate of uncertainty in

units of biomass (kg).
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Sample Size Analysis

The effect of equation sample size on the two β coefficients was evaluated through

iterative random sampling ranging from 5 to 329 samples. A random sample

was selected at each sample size and a model fit in each of the forms described

above. This process was repeated 1000 times at each successive sample size and

the mean coefficient across all iterations determined. The effect of large trees on

the model coefficients with respect to sample size was evaluated using the same

process, but excluding those trees above 50 cm DBH. The coefficients of the final

full sample size model were considered the benchmark of comparison. We used the

coefficients to estimate the biomass of a tree with a 50 cm diameter and 35 m in

height. These diameter and height values were based on our a priori analysis of

site-level biomass estimates and are approximately representative of the average

tree size contributing the most biomass to the forest (Figure 3.2). We compared

three scenarios to evaluate equation error: 1) sample size-dependent error in the

full model, sample size dependent error in the model excluding trees above 50 cm,

and error of the model excluding trees above 50 cm from the full model.

Comparison to National Equations

TLS allometry was directly compared to the most commonly applied national

equations in the US (Jenkins et al., 2003; Chojnacky et al., 2014). A tree level

comparison was used to evaluate national and TLS-based allometric equations to

the TLS models. Absolute and relative RMSE and bias were used to evaluate all

equations. Bias was calculated as:

Bias =

n∑
i=1

(yi − ŷi)

n
(3.9)

Species-specific equation RMSE in log-units was directly compared to the na-

tional equations. We were unable to include the Chojnacky et al. (2014) equations

in this comparison because RMSE values were not reported.
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Table 3.1: Summary statistics for all TLS modeled trees and predicted biomass.

Statistic N Mean St. Dev. Min Max

Field measured DBH (cm) 258 28.600 22.024 3.850 123.390
TLS measured DBH (cm) 27.995 21.024 3.850 120.090
Height (m) 20.700 8.550 7.080 36.7
Volume (m3) 1.940 3.110 0.013 25.200
Specific Gravity (g/cm3) 0.566 0.092 0.400 0.729

TLS 3D Model Biomass (kg) 997 1,517 8 11,179
TLS Height Allometry Biomass (kg) 1,047 1,110 10 4,227
TLS Diameter Biomass (kg) 1,000 1,616 4 12,672
TLS Diameter-Height Biomass (kg) 974 1,438 5 10,332

Chojnacky et al. (2014) (kg) 753 1,348 3 10,747
Jenkins et al. (2003) (kg) 802 1,485 3 12,229
Jenkins et al. (2003) with CF (kg) 928 1,729 3 14,645

3.3 Results

3.3.1 Allometry

Height Allometry

The generalized TLS based height allometry was completed on 258 individual trees

with height ranging from 7 to 36.7 m, while tree diameter spanned from 4 to 124

cm. Height was directly derived from the TLS models, which were most reliable

in larger trees. For this reason, the minimum height was greater than would be

expected in a study relying entirely on manual measurements. Height allometry

had a high RMSE, leading us to apply a correction factor for the predictions

from this equation. The generalized equation had a high sample size and, while

exhibiting high variability, accurately predicted tree height (RMSE = 18.9%) in

our manual validation with little bias (6%) post correction. Species specific height

equations performed better than the general equation in the validation both in

terms of of RMSE (13%) and bias (-0.8%).
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Table 3.2: General biomass allometry for 271 modeled trees.

β0 β0[se] β1 β1[se] R2 RMSE (%)

H −5.040 0.214 3.680 0.072 0.907 68.6
DBH −1.740 0.090 2.370 0.028 0.965 29.9
DBH2H −2.750 0.087 0.919 0.009 0.974 22.3
DBH2Hρ −2.470 0.073 0.948 0.008 0.980 20.4

Biomass Allometry

A total of 30 different species specific allometric equations were created in three

different forms for 10 species from 258 individual trees using diameter and height

as predictive variables. An additional 4 site-wide general allometric equation were

created with 271 modeled individuals (Table 3.2).

The species-specific equations ranged in sample size from 10 to 47 individu-

als (Table 3.3). Liriodendron tulipifera had the greatest range of diameter values

(up to 120 cm) for a single equation, followed by Carya glabra. The inclusion

of height reduced RMSE in all species-specific allometric equations. Carya cordi-

formis had the highest RMSE of all species in the height-based equation but

combining diameter with height improved this significantly (reduced from 53.5%

to 35.9%). Fraxinus americana, Liriodendron tulipifera, and Quercus rubra all

had the lowest RMSE of any diameter (15.8 %, 12.2%, and 12% respectively)

and diameter-height (10.8%, 12%, and 13.7% respectively) allometry. The Lirio-

dendron tulipifera height-diameter equation retained low RMSE while having the

highest sample size.

Four generalized allometric equations were created with 271 TLS models using

diameter, height, and wood density (Table 3.2). Height allometry was the most

uncertain (see Figure 3.8b), losing predictive power beyond approximately 30 m

and 3000 kg. Including height and wood density improved diameter allometry

RMSE from 30% to 20%.
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Figure 3.4: Species specific allometry for [A] tree height predicted from diame-
ter and biomass allometry derived from TLS models with [A] diameter, [B] un-
transformed diameter-height, and [C] log transformed diameter-height predictive
models. Generalized allometry for each equation form is shown in dark grey.
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Table 3.3: Species-Specific allometry for the 10 most dominant species at the
study site using height and diameter as predictors. Blank spaces indicate the
same coefficient (top row in each section) was used across all species.

Species n range β0 β0[se] β1 β1[se] R2 RMSE (%)

H Carya cordiformis 10 7 – 30 m -3.8569 0.3573 3.3427 0.1134 0.74 53.52
Carya glabra 41 8 – 32 m -4.0344 0.1833 0.78 28.46
Carya ovalis 13 12 – 28 m -4.1608 0.2198 0.81 39.01
Carya tomentosa 22 9 – 29 m -4.3059 0.1975 0.84 49.89
Fagus grandifolia 14 10 – 34 m -3.9979 0.2151 0.8 36.37
Fraxinus americana 14 10 – 32 m -3.9606 0.2144 0.94 31.38
Liriodendron tulipifera 47 10 – 37 m -4.2275 0.1889 0.83 26.22
Quercus alba 25 15 – 32 m -3.4588 0.2013 0.68 32.38
Quercus prinus 11 8 – 29 m -3.9593 0.2293 0.89 22.59
Quercus rubra 17 17 – 32 m -3.726 0.2132 0.7 30.92

DBH Carya cordiformis 10 12 – 40 cm -2.8734 0.5908 2.7603 0.1927 0.86 52.11
Carya glabra 41 11 – 47 cm -1.7925 0.6769 2.4404 0.2198 0.93 22.61
Carya ovalis 13 11 – 46 cm -1.4224 0.8474 2.3466 0.2697 0.94 21.1
Carya tomentosa 22 10 – 41 cm -2.8017 0.7125 2.7712 0.2364 0.93 40.07
Fagus grandifolia 14 13 – 105 cm -2.1853 0.7428 2.5399 0.2381 0.95 21.59
Fraxinus americana 14 11 – 55 cm -2.7828 0.6962 2.6764 0.2259 0.99 15.8
Liriodendron tulipifera 47 13 – 120 cm -1.9136 0.648 2.3513 0.2055 0.98 12.17
Quercus alba 25 21 – 76 cm -1.1891 0.8096 2.2568 0.2399 0.91 25.76
Quercus prinus 11 11 – 50 cm -3.1592 0.868 2.7866 0.2651 0.98 21.22
Quercus rubra 17 13 – 93 cm -0.8702 0.7284 2.1491 0.2229 0.98 11.95

DBH2H Carya cordiformis 10 12 – 40 cm ; 7 – 30 m -2.9176 0.132 0.9494 0.0126 0.91 35.87
Carya glabra 41 11 – 47 cm ; 8 – 32 m -2.9001 0.0781 0.94 17.68
Carya ovalis 13 11 – 46 cm ; 12 – 28 m -2.8996 0.0934 0.94 21.6
Carya tomentosa 22 10 – 41 cm ; 9 – 29 m -2.9834 0.0844 0.96 27.89
Fagus grandifolia 14 13 – 105 cm ; 10 – 34 m -2.9557 0.0918 0.97 19.04
Fraxinus americana 14 11 – 55 cm ; 10 – 32 m -3.0639 0.0916 0.99 10.78
Liriodendron tulipifera 47 13 – 120 cm ; 10 – 37 m -3.3683 0.0804 0.99 11.96
Quercus alba 25 21 – 76 cm ; 15 – 32 m -2.9251 0.087 0.93 23.42
Quercus prinus 11 11 – 50 cm ; 8 – 29 m -3.0527 0.0978 0.98 21.12
Quercus rubra 17 13 – 93 cm ; 17 – 32 m -3.0373 0.0915 0.98 13.69

3.3.2 Sample Size Analysis

The sample size analysis had several consistent trends across all different equation

types: (1) sharp deviation followed by a leveling off near the final coefficient with

increasing sample size, (2) a clear difference in equation coefficient when large

trees are removed from the training set, and (3) higher variability in the coeffi-

cients with a lower diameter range. Low sample size equation coefficients deviate

from the benchmark coefficient in all equation forms. In the diameter-based equa-

tion this difference was greatest below 180 samples. The diameter-height equation

stabilized near 100 samples, but had the lowest variability of any of the equa-

tions, regardless of sample size. Equations excluding trees above 50 cm tended to

over- or underestimate the model coefficient and did not approach the benchmark

coefficient created using the full set of tree models (Figure 3.6). The diameter-
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Figure 3.5: Height model validation with [A] general and [B] species specific equa-
tions. All trees used for validation were used to evaluate the generalized height
allometry, while the species specific equation only compared species captured in
the allometry. Species not represented in the general allometric model are black
in color. Height estimates were made with a correction factor applied, as this
equation had high sample size and high RMSE.

height coefficient reached the benchmark coefficient at a lower sample size than

the equation created without trees above 50 cm (100 samples versus 200 samples).

Higher sample size stability is apparent in both coefficients. Error in biomass es-

timates were highest in the height equation excluding large trees (approximately

30%), leading to an overestimation. In contrast, the diameter equation excluding

large trees underestimated biomass. The diameter-height equation had the most

resilience to large tree removal.

3.3.3 Comparison to National Equations

The compiled biomass predictions using the national scale equations underesti-

mated biomass on average in trees above 2500 kg. Chojnacky et al. (2014) and

Jenkins et al. (2003) underestimated tree-level biomass (-24.5% and -19.5% bias,

respectively) and had comparable uncertainty (41.1% and 44.7%, respectively). A

correction factor removed much of the bias in the Jenkins equations (-7%), but led
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Figure 3.6: Sensitivity of generalized height [top], diameter [middle], and diameter-
height [bottom] models of biomass allometry. [left] β0 and [middle] β1 coefficients
stabilize at approximately 180 samples for the diameter based model and 100 for
the diameter and height model. The equation coefficients for the model excluding
large trees (black) never reaches the benchmark coefficients (dashed line) of models
including large trees.
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Figure 3.7: Comparison of percent error in biomass from the full allometric models
using [A] height, [B] diameter, and height-diameter as predictors. Three scenarios
were compared: 1) sample size-dependent error in the full model (blue), 2) sample
size dependent error in the model excluding trees above 50 cm (red), and error
of the model excluding trees above 50 cm from the full model (grey). The height
equation excluding large trees deviated approximately 30%, while diameter (10%)
and height-diameter (less than 1%) were less affected by exclusion of large trees.
The inclusion of large trees leads to less model error compared to increased sample
size.

to increased uncertainty (55.3%). TLS height allometry performed well in small

trees, but was unable to accurately predict large tree biomass. TLS diameter

and diameter-height allometry had lower uncertainty than the national equations

(34.3% and 27.6%, respectively) and were nearly unbiased. Certain species agree

more with the national equations (Liriodendron tulipifera, Fraxinus americana,

and Fagus grandifolia) while others display a consistent underestimate of biomass.

The mean RMSE of the TLS allometry is comparable to the error reported in

the Jenkins equations (Figure 3.9), but the inclusion of height in the TLS allome-

try reduced RMSE below this value. The range of RMSE was also reduced upon

including height in the TLS allometry.
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Figure 3.8: Comparison of [A] Chojnacky et al. 2014, [B] TLS height allometry
[C] Jenkins et al. (2003), [D] TLS diameter allometry [E] corrected Jenkins et al.
(2003), and [F] TLS diameter-height allometry biomass to TLS derived biomass
for all tree models.
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Figure 3.9: Box-plot comparing range of observed RMSE (log units) for three TLS
equation forms to Jenkins et al. 2003 RMSE. The Hard maple / oak / hickory /
beech equation (blue) and Mixed Hardwood (red) equation RMSEs are indicated
with the dotted horizontal lines. *Note: Chojnacky et al. 2014 equation RMSE
was not reported so values could not be compared.

3.4 Discussion

Terrestrial LiDAR is an effective tool for non-destructively estimating in situ in-

dividual tree biomass for developing allometry. The work presented highlights

the efficiency and utility of implementing a standardized approach for large area

TLS acquisition with the goal of creating high sample size allometric equations.

Improvements in allometry are the fastest way to improve biomass mapping. As

such, we present a framework for moving from acquisition to allometry that can

be replicated in other deciduous forests. Moreover, we show that local allometric

equations are not representative if large trees are not included and/or if sample

size is insufficient.
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3.4.1 Allometry

Height Allometry

The independent validation showed species specific and generalized height models

accurately estimated tree height. We found a consistent underestimation of height

in the tallest trees in the validation data set, but attributed this almost entirely

to the bias from log transformed regression, as our equations performed well post

bias-correction. Given the presence of underestimation after the application of a

correction factor, several other possibilities may have caused this underestimation.

TLS has been reported to underestimate tree height in dense vegetation (Hop-

kinson et al., 2004). As such, the trend in underestimating height may be driven

by upper canopy occlusion (Srinivasan et al., 2014). Occlusion can potentially be

solved through improvements in sampling design (Wilkes et al., 2017) or through

sampling with multiple return instruments. The main benefit garnered from using

TLS for height estimates of trees is the potential to acquire less biased estimates

than manual measurements. However, manually measured height has the poten-

tial to be unreliable in dense forest ecosystems (Calders et al., 2015), but, given

leaf-off conditions, we expect our validation to be accurate and unbiased.

Biomass Allometry

In order to disentangle the effect of wood density on general trends in biomass we

created species-specific biomass allometry. Grouping equations at the species level

controls for average species wood density and the relationship is representative of

the sheer wood volume, reflected in Table 3.5 (Appendix). The most apparent

finding from the comparison of height-diameter biomass allometry was the conver-

gence of all equations to a very similar slope coefficient. As trees tend to optimize

growth strategies, this trend aligns closely with the expected physiological pro-

cesses driving tree growth – filling three dimensional space in the canopy in order

to maximize photosynthetic input and reduce competition. Moreover, since our

predictive variables are a combination of diameter and height the resulting value

closely resembles volume. As such, we would expect a close linear relationship,

where any variation in equation coefficient is representative of changes in wood al-
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location with respect to an equivalent diameter and height. Even still, the inclusion

of height did not completely remove species specific variation in wood allocation

(Appendix, Table 3.5). Fagus grandifolia had the greatest amount of wood volume

for a given diameter and height, but the equation was likely heavily influenced by

a single high diameter and low height (102 cm and 33.7 m, respectively) individ-

ual. The next most voluminous species was the canopy dominant Quercus alba,

suggesting these species efficiently use three dimensional canopy space. In con-

trast, Carya tomentosa had less total wood allocation for a given diameter and

height, a trend consistent with the species structure over the sampled diameter

range, allocating the majority of the wood to the central leader. These types of

trends are effectively captured since wood density is not a confounding factor in

the estimation of wood volume as captured with TLS.

The separation of wood density from biomass has implications for improved

national-scale allometric equation development. Considering trees are adaptable

organisms responding to their growth environment a volume-based approach to

equation development may provide greater flexibility of biomass estimation on

larger spatial scales. Evidence for allometric equation coefficient variation across

large spatial scales underscores the need for region-specific allometry (Duncan-

son et al., 2015b), but wood density variation must also be accounted for (Chave

et al., 2006). The creation of species specific volume equations that capture struc-

tural variation and spatial distributions of average species-specific density would

capture the primary factors contributing to biomass uncertainty in forest measure-

ment. With TLS this can potentially be completed with high sample size region-

and species-specific volume allometry with associated density estimates that are

representative of the growth environment.

The clear benefit of using TLS for allometric development is emphasized in

the biomass estimates above 50 cm. The largest tree sampled (Liriodendron tulip-

ifera) was well beyond the size of a typical destructively sampled tree with a

diameter of 123 cm and weighing approximately 11,1779 kg. Equation coefficients

are constrained when large trees are present, as is the case with the Quercus, Fa-

gus grandifolia, and Liriodendron tulipifera equations. The coefficients observed

for equations lacking large trees are potentially unrealistic when expanded to the

larger diameter size. For example, though the species mentioned had large indi-
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viduals included in the final equations, the coefficients remained lower than other

equations without large trees. This trend suggests, allometric equations with in-

sufficient samples in large diameter classes will lead to an overestimate of biomass

when applied to more massive trees, as discussed in the next section. Consider-

ing large trees can hold approximately 40% of stand-level biomass (Brown, 1997),

increasing sample size for the larger diameter class in allometry could potentially

drastically alter our understanding of forest-wide biomass allocation.

3.4.2 Sample Size Analysis

Sample size strongly impacted both equation coefficients for all equation forms.

The inclusion of height reduced the number of samples required to create a strong

and stable allometric equation. The diameter only equation did not stabilize until

nearly 200 samples, but when including height, the point of stabilization reduced

to around 100 samples (Figure 3.6). Overall, the sample sizes required for stable

allometry are well beyond the typical average equation sample sizes of less than 100.

This finding is in line with others showing a consistent positive bias using a similar

approach with millions of samples collected using airborne LiDAR (Duncanson

et al., 2015a). We reached a similar conclusion at a lower sample size and at

a smaller spatial scale, but, nonetheless, emphasize the importance of increasing

sample size in allometric equations for biomass.

Inclusion of large trees in the sample size analysis of diameter and diameter-

height allometry reinforced our findings concerning the tenancy of equations to

overestimate biomass when excluding large trees. This trend was apparent when

considering all trees, rather than on a species specific basis. At low sample sizes the

equations lacking large trees were more prone to overestimate biomass. Further-

more, the rate at which the equation stabilized when large trees were excluded was

substantially lower. Figure 3.6 D-I are a clear example of this phenomenon – with-

out trees above 50 cm about 100 more samples are needed to reach a stable equa-

tion. Moreover, equations excluding large trees never actually reach the expected

equation coefficients. In contrast, the loss of large trees in the height biomass

equations led to a substantial underestimate of biomass, suggesting remote-sensing

derived biomass from tree height measurements may be impacted substantially if
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equations neglect large trees. Large trees must be included in allometry in order

for for them to be representative across the entire range of diameter and height.

Our analysis underscores the importance of using TLS as a means of capturing

these trends in the largest trees in the forest to more accurately estimate forest

biomass.

Considering TLS provides an efficient non-destructive means to estimate biomass

of trees, the logistical considerations of creating or using each equation type should

be considered. A diameter-only equation potentially holds the greatest utility, as

it can easily be applied to many readily available forestry measurements. Height

measurements may not be available on all forest inventory plots and can be unre-

liable due to difficulty of field measurements. However, as this analysis has shown,

the inclusion of height reduces equation variability and the number of samples

required for a stable allometric equation. Moreover, if uncertainty in plot-level

biomass is the ultimate goal, height should be included in allometry, as the reduc-

tion in residual equation error is substantial. TLS biomass acquisition reduces the

traditional limitations of high sample size allometry, as it can measure biomass

accurately and non-destructively. Our recommendation is for the future adoption

of this TLS framework to create a range of equations using easily measurable pa-

rameters – from diameter and height in field campaigns to crown diameter using

remote sensing (Jucker et al., 2017). A multifaceted approach allows the greatest

potential benefits for reducing uncertainty as it will offer improvements regardless

of the level of field data available.

3.4.3 National Equation Comparison and Evaluation

The Chojnacky et al., (2014) and Jenkins et al. (2003) equations are less repre-

sentative at higher values of biomass. This observation underscores the primary

limitation of applying these equations at the scale of the individual tree. Most

of the national allometric equations were built with equations from multiple lo-

cations and are not meant to be representative at a small scale. Moreover, very

few large diameter trees are included in these equations, so this is the range where

they should be least representative. However, the sample of trees included in this

analysis is not sufficient to strongly reinforce this conclusion. Though, the gen-
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eral trend in disagreement increases with increasing biomass, several high biomass

trees have good agreement with the national scale allometry. Excluding these high

biomass trees causes a stronger negative bias up to approximately 6000 kg. There

is no indication that this trend would continue given a higher number of samples

in the upper range of biomass. Alternatively, the uncertainty in the national equa-

tions increases with increasing biomass, so our low sample size in larger trees may

simply be excluding the lower range of expected biomass for a given diameter.

Much of the consistent negative bias found in the Jenkins et al. equations can

be removed with the application of a correction factor (Figure 3.8E). Correction

factors for log transformed regression equations are most necessary when uncer-

tainty or RMSE is high, yet the application of this correction is not often made

on a consistent basis. In cases of small sample size, correction factors can bias

equations further and, considering the paucity of these equations in the literature,

correction factors may be frequently applied incorrectly. If an unbiased estimate of

biomass is the primary goal, TLS may help determine the forest types and associ-

ated existing allometric equations that are most representative and if a correction

factor should be applied. Removing additional uncertainty in applying allometry

and correctly estimating biomass with low bias will ultimately improve confidence

in stand-level biomass assessments.

The TLS allometry deviated from the generalized national equations in both

slope and error. The uncertainty of the national allometry encompassed the slope

coefficients of nearly all of the TLS equations, with the exception of Quercus rubra

(significantly lower) and Quercus prinus (significantly higher). On average, the

error for species specific allometry was slightly higher than the national equations,

with several equations above and below the mean RMSE, but the inclusion of

height and wood density reduced both RMSE variability and mean RMSE below

the national equations (Figure 3.9). The reductions in RMSE are an objective

benefit of creating high sample size local allometry with TLS. However, is should

be clear that lower uncertainty equations are not necessarily indicative of a better,

more representative equation. Some lower sample size equations tend to have

lower RMSE (e.g. Quercus prinus, n = 11, RMSE = 21%), but this is more likely

a product of insufficient sample size spread evenly over a wide diameter range. In

contrast, higher sample size species-specific equations (e.g. Liriodendron tulipifera,
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n = 48, RMSE = 12%) have low RMSE, but more likely represent the range of

variability in tree structure. The reported uncertainty of allometric equations with

lower sample sizes may not be representative of the local population variability,

reinforcing the need for increasing sample size allometry.

3.5 Conclusion

TLS is an effective tool for estimating biomass of individual trees and the cre-

ation of local allometric equations. We successfully and non-destructively created

40 different empirically derived species-specific relationships predicting height and

biomass. The analysis of sample size showed allometry with less than 100 individ-

uals may be unreliable and, if large trees are not included, unrepresentative. The

national equations were representative of some species, but underestimated several

others. The species specific allometry derived in this study had nearly equivalent

or lower RMSE on average compared to the national allometry – a finding sug-

gesting substantial benefits in areas without region- or species-specific equations.

Future work should expand the framework used in this study to areas devoid of

species specific allometry. Tropical allometry has the potential to be vastly im-

proved, as the most widely applied equations are at the pan-tropical scale. Also,

TLS may be one of the best methods for creating full three-dimensional plot recon-

structions that can be used for airborne and satellite remote sensing. By adopting

the framework described, site-specific allometric equations can be created and ex-

panded to plots without TLS data for reduced uncertainty biomass mapping that

could substantially improve estimates of regional and global terrestrial carbon.
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3.6 Appendix

Table 3.4: Species-Specific height allometry for the 10 most dominant species at
the study site using diameter as the predictor. Blank spaces indicate the same
coefficient was used across all species.

Species n range β0 β0[se] β1 β1[se] R2 RMSE (%)

Carya cordiformis 11 8 – 40 cm 0.3254 0.2808 0.8181 0.094 0.76 23.84
Carya glabra 62 4 – 47 cm 0.8369 0.2932 0.89 13.87
Carya ovalis 15 6 – 46 cm 0.976 0.3652 0.89 12.88
Carya tomentosa 33 5 – 41 cm 0.9557 0.3066 0.8 19.8
Fagus grandifolia 20 6 – 105 cm 1.1279 0.3189 0.84 15.64
Fraxinus americana 16 8 – 55 cm 0.7768 0.3368 0.94 10.31
Liriodendron tulipifera 48 10 – 120 cm 1.2637 0.3172 0.82 7.96
Quercus alba 25 21 – 76 cm 1.9495 0.4336 0.65 5.99
Quercus prinus 11 11 – 50 cm 0.57 0.4722 0.87 6.35
Quercus rubra 17 13 – 93 cm 2.0623 0.3789 0.79 3.66

Table 3.5: Species-Specific volume allometry for the 10 most dominant species at
the study site using diameter and height as predictors. Blank spaces indicate the
same coefficient was used across all species. Note: the β1 coefficient is identical to
the biomass allometry coefficient.

Species β0 β0[se] β1 β1[se] R2 RMSE (%)

Carya cordiformis -9.3544 0.1218 0.9469 0.0108 0.93 46.34
Carya glabra -9.3118 0.0855 0.96 23.41
Carya ovalis -9.3461 0.1036 0.97 19.85
Carya tomentosa -9.4061 0.0913 0.97 29.57
Fagus grandifolia -9.2224 0.0979 0.96 32.34
Fraxinus americana -9.3638 0.1021 0.99 12.94
Liriodendron tulipifera -9.3244 0.0898 0.99 10.26
Quercus alba -9.2945 0.0978 0.93 23.4
Quercus prinus -9.3732 0.1123 0.98 21.13
Quercus rubra -9.3382 0.1036 0.98 13.68
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Abstract

Future NASA and ESA satellite missions plan to better quantify global carbon
stocks through detailed observations of forest structure, but ultimately rely on un-
certain ground measurement approaches for calibration and validation. A signifi-
cant amount of this uncertainty in estimating plot-level biomass can be attributed
to inadequate and unrepresentative allometric relationships used to convert plot-
level tree measurements to estimates of aboveground biomass. These allometric
equations are known to have high errors and biases, particularly in carbon rich
forests, because they were calibrated with small and often biased samples of de-
structively harvested trees. To overcome this issue, a non-destructive methodology
for estimating tree and plot-level biomass has been proposed through the use of
Terrestrial Laser Scanning (TLS). We investigated the potential for using TLS as
a ground validation approach in LiDAR-based biomass mapping though virtual
plot-level tree volume reconstruction and biomass estimation. Plot-level biomass
estimates were compared in the Virginia-based Smithsonian Conservation Biology
Institute’s Large Forest Dynamics Plot (LFDP) with full 3D reconstruction, TLS
allometry, and Jenkins et al. (2003) allometry. On average, full 3D reconstruction
ultimately provided the lowest uncertainty estimate of plot-level biomass (14.4%),
followed by TLS allometry (17.9%) and the national equations (18.5%). TLS re-
duced error in the airborne LiDAR empirical models by over 10%. Our findings
suggest TLS plot acquisitions and non-destructive allometry can play a vital role
in reducing uncertainty of calibration and validation data for biomass mapping in
the upcoming NASA and ESA missions.1

1This chapter is based on: Stovall, A.E.L., Shugart, H.H., In Review. Improved Biomass
Calibration and Validation with Terrestrial LiDAR: Implications for Future LiDAR and SAR
Missions. intended for IEEE JSTARS.
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4.1 Introduction

Forests provide essential ecosystem services and hold the vast majority of ter-

restrial carbon, but remain the most uncertain components of the carbon cycle

(Houghton et al., 2009). Efforts to quantify the massive and dynamic storage of

global carbon with a higher degree of certainty have revealed discrepancies arising

from differing approaches (Saatchi et al., 2011; Baccini et al., 2012). Disagreement

in the magnitude of these distributions emphasizes the weak link in carbon map-

ping stems from individual tree and aggregated plot-level biomass estimates that

are not representative (Mitchard et al., 2014). Biomass estimates are derived from

equations built from laborious destructive sampling of individual trees (Picard

et al., 2012). The inherent difficulty surrounding destructive harvesting of trees

leads to insufficient sample sizes that produce unrepresentative, spatially biased

equations, rarely including large trees (Chave et al., 2004). Before global carbon

mapping can be improved, substantial progress must be made in creating more

representative allometry that will improve the accuracy of plot level estimates of

biomass.

Three-dimensional forest structure quantification is required for effective ecosys-

tem service management and understanding current and future global carbon

dynamics (Houghton et al., 2009). Global datasets capturing cover at coarse

(MODIS) and fine (Landsat) spatial scales have allowed us to monitor forest status,

but global information on 3D structure is insufficient for fine scale management of

essential ecosystem services (Hall et al., 2011). Accurate mapping of more complex

ecosystem characteristics such as biomass requires higher spatial resolution and

information on forest structure (Wickland et al., 2014). Globally-distributed high-

resolution three-dimensional data will provide the necessary information for man-

aging ecosystems and constraining future climate projections (Goetz & Dubayah,

2011).

Airborne sensors are often used to calibrate spaceborne sensors, but accuracy is

dependent on quality plot-level biomass estimates. NASAs Land, Vegetation, and

Ice Sensor (LVIS) is capable of capturing fine-scale three-dimensional vegetation

structure that can simulate GEDI (Global Ecosystem Dynamics Investigation) and

ICESAT-2 (Ice, Cloud,and land Elevation Satellite) data, allowing investigation of
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the instrument-specific response in a range of forest ecosystems prior to mission

launch. Similarly, the synthetic aperture radar (SAR) used on UAVSAR can in-

form calibration of spaceborne pol-InSAR, such as NI-SAR (NASA-ISRO SAR) or

the European Space Agencys BIOMASS mission. The success of these missions is

directly dependent on accurate plot-level estimates of biomass that will ultimately

improve confidence in landscape scale mapping. Precise and unbiased estimates

of biomass at the plot level are an essential component to significantly improving

carbon estimation with all future missions estimating global carbon. However,

errors in plot-level biomass from unrepresentative allometry are unavoidable when

relying on traditional field measurements for calibration and validation.

The empirical relationships used to relate tree diameter and height to biomass,

or allometry, are known to be spatially variable (Duncanson et al., 2015c) and

not representative at low sample sizes (Duncanson et al., 2015a; Chave et al.,

2004). The solution to high variability in allometry has been the pooling of massive

datasets globally to create stable equations that are not species specific (Chave

et al., 2014). While this approach is acceptable for coarse estimates of forest

biomass it is insufficient for calibration and validation plot-level data for GEDI

and other missions as they must have high accuracy and precision because non

species specific equations can have greater than 350% error (McRoberts et al.,

2016), emphasizing the importance of equation selection (Zhao et al., 2012). Im-

provement in allometric equations is one way to significantly improve calibration

and validation plot data since it does not require resampling and can be applied

across large areas, but the inherent difficulties surrounding destructive sampling

limits the feasibility of this approach. Efficient, automated, and non-destructive

methods of estimating aboveground biomass of single trees, such as terrestrial

LiDAR, offers a solution to the problems of unrepresentative allometry.

Terrestrial Laser Scanning (TLS) or terrestrial LiDAR is the best current

method of non-destructively estimating single tree and plot-level biomass in a

range of ecosystems (Calders et al., 2015; Stovall et al., 2017). TLS recreates

plot level structure with millimeter detail, allowing for three-dimensional recon-

struction of tree stems with geometric modeling (Raumonen et al., 2013). TLS

has been deployed in most forest ecosystem types, successfully estimating tree

volume and biomass with lower error than allometric equations (Calders et al.,
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2015; Hackenberg et al., 2015). Calibration and validation plot data can be signif-

icantly improved by applying TLS as a tool for estimating plot-level biomass with

higher accuracy than allometric equations. Moreover, non-destructive tree model-

ing with TLS offers the potential for unbiased and high sample size allometry that

can include trees of any size with minimal effort. The greatest improvements to

calibration and validation data are surely to come in tropical forests where region-

specific and species-specific allometries are extremely rare. While deploying TLS

for direct plot-level biomass estimation and the creation of area-specific allometry

will likely reduce uncertainty in plot level biomass estimates used for calibration

and validation it is still unclear whether or not this will result in major differences

at the level of sensor calibration.

This study presents terrestrial laser scanning as a potential approach to improv-

ing airborne and satellite-based biomass calibration and validation through direct

structural measurements and improved allometric equation development (Figure

4.1). We investigate TLS in this context by (1) directly modeling plot-level biomass

and developing high sample size non-destructive local biomass allometry for the

dominant species groupings in a broadleaf deciduous hardwood forest, (2) using

both direct and allometrically-derived TLS biomass estimates for calibrating an

empirical plot biomass model with LiDAR, and (3) comparing the uncertainty of

the biomass models to an equivalent approach relying on the national-scale Jenkins

et al. (Jenkins et al., 2003) biomass allometry.

4.2 Methods

4.2.1 Study Area and Species Selection

The study site is the 25.6 ha (400 m x 600 m) Smithsonian Institute Global Earth

Observatory (SIGEO) temperate Large Forest Dynamics Plot in the Smithsonian

Conservation Biology Institute near Front Royal, VA (38◦53’36.6” N, 78◦8’43.4”

W; Fig 1). This mixed deciduous hardwood forest is nearly 100 years old and

representative of many on the east coast experiencing post-agricultural regrowth.

Elevation ranges from 273-338 m and mean annual temperature and precipitation

for the area is 12.7 C◦ and 970 mm respectively. This SIGEO site was inten-
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Figure 4.1: Framework for reducing uncertainty with targeted TLS acquisition
through modeling and improved allometry. At each step of biomass mapping TLS
can potentially improve the current methodology. (A) At the stage of field sam-
pling TLS is an efficient and relatively unbiased method of collecting standard
forest structure information (e.g. DBH, height, basal area, vegetation area index).
(B) Plot-level biomass estimation can be improved through direct stem modeling
with TLS or non-destructive local allometry with TLS. (C) TLS can potentially
improve sensor calibration and validation through full plot-level 3D reconstruc-
tion. Reduced uncertainty biomass allometry can be applied regionally, further
improving sensor calibration. (D) Low uncertainty sensor calibration will provide
the greatest potential for reducing uncertainty in biomass mapping.

sively sampled in 2010 for species, diameter, and stem location from a data set

of over 56,000 individuals greater than 1 cm diameter at breast height (DBH)

(Bourg et al., 2013). We used the a priori forest structure information to deter-

mine the most important species for biomass analysis based on available allometry.

The dominant species contributing biomass to the forest with average wood den-

sity values (g/cm3) were: Liriodendron tulipifera (0.40), Carya cordiformis (0.62),

Carya glabra (0.62), Carya ovalis (0.62), Carya tomentosa (0.62), Fagus grandifo-

lia (0.56), Fraxinus americana (0.55), Nyssa sylvatica (0.46), Quercus alba (0.60),

Quercus prinus (0.57), Quercus rubra (0.56), and Quercus velutina (0.56) (Choj-

nacky et al., 2014). These species were used for non-destructive TLS-based local

allometric equation development described in the subsequent sections, as they were
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estimated to contribute over 80% of aboveground forest biomass.

4.2.2 TLS Allometry

TLS Sampling and Post Processing

Within the SIGEO forest, we chose 14 1/10th ha circular (radius ≈ 17.8 m) plot

sampling locations at random using ArcGIS mapping software. TLS sampling took

place over 4 days in March and April of 2015 during leaf-off conditions. Individual

plots were located using a handheld Garmin eTrex GPS unit and plot centers were

found on the marked 20 m grid intersections of the SIGEO plot grid network.

The Faro Focus 120 3D phase-shift TLS was set to medium resolution and quality

(1/5 resolution and 4x quality) for a total of 28.2 million pulses per scan. Time

elapsed per scan was approximately 3 minutes. We reduced occlusion from the

presence of high-density vegetation by scanning 5 times in a diamond pattern

oriented at approximately each cardinal direction to provide sufficient coverage

and a standardized sampling scheme. At times, an additional scan was required

for full coverage. To aid in post-processing scan registration we placed 6-inch

diameter polystyrene spheres atop fiberglass stakes throughout the plot. Multiple

scans were digitally registered using the registration points, as described in the

following section.

Post Processing

Individual scans were registered using the automatic registration algorithms in-

cluded in Faro SCENE (SCENE (version 5.4.4.41689), 2015) and overlapping re-

dundant points were filtered to create a single 3D point cloud used for modeling.

The registration process relied on the spheres used on each field plot. Spheres were

located in every scan and aligned with each corresponding sphere in other scans

from the same plot. We evaluated the registration error within SCENE (typical

registration error did not exceed 1 cm). Once the registration was completed with

an acceptably low placement error, the data was filtered removing all returns below

the intensity threshold of 400. A stray point filter included in the Faro software

was then used to remove ambiguous points at the edges of vegetation. The fully
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Figure 4.2: Overview map of SIGEO forest at the Smithsonian Conservation Biol-
ogy Institute in Front Royal,VA (?). 14 randomly distributed 1/10th ha circular
plots were located on the 20 m grid intersections and scanned with TLS (blue).
11 additional plots were included for LiDAR calibration (brown). An elevation
model derived from the 2011 LiDAR acquisition shows the topography across the
site. Note: TLS plots are not always centered over grid intersections as the TLS
point cloud was georeferenced with the airborne LiDAR.

registered point cloud data was then exported with intensity values, column and

row numbers, which correspond to scan azimuth and angle, as well as intensity

values ranging from 0 to 2100. Registered plot-level point clouds typically had

approximately 100 million returns in closed canopy forest.
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Volume and Biomass Estimation

We separated and modeled individual trees on each plot using an automated work

flow within the CompuTree software (Othmani et al., 2011). The processing took

place in four steps: (1) ground point classification and DTM creation, (2) stem

identification, (3) tree segmentation, and (4) stem reconstruction with quantitative

structure models (QSMs). The ground points were classified with a local minima

ground estimation algorithm, which reconstructs the DTM, while excluding above-

ground points associated with vegetation. Stems were identified using a nearest

neighbor and connected components approach on a small slice in the point cloud

made parallel to the DTM. Stems spaced apart from one another were identified

as a unique object and this portion of the point serves are the initial seed point to

initiate the cylinder modeling algorithm implemented in SimpleTree (Hackenberg

et al., 2015). The tree was then automatically segmented from the point cloud

using an iterative nearest neighbor approach, starting at the initial seed point on

the stem and moving vertically while expanding in area with the expanding tree

crown. The segmented tree was then reconstructed through cylinder fitting with

the QSM algorithm. The best fit cylinders were used as a guide for creating an

allometric relationship between trunk size and branching order – an adaptation

of the pipe model concept or scaling theory (West et al., 1999). This single-tree

relationship guided all low certainty cylinder measurements, filling gaps in the tree

model with likely cylinder sizes that correspond to the expected branching order.

This approach as implemented in SimpleTree was validated with a number of de-

structive samples and accurately estimated biomass with approximately 10-15%

RMSE (Hackenberg et al., 2015). Based on the previous success of these algorithms

in similar forest systems in leaf-off conditions, we anticipated this application in

our forest to be comparable in accuracy.

The cylinder models (referred to as TLS models hereafter) provided an estimate

of volume, which were converted to estimates of biomass using:

Biomass = ρs VTLS (4.1)

where VTLS is modeled volume (m3) and ρs is average species specific wood

density (g/cm3). Biomass estimates were converted to kg for direct comparison
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to other allometric equations. While this approach is unable to directly estimate

wood density, small scale biomass mapping is unlikely to show wide variation in

species-specific wood density. Moreover, the disentanglement of density effects

may be beneficial to future national-scale biomass estimation, allowing density-

dependent allometry to be used across large areas.

Allometric Equation Development

Allometric relationships were developed from the TLS biomass estimates with a

log-linear regression method taking the form:

B̂tree = exp(β0 + β1 ∗ ln(DBH)) + εtree (4.2)

where β0 and β1 are the model coefficients and εtree is the residual error from

the allometric equation. Modeled trees were grouped into 5 different equations:

Liriodendron, Carya, Quercus, Mixed Hardwood, and Maple/Oak/Hickory/Beech

(Table 4.2). The groups were based on the dominant forest species (Poplar, Oak,

and Hickory) and two general equations similar to groupings in Jenkins et al. that

could describe the remaining abundant species. TLS models of Carya species had

a maximum diameter of 47 cm, so the Maple/Oak/Hickory/Beech equation was

used for individuals that exceeded the Carya allometry diameter range. The high

biomass contribution of the 10 species included in these allometric models increases

the likelihood for changes to allometrically-derived forest biomass under differing

equations.

Several equation forms were evaluated in terms of coefficient of determination

(R2), Akakai Information Criterion (AIC) weights, and RMSE. While diameter

did not explain as much biomass variability as equations also including height, the

diameter only equation provided a clear comparison to the Jenkins et al. equations.

Model uncertainty of each allometric equation was reported in terms of RMSE in

log units in order to reflect increasing uncertainty with increasing biomass and to

directly compare to the Jenkins et al. equations reported error. We performed

a 5-fold cross validation on each allometric equation to independently estimate

uncertainty.
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Biomass Estimation

We applied our non-destructive allometry and Jenkins et al. allometry to the

diameter measurements of the trees located within each TLS plot. For those

individuals that were not selected for updated allometry, the national equations

were used in order to provide a biomass contribution in our assessment. We created

biomass maps from (1) TLS models with TLS allometry, (2) TLS allometry, and

(3) Jenkins et al. allometry. The plot-level biomass estimates derived from the

direct three-dimensional tree models were supplemented with TLS allometry or

national scale allometry if the individual was not successfully modeled, as was

the case with many small trees in each plot. The national scale equations were

substituted if the species was not one of the ten species included in the TLS

allometry to ensure every individual contributed biomass regardless of the equation

used. Aboveground biomass density (Mg ha−1) was estimated by aggregating tree

estimates to the plot-level using:

B̂plot =
ntree,plot∑
i=1

B̂tree,i/s (4.3)

where ntree,plot is the number of trees on a plot and s is the area of the plot

in hectares. We propagate uncertainty due to allometry to the plot level with

methods outlined in a previous study (Chen et al., 2015) using:

σplot =

√√√√ntree,plot∑
i=1

σtree,i2/s (4.4)

where σtree,i is the biomass error from allometric equation residuals.

4.2.3 LiDAR Biomass Calibration and Validation

Airborne LiDAR Data Sources

Airborne LiDAR data was acquired with the Optech 3100 instrument at approx-

imately 1371 m above ground level over an area overlapping the SIGEO forest

from March 1-9, 2011 and extended nearly 2,500 km2 beyond our site. Nominal

point spacing was 1 m and up to 4 returns were recorded. The primary purpose
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of the LiDAR acquisition was high resolution DEM creation, so it was completed

in leaf-off conditions at this lower point spacing. Average horizontal error was 37

cm.

LiDAR Canopy Metrics

Canopy height and LiDAR intensity were used as two analogous variables to the

upcoming missions attempting to characterize global forest structure. Canopy

height will be captured with LiDAR (GEDI and ICE-SAT II) and PolInSAR or

TomoSAR (BIOMASS and NISAR), thus making this structural variable essential

for estimating biomass and quantifying the potential for uncertainty reduction

with application of TLS. While LiDAR intensity is not a direct representation of

radar backscatter, both metrics describe signal intensity and are derived from the

same basic principal as defined in the radar equation (Wagner et al., 2006). As

such, intensity may provide supplementary structural information not captured

with height metrics alone in the case of airborne LiDAR, while providing insight

for future applications to PolSAR and TomoSAR. The combination of the height

and LiDAR intensity may provide the best approximation of forest biomass as

structure and top-of-canopy reflectance or texture are both characterized in a

single empirical model of biomass.

We used the Fusion LiDAR Data Toolkit (LDK) to calculate mean canopy

height (MCH) and LiDAR intensity (I) at a 30 m resolution. The processing

was accomplished using the CloudMetrics algorithm. Mean canopy height was

calculated by first creating a 5 m resolution digital earth model (DEM) using all

LiDAR ground returns. The LiDAR data was normalized to the DEM, subtracting

the corresponding DEM elevation from the point cloud. Ground returns were

removed with a simple 1 m height threshold above the DEM. Mean canopy height

was calculated as the mean height above the DEM of all returns above ground.

The 99th percentile of intensity was selected as the maximum intensity metric is

sensitive to abnormally high energy returns.
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LiDAR Empirical Models

Three empirical model forms were used to estimate plot biomass relying on single

linear regression for the individual LiDAR metrics – MCH and intensity – and

multiple linear regression for the combination of the two metrics. The three models

were created for each set of biomass estimation methods: (1) TLS models, (2) TLS

allometry, and (3) Jenkins et al. allometry. The combination compared the three

LiDAR-based metrics and three methods of estimating biomass, for a total of 9

empirical models. For each simple linear model, biomass (B̂plot) was estimated

using:

B̂plot = β0 + β1(MCH, I) + εplot (4.5)

where β0 and β1 are the model coefficients describing the relationship of LiDAR

metrics (MCH or intensity) to biomass. The error term εplot represents the residual

error of the empirical biomass model. In the case of multiple regression the model

takes the form:

B̂plot = β0 + β1(MCH) + β2(I) + εplot (4.6)

where β1 and β2 are coefficients for MCH and intensity respectively. εplot is en-

tirely derived from residual error, however, given these formulations, plot biomass

uncertainty is not accounted for. Any variation in εplot under differing allometric

relationships will be due to changes in mean biomass density, rather than prop-

agated allometric uncertainty. We quantify LiDAR model prediction uncertainty

including allometric error with:

σpred
2 = σε,plot

2 + σε,B̂plot

2 (4.7)

where σpred is total uncertainty from the empirical biomass model, σε,plot is

uncertainty due to LiDAR model residuals, and σε,B̂plot
is uncertainty propagated

from allometric equations to the plot level. The uncertainty from the sources de-

scribed were found to substantially contribute to biomass prediction uncertainty in

a similar analysis that quantified most sources of uncertainty in biomass mapping

(Chen et al., 2015).
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Table 4.1: Summary statistics for all trees modeled for TLS allometry. ρ is based
on the average wood density and not independently derived.

Statistic N Mean St. Dev. Min Max

ρ 243 0.548 0.083 0.400 0.620
DBH (cm) 34.6 20.4 10.1 120.0
Height(m) 22.80 7.56 7.11 36.70
Volume (m3) 2.33 3.21 0.03 25.20
Biomass (kg) 1,207 1,584 18 11,179

4.3 Results

4.3.1 TLS Allometry

TLS successfully created 5 different allometric equations using 243 3D tree models

(Table I). Small stems were difficult to accurately model so most were excluded in

this study, but considering our interest in estimating biomass we measured TLS

modeling success by total basal area captured per plot. On average, TLS modeled

70.6% of plot basal area. A single plot was a strong outlier with extremely dense

understory vegetation and only three trees successfully modeled with TLS. Remov-

ing this outlier increased total plot basal area modeled with TLS to 92.9%. From

the TLS models, three equations were created according to the dominant species

across the site: Liriodendron tulipifera, Quercus, and Carya. Two additional equa-

tions encompassed the species included in the Jenkins et al. 2003 mixed hardwood

(MH) and Hard maple/Oak/Hickory/Beech (MO) equations using a high number

of TLS models. The additional equations were used for any individuals that were

beyond the more specific equations diameter range in order to reduce bias in larger

trees.

The grouping used in this study was based on the evaluation of multiple equa-

tion forms (data not shown). The diameter-based equation selected had the lowest

AIC and highest AIC weight of all model forms tested. The inclusion of height re-

duced RMSE across all equations, but height was not measured across the site and

thus not used in our analysis. Initially, individual species equations were evalu-



CHAPTER 4. IMPROVED BIOMASS CALIBRATION WITH TLS 135

Table 4.2: General allometry including the 10 species modeled with TLS. Equa-
tions were created for Liriodendron tulipifera (Lt), Quercus (Q), and Carya (C).
The mixed hardwood equation (MH) includes Fraxinus americana, Liriodendron
tulipifera, and Nyssa sylvatica. The Hard maple/Oak/Hickory/Beech equation
(MO) includes Quercus, Carya, and Fagus grandifolia. RMSE is in log units and
based on 5-fold cross validation.

Eq. Range (cm) n β0 β0[se] β1 β1[se] r2 RMSE (CV)

Lt 13 – 120 47 -1.9136 0.17 2.3513 0.04 0.98 0.16
Q 11 – 93 66 -1.5091 0.25 2.3237 0.07 0.95 0.24
C 10 – 47 86 -2.2249 0.25 2.5765 0.08 0.92 0.31
MH 11 – 120 77 -2.2647 0.16 2.4503 0.05 0.97 0.26
MO 10 – 105 166 -1.6637 0.14 2.3787 0.04 0.95 0.29

ated, but no significant differences in slopes were found across multiple species. All

Carya species were statistically similar. Only Quercus velutina was significantly

different in the Quercus equation grouping. The Liriodendron tulipifera equation

was prioritized because of the presence of this species across the site.

The Liriodendron tulipifera equation had the lowest uncertainty (RMSE =

0.16) of all TLS allometry and the lowest equation sample size (n = 47; Table

2). The Carya equation had the highest uncertainty (RMSE = 0.31) but the

highest sample size for a single species equation (n = 86). The MO equation had a

high diameter range (10-105 cm) and the highest sample size (n = 166). The MH

equation had the highest diameter range (11-120 cm) of all equations and the slope

coefficient (β1) was similar to the Jenkins et al. MH equation (2.4503 vs 2.4835,

respectively), but RMSE was significantly lower (0.26 vs. 0.36, respectively).

4.3.2 Biomass Estimation and Uncertainty Analysis

Tree biomass estimations from TLS models with TLS allometry, TLS allometry,

and Jenkins et al. allometry were aggregated to the plot level to be used for the

LiDAR empirical model. A total of 1,818 trees were included on the TLS plots

(blue, Figure 4.1), but including the additional 11 plots for LiDAR calibration

increased the sample to 3,947 trees. TLS models had the highest biomass estimates
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Figure 4.3: Comparison of LiDAR biomass calibration models (top row) and prop-
agated uncertainty of biomass estimates (bottom row). Mean canopy height was
used as a comparable canopy height metric collected using spaceborne LiDAR
(GEDI or ICE-Sat II) (A & D). LiDAR intensity was used as a comparable metric
to radar backscatter, as collected using spaceborne PolSAR (B & E). MCH and
intensity were combined in the final model to emulate PolInSAR or TomoSAR
(BIOMASS or NISAR) and potential cross-sensor fusion (C & F). The TLS mod-
els (black) provided the lowest uncertainty estimates, followed by TLS allometry
(grey), and Jenkins et al. 2003 allometry (red). TLS reduced the total propagated
uncertainty of LiDAR calibration by over 10% (over 30% relative), with improve-
ments in both plot-level and LiDAR calibration RMSE. Percentages within stacked
bars indicate the relative contribution of uncertainty from allometry (blue) versus
the LiDAR-derived empirical model (grey).

on average (324 ± 131 Mg ha−1), followed by TLS allometry (316 ± 129 Mg ha−1),

and Jenkins et al. allometry (275 ± 126 Mg ha−1). Relative plot uncertainty was

lowest with TLS models (14.4%), followed by TLS allometry (17.9%), and Jenkins

et al. allometry (18.5%).

For the empirically derived LiDAR models, mean canopy height outperformed
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Table 4.3: Uncertainty of nine empirical biomass models based on calibration data
from TLS models, TLS allometry, and Jenkins et al. 2003 equations. Three models
are compared using mean canopy height (MCH) and LiDAR intensity, as well as
a multiple regression using both metrics as predictors. Uncertainty from model
residuals (σε,plot) and propagated uncertainty (σε,pred) are reported in Mg ha−1 and
as a percentage of the mean (equivalent to relative RMSE).

Model Method σε,plot σε,plot (%) σpred σpred (%)

β0 + β1(MCH) TLS Models 65.6 20.2 80.4 24.8
TLS Allometry 66.0 20.9 87.0 27.5
Jenkins 82.1 29.9 96.6 35.1

β0 + β1(I) TLS Models 73.2 22.6 86.7 26.7
TLS Allometry 73.6 23.3 92.8 29.4
Jenkins 88.4 32.2 102.0 37.1

β0 + β1(MCH) + β2(I) TLS Models 58.4 18.0 74.7 23.0
TLS Allometry 59.0 18.7 81.7 25.9
Jenkins 76.7 27.9 92.0 33.5

intensity as a predictor variable, and the combination offered the lowest uncertainty

and bias (Table 4.3). Propagating allometric uncertainty to the LiDAR models

increased model uncertainty in all cases. Use of TLS models over the Jenkins

equations for LiDAR model calibration reduced model uncertainty through re-

duced plot-level uncertainty and lower residual error. For example, TLS models

reduced the residual error by 9.7% and the propagated error by 10.3% in the MCH

LiDAR model. TLS reduced uncertainty in all LiDAR models with the greatest

reduction in the multiple regression model (10.5%). The relative contribution of

error from allometry increased with improved LiDAR models (Figure 4.3). The

most uncertain model (Jenkins et al. equations with intensity) had the lowest

relative contribution of uncertainty from allometry (13.3%), while the least uncer-

tain empirical model (TLS models with MCH and intensity) had a higher relative

contribution to uncertainty from allometry.
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4.4 Discussion

The framework presented in this study uses TLS to reduce uncertainty at multi-

ple levels of biomass estimation. We compared plot-level 3D stem reconstruction,

TLS allometry, and the Jenkins et al. 2003 equations and the uncertainty associ-

ated with each approach. The five TLS-derived allometric equations created using

3D stem models had low uncertainty and high sample size, making them suitable

for application across other plots within the site. Plot uncertainty was estimated

from the RMSE in the allometric equations and propagated to the empirical plot

biomass relationship from LiDAR metrics. The source of the majority of biomass

estimation uncertainty was the residual error in the LiDAR model, but allometry

contributed to 15-24.1% of the total uncertainty. A combined set of metrics us-

ing mean canopy height and return intensity produced the best model with low

uncertainty. In all cases, TLS reduced uncertainty in biomass estimation.

4.4.1 TLS for Local Non-destructive Allometry

The findings from this study suggest TLS is an efficient means of creating non-

destructive local allometry for estimating biomass. We scanned over the span

of four days, averaging three 1/10th ha plots per day. The relatively short time

expenditure for field work resulted in 329 3D tree models (only 242 were used in

this study). Other work has emphasized the cost and labor saved by using TLS in

place of destructive sampling and we see similar benefits in this approach (Stovall

et al., 2017).

Another clear benefit from TLS was the ability to estimate the biomass of

several large trees above 70 cm that would otherwise be too costly or simply

unfeasible to sample. The largest trees included in the national equations were

73 cm, as opposed to 120 cm in our TLS allometry. Across all 3D modeled trees,

TLS allometry estimated trees greater than 70 cm to have an average of 769 kg

more biomass per tree than the Jenkins et al. equation estimates. The larger trees

included in our allometry constrain estimates of biomass, thus reducing uncertainty

in the upper diameter range. Moreover, direct modeling of large trees reduced

plot uncertainty substantially, as these individuals have the highest potential for
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error. Further reductions in error were found when using height as an additional

predictor variable, but inclusion of this variable was considered outside the scope

of this study, as our primary interest was direct comparison to national allometry.

TLS allometry outperformed the Jenkins et al. 2003 equations in terms of

RMSE. Given the scale of the Jenkins allometry, we expected this finding, as these

equations encompass a much broader range of growing conditions than are found

at our single site. As such, one of the major benefits and likely sources of error re-

duction in TLS allometry was the ability to create high sample size equations on a

small spatial scale, limiting the impact of environmental variation in the equation.

We decided to group species based on a preliminary allometric analysis by creat-

ing two genus-grouped equations with species as a categorical variable. We found

species within the genus of Quercus and Carya to be statistically indistinguish-

able. The grouping of these individuals allowed us to increase equation sample size

and reduce the number of species-specific equations needed – ultimately leading

to a more reliable single equation. We did not include any assumptions about

uncertainty in TLS models that would propagate to allometric equation error, but

other work has shown QSM’s to vary in RMSE from 5-15% (Calders et al., 2015;

Hackenberg et al., 2015). In the future we intend on quantifying this source of

error and propagating it to higher levels to determine any impacts on biomass un-

certainty. However, a similar, but more expansive uncertainty analysis elucidated

small measurement errors in tree attributes at lower levels do not have a major

impact on error when scaled to the landscape (Chen et al., 2015).

While TLS provided low uncertainty allometry in this study, there are still cur-

rently major limitations to the technology that impede widespread deployment.

We collected the TLS data in low wind leaf-off conditions in order to clearly model

the woody portion of the tree stem, but this scenario can only be achieved in cer-

tain areas. Deciduous forest ecosystems have the potential to benefit greatly from

TLS, while dense tropical forests present significant challenges. A dense understory

in any forest will substantially reduce visibility and increase occlusion. Standard-

ized systematic sampling schemes have been suggested (Wilkes et al., 2017), but

a thorough analysis of occlusion in the context of QSM’s has yet to be completed.

Rain and wind are also detrimental to the quality of TLS data and must be avoided

if reliable volume estimates are required. However, the litany of potential prob-
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lems can often be overcome with appropriate planning and adjustments to field

acquisition strategies (e.g. increasing the number of scans in a plot).

Total plot biomass was higher and uncertainty was markedly reduced at the plot

level in both TLS scenarios compared to the Jenkins et al. 2003 equations. Given

the reduction in uncertainty across allometric equations, we anticipated lower error

at the plot level, but plot uncertainty only reduced by 4.1% with TLS models and

0.6% with TLS allometry. However, TLS model-based plot biomass was 49 Mg

ha−1 higher on average than the Jenkins equations, suggesting the improvements

to biomass uncertainty may be realized at the calibration and validation stage

through higher accuracy plot-level biomass values rather than increased precision.

The higher estimates of biomass density using TLS suggests (1) this approach is

sensitive to higher biomass in larger trees and (2) national-scale allometry may

be underestimating the biomass of large trees in analogous forest types. Direct

3D modeling captures biomass density more accurately because biomass is not

estimated with allometry. Since allometry estimates the mean value of biomass for

a specific diameter extreme, examples of high biomass are unlikely to be estimated

accurately. Allometry has been shown to systematically under- or overestimate

biomass, depending on forest type (Duncanson et al., 2015a), highlighting the

need for targeted TLS acquisitions for improved allometry or to directly estimate

large tree biomass.

4.4.2 Reducing Uncertainty in LiDAR Models

Uncertainty is rarely propagated in analyses of biomass estimation with remote

sensing methods (Chen et al., 2015) and no studies to our knowledge have quan-

tified reductions to LiDAR biomass model uncertainty using TLS. Our approach

uses TLS to reduce uncertainty from allometry and LiDAR calibration error. Li-

DAR calibration error is impacted primarily by the representative nature of the

metric used to predict biomass (MCH or intensity, in this study) and the accuracy

of the field biomass estimates. We emphasize that nearly every remote sensing cal-

ibration and validation method for biomass estimation relies on estimates derived

from empirical models rather than known values, except rarely, when destructive

sampling of trees are used after data acquisition; in essence, an allometric model
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is used to calibrate metrics for a remote sensing model. TLS potentially provides

a means to reduce the reliance on generalized allometric models for the calibra-

tion stage, thus reducing uncertainty. Since plot-level biomass can be estimated

using a range of techniques, the chosen method can potentially have a dramatic

impact on the final sensor calibration (Zhao et al., 2012). By quantifying improve-

ments in empirical model calibration and propagating uncertainty we can make

more informed decisions concerning sensor calibration plot data moving forward

in estimating global forest biomass.

While there is disagreement in the literature over the appropriate plot size

for biomass estimation, temperate plots are typically smaller (less than 1 ha)

(Duncanson et al., 2015b) and tropical plots are larger (approximately 1 ha) (Chave

et al., 2004). Larger plot sizes have been proposed in both systems as being

superior for remote sensing calibration (Frazer et al., 2011), but we saw strong

agreement with relatively small plots. TLS can reduce geolocation error when

paired with airborne LiDAR, mitigating some of the uncertainty in the calibration

stage (Hauglin et al., 2014). Moreover, ensuring tree crowns are not clipped on the

plot edges, but rather included in the calculation of LiDAR metrics will improve

residual error in the empirical model (Mascaro et al., 2011). Further investigations

of plot size, geolocation errors, and edge effects are necessary to determine the role

of TLS in reducing uncertainty from these sources and improving biomass model

calibration.

Canopy height is almost certainly the most ubiquitous metric used to estimate

biomass across an extensive range of forested ecosystems (Asner, 2009; Saatchi

et al., 2011; Baccini et al., 2012; Fatoyinbo & Simard, 2013; McRoberts et al.,

2016). We used mean canopy height as an analogous metric to many of the up-

coming satellite missions for estimating biomass. While our methods are directly

applicable to the GEDI and Ice-SAT II missions because of the similar technol-

ogy, the same findings apply to multi-sensor synthetic aperture radar configura-

tions used to estimate forest height. The strong relationship between height and

biomass found in this study confirms the findings of the overwhelming body of

publications on the subject. TLS provided the most accurate and precise esti-

mates of plot biomass and thus reduced the residual error in the LiDAR empirical

model. The Jenkins et al. allometry systematically underestimated biomass den-
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sity and was less sensitive to high biomass plots. The strong agreement between

TLS plot biomass estimates and LiDAR-derived mean canopy height is explained

by TLS plot estimates being derived from the direct sensing of standing biomass

rather than the indirect Jenkins et al. allometry. The strength of the LiDAR rela-

tionships were not anticipated given the low point cloud density (approximately 1

point m−2) of the airborne LiDAR acquisition, emphasizing the explanatory power

of MCH.

LiDAR intensity was nearly as successful as MCH for predicting plot biomass

(R2 = 64-70%), but the combination of the two variables provides the best model

(R2 = 80%). Past work has shown the utility of LiDAR intensity metrics for pre-

dicting forest biophysical parameters (Hudak et al., 2006; Zhao et al., 2012). The

similarity of intensity to radar backscatter in the context of the current study’s

goals underscores the potential for TLS to reduce uncertainty in SAR biomass

estimates for future satellite missions. The greatest benefits are realized with the

combination of height and intensity metrics. In the combined model MCH con-

tributed 43.7% of the model variability, versus the 37.7% explained by LiDAR

intensity. The high contribution of intensity to predicting biomass in the com-

bined model underscores not only the necessity for fusion of multiple metrics from

individual sensors, but fusion of multiple sensors for improving biomass predictive

capability on a global scale.

4.5 Conclusion

TLS is an effective and efficient means of reducing uncertainty in calibration of

remote sensing missions estimating biomass. We determined TLS can reduce un-

certainty in the future by:

(1) Providing a direct estimate of standing biomass by sensing woody volume,

thus reducing the reliance on potentially unrepresentative allometry.

(2) Allowing the development of more representative non-destructive local allo-

metric equations that can be applied to currently available plot data.

(3) Reducing residual variability in the LiDAR empirical modeling stage.
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TLS is unlikely to replace manual forest inventory completely, but adaptive meth-

ods may significantly improve plot-level biomass estimates for calibration and val-

idation. Certain ecosystems like dense tropical forest present challenges for au-

tomated TLS inventory because occlusion reduces confidence in relatively simple

measurements, but high quality single-tree biomass estimation in these systems

can supplement limited allometry. Ultimately, the greatest future improvements

to biomass mapping will be found with targeted TLS acquisitions in areas with

non-existent local allometric equations and high biomass density.
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Reducing Biomass Uncertainty with TLS and Next Steps

The investigations presented in this work quantified the potential for terrestrial Li-

DAR to improve estimates of biomass and reduce uncertainty at multiple spatial

scales. We asked three primary questions, aimed at assessing TLS for estimat-

ing non-destructive tree-level biomass, developing non-destructive allometry, and

calibration of airborne and spaceborne sensors for landscape or global biomass

estimation. The questions will briefly be discussed in context with the research

presented, followed by the immediate next steps in each research area.

[1] Can terrestrial LiDAR be used to estimate biomass at the individual tree scale?

Terrestrial LiDAR is an effective tool for estimating individual tree biomass, but

many of the current approaches only consider whole-tree biomass (Calders et al.,

2015) and are not accurate with noisy point clouds (Hackenberg et al., 2015). We

developed an algorithm that not only accurately estimated whole tree biomass,

but was capable of estimating the contribution from individual components (e.g.

trunk, branch, and foliage). The OHM algorithm utilized a novel convex hull

peeling approach for trunk biomass estimation that was effective in the presence

of high noise point clouds collected with lower-cost TLS technology. The convex

hull peeling method was unique in that the exterior trunk structure was accurately

recreated, rather than assuming a cylindrical shape. We quantified the uncertainty

from applying measured versus average species-specific wood density using the

OHM method and, while measured wood density reduced error, it was only reliable

for the trunk component. The needle and branch algorithm relied on the low error

trunk estimates to estimate inner branch diameter, facilitating modeling of height-

specific branch and needle distributions. The branch and needle algorithm had

higher uncertainty than the trunk estimates, but, given the presence of substantial

noise in the point cloud, provided relatively unbiased, spatially explicit estimates

of these two components.

The OHM algorithm can be improved in the future through further testing.

The highest initial priority in development will be automation of trunk segmen-

tation. The processing framework currently implemented in the OHM algorithm

will facilitate these improvements. We are testing automatic segmentation through
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convex hull peeling on unsegmented point clouds. Essentially, convex hull peeling

will initiate at the outermost branch and peel away the exterior points, revealing

the innermost trunk structure. At the very least, this approach would provide

a rough estimate of the trunk area, reducing the time expenditure for manual

segmentation. Additional species must me tested to determine how accuracy and

precision depends on tree structures different from the 21 lodgepole pine samples.

The destructive sampling data from Chapter 2 is part of a larger project with an

additional 20 trees of ponderosa pine and douglas fir. The remaining destructive

samples will be tested using the OHM algorithm to guide future developments.

With further testing and automation the OMH method may become a viable al-

ternative to cylinder fitting algorithms in noisy TLS data.

[2] How does locally derived terrestrial LiDAR allometry influence estimates of

biomass compared to the more commonly used allometric relationships?

National allometry built from destructive samples across broad spatial areas

has become the the standard for biomass estimation (Chave et al., 2005, 2014).

Pooling of large datasets is necessary in order to increase the predictive power of

relationships, but species-specific trends are masked, reducing sensitivity to spatial

patterns at the mapping stage (Mitchard et al., 2014). Terrestrial laser scanning

can accurately estimate single-tree biomass, but minimal work has focused on

the potential for non-destructive allometric equation development (Olagoke et al.,

2016; Momo Takoudjou et al., 2017). We modeled 329 trees across 14 plot loca-

tions and developed 30 species-specific allometric equations. The TLS allometry

had lower uncertainty than the national equations, but a wider range of equa-

tion error. The tree models validated Jenkins et al. (2003) and Chojnacky et

al. (2014) allometry, revealing a consistent underestimation in both equations.

We evaluated the effect of sample size and large trees on predictive accuracy of

allometry. Diameter allometry required approximately 180 samples before equa-

tion parameters were consistent, while the diameter-height equation only needed

100 samples. Large trees are essential for accurate biomass estimates, especially if

diameter is the only predictive variable. Including height in allometry reduced the

sensitivity to the removal of large trees, so height should be measured whenever

possible.
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Expansion to other areas is necessary to determine the broad applicability

of non-destructive allometric equation development. While the highest quality

TLS models will be built in leaf-off conditions, many deciduous forests have been

extensively studied and improvements to allometry may be minimal. Targeted

TLS acquisitions in deciduous forests with limited species-specific allometry can

immediately improve biomass estimates through non-destructive high sample size

allometry. The greatest challenge remains in broadleaf evergreen or tropical forests.

Substantial testing of TLS in these ecosystems is needed before 3D models are

used for allometric equation development, primarily due to uncertainty due to

occlusion from dense vegetation. Some systems with open understory may be good

initial candidates for TLS deployment in tropical systems. In Gabon, the tallest

mangrove forest on Earth reaches approximately 60 m and has an open understory

with minimal mid-story vegetation. Similar systems may allow measurement of

extremely large trees with relatively full coverage, increasing the number of samples

in and spatial coverage of tropical allometry.

[3] Can terrestrial LiDAR directly reduce uncertainty in sensor calibration, vali-

dation, and biomass mapping through plot-level 3D modeling and non-destructive

allometric equations?

Global biomass estimates are driven by uncertain tree-level allometric relation-

ships (Saatchi et al., 2011; Baccini et al., 2012). With the rapid development of

terrestrial LiDAR for non-destructive biomass estimates through three-dimensional

modeling, uncertainty at the plot level can be reduced for improved sensor calibra-

tion. We quantified uncertainty reduction with TLS through three-dimensional re-

construction and non-destructive allometry compared to national-scale allometry.

Terrestrial LiDAR reduces uncertainty at the plot level, but also at the calibration

stage. We determined TLS can potentially reduce sensor calibration uncertainty

by over 10%. Allometric uncertainty is of greater relative importance when sensor

calibration is more precise. TLS was also more sensitive to higher biomass plot lo-

cations, indicating potential in areas of high biomass and high uncertainty that are

difficult to estimate with allometry. The framework outlined provides a method-

ology that can immediately be applied in similar forests for reduced uncertainty

sensor calibration and biomass mapping.
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Figure 5.1: Area-wide LiDAR-derived biomass estimates, based on mean forest
canopy height and TLS calibration. The processed area (red) is part of a larger
acquisition in Virginia (blue).
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While we assessed TLS in the context of sensor calibration, variation in the

spatial distribution of biomass under different plot-level data must be considered.

The airborne LiDAR data used for the analysis in Chapter 4 is part of a much

larger acquisition. Initial processing of the LiDAR from this 50,831 ha area re-

veals an average biomass density of 195 Mg ha−1 and over 50 Tg of biomass,

half of which is carbon (Figure 5.1). The landscape-level estimates are built from

the 25 calibration plots at SCBI, but additional plot data will be necessary to

improve confidence in this biomass map. FIA data is available throughout the

LiDAR acquisition area, allowing improved calibration and expansion to other Li-

DAR datasets in Virginia. The baseline biomass distributions from the Jenkins

et al. (2003) spatial distribution and estimates must be compared to the TLS

derived map. We anticipate landscape-level differences in magnitude between the

two maps, with Jenkins equations underestimating area wide biomass. The CMS

United States biomass product (Hagen et al., 2016) estimates an average of 105

Mg ha−1 over the same area, suggesting a need for comparison of several estimates

to TLS-derived values.

Another essential future goal in moving the proposed TLS framework forward

is testing in new ecosystems. The allometric equations in the United States are

more robust than many other locations and are thus likely to see the least relative

improvement in uncertainty, unless improved species-specific regional equations

are developed (McRoberts et al., 2016). Deployment of TLS in areas with stark

disagreement or high uncertainty in LiDAR calibration models may see substan-

tial improvements from improved allometry and/or direct three-dimensional re-

construction. The Pacific Northwest is estimated to have the highest aboveground

biomass density of any forest on Earth and airborne LiDAR has been unable to

capture this with height metrics (Duncanson et al., 2017). The uncertainty of plot

estimates may be attributed to biased allometric models or lack of explanatory

power of LiDAR height. Given our findings, we anticipate improvements to allom-

etry in these high biomass density systems that may reduce LiDAR calibration

error.
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Moving Forward

The clear finding from the work presented in this dissertation is that terrestrial

LiDAR has a major role to play in reducing uncertainty in future forest measure-

ment and monitoring. Beyond these initial investigations, the current challenges,

potential for operational deployment, and future questions to be answered with

TLS must be considered. True benefits from TLS will come when the technology

becomes accessible, standardized, and consistent. Continued progress in TLS ap-

plications will provide necessary information that will inform the next generation

of ecological questions.

Current Challenges for Operational Deployment

Much like early development of airborne LiDAR, TLS is on a path towards stan-

dardization and operational deployment. The body of literature and work pre-

sented in this dissertation has underscored the potential for TLS to be incorpo-

rated as a standard forestry measurement tool (Liang et al., 2016), but there are

still major limitations and developments needed before TLS can be operationally

deployed. One major hurdle in TLS is initial cost. The highest quality instru-

ments, in terms of durability and scan quality, are cost prohibitive for most insti-

tutions, so they have primarily been reserved as research tools for experimental

use. Commercial instrument costs have continued on a steady downward trend,

but few new instruments have been tested in a forest context. If non-destructive

biomass estimation is the goal, new, less expensive sensors will need to be tested

with destructive harvesting data in order to ensure instrument dependent error

and noise does not bias tree models. This is particularly relevant in the context of

our work, as we sought to apply our methodology with a more portable, lower cost

instrument, but did so with the trade-off of increased noise. As TLS technology

becomes more affordable, low-noise instruments will be more attainable, but, until

then, trade-offs in quality associated with entry cost is a major consideration for

widespread adoption of TLS in forestry.

TLS is limited substantially by field conditions – many instruments are cur-

rently heavy and sensitive to temperature and moisture. Tropical forests are an

example where both conditions are at an extreme. Recent developments have im-
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proved water resistance, but extremely high moisture environments are detrimen-

tal to scan quality, as TLS laser wavelengths often reside in the water absorption

range of the electromagnetic spectrum. Tropical forests with high density under-

story cause occlusion and the only current solution is to increase scan positions

(Wilkes et al., 2017), emphasizing the importance for quick instrument scan times,

so acquisition does not become prohibitively time consuming. Standardization of

acquisition strategies will be required for future interoperability, but the complex-

ity of forest environments makes standardized sampling difficult to achieve. A

consistent sampling approach, optimized for forest type, will be essential as TLS

is more widely used and consistent data products are required. Mobile applica-

tions, as well as in situ monitoring of scan coverage, may provide a solution to

the sampling problem, ensuring sufficient and consistent coverage. Improvements

to portability, resistance to environmental conditions, and instrument technology

will eventually allow deployment of TLS in most forest settings.

The wide array of algorithms used for non-destructive biomass estimation with

TLS data will need to be synthesized and optimized according to forest type before

the technology is broadly applicable. QSMs appear to be the most widely used of

the volume estimation algorithms (Raumonen et al., 2013), but a range of other ap-

proaches, namely the OHM approach developed in Chapter 2, have been optimized

to accurately perform in situations where QSMs fail. Other major issues, such as

the influence of occlusion on automated volume estimates, must be addressed in

simulation space, in order to optimize algorithms for several forest types. Once

algorithms have been sufficiently tested in a range of real or simulated ecosystems,

processing accessibility needs to be the highest priority. CompuTree is an excellent

example of an early stage open source TLS processing application (Othmani et al.,

2011). Consistent development and community involvement will be necessary for

efficient optimization of many of the automated algorithms included in end user

programs. As more options for processing become available, TLS will be easier to

adopt and use in an operational setting, thus providing unprecedented and wide-

spread capacity to address ecological and management questions relevant to forest

ecosystems.
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Future Questions and Applications

Terrestrial LiDAR is currently the best method of reconstructing ecosystems with

fine-scale three-dimensional detail, but the potential of this tool has yet to fully

be realized in the context of ecosystem science. With focused research and devel-

opment, TLS can help answer previously unattainable ecosystem-level questions.

Future measurement and monitoring of carbon stocks can be improved with

terrestrial LiDAR. The work presented in this dissertation has shown the poten-

tial for widespread application of terrestrial LiDAR for non-destructive biomass

estimation and allometric equation development, but as sensors become less expen-

sive, this technology can potentially be regularly incorporated into forest inventory

for reduced uncertainty carbon measurement and monitoring. With an increasing

number of TLS models, allometry can be stratified according to environmental

conditions (e.g. slope, aspect, elevation, solar radiation, soil moisture, nutrients,

etc.), not only further improving biomass estimates, but also the understanding

of those environmental factors most influencing biomass allocation. Unmanned

stationary TLS sensors measuring vegetation structure have already been devel-

oped and tested for monitoring change over time (Culvenor et al., 2014), giving a

glimpse of one potential avenue on this front. At the plot and stand scale, TLS can

easily detect change in three dimensional structure (Srinivasan et al., 2014), quan-

tifying movement from above- to below-ground carbon pools. The non-destructive

nature of TLS modeling allows for longitudinal studies of tree growth, giving in-

sight to the yearly changes in biomass and those factors influencing the rate of

accumulation.

The capability of TLS as a tool for quantifying three-dimensional structure

makes it ideal for characterizing wildlife habitat. TLS has been successfully used

to characterize 3D space for monitoring bat activity (Yang et al., 2013). For bird

species, subjective estimates of canopy complexity or simple measurements of cover

are often used to assess habitat suitability. Airborne LiDAR has been used to map

bird habitat successfully, but with high uncertainty (Goetz et al., 2010). The un-

certainty in these mapping estimates may be due to inadequate characterization in

the three-dimensional distribution of vegetation – an easily retrievable parameter

with TLS. Moreover, TLS may provide additional structural information that can
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Figure 5.2: Potential TLS sensor fusion approach, allowing temporal and spatial
monitoring of ecosystem status over large area acquisitions.

be used to validate airborne methods (Hancock et al., 2017) for improved habi-

tat characterization and mapping. Incorporating TLS measurements of ecosystem

structure as a tool for relatively objective wildlife habitat assessment has signifi-

cant implications for management decisions if this tool can provide higher quality

estimates of habitat range and quality.

The potential for sensor fusion with TLS is substantial. TLS can bridge the

gap between leaf-level and ecosystem-level measurements. Canopy leaf area ar-

rangement impacts ecosystem productivity and TLS is capable of providing high

resolution three-dimensional leaf area distribution (Bland et al., 2014; Jin et al.,

2016). Solar induced florescence can provide quality estimates of productivity

(Yang et al., 2015). Together, the two measurements could help disentangle the

effects of leaf distribution and leaf-level production efficiency. Over time, the fu-

sion of structure and estimates of productivity could improve monitoring of forest

health and uncover impacts of ecosystem stressors (Figure 5.2). Large TLS acqui-

sitions over 1 ha are becoming more common (Calders et al., 2016) and are ideal for

this type of analysis, providing fine scale vegetation distribution across the land-

scape. Coupled with flux tower measurements of CO2 exchange, TLS data fusion

can begin to accurately quantify ecosystem structure-production relationships.
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Many of the findings from TLS studies can be directly applied to individual-

based forest gap models (Shugart et al., 2015). Starting with parameterization,

TLS can improve the vertical distribution of biomass and leaf area index – essen-

tial for modeling competitive interactions. Leaf area distributions within model

frameworks are built from crown architecture assumptions, with little empirical

data. TLS can validate model-derived leaf area distributions or provide parame-

terization information on 3D leaf area. Using space-for-time substitution, TLS can

characterize, in detail, the three-dimensional structure of forests at different stages

of succession (Cuni-Sanchez et al., 2016), producing more realistic model output.

Moreover, as TLS models are created more readily, they can be incorporated into

modeling environments for realistic plot representations or interactive competitive

processes. Spatially explicit competitive interactions in real forests can be quanti-

fied using TLS through crown reconstruction and potentially used to inform forest

models. The volume of detailed information on tree and stand structure available

in TLS data is capable of significantly improving forest models in the future.

Conclusion

Terrestrial laser scanning is capable of enhancing vegetation measurements, im-

pacting understanding and management of forest ecosystems at a global scale. The

interconnected nature of up-scaling approaches with global remote sensing missions

points to the need for unbiased plot-level measurements. TLS is capable of being

immediately deployed as an operational tool for allometric equation development

in needleleaf evergreen, broadleaf deciduous, and, with sufficient quality control,

tropical forests. Substantial improvements to biomass allometry using TLS will

become a staple of the benchmark carbon maps created using the upcoming GEDI,

NISAR, and BIOMASS missions. With improved global carbon estimates, human

impacts on forests, such as deforestation and degradation, can be quantified more

accurately, improving national-scale carbon budgets. The framework presented

in this work aims to address these primary issues. With targeted deployment in

the coming years, TLS will reduce uncertainty in global biomass estimates, while

providing unprecedented measures of three-dimensional structure that stand to

reshape the capacity for complex ecosystem-level investigations.
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TLS scan of a lodgepole pine tree from Colorado State Forest selected for destruc-
tive sampling in Chapter 2.
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