
A Versatile Open-Source Photomosaic Maker

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Hanzhi Zhou

Spring, 2022.

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Daniel G. Graham, Department of Computer Science

Rosanne Vrugtman, Department of Computer Science

1 https://github.com/hanzhi713/image-collage-maker

A Versatile Open-Source Photomosaic Maker

CS4991 Capstone Report, 2021

Hanzhi Zhou

Department of Computer Science
University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia, USA

hz2zz@virginia.edu

ABSTRACT

Photomosaic is formed by tiling many small images (tiles) to

approximate a target image. It is a great way of presenting a

collection of images that contribute to a common topic. However,

existing solutions often require licenses, are time-consuming to

use, and produce unsatisfactory results. To address these

problems, I developed an open-source desktop application that

can efficiently construct photomosaics. Unlike previous works,

my solution provides explicit options to trade off between the

characteristics of the resulting photomosaic, thus being versatile.

Experiments show that my work produces photomosaics with

superior quality compared to previous works. My work is

available for public use on GitHub1.

1 Introduction
Images are primary ways to attract audiences. With recent

advances in computer vision and image processing, easy-to-use

photo-editing applications with collage-making functionalities are

becoming increasingly popular. Among these special effects,

photomosaic stands out as an engaging way to present a collection

of images that contributes to a common topic. Viewed from a

distance, a photomosaic is visually identical to a typical photo

(target image), while a detailed look will reveal that it is

constructed from a grid of smaller images (tiles). A well-known

example of photomosaic created as an internet meme is a picture

of Leonardo DiCaprio crying, made from the images of Oscar

winners.

The quality of a photomosaic is measured by the similarity

between the tiles that constitute the mosaic and the target image.

Commonly, to enhance the visual quality of the photomosaic,

some applications overlay the tiles on top of the target image and

make both of them partially transparent. This is known as

transparency blending (blending for short). Besides the overall

visual similarity to the target image, another important property of

a mosaic is the fairness of the tiles. For scenarios such as

photomosaic of a graduating class, it is important to make sure

that each tile, which is a picture of a graduating student, is used

exactly once. There exists a trade-off between the quality of the

mosaic and the fairness of the tiles, since fairness requires the

frequency of tile use to be considered in addition to the visual

similarity. Therefore, it is desirable to design parameters that

suitably trade off between the visual quality of the mosaic and the

fairness of the tiles depending on applications.

2 Background and Related Works
In the past, photomosaics were commonly crafted by artists and

photography specialists by hand. Due to the need to arrange

hundreds or thousands of tiles, it is a difficult and tedious job.

Although scholar works on photomosaic-building is rare, recent

interest in the problem and development of image processing

software has led to a few interesting studies. Blasi [1] proposed an

efficient method to search for best-match tiles among a large

database of tiles, based on the Antipole Tree data structure. Blasi

[2] went further with the QuadTree data structure and developed

novel ways to render photomosaics. The main problem with these

two works is that they cannot be modified to provide options to

enforce fairness. Lee [3] proposed a multi-step photomosaic-

rendering algorithm based on block matching and color

adjustment. While some local fairness and redundancy of tiles are

a consideration in Lee’s work, no measures are taken to ensure

global fairness or strict fair usage of tiles.

Besides scholar works, numerous applications that can build

photomosaics can be found online [4, 5, 6]. However, they have

one or more of the following shortcomings:

• Require purchased licenses to have full access to all the

features (e.g. to download high resolution photomosaic)

• Heavily or solely use blending. Photomosaics should

look similar to the target image without blending, but

some websites only achieve such similarity with

blending. Blending sacrifices the visibility of the tiles.

Ideally, users should be able to explicitly set a desired

level of blending.

Figure 1. User interface of my photomosaic maker

mailto:hz2zz@virginia.edu

A Versatile Open-Source Photomosaic Maker

• Users need to upload potentially thousands of tiles

before a mosaic can be made, which takes considerable

amount of time and has potential privacy concerns.

• Characteristics of the resulting photomosaics cannot be

tuned. For example, there is a trade-off between the

quality of the photomosaic and the fairness of the tiles

(i.e. whether the frequencies of the tiles in the

photomosaics are roughly the same).

• The resulting photomosaic looks unsatisfactory or

dissimilar to the target image despite the large number

of tiles used.

3 Contribution of this Work
My work addresses limitations of existing works. My solution

allows users to explicitly set the desired level of blending to trade

off between the degree of approximation to the target image and

alternation of the color of the tiles. I designed several different

algorithms that trade off between the quality of the mosaic and

fairness of the tiles. Experiments show that photomosaics built by

my algorithms have superior visual quality compared to existing

solutions. They are implemented in Python and built on top of

efficient math and image processing libraries such as NumPy and

OpenCV, ensuring construction of large photomosaics in seconds.

Finally, besides a command-line interface, I also designed a

graphical user interface (GUI) for good usability. The current GUI

design is shown in Figure 1. The source code is licensed under a

permissive open-source license, MIT License, and is available for

public use on GitHub. Prebuilt binaries are available for all major

platforms.

4 Mosaic Building as An Optimization Problem

4.1 Problem Overview
The objective of photomosaic-building is to find the arrangement

of the tiles that best resembles the target image. If the similarity

between a grid of tiles and an image can be measured

quantitatively by a metric, then the photomosaic-building process

can be defined as an optimization problem whose objective is to

maximize such a metric. Thus, the performance of the mosaic

maker depends on whether the metric can effectively capture the

visual quality of the resulting mosaic and whether the

optimization algorithm is able to find a global maximum.

 Moreover, depending on user preferences, the objective may

include the fairness of the tiles. That is, the differences between

the frequencies of tiles in the resulting photomosaic need to

minimized. This leads to a multi-objective optimization problem

which cannot be solved directly, so hyperparameters must be

introduced to trade off between the objectives.

4.2 Defining the Metric
While there exist sophisticated algorithms such as feature based

methods to determine the visual similarity between two images,

the computational simplicity of color distances stand out as we

need to evaluate potentially thousands of tiles. Therefore, the

color distance is used to determine the quality of a photomosaic.

The color distance, referred as cldist for short, between a pair of

equal-sized images 𝐴 and 𝐵 is given by the vector distance

between their pixels

cldist(𝐴, 𝐵) = 𝑑𝑖𝑠𝑡(𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐴), 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐵)) (3)

where 𝑑𝑖𝑠𝑡(⋅,⋅) is a distance function in ℝ𝑛 and 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(⋅)

flattens images in ℝ𝑤×ℎ×𝑐 to vectors in ℝ𝑛 where 𝑛 = 𝑤 × ℎ × 𝑐.

There are a number of distance functions between two vectors

and a number of difference color spaces and the images can be

represented in. For example, Manhattan distance and Euclidean

distances can be used as the distance measures. Options for color

spaces considered in this work include Blue-Green-Red (BGR),

Hue-Saturation-Value(Lightness) (HSV(L)), and CIELAB (LAB).

HSV(L) color spaces are often used by artists to adjust the color

of an image. BGR is the color space used by digital displays to

display the colors to humans. LAB is a less well-known color

space, but it has a special property: a uniform change in the color

coordinate will lead to a uniform change in the perceived color

[7]. The exact choice of the distance metric and color space is left

to the users because they will produce different visual effects.

5 Solving the Optimization Problem
Since the multi-objective optimization problem cannot be solved

directly, I separated it into two cases and developed specialized

algorithms to solve each case. The first case is fair assignment

case in which each tile must be used the same number of times.

The other case is unfair assignment in which the user can tune a

parameter to adjust the redundancy of certain tiles in the mosaic.

For both cases, the general strategy is to first divide the target

image into equal-sized chunks, and also resize each tile to the size

of these chunks. Then, for each chunk, an appropriate tile is

selected and matched to this chunk based on Equation 3. Finally,

these tiles are assembled to form a photomosaic.

5.1 Notation
Define 𝑇 to be the set of tiles that will be arrange in a grid to form

a photomosaic, and let 𝑁 = |𝑇| to be the number of tiles in total.

Define 𝑤𝑔 to be the width of the grid in tiles and ℎ𝑔 to be the

height of the grid in tiles. Define 𝑤𝑖 and ℎ𝑖 to be the width and

height of the target image in pixels. Define 𝐵 to be the set of

chunks that the target image will be divided into, and let the size

of each chunk be 𝑘 × 𝑘.

5.2 Solving Fair Assignment
The reason fair assignment is separated as a special case is that it

reduces to a well-known problem in combinatorial optimization—

linear sum assignment (LAP). LAP arises in many practical

scenarios. For example, if there are 𝑁 workers and 𝑁 tasks, and

there is a cost 𝐶𝑖𝑗 for worker 𝑖 to complete task 𝑗, and the goal is

to find an optimal assignment from workers to tasks such that the

total cost is minimized. Similarly, to build a photomosaic given 𝑁

tiles, we can divide the target image into 𝑁 equal-sized chunks

with side length 𝑘 and solve LAP with the cost defined as the

color distance.

Since LAP requires the number of tiles and chunks to be the

same, we need to find out how to divide the target image into

chunks. We do so by first determining the grid size to arrange the

1 https://github.com/hanzhi713/image-collage-maker

tiles, and then map the grid to the chunks of the target image. The

aspect ratio of the grid
𝑤𝑔

ℎ𝑔
 should be very close to the aspect ratio

𝑟 =
𝑤𝑖

𝑔𝑖

 of the target image. Additionally, 𝑁 − 𝑤𝑔 × ℎ𝑔 should be

minimized, meaning that the number of images discarded should

be minimized. Since this is a multi-objective optimization

problem, I choose to prioritize the minimization of the number of

discarded images, as I believe a slight deviation from the true

aspect ratio is not noticeable. Therefore, the optimal grid

dimension 𝑤𝑔
∗ × ℎ𝑔

∗ can be calculated as

𝑤𝑔
∗ = argmin

𝑤𝑔

(
𝑤𝑔

⌊
𝑁
𝑤𝑔

⌋
− 𝑟) , ℎ𝑔

∗ = ⌊
𝑁

𝑤𝑔
∗
⌋ (2)

Note that if the user wishes to increase the grid size, they can set a

duplication number 𝑑, so that each tile used be used 𝑑 times rather

than only 1 time.

After the grid size is obtained, the extra tiles (𝑁 − 𝑤𝑔
∗ × ℎ𝑔

∗)

that cannot be put on the grid are discarded. Then, the chunk size

is calculated as

𝑘 = min (⌊
𝑤𝑖

𝑤𝑔
∗
⌋, ⌊

ℎ𝑖

ℎ𝑔
∗

⌋) (3)

Then, each tile is resized to 𝑘 × 𝑘 and the target image is resized

to 𝑘𝑤𝑔
∗ × 𝑘ℎ𝑔

∗ . Now, a one-to-one correspondence between the

tiles and the chunks of the target image can be established.

Therefore, the cost matrix 𝐶 can be computed as the pairwise

color distances between the tiles and the chunks of the target

image.

𝐶𝑖𝑗 = cldist(𝑇𝑖 , 𝐵𝑗) (4)

Given the cost matrix, the solution of LAP is a bijection between

the tiles and the chunks, which is subsequently used to construct

the photomosaic.

5.3 Solving Unfair Assignment
For the unfair assignment case, the size of the grid cannot be

inferred from the number of tiles, as the frequency of each tile in

the resulting photomosaic is unknown. Thus, we require users to

specify the grid width 𝑤𝑔
∗ so that the grid height can be inferred

from the size of the target image

ℎ𝑔
∗ = round (ℎ𝑖

𝑤𝑔
∗

𝑤𝑖

) (5)

Then, the chunk size 𝑘 is calculated using Equation (3). Each tile

is resized to 𝑘 × 𝑘 and the target image is resized to 𝑘𝑤𝑔
∗ × 𝑘ℎ𝑔

∗.

The most unfair assignment case is the best-match assignment

without fairness constraints. That is, each chunk of the target

image is assigned with the tile that best matches the chunk,

without considering how many times the tile is already used.

Therefore, the assignment from tile to chunk can be formulated as

𝐵𝑗 ← argmin
𝑇𝑖

(cldist(𝑇𝑖 , 𝐵𝑗)) (6)

To take fairness into account, Equation 6 can be modified to

consider the frequency of each tile already used in addition to

color distance. Define 𝐹𝑖 to be the frequency of the tile 𝑇𝑖

currently in the photomosaic. Now, instead of finding the best tile

by minimizing the color distances, we minimize the weighted sum

of the rank of the tile and the frequency of the tile multiplied by a

hyperparameter 𝜆

𝐵𝑗 ← argmin
𝑇𝑖

(rank(𝑇𝑖 , 𝐵𝑗) + 𝜆 𝐹𝑖) (7)

where rank(𝑇𝑖 , 𝐵𝑗) is the rank of cldist(𝑇𝑖 , 𝐵𝑗) among all

cldist(𝑡, 𝐵𝑗) where 𝑡 ∈ 𝑇. Formally, it is given by

rank(𝑇𝑖 , 𝐵𝑗) = |{cldist(𝑡, 𝐵𝑗) < cldist(𝑇𝑖 , 𝐵𝑗) | 𝑡 ∈ 𝑇}| (8)

The hyperparameter 𝜆 is a positive real number that trade-off

between the quality of the mosaic and the fairness of the tiles. The

larger the 𝜆, more weight will be put on fairness. Note that when 𝜆

is zero, Equation 7 is identical to 6, which means no fairness is

taken into account.

6 Experiments

6.1 Implementation
I chose Python as the language to implement the photomosaic

maker, as there is a plethora of high-quality open-source libraries

for Python. In the implementation, NumPy and SciPy are used to

manipulate matrix and vectors, and OpenCV is used to process

and manipulate images. The LAP problem in section 5.2 is solved

using the Jonker-Volgenant algorithm [8], implemented in a

specialized library by src-d [9]. All these libraries are written in

C++, hence ensuring high computational performance, and they

provide convenient Python wrappers for easy usage in Python.

6.2 Experiment Setup
The following experiments are conducted to demonstrate the

effectiveness of my work:

1. Show the trade-off between quality and fairness when

photomosaics are built with different parameters.

2. Compare the photomosaic built by existing solutions

against mine.

3. Compare the computation time of existing solutions

against mine.

Unfortunately, there is no well-defined quantitative metric for the

quality of photomosaics, and therefore the comparison is limited

to qualitative (visual) examination.

The tiles used in the experiment are collected from the publicly

available profile pictures of my friends. The target image is a

picture of Doraemon. They are illustrated in Figure 2.

(a) Tiles (b) Target Image

Figure 2. Tiles and target image for the experiment

A Versatile Open-Source Photomosaic Maker

Figure 4. Effect of different color spaces. Grid size: 36x36. 𝜆 = 1

(a) mosaically.com (b) easymoza.com (c) My Result

Figure 5 Compare my result with othes. Grid size: 50x50

6.3 Results
Figure 4 show the photomosaic built when the target image and

the tiles are represented in different color spaces. For this

particular example, the BGR and LAB color space give better

visual result. However, this conclusion may not hold true for other

target images, and thus I leave the color space as an option

(default to LAB) chosen by the user.

Figure 3 shows the photomosaic built with different values of

𝜆 for the unfair assignment case. The result from the fair

assignment case is also there for reference. It can be clearly

observed when 𝜆 increases, a more diverse collection of tiles will

be used to construct the photomosaic, but the overall visual

quality slowly diminishes. 𝜆 = 1 seems to be a reasonable

compromise between quality and fairness. One important note is

that when 𝜆 is large and the tile assignment is close to fair

assignment, it is better to use the fair assignment solver instead,

because it can guarantee a global optimal solution while enforcing

strict fair tile usage. This effect can be seen when comparing 𝑓𝑎𝑖𝑟

and 𝜆 = 100.0 in Figure 3. Both photomosaics have similar

fairness, but the 𝑓𝑎𝑖𝑟 mosaic has better visual quality compared to

the 𝜆 = 100.0 mosaic.

Figure 5 compares the photomosaic built by my algorithm and

two commercial photomosaic building websites. Since they

require payment to download high resolution result, the figures

are simply screenshots. The reason to select these websites is that

they are the few that can have blending disabled and support fair

assignment. For fair comparison, all photomosaics are generated

with the same grid size. All mosaics are generated under the strict

fairness constraint. For my result, the LAP color space is used. It

can be clearly seen from the figures that my result better

approximates Doraemon and has better visual quality.

Finally, to illustrate the computational efficiency of my

implementation, I recorded the time taken for the commercial

websites and my implementation to produce the photomosaics in

Figure 5. The result is listed in Table 1. It can be seen that my

solution is much faster than theirs. Note that the time required to

upload the tile to the websites (few minutes) and the time required

to read the images from disk for my implementation (a few

seconds) are not included in the table. Therefore, in practice, my

solution will lead to significantly less waiting time for the user,

thus allowing the user to experiment with more combinations of

parameters to achieve the desired effect.

Table 1 Computation Time of Photomosaics in Figure 5

 mosaically.com easymoza.com My solution

Time (s) 14 45 4

7 Conclusion
My open-source versatile photomosaic maker is designed to

consider fairness of tiles. I use specialized algorithms to solve

different cases depending on the level of tile fairness desired by

the user. My photomosaic maker is built on top of highly-efficient

computing libraries to ensure fast photomosaic construction, but it

hides all the complexity behind a user-friendly interface.

Experiment results show that my work surpasses the performance

of a number of commercial photomosaic-making websites in

terms of both speed and quality.

8 Future Work
A number of extensions of the basic photomosaic generation

algorithm can be explored. For example, one can relax the

restriction that each tile needs to be a square image or apply the

algorithm to videos. Moreover, some tricks to enhance the overall

effect such as color adjustment proposed by Lee [3] can be

implemented.

REFERENCES
[1] Blasi, G.D., & Petralia, M.P. (2005). Fast Photomosaic.

[2] Blasi, G. D., Gallo, G., & Petralia, M. P. (2006). Smart Ideas

for Photomosaic Rendering. In S. Battiato, G. Gallo, & F. Stanco

(Reds), 4th Eurographics Italian Chapter Conference.

doi:10.2312/LocalChapterEvents/ItalianChapConf2006/267-271

Figure 3. Trade-off between quality and fairness. Color space is LAB. Grid size: 36x36

1 https://github.com/hanzhi713/image-collage-maker

[3] Lee, H. (2014). 'Generation of Photo-Mosaic Images through

Block Matching and Color Adjustment'. World Academy of

Science, Engineering and Technology, Open Science Index 87,

International Journal of Computer and Information Engineering,

8(3), 457 - 460.

[4] EasyMoza lets you create a photo mosaic online. (n.d.).

Retrieved November 1, 2021, from https://www.easymoza.com/

[5] Mosaically - Free Online Photo Mosaic Creator. (n.d.).

Retrieved November 1, 2021, from https://mosaically.com/

[6] Free online photo collage, photo grid, and photo mosaic

maker. (n.d.). Retrieved November 1, 2021, from

https://www.picmyna.com/

[7] Luo, M. R. (2016). CIELAB. In M. R. Luo (Red),

Encyclopedia of Color Science and Technology (bll 207–212).

doi:10.1007/978-1-4419-8071-7_11

[8] Jonker, R., & Volgenant, A. (2005). A shortest augmenting

path algorithm for dense and sparse linear assignment problems.

Computing, 38, 325-340.

[9] src-d. (2021). Linear Assignmment Problem solver using

Jonker-Volgenant algorithm - Python 3 native module. GitHub

repository. Retrieved from https://github.com/src-d/lapjv

https://www.easymoza.com/
https://mosaically.com/

